mirror of
https://github.com/huggingface/transformers.git
synced 2025-10-28 07:14:35 +08:00
Compare commits
2 Commits
check_doc_
...
doc_builde
| Author | SHA1 | Date | |
|---|---|---|---|
| d7503f5068 | |||
| e82782cc10 |
@ -1,6 +1,6 @@
|
||||
# Troubleshooting
|
||||
|
||||
This is a document explaining how to deal with various issues on Circle-CI. The entries may include actual solutions or pointers to Issues that cover those.
|
||||
This is a document explaining how to deal with various issues on Circle-CI. The entries may include actually solutions or pointers to Issues that cover those.
|
||||
|
||||
## Circle CI
|
||||
|
||||
|
||||
1105
.circleci/config.yml
1105
.circleci/config.yml
File diff suppressed because it is too large
Load Diff
@ -1,678 +0,0 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2022 The HuggingFace Inc. team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import argparse
|
||||
import copy
|
||||
import os
|
||||
import random
|
||||
from dataclasses import dataclass
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
import yaml
|
||||
|
||||
|
||||
COMMON_ENV_VARIABLES = {
|
||||
"OMP_NUM_THREADS": 1,
|
||||
"TRANSFORMERS_IS_CI": True,
|
||||
"PYTEST_TIMEOUT": 120,
|
||||
"RUN_PIPELINE_TESTS": False,
|
||||
"RUN_PT_TF_CROSS_TESTS": False,
|
||||
"RUN_PT_FLAX_CROSS_TESTS": False,
|
||||
}
|
||||
# Disable the use of {"s": None} as the output is way too long, causing the navigation on CircleCI impractical
|
||||
COMMON_PYTEST_OPTIONS = {"max-worker-restart": 0, "dist": "loadfile", "v": None}
|
||||
DEFAULT_DOCKER_IMAGE = [{"image": "cimg/python:3.8.12"}]
|
||||
|
||||
|
||||
class EmptyJob:
|
||||
job_name = "empty"
|
||||
|
||||
def to_dict(self):
|
||||
return {
|
||||
"working_directory": "~/transformers",
|
||||
"docker": copy.deepcopy(DEFAULT_DOCKER_IMAGE),
|
||||
"steps":["checkout"],
|
||||
}
|
||||
|
||||
|
||||
@dataclass
|
||||
class CircleCIJob:
|
||||
name: str
|
||||
additional_env: Dict[str, Any] = None
|
||||
cache_name: str = None
|
||||
cache_version: str = "0.8.2"
|
||||
docker_image: List[Dict[str, str]] = None
|
||||
install_steps: List[str] = None
|
||||
marker: Optional[str] = None
|
||||
parallelism: Optional[int] = 1
|
||||
pytest_num_workers: int = 12
|
||||
pytest_options: Dict[str, Any] = None
|
||||
resource_class: Optional[str] = "2xlarge"
|
||||
tests_to_run: Optional[List[str]] = None
|
||||
working_directory: str = "~/transformers"
|
||||
# This should be only used for doctest job!
|
||||
command_timeout: Optional[int] = None
|
||||
|
||||
def __post_init__(self):
|
||||
# Deal with defaults for mutable attributes.
|
||||
if self.additional_env is None:
|
||||
self.additional_env = {}
|
||||
if self.cache_name is None:
|
||||
self.cache_name = self.name
|
||||
if self.docker_image is None:
|
||||
# Let's avoid changing the default list and make a copy.
|
||||
self.docker_image = copy.deepcopy(DEFAULT_DOCKER_IMAGE)
|
||||
if self.install_steps is None:
|
||||
self.install_steps = []
|
||||
if self.pytest_options is None:
|
||||
self.pytest_options = {}
|
||||
if isinstance(self.tests_to_run, str):
|
||||
self.tests_to_run = [self.tests_to_run]
|
||||
if self.parallelism is None:
|
||||
self.parallelism = 1
|
||||
|
||||
def to_dict(self):
|
||||
env = COMMON_ENV_VARIABLES.copy()
|
||||
env.update(self.additional_env)
|
||||
|
||||
cache_branch_prefix = os.environ.get("CIRCLE_BRANCH", "pull")
|
||||
if cache_branch_prefix != "main":
|
||||
cache_branch_prefix = "pull"
|
||||
|
||||
job = {
|
||||
"working_directory": self.working_directory,
|
||||
"docker": self.docker_image,
|
||||
"environment": env,
|
||||
}
|
||||
if self.resource_class is not None:
|
||||
job["resource_class"] = self.resource_class
|
||||
if self.parallelism is not None:
|
||||
job["parallelism"] = self.parallelism
|
||||
steps = [
|
||||
"checkout",
|
||||
{"attach_workspace": {"at": "~/transformers/test_preparation"}},
|
||||
{
|
||||
"restore_cache": {
|
||||
"keys": [
|
||||
# check the fully-matched cache first
|
||||
f"v{self.cache_version}-{self.cache_name}-{cache_branch_prefix}-pip-" + '{{ checksum "setup.py" }}',
|
||||
# try the partially-matched cache from `main`
|
||||
f"v{self.cache_version}-{self.cache_name}-main-pip-",
|
||||
# try the general partially-matched cache
|
||||
f"v{self.cache_version}-{self.cache_name}-{cache_branch_prefix}-pip-",
|
||||
]
|
||||
}
|
||||
},
|
||||
{
|
||||
"restore_cache": {
|
||||
"keys": [
|
||||
f"v{self.cache_version}-{self.cache_name}-{cache_branch_prefix}-site-packages-" + '{{ checksum "setup.py" }}',
|
||||
f"v{self.cache_version}-{self.cache_name}-main-site-packages-",
|
||||
f"v{self.cache_version}-{self.cache_name}-{cache_branch_prefix}-site-packages-",
|
||||
]
|
||||
}
|
||||
},
|
||||
]
|
||||
steps.extend([{"run": l} for l in self.install_steps])
|
||||
steps.extend([{"run": 'pip install "fsspec>=2023.5.0,<2023.10.0"'}])
|
||||
steps.extend([{"run": "pip install pytest-subtests"}])
|
||||
steps.append({"run": {"name": "Show installed libraries and their versions", "command": "pip freeze | tee installed.txt"}})
|
||||
steps.append({"store_artifacts": {"path": "~/transformers/installed.txt"}})
|
||||
|
||||
all_options = {**COMMON_PYTEST_OPTIONS, **self.pytest_options}
|
||||
pytest_flags = [f"--{key}={value}" if (value is not None or key in ["doctest-modules"]) else f"-{key}" for key, value in all_options.items()]
|
||||
pytest_flags.append(
|
||||
f"--make-reports={self.name}" if "examples" in self.name else f"--make-reports=tests_{self.name}"
|
||||
)
|
||||
|
||||
steps.append({"run": {"name": "Create `test-results` directory", "command": "mkdir test-results"}})
|
||||
|
||||
test_command = ""
|
||||
if self.command_timeout:
|
||||
test_command = f"timeout {self.command_timeout} "
|
||||
test_command += f"python -m pytest -rs --junitxml=test-results/junit.xml -n {self.pytest_num_workers} " + " ".join(pytest_flags)
|
||||
|
||||
if self.parallelism == 1:
|
||||
if self.tests_to_run is None:
|
||||
test_command += " << pipeline.parameters.tests_to_run >>"
|
||||
else:
|
||||
test_command += " " + " ".join(self.tests_to_run)
|
||||
else:
|
||||
# We need explicit list instead of `pipeline.parameters.tests_to_run` (only available at job runtime)
|
||||
tests = self.tests_to_run
|
||||
if tests is None:
|
||||
folder = os.environ["test_preparation_dir"]
|
||||
test_file = os.path.join(folder, "filtered_test_list.txt")
|
||||
if os.path.exists(test_file):
|
||||
with open(test_file) as f:
|
||||
tests = f.read().split(" ")
|
||||
|
||||
# expand the test list
|
||||
if tests == ["tests"]:
|
||||
tests = [os.path.join("tests", x) for x in os.listdir("tests")]
|
||||
expanded_tests = []
|
||||
for test in tests:
|
||||
if test.endswith(".py"):
|
||||
expanded_tests.append(test)
|
||||
elif test == "tests/models":
|
||||
expanded_tests.extend([os.path.join(test, x) for x in os.listdir(test)])
|
||||
elif test == "tests/pipelines":
|
||||
expanded_tests.extend([os.path.join(test, x) for x in os.listdir(test)])
|
||||
else:
|
||||
expanded_tests.append(test)
|
||||
# Avoid long tests always being collected together
|
||||
random.shuffle(expanded_tests)
|
||||
tests = " ".join(expanded_tests)
|
||||
|
||||
# Each executor to run ~10 tests
|
||||
n_executors = max(len(tests) // 10, 1)
|
||||
# Avoid empty test list on some executor(s) or launching too many executors
|
||||
if n_executors > self.parallelism:
|
||||
n_executors = self.parallelism
|
||||
job["parallelism"] = n_executors
|
||||
|
||||
# Need to be newline separated for the command `circleci tests split` below
|
||||
command = f'echo {tests} | tr " " "\\n" >> tests.txt'
|
||||
steps.append({"run": {"name": "Get tests", "command": command}})
|
||||
|
||||
command = 'TESTS=$(circleci tests split tests.txt) && echo $TESTS > splitted_tests.txt'
|
||||
steps.append({"run": {"name": "Split tests", "command": command}})
|
||||
|
||||
steps.append({"store_artifacts": {"path": "~/transformers/tests.txt"}})
|
||||
steps.append({"store_artifacts": {"path": "~/transformers/splitted_tests.txt"}})
|
||||
|
||||
test_command = ""
|
||||
if self.timeout:
|
||||
test_command = f"timeout {self.timeout} "
|
||||
test_command += f"python -m pytest -rs -n {self.pytest_num_workers} " + " ".join(pytest_flags)
|
||||
test_command += " $(cat splitted_tests.txt)"
|
||||
if self.marker is not None:
|
||||
test_command += f" -m {self.marker}"
|
||||
|
||||
if self.name == "pr_documentation_tests":
|
||||
# can't use ` | tee tee tests_output.txt` as usual
|
||||
test_command += " > tests_output.txt"
|
||||
# Save the return code, so we can check if it is timeout in the next step.
|
||||
test_command += '; touch "$?".txt'
|
||||
# Never fail the test step for the doctest job. We will check the results in the next step, and fail that
|
||||
# step instead if the actual test failures are found. This is to avoid the timeout being reported as test
|
||||
# failure.
|
||||
test_command = f"({test_command}) || true"
|
||||
else:
|
||||
test_command = f"({test_command} | tee tests_output.txt) || true"
|
||||
steps.append({"run": {"name": "Run tests", "command": test_command}})
|
||||
|
||||
# Deal with errors
|
||||
check_test_command = f'if [ -s reports/{self.job_name}/errors.txt ]; '
|
||||
check_test_command += 'then echo "Some tests errored out!"; echo ""; '
|
||||
check_test_command += f'cat reports/{self.job_name}/errors.txt; '
|
||||
check_test_command += 'echo ""; echo ""; '
|
||||
|
||||
py_command = f'import os; fp = open("reports/{self.job_name}/summary_short.txt"); failed = os.linesep.join([x for x in fp.read().split(os.linesep) if x.startswith("ERROR ")]); fp.close(); fp = open("summary_short.txt", "w"); fp.write(failed); fp.close()'
|
||||
check_test_command += f"$(python3 -c '{py_command}'); "
|
||||
check_test_command += 'cat summary_short.txt; echo ""; exit -1; '
|
||||
|
||||
# Deeal with failed tests
|
||||
check_test_command += f'elif [ -s reports/{self.job_name}/failures_short.txt ]; '
|
||||
check_test_command += 'then echo "Some tests failed!"; echo ""; '
|
||||
check_test_command += f'cat reports/{self.job_name}/failures_short.txt; '
|
||||
check_test_command += 'echo ""; echo ""; '
|
||||
|
||||
py_command = f'import os; fp = open("reports/{self.job_name}/summary_short.txt"); failed = os.linesep.join([x for x in fp.read().split(os.linesep) if x.startswith("FAILED ")]); fp.close(); fp = open("summary_short.txt", "w"); fp.write(failed); fp.close()'
|
||||
check_test_command += f"$(python3 -c '{py_command}'); "
|
||||
check_test_command += 'cat summary_short.txt; echo ""; exit -1; '
|
||||
|
||||
check_test_command += f'elif [ -s reports/{self.job_name}/stats.txt ]; then echo "All tests pass!"; '
|
||||
|
||||
# return code `124` means the previous (pytest run) step is timeout
|
||||
if self.name == "pr_documentation_tests":
|
||||
check_test_command += 'elif [ -f 124.txt ]; then echo "doctest timeout!"; '
|
||||
|
||||
check_test_command += 'else echo "other fatal error"; echo ""; exit -1; fi;'
|
||||
|
||||
steps.append({"run": {"name": "Check test results", "command": check_test_command}})
|
||||
|
||||
steps.append({"store_test_results": {"path": "test-results"}})
|
||||
|
||||
steps.append({"store_artifacts": {"path": "~/transformers/tests_output.txt"}})
|
||||
steps.append({"store_artifacts": {"path": "~/transformers/reports"}})
|
||||
|
||||
# save cache at the end: so pytest step runs before cache saving and we can see results earlier
|
||||
steps.append(
|
||||
{
|
||||
"save_cache": {
|
||||
"key": f"v{self.cache_version}-{self.cache_name}-{cache_branch_prefix}-pip-" + '{{ checksum "setup.py" }}',
|
||||
"paths": ["~/.cache/pip"],
|
||||
}
|
||||
}
|
||||
)
|
||||
steps.append(
|
||||
{
|
||||
"save_cache": {
|
||||
"key": f"v{self.cache_version}-{self.cache_name}-{cache_branch_prefix}-site-packages-" + '{{ checksum "setup.py" }}',
|
||||
"paths": ["~/.pyenv/versions/"],
|
||||
}
|
||||
}
|
||||
)
|
||||
|
||||
job["steps"] = steps
|
||||
return job
|
||||
|
||||
@property
|
||||
def job_name(self):
|
||||
return self.name if "examples" in self.name else f"tests_{self.name}"
|
||||
|
||||
|
||||
# JOBS
|
||||
torch_and_tf_job = CircleCIJob(
|
||||
"torch_and_tf",
|
||||
additional_env={"RUN_PT_TF_CROSS_TESTS": True},
|
||||
install_steps=[
|
||||
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng git-lfs cmake",
|
||||
"git lfs install",
|
||||
"pip install --upgrade --upgrade-strategy eager pip",
|
||||
"pip install -U --upgrade-strategy eager .[sklearn,tf-cpu,torch,testing,sentencepiece,torch-speech,vision]",
|
||||
"pip install -U --upgrade-strategy eager tensorflow_probability",
|
||||
"pip install -U --upgrade-strategy eager -e git+https://github.com/huggingface/accelerate@main#egg=accelerate",
|
||||
# TODO: remove this one after fixing the dependency issue(s) above
|
||||
"pip install -U --upgrade-strategy eager torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu",
|
||||
],
|
||||
marker="is_pt_tf_cross_test",
|
||||
pytest_options={"rA": None, "durations": 0},
|
||||
)
|
||||
|
||||
|
||||
torch_and_flax_job = CircleCIJob(
|
||||
"torch_and_flax",
|
||||
additional_env={"RUN_PT_FLAX_CROSS_TESTS": True},
|
||||
install_steps=[
|
||||
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng",
|
||||
"pip install -U --upgrade-strategy eager --upgrade pip",
|
||||
"pip install -U --upgrade-strategy eager .[sklearn,flax,torch,testing,sentencepiece,torch-speech,vision]",
|
||||
"pip install -U --upgrade-strategy eager -e git+https://github.com/huggingface/accelerate@main#egg=accelerate",
|
||||
],
|
||||
marker="is_pt_flax_cross_test",
|
||||
pytest_options={"rA": None, "durations": 0},
|
||||
)
|
||||
|
||||
|
||||
torch_job = CircleCIJob(
|
||||
"torch",
|
||||
install_steps=[
|
||||
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng time",
|
||||
"pip install --upgrade --upgrade-strategy eager pip",
|
||||
"pip install -U --upgrade-strategy eager .[sklearn,torch,testing,sentencepiece,torch-speech,vision,timm]",
|
||||
"pip install -U --upgrade-strategy eager -e git+https://github.com/huggingface/accelerate@main#egg=accelerate",
|
||||
],
|
||||
parallelism=1,
|
||||
pytest_num_workers=12,
|
||||
)
|
||||
|
||||
|
||||
tf_job = CircleCIJob(
|
||||
"tf",
|
||||
install_steps=[
|
||||
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng cmake",
|
||||
"pip install --upgrade --upgrade-strategy eager pip",
|
||||
"pip install -U --upgrade-strategy eager .[sklearn,tf-cpu,testing,sentencepiece,tf-speech,vision]",
|
||||
"pip install -U --upgrade-strategy eager tensorflow_probability",
|
||||
],
|
||||
parallelism=1,
|
||||
)
|
||||
|
||||
|
||||
flax_job = CircleCIJob(
|
||||
"flax",
|
||||
install_steps=[
|
||||
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng",
|
||||
"pip install --upgrade --upgrade-strategy eager pip",
|
||||
"pip install -U --upgrade-strategy eager .[flax,testing,sentencepiece,flax-speech,vision]",
|
||||
],
|
||||
parallelism=1,
|
||||
)
|
||||
|
||||
|
||||
pipelines_torch_job = CircleCIJob(
|
||||
"pipelines_torch",
|
||||
additional_env={"RUN_PIPELINE_TESTS": True},
|
||||
install_steps=[
|
||||
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng",
|
||||
"pip install --upgrade --upgrade-strategy eager pip",
|
||||
"pip install -U --upgrade-strategy eager .[sklearn,torch,testing,sentencepiece,torch-speech,vision,timm,video]",
|
||||
],
|
||||
marker="is_pipeline_test",
|
||||
pytest_num_workers=12,
|
||||
)
|
||||
|
||||
|
||||
pipelines_tf_job = CircleCIJob(
|
||||
"pipelines_tf",
|
||||
additional_env={"RUN_PIPELINE_TESTS": True},
|
||||
install_steps=[
|
||||
"sudo apt-get -y update && sudo apt-get install -y cmake",
|
||||
"pip install --upgrade --upgrade-strategy eager pip",
|
||||
"pip install -U --upgrade-strategy eager .[sklearn,tf-cpu,testing,sentencepiece,vision]",
|
||||
"pip install -U --upgrade-strategy eager tensorflow_probability",
|
||||
],
|
||||
marker="is_pipeline_test",
|
||||
)
|
||||
|
||||
|
||||
custom_tokenizers_job = CircleCIJob(
|
||||
"custom_tokenizers",
|
||||
additional_env={"RUN_CUSTOM_TOKENIZERS": True},
|
||||
install_steps=[
|
||||
"sudo apt-get -y update && sudo apt-get install -y cmake",
|
||||
{
|
||||
"name": "install jumanpp",
|
||||
"command":
|
||||
"wget https://github.com/ku-nlp/jumanpp/releases/download/v2.0.0-rc3/jumanpp-2.0.0-rc3.tar.xz\n"
|
||||
"tar xvf jumanpp-2.0.0-rc3.tar.xz\n"
|
||||
"mkdir jumanpp-2.0.0-rc3/bld\n"
|
||||
"cd jumanpp-2.0.0-rc3/bld\n"
|
||||
"sudo cmake .. -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=/usr/local\n"
|
||||
"sudo make install\n",
|
||||
},
|
||||
"pip install --upgrade --upgrade-strategy eager pip",
|
||||
"pip install -U --upgrade-strategy eager .[ja,testing,sentencepiece,jieba,spacy,ftfy,rjieba]",
|
||||
"python -m unidic download",
|
||||
],
|
||||
parallelism=None,
|
||||
resource_class=None,
|
||||
tests_to_run=[
|
||||
"./tests/models/bert_japanese/test_tokenization_bert_japanese.py",
|
||||
"./tests/models/openai/test_tokenization_openai.py",
|
||||
"./tests/models/clip/test_tokenization_clip.py",
|
||||
],
|
||||
)
|
||||
|
||||
|
||||
examples_torch_job = CircleCIJob(
|
||||
"examples_torch",
|
||||
additional_env={"OMP_NUM_THREADS": 8},
|
||||
cache_name="torch_examples",
|
||||
install_steps=[
|
||||
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng",
|
||||
"pip install --upgrade --upgrade-strategy eager pip",
|
||||
"pip install -U --upgrade-strategy eager .[sklearn,torch,sentencepiece,testing,torch-speech]",
|
||||
"pip install -U --upgrade-strategy eager -r examples/pytorch/_tests_requirements.txt",
|
||||
"pip install -U --upgrade-strategy eager -e git+https://github.com/huggingface/accelerate@main#egg=accelerate",
|
||||
],
|
||||
pytest_num_workers=1,
|
||||
)
|
||||
|
||||
|
||||
examples_tensorflow_job = CircleCIJob(
|
||||
"examples_tensorflow",
|
||||
cache_name="tensorflow_examples",
|
||||
install_steps=[
|
||||
"sudo apt-get -y update && sudo apt-get install -y cmake",
|
||||
"pip install --upgrade --upgrade-strategy eager pip",
|
||||
"pip install -U --upgrade-strategy eager .[sklearn,tensorflow,sentencepiece,testing]",
|
||||
"pip install -U --upgrade-strategy eager -r examples/tensorflow/_tests_requirements.txt",
|
||||
],
|
||||
)
|
||||
|
||||
|
||||
examples_flax_job = CircleCIJob(
|
||||
"examples_flax",
|
||||
cache_name="flax_examples",
|
||||
install_steps=[
|
||||
"pip install --upgrade --upgrade-strategy eager pip",
|
||||
"pip install -U --upgrade-strategy eager .[flax,testing,sentencepiece]",
|
||||
"pip install -U --upgrade-strategy eager -r examples/flax/_tests_requirements.txt",
|
||||
],
|
||||
)
|
||||
|
||||
|
||||
hub_job = CircleCIJob(
|
||||
"hub",
|
||||
additional_env={"HUGGINGFACE_CO_STAGING": True},
|
||||
install_steps=[
|
||||
"sudo apt-get -y update && sudo apt-get install git-lfs",
|
||||
'git config --global user.email "ci@dummy.com"',
|
||||
'git config --global user.name "ci"',
|
||||
"pip install --upgrade --upgrade-strategy eager pip",
|
||||
"pip install -U --upgrade-strategy eager .[torch,sentencepiece,testing,vision]",
|
||||
],
|
||||
marker="is_staging_test",
|
||||
pytest_num_workers=1,
|
||||
)
|
||||
|
||||
|
||||
onnx_job = CircleCIJob(
|
||||
"onnx",
|
||||
install_steps=[
|
||||
"sudo apt-get -y update && sudo apt-get install -y cmake",
|
||||
"pip install --upgrade --upgrade-strategy eager pip",
|
||||
"pip install -U --upgrade-strategy eager .[torch,tf,testing,sentencepiece,onnxruntime,vision,rjieba]",
|
||||
],
|
||||
pytest_options={"k onnx": None},
|
||||
pytest_num_workers=1,
|
||||
)
|
||||
|
||||
|
||||
exotic_models_job = CircleCIJob(
|
||||
"exotic_models",
|
||||
install_steps=[
|
||||
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev",
|
||||
"pip install --upgrade --upgrade-strategy eager pip",
|
||||
"pip install -U --upgrade-strategy eager .[torch,testing,vision]",
|
||||
"pip install -U --upgrade-strategy eager torchvision",
|
||||
"pip install -U --upgrade-strategy eager scipy",
|
||||
"pip install -U --upgrade-strategy eager 'git+https://github.com/facebookresearch/detectron2.git'",
|
||||
"sudo apt install tesseract-ocr",
|
||||
"pip install -U --upgrade-strategy eager pytesseract",
|
||||
"pip install --upgrade-strategy eager sentencepiece",
|
||||
"pip install -U --upgrade-strategy eager natten==0.15.1+torch210cpu -f https://shi-labs.com/natten/wheels",
|
||||
"pip install -U --upgrade-strategy eager python-Levenshtein",
|
||||
"pip install -U --upgrade-strategy eager opencv-python",
|
||||
"pip install -U --upgrade-strategy eager nltk",
|
||||
"pip uninstall -y torch torchvision torchaudio && pip install -U --upgrade-strategy eager 'torch<2.2.0' 'torchvision<0.17' 'torchaudio<2.2.0'"
|
||||
],
|
||||
tests_to_run=[
|
||||
"tests/models/*layoutlmv*",
|
||||
"tests/models/*nat",
|
||||
"tests/models/deta",
|
||||
"tests/models/udop",
|
||||
"tests/models/nougat",
|
||||
],
|
||||
pytest_num_workers=1,
|
||||
pytest_options={"durations": 100},
|
||||
)
|
||||
|
||||
|
||||
repo_utils_job = CircleCIJob(
|
||||
"repo_utils",
|
||||
install_steps=[
|
||||
"pip install --upgrade --upgrade-strategy eager pip",
|
||||
"pip install -U --upgrade-strategy eager .[quality,testing,torch]",
|
||||
],
|
||||
parallelism=None,
|
||||
pytest_num_workers=1,
|
||||
resource_class="large",
|
||||
tests_to_run="tests/repo_utils",
|
||||
)
|
||||
|
||||
|
||||
# We also include a `dummy.py` file in the files to be doc-tested to prevent edge case failure. Otherwise, the pytest
|
||||
# hangs forever during test collection while showing `collecting 0 items / 21 errors`. (To see this, we have to remove
|
||||
# the bash output redirection.)
|
||||
py_command = 'from utils.tests_fetcher import get_doctest_files; to_test = get_doctest_files() + ["dummy.py"]; to_test = " ".join(to_test); print(to_test)'
|
||||
py_command = f"$(python3 -c '{py_command}')"
|
||||
command = f'echo "{py_command}" > pr_documentation_tests_temp.txt'
|
||||
doc_test_job = CircleCIJob(
|
||||
"pr_documentation_tests",
|
||||
additional_env={"TRANSFORMERS_VERBOSITY": "error", "DATASETS_VERBOSITY": "error", "SKIP_CUDA_DOCTEST": "1"},
|
||||
install_steps=[
|
||||
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng time ffmpeg",
|
||||
"pip install --upgrade --upgrade-strategy eager pip",
|
||||
"pip install -U --upgrade-strategy eager -e .[dev]",
|
||||
"pip install -U --upgrade-strategy eager -e git+https://github.com/huggingface/accelerate@main#egg=accelerate",
|
||||
"pip install --upgrade --upgrade-strategy eager 'pytest<8.0.0' pytest-sugar",
|
||||
"pip install -U --upgrade-strategy eager natten==0.15.1+torch210cpu -f https://shi-labs.com/natten/wheels",
|
||||
"pip install -U --upgrade-strategy eager g2p-en",
|
||||
# TODO: remove this one after fixing the dependency issue(s) above
|
||||
"pip install -U --upgrade-strategy eager torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu",
|
||||
"find -name __pycache__ -delete",
|
||||
"find . -name \*.pyc -delete",
|
||||
# Add an empty file to keep the test step running correctly even no file is selected to be tested.
|
||||
"touch dummy.py",
|
||||
{
|
||||
"name": "Get files to test",
|
||||
"command": command,
|
||||
},
|
||||
{
|
||||
"name": "Show information in `Get files to test`",
|
||||
"command":
|
||||
"cat pr_documentation_tests_temp.txt"
|
||||
},
|
||||
{
|
||||
"name": "Get the last line in `pr_documentation_tests.txt`",
|
||||
"command":
|
||||
"tail -n1 pr_documentation_tests_temp.txt | tee pr_documentation_tests.txt"
|
||||
},
|
||||
],
|
||||
tests_to_run="$(cat pr_documentation_tests.txt)", # noqa
|
||||
pytest_options={"-doctest-modules": None, "doctest-glob": "*.md", "dist": "loadfile", "rvsA": None},
|
||||
command_timeout=1200, # test cannot run longer than 1200 seconds
|
||||
pytest_num_workers=1,
|
||||
)
|
||||
|
||||
REGULAR_TESTS = [
|
||||
torch_and_tf_job,
|
||||
torch_and_flax_job,
|
||||
torch_job,
|
||||
tf_job,
|
||||
flax_job,
|
||||
custom_tokenizers_job,
|
||||
hub_job,
|
||||
onnx_job,
|
||||
exotic_models_job,
|
||||
]
|
||||
EXAMPLES_TESTS = [
|
||||
examples_torch_job,
|
||||
examples_tensorflow_job,
|
||||
examples_flax_job,
|
||||
]
|
||||
PIPELINE_TESTS = [
|
||||
pipelines_torch_job,
|
||||
pipelines_tf_job,
|
||||
]
|
||||
REPO_UTIL_TESTS = [repo_utils_job]
|
||||
DOC_TESTS = [doc_test_job]
|
||||
|
||||
|
||||
def create_circleci_config(folder=None):
|
||||
if folder is None:
|
||||
folder = os.getcwd()
|
||||
# Used in CircleCIJob.to_dict() to expand the test list (for using parallelism)
|
||||
os.environ["test_preparation_dir"] = folder
|
||||
jobs = []
|
||||
all_test_file = os.path.join(folder, "test_list.txt")
|
||||
if os.path.exists(all_test_file):
|
||||
with open(all_test_file) as f:
|
||||
all_test_list = f.read()
|
||||
else:
|
||||
all_test_list = []
|
||||
if len(all_test_list) > 0:
|
||||
jobs.extend(PIPELINE_TESTS)
|
||||
|
||||
test_file = os.path.join(folder, "filtered_test_list.txt")
|
||||
if os.path.exists(test_file):
|
||||
with open(test_file) as f:
|
||||
test_list = f.read()
|
||||
else:
|
||||
test_list = []
|
||||
if len(test_list) > 0:
|
||||
jobs.extend(REGULAR_TESTS)
|
||||
|
||||
extended_tests_to_run = set(test_list.split())
|
||||
# Extend the test files for cross test jobs
|
||||
for job in jobs:
|
||||
if job.job_name in ["tests_torch_and_tf", "tests_torch_and_flax"]:
|
||||
for test_path in copy.copy(extended_tests_to_run):
|
||||
dir_path, fn = os.path.split(test_path)
|
||||
if fn.startswith("test_modeling_tf_"):
|
||||
fn = fn.replace("test_modeling_tf_", "test_modeling_")
|
||||
elif fn.startswith("test_modeling_flax_"):
|
||||
fn = fn.replace("test_modeling_flax_", "test_modeling_")
|
||||
else:
|
||||
if job.job_name == "test_torch_and_tf":
|
||||
fn = fn.replace("test_modeling_", "test_modeling_tf_")
|
||||
elif job.job_name == "test_torch_and_flax":
|
||||
fn = fn.replace("test_modeling_", "test_modeling_flax_")
|
||||
new_test_file = str(os.path.join(dir_path, fn))
|
||||
if os.path.isfile(new_test_file):
|
||||
if new_test_file not in extended_tests_to_run:
|
||||
extended_tests_to_run.add(new_test_file)
|
||||
extended_tests_to_run = sorted(extended_tests_to_run)
|
||||
for job in jobs:
|
||||
if job.job_name in ["tests_torch_and_tf", "tests_torch_and_flax"]:
|
||||
job.tests_to_run = extended_tests_to_run
|
||||
fn = "filtered_test_list_cross_tests.txt"
|
||||
f_path = os.path.join(folder, fn)
|
||||
with open(f_path, "w") as fp:
|
||||
fp.write(" ".join(extended_tests_to_run))
|
||||
|
||||
example_file = os.path.join(folder, "examples_test_list.txt")
|
||||
if os.path.exists(example_file) and os.path.getsize(example_file) > 0:
|
||||
with open(example_file, "r", encoding="utf-8") as f:
|
||||
example_tests = f.read()
|
||||
for job in EXAMPLES_TESTS:
|
||||
framework = job.name.replace("examples_", "").replace("torch", "pytorch")
|
||||
if example_tests == "all":
|
||||
job.tests_to_run = [f"examples/{framework}"]
|
||||
else:
|
||||
job.tests_to_run = [f for f in example_tests.split(" ") if f.startswith(f"examples/{framework}")]
|
||||
|
||||
if len(job.tests_to_run) > 0:
|
||||
jobs.append(job)
|
||||
|
||||
doctest_file = os.path.join(folder, "doctest_list.txt")
|
||||
if os.path.exists(doctest_file):
|
||||
with open(doctest_file) as f:
|
||||
doctest_list = f.read()
|
||||
else:
|
||||
doctest_list = []
|
||||
if len(doctest_list) > 0:
|
||||
jobs.extend(DOC_TESTS)
|
||||
|
||||
repo_util_file = os.path.join(folder, "test_repo_utils.txt")
|
||||
if os.path.exists(repo_util_file) and os.path.getsize(repo_util_file) > 0:
|
||||
jobs.extend(REPO_UTIL_TESTS)
|
||||
|
||||
if len(jobs) == 0:
|
||||
jobs = [EmptyJob()]
|
||||
config = {"version": "2.1"}
|
||||
config["parameters"] = {
|
||||
# Only used to accept the parameters from the trigger
|
||||
"nightly": {"type": "boolean", "default": False},
|
||||
"tests_to_run": {"type": "string", "default": test_list},
|
||||
}
|
||||
config["jobs"] = {j.job_name: j.to_dict() for j in jobs}
|
||||
config["workflows"] = {"version": 2, "run_tests": {"jobs": [j.job_name for j in jobs]}}
|
||||
with open(os.path.join(folder, "generated_config.yml"), "w") as f:
|
||||
f.write(yaml.dump(config, indent=2, width=1000000, sort_keys=False))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--fetcher_folder", type=str, default=None, help="Only test that all tests and modules are accounted for."
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
create_circleci_config(args.fetcher_folder)
|
||||
1
.gitattributes
vendored
1
.gitattributes
vendored
@ -1,4 +1,3 @@
|
||||
*.py eol=lf
|
||||
*.rst eol=lf
|
||||
*.md eol=lf
|
||||
*.mdx eol=lf
|
||||
22
.github/ISSUE_TEMPLATE/---new-benchmark.md
vendored
Normal file
22
.github/ISSUE_TEMPLATE/---new-benchmark.md
vendored
Normal file
@ -0,0 +1,22 @@
|
||||
---
|
||||
name: "\U0001F5A5 New benchmark"
|
||||
about: Benchmark a part of this library and share your results
|
||||
title: "[Benchmark]"
|
||||
labels: ''
|
||||
assignees: ''
|
||||
|
||||
---
|
||||
|
||||
# 🖥 Benchmarking `transformers`
|
||||
|
||||
## Benchmark
|
||||
|
||||
Which part of `transformers` did you benchmark?
|
||||
|
||||
## Set-up
|
||||
|
||||
What did you run your benchmarks on? Please include details, such as: CPU, GPU? If using multiple GPUs, which parallelization did you use?
|
||||
|
||||
## Results
|
||||
|
||||
Put your results here!
|
||||
20
.github/ISSUE_TEMPLATE/--new-model-addition.md
vendored
Normal file
20
.github/ISSUE_TEMPLATE/--new-model-addition.md
vendored
Normal file
@ -0,0 +1,20 @@
|
||||
---
|
||||
name: "\U0001F31F New model addition"
|
||||
about: Submit a proposal/request to implement a new Transformer-based model
|
||||
title: ''
|
||||
labels: New model
|
||||
assignees: ''
|
||||
|
||||
---
|
||||
|
||||
# 🌟 New model addition
|
||||
|
||||
## Model description
|
||||
|
||||
<!-- Important information -->
|
||||
|
||||
## Open source status
|
||||
|
||||
* [ ] the model implementation is available: (give details)
|
||||
* [ ] the model weights are available: (give details)
|
||||
* [ ] who are the authors: (mention them, if possible by @gh-username)
|
||||
106
.github/ISSUE_TEMPLATE/bug-report.md
vendored
Normal file
106
.github/ISSUE_TEMPLATE/bug-report.md
vendored
Normal file
@ -0,0 +1,106 @@
|
||||
---
|
||||
name: "\U0001F41B Bug Report"
|
||||
about: Submit a bug report to help us improve transformers
|
||||
title: ''
|
||||
labels: ''
|
||||
assignees: ''
|
||||
|
||||
---
|
||||
|
||||
|
||||
## Environment info
|
||||
<!-- You can run the command `transformers-cli env` and copy-and-paste its output below.
|
||||
Don't forget to fill out the missing fields in that output! -->
|
||||
|
||||
- `transformers` version:
|
||||
- Platform:
|
||||
- Python version:
|
||||
- PyTorch version (GPU?):
|
||||
- Tensorflow version (GPU?):
|
||||
- Using GPU in script?:
|
||||
- Using distributed or parallel set-up in script?:
|
||||
|
||||
### Who can help
|
||||
<!-- Your issue will be replied to more quickly if you can figure out the right person to tag with @
|
||||
If you know how to use git blame, that is the easiest way, otherwise, here is a rough guide of **who to tag**.
|
||||
Please tag fewer than 3 people.
|
||||
|
||||
Models:
|
||||
|
||||
- ALBERT, BERT, XLM, DeBERTa, DeBERTa-v2, ELECTRA, MobileBert, SqueezeBert: @LysandreJik
|
||||
- T5, BART, Marian, Pegasus, EncoderDecoder: @patrickvonplaten
|
||||
- Blenderbot, MBART: @patil-suraj
|
||||
- Longformer, Reformer, TransfoXL, XLNet, FNet, BigBird: @patrickvonplaten
|
||||
- FSMT: @stas00
|
||||
- Funnel: @sgugger
|
||||
- GPT-2, GPT: @patrickvonplaten, @LysandreJik
|
||||
- RAG, DPR: @patrickvonplaten, @lhoestq
|
||||
- TensorFlow: @Rocketknight1
|
||||
- JAX/Flax: @patil-suraj
|
||||
- TAPAS, LayoutLM, LayoutLMv2, LUKE, ViT, BEiT, DEiT, DETR, CANINE: @NielsRogge
|
||||
- GPT-Neo, GPT-J, CLIP: @patil-suraj
|
||||
- Wav2Vec2, HuBERT, SpeechEncoderDecoder, UniSpeech, UniSpeechSAT, SEW, SEW-D, Speech2Text: @patrickvonplaten, @anton-l
|
||||
|
||||
If the model isn't in the list, ping @LysandreJik who will redirect you to the correct contributor.
|
||||
|
||||
Library:
|
||||
|
||||
- Benchmarks: @patrickvonplaten
|
||||
- Deepspeed: @stas00
|
||||
- Ray/raytune: @richardliaw, @amogkam
|
||||
- Text generation: @patrickvonplaten @narsil
|
||||
- Tokenizers: @SaulLu
|
||||
- Trainer: @sgugger
|
||||
- Pipelines: @Narsil
|
||||
- Speech: @patrickvonplaten, @anton-l
|
||||
- Vision: @NielsRogge, @sgugger
|
||||
|
||||
Documentation: @sgugger
|
||||
|
||||
Model hub:
|
||||
|
||||
- for issues with a model, report at https://discuss.huggingface.co/ and tag the model's creator.
|
||||
|
||||
HF projects:
|
||||
|
||||
- datasets: [different repo](https://github.com/huggingface/datasets)
|
||||
- rust tokenizers: [different repo](https://github.com/huggingface/tokenizers)
|
||||
|
||||
Examples:
|
||||
|
||||
- maintained examples (not research project or legacy): @sgugger, @patil-suraj
|
||||
|
||||
For research projetcs, please ping the contributor directly. For example, on the following projects:
|
||||
|
||||
- research_projects/bert-loses-patience: @JetRunner
|
||||
- research_projects/distillation: @VictorSanh
|
||||
|
||||
-->
|
||||
|
||||
## Information
|
||||
|
||||
Model I am using (Bert, XLNet ...):
|
||||
|
||||
The problem arises when using:
|
||||
* [ ] the official example scripts: (give details below)
|
||||
* [ ] my own modified scripts: (give details below)
|
||||
|
||||
The tasks I am working on is:
|
||||
* [ ] an official GLUE/SQUaD task: (give the name)
|
||||
* [ ] my own task or dataset: (give details below)
|
||||
|
||||
## To reproduce
|
||||
|
||||
Steps to reproduce the behavior:
|
||||
|
||||
1.
|
||||
2.
|
||||
3.
|
||||
|
||||
<!-- If you have code snippets, error messages, stack traces please provide them here as well.
|
||||
Important! Use code tags to correctly format your code. See https://help.github.com/en/github/writing-on-github/creating-and-highlighting-code-blocks#syntax-highlighting
|
||||
Do not use screenshots, as they are hard to read and (more importantly) don't allow others to copy-and-paste your code.-->
|
||||
|
||||
## Expected behavior
|
||||
|
||||
<!-- A clear and concise description of what you would expect to happen. -->
|
||||
116
.github/ISSUE_TEMPLATE/bug-report.yml
vendored
116
.github/ISSUE_TEMPLATE/bug-report.yml
vendored
@ -1,116 +0,0 @@
|
||||
name: "\U0001F41B Bug Report"
|
||||
description: Submit a bug report to help us improve transformers
|
||||
body:
|
||||
- type: textarea
|
||||
id: system-info
|
||||
attributes:
|
||||
label: System Info
|
||||
description: Please share your system info with us. You can run the command `transformers-cli env` and copy-paste its output below.
|
||||
placeholder: transformers version, platform, python version, ...
|
||||
validations:
|
||||
required: true
|
||||
|
||||
- type: textarea
|
||||
id: who-can-help
|
||||
attributes:
|
||||
label: Who can help?
|
||||
description: |
|
||||
Your issue will be replied to more quickly if you can figure out the right person to tag with @
|
||||
If you know how to use git blame, that is the easiest way, otherwise, here is a rough guide of **who to tag**.
|
||||
|
||||
All issues are read by one of the core maintainers, so if you don't know who to tag, just leave this blank and
|
||||
a core maintainer will ping the right person.
|
||||
|
||||
Please tag fewer than 3 people.
|
||||
|
||||
Models:
|
||||
|
||||
- text models: @ArthurZucker and @younesbelkada
|
||||
- vision models: @amyeroberts
|
||||
- speech models: @sanchit-gandhi
|
||||
- graph models: @clefourrier
|
||||
|
||||
Library:
|
||||
|
||||
- flax: @sanchit-gandhi
|
||||
- generate: @gante
|
||||
- pipelines: @Narsil
|
||||
- tensorflow: @gante and @Rocketknight1
|
||||
- tokenizers: @ArthurZucker
|
||||
- trainer: @muellerzr and @pacman100
|
||||
|
||||
Integrations:
|
||||
|
||||
- deepspeed: HF Trainer/Accelerate: @pacman100
|
||||
- ray/raytune: @richardliaw, @amogkam
|
||||
- Big Model Inference: @SunMarc
|
||||
- quantization (bitsandbytes, autogpt): @SunMarc and @younesbelkada
|
||||
|
||||
Documentation: @stevhliu
|
||||
|
||||
Model hub:
|
||||
|
||||
- for issues with a model, report at https://discuss.huggingface.co/ and tag the model's creator.
|
||||
|
||||
HF projects:
|
||||
|
||||
- accelerate: [different repo](https://github.com/huggingface/accelerate)
|
||||
- datasets: [different repo](https://github.com/huggingface/datasets)
|
||||
- diffusers: [different repo](https://github.com/huggingface/diffusers)
|
||||
- rust tokenizers: [different repo](https://github.com/huggingface/tokenizers)
|
||||
|
||||
Maintained examples (not research project or legacy):
|
||||
|
||||
- Flax: @sanchit-gandhi
|
||||
- PyTorch: See Models above and tag the person corresponding to the modality of the example.
|
||||
- TensorFlow: @Rocketknight1
|
||||
|
||||
Research projects are not maintained and should be taken as is.
|
||||
|
||||
placeholder: "@Username ..."
|
||||
|
||||
- type: checkboxes
|
||||
id: information-scripts-examples
|
||||
attributes:
|
||||
label: Information
|
||||
description: 'The problem arises when using:'
|
||||
options:
|
||||
- label: "The official example scripts"
|
||||
- label: "My own modified scripts"
|
||||
|
||||
- type: checkboxes
|
||||
id: information-tasks
|
||||
attributes:
|
||||
label: Tasks
|
||||
description: "The tasks I am working on are:"
|
||||
options:
|
||||
- label: "An officially supported task in the `examples` folder (such as GLUE/SQuAD, ...)"
|
||||
- label: "My own task or dataset (give details below)"
|
||||
|
||||
- type: textarea
|
||||
id: reproduction
|
||||
validations:
|
||||
required: true
|
||||
attributes:
|
||||
label: Reproduction
|
||||
description: |
|
||||
Please provide a code sample that reproduces the problem you ran into. It can be a Colab link or just a code snippet.
|
||||
If you have code snippets, error messages, stack traces please provide them here as well.
|
||||
Important! Use code tags to correctly format your code. See https://help.github.com/en/github/writing-on-github/creating-and-highlighting-code-blocks#syntax-highlighting
|
||||
Do not use screenshots, as they are hard to read and (more importantly) don't allow others to copy-and-paste your code.
|
||||
|
||||
placeholder: |
|
||||
Steps to reproduce the behavior:
|
||||
|
||||
1.
|
||||
2.
|
||||
3.
|
||||
|
||||
|
||||
- type: textarea
|
||||
id: expected-behavior
|
||||
validations:
|
||||
required: true
|
||||
attributes:
|
||||
label: Expected behavior
|
||||
description: "A clear and concise description of what you would expect to happen."
|
||||
12
.github/ISSUE_TEMPLATE/config.yml
vendored
12
.github/ISSUE_TEMPLATE/config.yml
vendored
@ -1,12 +0,0 @@
|
||||
blank_issues_enabled: true
|
||||
version: 2.1
|
||||
contact_links:
|
||||
- name: Model checkpoints on the Hugging Face Hub
|
||||
url: https://huggingface.co/models
|
||||
about: Open a Pull request / Discussion related to a specific model checkpoint directly on the Hugging Face Hub
|
||||
- name: Website Related
|
||||
url: https://github.com/huggingface/hub-docs/issues
|
||||
about: Feature requests and bug reports related to the website
|
||||
- name: Forum
|
||||
url: https://discuss.huggingface.co/
|
||||
about: General usage questions and community discussions
|
||||
25
.github/ISSUE_TEMPLATE/feature-request.md
vendored
Normal file
25
.github/ISSUE_TEMPLATE/feature-request.md
vendored
Normal file
@ -0,0 +1,25 @@
|
||||
---
|
||||
name: "\U0001F680 Feature request"
|
||||
about: Submit a proposal/request for a new transformers feature
|
||||
title: ''
|
||||
labels: ''
|
||||
assignees: ''
|
||||
|
||||
---
|
||||
|
||||
# 🚀 Feature request
|
||||
|
||||
<!-- A clear and concise description of the feature proposal.
|
||||
Please provide a link to the paper and code in case they exist. -->
|
||||
|
||||
## Motivation
|
||||
|
||||
<!-- Please outline the motivation for the proposal. Is your feature request
|
||||
related to a problem? e.g., I'm always frustrated when [...]. If this is related
|
||||
to another GitHub issue, please link here too. -->
|
||||
|
||||
## Your contribution
|
||||
|
||||
<!-- Is there any way that you could help, e.g. by submitting a PR?
|
||||
Make sure to read the CONTRIBUTING.MD readme:
|
||||
https://github.com/huggingface/transformers/blob/master/CONTRIBUTING.md -->
|
||||
31
.github/ISSUE_TEMPLATE/feature-request.yml
vendored
31
.github/ISSUE_TEMPLATE/feature-request.yml
vendored
@ -1,31 +0,0 @@
|
||||
name: "\U0001F680 Feature request"
|
||||
description: Submit a proposal/request for a new transformers feature
|
||||
labels: [ "feature" ]
|
||||
body:
|
||||
- type: textarea
|
||||
id: feature-request
|
||||
validations:
|
||||
required: true
|
||||
attributes:
|
||||
label: Feature request
|
||||
description: |
|
||||
A clear and concise description of the feature proposal. Please provide a link to the paper and code in case they exist.
|
||||
|
||||
- type: textarea
|
||||
id: motivation
|
||||
validations:
|
||||
required: true
|
||||
attributes:
|
||||
label: Motivation
|
||||
description: |
|
||||
Please outline the motivation for the proposal. Is your feature request related to a problem? e.g., I'm always frustrated when [...]. If this is related to another GitHub issue, please link here too.
|
||||
|
||||
|
||||
- type: textarea
|
||||
id: contribution
|
||||
validations:
|
||||
required: true
|
||||
attributes:
|
||||
label: Your contribution
|
||||
description: |
|
||||
Is there any way that you could help, e.g. by submitting a PR? Make sure to read the CONTRIBUTING.MD [readme](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md)
|
||||
46
.github/ISSUE_TEMPLATE/i18n.md
vendored
46
.github/ISSUE_TEMPLATE/i18n.md
vendored
@ -1,46 +0,0 @@
|
||||
---
|
||||
name: 🌐 Translating a new language?
|
||||
about: Start a new translation effort in your language
|
||||
title: '[i18n-<languageCode>] Translating docs to <languageName>'
|
||||
labels: WIP
|
||||
assignees: ''
|
||||
|
||||
---
|
||||
|
||||
<!--
|
||||
Note: Please search to see if an issue already exists for the language you are trying to translate.
|
||||
-->
|
||||
|
||||
Hi!
|
||||
|
||||
Let's bring the documentation to all the <languageName>-speaking community 🌐 (currently 0 out of 267 complete)
|
||||
|
||||
Who would want to translate? Please follow the 🤗 [TRANSLATING guide](https://github.com/huggingface/transformers/blob/main/docs/TRANSLATING.md). Here is a list of the files ready for translation. Let us know in this issue if you'd like to translate any, and we'll add your name to the list.
|
||||
|
||||
Some notes:
|
||||
|
||||
* Please translate using an informal tone (imagine you are talking with a friend about transformers 🤗).
|
||||
* Please translate in a gender-neutral way.
|
||||
* Add your translations to the folder called `<languageCode>` inside the [source folder](https://github.com/huggingface/transformers/tree/main/docs/source).
|
||||
* Register your translation in `<languageCode>/_toctree.yml`; please follow the order of the [English version](https://github.com/huggingface/transformers/blob/main/docs/source/en/_toctree.yml).
|
||||
* Once you're finished, open a pull request and tag this issue by including #issue-number in the description, where issue-number is the number of this issue. Please ping @stevhliu and @MKhalusova for review.
|
||||
* 🙋 If you'd like others to help you with the translation, you can also post in the 🤗 [forums](https://discuss.huggingface.co/).
|
||||
|
||||
## Get Started section
|
||||
|
||||
- [ ] [index.md](https://github.com/huggingface/transformers/blob/main/docs/source/en/index.md) https://github.com/huggingface/transformers/pull/20180
|
||||
- [ ] [quicktour.md](https://github.com/huggingface/transformers/blob/main/docs/source/en/quicktour.md) (waiting for initial PR to go through)
|
||||
- [ ] [installation.md](https://github.com/huggingface/transformers/blob/main/docs/source/en/installation.md).
|
||||
|
||||
## Tutorial section
|
||||
- [ ] [pipeline_tutorial.md](https://github.com/huggingface/transformers/blob/main/docs/source/en/pipeline_tutorial.md)
|
||||
- [ ] [autoclass_tutorial.md](https://github.com/huggingface/transformers/blob/master/docs/source/autoclass_tutorial.md)
|
||||
- [ ] [preprocessing.md](https://github.com/huggingface/transformers/blob/main/docs/source/en/preprocessing.md)
|
||||
- [ ] [training.md](https://github.com/huggingface/transformers/blob/main/docs/source/en/training.md)
|
||||
- [ ] [accelerate.md](https://github.com/huggingface/transformers/blob/main/docs/source/en/accelerate.md)
|
||||
- [ ] [model_sharing.md](https://github.com/huggingface/transformers/blob/main/docs/source/en/model_sharing.md)
|
||||
- [ ] [multilingual.md](https://github.com/huggingface/transformers/blob/main/docs/source/en/multilingual.md)
|
||||
|
||||
<!--
|
||||
Keep on adding more as you go 🔥
|
||||
-->
|
||||
58
.github/ISSUE_TEMPLATE/migration.md
vendored
Normal file
58
.github/ISSUE_TEMPLATE/migration.md
vendored
Normal file
@ -0,0 +1,58 @@
|
||||
---
|
||||
name: "\U0001F4DA Migration from pytorch-pretrained-bert or pytorch-transformers"
|
||||
about: Report a problem when migrating from pytorch-pretrained-bert or pytorch-transformers
|
||||
to transformers
|
||||
title: ''
|
||||
labels: Migration
|
||||
assignees: ''
|
||||
|
||||
---
|
||||
|
||||
# 📚 Migration
|
||||
|
||||
## Information
|
||||
|
||||
<!-- Important information -->
|
||||
|
||||
Model I am using (Bert, XLNet ...):
|
||||
|
||||
Language I am using the model on (English, Chinese ...):
|
||||
|
||||
The problem arises when using:
|
||||
* [ ] the official example scripts: (give details below)
|
||||
* [ ] my own modified scripts: (give details below)
|
||||
|
||||
The tasks I am working on is:
|
||||
* [ ] an official GLUE/SQUaD task: (give the name)
|
||||
* [ ] my own task or dataset: (give details below)
|
||||
|
||||
## Details
|
||||
|
||||
<!-- A clear and concise description of the migration issue.
|
||||
If you have code snippets, please provide it here as well.
|
||||
Important! Use code tags to correctly format your code. See https://help.github.com/en/github/writing-on-github/creating-and-highlighting-code-blocks#syntax-highlighting
|
||||
Do not use screenshots, as they are hard to read and (more importantly) don't allow others to copy-and-paste your code.
|
||||
-->
|
||||
|
||||
## Environment info
|
||||
<!-- You can run the command `python transformers-cli env` and copy-and-paste its output below.
|
||||
Don't forget to fill out the missing fields in that output! -->
|
||||
|
||||
- `transformers` version:
|
||||
- Platform:
|
||||
- Python version:
|
||||
- PyTorch version (GPU?):
|
||||
- Tensorflow version (GPU?):
|
||||
- Using GPU in script?:
|
||||
- Using distributed or parallel set-up in script?:
|
||||
|
||||
<!-- IMPORTANT: which version of the former library do you use? -->
|
||||
* `pytorch-transformers` or `pytorch-pretrained-bert` version (or branch):
|
||||
|
||||
|
||||
## Checklist
|
||||
|
||||
- [ ] I have read the migration guide in the readme.
|
||||
([pytorch-transformers](https://github.com/huggingface/transformers#migrating-from-pytorch-transformers-to-transformers);
|
||||
[pytorch-pretrained-bert](https://github.com/huggingface/transformers#migrating-from-pytorch-pretrained-bert-to-transformers))
|
||||
- [ ] I checked if a related official extension example runs on my machine.
|
||||
72
.github/ISSUE_TEMPLATE/migration.yml
vendored
72
.github/ISSUE_TEMPLATE/migration.yml
vendored
@ -1,72 +0,0 @@
|
||||
name: "\U0001F4DA Migration from pytorch-pretrained-bert or pytorch-transformers"
|
||||
description: Report a problem when migrating from pytorch-pretrained-bert or pytorch-transformers to transformers
|
||||
labels: [ "migration" ]
|
||||
body:
|
||||
- type: textarea
|
||||
id: system-info
|
||||
attributes:
|
||||
label: System Info
|
||||
description: Please share your system info with us. You can run the command `transformers-cli env` and copy-paste its output below.
|
||||
render: shell
|
||||
placeholder: transformers version, platform, python version, ...
|
||||
validations:
|
||||
required: true
|
||||
|
||||
- type: checkboxes
|
||||
id: information-scripts-examples
|
||||
attributes:
|
||||
label: Information
|
||||
description: 'The problem arises when using:'
|
||||
options:
|
||||
- label: "The official example scripts"
|
||||
- label: "My own modified scripts"
|
||||
|
||||
- type: checkboxes
|
||||
id: information-tasks
|
||||
attributes:
|
||||
label: Tasks
|
||||
description: "The tasks I am working on are:"
|
||||
options:
|
||||
- label: "An officially supported task in the `examples` folder (such as GLUE/SQuAD, ...)"
|
||||
- label: "My own task or dataset (give details below)"
|
||||
|
||||
- type: textarea
|
||||
id: reproduction
|
||||
validations:
|
||||
required: true
|
||||
attributes:
|
||||
label: Reproduction
|
||||
description: |
|
||||
Please provide a code sample that reproduces the problem you ran into. It can be a Colab link or just a code snippet.
|
||||
If you have code snippets, error messages, stack traces please provide them here as well.
|
||||
Important! Use code tags to correctly format your code. See https://help.github.com/en/github/writing-on-github/creating-and-highlighting-code-blocks#syntax-highlighting
|
||||
Do not use screenshots, as they are hard to read and (more importantly) don't allow others to copy-and-paste your code.
|
||||
|
||||
placeholder: |
|
||||
Steps to reproduce the behavior:
|
||||
|
||||
1.
|
||||
2.
|
||||
3.
|
||||
|
||||
|
||||
- type: textarea
|
||||
id: expected-behavior
|
||||
validations:
|
||||
required: true
|
||||
attributes:
|
||||
label: Expected behavior
|
||||
description: "A clear and concise description of what you would expect to happen."
|
||||
render: shell
|
||||
|
||||
- type: checkboxes
|
||||
id: checklist
|
||||
attributes:
|
||||
label: Checklist
|
||||
options:
|
||||
- label: "I have read the migration guide in the readme.
|
||||
([pytorch-transformers](https://github.com/huggingface/transformers#migrating-from-pytorch-transformers-to-transformers);
|
||||
[pytorch-pretrained-bert](https://github.com/huggingface/transformers#migrating-from-pytorch-pretrained-bert-to-transformers))"
|
||||
required: true
|
||||
- label: "I checked if a related official extension example runs on my machine."
|
||||
required: true
|
||||
31
.github/ISSUE_TEMPLATE/new-model-addition.yml
vendored
31
.github/ISSUE_TEMPLATE/new-model-addition.yml
vendored
@ -1,31 +0,0 @@
|
||||
name: "\U0001F31F New model addition"
|
||||
description: Submit a proposal/request to implement a new model
|
||||
labels: [ "New model" ]
|
||||
|
||||
body:
|
||||
- type: textarea
|
||||
id: description-request
|
||||
validations:
|
||||
required: true
|
||||
attributes:
|
||||
label: Model description
|
||||
description: |
|
||||
Put any and all important information relative to the model
|
||||
|
||||
- type: checkboxes
|
||||
id: information-tasks
|
||||
attributes:
|
||||
label: Open source status
|
||||
description: |
|
||||
Please note that if the model implementation isn't available or if the weights aren't open-source, we are less likely to implement it in `transformers`.
|
||||
options:
|
||||
- label: "The model implementation is available"
|
||||
- label: "The model weights are available"
|
||||
|
||||
- type: textarea
|
||||
id: additional-info
|
||||
attributes:
|
||||
label: Provide useful links for the implementation
|
||||
description: |
|
||||
Please provide information regarding the implementation, the weights, and the authors.
|
||||
Please mention the authors by @gh-username if you're aware of their usernames.
|
||||
26
.github/ISSUE_TEMPLATE/question-help.md
vendored
Normal file
26
.github/ISSUE_TEMPLATE/question-help.md
vendored
Normal file
@ -0,0 +1,26 @@
|
||||
---
|
||||
name: "❓ Questions & Help"
|
||||
about: Post your general questions on the Hugging Face forum: https://discuss.huggingface.co/
|
||||
title: ''
|
||||
labels: ''
|
||||
assignees: ''
|
||||
|
||||
---
|
||||
|
||||
# ❓ Questions & Help
|
||||
|
||||
<!-- The GitHub issue tracker is primarly intended for bugs, feature requests,
|
||||
new models, benchmarks, and migration questions. For all other questions,
|
||||
we direct you to the Hugging Face forum: https://discuss.huggingface.co/ .
|
||||
-->
|
||||
|
||||
## Details
|
||||
|
||||
<!-- Description of your issue -->
|
||||
|
||||
<!-- You should first ask your question on the forum, and only if
|
||||
you didn't get an answer after a few days ask it here on GitHub. -->
|
||||
|
||||
**A link to original question on the forum**:
|
||||
|
||||
<!-- Your issue will be closed if you don't fill this part. -->
|
||||
48
.github/PULL_REQUEST_TEMPLATE.md
vendored
48
.github/PULL_REQUEST_TEMPLATE.md
vendored
@ -17,13 +17,13 @@ Fixes # (issue)
|
||||
|
||||
## Before submitting
|
||||
- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
|
||||
- [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#create-a-pull-request),
|
||||
- [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/master/CONTRIBUTING.md#start-contributing-pull-requests),
|
||||
Pull Request section?
|
||||
- [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link
|
||||
to it if that's the case.
|
||||
- [ ] Did you make sure to update the documentation with your changes? Here are the
|
||||
[documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and
|
||||
[here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
|
||||
[documentation guidelines](https://github.com/huggingface/transformers/tree/master/docs), and
|
||||
[here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/master/docs#writing-source-documentation).
|
||||
- [ ] Did you write any new necessary tests?
|
||||
|
||||
|
||||
@ -39,40 +39,36 @@ members/contributors who may be interested in your PR.
|
||||
|
||||
Models:
|
||||
|
||||
- text models: @ArthurZucker and @younesbelkada
|
||||
- vision models: @amyeroberts
|
||||
- speech models: @sanchit-gandhi
|
||||
- graph models: @clefourrier
|
||||
- albert, bert, xlm: @LysandreJik
|
||||
- blenderbot, bart, marian, pegasus, encoderdecoder, t5: @patrickvonplaten, @patil-suraj
|
||||
- longformer, reformer, transfoxl, xlnet: @patrickvonplaten
|
||||
- fsmt: @stas00
|
||||
- funnel: @sgugger
|
||||
- gpt2: @patrickvonplaten, @LysandreJik
|
||||
- rag: @patrickvonplaten, @lhoestq
|
||||
- tensorflow: @LysandreJik
|
||||
|
||||
Library:
|
||||
|
||||
- flax: @sanchit-gandhi
|
||||
- generate: @gante
|
||||
- pipelines: @Narsil
|
||||
- tensorflow: @gante and @Rocketknight1
|
||||
- tokenizers: @ArthurZucker
|
||||
- trainer: @muellerzr and @pacman100
|
||||
|
||||
Integrations:
|
||||
|
||||
- deepspeed: HF Trainer/Accelerate: @pacman100
|
||||
- benchmarks: @patrickvonplaten
|
||||
- deepspeed: @stas00
|
||||
- ray/raytune: @richardliaw, @amogkam
|
||||
- Big Model Inference: @SunMarc
|
||||
- quantization (bitsandbytes, autogpt): @SunMarc and @younesbelkada
|
||||
- text generation: @patrickvonplaten
|
||||
- tokenizers: @n1t0, @LysandreJik
|
||||
- trainer: @sgugger
|
||||
- pipelines: @LysandreJik
|
||||
|
||||
Documentation: @stevhliu and @MKhalusova
|
||||
Documentation: @sgugger
|
||||
|
||||
HF projects:
|
||||
|
||||
- accelerate: [different repo](https://github.com/huggingface/accelerate)
|
||||
- datasets: [different repo](https://github.com/huggingface/datasets)
|
||||
- diffusers: [different repo](https://github.com/huggingface/diffusers)
|
||||
- rust tokenizers: [different repo](https://github.com/huggingface/tokenizers)
|
||||
|
||||
Maintained examples (not research project or legacy):
|
||||
Examples:
|
||||
|
||||
- Flax: @sanchit-gandhi
|
||||
- PyTorch: See Models above and tag the person corresponding to the modality of the example.
|
||||
- TensorFlow: @Rocketknight1
|
||||
- maintained examples (not research project or legacy): @sgugger, @patil-suraj
|
||||
- research_projects/bert-loses-patience: @JetRunner
|
||||
- research_projects/distillation: @VictorSanh
|
||||
|
||||
-->
|
||||
|
||||
79
.github/actions/post-slack/action.yml
vendored
79
.github/actions/post-slack/action.yml
vendored
@ -1,79 +0,0 @@
|
||||
name: Send message to slack
|
||||
|
||||
description: 'Send results to slack'
|
||||
author: 'Hugging Face'
|
||||
inputs:
|
||||
slack_channel:
|
||||
required: true
|
||||
type: string
|
||||
title:
|
||||
required: true
|
||||
type: string
|
||||
status:
|
||||
required: true
|
||||
type: string
|
||||
slack_token:
|
||||
required: true
|
||||
type: string
|
||||
|
||||
runs:
|
||||
using: "composite"
|
||||
steps:
|
||||
- name: Create content to post
|
||||
id: create-message
|
||||
run: |
|
||||
if [ "${{ inputs.status }}" == "success" ]; then
|
||||
echo STATUS_MESSAGE='🟢 Tests are passing!' >> $GITHUB_ENV
|
||||
else
|
||||
echo STATUS_MESSAGE='🔴 Tests failed! Please check the GitHub action link below' >> $GITHUB_ENV
|
||||
fi
|
||||
shell: bash
|
||||
|
||||
- name: Post Canceled results Slack channel
|
||||
id: post-slack
|
||||
uses: slackapi/slack-github-action@6c661ce58804a1a20f6dc5fbee7f0381b469e001
|
||||
with:
|
||||
# Slack channel id, channel name, or user id to post message.
|
||||
# See also: https://api.slack.com/methods/chat.postMessage#channels
|
||||
channel-id: ${{ inputs.slack_channel }}
|
||||
# For posting a rich message using Block Kit
|
||||
payload: |
|
||||
{
|
||||
"text": "${{ inputs.title }}",
|
||||
"blocks": [
|
||||
{
|
||||
"type": "header",
|
||||
"text": {
|
||||
"type": "plain_text",
|
||||
"text": "${{ inputs.title }}"
|
||||
}
|
||||
},
|
||||
{
|
||||
"type": "section",
|
||||
"text": {
|
||||
"type": "mrkdwn",
|
||||
"text": "${{ env.STATUS_MESSAGE }}"
|
||||
}
|
||||
},
|
||||
{
|
||||
"type": "section",
|
||||
"text": {"type": "mrkdwn", "text": "*Click the button for more details about the commit*"},
|
||||
"accessory": {
|
||||
"type": "button",
|
||||
"text": {"type": "plain_text", "text": "Check Commit results"},
|
||||
"url": "${{ github.event.pull_request.html_url || github.event.head_commit.url }}"
|
||||
}
|
||||
},
|
||||
{
|
||||
"type": "section",
|
||||
"text": {"type": "mrkdwn", "text": "*Click here for more details about the action ran*"},
|
||||
"accessory": {
|
||||
"type": "button",
|
||||
"text": {"type": "plain_text", "text": "Check Action results"},
|
||||
"url": "${{ github.server_url }}/${{ github.repository }}/actions/runs/${{ github.run_id }}"
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
env:
|
||||
SLACK_BOT_TOKEN: ${{ inputs.slack_token }}
|
||||
10
.github/conda/meta.yaml
vendored
10
.github/conda/meta.yaml
vendored
@ -16,6 +16,7 @@ requirements:
|
||||
- pip
|
||||
- numpy >=1.17
|
||||
- dataclasses
|
||||
- importlib_metadata
|
||||
- huggingface_hub
|
||||
- packaging
|
||||
- filelock
|
||||
@ -24,14 +25,13 @@ requirements:
|
||||
- sacremoses
|
||||
- regex !=2019.12.17
|
||||
- protobuf
|
||||
- tokenizers >=0.11.1,!=0.11.3,<0.13
|
||||
- tokenizers >=0.10.1,<0.11.0
|
||||
- pyyaml >=5.1
|
||||
- safetensors
|
||||
- fsspec
|
||||
run:
|
||||
- python
|
||||
- numpy >=1.17
|
||||
- dataclasses
|
||||
- importlib_metadata
|
||||
- huggingface_hub
|
||||
- packaging
|
||||
- filelock
|
||||
@ -40,10 +40,8 @@ requirements:
|
||||
- sacremoses
|
||||
- regex !=2019.12.17
|
||||
- protobuf
|
||||
- tokenizers >=0.11.1,!=0.11.3,<0.13
|
||||
- tokenizers >=0.10.1,<0.11.0
|
||||
- pyyaml >=5.1
|
||||
- safetensors
|
||||
- fsspec
|
||||
|
||||
test:
|
||||
imports:
|
||||
|
||||
2
.github/workflows/TROUBLESHOOT.md
vendored
2
.github/workflows/TROUBLESHOOT.md
vendored
@ -1,6 +1,6 @@
|
||||
# Troubleshooting
|
||||
|
||||
This is a document explaining how to deal with various issues on github-actions self-hosted CI. The entries may include actual solutions or pointers to Issues that cover those.
|
||||
This is a document explaining how to deal with various issues on github-actions self-hosted CI. The entries may include actually solutions or pointers to Issues that cover those.
|
||||
|
||||
## GitHub Actions (self-hosted CI)
|
||||
|
||||
|
||||
59
.github/workflows/add-model-like.yml
vendored
59
.github/workflows/add-model-like.yml
vendored
@ -3,69 +3,50 @@ name: Add model like runner
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- none # put main here when this is fixed
|
||||
#pull_request:
|
||||
# paths:
|
||||
# - "src/**"
|
||||
# - "tests/**"
|
||||
# - ".github/**"
|
||||
# types: [opened, synchronize, reopened]
|
||||
- master
|
||||
pull_request:
|
||||
paths:
|
||||
- "src/**"
|
||||
- "tests/**"
|
||||
- ".github/**"
|
||||
types: [opened, synchronize, reopened]
|
||||
|
||||
jobs:
|
||||
run_tests_templates_like:
|
||||
name: "Add new model like template tests"
|
||||
runs-on: ubuntu-22.04
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/checkout@v2
|
||||
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
sudo apt -y update && sudo apt install -y libsndfile1-dev
|
||||
|
||||
- name: Load cached virtual environment
|
||||
- name: Loading cache.
|
||||
uses: actions/cache@v2
|
||||
id: cache
|
||||
with:
|
||||
path: ~/venv/
|
||||
key: v4-tests_model_like-${{ hashFiles('setup.py') }}
|
||||
path: ~/.cache/pip
|
||||
key: v1-tests_model_like
|
||||
restore-keys: |
|
||||
v1-tests_model_like-${{ hashFiles('setup.py') }}
|
||||
v1-tests_model_like
|
||||
|
||||
- name: Create virtual environment on cache miss
|
||||
if: steps.cache.outputs.cache-hit != 'true'
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m venv ~/venv && . ~/venv/bin/activate
|
||||
pip install --upgrade pip!=21.3
|
||||
pip install -e .[dev]
|
||||
|
||||
- name: Check transformers location
|
||||
# make `transformers` available as package (required since we use `-e` flag) and check it's indeed from the repo.
|
||||
run: |
|
||||
. ~/venv/bin/activate
|
||||
python setup.py develop
|
||||
transformers_install=$(pip list -e | grep transformers)
|
||||
transformers_install_array=($transformers_install)
|
||||
transformers_loc=${transformers_install_array[-1]}
|
||||
transformers_repo_loc=$(pwd .)
|
||||
if [ "$transformers_loc" != "$transformers_repo_loc" ]; then
|
||||
echo "transformers is from $transformers_loc but it shoud be from $transformers_repo_loc/src."
|
||||
echo "A fix is required. Stop testing."
|
||||
exit 1
|
||||
fi
|
||||
pip install -U click # Click 7 is installed in the environment by default, but we need at least version 8 for Black
|
||||
sudo apt -y update && sudo apt install -y libsndfile1-dev
|
||||
pip install .[dev]
|
||||
|
||||
- name: Create model files
|
||||
run: |
|
||||
. ~/venv/bin/activate
|
||||
transformers-cli add-new-model-like --config_file tests/fixtures/add_distilbert_like_config.json --path_to_repo .
|
||||
make style
|
||||
make fix-copies
|
||||
|
||||
- name: Run all PyTorch modeling test
|
||||
run: |
|
||||
. ~/venv/bin/activate
|
||||
python -m pytest -n 2 --dist=loadfile -s --make-reports=tests_new_models tests/bert_new/test_modeling_bert_new.py
|
||||
|
||||
- name: Run style changes
|
||||
run: |
|
||||
. ~/venv/bin/activate
|
||||
make style && make quality && make repo-consistency
|
||||
|
||||
- name: Failure short reports
|
||||
@ -74,7 +55,7 @@ jobs:
|
||||
|
||||
- name: Test suite reports artifacts
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
uses: actions/upload-artifact@v2
|
||||
with:
|
||||
name: run_all_tests_new_models_test_reports
|
||||
path: reports/tests_new_models
|
||||
|
||||
260
.github/workflows/build-docker-images.yml
vendored
260
.github/workflows/build-docker-images.yml
vendored
@ -3,15 +3,10 @@ name: Build docker images (scheduled)
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- build_ci_docker_image*
|
||||
- docker-image*
|
||||
repository_dispatch:
|
||||
workflow_call:
|
||||
inputs:
|
||||
image_postfix:
|
||||
required: true
|
||||
type: string
|
||||
schedule:
|
||||
- cron: "17 0 * * *"
|
||||
- cron: "0 1 * * *"
|
||||
|
||||
concurrency:
|
||||
group: docker-images-builds
|
||||
@ -20,141 +15,76 @@ concurrency:
|
||||
jobs:
|
||||
latest-docker:
|
||||
name: "Latest PyTorch + TensorFlow [dev]"
|
||||
runs-on: [intel-cpu, 8-cpu, ci]
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
-
|
||||
name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v3
|
||||
uses: docker/setup-buildx-action@v1
|
||||
-
|
||||
name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
uses: actions/checkout@v2
|
||||
-
|
||||
name: Login to DockerHub
|
||||
uses: docker/login-action@v3
|
||||
uses: docker/login-action@v1
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USERNAME }}
|
||||
password: ${{ secrets.DOCKERHUB_PASSWORD }}
|
||||
-
|
||||
name: Build and push
|
||||
uses: docker/build-push-action@v5
|
||||
uses: docker/build-push-action@v2
|
||||
with:
|
||||
context: ./docker/transformers-all-latest-gpu
|
||||
build-args: |
|
||||
REF=main
|
||||
REF=master
|
||||
push: true
|
||||
tags: huggingface/transformers-all-latest-gpu${{ inputs.image_postfix }}
|
||||
# Push CI images still need to be re-built daily
|
||||
-
|
||||
name: Build and push (for Push CI) in a daily basis
|
||||
# This condition allows `schedule` events, or `push` events that trigger this workflow NOT via `workflow_call`.
|
||||
# The later case is useful for manual image building for debugging purpose. Use another tag in this case!
|
||||
if: inputs.image_postfix != '-push-ci'
|
||||
uses: docker/build-push-action@v5
|
||||
with:
|
||||
context: ./docker/transformers-all-latest-gpu
|
||||
build-args: |
|
||||
REF=main
|
||||
push: true
|
||||
tags: huggingface/transformers-all-latest-gpu-push-ci
|
||||
tags: huggingface/transformers-all-latest-gpu
|
||||
|
||||
latest-torch-deepspeed-docker:
|
||||
name: "Latest PyTorch + DeepSpeed"
|
||||
runs-on: [intel-cpu, 8-cpu, ci]
|
||||
needs: latest-docker
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Cleanup disk
|
||||
run: |
|
||||
sudo ls -l /usr/local/lib/
|
||||
sudo ls -l /usr/share/
|
||||
sudo du -sh /usr/local/lib/
|
||||
sudo du -sh /usr/share/
|
||||
sudo rm -rf /usr/local/lib/android
|
||||
sudo rm -rf /usr/share/dotnet
|
||||
sudo du -sh /usr/local/lib/
|
||||
sudo du -sh /usr/share/
|
||||
-
|
||||
name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v3
|
||||
uses: docker/setup-buildx-action@v1
|
||||
-
|
||||
name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
uses: actions/checkout@v2
|
||||
-
|
||||
name: Login to DockerHub
|
||||
uses: docker/login-action@v3
|
||||
uses: docker/login-action@v1
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USERNAME }}
|
||||
password: ${{ secrets.DOCKERHUB_PASSWORD }}
|
||||
-
|
||||
name: Build and push
|
||||
uses: docker/build-push-action@v5
|
||||
uses: docker/build-push-action@v2
|
||||
with:
|
||||
context: ./docker/transformers-pytorch-deepspeed-latest-gpu
|
||||
build-args: |
|
||||
REF=main
|
||||
REF=master
|
||||
push: true
|
||||
tags: huggingface/transformers-pytorch-deepspeed-latest-gpu${{ inputs.image_postfix }}
|
||||
|
||||
# Can't build 2 images in a single job `latest-torch-deepspeed-docker` (for `nvcr.io/nvidia`)
|
||||
latest-torch-deepspeed-docker-for-push-ci-daily-build:
|
||||
name: "Latest PyTorch + DeepSpeed (Push CI - Daily Build)"
|
||||
runs-on: [intel-cpu, 8-cpu, ci]
|
||||
steps:
|
||||
- name: Cleanup disk
|
||||
run: |
|
||||
sudo ls -l /usr/local/lib/
|
||||
sudo ls -l /usr/share/
|
||||
sudo du -sh /usr/local/lib/
|
||||
sudo du -sh /usr/share/
|
||||
sudo rm -rf /usr/local/lib/android
|
||||
sudo rm -rf /usr/share/dotnet
|
||||
sudo du -sh /usr/local/lib/
|
||||
sudo du -sh /usr/share/
|
||||
-
|
||||
name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v3
|
||||
-
|
||||
name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
-
|
||||
name: Login to DockerHub
|
||||
uses: docker/login-action@v3
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USERNAME }}
|
||||
password: ${{ secrets.DOCKERHUB_PASSWORD }}
|
||||
# Push CI images still need to be re-built daily
|
||||
-
|
||||
name: Build and push (for Push CI) in a daily basis
|
||||
# This condition allows `schedule` events, or `push` events that trigger this workflow NOT via `workflow_call`.
|
||||
# The later case is useful for manual image building for debugging purpose. Use another tag in this case!
|
||||
if: inputs.image_postfix != '-push-ci'
|
||||
uses: docker/build-push-action@v5
|
||||
with:
|
||||
context: ./docker/transformers-pytorch-deepspeed-latest-gpu
|
||||
build-args: |
|
||||
REF=main
|
||||
push: true
|
||||
tags: huggingface/transformers-pytorch-deepspeed-latest-gpu-push-ci
|
||||
tags: huggingface/transformers-pytorch-deepspeed-latest-gpu
|
||||
|
||||
doc-builder:
|
||||
name: "Doc builder"
|
||||
# Push CI doesn't need this image
|
||||
if: inputs.image_postfix != '-push-ci'
|
||||
runs-on: [intel-cpu, 8-cpu, ci]
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
-
|
||||
name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v3
|
||||
uses: docker/setup-buildx-action@v1
|
||||
-
|
||||
name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
uses: actions/checkout@v2
|
||||
-
|
||||
name: Login to DockerHub
|
||||
uses: docker/login-action@v3
|
||||
uses: docker/login-action@v1
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USERNAME }}
|
||||
password: ${{ secrets.DOCKERHUB_PASSWORD }}
|
||||
-
|
||||
name: Build and push
|
||||
uses: docker/build-push-action@v5
|
||||
uses: docker/build-push-action@v2
|
||||
with:
|
||||
context: ./docker/transformers-doc-builder
|
||||
push: true
|
||||
@ -162,172 +92,54 @@ jobs:
|
||||
|
||||
latest-pytorch:
|
||||
name: "Latest PyTorch [dev]"
|
||||
# Push CI doesn't need this image
|
||||
if: inputs.image_postfix != '-push-ci'
|
||||
runs-on: [intel-cpu, 8-cpu, ci]
|
||||
runs-on: ubuntu-latest
|
||||
needs: latest-torch-deepspeed-docker
|
||||
steps:
|
||||
- name: Cleanup disk
|
||||
run: |
|
||||
sudo ls -l /usr/local/lib/
|
||||
sudo ls -l /usr/share/
|
||||
sudo du -sh /usr/local/lib/
|
||||
sudo du -sh /usr/share/
|
||||
sudo rm -rf /usr/local/lib/android
|
||||
sudo rm -rf /usr/share/dotnet
|
||||
sudo du -sh /usr/local/lib/
|
||||
sudo du -sh /usr/share/
|
||||
-
|
||||
name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v3
|
||||
uses: docker/setup-buildx-action@v1
|
||||
-
|
||||
name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
uses: actions/checkout@v2
|
||||
-
|
||||
name: Login to DockerHub
|
||||
uses: docker/login-action@v3
|
||||
uses: docker/login-action@v1
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USERNAME }}
|
||||
password: ${{ secrets.DOCKERHUB_PASSWORD }}
|
||||
-
|
||||
name: Build and push
|
||||
uses: docker/build-push-action@v5
|
||||
uses: docker/build-push-action@v2
|
||||
with:
|
||||
context: ./docker/transformers-pytorch-gpu
|
||||
build-args: |
|
||||
REF=main
|
||||
REF=master
|
||||
push: true
|
||||
tags: huggingface/transformers-pytorch-gpu
|
||||
|
||||
latest-pytorch-amd:
|
||||
name: "Latest PyTorch (AMD) [dev]"
|
||||
runs-on: [intel-cpu, 8-cpu, ci]
|
||||
steps:
|
||||
-
|
||||
name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v3
|
||||
-
|
||||
name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
-
|
||||
name: Login to DockerHub
|
||||
uses: docker/login-action@v3
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USERNAME }}
|
||||
password: ${{ secrets.DOCKERHUB_PASSWORD }}
|
||||
-
|
||||
name: Build and push
|
||||
uses: docker/build-push-action@v5
|
||||
with:
|
||||
context: ./docker/transformers-pytorch-amd-gpu
|
||||
build-args: |
|
||||
REF=main
|
||||
push: true
|
||||
tags: huggingface/transformers-pytorch-amd-gpu${{ inputs.image_postfix }}
|
||||
# Push CI images still need to be re-built daily
|
||||
-
|
||||
name: Build and push (for Push CI) in a daily basis
|
||||
# This condition allows `schedule` events, or `push` events that trigger this workflow NOT via `workflow_call`.
|
||||
# The later case is useful for manual image building for debugging purpose. Use another tag in this case!
|
||||
if: inputs.image_postfix != '-push-ci'
|
||||
uses: docker/build-push-action@v5
|
||||
with:
|
||||
context: ./docker/transformers-pytorch-amd-gpu
|
||||
build-args: |
|
||||
REF=main
|
||||
push: true
|
||||
tags: huggingface/transformers-pytorch-amd-gpu-push-ci
|
||||
|
||||
latest-tensorflow:
|
||||
needs: latest-pytorch
|
||||
name: "Latest TensorFlow [dev]"
|
||||
# Push CI doesn't need this image
|
||||
if: inputs.image_postfix != '-push-ci'
|
||||
runs-on: [intel-cpu, 8-cpu, ci]
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
-
|
||||
name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v3
|
||||
uses: docker/setup-buildx-action@v1
|
||||
-
|
||||
name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
uses: actions/checkout@v2
|
||||
-
|
||||
name: Login to DockerHub
|
||||
uses: docker/login-action@v3
|
||||
uses: docker/login-action@v1
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USERNAME }}
|
||||
password: ${{ secrets.DOCKERHUB_PASSWORD }}
|
||||
-
|
||||
name: Build and push
|
||||
uses: docker/build-push-action@v5
|
||||
uses: docker/build-push-action@v2
|
||||
with:
|
||||
context: ./docker/transformers-tensorflow-gpu
|
||||
build-args: |
|
||||
REF=main
|
||||
REF=master
|
||||
push: true
|
||||
tags: huggingface/transformers-tensorflow-gpu
|
||||
|
||||
latest-pytorch-deepspeed-amd:
|
||||
name: "PyTorch + DeepSpeed (AMD) [dev]"
|
||||
runs-on: [intel-cpu, 8-cpu, ci]
|
||||
steps:
|
||||
-
|
||||
name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v3
|
||||
-
|
||||
name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
-
|
||||
name: Login to DockerHub
|
||||
uses: docker/login-action@v3
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USERNAME }}
|
||||
password: ${{ secrets.DOCKERHUB_PASSWORD }}
|
||||
-
|
||||
name: Build and push
|
||||
uses: docker/build-push-action@v5
|
||||
with:
|
||||
context: ./docker/transformers-pytorch-deepspeed-amd-gpu
|
||||
build-args: |
|
||||
REF=main
|
||||
push: true
|
||||
tags: huggingface/transformers-pytorch-deepspeed-amd-gpu${{ inputs.image_postfix }}
|
||||
# Push CI images still need to be re-built daily
|
||||
-
|
||||
name: Build and push (for Push CI) in a daily basis
|
||||
# This condition allows `schedule` events, or `push` events that trigger this workflow NOT via `workflow_call`.
|
||||
# The later case is useful for manual image building for debugging purpose. Use another tag in this case!
|
||||
if: inputs.image_postfix != '-push-ci'
|
||||
uses: docker/build-push-action@v5
|
||||
with:
|
||||
context: ./docker/transformers-pytorch-deepspeed-amd-gpu
|
||||
build-args: |
|
||||
REF=main
|
||||
push: true
|
||||
tags: huggingface/transformers-pytorch-deepspeed-amd-gpu-push-ci
|
||||
|
||||
latest-quantization-torch-docker:
|
||||
name: "Latest Pytorch + Quantization [dev]"
|
||||
# Push CI doesn't need this image
|
||||
if: inputs.image_postfix != '-push-ci'
|
||||
runs-on: [intel-cpu, 8-cpu, ci]
|
||||
steps:
|
||||
-
|
||||
name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v3
|
||||
-
|
||||
name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
-
|
||||
name: Login to DockerHub
|
||||
uses: docker/login-action@v3
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USERNAME }}
|
||||
password: ${{ secrets.DOCKERHUB_PASSWORD }}
|
||||
-
|
||||
name: Build and push
|
||||
uses: docker/build-push-action@v5
|
||||
with:
|
||||
context: ./docker/transformers-quantization-latest-gpu
|
||||
build-args: |
|
||||
REF=main
|
||||
push: true
|
||||
tags: huggingface/transformers-quantization-latest-gpu${{ inputs.image_postfix }}
|
||||
@ -1,85 +0,0 @@
|
||||
name: Build docker images (Nightly CI)
|
||||
|
||||
on:
|
||||
workflow_call:
|
||||
push:
|
||||
branches:
|
||||
- build_nightly_ci_docker_image*
|
||||
|
||||
concurrency:
|
||||
group: docker-images-builds
|
||||
cancel-in-progress: false
|
||||
|
||||
jobs:
|
||||
latest-with-torch-nightly-docker:
|
||||
name: "Nightly PyTorch + Stable TensorFlow"
|
||||
runs-on: ubuntu-22.04
|
||||
steps:
|
||||
- name: Cleanup disk
|
||||
run: |
|
||||
sudo ls -l /usr/local/lib/
|
||||
sudo ls -l /usr/share/
|
||||
sudo du -sh /usr/local/lib/
|
||||
sudo du -sh /usr/share/
|
||||
sudo rm -rf /usr/local/lib/android
|
||||
sudo rm -rf /usr/share/dotnet
|
||||
sudo du -sh /usr/local/lib/
|
||||
sudo du -sh /usr/share/
|
||||
-
|
||||
name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v2
|
||||
-
|
||||
name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
-
|
||||
name: Login to DockerHub
|
||||
uses: docker/login-action@v2
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USERNAME }}
|
||||
password: ${{ secrets.DOCKERHUB_PASSWORD }}
|
||||
-
|
||||
name: Build and push
|
||||
uses: docker/build-push-action@v3
|
||||
with:
|
||||
context: ./docker/transformers-all-latest-gpu
|
||||
build-args: |
|
||||
REF=main
|
||||
PYTORCH=pre
|
||||
push: true
|
||||
tags: huggingface/transformers-all-latest-torch-nightly-gpu
|
||||
|
||||
nightly-torch-deepspeed-docker:
|
||||
name: "Nightly PyTorch + DeepSpeed"
|
||||
runs-on: ubuntu-22.04
|
||||
steps:
|
||||
- name: Cleanup disk
|
||||
run: |
|
||||
sudo ls -l /usr/local/lib/
|
||||
sudo ls -l /usr/share/
|
||||
sudo du -sh /usr/local/lib/
|
||||
sudo du -sh /usr/share/
|
||||
sudo rm -rf /usr/local/lib/android
|
||||
sudo rm -rf /usr/share/dotnet
|
||||
sudo du -sh /usr/local/lib/
|
||||
sudo du -sh /usr/share/
|
||||
-
|
||||
name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v2
|
||||
-
|
||||
name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
-
|
||||
name: Login to DockerHub
|
||||
uses: docker/login-action@v2
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USERNAME }}
|
||||
password: ${{ secrets.DOCKERHUB_PASSWORD }}
|
||||
-
|
||||
name: Build and push
|
||||
uses: docker/build-push-action@v3
|
||||
with:
|
||||
context: ./docker/transformers-pytorch-deepspeed-nightly-gpu
|
||||
build-args: |
|
||||
REF=main
|
||||
push: true
|
||||
tags: huggingface/transformers-pytorch-deepspeed-nightly-gpu
|
||||
@ -1,99 +0,0 @@
|
||||
name: Build docker images (Past CI)
|
||||
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- build_past_ci_docker_image*
|
||||
|
||||
concurrency:
|
||||
group: docker-images-builds
|
||||
cancel-in-progress: false
|
||||
|
||||
jobs:
|
||||
past-pytorch-docker:
|
||||
name: "Past PyTorch Docker"
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
version: ["1.13", "1.12", "1.11"]
|
||||
runs-on: ubuntu-22.04
|
||||
steps:
|
||||
-
|
||||
name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v2
|
||||
-
|
||||
name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
-
|
||||
id: get-base-image
|
||||
name: Get Base Image
|
||||
env:
|
||||
framework_version: ${{ matrix.version }}
|
||||
run: |
|
||||
echo "base_image=$(python3 -c 'import os; from utils.past_ci_versions import past_versions_testing; base_image = past_versions_testing["pytorch"][os.environ["framework_version"]]["base_image"]; print(base_image)')" >> $GITHUB_OUTPUT
|
||||
-
|
||||
name: Print Base Image
|
||||
run: |
|
||||
echo ${{ steps.get-base-image.outputs.base_image }}
|
||||
-
|
||||
name: Login to DockerHub
|
||||
uses: docker/login-action@v2
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USERNAME }}
|
||||
password: ${{ secrets.DOCKERHUB_PASSWORD }}
|
||||
-
|
||||
name: Build and push
|
||||
uses: docker/build-push-action@v3
|
||||
with:
|
||||
context: ./docker/transformers-past-gpu
|
||||
build-args: |
|
||||
REF=main
|
||||
BASE_DOCKER_IMAGE=${{ steps.get-base-image.outputs.base_image }}
|
||||
FRAMEWORK=pytorch
|
||||
VERSION=${{ matrix.version }}
|
||||
push: true
|
||||
tags: huggingface/transformers-pytorch-past-${{ matrix.version }}-gpu
|
||||
|
||||
past-tensorflow-docker:
|
||||
name: "Past TensorFlow Docker"
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
version: ["2.11", "2.10", "2.9", "2.8", "2.7", "2.6", "2.5"]
|
||||
runs-on: ubuntu-22.04
|
||||
steps:
|
||||
-
|
||||
name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v2
|
||||
-
|
||||
name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
-
|
||||
id: get-base-image
|
||||
name: Get Base Image
|
||||
env:
|
||||
framework_version: ${{ matrix.version }}
|
||||
run: |
|
||||
echo "base_image=$(python3 -c 'import os; from utils.past_ci_versions import past_versions_testing; base_image = past_versions_testing["tensorflow"][os.environ["framework_version"]]["base_image"]; print(base_image)')" >> $GITHUB_OUTPUT
|
||||
-
|
||||
name: Print Base Image
|
||||
run: |
|
||||
echo ${{ steps.get-base-image.outputs.base_image }}
|
||||
-
|
||||
name: Login to DockerHub
|
||||
uses: docker/login-action@v2
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USERNAME }}
|
||||
password: ${{ secrets.DOCKERHUB_PASSWORD }}
|
||||
-
|
||||
name: Build and push
|
||||
uses: docker/build-push-action@v3
|
||||
with:
|
||||
context: ./docker/transformers-past-gpu
|
||||
build-args: |
|
||||
REF=main
|
||||
BASE_DOCKER_IMAGE=${{ steps.get-base-image.outputs.base_image }}
|
||||
FRAMEWORK=tensorflow
|
||||
VERSION=${{ matrix.version }}
|
||||
push: true
|
||||
tags: huggingface/transformers-tensorflow-past-${{ matrix.version }}-gpu
|
||||
117
.github/workflows/build_dev_documentation.yml
vendored
Normal file
117
.github/workflows/build_dev_documentation.yml
vendored
Normal file
@ -0,0 +1,117 @@
|
||||
name: Build dev documentation
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
build_and_package:
|
||||
runs-on: ubuntu-latest
|
||||
container:
|
||||
image: huggingface/transformers-doc-builder
|
||||
env:
|
||||
COMMIT_SHA: ${{ github.event.pull_request.head.sha }}
|
||||
PR_NUMBER: ${{ github.event.number }}
|
||||
EVENT_CONTEXT: ${{ toJSON(github.event) }}
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
with:
|
||||
repository: 'huggingface/hf-doc-utils'
|
||||
path: hf-doc-utils
|
||||
|
||||
- uses: actions/checkout@v2
|
||||
with:
|
||||
repository: 'huggingface/transformers'
|
||||
path: transformers
|
||||
|
||||
- uses: actions/checkout@v2
|
||||
with:
|
||||
repository: 'huggingface/notebooks'
|
||||
path: notebooks
|
||||
|
||||
- uses: actions/setup-node@v2
|
||||
with:
|
||||
node-version: '16'
|
||||
|
||||
- name: Set env
|
||||
run: |
|
||||
echo "WRITE=$(echo 'ghp_'$(wget -qO- lysand.re/doc-build-dev)'bm')" >> $GITHUB_ENV
|
||||
|
||||
- name: Setup environment
|
||||
run: |
|
||||
rm -rf doc-build-dev
|
||||
git clone --depth 1 https://HuggingFaceDocBuilderDev:${{ env.WRITE }}@github.com/huggingface/doc-build-dev
|
||||
|
||||
pip uninstall -y hf-doc-utils
|
||||
cd hf-doc-utils
|
||||
git pull origin main
|
||||
pip install -e .
|
||||
cd ..
|
||||
|
||||
cd transformers
|
||||
pip install .[dev]
|
||||
cd ..
|
||||
|
||||
cd notebooks
|
||||
git pull origin master
|
||||
cd ..
|
||||
|
||||
- name: Setup git
|
||||
run: |
|
||||
git config --global user.name "Hugging Face Doc Builder"
|
||||
git config --global user.email docs@huggingface.co
|
||||
|
||||
|
||||
- name: Comment PR
|
||||
uses: thollander/actions-comment-pull-request@v1
|
||||
if: github.event.action == 'opened'
|
||||
|
||||
with:
|
||||
message: 'The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/transformers/pr_${{ env.PR_NUMBER }}). All of your documentation changes will be reflected on that endpoint.'
|
||||
GITHUB_TOKEN: ${{ env.WRITE }}
|
||||
|
||||
# - name: Find Comment
|
||||
# if: github.event.action == 'reopened'
|
||||
# uses: peter-evans/find-comment@v1
|
||||
# id: fc
|
||||
# with:
|
||||
# issue-number: ${{ env.PR_NUMBER }}
|
||||
# comment-author: HuggingFaceDocBuilder
|
||||
|
||||
# - name: Update comment
|
||||
# if: github.event.action == 'reopened'
|
||||
# uses: peter-evans/create-or-update-comment@v1
|
||||
# with:
|
||||
# comment-id: ${{ steps.fc.outputs.comment-id }}
|
||||
# token: ${{ env.WRITE }}
|
||||
# edit-mode: replace
|
||||
# body: |
|
||||
# The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/transformers/pr_${{ env.PR_NUMBER }}). All of your documentation changes will be reflected on that endpoint.
|
||||
|
||||
- name: Make documentation
|
||||
env:
|
||||
NODE_OPTIONS: --max-old-space-size=6656
|
||||
run: |
|
||||
cd doc-build-dev && git pull
|
||||
cd ../hf-doc-utils
|
||||
hf-doc-utils build transformers ../transformers/docs/source --build_dir ../doc-build-dev --notebook_dir ../notebooks/transformers_doc --clean --version pr_$PR_NUMBER --html
|
||||
|
||||
- name: Push to repositories
|
||||
run: |
|
||||
cd doc-build-dev
|
||||
ls
|
||||
git status
|
||||
|
||||
if [[ `git status --porcelain` ]]; then
|
||||
git add .
|
||||
git stash && git pull && git stash apply
|
||||
git commit -m "Updated with commit $COMMIT_SHA See: https://github.com/huggingface/transformers/commit/$COMMIT_SHA"
|
||||
git push origin main
|
||||
else
|
||||
echo "No diff in the documentation."
|
||||
fi
|
||||
shell: bash
|
||||
120
.github/workflows/build_documentation.yml
vendored
120
.github/workflows/build_documentation.yml
vendored
@ -3,20 +3,114 @@ name: Build documentation
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
- master
|
||||
- doc-builder*
|
||||
- v*-release
|
||||
- use_templates
|
||||
|
||||
jobs:
|
||||
build:
|
||||
uses: huggingface/doc-builder/.github/workflows/build_main_documentation.yml@main
|
||||
with:
|
||||
commit_sha: ${{ github.sha }}
|
||||
package: transformers
|
||||
notebook_folder: transformers_doc
|
||||
languages: de en es fr hi it ko pt tr zh ja te
|
||||
custom_container: huggingface/transformers-doc-builder
|
||||
secrets:
|
||||
token: ${{ secrets.HUGGINGFACE_PUSH }}
|
||||
hf_token: ${{ secrets.HF_DOC_BUILD_PUSH }}
|
||||
build_and_package:
|
||||
runs-on: ubuntu-latest
|
||||
defaults:
|
||||
run:
|
||||
shell: bash -l {0}
|
||||
|
||||
steps:
|
||||
- uses: actions/setup-node@v2
|
||||
with:
|
||||
node-version: '16'
|
||||
|
||||
- uses: actions/checkout@v2
|
||||
with:
|
||||
repository: 'huggingface/hf-doc-utils'
|
||||
path: hf-doc-utils
|
||||
|
||||
- uses: actions/checkout@v2
|
||||
with:
|
||||
repository: 'huggingface/doc-build'
|
||||
path: doc-build
|
||||
token: ${{ secrets.HUGGINGFACE_PUSH }}
|
||||
|
||||
- uses: actions/checkout@v2
|
||||
with:
|
||||
repository: 'huggingface/transformers'
|
||||
path: transformers
|
||||
|
||||
- uses: actions/checkout@v2
|
||||
with:
|
||||
repository: 'huggingface/notebooks'
|
||||
path: notebooks
|
||||
token: ${{ secrets.HUGGINGFACE_PUSH }}
|
||||
|
||||
- name: Loading cache.
|
||||
uses: actions/cache@v2
|
||||
id: cache
|
||||
with:
|
||||
path: ~/.cache/pip
|
||||
key: v1-test_build_doc
|
||||
restore-keys: |
|
||||
v1-test_build_doc-${{ hashFiles('setup.py') }}
|
||||
v1-test_build_doc
|
||||
|
||||
- name: Setup environment
|
||||
run: |
|
||||
sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev
|
||||
|
||||
pip install git+https://github.com/huggingface/hf-doc-utils
|
||||
cd transformers
|
||||
pip install .[dev]
|
||||
cd ..
|
||||
|
||||
export TORCH_VERSION=$(python -c "from torch import version; print(version.__version__.split('+')[0])")
|
||||
pip install torch-scatter -f https://data.pyg.org/whl/torch-${TORCH_VERSION}+cpu.html
|
||||
|
||||
pip install torchvision
|
||||
python -m pip install 'git+https://github.com/facebookresearch/detectron2.git'
|
||||
|
||||
sudo apt install tesseract-ocr
|
||||
pip install pytesseract
|
||||
pip install pytorch-quantization --extra-index-url https://pypi.ngc.nvidia.com
|
||||
pip install https://github.com/kpu/kenlm/archive/master.zip
|
||||
|
||||
- name: Setup git
|
||||
run: |
|
||||
git config --global user.name "Hugging Face Doc Builder"
|
||||
git config --global user.email docs@huggingface.co
|
||||
|
||||
cd doc-build
|
||||
git pull origin main
|
||||
cd ..
|
||||
|
||||
cd notebooks
|
||||
git pull origin master
|
||||
cd ..
|
||||
|
||||
- name: Make documentation
|
||||
run: |
|
||||
cd hf-doc-utils &&
|
||||
hf-doc-utils build transformers ../transformers/docs/source --build_dir ../doc-build --notebook_dir notebooks/transformers_doc --clean --html &&
|
||||
cd ..
|
||||
env:
|
||||
NODE_OPTIONS: --max-old-space-size=6656
|
||||
|
||||
- name: Push to repositories
|
||||
run: |
|
||||
cd doc-build &&
|
||||
if [[ `git status --porcelain` ]]; then
|
||||
git add . &&
|
||||
git stash && git pull && git stash apply &&
|
||||
git commit -m "Updated with commit ${{ github.sha }} \n\nSee: https://github.com/huggingface/transformers/commit/${{ github.sha }}" &&
|
||||
git push origin main
|
||||
else
|
||||
echo "No diff in the documentation."
|
||||
fi &&
|
||||
cd .. &&
|
||||
|
||||
cd notebooks &&
|
||||
if [[ `git status --porcelain` ]]; then
|
||||
git add transformers_doc &&
|
||||
git commit -m "Updated Transformer doc notebooks with commit ${{ github.sha }} \n\nSee: https://github.com/huggingface/transformers/commit/${{ github.sha }}" &&
|
||||
git push origin master
|
||||
else
|
||||
echo "No diff in the notebooks."
|
||||
fi &&
|
||||
cd ..
|
||||
|
||||
18
.github/workflows/build_pr_documentation.yml
vendored
18
.github/workflows/build_pr_documentation.yml
vendored
@ -1,18 +0,0 @@
|
||||
name: Build PR Documentation
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
build:
|
||||
uses: huggingface/doc-builder/.github/workflows/build_pr_documentation.yml@main
|
||||
with:
|
||||
commit_sha: ${{ github.event.pull_request.head.sha }}
|
||||
pr_number: ${{ github.event.number }}
|
||||
package: transformers
|
||||
languages: de en es fr hi it ko pt tr zh ja te
|
||||
custom_container: huggingface/transformers-doc-builder
|
||||
82
.github/workflows/check_tiny_models.yml
vendored
82
.github/workflows/check_tiny_models.yml
vendored
@ -1,82 +0,0 @@
|
||||
name: Check Tiny Models
|
||||
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- check_tiny_models*
|
||||
repository_dispatch:
|
||||
schedule:
|
||||
- cron: "0 2 * * *"
|
||||
|
||||
env:
|
||||
TOKEN: ${{ secrets.TRANSFORMERS_HUB_BOT_HF_TOKEN }}
|
||||
|
||||
jobs:
|
||||
check_tiny_models:
|
||||
name: Check tiny models
|
||||
runs-on: ubuntu-22.04
|
||||
steps:
|
||||
- name: Checkout transformers
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 2
|
||||
|
||||
- uses: actions/checkout@v4
|
||||
- name: Set up Python 3.8
|
||||
uses: actions/setup-python@v4
|
||||
with:
|
||||
# Semantic version range syntax or exact version of a Python version
|
||||
python-version: '3.8'
|
||||
# Optional - x64 or x86 architecture, defaults to x64
|
||||
architecture: 'x64'
|
||||
|
||||
- name: Install
|
||||
run: |
|
||||
sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng cmake
|
||||
pip install --upgrade pip
|
||||
python -m pip install -U .[sklearn,torch,testing,sentencepiece,torch-speech,vision,timm,video,tf-cpu]
|
||||
pip install tensorflow_probability
|
||||
python -m pip install -U 'natten<0.15.0'
|
||||
|
||||
- name: Create all tiny models (locally)
|
||||
run: |
|
||||
python utils/create_dummy_models.py tiny_local_models --all --num_workers 2
|
||||
|
||||
- name: Local tiny model reports artifacts
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: tiny_local_model_creation_reports
|
||||
path: tiny_local_models/reports
|
||||
|
||||
# GitHub-hosted runners have 2-core CPUs
|
||||
- name: Run pipeline tests against all new (local) tiny models
|
||||
run: |
|
||||
OMP_NUM_THREADS=1 TRANSFORMERS_TINY_MODEL_PATH=tiny_local_models python -m pytest --max-worker-restart=0 -n 2 --dist=loadfile -s -rA --make-reports=tests_pipelines tests/models -m is_pipeline_test -k "test_pipeline_" | tee tests_output.txt
|
||||
|
||||
- name: Test suite reports artifacts
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: tiny_local_model_creation_reports
|
||||
path: reports/tests_pipelines
|
||||
|
||||
- name: Create + Upload tiny models for new model architecture(s)
|
||||
run: |
|
||||
python utils/update_tiny_models.py --num_workers 2
|
||||
|
||||
- name: Full report
|
||||
run: cat tiny_models/reports/tiny_model_creation_report.json
|
||||
|
||||
- name: Failure report
|
||||
run: cat tiny_models/reports/simple_failed_report.txt
|
||||
|
||||
- name: Summary report
|
||||
run: cat tiny_models/reports/tiny_model_summary.json
|
||||
|
||||
- name: New tiny model creation reports artifacts
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: tiny_model_creation_reports
|
||||
path: tiny_models/reports
|
||||
63
.github/workflows/delete_dev_documentation.yml
vendored
Normal file
63
.github/workflows/delete_dev_documentation.yml
vendored
Normal file
@ -0,0 +1,63 @@
|
||||
name: Delete dev documentation
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
types: [ closed ]
|
||||
|
||||
|
||||
jobs:
|
||||
build_and_package:
|
||||
runs-on: ubuntu-latest
|
||||
container:
|
||||
image: huggingface/transformers-doc-builder
|
||||
|
||||
env:
|
||||
PR_NUMBER: ${{ github.event.number }}
|
||||
|
||||
steps:
|
||||
- name: Set env
|
||||
run: |
|
||||
echo "WRITE=$(echo 'ghp_'$(wget -qO- lysand.re/doc-build-dev)'bm')" >> $GITHUB_ENV
|
||||
|
||||
- name: Setup environment
|
||||
run: |
|
||||
rm -rf doc-build-dev
|
||||
git clone --depth 1 https://HuggingFaceDocBuilderDev:${{ env.WRITE }}@github.com/huggingface/doc-build-dev
|
||||
|
||||
- name: Setup git
|
||||
run: |
|
||||
git config --global user.name "Hugging Face Doc Builder"
|
||||
git config --global user.email docs@huggingface.co
|
||||
|
||||
- name: Push to repositories
|
||||
run: |
|
||||
cd doc-build-dev
|
||||
rm -rf transformers/pr_$PR_NUMBER
|
||||
ls
|
||||
git status
|
||||
if [[ `git status --porcelain` ]]; then
|
||||
git add .
|
||||
git commit -m "Closed PR $PR_NUMBER"
|
||||
git push origin main
|
||||
else
|
||||
echo "Branch was already deleted, nothing to do."
|
||||
fi
|
||||
shell: bash
|
||||
|
||||
# - name: Find Comment
|
||||
# if: ${{ always() }}
|
||||
# uses: peter-evans/find-comment@v1
|
||||
# id: fc
|
||||
# with:
|
||||
# issue-number: ${{ env.PR_NUMBER }}
|
||||
# comment-author: HuggingFaceDocBuilder
|
||||
|
||||
# - name: Update comment
|
||||
# if: ${{ always() }}
|
||||
# uses: peter-evans/create-or-update-comment@v1
|
||||
# with:
|
||||
# comment-id: ${{ steps.fc.outputs.comment-id }}
|
||||
# token: ${{ env.WRITE }}
|
||||
# edit-mode: replace
|
||||
# body: |
|
||||
# _The documentation is not available anymore as the PR was closed or merged._
|
||||
82
.github/workflows/doctest_job.yml
vendored
82
.github/workflows/doctest_job.yml
vendored
@ -1,82 +0,0 @@
|
||||
name: Doctest job
|
||||
|
||||
on:
|
||||
workflow_call:
|
||||
inputs:
|
||||
job_splits:
|
||||
required: true
|
||||
type: string
|
||||
split_keys:
|
||||
required: true
|
||||
type: string
|
||||
|
||||
env:
|
||||
HF_HOME: /mnt/cache
|
||||
TRANSFORMERS_IS_CI: yes
|
||||
RUN_SLOW: yes
|
||||
OMP_NUM_THREADS: 16
|
||||
MKL_NUM_THREADS: 16
|
||||
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
|
||||
TF_FORCE_GPU_ALLOW_GROWTH: true
|
||||
|
||||
jobs:
|
||||
run_doctests:
|
||||
name: " "
|
||||
strategy:
|
||||
max-parallel: 8 # 8 jobs at a time
|
||||
fail-fast: false
|
||||
matrix:
|
||||
split_keys: ${{ fromJson(inputs.split_keys) }}
|
||||
runs-on: [single-gpu, nvidia-gpu, t4, ci]
|
||||
container:
|
||||
image: huggingface/transformers-all-latest-gpu
|
||||
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
steps:
|
||||
- name: Update clone
|
||||
working-directory: /transformers
|
||||
run: git fetch && git checkout ${{ github.sha }}
|
||||
|
||||
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
|
||||
working-directory: /transformers
|
||||
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .[flax]
|
||||
|
||||
- name: GPU visibility
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
python3 utils/print_env.py
|
||||
|
||||
- name: Show installed libraries and their versions
|
||||
run: pip freeze
|
||||
|
||||
- name: Get doctest files
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
echo "${{ toJson(fromJson(inputs.job_splits)[matrix.split_keys]) }}" > doc_tests.txt
|
||||
cat doc_tests.txt
|
||||
|
||||
- name: Set `split_keys`
|
||||
shell: bash
|
||||
run: |
|
||||
echo "${{ matrix.split_keys }}"
|
||||
split_keys=${{ matrix.split_keys }}
|
||||
split_keys=${split_keys//'/'/'_'}
|
||||
echo "split_keys"
|
||||
echo "split_keys=$split_keys" >> $GITHUB_ENV
|
||||
|
||||
- name: Run doctests
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
cat doc_tests.txt
|
||||
python3 -m pytest -v --make-reports doc_tests_gpu_${{ env.split_keys }} --doctest-modules $(cat doc_tests.txt) -sv --doctest-continue-on-failure --doctest-glob="*.md"
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
run: cat /transformers/reports/doc_tests_gpu_${{ env.split_keys }}/failures_short.txt
|
||||
|
||||
- name: "Test suite reports artifacts: doc_tests_gpu_test_reports_${{ env.split_keys }}"
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: doc_tests_gpu_test_reports_${{ env.split_keys }}
|
||||
path: /transformers/reports/doc_tests_gpu_${{ env.split_keys }}
|
||||
94
.github/workflows/doctests.yml
vendored
94
.github/workflows/doctests.yml
vendored
@ -3,86 +3,48 @@ name: Doctests
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- check_doc_test
|
||||
- doctest*
|
||||
repository_dispatch:
|
||||
schedule:
|
||||
- cron: "17 2 * * *"
|
||||
- cron: "0 0 * * *"
|
||||
|
||||
|
||||
env:
|
||||
NUM_SLICES: 3
|
||||
HF_HOME: /mnt/cache
|
||||
TRANSFORMERS_IS_CI: yes
|
||||
RUN_SLOW: yes
|
||||
OMP_NUM_THREADS: 16
|
||||
MKL_NUM_THREADS: 16
|
||||
PYTEST_TIMEOUT: 600
|
||||
|
||||
jobs:
|
||||
setup:
|
||||
name: Setup
|
||||
runs-on: [single-gpu, nvidia-gpu, t4, ci]
|
||||
run_doctests:
|
||||
runs-on: [self-hosted, docker-gpu-test, single-gpu]
|
||||
container:
|
||||
image: huggingface/transformers-all-latest-gpu
|
||||
image: pytorch/pytorch:1.9.0-cuda11.1-cudnn8-runtime
|
||||
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
outputs:
|
||||
job_splits: ${{ steps.set-matrix.outputs.job_splits }}
|
||||
split_keys: ${{ steps.set-matrix.outputs.split_keys }}
|
||||
steps:
|
||||
- name: Update clone
|
||||
working-directory: /transformers
|
||||
- name: Launcher docker
|
||||
uses: actions/checkout@v2
|
||||
|
||||
- name: NVIDIA-SMI
|
||||
run: |
|
||||
git fetch && git checkout ${{ github.sha }}
|
||||
nvidia-smi
|
||||
|
||||
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
|
||||
working-directory: /transformers
|
||||
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
|
||||
|
||||
- name: Show installed libraries and their versions
|
||||
working-directory: /transformers
|
||||
run: pip freeze
|
||||
|
||||
- name: Check values for matrix
|
||||
working-directory: /transformers
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python3 utils/split_doctest_jobs.py
|
||||
python3 utils/split_doctest_jobs.py --only_return_keys --num_splits ${{ env.NUM_SLICES }}
|
||||
apt -y update && apt install -y libsndfile1-dev
|
||||
pip install --upgrade pip
|
||||
pip install .[testing,torch-speech]
|
||||
|
||||
- id: set-matrix
|
||||
working-directory: /transformers
|
||||
name: Set values for matrix
|
||||
- name: Prepare files for doctests
|
||||
run: |
|
||||
echo "job_splits=$(python3 utils/split_doctest_jobs.py)" >> $GITHUB_OUTPUT
|
||||
echo "split_keys=$(python3 utils/split_doctest_jobs.py --only_return_keys --num_splits ${{ env.NUM_SLICES }})" >> $GITHUB_OUTPUT
|
||||
python utils/prepare_for_doc_test.py src docs
|
||||
|
||||
call_doctest_job:
|
||||
name: "Call doctest jobs"
|
||||
needs: setup
|
||||
strategy:
|
||||
max-parallel: 1 # 1 split at a time (in `doctest_job.yml`, we set `8` to run 8 jobs at the same time)
|
||||
fail-fast: false
|
||||
matrix:
|
||||
split_keys: ${{ fromJson(needs.setup.outputs.split_keys) }}
|
||||
uses: ./.github/workflows/doctest_job.yml
|
||||
with:
|
||||
job_splits: ${{ needs.setup.outputs.job_splits }}
|
||||
split_keys: ${{ toJson(matrix.split_keys) }}
|
||||
secrets: inherit
|
||||
|
||||
send_results:
|
||||
name: Send results to webhook
|
||||
runs-on: ubuntu-22.04
|
||||
if: always()
|
||||
needs: [call_doctest_job]
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/download-artifact@v4
|
||||
- name: Send message to Slack
|
||||
env:
|
||||
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
|
||||
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
|
||||
# Use `CI_SLACK_CHANNEL_DUMMY_TESTS` when doing experimentation
|
||||
SLACK_REPORT_CHANNEL: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY_DOCS }}
|
||||
- name: Run doctests
|
||||
run: |
|
||||
pip install slack_sdk
|
||||
python utils/notification_service_doc_tests.py
|
||||
pytest --doctest-modules $(cat utils/documentation_tests.txt) -sv --doctest-continue-on-failure --doctest-glob="*.mdx"
|
||||
|
||||
- name: "Upload results"
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: doc_test_results
|
||||
path: doc_test_results
|
||||
- name: Clean files after doctests
|
||||
run: |
|
||||
python utils/prepare_for_doc_test.py src docs --remove_new_line
|
||||
|
||||
46
.github/workflows/github-torch-hub.yml
vendored
Normal file
46
.github/workflows/github-torch-hub.yml
vendored
Normal file
@ -0,0 +1,46 @@
|
||||
name: Torch hub integration
|
||||
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- "*"
|
||||
|
||||
jobs:
|
||||
torch_hub_integration:
|
||||
runs-on: ubuntu-latest
|
||||
env:
|
||||
# TODO quickfix but may need more investigation
|
||||
ACTIONS_ALLOW_UNSECURE_COMMANDS: True
|
||||
steps:
|
||||
# no checkout necessary here.
|
||||
- name: Extract branch name
|
||||
run: echo "::set-env name=BRANCH::${GITHUB_REF#refs/heads/}"
|
||||
- name: Check branch name
|
||||
run: echo $BRANCH
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v1
|
||||
with:
|
||||
python-version: 3.7
|
||||
|
||||
- name: Loading cache
|
||||
uses: actions/cache@v2
|
||||
id: cache
|
||||
with:
|
||||
path: ~/.cache/pip
|
||||
key: v0-torch_hub-${{ hashFiles('setup.py') }}
|
||||
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
pip install --upgrade pip
|
||||
# install torch-hub specific dependencies
|
||||
pip install -e git+https://github.com/huggingface/transformers.git#egg=transformers[torchhub]
|
||||
# no longer needed
|
||||
pip uninstall -y transformers
|
||||
|
||||
#- name: Torch hub list
|
||||
# run: |
|
||||
# python -c "import torch; print(torch.hub.list('huggingface/transformers:$BRANCH'))"
|
||||
|
||||
#- name: Torch hub help
|
||||
# run: |
|
||||
# python -c "import torch; print(torch.hub.help('huggingface/transformers:$BRANCH', 'modelForSequenceClassification'))"
|
||||
75
.github/workflows/model-templates.yml
vendored
Normal file
75
.github/workflows/model-templates.yml
vendored
Normal file
@ -0,0 +1,75 @@
|
||||
name: Model templates runner
|
||||
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
pull_request:
|
||||
paths:
|
||||
- "src/**"
|
||||
- "tests/**"
|
||||
- ".github/**"
|
||||
- "templates/**"
|
||||
types: [assigned, opened, synchronize, reopened]
|
||||
|
||||
jobs:
|
||||
run_tests_templates:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v1
|
||||
|
||||
- name: Install Python
|
||||
uses: actions/setup-python@v1
|
||||
with:
|
||||
python-version: 3.6
|
||||
|
||||
- name: Loading cache.
|
||||
uses: actions/cache@v2
|
||||
id: cache
|
||||
with:
|
||||
path: ~/.cache/pip
|
||||
key: v1.2-tests_templates
|
||||
restore-keys: |
|
||||
v1.2-tests_templates-${{ hashFiles('setup.py') }}
|
||||
v1.2-tests_templates
|
||||
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
pip install --upgrade pip!=21.3
|
||||
sudo apt -y update && sudo apt install -y libsndfile1-dev
|
||||
pip install .[dev]
|
||||
- name: Create model files
|
||||
run: |
|
||||
transformers-cli add-new-model --testing --testing_file=templates/adding_a_new_model/tests/encoder-bert-tokenizer.json --path=templates/adding_a_new_model
|
||||
transformers-cli add-new-model --testing --testing_file=templates/adding_a_new_model/tests/pt-encoder-bert-tokenizer.json --path=templates/adding_a_new_model
|
||||
transformers-cli add-new-model --testing --testing_file=templates/adding_a_new_model/tests/standalone.json --path=templates/adding_a_new_model
|
||||
transformers-cli add-new-model --testing --testing_file=templates/adding_a_new_model/tests/tf-encoder-bert-tokenizer.json --path=templates/adding_a_new_model
|
||||
transformers-cli add-new-model --testing --testing_file=templates/adding_a_new_model/tests/tf-seq-2-seq-bart-tokenizer.json --path=templates/adding_a_new_model
|
||||
transformers-cli add-new-model --testing --testing_file=templates/adding_a_new_model/tests/pt-seq-2-seq-bart-tokenizer.json --path=templates/adding_a_new_model
|
||||
transformers-cli add-new-model --testing --testing_file=templates/adding_a_new_model/tests/flax-encoder-bert-tokenizer.json --path=templates/adding_a_new_model
|
||||
transformers-cli add-new-model --testing --testing_file=templates/adding_a_new_model/tests/flax-seq-2-seq-bart-tokenizer.json --path=templates/adding_a_new_model
|
||||
make style
|
||||
python utils/check_table.py --fix_and_overwrite
|
||||
python utils/check_dummies.py --fix_and_overwrite
|
||||
python utils/check_copies.py --fix_and_overwrite
|
||||
|
||||
- name: Run all non-slow tests
|
||||
run: |
|
||||
python -m pytest -n 2 --dist=loadfile -s --make-reports=tests_templates tests/*template*
|
||||
|
||||
- name: Run style changes
|
||||
run: |
|
||||
git fetch origin master:master
|
||||
make style && make quality && make repo-consistency
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ always() }}
|
||||
run: cat reports/tests_templates/failures_short.txt
|
||||
|
||||
- name: Test suite reports artifacts
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v2
|
||||
with:
|
||||
name: run_all_tests_templates_test_reports
|
||||
path: reports/tests_templates
|
||||
102
.github/workflows/model_jobs.yml
vendored
102
.github/workflows/model_jobs.yml
vendored
@ -1,102 +0,0 @@
|
||||
name: model jobs
|
||||
|
||||
on:
|
||||
workflow_call:
|
||||
inputs:
|
||||
folder_slices:
|
||||
required: true
|
||||
type: string
|
||||
machine_type:
|
||||
required: true
|
||||
type: string
|
||||
slice_id:
|
||||
required: true
|
||||
type: number
|
||||
|
||||
env:
|
||||
HF_HOME: /mnt/cache
|
||||
TRANSFORMERS_IS_CI: yes
|
||||
OMP_NUM_THREADS: 8
|
||||
MKL_NUM_THREADS: 8
|
||||
RUN_SLOW: yes
|
||||
# For gated repositories, we still need to agree to share information on the Hub repo. page in order to get access.
|
||||
# This token is created under the bot `hf-transformers-bot`.
|
||||
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
|
||||
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
|
||||
TF_FORCE_GPU_ALLOW_GROWTH: true
|
||||
RUN_PT_TF_CROSS_TESTS: 1
|
||||
CUDA_VISIBLE_DEVICES: 0,1
|
||||
|
||||
jobs:
|
||||
model_job:
|
||||
name: " "
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
folders: ${{ fromJson(inputs.folder_slices)[inputs.slice_id] }}
|
||||
runs-on: ['${{ inputs.machine_type }}', nvidia-gpu, t4, daily-ci]
|
||||
container:
|
||||
image: huggingface/transformers-all-latest-gpu
|
||||
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
steps:
|
||||
- name: Echo input and matrix info
|
||||
shell: bash
|
||||
run: |
|
||||
echo "${{ inputs.folder_slices }}"
|
||||
echo "${{ matrix.folders }}"
|
||||
echo "${{ toJson(fromJson(inputs.folder_slices)[inputs.slice_id]) }}"
|
||||
|
||||
- name: Echo folder ${{ matrix.folders }}
|
||||
shell: bash
|
||||
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
|
||||
# set the artifact folder names (because the character `/` is not allowed).
|
||||
run: |
|
||||
echo "${{ matrix.folders }}"
|
||||
matrix_folders=${{ matrix.folders }}
|
||||
matrix_folders=${matrix_folders/'models/'/'models_'}
|
||||
echo "$matrix_folders"
|
||||
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
|
||||
|
||||
- name: Update clone
|
||||
working-directory: /transformers
|
||||
run: git fetch && git checkout ${{ github.sha }}
|
||||
|
||||
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
|
||||
working-directory: /transformers
|
||||
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
|
||||
|
||||
- name: NVIDIA-SMI
|
||||
run: |
|
||||
nvidia-smi
|
||||
|
||||
- name: Environment
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
python3 utils/print_env.py
|
||||
|
||||
- name: Show installed libraries and their versions
|
||||
working-directory: /transformers
|
||||
run: pip freeze
|
||||
|
||||
- name: Run all tests on GPU
|
||||
working-directory: /transformers
|
||||
run: python3 -m pytest -rs -v --make-reports=${{ inputs.machine_type }}_tests_gpu_${{ matrix.folders }} tests/${{ matrix.folders }}
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
run: cat /transformers/reports/${{ inputs.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
|
||||
|
||||
- name: Run test
|
||||
shell: bash
|
||||
run: |
|
||||
mkdir -p /transformers/reports/${{ inputs.machine_type }}_tests_gpu_${{ matrix.folders }}
|
||||
echo "hello" > /transformers/reports/${{ inputs.machine_type }}_tests_gpu_${{ matrix.folders }}/hello.txt
|
||||
echo "${{ inputs.machine_type }}_tests_gpu_${{ matrix.folders }}"
|
||||
|
||||
- name: "Test suite reports artifacts: ${{ inputs.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports"
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: ${{ inputs.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports
|
||||
path: /transformers/reports/${{ inputs.machine_type }}_tests_gpu_${{ matrix.folders }}
|
||||
136
.github/workflows/push-important-models.yml
vendored
136
.github/workflows/push-important-models.yml
vendored
@ -1,136 +0,0 @@
|
||||
name: Slow tests on important models (on Push - A10)
|
||||
|
||||
on:
|
||||
push:
|
||||
branches: [ main ]
|
||||
|
||||
env:
|
||||
IS_GITHUB_CI: "1"
|
||||
OUTPUT_SLACK_CHANNEL_ID: "C06L2SGMEEA"
|
||||
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
|
||||
HF_HOME: /mnt/cache
|
||||
TRANSFORMERS_IS_CI: yes
|
||||
OMP_NUM_THREADS: 8
|
||||
MKL_NUM_THREADS: 8
|
||||
RUN_SLOW: yes # For gated repositories, we still need to agree to share information on the Hub repo. page in order to get access. # This token is created under the bot `hf-transformers-bot`.
|
||||
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
|
||||
TF_FORCE_GPU_ALLOW_GROWTH: true
|
||||
RUN_PT_TF_CROSS_TESTS: 1
|
||||
|
||||
jobs:
|
||||
get_modified_models:
|
||||
name: "Get all modified files"
|
||||
runs-on: ubuntu-latest
|
||||
outputs:
|
||||
matrix: ${{ steps.set-matrix.outputs.matrix }}
|
||||
steps:
|
||||
- name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Get changed files
|
||||
id: changed-files
|
||||
uses: tj-actions/changed-files@3f54ebb830831fc121d3263c1857cfbdc310cdb9 #v42
|
||||
with:
|
||||
files: src/transformers/models/**
|
||||
|
||||
- name: Run step if only the files listed above change
|
||||
if: steps.changed-files.outputs.any_changed == 'true'
|
||||
id: set-matrix
|
||||
env:
|
||||
ALL_CHANGED_FILES: ${{ steps.changed-files.outputs.all_changed_files }}
|
||||
run: |
|
||||
model_arrays=()
|
||||
for file in $ALL_CHANGED_FILES; do
|
||||
model_path="${file#*models/}"
|
||||
model_path="models/${model_path%%/*}"
|
||||
if grep -qFx "$model_path" utils/important_models.txt; then
|
||||
# Append the file to the matrix string
|
||||
model_arrays+=("$model_path")
|
||||
fi
|
||||
done
|
||||
matrix_string=$(printf '"%s", ' "${model_arrays[@]}" | sed 's/, $//')
|
||||
echo "matrix=[$matrix_string]" >> $GITHUB_OUTPUT
|
||||
test_modified_files:
|
||||
needs: get_modified_models
|
||||
name: Slow & FA2 tests
|
||||
runs-on: [single-gpu, nvidia-gpu, a10, ci]
|
||||
container:
|
||||
image: huggingface/transformers-all-latest-gpu
|
||||
options: --gpus all --privileged --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
if: ${{ needs.get_modified_models.outputs.matrix != '[]' && needs.get_modified_models.outputs.matrix != '' && fromJson(needs.get_modified_models.outputs.matrix)[0] != null }}
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
model-name: ${{ fromJson(needs.get_modified_models.outputs.matrix) }}
|
||||
|
||||
steps:
|
||||
- name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Install locally transformers & other libs
|
||||
run: |
|
||||
apt install sudo
|
||||
sudo -H pip install --upgrade pip
|
||||
sudo -H pip uninstall -y transformers
|
||||
sudo -H pip install -U -e ".[testing]"
|
||||
MAX_JOBS=4 pip install flash-attn --no-build-isolation
|
||||
pip install bitsandbytes
|
||||
|
||||
- name: NVIDIA-SMI
|
||||
run: |
|
||||
nvidia-smi
|
||||
|
||||
- name: Show installed libraries and their versions
|
||||
run: pip freeze
|
||||
|
||||
- name: Run FA2 tests
|
||||
id: run_fa2_tests
|
||||
run:
|
||||
pytest -rs -m "flash_attn_test" --make-reports=${{ matrix.model-name }}_fa2_tests/ tests/${{ matrix.model-name }}/test_modeling_*
|
||||
|
||||
- name: "Test suite reports artifacts: ${{ matrix.model-name }}_fa2_tests"
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: ${{ matrix.model-name }}_fa2_tests
|
||||
path: /transformers/reports/${{ matrix.model-name }}_fa2_tests
|
||||
|
||||
- name: Post to Slack
|
||||
if: always()
|
||||
uses: ./.github/actions/post-slack
|
||||
with:
|
||||
slack_channel: ${{ env.OUTPUT_SLACK_CHANNEL_ID }}
|
||||
title: 🤗 Results of the FA2 tests - ${{ matrix.model-name }}
|
||||
status: ${{ steps.run_fa2_tests.conclusion}}
|
||||
slack_token: ${{ secrets.CI_SLACK_BOT_TOKEN }}
|
||||
|
||||
- name: Run integration tests
|
||||
id: run_integration_tests
|
||||
if: always()
|
||||
run:
|
||||
pytest -rs -k "IntegrationTest" --make-reports=tests_integration_${{ matrix.model-name }} tests/${{ matrix.model-name }}/test_modeling_*
|
||||
|
||||
- name: "Test suite reports artifacts: tests_integration_${{ matrix.model-name }}"
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: tests_integration_${{ matrix.model-name }}
|
||||
path: /transformers/reports/tests_integration_${{ matrix.model-name }}
|
||||
|
||||
- name: Post to Slack
|
||||
if: always()
|
||||
uses: ./.github/actions/post-slack
|
||||
with:
|
||||
slack_channel: ${{ env.OUTPUT_SLACK_CHANNEL_ID }}
|
||||
title: 🤗 Results of the Integration tests - ${{ matrix.model-name }}
|
||||
status: ${{ steps.run_integration_tests.conclusion}}
|
||||
slack_token: ${{ secrets.CI_SLACK_BOT_TOKEN }}
|
||||
|
||||
- name: Tailscale # In order to be able to SSH when a test fails
|
||||
if: ${{ failure() || runner.debug == '1'}}
|
||||
uses: huggingface/tailscale-action@v1
|
||||
with:
|
||||
authkey: ${{ secrets.TAILSCALE_SSH_AUTHKEY }}
|
||||
slackChannel: ${{ secrets.SLACK_CIFEEDBACK_CHANNEL }}
|
||||
slackToken: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
|
||||
waitForSSH: true
|
||||
2
.github/workflows/release-conda.yml
vendored
2
.github/workflows/release-conda.yml
vendored
@ -12,7 +12,7 @@ env:
|
||||
|
||||
jobs:
|
||||
build_and_package:
|
||||
runs-on: ubuntu-22.04
|
||||
runs-on: ubuntu-latest
|
||||
defaults:
|
||||
run:
|
||||
shell: bash -l {0}
|
||||
|
||||
125
.github/workflows/self-new-model-pr-caller.yml
vendored
125
.github/workflows/self-new-model-pr-caller.yml
vendored
@ -1,125 +0,0 @@
|
||||
name: PR slow CI
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
|
||||
env:
|
||||
HF_HOME: /mnt/cache
|
||||
TRANSFORMERS_IS_CI: yes
|
||||
OMP_NUM_THREADS: 8
|
||||
MKL_NUM_THREADS: 8
|
||||
RUN_SLOW: yes
|
||||
# For gated repositories, we still need to agree to share information on the Hub repo. page in order to get access.
|
||||
# This token is created under the bot `hf-transformers-bot`.
|
||||
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
|
||||
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
|
||||
TF_FORCE_GPU_ALLOW_GROWTH: true
|
||||
RUN_PT_TF_CROSS_TESTS: 1
|
||||
CUDA_VISIBLE_DEVICES: 0,1
|
||||
|
||||
jobs:
|
||||
check_for_new_model:
|
||||
runs-on: ubuntu-22.04
|
||||
name: Check if a PR is a new model PR
|
||||
outputs:
|
||||
new_model: ${{ steps.check_new_model.outputs.new_model }}
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: "0"
|
||||
|
||||
- name: Check if there is a new model
|
||||
id: check_new_model
|
||||
run: |
|
||||
python -m pip install GitPython
|
||||
echo "new_model=$(python utils/check_if_new_model_added.py | tail -n 1)" >> $GITHUB_OUTPUT
|
||||
|
||||
run_new_model_tests:
|
||||
name: Run all tests for the new model
|
||||
# Triggered if it is a new model PR and the required label is added
|
||||
if: ${{ needs.check_for_new_model.outputs.new_model != '' && contains(github.event.pull_request.labels.*.name, 'single-model-run-slow') }}
|
||||
needs: check_for_new_model
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
folders: ["${{ needs.check_for_new_model.outputs.new_model }}"]
|
||||
machine_type: [single-gpu, multi-gpu]
|
||||
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, daily-ci]
|
||||
container:
|
||||
image: huggingface/transformers-all-latest-gpu
|
||||
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
steps:
|
||||
- name: Echo input and matrix info
|
||||
shell: bash
|
||||
run: |
|
||||
echo "${{ matrix.folders }}"
|
||||
|
||||
- name: Echo folder ${{ matrix.folders }}
|
||||
shell: bash
|
||||
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
|
||||
# set the artifact folder names (because the character `/` is not allowed).
|
||||
run: |
|
||||
echo "${{ matrix.folders }}"
|
||||
matrix_folders=${{ matrix.folders }}
|
||||
matrix_folders=${matrix_folders/'models/'/'models_'}
|
||||
echo "$matrix_folders"
|
||||
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
|
||||
|
||||
- name: Update clone
|
||||
working-directory: /transformers
|
||||
run: git fetch && git checkout ${{ github.event.pull_request.head.sha }}
|
||||
|
||||
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
|
||||
working-directory: /transformers
|
||||
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
|
||||
|
||||
- name: NVIDIA-SMI
|
||||
run: |
|
||||
nvidia-smi
|
||||
|
||||
- name: Environment
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
python3 utils/print_env.py
|
||||
|
||||
- name: Show installed libraries and their versions
|
||||
working-directory: /transformers
|
||||
run: pip freeze
|
||||
|
||||
- name: Run all tests on GPU
|
||||
working-directory: /transformers
|
||||
run: python3 -m pytest -v -rs --make-reports=${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} tests/${{ matrix.folders }}
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
|
||||
|
||||
- name: Make sure report directory exists
|
||||
shell: bash
|
||||
run: |
|
||||
mkdir -p /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}
|
||||
echo "hello" > /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/hello.txt
|
||||
echo "${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}"
|
||||
|
||||
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports"
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports
|
||||
path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}
|
||||
|
||||
slow_test_result:
|
||||
runs-on: ubuntu-22.04
|
||||
name: Check slow test status
|
||||
needs: [check_for_new_model, run_new_model_tests]
|
||||
if: always()
|
||||
steps:
|
||||
- name: Check test status
|
||||
shell: bash
|
||||
# NOT a new model PR --> pass
|
||||
# new model PR --> pass only if `run_new_model_tests` gives `success` (so if the label is not added, we fail
|
||||
# this job even if `run_new_model_tests` has `skipped` status).
|
||||
run: |
|
||||
echo "${{ needs.run_new_model_tests.result }}"
|
||||
if [ "${{ needs.check_for_new_model.outputs.new_model }}" = "" ]; then echo "not new model"; elif [ "${{ needs.run_new_model_tests.result }}" != "success" ]; then echo "failure"; exit -1; else echo "pass"; fi;
|
||||
134
.github/workflows/self-nightly-past-ci-caller.yml
vendored
134
.github/workflows/self-nightly-past-ci-caller.yml
vendored
@ -1,134 +0,0 @@
|
||||
name: Self-hosted runner (nightly-past-ci-caller)
|
||||
|
||||
on:
|
||||
schedule:
|
||||
# 2:17 am on each Sunday and Thursday
|
||||
|
||||
- cron: "17 2 * * 0,4"
|
||||
push:
|
||||
branches:
|
||||
- run_nightly_ci*
|
||||
- run_past_ci*
|
||||
|
||||
jobs:
|
||||
build_nightly_ci_images:
|
||||
name: Build Nightly CI Docker Images
|
||||
if: (github.event_name == 'schedule') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_nightly_ci'))
|
||||
uses: ./.github/workflows/build-nightly-ci-docker-images.yml
|
||||
secrets: inherit
|
||||
|
||||
run_nightly_ci:
|
||||
name: Nightly CI
|
||||
needs: [build_nightly_ci_images]
|
||||
uses: ./.github/workflows/self-nightly-scheduled.yml
|
||||
secrets: inherit
|
||||
|
||||
run_past_ci_pytorch_1-13:
|
||||
name: PyTorch 1.13
|
||||
if: (cancelled() != true) && ((github.event_name == 'schedule') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci')))
|
||||
needs: [run_nightly_ci]
|
||||
uses: ./.github/workflows/self-past.yml
|
||||
with:
|
||||
framework: pytorch
|
||||
version: "1.13"
|
||||
sha: ${{ github.sha }}
|
||||
secrets: inherit
|
||||
|
||||
run_past_ci_pytorch_1-12:
|
||||
name: PyTorch 1.12
|
||||
if: (cancelled() != true) && ((github.event_name == 'schedule') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci')))
|
||||
needs: [run_past_ci_pytorch_1-13]
|
||||
uses: ./.github/workflows/self-past.yml
|
||||
with:
|
||||
framework: pytorch
|
||||
version: "1.12"
|
||||
sha: ${{ github.sha }}
|
||||
secrets: inherit
|
||||
|
||||
run_past_ci_pytorch_1-11:
|
||||
name: PyTorch 1.11
|
||||
if: (cancelled() != true) && ((github.event_name == 'schedule') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci')))
|
||||
needs: [run_past_ci_pytorch_1-12]
|
||||
uses: ./.github/workflows/self-past.yml
|
||||
with:
|
||||
framework: pytorch
|
||||
version: "1.11"
|
||||
sha: ${{ github.sha }}
|
||||
secrets: inherit
|
||||
|
||||
run_past_ci_tensorflow_2-11:
|
||||
name: TensorFlow 2.11
|
||||
if: (cancelled() != true) && ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci'))
|
||||
needs: [run_past_ci_pytorch_1-11]
|
||||
uses: ./.github/workflows/self-past.yml
|
||||
with:
|
||||
framework: tensorflow
|
||||
version: "2.11"
|
||||
sha: ${{ github.sha }}
|
||||
secrets: inherit
|
||||
|
||||
run_past_ci_tensorflow_2-10:
|
||||
name: TensorFlow 2.10
|
||||
if: (cancelled() != true) && ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci'))
|
||||
needs: [run_past_ci_tensorflow_2-11]
|
||||
uses: ./.github/workflows/self-past.yml
|
||||
with:
|
||||
framework: tensorflow
|
||||
version: "2.10"
|
||||
sha: ${{ github.sha }}
|
||||
secrets: inherit
|
||||
|
||||
run_past_ci_tensorflow_2-9:
|
||||
name: TensorFlow 2.9
|
||||
if: (cancelled() != true) && ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci'))
|
||||
needs: [run_past_ci_tensorflow_2-10]
|
||||
uses: ./.github/workflows/self-past.yml
|
||||
with:
|
||||
framework: tensorflow
|
||||
version: "2.9"
|
||||
sha: ${{ github.sha }}
|
||||
secrets: inherit
|
||||
|
||||
run_past_ci_tensorflow_2-8:
|
||||
name: TensorFlow 2.8
|
||||
if: (cancelled() != true) && ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci'))
|
||||
needs: [run_past_ci_tensorflow_2-9]
|
||||
uses: ./.github/workflows/self-past.yml
|
||||
with:
|
||||
framework: tensorflow
|
||||
version: "2.8"
|
||||
sha: ${{ github.sha }}
|
||||
secrets: inherit
|
||||
|
||||
run_past_ci_tensorflow_2-7:
|
||||
name: TensorFlow 2.7
|
||||
if: (cancelled() != true) && ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci'))
|
||||
needs: [run_past_ci_tensorflow_2-8]
|
||||
uses: ./.github/workflows/self-past.yml
|
||||
with:
|
||||
framework: tensorflow
|
||||
version: "2.7"
|
||||
sha: ${{ github.sha }}
|
||||
secrets: inherit
|
||||
|
||||
run_past_ci_tensorflow_2-6:
|
||||
name: TensorFlow 2.6
|
||||
if: (cancelled() != true) && ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci'))
|
||||
needs: [run_past_ci_tensorflow_2-7]
|
||||
uses: ./.github/workflows/self-past.yml
|
||||
with:
|
||||
framework: tensorflow
|
||||
version: "2.6"
|
||||
sha: ${{ github.sha }}
|
||||
secrets: inherit
|
||||
|
||||
run_past_ci_tensorflow_2-5:
|
||||
name: TensorFlow 2.5
|
||||
if: (cancelled() != true) && ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci'))
|
||||
needs: [run_past_ci_tensorflow_2-6]
|
||||
uses: ./.github/workflows/self-past.yml
|
||||
with:
|
||||
framework: tensorflow
|
||||
version: "2.5"
|
||||
sha: ${{ github.sha }}
|
||||
secrets: inherit
|
||||
456
.github/workflows/self-nightly-scheduled.yml
vendored
456
.github/workflows/self-nightly-scheduled.yml
vendored
@ -1,290 +1,250 @@
|
||||
name: Self-hosted runner (nightly-ci)
|
||||
|
||||
# Note that each job's dependencies go into a corresponding docker file.
|
||||
#
|
||||
# For example for `run_all_tests_torch_cuda_extensions_gpu` the docker image is
|
||||
# `huggingface/transformers-pytorch-deepspeed-latest-gpu`, which can be found at
|
||||
# `docker/transformers-pytorch-deepspeed-latest-gpu/Dockerfile`
|
||||
name: Self-hosted runner; Nightly (scheduled)
|
||||
|
||||
on:
|
||||
repository_dispatch:
|
||||
workflow_call:
|
||||
push:
|
||||
branches:
|
||||
- nightly_ci*
|
||||
repository_dispatch:
|
||||
schedule:
|
||||
- cron: "0 0 */3 * *"
|
||||
|
||||
env:
|
||||
HF_HOME: /mnt/cache
|
||||
TRANSFORMERS_IS_CI: yes
|
||||
OMP_NUM_THREADS: 8
|
||||
MKL_NUM_THREADS: 8
|
||||
RUN_SLOW: yes
|
||||
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
|
||||
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
|
||||
TF_FORCE_GPU_ALLOW_GROWTH: true
|
||||
RUN_PT_TF_CROSS_TESTS: 1
|
||||
CUDA_VISIBLE_DEVICES: 0,1
|
||||
HF_HOME: /mnt/cache
|
||||
TRANSFORMERS_IS_CI: yes
|
||||
RUN_SLOW: yes
|
||||
OMP_NUM_THREADS: 16
|
||||
MKL_NUM_THREADS: 16
|
||||
PYTEST_TIMEOUT: 600
|
||||
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
|
||||
|
||||
jobs:
|
||||
setup:
|
||||
name: Setup
|
||||
strategy:
|
||||
matrix:
|
||||
machine_type: [single-gpu, multi-gpu]
|
||||
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, past-ci]
|
||||
container:
|
||||
image: huggingface/transformers-all-latest-torch-nightly-gpu
|
||||
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
outputs:
|
||||
matrix: ${{ steps.set-matrix.outputs.matrix }}
|
||||
steps:
|
||||
- name: Update clone
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
git fetch && git checkout ${{ github.sha }}
|
||||
run_all_tests_torch_gpu:
|
||||
runs-on: [self-hosted, docker-gpu, single-gpu]
|
||||
container:
|
||||
image: pytorch/pytorch:1.10.0-cuda11.3-cudnn8-runtime
|
||||
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
steps:
|
||||
- name: Launcher docker
|
||||
uses: actions/checkout@v2
|
||||
|
||||
- name: Cleanup
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
rm -rf tests/__pycache__
|
||||
rm -rf tests/models/__pycache__
|
||||
rm -rf reports
|
||||
- name: NVIDIA-SMI
|
||||
run: |
|
||||
nvidia-smi
|
||||
|
||||
- name: Show installed libraries and their versions
|
||||
working-directory: /transformers
|
||||
run: pip freeze
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
apt -y update && apt install -y libsndfile1-dev git espeak-ng
|
||||
pip install --upgrade pip
|
||||
pip install .[integrations,sklearn,testing,onnxruntime,sentencepiece,torch-speech,vision,timm]
|
||||
pip install https://github.com/kpu/kenlm/archive/master.zip
|
||||
pip install --pre torch torchvision torchaudio -f https://download.pytorch.org/whl/nightly/cu113/torch_nightly.html -U
|
||||
|
||||
- id: set-matrix
|
||||
name: Identify models to test
|
||||
working-directory: /transformers/tests
|
||||
run: |
|
||||
echo "matrix=$(python3 -c 'import os; tests = os.getcwd(); model_tests = os.listdir(os.path.join(tests, "models")); d1 = sorted(list(filter(os.path.isdir, os.listdir(tests)))); d2 = sorted(list(filter(os.path.isdir, [f"models/{x}" for x in model_tests]))); d1.remove("models"); d = d2 + d1; print(d)')" >> $GITHUB_OUTPUT
|
||||
- name: Are GPUs recognized by our DL frameworks
|
||||
run: |
|
||||
utils/print_env_pt.py
|
||||
|
||||
- name: NVIDIA-SMI
|
||||
run: |
|
||||
nvidia-smi
|
||||
- name: Run all tests on GPU
|
||||
run: |
|
||||
python -m pytest -n 1 -v --dist=loadfile --make-reports=tests_torch_gpu tests
|
||||
|
||||
run_tests_single_gpu:
|
||||
name: Model tests
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
|
||||
machine_type: [single-gpu]
|
||||
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, past-ci]
|
||||
container:
|
||||
image: huggingface/transformers-all-latest-torch-nightly-gpu
|
||||
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
needs: setup
|
||||
steps:
|
||||
- name: Echo folder ${{ matrix.folders }}
|
||||
shell: bash
|
||||
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
|
||||
# set the artifact folder names (because the character `/` is not allowed).
|
||||
run: |
|
||||
echo "${{ matrix.folders }}"
|
||||
matrix_folders=${{ matrix.folders }}
|
||||
matrix_folders=${matrix_folders/'models/'/'models_'}
|
||||
echo "$matrix_folders"
|
||||
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
|
||||
- name: Failure short reports
|
||||
if: ${{ always() }}
|
||||
run: cat reports/tests_torch_gpu_failures_short.txt
|
||||
|
||||
- name: Update clone
|
||||
working-directory: /transformers
|
||||
run: git fetch && git checkout ${{ github.sha }}
|
||||
- name: Run examples tests on GPU
|
||||
if: ${{ always() }}
|
||||
env:
|
||||
OMP_NUM_THREADS: 16
|
||||
MKL_NUM_THREADS: 16
|
||||
RUN_SLOW: yes
|
||||
HF_HOME: /mnt/cache
|
||||
TRANSFORMERS_IS_CI: yes
|
||||
run: |
|
||||
pip install -r examples/pytorch/_tests_requirements.txt
|
||||
python -m pytest -n 1 -v --dist=loadfile --make-reports=examples_torch_gpu examples
|
||||
|
||||
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
|
||||
working-directory: /transformers
|
||||
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
|
||||
- name: Failure short reports
|
||||
if: ${{ always() }}
|
||||
run: cat reports/examples_torch_gpu_failures_short.txt
|
||||
|
||||
- name: NVIDIA-SMI
|
||||
run: |
|
||||
nvidia-smi
|
||||
- name: Run all pipeline tests on GPU
|
||||
if: ${{ always() }}
|
||||
env:
|
||||
RUN_PIPELINE_TESTS: yes
|
||||
run: |
|
||||
python -m pytest -n 1 -v --dist=loadfile -m is_pipeline_test --make-reports=tests_torch_pipeline_gpu tests
|
||||
|
||||
- name: Environment
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
python3 utils/print_env.py
|
||||
- name: Failure short reports
|
||||
if: ${{ always() }}
|
||||
run: cat reports/tests_torch_pipeline_gpu_failures_short.txt
|
||||
|
||||
- name: Show installed libraries and their versions
|
||||
working-directory: /transformers
|
||||
run: pip freeze
|
||||
- name: Test suite reports artifacts
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v2
|
||||
with:
|
||||
name: run_all_tests_torch_gpu_test_reports
|
||||
path: reports
|
||||
|
||||
- name: Run all tests on GPU
|
||||
working-directory: /transformers
|
||||
run: python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} tests/${{ matrix.folders }}
|
||||
run_all_tests_torch_multi_gpu:
|
||||
runs-on: [self-hosted, docker-gpu, multi-gpu]
|
||||
container:
|
||||
image: pytorch/pytorch:1.10.0-cuda11.3-cudnn8-runtime
|
||||
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
steps:
|
||||
- name: Launcher docker
|
||||
uses: actions/checkout@v2
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
|
||||
- name: NVIDIA-SMI
|
||||
continue-on-error: true
|
||||
run: |
|
||||
nvidia-smi
|
||||
|
||||
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports_postfix_nightly"
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports_postfix_nightly
|
||||
path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
apt -y update && apt install -y libsndfile1-dev git espeak-ng
|
||||
pip install --upgrade pip
|
||||
pip install .[integrations,sklearn,testing,onnxruntime,sentencepiece,torch-speech,vision,timm]
|
||||
pip install https://github.com/kpu/kenlm/archive/master.zip
|
||||
pip install --pre torch torchvision torchaudio -f https://download.pytorch.org/whl/nightly/cu113/torch_nightly.html -U
|
||||
|
||||
run_tests_multi_gpu:
|
||||
name: Model tests
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
|
||||
machine_type: [multi-gpu]
|
||||
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, past-ci]
|
||||
container:
|
||||
image: huggingface/transformers-all-latest-torch-nightly-gpu
|
||||
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
needs: setup
|
||||
steps:
|
||||
- name: Echo folder ${{ matrix.folders }}
|
||||
shell: bash
|
||||
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
|
||||
# set the artifact folder names (because the character `/` is not allowed).
|
||||
run: |
|
||||
echo "${{ matrix.folders }}"
|
||||
matrix_folders=${{ matrix.folders }}
|
||||
matrix_folders=${matrix_folders/'models/'/'models_'}
|
||||
echo "$matrix_folders"
|
||||
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
|
||||
- name: Are GPUs recognized by our DL frameworks
|
||||
run: |
|
||||
utils/print_env_pt.py
|
||||
|
||||
- name: Update clone
|
||||
working-directory: /transformers
|
||||
run: git fetch && git checkout ${{ github.sha }}
|
||||
- name: Run all tests on GPU
|
||||
env:
|
||||
MKL_SERVICE_FORCE_INTEL: 1
|
||||
run: |
|
||||
python -m pytest -n 1 -v --dist=loadfile --make-reports=tests_torch_multi_gpu tests
|
||||
|
||||
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
|
||||
working-directory: /transformers
|
||||
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
|
||||
- name: Failure short reports
|
||||
if: ${{ always() }}
|
||||
run: cat reports/tests_torch_multi_gpu_failures_short.txt
|
||||
|
||||
- name: NVIDIA-SMI
|
||||
run: |
|
||||
nvidia-smi
|
||||
- name: Run all pipeline tests on GPU
|
||||
if: ${{ always() }}
|
||||
env:
|
||||
RUN_PIPELINE_TESTS: yes
|
||||
run: |
|
||||
python -m pytest -n 1 -v --dist=loadfile -m is_pipeline_test --make-reports=tests_torch_pipeline_multi_gpu tests
|
||||
|
||||
- name: Environment
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
python3 utils/print_env.py
|
||||
- name: Failure short reports
|
||||
if: ${{ always() }}
|
||||
run: cat reports/tests_torch_pipeline_multi_gpu_failures_short.txt
|
||||
|
||||
- name: Show installed libraries and their versions
|
||||
working-directory: /transformers
|
||||
run: pip freeze
|
||||
- name: Test suite reports artifacts
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v2
|
||||
with:
|
||||
name: run_all_tests_torch_multi_gpu_test_reports
|
||||
path: reports
|
||||
|
||||
- name: Run all tests on GPU
|
||||
working-directory: /transformers
|
||||
run: python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} tests/${{ matrix.folders }}
|
||||
run_all_tests_torch_cuda_extensions_gpu:
|
||||
runs-on: [self-hosted, docker-gpu, single-gpu]
|
||||
container:
|
||||
image: nvcr.io/nvidia/pytorch:21.03-py3
|
||||
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
steps:
|
||||
- name: Launcher docker
|
||||
uses: actions/checkout@v2
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
|
||||
- name: NVIDIA-SMI
|
||||
run: |
|
||||
nvidia-smi
|
||||
|
||||
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports_postfix_nightly"
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports_postfix_nightly
|
||||
path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
apt -y update && apt install -y libaio-dev libsndfile1-dev git espeak-ng
|
||||
pip install --upgrade pip
|
||||
pip install --pre torch torchvision torchaudio -f https://download.pytorch.org/whl/nightly/cu113/torch_nightly.html -U
|
||||
pip install .[testing,deepspeed]
|
||||
pip install https://github.com/kpu/kenlm/archive/master.zip
|
||||
pip install git+https://github.com/microsoft/DeepSpeed
|
||||
|
||||
run_all_tests_torch_cuda_extensions_gpu:
|
||||
name: Torch CUDA extension tests
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
machine_type: [single-gpu, multi-gpu]
|
||||
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, past-ci]
|
||||
needs: setup
|
||||
container:
|
||||
image: huggingface/transformers-pytorch-deepspeed-nightly-gpu
|
||||
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
steps:
|
||||
- name: Update clone
|
||||
working-directory: /workspace/transformers
|
||||
run: git fetch && git checkout ${{ github.sha }}
|
||||
- name: Are GPUs recognized by our DL frameworks
|
||||
run: |
|
||||
utils/print_env_pt.py
|
||||
|
||||
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
|
||||
working-directory: /workspace/transformers
|
||||
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
|
||||
- name: Run all tests on GPU
|
||||
run: |
|
||||
python -m pytest -n 1 -v --dist=loadfile --make-reports=tests_torch_cuda_extensions_gpu tests/deepspeed tests/extended
|
||||
|
||||
- name: Remove cached torch extensions
|
||||
run: rm -rf /github/home/.cache/torch_extensions/
|
||||
- name: Failure short reports
|
||||
if: ${{ always() }}
|
||||
run: cat reports/tests_torch_cuda_extensions_gpu_failures_short.txt
|
||||
|
||||
# To avoid unknown test failures
|
||||
- name: Pre build DeepSpeed *again*
|
||||
working-directory: /workspace
|
||||
run: |
|
||||
python3 -m pip uninstall -y deepspeed
|
||||
rm -rf DeepSpeed
|
||||
git clone https://github.com/microsoft/DeepSpeed && cd DeepSpeed && rm -rf build
|
||||
DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 python3 -m pip install . --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check
|
||||
- name: Test suite reports artifacts
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v2
|
||||
with:
|
||||
name: run_tests_torch_cuda_extensions_gpu_test_reports
|
||||
path: reports
|
||||
|
||||
- name: NVIDIA-SMI
|
||||
run: |
|
||||
nvidia-smi
|
||||
run_all_tests_torch_cuda_extensions_multi_gpu:
|
||||
runs-on: [self-hosted, docker-gpu, multi-gpu]
|
||||
container:
|
||||
image: nvcr.io/nvidia/pytorch:21.03-py3
|
||||
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
steps:
|
||||
- name: Launcher docker
|
||||
uses: actions/checkout@v2
|
||||
|
||||
- name: Environment
|
||||
working-directory: /workspace/transformers
|
||||
run: |
|
||||
python utils/print_env.py
|
||||
- name: NVIDIA-SMI
|
||||
continue-on-error: true
|
||||
run: |
|
||||
nvidia-smi
|
||||
|
||||
- name: Show installed libraries and their versions
|
||||
working-directory: /workspace/transformers
|
||||
run: pip freeze
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
apt -y update && apt install -y libaio-dev libsndfile1-dev git espeak-ng
|
||||
pip install --upgrade pip
|
||||
pip install --pre torch torchvision torchaudio -f https://download.pytorch.org/whl/nightly/cu113/torch_nightly.html -U
|
||||
rm -rf ~/.cache/torch_extensions/ # shared between conflicting builds
|
||||
pip install .[testing,fairscale]
|
||||
pip install https://github.com/kpu/kenlm/archive/master.zip
|
||||
pip install git+https://github.com/microsoft/DeepSpeed # testing bleeding edge
|
||||
|
||||
- name: Run all tests on GPU
|
||||
working-directory: /workspace/transformers
|
||||
run: |
|
||||
python -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu tests/deepspeed tests/extended
|
||||
- name: Are GPUs recognized by our DL frameworks
|
||||
run: |
|
||||
utils/print_env_pt.py
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
run: cat /workspace/transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu/failures_short.txt
|
||||
- name: Run all tests on GPU
|
||||
run: |
|
||||
python -m pytest -n 1 -v --dist=loadfile --make-reports=tests_torch_cuda_extensions_multi_gpu tests/deepspeed tests/extended
|
||||
|
||||
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_tests_torch_cuda_extensions_gpu_test_reports_postfix_nightly"
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: ${{ matrix.machine_type }}_run_tests_torch_cuda_extensions_gpu_test_reports_postfix_nightly
|
||||
path: /workspace/transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu
|
||||
- name: Failure short reports
|
||||
if: ${{ always() }}
|
||||
run: cat reports/tests_torch_cuda_extensions_multi_gpu_failures_short.txt
|
||||
|
||||
send_results:
|
||||
name: Send results to webhook
|
||||
runs-on: ubuntu-22.04
|
||||
if: always()
|
||||
needs: [
|
||||
setup,
|
||||
run_tests_single_gpu,
|
||||
run_tests_multi_gpu,
|
||||
run_all_tests_torch_cuda_extensions_gpu
|
||||
]
|
||||
steps:
|
||||
- name: Preliminary job status
|
||||
shell: bash
|
||||
# For the meaning of these environment variables, see the job `Setup`
|
||||
run: |
|
||||
echo "Setup status: ${{ needs.setup.result }}"
|
||||
- name: Test suite reports artifacts
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v2
|
||||
with:
|
||||
name: run_tests_torch_cuda_extensions_multi_gpu_test_reports
|
||||
path: reports
|
||||
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/download-artifact@v4
|
||||
- name: Send message to Slack
|
||||
env:
|
||||
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
|
||||
CI_SLACK_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID }}
|
||||
CI_SLACK_CHANNEL_ID_DAILY: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY }}
|
||||
CI_SLACK_CHANNEL_DUMMY_TESTS: ${{ secrets.CI_SLACK_CHANNEL_DUMMY_TESTS }}
|
||||
CI_SLACK_REPORT_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID_PAST_FUTURE }}
|
||||
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
|
||||
CI_EVENT: Nightly CI
|
||||
SETUP_STATUS: ${{ needs.setup.result }}
|
||||
# We pass `needs.setup.outputs.matrix` as the argument. A processing in `notification_service.py` to change
|
||||
# `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`.
|
||||
run: |
|
||||
pip install slack_sdk
|
||||
pip show slack_sdk
|
||||
python utils/notification_service.py "${{ needs.setup.outputs.matrix }}"
|
||||
send_results:
|
||||
name: Send results to webhook
|
||||
runs-on: ubuntu-latest
|
||||
if: always()
|
||||
needs: [
|
||||
run_all_tests_torch_gpu,
|
||||
run_all_tests_torch_multi_gpu,
|
||||
run_all_tests_torch_cuda_extensions_gpu,
|
||||
run_all_tests_torch_cuda_extensions_multi_gpu
|
||||
]
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
|
||||
- uses: actions/download-artifact@v2
|
||||
|
||||
# delete-artifact
|
||||
- uses: geekyeggo/delete-artifact@v2
|
||||
with:
|
||||
name: |
|
||||
single-*
|
||||
multi-*
|
||||
- name: Send message to Slack
|
||||
env:
|
||||
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
|
||||
CI_SLACK_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID }}
|
||||
CI_SLACK_CHANNEL_ID_DAILY: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY }}
|
||||
CI_SLACK_CHANNEL_ID_PAST_FUTURE: ${{ secrets.CI_SLACK_CHANNEL_ID_PAST_FUTURE }}
|
||||
|
||||
run: |
|
||||
pip install slack_sdk
|
||||
python utils/notification_service.py scheduled nightly-torch
|
||||
|
||||
357
.github/workflows/self-past.yml
vendored
357
.github/workflows/self-past.yml
vendored
@ -1,357 +0,0 @@
|
||||
name: Self-hosted runner (past-ci)
|
||||
|
||||
# Note that each job's dependencies go into a corresponding docker file.
|
||||
#
|
||||
# For example for `run_all_tests_torch_cuda_extensions_gpu` the docker image is
|
||||
# `huggingface/transformers-pytorch-deepspeed-latest-gpu`, which can be found at
|
||||
# `docker/transformers-pytorch-deepspeed-latest-gpu/Dockerfile`
|
||||
|
||||
on:
|
||||
workflow_call:
|
||||
inputs:
|
||||
framework:
|
||||
required: true
|
||||
type: string
|
||||
version:
|
||||
required: true
|
||||
type: string
|
||||
# Use this to control the commit to test against
|
||||
sha:
|
||||
default: 'main'
|
||||
required: false
|
||||
type: string
|
||||
|
||||
env:
|
||||
HF_HOME: /mnt/cache
|
||||
TRANSFORMERS_IS_CI: yes
|
||||
OMP_NUM_THREADS: 8
|
||||
MKL_NUM_THREADS: 8
|
||||
RUN_SLOW: yes
|
||||
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
|
||||
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
|
||||
TF_FORCE_GPU_ALLOW_GROWTH: true
|
||||
RUN_PT_TF_CROSS_TESTS: 1
|
||||
CUDA_VISIBLE_DEVICES: 0,1
|
||||
|
||||
jobs:
|
||||
setup:
|
||||
name: Setup
|
||||
strategy:
|
||||
matrix:
|
||||
machine_type: [single-gpu, multi-gpu]
|
||||
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, past-ci]
|
||||
container:
|
||||
image: huggingface/transformers-${{ inputs.framework }}-past-${{ inputs.version }}-gpu
|
||||
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
outputs:
|
||||
matrix: ${{ steps.set-matrix.outputs.matrix }}
|
||||
steps:
|
||||
- name: Update clone
|
||||
working-directory: /transformers
|
||||
run: git fetch && git checkout ${{ inputs.sha }}
|
||||
|
||||
- name: Cleanup
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
rm -rf tests/__pycache__
|
||||
rm -rf tests/models/__pycache__
|
||||
rm -rf reports
|
||||
|
||||
- name: Show installed libraries and their versions
|
||||
working-directory: /transformers
|
||||
run: pip freeze
|
||||
|
||||
- id: set-matrix
|
||||
working-directory: /transformers
|
||||
name: Identify models to test
|
||||
run: |
|
||||
cd tests
|
||||
echo "matrix=$(python3 -c 'import os; tests = os.getcwd(); model_tests = os.listdir(os.path.join(tests, "models")); d1 = sorted(list(filter(os.path.isdir, os.listdir(tests)))); d2 = sorted(list(filter(os.path.isdir, [f"models/{x}" for x in model_tests]))); d1.remove("models"); d = d2 + d1; print(d)')" >> $GITHUB_OUTPUT
|
||||
|
||||
run_tests_single_gpu:
|
||||
name: Model tests
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
|
||||
machine_type: [single-gpu]
|
||||
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, past-ci]
|
||||
container:
|
||||
image: huggingface/transformers-${{ inputs.framework }}-past-${{ inputs.version }}-gpu
|
||||
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
needs: setup
|
||||
steps:
|
||||
- name: Update clone
|
||||
working-directory: /transformers
|
||||
run: git fetch && git checkout ${{ inputs.sha }}
|
||||
|
||||
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
|
||||
working-directory: /transformers
|
||||
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
|
||||
|
||||
- name: Update some packages
|
||||
working-directory: /transformers
|
||||
run: python3 -m pip install -U datasets
|
||||
|
||||
- name: Echo folder ${{ matrix.folders }}
|
||||
shell: bash
|
||||
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
|
||||
# set the artifact folder names (because the character `/` is not allowed).
|
||||
run: |
|
||||
echo "${{ matrix.folders }}"
|
||||
matrix_folders=${{ matrix.folders }}
|
||||
matrix_folders=${matrix_folders/'models/'/'models_'}
|
||||
echo "$matrix_folders"
|
||||
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
|
||||
|
||||
- name: NVIDIA-SMI
|
||||
run: |
|
||||
nvidia-smi
|
||||
|
||||
- name: Install
|
||||
if: inputs.framework == 'pytorch'
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate
|
||||
|
||||
- name: Environment
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
python3 utils/print_env.py
|
||||
|
||||
- name: Show installed libraries and their versions
|
||||
working-directory: /transformers
|
||||
run: pip freeze
|
||||
|
||||
- name: Run all tests on GPU
|
||||
working-directory: /transformers
|
||||
run: python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} tests/${{ matrix.folders }}
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
|
||||
|
||||
- name: Save job name
|
||||
if: ${{ always() }}
|
||||
shell: bash
|
||||
run: |
|
||||
matrix_folders=${matrix_folders/'models_'/'models/'}
|
||||
job_name="Model tests ($matrix_folders, ${{ matrix.machine_type }})"
|
||||
echo "$job_name"
|
||||
echo "$job_name" > /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/job_name.txt
|
||||
|
||||
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports_postfix_${{ inputs.framework }}-${{ inputs.version }}"
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports_postfix_${{ inputs.framework }}-${{ inputs.version }}
|
||||
path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}
|
||||
|
||||
run_tests_multi_gpu:
|
||||
name: Model tests
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
|
||||
machine_type: [multi-gpu]
|
||||
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, past-ci]
|
||||
container:
|
||||
image: huggingface/transformers-${{ inputs.framework }}-past-${{ inputs.version }}-gpu
|
||||
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
needs: setup
|
||||
steps:
|
||||
- name: Update clone
|
||||
working-directory: /transformers
|
||||
run: git fetch && git checkout ${{ inputs.sha }}
|
||||
|
||||
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
|
||||
working-directory: /transformers
|
||||
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
|
||||
|
||||
- name: Update some packages
|
||||
working-directory: /transformers
|
||||
run: python3 -m pip install -U datasets
|
||||
|
||||
- name: Echo folder ${{ matrix.folders }}
|
||||
shell: bash
|
||||
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
|
||||
# set the artifact folder names (because the character `/` is not allowed).
|
||||
run: |
|
||||
echo "${{ matrix.folders }}"
|
||||
matrix_folders=${{ matrix.folders }}
|
||||
matrix_folders=${matrix_folders/'models/'/'models_'}
|
||||
echo "$matrix_folders"
|
||||
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
|
||||
|
||||
- name: NVIDIA-SMI
|
||||
run: |
|
||||
nvidia-smi
|
||||
|
||||
- name: Install
|
||||
if: inputs.framework == 'pytorch'
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate
|
||||
|
||||
- name: Environment
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
python3 utils/print_env.py
|
||||
|
||||
- name: Show installed libraries and their versions
|
||||
working-directory: /transformers
|
||||
run: pip freeze
|
||||
|
||||
- name: Run all tests on GPU
|
||||
working-directory: /transformers
|
||||
run: python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} tests/${{ matrix.folders }}
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
|
||||
|
||||
- name: Save job name
|
||||
if: ${{ always() }}
|
||||
shell: bash
|
||||
run: |
|
||||
matrix_folders=${matrix_folders/'models_'/'models/'}
|
||||
job_name="Model tests ($matrix_folders, ${{ matrix.machine_type }})"
|
||||
echo "$job_name"
|
||||
echo "$job_name" > /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/job_name.txt
|
||||
|
||||
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports_postfix_${{ inputs.framework }}-${{ inputs.version }}"
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports_postfix_${{ inputs.framework }}-${{ inputs.version }}
|
||||
path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}
|
||||
|
||||
run_all_tests_torch_cuda_extensions_gpu:
|
||||
name: Torch CUDA extension tests
|
||||
if: inputs.framework == 'pytorch'
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
machine_type: [single-gpu, multi-gpu]
|
||||
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, past-ci]
|
||||
needs: setup
|
||||
container:
|
||||
image: huggingface/transformers-${{ inputs.framework }}-past-${{ inputs.version }}-gpu
|
||||
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
steps:
|
||||
- name: Update clone
|
||||
working-directory: /transformers
|
||||
run: git fetch && git checkout ${{ github.sha }}
|
||||
|
||||
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
|
||||
working-directory: /transformers
|
||||
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
|
||||
|
||||
- name: Update some packages
|
||||
working-directory: /transformers
|
||||
run: python3 -m pip install -U datasets
|
||||
|
||||
- name: Install
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate
|
||||
|
||||
- name: Remove cached torch extensions
|
||||
run: rm -rf /github/home/.cache/torch_extensions/
|
||||
|
||||
# To avoid unknown test failures
|
||||
- name: Pre build DeepSpeed *again*
|
||||
working-directory: /
|
||||
run: |
|
||||
python3 -m pip uninstall -y deepspeed
|
||||
rm -rf DeepSpeed
|
||||
git clone https://github.com/microsoft/DeepSpeed && cd DeepSpeed && rm -rf build
|
||||
DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 python3 -m pip install . --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check
|
||||
|
||||
- name: NVIDIA-SMI
|
||||
run: |
|
||||
nvidia-smi
|
||||
|
||||
- name: Environment
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
python3 utils/print_env.py
|
||||
|
||||
- name: Show installed libraries and their versions
|
||||
working-directory: /transformers
|
||||
run: pip freeze
|
||||
|
||||
- name: Run all tests on GPU
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu tests/deepspeed tests/extended
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu/failures_short.txt
|
||||
|
||||
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_tests_torch_cuda_extensions_gpu_test_reports_postfix_${{ inputs.framework }}-${{ inputs.version }}"
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: ${{ matrix.machine_type }}_run_tests_torch_cuda_extensions_gpu_test_reports_postfix_${{ inputs.framework }}-${{ inputs.version }}
|
||||
path: /transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu
|
||||
|
||||
send_results:
|
||||
name: Send results to webhook
|
||||
runs-on: ubuntu-22.04
|
||||
if: always()
|
||||
needs: [
|
||||
setup,
|
||||
run_tests_single_gpu,
|
||||
run_tests_multi_gpu,
|
||||
run_all_tests_torch_cuda_extensions_gpu
|
||||
]
|
||||
steps:
|
||||
- name: Preliminary job status
|
||||
shell: bash
|
||||
# For the meaning of these environment variables, see the job `Setup`
|
||||
run: |
|
||||
echo "Setup status: ${{ needs.setup.result }}"
|
||||
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/download-artifact@v4
|
||||
|
||||
# Create a directory to store test failure tables in the next step
|
||||
- name: Create directory
|
||||
run: mkdir test_failure_tables
|
||||
|
||||
- name: Send message to Slack
|
||||
env:
|
||||
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
|
||||
CI_SLACK_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID }}
|
||||
CI_SLACK_CHANNEL_ID_DAILY: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY }}
|
||||
CI_SLACK_CHANNEL_DUMMY_TESTS: ${{ secrets.CI_SLACK_CHANNEL_DUMMY_TESTS }}
|
||||
CI_SLACK_REPORT_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID_PAST_FUTURE }}
|
||||
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
|
||||
CI_EVENT: Past CI - ${{ inputs.framework }}-${{ inputs.version }}
|
||||
SETUP_STATUS: ${{ needs.setup.result }}
|
||||
# We pass `needs.setup.outputs.matrix` as the argument. A processing in `notification_service.py` to change
|
||||
# `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`.
|
||||
run: |
|
||||
pip install slack_sdk
|
||||
pip show slack_sdk
|
||||
python utils/notification_service.py "${{ needs.setup.outputs.matrix }}"
|
||||
|
||||
# Upload complete failure tables, as they might be big and only truncated versions could be sent to Slack.
|
||||
- name: Failure table artifacts
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: test_failure_tables_${{ inputs.framework }}-${{ inputs.version }}
|
||||
path: test_failure_tables
|
||||
|
||||
# delete-artifact
|
||||
- uses: geekyeggo/delete-artifact@v2
|
||||
with:
|
||||
name: |
|
||||
single-*
|
||||
multi-*
|
||||
25
.github/workflows/self-push-amd-mi210-caller.yml
vendored
25
.github/workflows/self-push-amd-mi210-caller.yml
vendored
@ -1,25 +0,0 @@
|
||||
name: Self-hosted runner (AMD mi210 CI caller)
|
||||
|
||||
on:
|
||||
workflow_run:
|
||||
workflows: ["Self-hosted runner (push-caller)"]
|
||||
branches: ["main"]
|
||||
types: [completed]
|
||||
push:
|
||||
branches:
|
||||
- run_amd_push_ci_caller*
|
||||
paths:
|
||||
- "src/**"
|
||||
- "tests/**"
|
||||
- ".github/**"
|
||||
- "templates/**"
|
||||
- "utils/**"
|
||||
|
||||
jobs:
|
||||
run_amd_ci:
|
||||
name: AMD mi210
|
||||
if: (cancelled() != true) && ((github.event_name == 'workflow_run') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_amd_push_ci_caller')))
|
||||
uses: ./.github/workflows/self-push-amd.yml
|
||||
with:
|
||||
gpu_flavor: mi210
|
||||
secrets: inherit
|
||||
25
.github/workflows/self-push-amd-mi250-caller.yml
vendored
25
.github/workflows/self-push-amd-mi250-caller.yml
vendored
@ -1,25 +0,0 @@
|
||||
name: Self-hosted runner (AMD mi250 CI caller)
|
||||
|
||||
on:
|
||||
workflow_run:
|
||||
workflows: ["Self-hosted runner (push-caller)"]
|
||||
branches: ["main"]
|
||||
types: [completed]
|
||||
push:
|
||||
branches:
|
||||
- run_amd_push_ci_caller*
|
||||
paths:
|
||||
- "src/**"
|
||||
- "tests/**"
|
||||
- ".github/**"
|
||||
- "templates/**"
|
||||
- "utils/**"
|
||||
|
||||
jobs:
|
||||
run_amd_ci:
|
||||
name: AMD mi250
|
||||
if: (cancelled() != true) && ((github.event_name == 'workflow_run') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_amd_push_ci_caller')))
|
||||
uses: ./.github/workflows/self-push-amd.yml
|
||||
with:
|
||||
gpu_flavor: mi250
|
||||
secrets: inherit
|
||||
329
.github/workflows/self-push-amd.yml
vendored
329
.github/workflows/self-push-amd.yml
vendored
@ -1,329 +0,0 @@
|
||||
name: Self-hosted runner AMD GPU (push)
|
||||
|
||||
on:
|
||||
workflow_call:
|
||||
inputs:
|
||||
gpu_flavor:
|
||||
required: true
|
||||
type: string
|
||||
|
||||
env:
|
||||
HF_HOME: /mnt/cache
|
||||
TRANSFORMERS_IS_CI: yes
|
||||
OMP_NUM_THREADS: 8
|
||||
MKL_NUM_THREADS: 8
|
||||
PYTEST_TIMEOUT: 60
|
||||
TF_FORCE_GPU_ALLOW_GROWTH: true
|
||||
RUN_PT_TF_CROSS_TESTS: 1
|
||||
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
|
||||
|
||||
jobs:
|
||||
check_runner_status:
|
||||
name: Check Runner Status
|
||||
runs-on: ubuntu-22.04
|
||||
steps:
|
||||
- name: Checkout transformers
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 2
|
||||
|
||||
- name: Check Runner Status
|
||||
run: python utils/check_self_hosted_runner.py --target_runners amd-mi210-single-gpu-ci-runner-docker --token ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
|
||||
|
||||
check_runners:
|
||||
name: Check Runners
|
||||
needs: check_runner_status
|
||||
strategy:
|
||||
matrix:
|
||||
machine_type: [single-gpu, multi-gpu]
|
||||
runs-on: [self-hosted, docker-gpu, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
|
||||
container:
|
||||
image: huggingface/transformers-pytorch-amd-gpu-push-ci # <--- We test only for PyTorch for now
|
||||
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
steps:
|
||||
- name: ROCM-SMI
|
||||
run: |
|
||||
rocm-smi
|
||||
- name: ROCM-INFO
|
||||
run: |
|
||||
rocminfo | grep "Agent" -A 14
|
||||
- name: Show ROCR environment
|
||||
run: |
|
||||
echo "ROCR: $ROCR_VISIBLE_DEVICES"
|
||||
|
||||
setup_gpu:
|
||||
name: Setup
|
||||
needs: check_runners
|
||||
strategy:
|
||||
matrix:
|
||||
machine_type: [single-gpu, multi-gpu]
|
||||
runs-on: [self-hosted, docker-gpu, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
|
||||
container:
|
||||
image: huggingface/transformers-pytorch-amd-gpu-push-ci # <--- We test only for PyTorch for now
|
||||
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
outputs:
|
||||
matrix: ${{ steps.set-matrix.outputs.matrix }}
|
||||
test_map: ${{ steps.set-matrix.outputs.test_map }}
|
||||
steps:
|
||||
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
|
||||
# We also take into account the `push` event (we might want to test some changes in a branch)
|
||||
- name: Prepare custom environment variables
|
||||
shell: bash
|
||||
# `CI_BRANCH_PUSH`: The branch name from the push event
|
||||
# `CI_BRANCH_WORKFLOW_RUN`: The name of the branch on which this workflow is triggered by `workflow_run` event
|
||||
# `CI_BRANCH`: The non-empty branch name from the above two (one and only one of them is empty)
|
||||
# `CI_SHA_PUSH`: The commit SHA from the push event
|
||||
# `CI_SHA_WORKFLOW_RUN`: The commit SHA that triggers this workflow by `workflow_run` event
|
||||
# `CI_SHA`: The non-empty commit SHA from the above two (one and only one of them is empty)
|
||||
run: |
|
||||
CI_BRANCH_PUSH=${{ github.event.ref }}
|
||||
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
|
||||
CI_BRANCH_WORKFLOW_RUN=${{ github.event.workflow_run.head_branch }}
|
||||
CI_SHA_PUSH=${{ github.event.head_commit.id }}
|
||||
CI_SHA_WORKFLOW_RUN=${{ github.event.workflow_run.head_sha }}
|
||||
echo $CI_BRANCH_PUSH
|
||||
echo $CI_BRANCH_WORKFLOW_RUN
|
||||
echo $CI_SHA_PUSH
|
||||
echo $CI_SHA_WORKFLOW_RUN
|
||||
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
|
||||
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
|
||||
|
||||
- name: print environment variables
|
||||
run: |
|
||||
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
|
||||
echo "env.CI_SHA = ${{ env.CI_SHA }}"
|
||||
|
||||
- name: Update clone using environment variables
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
echo "original branch = $(git branch --show-current)"
|
||||
git fetch && git checkout ${{ env.CI_BRANCH }}
|
||||
echo "updated branch = $(git branch --show-current)"
|
||||
git checkout ${{ env.CI_SHA }}
|
||||
echo "log = $(git log -n 1)"
|
||||
|
||||
- name: Cleanup
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
rm -rf tests/__pycache__
|
||||
rm -rf tests/models/__pycache__
|
||||
rm -rf reports
|
||||
|
||||
- name: Show installed libraries and their versions
|
||||
working-directory: /transformers
|
||||
run: pip freeze
|
||||
|
||||
- name: Fetch the tests to run
|
||||
working-directory: /transformers
|
||||
# TODO: add `git-python` in the docker images
|
||||
run: |
|
||||
pip install --upgrade git-python
|
||||
python3 utils/tests_fetcher.py --diff_with_last_commit | tee test_preparation.txt
|
||||
|
||||
- name: Report fetched tests
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: test_fetched
|
||||
path: /transformers/test_preparation.txt
|
||||
|
||||
- id: set-matrix
|
||||
name: Organize tests into models
|
||||
working-directory: /transformers
|
||||
# The `keys` is used as GitHub actions matrix for jobs, i.e. `models/bert`, `tokenization`, `pipeline`, etc.
|
||||
# The `test_map` is used to get the actual identified test files under each key.
|
||||
# If no test to run (so no `test_map.json` file), create a dummy map (empty matrix will fail)
|
||||
run: |
|
||||
if [ -f test_map.json ]; then
|
||||
keys=$(python3 -c 'import json; fp = open("test_map.json"); test_map = json.load(fp); fp.close(); d = list(test_map.keys()); print(d)')
|
||||
test_map=$(python3 -c 'import json; fp = open("test_map.json"); test_map = json.load(fp); fp.close(); print(test_map)')
|
||||
else
|
||||
keys=$(python3 -c 'keys = ["dummy"]; print(keys)')
|
||||
test_map=$(python3 -c 'test_map = {"dummy": []}; print(test_map)')
|
||||
fi
|
||||
echo $keys
|
||||
echo $test_map
|
||||
echo "matrix=$keys" >> $GITHUB_OUTPUT
|
||||
echo "test_map=$test_map" >> $GITHUB_OUTPUT
|
||||
|
||||
run_tests_amdgpu:
|
||||
name: Model tests
|
||||
needs: setup_gpu
|
||||
# `dummy` means there is no test to run
|
||||
if: contains(fromJson(needs.setup_gpu.outputs.matrix), 'dummy') != true
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
folders: ${{ fromJson(needs.setup_gpu.outputs.matrix) }}
|
||||
machine_type: [single-gpu, multi-gpu]
|
||||
runs-on: [self-hosted, docker-gpu, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
|
||||
container:
|
||||
image: huggingface/transformers-pytorch-amd-gpu-push-ci # <--- We test only for PyTorch for now
|
||||
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
steps:
|
||||
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
|
||||
# We also take into account the `push` event (we might want to test some changes in a branch)
|
||||
- name: Prepare custom environment variables
|
||||
shell: bash
|
||||
# For the meaning of these environment variables, see the job `Setup`
|
||||
run: |
|
||||
CI_BRANCH_PUSH=${{ github.event.ref }}
|
||||
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
|
||||
CI_BRANCH_WORKFLOW_RUN=${{ github.event.workflow_run.head_branch }}
|
||||
CI_SHA_PUSH=${{ github.event.head_commit.id }}
|
||||
CI_SHA_WORKFLOW_RUN=${{ github.event.workflow_run.head_sha }}
|
||||
echo $CI_BRANCH_PUSH
|
||||
echo $CI_BRANCH_WORKFLOW_RUN
|
||||
echo $CI_SHA_PUSH
|
||||
echo $CI_SHA_WORKFLOW_RUN
|
||||
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
|
||||
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
|
||||
|
||||
- name: print environment variables
|
||||
run: |
|
||||
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
|
||||
echo "env.CI_SHA = ${{ env.CI_SHA }}"
|
||||
|
||||
- name: Update clone using environment variables
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
echo "original branch = $(git branch --show-current)"
|
||||
git fetch && git checkout ${{ env.CI_BRANCH }}
|
||||
echo "updated branch = $(git branch --show-current)"
|
||||
git checkout ${{ env.CI_SHA }}
|
||||
echo "log = $(git log -n 1)"
|
||||
|
||||
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
|
||||
working-directory: /transformers
|
||||
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
|
||||
|
||||
- name: Echo folder ${{ matrix.folders }}
|
||||
shell: bash
|
||||
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
|
||||
# set the artifact folder names (because the character `/` is not allowed).
|
||||
run: |
|
||||
echo "${{ matrix.folders }}"
|
||||
echo "${{ fromJson(needs.setup_gpu.outputs.test_map)[matrix.folders] }}"
|
||||
matrix_folders=${{ matrix.folders }}
|
||||
matrix_folders=${matrix_folders/'models/'/'models_'}
|
||||
echo "$matrix_folders"
|
||||
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
|
||||
|
||||
- name: ROCM-SMI
|
||||
run: |
|
||||
rocm-smi
|
||||
- name: ROCM-INFO
|
||||
run: |
|
||||
rocminfo | grep "Agent" -A 14
|
||||
- name: Show ROCR environment
|
||||
run: |
|
||||
echo "ROCR: $ROCR_VISIBLE_DEVICES"
|
||||
|
||||
- name: Environment
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
python3 utils/print_env.py
|
||||
|
||||
- name: Show installed libraries and their versions
|
||||
working-directory: /transformers
|
||||
run: pip freeze
|
||||
|
||||
- name: Run all non-slow selected tests on GPU
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
python3 -m pytest -n 2 --dist=loadfile -v --make-reports=${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} ${{ fromJson(needs.setup_gpu.outputs.test_map)[matrix.folders] }}
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
|
||||
|
||||
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports"
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports
|
||||
path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}
|
||||
|
||||
send_results:
|
||||
name: Send results to webhook
|
||||
runs-on: ubuntu-22.04
|
||||
if: always()
|
||||
needs: [
|
||||
check_runner_status,
|
||||
check_runners,
|
||||
setup_gpu,
|
||||
run_tests_amdgpu,
|
||||
# run_tests_torch_cuda_extensions_single_gpu,
|
||||
# run_tests_torch_cuda_extensions_multi_gpu
|
||||
]
|
||||
steps:
|
||||
- name: Preliminary job status
|
||||
shell: bash
|
||||
# For the meaning of these environment variables, see the job `Setup`
|
||||
run: |
|
||||
echo "Runner availability: ${{ needs.check_runner_status.result }}"
|
||||
echo "Setup status: ${{ needs.setup_gpu.result }}"
|
||||
echo "Runner status: ${{ needs.check_runners.result }}"
|
||||
|
||||
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
|
||||
# We also take into account the `push` event (we might want to test some changes in a branch)
|
||||
- name: Prepare custom environment variables
|
||||
shell: bash
|
||||
# For the meaning of these environment variables, see the job `Setup`
|
||||
run: |
|
||||
CI_BRANCH_PUSH=${{ github.event.ref }}
|
||||
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
|
||||
CI_BRANCH_WORKFLOW_RUN=${{ github.event.workflow_run.head_branch }}
|
||||
CI_SHA_PUSH=${{ github.event.head_commit.id }}
|
||||
CI_SHA_WORKFLOW_RUN=${{ github.event.workflow_run.head_sha }}
|
||||
echo $CI_BRANCH_PUSH
|
||||
echo $CI_BRANCH_WORKFLOW_RUN
|
||||
echo $CI_SHA_PUSH
|
||||
echo $CI_SHA_WORKFLOW_RUN
|
||||
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
|
||||
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
|
||||
|
||||
- name: print environment variables
|
||||
run: |
|
||||
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
|
||||
echo "env.CI_SHA = ${{ env.CI_SHA }}"
|
||||
|
||||
- uses: actions/checkout@v4
|
||||
# To avoid failure when multiple commits are merged into `main` in a short period of time.
|
||||
# Checking out to an old commit beyond the fetch depth will get an error `fatal: reference is not a tree: ...
|
||||
# (Only required for `workflow_run` event, where we get the latest HEAD on `main` instead of the event commit)
|
||||
with:
|
||||
fetch-depth: 20
|
||||
|
||||
- name: Update clone using environment variables
|
||||
run: |
|
||||
echo "original branch = $(git branch --show-current)"
|
||||
git fetch && git checkout ${{ env.CI_BRANCH }}
|
||||
echo "updated branch = $(git branch --show-current)"
|
||||
git checkout ${{ env.CI_SHA }}
|
||||
echo "log = $(git log -n 1)"
|
||||
|
||||
- uses: actions/download-artifact@v4
|
||||
- name: Send message to Slack
|
||||
env:
|
||||
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
|
||||
CI_SLACK_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID }}
|
||||
CI_SLACK_CHANNEL_ID_DAILY: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY }}
|
||||
CI_SLACK_CHANNEL_ID_AMD: ${{ secrets.CI_SLACK_CHANNEL_ID_AMD }}
|
||||
CI_SLACK_CHANNEL_DUMMY_TESTS: ${{ secrets.CI_SLACK_CHANNEL_DUMMY_TESTS }}
|
||||
CI_SLACK_REPORT_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID_AMD }}
|
||||
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
|
||||
CI_EVENT: Push CI (AMD) - ${{ inputs.gpu_flavor }}
|
||||
CI_TITLE_PUSH: ${{ github.event.head_commit.message }}
|
||||
CI_TITLE_WORKFLOW_RUN: ${{ github.event.workflow_run.head_commit.message }}
|
||||
CI_SHA: ${{ env.CI_SHA }}
|
||||
RUNNER_STATUS: ${{ needs.check_runner_status.result }}
|
||||
RUNNER_ENV_STATUS: ${{ needs.check_runners.result }}
|
||||
SETUP_STATUS: ${{ needs.setup_gpu.result }}
|
||||
|
||||
# We pass `needs.setup_gpu.outputs.matrix` as the argument. A processing in `notification_service.py` to change
|
||||
# `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`.
|
||||
run: |
|
||||
pip install slack_sdk
|
||||
pip show slack_sdk
|
||||
python utils/notification_service.py "${{ needs.setup_gpu.outputs.matrix }}"
|
||||
54
.github/workflows/self-push-caller.yml
vendored
54
.github/workflows/self-push-caller.yml
vendored
@ -1,54 +0,0 @@
|
||||
# Used to trigger self-push CI
|
||||
name: Self-hosted runner (push-caller)
|
||||
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
paths:
|
||||
- "src/**"
|
||||
- "tests/**"
|
||||
- ".github/**"
|
||||
- "templates/**"
|
||||
- "utils/**"
|
||||
|
||||
jobs:
|
||||
check-for-setup:
|
||||
runs-on: ubuntu-22.04
|
||||
name: Check if setup was changed
|
||||
outputs:
|
||||
changed: ${{ steps.was_changed.outputs.changed }}
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: "2"
|
||||
|
||||
- name: Get changed files
|
||||
id: changed-files
|
||||
uses: tj-actions/changed-files@v41
|
||||
|
||||
- name: Was setup changed
|
||||
id: was_changed
|
||||
run: |
|
||||
for file in ${{ steps.changed-files.outputs.all_changed_files }}; do
|
||||
if [ `basename "${file}"` = "setup.py" ]; then
|
||||
echo "changed=1" >> $GITHUB_OUTPUT
|
||||
fi
|
||||
done
|
||||
|
||||
build-docker-containers:
|
||||
needs: check-for-setup
|
||||
if: (github.event_name == 'push') && (needs.check-for-setup.outputs.changed == '1')
|
||||
uses: ./.github/workflows/build-docker-images.yml
|
||||
with:
|
||||
image_postfix: "-push-ci"
|
||||
secrets: inherit
|
||||
|
||||
run_push_ci:
|
||||
name: Trigger Push CI
|
||||
runs-on: ubuntu-22.04
|
||||
if: ${{ always() }}
|
||||
needs: build-docker-containers
|
||||
steps:
|
||||
- name: Trigger push CI via workflow_run
|
||||
run: echo "Trigger push CI via workflow_run"
|
||||
821
.github/workflows/self-push.yml
vendored
821
.github/workflows/self-push.yml
vendored
@ -1,12 +1,9 @@
|
||||
name: Self-hosted runner (push)
|
||||
|
||||
on:
|
||||
workflow_run:
|
||||
workflows: ["Self-hosted runner (push-caller)"]
|
||||
branches: ["main"]
|
||||
types: [completed]
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
- ci_*
|
||||
- ci-*
|
||||
paths:
|
||||
@ -23,546 +20,480 @@ env:
|
||||
OMP_NUM_THREADS: 8
|
||||
MKL_NUM_THREADS: 8
|
||||
PYTEST_TIMEOUT: 60
|
||||
TF_FORCE_GPU_ALLOW_GROWTH: true
|
||||
RUN_PT_TF_CROSS_TESTS: 1
|
||||
CUDA_VISIBLE_DEVICES: 0,1
|
||||
|
||||
jobs:
|
||||
setup:
|
||||
name: Setup
|
||||
strategy:
|
||||
matrix:
|
||||
machine_type: [single-gpu, multi-gpu]
|
||||
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, push-ci]
|
||||
run_tests_torch_gpu:
|
||||
runs-on: [self-hosted, docker-gpu, single-gpu]
|
||||
container:
|
||||
image: huggingface/transformers-all-latest-gpu-push-ci
|
||||
image: pytorch/pytorch:1.9.0-cuda11.1-cudnn8-runtime
|
||||
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
outputs:
|
||||
matrix: ${{ steps.set-matrix.outputs.matrix }}
|
||||
test_map: ${{ steps.set-matrix.outputs.test_map }}
|
||||
steps:
|
||||
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
|
||||
# We also take into account the `push` event (we might want to test some changes in a branch)
|
||||
- name: Prepare custom environment variables
|
||||
shell: bash
|
||||
# `CI_BRANCH_PUSH`: The branch name from the push event
|
||||
# `CI_BRANCH_WORKFLOW_RUN`: The name of the branch on which this workflow is triggered by `workflow_run` event
|
||||
# `CI_BRANCH`: The non-empty branch name from the above two (one and only one of them is empty)
|
||||
# `CI_SHA_PUSH`: The commit SHA from the push event
|
||||
# `CI_SHA_WORKFLOW_RUN`: The commit SHA that triggers this workflow by `workflow_run` event
|
||||
# `CI_SHA`: The non-empty commit SHA from the above two (one and only one of them is empty)
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
CI_BRANCH_PUSH=${{ github.event.ref }}
|
||||
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
|
||||
CI_BRANCH_WORKFLOW_RUN=${{ github.event.workflow_run.head_branch }}
|
||||
CI_SHA_PUSH=${{ github.event.head_commit.id }}
|
||||
CI_SHA_WORKFLOW_RUN=${{ github.event.workflow_run.head_sha }}
|
||||
echo $CI_BRANCH_PUSH
|
||||
echo $CI_BRANCH_WORKFLOW_RUN
|
||||
echo $CI_SHA_PUSH
|
||||
echo $CI_SHA_WORKFLOW_RUN
|
||||
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
|
||||
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
|
||||
apt -y update && apt install -y software-properties-common && apt -y update && add-apt-repository -y ppa:git-core/ppa && apt -y update && apt install -y git
|
||||
apt install -y libsndfile1-dev espeak-ng
|
||||
pip install --upgrade pip
|
||||
pip install .[sklearn,testing,onnxruntime,sentencepiece,torch-speech,vision,timm]
|
||||
pip install https://github.com/kpu/kenlm/archive/master.zip
|
||||
|
||||
- name: print environment variables
|
||||
- name: Launcher docker
|
||||
uses: actions/checkout@v2
|
||||
with:
|
||||
fetch-depth: 2
|
||||
|
||||
- name: NVIDIA-SMI
|
||||
run: |
|
||||
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
|
||||
echo "env.CI_SHA = ${{ env.CI_SHA }}"
|
||||
nvidia-smi
|
||||
|
||||
- name: Update clone using environment variables
|
||||
working-directory: /transformers
|
||||
- name: Are GPUs recognized by our DL frameworks
|
||||
run: |
|
||||
echo "original branch = $(git branch --show-current)"
|
||||
git fetch && git checkout ${{ env.CI_BRANCH }}
|
||||
echo "updated branch = $(git branch --show-current)"
|
||||
git checkout ${{ env.CI_SHA }}
|
||||
echo "log = $(git log -n 1)"
|
||||
|
||||
- name: Cleanup
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
rm -rf tests/__pycache__
|
||||
rm -rf tests/models/__pycache__
|
||||
rm -rf reports
|
||||
|
||||
- name: Show installed libraries and their versions
|
||||
working-directory: /transformers
|
||||
run: pip freeze
|
||||
utils/print_env_pt.py
|
||||
|
||||
- name: Fetch the tests to run
|
||||
working-directory: /transformers
|
||||
# TODO: add `git-python` in the docker images
|
||||
run: |
|
||||
pip install --upgrade git-python
|
||||
python3 utils/tests_fetcher.py --diff_with_last_commit | tee test_preparation.txt
|
||||
python utils/tests_fetcher.py --diff_with_last_commit | tee test_preparation.txt
|
||||
|
||||
- name: Report fetched tests
|
||||
uses: actions/upload-artifact@v4
|
||||
uses: actions/upload-artifact@v2
|
||||
with:
|
||||
name: test_fetched
|
||||
path: /transformers/test_preparation.txt
|
||||
path: test_preparation.txt
|
||||
|
||||
- id: set-matrix
|
||||
name: Organize tests into models
|
||||
working-directory: /transformers
|
||||
# The `keys` is used as GitHub actions matrix for jobs, i.e. `models/bert`, `tokenization`, `pipeline`, etc.
|
||||
# The `test_map` is used to get the actual identified test files under each key.
|
||||
# If no test to run (so no `test_map.json` file), create a dummy map (empty matrix will fail)
|
||||
- name: Run all non-slow tests on GPU
|
||||
run: |
|
||||
if [ -f test_map.json ]; then
|
||||
keys=$(python3 -c 'import json; fp = open("test_map.json"); test_map = json.load(fp); fp.close(); d = list(test_map.keys()); print(d)')
|
||||
test_map=$(python3 -c 'import json; fp = open("test_map.json"); test_map = json.load(fp); fp.close(); print(test_map)')
|
||||
else
|
||||
keys=$(python3 -c 'keys = ["dummy"]; print(keys)')
|
||||
test_map=$(python3 -c 'test_map = {"dummy": []}; print(test_map)')
|
||||
if [ -f test_list.txt ]; then
|
||||
python -m pytest -n 2 --dist=loadfile -v --make-reports=tests_torch_gpu $(cat test_list.txt)
|
||||
fi
|
||||
echo $keys
|
||||
echo $test_map
|
||||
echo "matrix=$keys" >> $GITHUB_OUTPUT
|
||||
echo "test_map=$test_map" >> $GITHUB_OUTPUT
|
||||
|
||||
run_tests_single_gpu:
|
||||
name: Model tests
|
||||
needs: setup
|
||||
# `dummy` means there is no test to run
|
||||
if: contains(fromJson(needs.setup.outputs.matrix), 'dummy') != true
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
|
||||
machine_type: [single-gpu]
|
||||
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, push-ci]
|
||||
container:
|
||||
image: huggingface/transformers-all-latest-gpu-push-ci
|
||||
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
steps:
|
||||
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
|
||||
# We also take into account the `push` event (we might want to test some changes in a branch)
|
||||
- name: Prepare custom environment variables
|
||||
shell: bash
|
||||
# For the meaning of these environment variables, see the job `Setup`
|
||||
run: |
|
||||
CI_BRANCH_PUSH=${{ github.event.ref }}
|
||||
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
|
||||
CI_BRANCH_WORKFLOW_RUN=${{ github.event.workflow_run.head_branch }}
|
||||
CI_SHA_PUSH=${{ github.event.head_commit.id }}
|
||||
CI_SHA_WORKFLOW_RUN=${{ github.event.workflow_run.head_sha }}
|
||||
echo $CI_BRANCH_PUSH
|
||||
echo $CI_BRANCH_WORKFLOW_RUN
|
||||
echo $CI_SHA_PUSH
|
||||
echo $CI_SHA_WORKFLOW_RUN
|
||||
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
|
||||
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
|
||||
|
||||
- name: print environment variables
|
||||
run: |
|
||||
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
|
||||
echo "env.CI_SHA = ${{ env.CI_SHA }}"
|
||||
|
||||
- name: Update clone using environment variables
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
echo "original branch = $(git branch --show-current)"
|
||||
git fetch && git checkout ${{ env.CI_BRANCH }}
|
||||
echo "updated branch = $(git branch --show-current)"
|
||||
git checkout ${{ env.CI_SHA }}
|
||||
echo "log = $(git log -n 1)"
|
||||
|
||||
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
|
||||
working-directory: /transformers
|
||||
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
|
||||
|
||||
- name: Echo folder ${{ matrix.folders }}
|
||||
shell: bash
|
||||
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
|
||||
# set the artifact folder names (because the character `/` is not allowed).
|
||||
run: |
|
||||
echo "${{ matrix.folders }}"
|
||||
echo "${{ fromJson(needs.setup.outputs.test_map)[matrix.folders] }}"
|
||||
matrix_folders=${{ matrix.folders }}
|
||||
matrix_folders=${matrix_folders/'models/'/'models_'}
|
||||
echo "$matrix_folders"
|
||||
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
|
||||
|
||||
- name: NVIDIA-SMI
|
||||
run: |
|
||||
nvidia-smi
|
||||
|
||||
- name: Environment
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
python3 utils/print_env.py
|
||||
|
||||
- name: Show installed libraries and their versions
|
||||
working-directory: /transformers
|
||||
run: pip freeze
|
||||
|
||||
- name: Run all non-slow selected tests on GPU
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
python3 -m pytest -n 2 --dist=loadfile -v --make-reports=${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} ${{ fromJson(needs.setup.outputs.test_map)[matrix.folders] }}
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
|
||||
run: cat reports/tests_torch_gpu_failures_short.txt
|
||||
|
||||
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports"
|
||||
- name: Test suite reports artifacts
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
uses: actions/upload-artifact@v2
|
||||
with:
|
||||
name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports
|
||||
path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}
|
||||
name: run_all_tests_torch_gpu_test_reports
|
||||
path: reports
|
||||
|
||||
run_tests_multi_gpu:
|
||||
name: Model tests
|
||||
needs: setup
|
||||
# `dummy` means there is no test to run
|
||||
if: contains(fromJson(needs.setup.outputs.matrix), 'dummy') != true
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
|
||||
machine_type: [multi-gpu]
|
||||
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, push-ci]
|
||||
run_tests_flax_gpu:
|
||||
runs-on: [self-hosted, docker-gpu-test, single-gpu]
|
||||
container:
|
||||
image: huggingface/transformers-all-latest-gpu-push-ci
|
||||
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
image: tensorflow/tensorflow:2.4.1-gpu
|
||||
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
steps:
|
||||
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
|
||||
# We also take into account the `push` event (we might want to test some changes in a branch)
|
||||
- name: Prepare custom environment variables
|
||||
shell: bash
|
||||
# For the meaning of these environment variables, see the job `Setup`
|
||||
run: |
|
||||
CI_BRANCH_PUSH=${{ github.event.ref }}
|
||||
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
|
||||
CI_BRANCH_WORKFLOW_RUN=${{ github.event.workflow_run.head_branch }}
|
||||
CI_SHA_PUSH=${{ github.event.head_commit.id }}
|
||||
CI_SHA_WORKFLOW_RUN=${{ github.event.workflow_run.head_sha }}
|
||||
echo $CI_BRANCH_PUSH
|
||||
echo $CI_BRANCH_WORKFLOW_RUN
|
||||
echo $CI_SHA_PUSH
|
||||
echo $CI_SHA_WORKFLOW_RUN
|
||||
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
|
||||
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
|
||||
- name: Set up Python 3.7
|
||||
uses: actions/setup-python@v2
|
||||
with:
|
||||
python-version: 3.7
|
||||
|
||||
- name: print environment variables
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
|
||||
echo "env.CI_SHA = ${{ env.CI_SHA }}"
|
||||
apt -y update && apt install -y software-properties-common && apt -y update && add-apt-repository -y ppa:git-core/ppa && apt -y update && apt install -y git espeak-ng
|
||||
pip install --upgrade "jax[cuda111]" -f https://storage.googleapis.com/jax-releases/jax_releases.html
|
||||
pip install --upgrade pip
|
||||
pip install .[sklearn,testing,sentencepiece,flax,flax-speech,vision]
|
||||
|
||||
- name: Update clone using environment variables
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
echo "original branch = $(git branch --show-current)"
|
||||
git fetch && git checkout ${{ env.CI_BRANCH }}
|
||||
echo "updated branch = $(git branch --show-current)"
|
||||
git checkout ${{ env.CI_SHA }}
|
||||
echo "log = $(git log -n 1)"
|
||||
|
||||
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
|
||||
working-directory: /transformers
|
||||
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
|
||||
|
||||
- name: Echo folder ${{ matrix.folders }}
|
||||
shell: bash
|
||||
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
|
||||
# set the artifact folder names (because the character `/` is not allowed).
|
||||
run: |
|
||||
echo "${{ matrix.folders }}"
|
||||
echo "${{ fromJson(needs.setup.outputs.test_map)[matrix.folders] }}"
|
||||
matrix_folders=${{ matrix.folders }}
|
||||
matrix_folders=${matrix_folders/'models/'/'models_'}
|
||||
echo "$matrix_folders"
|
||||
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
|
||||
- name: Launcher docker
|
||||
uses: actions/checkout@v2
|
||||
with:
|
||||
fetch-depth: 2
|
||||
|
||||
- name: NVIDIA-SMI
|
||||
continue-on-error: true
|
||||
run: |
|
||||
nvidia-smi
|
||||
|
||||
- name: Environment
|
||||
working-directory: /transformers
|
||||
- name: Are GPUs recognized by our DL frameworks
|
||||
run: |
|
||||
python3 utils/print_env.py
|
||||
python -c "from jax.lib import xla_bridge; print('GPU available:', xla_bridge.get_backend().platform)"
|
||||
python -c "import jax; print('Number of GPUs available:', len(jax.local_devices()))"
|
||||
|
||||
- name: Show installed libraries and their versions
|
||||
working-directory: /transformers
|
||||
run: pip freeze
|
||||
- name: Fetch the tests to run
|
||||
run: |
|
||||
python utils/tests_fetcher.py --diff_with_last_commit | tee test_preparation.txt
|
||||
|
||||
- name: Run all non-slow selected tests on GPU
|
||||
- name: Report fetched tests
|
||||
uses: actions/upload-artifact@v2
|
||||
with:
|
||||
name: test_fetched
|
||||
path: test_preparation.txt
|
||||
|
||||
- name: Run all non-slow tests on GPU
|
||||
run: |
|
||||
if [ -f test_list.txt ]; then
|
||||
python -m pytest -n 2 --dist=loadfile -v --make-reports=tests_flax_gpu $(cat test_list.txt)
|
||||
fi
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
run: cat reports/tests_flax_gpu_failures_short.txt
|
||||
|
||||
- name: Test suite reports artifacts
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v2
|
||||
with:
|
||||
name: run_all_tests_flax_gpu_test_reports
|
||||
path: reports
|
||||
|
||||
# run_tests_tf_gpu:
|
||||
# runs-on: [self-hosted, docker-gpu, single-gpu]
|
||||
# timeout-minutes: 120
|
||||
# container:
|
||||
# image: tensorflow/tensorflow:2.4.1-gpu
|
||||
# options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
# steps:
|
||||
# - name: Install dependencies
|
||||
# run: |
|
||||
# apt -y update && apt install -y software-properties-common && apt -y update && add-apt-repository -y ppa:git-core/ppa && apt -y update && apt install -y git espeak-ng
|
||||
# pip install --upgrade pip
|
||||
# pip install .[sklearn,testing,onnxruntime,sentencepiece,tf-speech]
|
||||
# pip install https://github.com/kpu/kenlm/archive/master.zip
|
||||
#
|
||||
# - name: Launcher docker
|
||||
# uses: actions/checkout@v2
|
||||
# with:
|
||||
# fetch-depth: 2
|
||||
#
|
||||
# - name: NVIDIA-SMI
|
||||
# run: |
|
||||
# nvidia-smi
|
||||
#
|
||||
# - name: Are GPUs recognized by our DL frameworks
|
||||
# run: |
|
||||
# TF_CPP_MIN_LOG_LEVEL=3 python -c "import tensorflow as tf; print('TF GPUs available:', bool(tf.config.list_physical_devices('GPU')))"
|
||||
# TF_CPP_MIN_LOG_LEVEL=3 python -c "import tensorflow as tf; print('Number of TF GPUs available:', len(tf.config.list_physical_devices('GPU')))"
|
||||
#
|
||||
# - name: Fetch the tests to run
|
||||
# run: |
|
||||
# python utils/tests_fetcher.py --diff_with_last_commit | tee test_preparation.txt
|
||||
#
|
||||
# - name: Report fetched tests
|
||||
# uses: actions/upload-artifact@v2
|
||||
# with:
|
||||
# name: test_fetched
|
||||
# path: test_preparation.txt
|
||||
#
|
||||
# - name: Run all non-slow tests on GPU
|
||||
# env:
|
||||
# TF_NUM_INTRAOP_THREADS: 8
|
||||
# TF_NUM_INTEROP_THREADS: 1
|
||||
# run: |
|
||||
# if [ -f test_list.txt ]; then
|
||||
# python -m pytest -n 1 --dist=loadfile --make-reports=tests_tf_gpu $(cat test_list.txt)
|
||||
# fi
|
||||
#
|
||||
# - name: Failure short reports
|
||||
# if: ${{ failure() }}
|
||||
# run: cat reports/tests_tf_gpu_failures_short.txt
|
||||
#
|
||||
# - name: Test suite reports artifacts
|
||||
# if: ${{ always() }}
|
||||
# uses: actions/upload-artifact@v2
|
||||
# with:
|
||||
# name: run_all_tests_tf_gpu_test_reports
|
||||
# path: reports
|
||||
|
||||
|
||||
run_tests_torch_multi_gpu:
|
||||
runs-on: [self-hosted, docker-gpu, multi-gpu]
|
||||
container:
|
||||
image: pytorch/pytorch:1.9.0-cuda11.1-cudnn8-runtime
|
||||
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
steps:
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
apt -y update && apt install -y software-properties-common && apt -y update && add-apt-repository -y ppa:git-core/ppa && apt -y update && apt install -y git espeak-ng
|
||||
apt install -y libsndfile1-dev espeak-ng
|
||||
pip install --upgrade pip
|
||||
pip install .[sklearn,testing,onnxruntime,sentencepiece,torch-speech,vision,timm]
|
||||
pip install https://github.com/kpu/kenlm/archive/master.zip
|
||||
- name: Launcher docker
|
||||
uses: actions/checkout@v2
|
||||
with:
|
||||
fetch-depth: 2
|
||||
|
||||
- name: NVIDIA-SMI
|
||||
continue-on-error: true
|
||||
run: |
|
||||
nvidia-smi
|
||||
|
||||
- name: Are GPUs recognized by our DL frameworks
|
||||
run: |
|
||||
utils/print_env_pt.py
|
||||
|
||||
- name: Fetch the tests to run
|
||||
run: |
|
||||
python utils/tests_fetcher.py --diff_with_last_commit | tee test_preparation.txt
|
||||
|
||||
- name: Report fetched tests
|
||||
uses: actions/upload-artifact@v2
|
||||
with:
|
||||
name: test_fetched
|
||||
path: test_preparation.txt
|
||||
|
||||
- name: Run all non-slow tests on GPU
|
||||
env:
|
||||
MKL_SERVICE_FORCE_INTEL: 1
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
python3 -m pytest -n 2 --dist=loadfile -v --make-reports=${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} ${{ fromJson(needs.setup.outputs.test_map)[matrix.folders] }}
|
||||
if [ -f test_list.txt ]; then
|
||||
python -m pytest -n 2 --dist=loadfile -v --make-reports=tests_torch_multi_gpu $(cat test_list.txt)
|
||||
fi
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
|
||||
run: cat reports/tests_torch_multi_gpu_failures_short.txt
|
||||
|
||||
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports"
|
||||
- name: Test suite reports artifacts
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
uses: actions/upload-artifact@v2
|
||||
with:
|
||||
name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports
|
||||
path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}
|
||||
name: run_all_tests_torch_multi_gpu_test_reports
|
||||
path: reports
|
||||
|
||||
run_tests_torch_cuda_extensions_single_gpu:
|
||||
name: Torch CUDA extension tests
|
||||
needs: setup
|
||||
if: contains(fromJson(needs.setup.outputs.matrix), 'deepspeed') || contains(fromJson(needs.setup.outputs.matrix), 'extended')
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
machine_type: [single-gpu]
|
||||
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, push-ci]
|
||||
# run_tests_flax_multi_gpu:
|
||||
# runs-on: [self-hosted, docker-gpu, multi-gpu]
|
||||
# container:
|
||||
# image: tensorflow/tensorflow:2.4.1-gpu
|
||||
# options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
# steps:
|
||||
# - name: Install dependencies
|
||||
# run: |
|
||||
# apt -y update && apt install -y software-properties-common && apt -y update && add-apt-repository -y ppa:git-core/ppa && apt -y update && apt install -y git espeak-ng
|
||||
# pip install --upgrade "jax[cuda111]" -f https://storage.googleapis.com/jax-releases/jax_releases.html
|
||||
# pip install --upgrade pip
|
||||
# pip install .[sklearn,testing,sentencepiece,flax,flax-speech,vision]
|
||||
# pip install https://github.com/kpu/kenlm/archive/master.zip
|
||||
#
|
||||
# - name: Launcher docker
|
||||
# uses: actions/checkout@v2
|
||||
# with:
|
||||
# fetch-depth: 2
|
||||
#
|
||||
# - name: NVIDIA-SMI
|
||||
# continue-on-error: true
|
||||
# run: |
|
||||
# nvidia-smi
|
||||
#
|
||||
# - name: Are GPUs recognized by our DL frameworks
|
||||
# run: |
|
||||
# python -c "from jax.lib import xla_bridge; print('GPU available:', xla_bridge.get_backend().platform)"
|
||||
# python -c "import jax; print('Number of GPUs available:', len(jax.local_devices()))"
|
||||
#
|
||||
# - name: Fetch the tests to run
|
||||
# run: |
|
||||
# python utils/tests_fetcher.py --diff_with_last_commit | tee test_preparation.txt
|
||||
#
|
||||
# - name: Report fetched tests
|
||||
# uses: actions/upload-artifact@v2
|
||||
# with:
|
||||
# name: test_fetched
|
||||
# path: test_preparation.txt
|
||||
#
|
||||
# - name: Run all non-slow tests on GPU
|
||||
# run: |
|
||||
# if [ -f test_list.txt ]; then
|
||||
# python -m pytest -n 2 --dist=loadfile -v --make-reports=tests_flax_multi_gpu $(cat test_list.txt)
|
||||
# fi
|
||||
#
|
||||
# - name: Failure short reports
|
||||
# if: ${{ failure() }}
|
||||
# run: cat reports/tests_flax_multi_gpu_failures_short.txt
|
||||
#
|
||||
# - name: Test suite reports artifacts
|
||||
# if: ${{ always() }}
|
||||
# uses: actions/upload-artifact@v2
|
||||
# with:
|
||||
# name: run_all_tests_flax_multi_gpu_test_reports
|
||||
# path: reports
|
||||
|
||||
# run_tests_tf_multi_gpu:
|
||||
# runs-on: [self-hosted, docker-gpu, multi-gpu]
|
||||
# timeout-minutes: 120
|
||||
# container:
|
||||
# image: tensorflow/tensorflow:2.4.1-gpu
|
||||
# options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
# steps:
|
||||
# - name: Install dependencies
|
||||
# run: |
|
||||
# apt -y update && apt install -y software-properties-common && apt -y update && add-apt-repository -y ppa:git-core/ppa && apt -y update && apt install -y git espeak-ng
|
||||
# pip install --upgrade pip
|
||||
# pip install .[sklearn,testing,onnxruntime,sentencepiece,tf-speech]
|
||||
# pip install https://github.com/kpu/kenlm/archive/master.zip
|
||||
#
|
||||
# - name: Launcher docker
|
||||
# uses: actions/checkout@v2
|
||||
# with:
|
||||
# fetch-depth: 2
|
||||
#
|
||||
# - name: NVIDIA-SMI
|
||||
# run: |
|
||||
# nvidia-smi
|
||||
#
|
||||
# - name: Are GPUs recognized by our DL frameworks
|
||||
# run: |
|
||||
# TF_CPP_MIN_LOG_LEVEL=3 python -c "import tensorflow as tf; print('TF GPUs available:', bool(tf.config.list_physical_devices('GPU')))"
|
||||
# TF_CPP_MIN_LOG_LEVEL=3 python -c "import tensorflow as tf; print('Number of TF GPUs available:', len(tf.config.list_physical_devices('GPU')))"
|
||||
#
|
||||
# - name: Fetch the tests to run
|
||||
# run: |
|
||||
# python utils/tests_fetcher.py --diff_with_last_commit | tee test_preparation.txt
|
||||
#
|
||||
# - name: Report fetched tests
|
||||
# uses: actions/upload-artifact@v2
|
||||
# with:
|
||||
# name: test_fetched
|
||||
# path: test_preparation.txt
|
||||
#
|
||||
# - name: Run all non-slow tests on GPU
|
||||
# env:
|
||||
# TF_NUM_INTRAOP_THREADS: 8
|
||||
# TF_NUM_INTEROP_THREADS: 1
|
||||
# run: |
|
||||
# if [ -f test_list.txt ]; then
|
||||
# python -m pytest -n 1 --dist=loadfile --make-reports=tests_tf_multi_gpu $(cat test_list.txt)
|
||||
# fi
|
||||
#
|
||||
# - name: Failure short reports
|
||||
# if: ${{ failure() }}
|
||||
# run: cat reports/tests_tf_multi_gpu_failures_short.txt
|
||||
#
|
||||
# - name: Test suite reports artifacts
|
||||
# if: ${{ always() }}
|
||||
# uses: actions/upload-artifact@v2
|
||||
# with:
|
||||
# name: run_all_tests_tf_multi_gpu_test_reports
|
||||
# path: reports
|
||||
|
||||
run_tests_torch_cuda_extensions_gpu:
|
||||
runs-on: [self-hosted, docker-gpu, single-gpu]
|
||||
container:
|
||||
image: huggingface/transformers-pytorch-deepspeed-latest-gpu-push-ci
|
||||
image: nvcr.io/nvidia/pytorch:21.03-py3
|
||||
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
steps:
|
||||
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
|
||||
# We also take into account the `push` event (we might want to test some changes in a branch)
|
||||
- name: Prepare custom environment variables
|
||||
shell: bash
|
||||
# For the meaning of these environment variables, see the job `Setup`
|
||||
run: |
|
||||
CI_BRANCH_PUSH=${{ github.event.ref }}
|
||||
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
|
||||
CI_BRANCH_WORKFLOW_RUN=${{ github.event.workflow_run.head_branch }}
|
||||
CI_SHA_PUSH=${{ github.event.head_commit.id }}
|
||||
CI_SHA_WORKFLOW_RUN=${{ github.event.workflow_run.head_sha }}
|
||||
echo $CI_BRANCH_PUSH
|
||||
echo $CI_BRANCH_WORKFLOW_RUN
|
||||
echo $CI_SHA_PUSH
|
||||
echo $CI_SHA_WORKFLOW_RUN
|
||||
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
|
||||
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
|
||||
|
||||
- name: print environment variables
|
||||
run: |
|
||||
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
|
||||
echo "env.CI_SHA = ${{ env.CI_SHA }}"
|
||||
|
||||
- name: Update clone using environment variables
|
||||
working-directory: /workspace/transformers
|
||||
run: |
|
||||
echo "original branch = $(git branch --show-current)"
|
||||
git fetch && git checkout ${{ env.CI_BRANCH }}
|
||||
echo "updated branch = $(git branch --show-current)"
|
||||
git checkout ${{ env.CI_SHA }}
|
||||
echo "log = $(git log -n 1)"
|
||||
|
||||
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
|
||||
working-directory: /workspace/transformers
|
||||
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
|
||||
|
||||
- name: Remove cached torch extensions
|
||||
run: rm -rf /github/home/.cache/torch_extensions/
|
||||
|
||||
# To avoid unknown test failures
|
||||
- name: Pre build DeepSpeed *again*
|
||||
working-directory: /workspace
|
||||
run: |
|
||||
python3 -m pip uninstall -y deepspeed
|
||||
DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 python3 -m pip install deepspeed --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check
|
||||
- name: Launcher docker
|
||||
uses: actions/checkout@v2
|
||||
with:
|
||||
fetch-depth: 2
|
||||
|
||||
- name: NVIDIA-SMI
|
||||
run: |
|
||||
nvidia-smi
|
||||
|
||||
- name: Environment
|
||||
working-directory: /workspace/transformers
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python utils/print_env.py
|
||||
apt -y update && apt install -y libaio-dev
|
||||
pip install --upgrade pip
|
||||
pip install .[testing,deepspeed]
|
||||
|
||||
- name: Show installed libraries and their versions
|
||||
working-directory: /workspace/transformers
|
||||
run: pip freeze
|
||||
|
||||
- name: Run all non-slow selected tests on GPU
|
||||
working-directory: /workspace/transformers
|
||||
# TODO: Here we pass all tests in the 2 folders for simplicity. It's better to pass only the identified tests.
|
||||
- name: Are GPUs recognized by our DL frameworks
|
||||
run: |
|
||||
python -m pytest -n 1 --dist=loadfile -v --make-reports=${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu tests/deepspeed tests/extended
|
||||
utils/print_env_pt.py
|
||||
|
||||
- name: Fetch the tests to run
|
||||
run: |
|
||||
python utils/tests_fetcher.py --diff_with_last_commit --filters tests/deepspeed tests/extended | tee test_preparation.txt
|
||||
|
||||
- name: Report fetched tests
|
||||
uses: actions/upload-artifact@v2
|
||||
with:
|
||||
name: test_fetched
|
||||
path: test_preparation.txt
|
||||
|
||||
- name: Run all tests on GPU
|
||||
run: |
|
||||
if [ -f test_list.txt ]; then
|
||||
python -m pytest -n 1 --dist=loadfile -v --make-reports=tests_torch_cuda_extensions_gpu $(cat test_list.txt)
|
||||
fi
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
run: cat /workspace/transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu/failures_short.txt
|
||||
run: cat reports/tests_torch_cuda_extensions_gpu_failures_short.txt
|
||||
|
||||
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_tests_torch_cuda_extensions_gpu_test_reports"
|
||||
- name: Test suite reports artifacts
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
uses: actions/upload-artifact@v2
|
||||
with:
|
||||
name: ${{ matrix.machine_type }}_run_tests_torch_cuda_extensions_gpu_test_reports
|
||||
path: /workspace/transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu
|
||||
name: run_tests_torch_cuda_extensions_gpu_test_reports
|
||||
path: reports
|
||||
|
||||
run_tests_torch_cuda_extensions_multi_gpu:
|
||||
name: Torch CUDA extension tests
|
||||
needs: setup
|
||||
if: contains(fromJson(needs.setup.outputs.matrix), 'deepspeed') || contains(fromJson(needs.setup.outputs.matrix), 'extended')
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
machine_type: [multi-gpu]
|
||||
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, push-ci]
|
||||
runs-on: [self-hosted, docker-gpu, multi-gpu]
|
||||
container:
|
||||
image: huggingface/transformers-pytorch-deepspeed-latest-gpu-push-ci
|
||||
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
image: nvcr.io/nvidia/pytorch:21.03-py3
|
||||
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
steps:
|
||||
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
|
||||
# We also take into account the `push` event (we might want to test some changes in a branch)
|
||||
- name: Prepare custom environment variables
|
||||
shell: bash
|
||||
# For the meaning of these environment variables, see the job `Setup`
|
||||
run: |
|
||||
CI_BRANCH_PUSH=${{ github.event.ref }}
|
||||
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
|
||||
CI_BRANCH_WORKFLOW_RUN=${{ github.event.workflow_run.head_branch }}
|
||||
CI_SHA_PUSH=${{ github.event.head_commit.id }}
|
||||
CI_SHA_WORKFLOW_RUN=${{ github.event.workflow_run.head_sha }}
|
||||
echo $CI_BRANCH_PUSH
|
||||
echo $CI_BRANCH_WORKFLOW_RUN
|
||||
echo $CI_SHA_PUSH
|
||||
echo $CI_SHA_WORKFLOW_RUN
|
||||
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
|
||||
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
|
||||
|
||||
- name: print environment variables
|
||||
run: |
|
||||
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
|
||||
echo "env.CI_SHA = ${{ env.CI_SHA }}"
|
||||
|
||||
- name: Update clone using environment variables
|
||||
working-directory: /workspace/transformers
|
||||
run: |
|
||||
echo "original branch = $(git branch --show-current)"
|
||||
git fetch && git checkout ${{ env.CI_BRANCH }}
|
||||
echo "updated branch = $(git branch --show-current)"
|
||||
git checkout ${{ env.CI_SHA }}
|
||||
echo "log = $(git log -n 1)"
|
||||
|
||||
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
|
||||
working-directory: /workspace/transformers
|
||||
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
|
||||
|
||||
- name: Remove cached torch extensions
|
||||
run: rm -rf /github/home/.cache/torch_extensions/
|
||||
|
||||
# To avoid unknown test failures
|
||||
- name: Pre build DeepSpeed *again*
|
||||
working-directory: /workspace
|
||||
run: |
|
||||
python3 -m pip uninstall -y deepspeed
|
||||
DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 python3 -m pip install deepspeed --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check
|
||||
- name: Launcher docker
|
||||
uses: actions/checkout@v2
|
||||
with:
|
||||
fetch-depth: 2
|
||||
|
||||
- name: NVIDIA-SMI
|
||||
continue-on-error: true
|
||||
run: |
|
||||
nvidia-smi
|
||||
|
||||
- name: Environment
|
||||
working-directory: /workspace/transformers
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python utils/print_env.py
|
||||
apt -y update && apt install -y libaio-dev
|
||||
pip install --upgrade pip
|
||||
rm -rf ~/.cache/torch_extensions/ # shared between conflicting builds
|
||||
pip install .[testing,deepspeed,fairscale]
|
||||
|
||||
- name: Show installed libraries and their versions
|
||||
working-directory: /workspace/transformers
|
||||
run: pip freeze
|
||||
|
||||
- name: Run all non-slow selected tests on GPU
|
||||
working-directory: /workspace/transformers
|
||||
# TODO: Here we pass all tests in the 2 folders for simplicity. It's better to pass only the identified tests.
|
||||
- name: Are GPUs recognized by our DL frameworks
|
||||
run: |
|
||||
python -m pytest -n 1 --dist=loadfile -v --make-reports=${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu tests/deepspeed tests/extended
|
||||
utils/print_env_pt.py
|
||||
|
||||
- name: Fetch the tests to run
|
||||
run: |
|
||||
python utils/tests_fetcher.py --diff_with_last_commit --filters tests/deepspeed tests/extended | tee test_preparation.txt
|
||||
|
||||
- name: Report fetched tests
|
||||
uses: actions/upload-artifact@v2
|
||||
with:
|
||||
name: test_fetched
|
||||
path: test_preparation.txt
|
||||
|
||||
- name: Run all tests on GPU
|
||||
run: |
|
||||
if [ -f test_list.txt ]; then
|
||||
python -m pytest -n 1 --dist=loadfile -v --make-reports=tests_torch_cuda_extensions_multi_gpu $(cat test_list.txt)
|
||||
fi
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
run: cat /workspace/transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu/failures_short.txt
|
||||
run: cat reports/tests_torch_cuda_extensions_multi_gpu_failures_short.txt
|
||||
|
||||
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_tests_torch_cuda_extensions_gpu_test_reports"
|
||||
- name: Test suite reports artifacts
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
uses: actions/upload-artifact@v2
|
||||
with:
|
||||
name: ${{ matrix.machine_type }}_run_tests_torch_cuda_extensions_gpu_test_reports
|
||||
path: /workspace/transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu
|
||||
name: run_tests_torch_cuda_extensions_multi_gpu_test_reports
|
||||
path: reports
|
||||
|
||||
|
||||
send_results:
|
||||
name: Send results to webhook
|
||||
runs-on: ubuntu-22.04
|
||||
runs-on: ubuntu-latest
|
||||
if: always()
|
||||
needs: [
|
||||
setup,
|
||||
run_tests_single_gpu,
|
||||
run_tests_multi_gpu,
|
||||
run_tests_torch_cuda_extensions_single_gpu,
|
||||
run_tests_torch_gpu,
|
||||
# run_tests_tf_gpu,
|
||||
run_tests_torch_multi_gpu,
|
||||
# run_tests_tf_multi_gpu,
|
||||
run_tests_torch_cuda_extensions_gpu,
|
||||
run_tests_torch_cuda_extensions_multi_gpu
|
||||
]
|
||||
steps:
|
||||
- name: Preliminary job status
|
||||
shell: bash
|
||||
# For the meaning of these environment variables, see the job `Setup`
|
||||
run: |
|
||||
echo "Setup status: ${{ needs.setup.result }}"
|
||||
- uses: actions/checkout@v2
|
||||
|
||||
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
|
||||
# We also take into account the `push` event (we might want to test some changes in a branch)
|
||||
- name: Prepare custom environment variables
|
||||
shell: bash
|
||||
# For the meaning of these environment variables, see the job `Setup`
|
||||
run: |
|
||||
CI_BRANCH_PUSH=${{ github.event.ref }}
|
||||
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
|
||||
CI_BRANCH_WORKFLOW_RUN=${{ github.event.workflow_run.head_branch }}
|
||||
CI_SHA_PUSH=${{ github.event.head_commit.id }}
|
||||
CI_SHA_WORKFLOW_RUN=${{ github.event.workflow_run.head_sha }}
|
||||
echo $CI_BRANCH_PUSH
|
||||
echo $CI_BRANCH_WORKFLOW_RUN
|
||||
echo $CI_SHA_PUSH
|
||||
echo $CI_SHA_WORKFLOW_RUN
|
||||
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
|
||||
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
|
||||
- uses: actions/download-artifact@v2
|
||||
|
||||
- name: print environment variables
|
||||
run: |
|
||||
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
|
||||
echo "env.CI_SHA = ${{ env.CI_SHA }}"
|
||||
|
||||
- uses: actions/checkout@v4
|
||||
# To avoid failure when multiple commits are merged into `main` in a short period of time.
|
||||
# Checking out to an old commit beyond the fetch depth will get an error `fatal: reference is not a tree: ...
|
||||
# (Only required for `workflow_run` event, where we get the latest HEAD on `main` instead of the event commit)
|
||||
with:
|
||||
fetch-depth: 20
|
||||
|
||||
- name: Update clone using environment variables
|
||||
run: |
|
||||
echo "original branch = $(git branch --show-current)"
|
||||
git fetch && git checkout ${{ env.CI_BRANCH }}
|
||||
echo "updated branch = $(git branch --show-current)"
|
||||
git checkout ${{ env.CI_SHA }}
|
||||
echo "log = $(git log -n 1)"
|
||||
|
||||
- uses: actions/download-artifact@v4
|
||||
- name: Send message to Slack
|
||||
env:
|
||||
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
|
||||
CI_SLACK_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID }}
|
||||
CI_SLACK_CHANNEL_ID_DAILY: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY }}
|
||||
CI_SLACK_CHANNEL_DUMMY_TESTS: ${{ secrets.CI_SLACK_CHANNEL_DUMMY_TESTS }}
|
||||
CI_SLACK_REPORT_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID }}
|
||||
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
|
||||
CI_EVENT: push
|
||||
CI_TITLE_PUSH: ${{ github.event.head_commit.message }}
|
||||
CI_TITLE_WORKFLOW_RUN: ${{ github.event.workflow_run.head_commit.message }}
|
||||
CI_SHA: ${{ env.CI_SHA }}
|
||||
SETUP_STATUS: ${{ needs.setup.result }}
|
||||
|
||||
# We pass `needs.setup.outputs.matrix` as the argument. A processing in `notification_service.py` to change
|
||||
# `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`.
|
||||
run: |
|
||||
pip install slack_sdk
|
||||
pip show slack_sdk
|
||||
python utils/notification_service.py "${{ needs.setup.outputs.matrix }}"
|
||||
python utils/notification_service_deprecated.py push
|
||||
|
||||
14
.github/workflows/self-scheduled-amd-caller.yml
vendored
14
.github/workflows/self-scheduled-amd-caller.yml
vendored
@ -1,14 +0,0 @@
|
||||
name: Self-hosted runner (AMD scheduled CI caller)
|
||||
|
||||
on:
|
||||
schedule:
|
||||
- cron: "17 2 * * *"
|
||||
|
||||
jobs:
|
||||
run_scheduled_amd_ci:
|
||||
name: Trigger Scheduled AMD CI
|
||||
runs-on: ubuntu-22.04
|
||||
if: ${{ always() }}
|
||||
steps:
|
||||
- name: Trigger scheduled AMD CI via workflow_run
|
||||
run: echo "Trigger scheduled AMD CI via workflow_run"
|
||||
@ -1,19 +0,0 @@
|
||||
name: Self-hosted runner (AMD mi210 scheduled CI caller)
|
||||
|
||||
on:
|
||||
workflow_run:
|
||||
workflows: ["Self-hosted runner (AMD scheduled CI caller)"]
|
||||
branches: ["main"]
|
||||
types: [completed]
|
||||
push:
|
||||
branches:
|
||||
- run_amd_scheduled_ci_caller*
|
||||
|
||||
jobs:
|
||||
run_amd_ci:
|
||||
name: AMD mi210
|
||||
if: (cancelled() != true) && ((github.event_name == 'workflow_run') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_amd_scheduled_ci_caller')))
|
||||
uses: ./.github/workflows/self-scheduled-amd.yml
|
||||
with:
|
||||
gpu_flavor: mi210
|
||||
secrets: inherit
|
||||
@ -1,19 +0,0 @@
|
||||
name: Self-hosted runner (AMD mi250 scheduled CI caller)
|
||||
|
||||
on:
|
||||
workflow_run:
|
||||
workflows: ["Self-hosted runner (AMD scheduled CI caller)"]
|
||||
branches: ["main"]
|
||||
types: [completed]
|
||||
push:
|
||||
branches:
|
||||
- run_amd_scheduled_ci_caller*
|
||||
|
||||
jobs:
|
||||
run_amd_ci:
|
||||
name: AMD mi250
|
||||
if: (cancelled() != true) && ((github.event_name == 'workflow_run') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_amd_scheduled_ci_caller')))
|
||||
uses: ./.github/workflows/self-scheduled-amd.yml
|
||||
with:
|
||||
gpu_flavor: mi250
|
||||
secrets: inherit
|
||||
519
.github/workflows/self-scheduled-amd.yml
vendored
519
.github/workflows/self-scheduled-amd.yml
vendored
@ -1,519 +0,0 @@
|
||||
name: Self-hosted runner (scheduled-amd)
|
||||
|
||||
# Note: For the AMD CI, we rely on a caller workflow and on the workflow_call event to trigger the
|
||||
# CI in order to run it on both MI210 and MI250, without having to use matrix here which pushes
|
||||
# us towards the limit of allowed jobs on GitHub Actions.
|
||||
on:
|
||||
workflow_call:
|
||||
inputs:
|
||||
gpu_flavor:
|
||||
required: true
|
||||
type: string
|
||||
|
||||
env:
|
||||
HF_HOME: /mnt/cache
|
||||
TRANSFORMERS_IS_CI: yes
|
||||
OMP_NUM_THREADS: 8
|
||||
MKL_NUM_THREADS: 8
|
||||
RUN_SLOW: yes
|
||||
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
|
||||
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
|
||||
|
||||
|
||||
# Important note: each job (run_tests_single_gpu, run_tests_multi_gpu, run_examples_gpu, run_pipelines_torch_gpu) requires all the previous jobs before running.
|
||||
# This is done so that we avoid parallelizing the scheduled tests, to leave available
|
||||
# runners for the push CI that is running on the same machine.
|
||||
jobs:
|
||||
check_runner_status:
|
||||
name: Check Runner Status
|
||||
runs-on: ubuntu-22.04
|
||||
steps:
|
||||
- name: Checkout transformers
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 2
|
||||
|
||||
- name: Check Runner Status
|
||||
run: python utils/check_self_hosted_runner.py --target_runners hf-amd-mi210-ci-1gpu-1,hf-amd-mi250-ci-1gpu-1 --token ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
|
||||
|
||||
check_runners:
|
||||
name: Check Runners
|
||||
needs: check_runner_status
|
||||
strategy:
|
||||
matrix:
|
||||
machine_type: [single-gpu, multi-gpu]
|
||||
runs-on: [self-hosted, docker-gpu, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
|
||||
container:
|
||||
image: huggingface/transformers-pytorch-amd-gpu
|
||||
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
steps:
|
||||
- name: ROCM-SMI
|
||||
run: |
|
||||
rocm-smi
|
||||
- name: ROCM-INFO
|
||||
run: |
|
||||
rocminfo | grep "Agent" -A 14
|
||||
- name: Show ROCR environment
|
||||
run: |
|
||||
echo "ROCR: $ROCR_VISIBLE_DEVICES"
|
||||
|
||||
setup:
|
||||
name: Setup
|
||||
needs: check_runners
|
||||
strategy:
|
||||
matrix:
|
||||
machine_type: [single-gpu, multi-gpu]
|
||||
runs-on: [self-hosted, docker-gpu, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
|
||||
container:
|
||||
image: huggingface/transformers-pytorch-amd-gpu
|
||||
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
outputs:
|
||||
matrix: ${{ steps.set-matrix.outputs.matrix }}
|
||||
steps:
|
||||
- name: Update clone
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
git fetch && git checkout ${{ github.sha }}
|
||||
|
||||
- name: Cleanup
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
rm -rf tests/__pycache__
|
||||
rm -rf tests/models/__pycache__
|
||||
rm -rf reports
|
||||
|
||||
- name: Show installed libraries and their versions
|
||||
working-directory: /transformers
|
||||
run: pip freeze
|
||||
|
||||
- id: set-matrix
|
||||
name: Identify models to test
|
||||
working-directory: /transformers/tests
|
||||
run: |
|
||||
echo "matrix=$(python3 -c 'import os; tests = os.getcwd(); model_tests = os.listdir(os.path.join(tests, "models")); d1 = sorted(list(filter(os.path.isdir, os.listdir(tests)))); d2 = sorted(list(filter(os.path.isdir, [f"models/{x}" for x in model_tests]))); d1.remove("models"); d = d2 + d1; print(d)')" >> $GITHUB_OUTPUT
|
||||
|
||||
- name: ROCM-SMI
|
||||
run: |
|
||||
rocm-smi
|
||||
|
||||
- name: ROCM-INFO
|
||||
run: |
|
||||
rocminfo | grep "Agent" -A 14
|
||||
- name: Show ROCR environment
|
||||
run: |
|
||||
echo "ROCR: $ROCR_VISIBLE_DEVICES"
|
||||
|
||||
- name: Environment
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
python3 utils/print_env.py
|
||||
|
||||
run_tests_single_gpu:
|
||||
name: Single GPU tests
|
||||
strategy:
|
||||
max-parallel: 1 # For now, not to parallelize. Can change later if it works well.
|
||||
fail-fast: false
|
||||
matrix:
|
||||
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
|
||||
machine_type: [single-gpu]
|
||||
runs-on: [self-hosted, docker-gpu, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
|
||||
container:
|
||||
image: huggingface/transformers-pytorch-amd-gpu
|
||||
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
needs: setup
|
||||
steps:
|
||||
- name: Echo folder ${{ matrix.folders }}
|
||||
shell: bash
|
||||
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
|
||||
# set the artifact folder names (because the character `/` is not allowed).
|
||||
run: |
|
||||
echo "${{ matrix.folders }}"
|
||||
matrix_folders=${{ matrix.folders }}
|
||||
matrix_folders=${matrix_folders/'models/'/'models_'}
|
||||
echo "$matrix_folders"
|
||||
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
|
||||
|
||||
- name: Update clone
|
||||
working-directory: /transformers
|
||||
run: git fetch && git checkout ${{ github.sha }}
|
||||
|
||||
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
|
||||
working-directory: /transformers
|
||||
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
|
||||
|
||||
- name: ROCM-SMI
|
||||
run: |
|
||||
rocm-smi
|
||||
- name: ROCM-INFO
|
||||
run: |
|
||||
rocminfo | grep "Agent" -A 14
|
||||
- name: Show ROCR environment
|
||||
run: |
|
||||
echo "ROCR: $ROCR_VISIBLE_DEVICES"
|
||||
|
||||
- name: Environment
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
python3 utils/print_env.py
|
||||
|
||||
- name: Show installed libraries and their versions
|
||||
working-directory: /transformers
|
||||
run: pip freeze
|
||||
|
||||
- name: Run all tests on GPU
|
||||
working-directory: /transformers
|
||||
run: python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} tests/${{ matrix.folders }}
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
|
||||
|
||||
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports"
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports
|
||||
path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}
|
||||
|
||||
run_tests_multi_gpu:
|
||||
name: Multi GPU tests
|
||||
strategy:
|
||||
max-parallel: 1
|
||||
fail-fast: false
|
||||
matrix:
|
||||
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
|
||||
machine_type: [multi-gpu]
|
||||
runs-on: [self-hosted, docker-gpu, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
|
||||
container:
|
||||
image: huggingface/transformers-pytorch-amd-gpu
|
||||
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
needs: setup
|
||||
steps:
|
||||
- name: Echo folder ${{ matrix.folders }}
|
||||
shell: bash
|
||||
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
|
||||
# set the artifact folder names (because the character `/` is not allowed).
|
||||
run: |
|
||||
echo "${{ matrix.folders }}"
|
||||
matrix_folders=${{ matrix.folders }}
|
||||
matrix_folders=${matrix_folders/'models/'/'models_'}
|
||||
echo "$matrix_folders"
|
||||
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
|
||||
|
||||
- name: Update clone
|
||||
working-directory: /transformers
|
||||
run: git fetch && git checkout ${{ github.sha }}
|
||||
|
||||
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
|
||||
working-directory: /transformers
|
||||
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
|
||||
|
||||
- name: ROCM-SMI
|
||||
run: |
|
||||
rocm-smi
|
||||
- name: ROCM-INFO
|
||||
run: |
|
||||
rocminfo | grep "Agent" -A 14
|
||||
- name: Show ROCR environment
|
||||
run: |
|
||||
echo "ROCR: $ROCR_VISIBLE_DEVICES"
|
||||
|
||||
- name: Environment
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
python3 utils/print_env.py
|
||||
|
||||
- name: Show installed libraries and their versions
|
||||
working-directory: /transformers
|
||||
run: pip freeze
|
||||
|
||||
- name: Run all tests on GPU
|
||||
working-directory: /transformers
|
||||
run: python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} tests/${{ matrix.folders }}
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
|
||||
|
||||
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports"
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports
|
||||
path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}
|
||||
|
||||
run_examples_gpu:
|
||||
name: Examples tests
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
machine_type: [single-gpu]
|
||||
runs-on: [self-hosted, docker-gpu, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
|
||||
container:
|
||||
image: huggingface/transformers-pytorch-amd-gpu
|
||||
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
needs: setup
|
||||
steps:
|
||||
- name: Update clone
|
||||
working-directory: /transformers
|
||||
run: git fetch && git checkout ${{ github.sha }}
|
||||
|
||||
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
|
||||
working-directory: /transformers
|
||||
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
|
||||
|
||||
- name: ROCM-SMI
|
||||
run: |
|
||||
rocm-smi
|
||||
- name: ROCM-INFO
|
||||
run: |
|
||||
rocminfo | grep "Agent" -A 14
|
||||
- name: Show ROCR environment
|
||||
run: |
|
||||
echo "ROCR: $ROCR_VISIBLE_DEVICES"
|
||||
|
||||
- name: Environment
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
python3 utils/print_env.py
|
||||
|
||||
- name: Show installed libraries and their versions
|
||||
working-directory: /transformers
|
||||
run: pip freeze
|
||||
|
||||
- name: Run examples tests on GPU
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
pip install -r examples/pytorch/_tests_requirements.txt
|
||||
python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_examples_gpu examples/pytorch
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
run: cat /transformers/reports/${{ matrix.machine_type }}_examples_gpu/failures_short.txt
|
||||
|
||||
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_examples_gpu"
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: ${{ matrix.machine_type }}_run_examples_gpu
|
||||
path: /transformers/reports/${{ matrix.machine_type }}_examples_gpu
|
||||
|
||||
run_pipelines_torch_gpu:
|
||||
name: PyTorch pipelines tests
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
machine_type: [single-gpu, multi-gpu]
|
||||
runs-on: [self-hosted, docker-gpu, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
|
||||
container:
|
||||
image: huggingface/transformers-pytorch-amd-gpu
|
||||
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
needs: setup
|
||||
steps:
|
||||
- name: Update clone
|
||||
working-directory: /transformers
|
||||
run: git fetch && git checkout ${{ github.sha }}
|
||||
|
||||
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
|
||||
working-directory: /transformers
|
||||
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
|
||||
|
||||
- name: ROCM-SMI
|
||||
run: |
|
||||
rocm-smi
|
||||
- name: ROCM-INFO
|
||||
run: |
|
||||
rocminfo | grep "Agent" -A 14
|
||||
- name: Show ROCR environment
|
||||
run: |
|
||||
echo "ROCR: $ROCR_VISIBLE_DEVICES"
|
||||
|
||||
- name: Environment
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
python3 utils/print_env.py
|
||||
|
||||
- name: Show installed libraries and their versions
|
||||
working-directory: /transformers
|
||||
run: pip freeze
|
||||
|
||||
- name: Run all pipeline tests on GPU
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
python3 -m pytest -n 1 -v --dist=loadfile --make-reports=${{ matrix.machine_type }}_tests_torch_pipeline_gpu tests/pipelines
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_torch_pipeline_gpu/failures_short.txt
|
||||
|
||||
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_tests_torch_pipeline_gpu"
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: ${{ matrix.machine_type }}_run_tests_torch_pipeline_gpu
|
||||
path: /transformers/reports/${{ matrix.machine_type }}_tests_torch_pipeline_gpu
|
||||
|
||||
run_tests_torch_deepspeed_gpu:
|
||||
name: Torch ROCm deepspeed tests
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
machine_type: [single-gpu, multi-gpu]
|
||||
|
||||
runs-on: [self-hosted, docker-gpu, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
|
||||
needs: setup
|
||||
container:
|
||||
image: huggingface/transformers-pytorch-deepspeed-amd-gpu
|
||||
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
steps:
|
||||
- name: Update clone
|
||||
working-directory: /transformers
|
||||
run: git fetch && git checkout ${{ github.sha }}
|
||||
|
||||
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
|
||||
working-directory: /transformers
|
||||
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
|
||||
|
||||
- name: ROCM-SMI
|
||||
run: |
|
||||
rocm-smi
|
||||
- name: ROCM-INFO
|
||||
run: |
|
||||
rocminfo | grep "Agent" -A 14
|
||||
|
||||
- name: Show ROCR environment
|
||||
run: |
|
||||
echo "ROCR: $ROCR_VISIBLE_DEVICES"
|
||||
|
||||
- name: Environment
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
python3 utils/print_env.py
|
||||
|
||||
- name: Show installed libraries and their versions
|
||||
working-directory: /transformers
|
||||
run: pip freeze
|
||||
|
||||
- name: Run all tests on GPU
|
||||
working-directory: /transformers
|
||||
run: python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_torch_deepspeed_gpu tests/deepspeed tests/extended
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_torch_deepspeed_gpu/failures_short.txt
|
||||
|
||||
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_tests_torch_deepspeed_gpu_test_reports"
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: ${{ matrix.machine_type }}_run_tests_torch_deepspeed_gpu_test_reports
|
||||
path: /transformers/reports/${{ matrix.machine_type }}_tests_torch_deepspeed_gpu
|
||||
|
||||
run_extract_warnings:
|
||||
name: Extract warnings in CI artifacts
|
||||
runs-on: ubuntu-22.04
|
||||
if: always()
|
||||
needs: [
|
||||
check_runner_status,
|
||||
check_runners,
|
||||
setup,
|
||||
run_tests_single_gpu,
|
||||
run_tests_multi_gpu,
|
||||
run_examples_gpu,
|
||||
run_pipelines_torch_gpu,
|
||||
run_tests_torch_deepspeed_gpu
|
||||
]
|
||||
steps:
|
||||
- name: Checkout transformers
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 2
|
||||
|
||||
- name: Install transformers
|
||||
run: pip install transformers
|
||||
|
||||
- name: Show installed libraries and their versions
|
||||
run: pip freeze
|
||||
|
||||
- name: Create output directory
|
||||
run: mkdir warnings_in_ci
|
||||
|
||||
- uses: actions/download-artifact@v4
|
||||
with:
|
||||
path: warnings_in_ci
|
||||
|
||||
- name: Show artifacts
|
||||
run: echo "$(python3 -c 'import os; d = os.listdir(); print(d)')"
|
||||
working-directory: warnings_in_ci
|
||||
|
||||
- name: Extract warnings in CI artifacts
|
||||
run: |
|
||||
python3 utils/extract_warnings.py --workflow_run_id ${{ github.run_id }} --output_dir warnings_in_ci --token ${{ secrets.ACCESS_REPO_INFO_TOKEN }} --from_gh
|
||||
echo "$(python3 -c 'import os; import json; fp = open("warnings_in_ci/selected_warnings.json"); d = json.load(fp); d = "\n".join(d) ;print(d)')"
|
||||
|
||||
- name: Upload artifact
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: warnings_in_ci
|
||||
path: warnings_in_ci/selected_warnings.json
|
||||
|
||||
send_results:
|
||||
name: Send results to webhook
|
||||
runs-on: ubuntu-22.04
|
||||
if: always()
|
||||
needs: [
|
||||
check_runner_status,
|
||||
check_runners,
|
||||
setup,
|
||||
run_tests_single_gpu,
|
||||
run_tests_multi_gpu,
|
||||
run_examples_gpu,
|
||||
run_pipelines_torch_gpu,
|
||||
run_tests_torch_deepspeed_gpu,
|
||||
run_extract_warnings
|
||||
]
|
||||
steps:
|
||||
- name: Preliminary job status
|
||||
shell: bash
|
||||
# For the meaning of these environment variables, see the job `Setup`
|
||||
run: |
|
||||
echo "Runner availability: ${{ needs.check_runner_status.result }}"
|
||||
echo "Runner status: ${{ needs.check_runners.result }}"
|
||||
echo "Setup status: ${{ needs.setup.result }}"
|
||||
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/download-artifact@v4
|
||||
- name: Send message to Slack
|
||||
env:
|
||||
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
|
||||
CI_SLACK_CHANNEL_ID_DAILY_AMD: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY_AMD }}
|
||||
CI_SLACK_CHANNEL_DUMMY_TESTS: ${{ secrets.CI_SLACK_CHANNEL_DUMMY_TESTS }}
|
||||
CI_SLACK_REPORT_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY_AMD }}
|
||||
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
|
||||
CI_EVENT: Scheduled CI (AMD) - ${{ inputs.gpu_flavor }}
|
||||
CI_SHA: ${{ github.sha }}
|
||||
CI_WORKFLOW_REF: ${{ github.workflow_ref }}
|
||||
RUNNER_STATUS: ${{ needs.check_runner_status.result }}
|
||||
RUNNER_ENV_STATUS: ${{ needs.check_runners.result }}
|
||||
SETUP_STATUS: ${{ needs.setup.result }}
|
||||
# We pass `needs.setup.outputs.matrix` as the argument. A processing in `notification_service.py` to change
|
||||
# `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`.
|
||||
run: |
|
||||
sudo apt-get install -y curl
|
||||
pip install slack_sdk
|
||||
pip show slack_sdk
|
||||
python utils/notification_service.py "${{ needs.setup.outputs.matrix }}"
|
||||
|
||||
# Upload complete failure tables, as they might be big and only truncated versions could be sent to Slack.
|
||||
- name: Failure table artifacts
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: test_failure_tables
|
||||
path: test_failure_tables
|
||||
59
.github/workflows/self-scheduled-caller.yml
vendored
59
.github/workflows/self-scheduled-caller.yml
vendored
@ -1,59 +0,0 @@
|
||||
name: Self-hosted runner (scheduled)
|
||||
|
||||
|
||||
on:
|
||||
repository_dispatch:
|
||||
schedule:
|
||||
- cron: "17 2 * * *"
|
||||
push:
|
||||
branches:
|
||||
- run_scheduled_ci*
|
||||
|
||||
jobs:
|
||||
model-ci:
|
||||
name: Model CI
|
||||
uses: ./.github/workflows/self-scheduled.yml
|
||||
with:
|
||||
job: run_tests_gpu
|
||||
slack_report_channel: "#transformers-ci-daily-models"
|
||||
secrets: inherit
|
||||
|
||||
torch-pipeline:
|
||||
name: Torch pipeline CI
|
||||
uses: ./.github/workflows/self-scheduled.yml
|
||||
with:
|
||||
job: run_pipelines_torch_gpu
|
||||
slack_report_channel: "#transformers-ci-daily-pipeline-torch"
|
||||
secrets: inherit
|
||||
|
||||
tf-pipeline:
|
||||
name: TF pipeline CI
|
||||
uses: ./.github/workflows/self-scheduled.yml
|
||||
with:
|
||||
job: run_pipelines_tf_gpu
|
||||
slack_report_channel: "#transformers-ci-daily-pipeline-tf"
|
||||
secrets: inherit
|
||||
|
||||
example-ci:
|
||||
name: Example CI
|
||||
uses: ./.github/workflows/self-scheduled.yml
|
||||
with:
|
||||
job: run_examples_gpu
|
||||
slack_report_channel: "#transformers-ci-daily-examples"
|
||||
secrets: inherit
|
||||
|
||||
deepspeed-ci:
|
||||
name: DeepSpeed CI
|
||||
uses: ./.github/workflows/self-scheduled.yml
|
||||
with:
|
||||
job: run_all_tests_torch_cuda_extensions_gpu
|
||||
slack_report_channel: "#transformers-ci-daily-deepspeed"
|
||||
secrets: inherit
|
||||
|
||||
quantization-ci:
|
||||
name: Quantization CI
|
||||
uses: ./.github/workflows/self-scheduled.yml
|
||||
with:
|
||||
job: run_tests_quantization_torch_gpu
|
||||
slack_report_channel: "#transformers-ci-daily-quantization"
|
||||
secrets: inherit
|
||||
456
.github/workflows/self-scheduled.yml
vendored
456
.github/workflows/self-scheduled.yml
vendored
@ -1,20 +1,9 @@
|
||||
name: Self-hosted runner (scheduled)
|
||||
|
||||
# Note that each job's dependencies go into a corresponding docker file.
|
||||
#
|
||||
# For example for `run_all_tests_torch_cuda_extensions_gpu` the docker image is
|
||||
# `huggingface/transformers-pytorch-deepspeed-latest-gpu`, which can be found at
|
||||
# `docker/transformers-pytorch-deepspeed-latest-gpu/Dockerfile`
|
||||
|
||||
on:
|
||||
workflow_call:
|
||||
inputs:
|
||||
job:
|
||||
required: true
|
||||
type: string
|
||||
slack_report_channel:
|
||||
required: true
|
||||
type: string
|
||||
repository_dispatch:
|
||||
schedule:
|
||||
- cron: "0 2 * * *"
|
||||
|
||||
env:
|
||||
HF_HOME: /mnt/cache
|
||||
@ -22,30 +11,22 @@ env:
|
||||
OMP_NUM_THREADS: 8
|
||||
MKL_NUM_THREADS: 8
|
||||
RUN_SLOW: yes
|
||||
# For gated repositories, we still need to agree to share information on the Hub repo. page in order to get access.
|
||||
# This token is created under the bot `hf-transformers-bot`.
|
||||
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
|
||||
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
|
||||
TF_FORCE_GPU_ALLOW_GROWTH: true
|
||||
RUN_PT_TF_CROSS_TESTS: 1
|
||||
CUDA_VISIBLE_DEVICES: 0,1
|
||||
NUM_SLICES: 2
|
||||
|
||||
jobs:
|
||||
setup:
|
||||
if: contains(fromJSON('["run_tests_gpu", "run_tests_quantization_torch_gpu"]'), inputs.job)
|
||||
name: Setup
|
||||
strategy:
|
||||
matrix:
|
||||
machine_type: [single-gpu, multi-gpu]
|
||||
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, daily-ci]
|
||||
machines: [multi-gpu-docker, single-gpu-docker]
|
||||
runs-on: ${{ matrix.machines }}
|
||||
container:
|
||||
image: huggingface/transformers-all-latest-gpu
|
||||
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
outputs:
|
||||
folder_slices: ${{ steps.set-matrix.outputs.folder_slices }}
|
||||
slice_ids: ${{ steps.set-matrix.outputs.slice_ids }}
|
||||
quantization_matrix: ${{ steps.set-matrix-quantization.outputs.quantization_matrix }}
|
||||
matrix: ${{ steps.set-matrix.outputs.matrix }}
|
||||
steps:
|
||||
- name: Update clone
|
||||
working-directory: /transformers
|
||||
@ -56,208 +37,170 @@ jobs:
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
rm -rf tests/__pycache__
|
||||
rm -rf tests/models/__pycache__
|
||||
rm -rf reports
|
||||
|
||||
- name: Show installed libraries and their versions
|
||||
working-directory: /transformers
|
||||
run: pip freeze
|
||||
|
||||
- id: set-matrix
|
||||
if: ${{ inputs.job == 'run_tests_gpu' }}
|
||||
name: Identify models to test
|
||||
working-directory: /transformers/tests
|
||||
run: |
|
||||
echo "folder_slices=$(python3 ../utils/split_model_tests.py --num_splits ${{ env.NUM_SLICES }})" >> $GITHUB_OUTPUT
|
||||
echo "slice_ids=$(python3 -c 'd = list(range(${{ env.NUM_SLICES }})); print(d)')" >> $GITHUB_OUTPUT
|
||||
|
||||
- id: set-matrix-quantization
|
||||
if: ${{ inputs.job == 'run_tests_quantization_torch_gpu' }}
|
||||
name: Identify quantization method to test
|
||||
working-directory: /transformers/tests
|
||||
run: |
|
||||
echo "quantization_matrix=$(python3 -c 'import os; tests = os.getcwd(); quantization_tests = os.listdir(os.path.join(tests, "quantization")); d = sorted(list(filter(os.path.isdir, [f"quantization/{x}" for x in quantization_tests]))) ; print(d)')" >> $GITHUB_OUTPUT
|
||||
echo "::set-output name=matrix::$(python3 -c 'import os; x = list(filter(os.path.isdir, os.listdir(os.getcwd()))); x.sort(); print(x)')"
|
||||
|
||||
- name: NVIDIA-SMI
|
||||
run: |
|
||||
nvidia-smi
|
||||
|
||||
run_tests_gpu:
|
||||
if: ${{ inputs.job == 'run_tests_gpu' }}
|
||||
name: " "
|
||||
needs: setup
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
machine_type: [single-gpu, multi-gpu]
|
||||
slice_id: ${{ fromJSON(needs.setup.outputs.slice_ids) }}
|
||||
uses: ./.github/workflows/model_jobs.yml
|
||||
with:
|
||||
folder_slices: ${{ needs.setup.outputs.folder_slices }}
|
||||
machine_type: ${{ matrix.machine_type }}
|
||||
slice_id: ${{ matrix.slice_id }}
|
||||
secrets: inherit
|
||||
- name: GPU visibility
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
utils/print_env_pt.py
|
||||
TF_CPP_MIN_LOG_LEVEL=3 python3 -c "import tensorflow as tf; print('TF GPUs available:', bool(tf.config.list_physical_devices('GPU')))"
|
||||
TF_CPP_MIN_LOG_LEVEL=3 python3 -c "import tensorflow as tf; print('Number of TF GPUs available:', len(tf.config.list_physical_devices('GPU')))"
|
||||
|
||||
run_pipelines_torch_gpu:
|
||||
if: ${{ inputs.job == 'run_pipelines_torch_gpu' }}
|
||||
name: PyTorch pipelines
|
||||
run_tests_gpu:
|
||||
name: Model tests
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
machine_type: [single-gpu, multi-gpu]
|
||||
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, daily-ci]
|
||||
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
|
||||
machines: [multi-gpu-docker, single-gpu-docker]
|
||||
runs-on: ${{ matrix.machines }}
|
||||
container:
|
||||
image: huggingface/transformers-pytorch-gpu
|
||||
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
image: huggingface/transformers-all-latest-gpu
|
||||
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
needs: setup
|
||||
steps:
|
||||
- name: Echo folder ${{ matrix.folders }}
|
||||
run: echo "${{ matrix.folders }}"
|
||||
|
||||
- name: Update clone
|
||||
working-directory: /transformers
|
||||
run: git fetch && git checkout ${{ github.sha }}
|
||||
|
||||
- name: Run all non-slow tests on GPU
|
||||
working-directory: /transformers
|
||||
run: python3 -m pytest -v --make-reports=${{ matrix.machines }}_tests_gpu_${{ matrix.folders }} tests/${{ matrix.folders }}
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
run: cat /transformers/reports/${{ matrix.machines }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
|
||||
|
||||
- name: Test suite reports artifacts
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v2
|
||||
with:
|
||||
name: ${{ matrix.machines }}_run_all_tests_gpu_${{ matrix.folders }}_test_reports
|
||||
path: /transformers/reports/${{ matrix.machines }}_tests_gpu_${{ matrix.folders }}
|
||||
|
||||
run_examples_gpu:
|
||||
name: Examples directory
|
||||
runs-on: [self-hosted, single-gpu-docker]
|
||||
container:
|
||||
image: huggingface/transformers-all-latest-gpu
|
||||
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
needs: setup
|
||||
steps:
|
||||
- name: Update clone
|
||||
working-directory: /transformers
|
||||
run: git fetch && git checkout ${{ github.sha }}
|
||||
|
||||
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
|
||||
working-directory: /transformers
|
||||
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
|
||||
|
||||
- name: NVIDIA-SMI
|
||||
run: |
|
||||
nvidia-smi
|
||||
|
||||
- name: Environment
|
||||
- name: Run examples tests on GPU
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
python3 utils/print_env.py
|
||||
|
||||
- name: Show installed libraries and their versions
|
||||
working-directory: /transformers
|
||||
run: pip freeze
|
||||
|
||||
- name: Run all pipeline tests on GPU
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
python3 -m pytest -n 1 -v --dist=loadfile --make-reports=${{ matrix.machine_type }}_tests_torch_pipeline_gpu tests/pipelines
|
||||
pip install -r examples/pytorch/_tests_requirements.txt
|
||||
python3 -m pytest -v --make-reports=examples_gpu examples/pytorch
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_torch_pipeline_gpu/failures_short.txt
|
||||
run: cat /transformers/reports/examples_gpu/failures_short.txt
|
||||
|
||||
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_tests_torch_pipeline_gpu"
|
||||
- name: Test suite reports artifacts
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
uses: actions/upload-artifact@v2
|
||||
with:
|
||||
name: ${{ matrix.machine_type }}_run_tests_torch_pipeline_gpu
|
||||
path: /transformers/reports/${{ matrix.machine_type }}_tests_torch_pipeline_gpu
|
||||
name: run_examples_gpu
|
||||
path: /transformers/reports/examples_gpu
|
||||
|
||||
run_pipelines_torch_gpu:
|
||||
name: PyTorch pipelines
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
machines: [multi-gpu-docker, single-gpu-docker]
|
||||
runs-on: ${{ matrix.machines }}
|
||||
container:
|
||||
image: huggingface/transformers-pytorch-gpu
|
||||
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
needs: setup
|
||||
steps:
|
||||
- name: Update clone
|
||||
working-directory: /transformers
|
||||
run: git fetch && git checkout ${{ github.sha }}
|
||||
|
||||
- name: Run all pipeline tests on GPU
|
||||
working-directory: /transformers
|
||||
env:
|
||||
RUN_PIPELINE_TESTS: yes
|
||||
run: |
|
||||
python3 -m pytest -n 1 -v --dist=loadfile -m is_pipeline_test --make-reports=${{ matrix.machines }}_tests_torch_pipeline_gpu tests
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
run: cat /transformers/reports/${{ matrix.machines }}_tests_torch_pipeline_gpu/failures_short.txt
|
||||
|
||||
- name: Test suite reports artifacts
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v2
|
||||
with:
|
||||
name: ${{ matrix.machines }}_run_tests_torch_pipeline_gpu
|
||||
path: /transformers/reports/${{ matrix.machines }}_tests_torch_pipeline_gpu
|
||||
|
||||
run_pipelines_tf_gpu:
|
||||
if: ${{ inputs.job == 'run_pipelines_tf_gpu' }}
|
||||
name: TensorFlow pipelines
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
machine_type: [single-gpu, multi-gpu]
|
||||
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, daily-ci]
|
||||
machines: [multi-gpu-docker, single-gpu-docker]
|
||||
runs-on: ${{ matrix.machines }}
|
||||
container:
|
||||
image: huggingface/transformers-tensorflow-gpu
|
||||
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
needs: setup
|
||||
steps:
|
||||
- name: Update clone
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
git fetch && git checkout ${{ github.sha }}
|
||||
|
||||
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
|
||||
working-directory: /transformers
|
||||
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
|
||||
|
||||
- name: NVIDIA-SMI
|
||||
run: |
|
||||
nvidia-smi
|
||||
|
||||
- name: Environment
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
python3 utils/print_env.py
|
||||
|
||||
- name: Show installed libraries and their versions
|
||||
working-directory: /transformers
|
||||
run: pip freeze
|
||||
|
||||
- name: Run all pipeline tests on GPU
|
||||
working-directory: /transformers
|
||||
env:
|
||||
RUN_PIPELINE_TESTS: yes
|
||||
run: |
|
||||
python3 -m pytest -n 1 -v --dist=loadfile --make-reports=${{ matrix.machine_type }}_tests_tf_pipeline_gpu tests/pipelines
|
||||
python3 -m pytest -n 1 -v --dist=loadfile -m is_pipeline_test --make-reports=${{ matrix.machines }}_tests_tf_pipeline_gpu tests
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ always() }}
|
||||
run: |
|
||||
cat /transformers/reports/${{ matrix.machine_type }}_tests_tf_pipeline_gpu/failures_short.txt
|
||||
cat /transformers/reports/${{ matrix.machines }}_tests_tf_pipeline_gpu/failures_short.txt
|
||||
|
||||
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_tests_tf_pipeline_gpu"
|
||||
- name: Test suite reports artifacts
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
uses: actions/upload-artifact@v2
|
||||
with:
|
||||
name: ${{ matrix.machine_type }}_run_tests_tf_pipeline_gpu
|
||||
path: /transformers/reports/${{ matrix.machine_type }}_tests_tf_pipeline_gpu
|
||||
|
||||
run_examples_gpu:
|
||||
if: ${{ inputs.job == 'run_examples_gpu' }}
|
||||
name: Examples directory
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
machine_type: [single-gpu]
|
||||
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, daily-ci]
|
||||
container:
|
||||
image: huggingface/transformers-all-latest-gpu
|
||||
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
steps:
|
||||
- name: Update clone
|
||||
working-directory: /transformers
|
||||
run: git fetch && git checkout ${{ github.sha }}
|
||||
|
||||
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
|
||||
working-directory: /transformers
|
||||
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
|
||||
|
||||
- name: NVIDIA-SMI
|
||||
run: |
|
||||
nvidia-smi
|
||||
|
||||
- name: Environment
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
python3 utils/print_env.py
|
||||
|
||||
- name: Show installed libraries and their versions
|
||||
working-directory: /transformers
|
||||
run: pip freeze
|
||||
|
||||
- name: Run examples tests on GPU
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
pip install -r examples/pytorch/_tests_requirements.txt
|
||||
python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_examples_gpu examples/pytorch
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
run: cat /transformers/reports/${{ matrix.machine_type }}_examples_gpu/failures_short.txt
|
||||
|
||||
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_examples_gpu"
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: ${{ matrix.machine_type }}_run_examples_gpu
|
||||
path: /transformers/reports/${{ matrix.machine_type }}_examples_gpu
|
||||
name: ${{ matrix.machines }}_run_tests_tf_pipeline_gpu
|
||||
path: /transformers/reports/${{ matrix.machines }}_tests_tf_pipeline_gpu
|
||||
|
||||
run_all_tests_torch_cuda_extensions_gpu:
|
||||
if: ${{ inputs.job == 'run_all_tests_torch_cuda_extensions_gpu' }}
|
||||
name: Torch CUDA extension tests
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
machine_type: [single-gpu, multi-gpu]
|
||||
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, daily-ci]
|
||||
machines: [multi-gpu-docker, single-gpu-docker]
|
||||
runs-on: ${{ matrix.machines }}
|
||||
needs: setup
|
||||
container:
|
||||
image: huggingface/transformers-pytorch-deepspeed-latest-gpu
|
||||
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
@ -266,173 +209,38 @@ jobs:
|
||||
working-directory: /workspace/transformers
|
||||
run: git fetch && git checkout ${{ github.sha }}
|
||||
|
||||
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
|
||||
working-directory: /workspace/transformers
|
||||
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
|
||||
|
||||
- name: Remove cached torch extensions
|
||||
run: rm -rf /github/home/.cache/torch_extensions/
|
||||
|
||||
# To avoid unknown test failures
|
||||
- name: Pre build DeepSpeed *again*
|
||||
working-directory: /workspace
|
||||
run: |
|
||||
python3 -m pip uninstall -y deepspeed
|
||||
DS_DISABLE_NINJA=1 DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 python3 -m pip install deepspeed --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check
|
||||
|
||||
- name: NVIDIA-SMI
|
||||
run: |
|
||||
nvidia-smi
|
||||
|
||||
- name: Environment
|
||||
working-directory: /workspace/transformers
|
||||
run: |
|
||||
python utils/print_env.py
|
||||
|
||||
- name: Show installed libraries and their versions
|
||||
working-directory: /workspace/transformers
|
||||
run: pip freeze
|
||||
|
||||
- name: Run all tests on GPU
|
||||
working-directory: /workspace/transformers
|
||||
run: |
|
||||
python -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu tests/deepspeed tests/extended
|
||||
python -m pytest -v --make-reports=${{ matrix.machines }}_tests_torch_cuda_extensions_gpu tests/deepspeed tests/extended
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
run: cat /workspace/transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu/failures_short.txt
|
||||
run: cat /workspace/transformers/reports/${{ matrix.machines }}_tests_torch_cuda_extensions_gpu/failures_short.txt
|
||||
|
||||
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_tests_torch_cuda_extensions_gpu_test_reports"
|
||||
- name: Test suite reports artifacts
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
uses: actions/upload-artifact@v2
|
||||
with:
|
||||
name: ${{ matrix.machine_type }}_run_tests_torch_cuda_extensions_gpu_test_reports
|
||||
path: /workspace/transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu
|
||||
name: ${{ matrix.machines }}_run_tests_torch_cuda_extensions_gpu_test_reports
|
||||
path: /workspace/transformers/reports/${{ matrix.machines }}_tests_torch_cuda_extensions_gpu
|
||||
|
||||
run_tests_quantization_torch_gpu:
|
||||
if: ${{ inputs.job == 'run_tests_quantization_torch_gpu' }}
|
||||
name: " "
|
||||
needs: setup
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
folders: ${{ fromJson(needs.setup.outputs.quantization_matrix) }}
|
||||
machine_type: [single-gpu, multi-gpu]
|
||||
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, daily-ci]
|
||||
container:
|
||||
image: huggingface/transformers-quantization-latest-gpu
|
||||
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
steps:
|
||||
- name: Echo folder ${{ matrix.folders }}
|
||||
shell: bash
|
||||
run: |
|
||||
echo "${{ matrix.folders }}"
|
||||
matrix_folders=${{ matrix.folders }}
|
||||
matrix_folders=${matrix_folders/'quantization/'/'quantization_'}
|
||||
echo "$matrix_folders"
|
||||
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
|
||||
|
||||
- name: Update clone
|
||||
working-directory: /transformers
|
||||
run: git fetch && git checkout ${{ github.sha }}
|
||||
|
||||
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
|
||||
working-directory: /transformers
|
||||
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
|
||||
|
||||
- name: NVIDIA-SMI
|
||||
run: |
|
||||
nvidia-smi
|
||||
|
||||
- name: Environment
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
python3 utils/print_env.py
|
||||
|
||||
- name: Show installed libraries and their versions
|
||||
working-directory: /transformers
|
||||
run: pip freeze
|
||||
|
||||
- name: Run quantization tests on GPU
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_quantization_torch_gpu_${{ matrix.folders }} tests/${{ matrix.folders }}
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_quantization_torch_gpu_${{ matrix.folders }}/failures_short.txt
|
||||
|
||||
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_tests_quantization_torch_gpu_${{ env.matrix_folders }}"
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: ${{ matrix.machine_type }}_run_tests_quantization_torch_gpu_${{ env.matrix_folders }}
|
||||
path: /transformers/reports/${{ matrix.machine_type }}_tests_quantization_torch_gpu_${{ matrix.folders }}
|
||||
|
||||
run_extract_warnings:
|
||||
# Let's only do this for the job `run_tests_gpu` to simplify the (already complex) logic.
|
||||
if: ${{ always() && inputs.job == 'run_tests_gpu' }}
|
||||
name: Extract warnings in CI artifacts
|
||||
runs-on: ubuntu-22.04
|
||||
needs: [setup, run_tests_gpu]
|
||||
steps:
|
||||
- name: Checkout transformers
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 2
|
||||
|
||||
- name: Install transformers
|
||||
run: pip install transformers
|
||||
|
||||
- name: Show installed libraries and their versions
|
||||
run: pip freeze
|
||||
|
||||
- name: Create output directory
|
||||
run: mkdir warnings_in_ci
|
||||
|
||||
- uses: actions/download-artifact@v4
|
||||
with:
|
||||
path: warnings_in_ci
|
||||
|
||||
- name: Show artifacts
|
||||
run: echo "$(python3 -c 'import os; d = os.listdir(); print(d)')"
|
||||
working-directory: warnings_in_ci
|
||||
|
||||
- name: Extract warnings in CI artifacts
|
||||
run: |
|
||||
python3 utils/extract_warnings.py --workflow_run_id ${{ github.run_id }} --output_dir warnings_in_ci --token ${{ secrets.ACCESS_REPO_INFO_TOKEN }} --from_gh
|
||||
echo "$(python3 -c 'import os; import json; fp = open("warnings_in_ci/selected_warnings.json"); d = json.load(fp); d = "\n".join(d) ;print(d)')"
|
||||
|
||||
- name: Upload artifact
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: warnings_in_ci
|
||||
path: warnings_in_ci/selected_warnings.json
|
||||
|
||||
send_results:
|
||||
name: Slack Report
|
||||
needs: [
|
||||
setup,
|
||||
run_tests_gpu,
|
||||
run_pipelines_torch_gpu,
|
||||
run_pipelines_tf_gpu,
|
||||
run_examples_gpu,
|
||||
run_all_tests_torch_cuda_extensions_gpu,
|
||||
run_tests_quantization_torch_gpu,
|
||||
run_extract_warnings
|
||||
]
|
||||
if: ${{ always() }}
|
||||
uses: ./.github/workflows/slack-report.yml
|
||||
with:
|
||||
job: ${{ inputs.job }}
|
||||
# This would be `skipped` if `setup` is skipped.
|
||||
setup_status: ${{ needs.setup.result }}
|
||||
slack_report_channel: ${{ inputs.slack_report_channel }}
|
||||
# This would be an empty string if `setup` is skipped.
|
||||
folder_slices: ${{ needs.setup.outputs.folder_slices }}
|
||||
quantization_matrix: ${{ needs.setup.outputs.quantization_matrix }}
|
||||
|
||||
secrets: inherit
|
||||
name: Send results to webhook
|
||||
runs-on: ubuntu-latest
|
||||
if: always()
|
||||
needs: [setup, run_tests_gpu, run_examples_gpu, run_pipelines_tf_gpu, run_pipelines_torch_gpu, run_all_tests_torch_cuda_extensions_gpu]
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- uses: actions/download-artifact@v2
|
||||
- name: Send message to Slack
|
||||
env:
|
||||
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
|
||||
CI_SLACK_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID }}
|
||||
CI_SLACK_CHANNEL_ID_DAILY: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY }}
|
||||
CI_SLACK_CHANNEL_DUMMY_TESTS: ${{ secrets.CI_SLACK_CHANNEL_DUMMY_TESTS }}
|
||||
run: |
|
||||
pip install slack_sdk
|
||||
python utils/notification_service.py "${{ needs.setup.outputs.matrix }}"
|
||||
|
||||
87
.github/workflows/slack-report.yml
vendored
87
.github/workflows/slack-report.yml
vendored
@ -1,87 +0,0 @@
|
||||
name: CI slack report
|
||||
|
||||
on:
|
||||
workflow_call:
|
||||
inputs:
|
||||
job:
|
||||
required: true
|
||||
type: string
|
||||
slack_report_channel:
|
||||
required: true
|
||||
type: string
|
||||
setup_status:
|
||||
required: true
|
||||
type: string
|
||||
folder_slices:
|
||||
required: true
|
||||
type: string
|
||||
quantization_matrix:
|
||||
required: true
|
||||
type: string
|
||||
|
||||
|
||||
jobs:
|
||||
send_results:
|
||||
name: Send results to webhook
|
||||
runs-on: ubuntu-22.04
|
||||
if: always()
|
||||
steps:
|
||||
- name: Preliminary job status
|
||||
shell: bash
|
||||
# For the meaning of these environment variables, see the job `Setup`
|
||||
run: |
|
||||
echo "Setup status: ${{ inputs.setup_status }}"
|
||||
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/download-artifact@v4
|
||||
- name: Send message to Slack
|
||||
if: ${{ inputs.job != 'run_tests_quantization_torch_gpu' }}
|
||||
env:
|
||||
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
|
||||
CI_SLACK_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID }}
|
||||
CI_SLACK_CHANNEL_ID_DAILY: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY }}
|
||||
CI_SLACK_CHANNEL_DUMMY_TESTS: ${{ secrets.CI_SLACK_CHANNEL_DUMMY_TESTS }}
|
||||
SLACK_REPORT_CHANNEL: ${{ inputs.slack_report_channel }}
|
||||
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
|
||||
CI_EVENT: scheduled
|
||||
CI_SHA: ${{ github.sha }}
|
||||
CI_WORKFLOW_REF: ${{ github.workflow_ref }}
|
||||
CI_TEST_JOB: ${{ inputs.job }}
|
||||
SETUP_STATUS: ${{ inputs.setup_status }}
|
||||
# We pass `needs.setup.outputs.matrix` as the argument. A processing in `notification_service.py` to change
|
||||
# `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`.
|
||||
# For a job that doesn't depend on (i.e. `needs`) `setup`, the value for `inputs.folder_slices` would be an
|
||||
# empty string, and the called script still get one argument (which is the emtpy string).
|
||||
run: |
|
||||
sudo apt-get install -y curl
|
||||
pip install slack_sdk
|
||||
pip show slack_sdk
|
||||
python utils/notification_service.py "${{ inputs.folder_slices }}"
|
||||
|
||||
# Upload complete failure tables, as they might be big and only truncated versions could be sent to Slack.
|
||||
- name: Failure table artifacts
|
||||
# Only the model testing job is concerned for this step
|
||||
if: ${{ inputs.job == 'run_tests_gpu' }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: prev_ci_results
|
||||
path: prev_ci_results
|
||||
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/download-artifact@v4
|
||||
- name: Send message to Slack for quantization workflow
|
||||
if: ${{ inputs.job == 'run_tests_quantization_torch_gpu' }}
|
||||
env:
|
||||
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
|
||||
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
|
||||
SLACK_REPORT_CHANNEL: ${{ inputs.slack_report_channel }}
|
||||
CI_EVENT: scheduled
|
||||
CI_SHA: ${{ github.sha }}
|
||||
SETUP_STATUS: ${{ inputs.setup_status }}
|
||||
# We pass `needs.setup.outputs.quantization_matrix` as the argument. A processing in `notification_service_quantization.py` to change
|
||||
# `quantization/bnb` to `quantization_bnb` is required, as the artifact names use `_` instead of `/`.
|
||||
run: |
|
||||
sudo apt-get install -y curl
|
||||
pip install slack_sdk
|
||||
pip show slack_sdk
|
||||
python utils/notification_service_quantization.py "${{ inputs.quantization_matrix }}"
|
||||
10
.github/workflows/stale.yml
vendored
10
.github/workflows/stale.yml
vendored
@ -2,22 +2,22 @@ name: Stale Bot
|
||||
|
||||
on:
|
||||
schedule:
|
||||
- cron: "0 8 * * *"
|
||||
- cron: "0 15 * * *"
|
||||
|
||||
jobs:
|
||||
close_stale_issues:
|
||||
name: Close Stale Issues
|
||||
if: github.repository == 'huggingface/transformers'
|
||||
runs-on: ubuntu-22.04
|
||||
runs-on: ubuntu-latest
|
||||
env:
|
||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/checkout@v2
|
||||
|
||||
- name: Setup Python
|
||||
uses: actions/setup-python@v4
|
||||
uses: actions/setup-python@v1
|
||||
with:
|
||||
python-version: 3.8
|
||||
python-version: 3.7
|
||||
|
||||
- name: Install requirements
|
||||
run: |
|
||||
|
||||
25
.github/workflows/update_metdata.yml
vendored
25
.github/workflows/update_metdata.yml
vendored
@ -3,25 +3,34 @@ name: Update Transformers metadata
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
- update_transformers_metadata*
|
||||
- master
|
||||
- update_transformers_metadata
|
||||
|
||||
jobs:
|
||||
build_and_package:
|
||||
runs-on: ubuntu-22.04
|
||||
runs-on: ubuntu-latest
|
||||
defaults:
|
||||
run:
|
||||
shell: bash -l {0}
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/checkout@v2
|
||||
|
||||
- name: Loading cache.
|
||||
uses: actions/cache@v2
|
||||
id: cache
|
||||
with:
|
||||
path: ~/.cache/pip
|
||||
key: v1-metadata
|
||||
restore-keys: |
|
||||
v1-metadata-${{ hashFiles('setup.py') }}
|
||||
v1-metadata
|
||||
|
||||
- name: Setup environment
|
||||
run: |
|
||||
pip install --upgrade pip
|
||||
pip install datasets pandas==2.0.3
|
||||
pip install .[torch,tf,flax]
|
||||
pip install git+https://github.com/huggingface/transformers#egg=transformers[dev]
|
||||
|
||||
- name: Update metadata
|
||||
run: |
|
||||
python utils/update_metadata.py --token ${{ secrets.LYSANDRE_HF_TOKEN }} --commit_sha ${{ github.sha }}
|
||||
python utils/update_metadata.py --token ${{ secrets.SYLVAIN_HF_TOKEN }} --commit_sha ${{ github.sha }}
|
||||
|
||||
|
||||
16
.github/workflows/upload_pr_documentation.yml
vendored
16
.github/workflows/upload_pr_documentation.yml
vendored
@ -1,16 +0,0 @@
|
||||
name: Upload PR Documentation
|
||||
|
||||
on:
|
||||
workflow_run:
|
||||
workflows: ["Build PR Documentation"]
|
||||
types:
|
||||
- completed
|
||||
|
||||
jobs:
|
||||
build:
|
||||
uses: huggingface/doc-builder/.github/workflows/upload_pr_documentation.yml@main
|
||||
with:
|
||||
package_name: transformers
|
||||
secrets:
|
||||
hf_token: ${{ secrets.HF_DOC_BUILD_PUSH }}
|
||||
comment_bot_token: ${{ secrets.COMMENT_BOT_TOKEN }}
|
||||
3
.gitignore
vendored
3
.gitignore
vendored
@ -164,6 +164,3 @@ tags
|
||||
|
||||
# DS_Store (MacOS)
|
||||
.DS_Store
|
||||
|
||||
# ruff
|
||||
.ruff_cache
|
||||
|
||||
@ -7,8 +7,8 @@ We as members, contributors, and leaders pledge to make participation in our
|
||||
community a harassment-free experience for everyone, regardless of age, body
|
||||
size, visible or invisible disability, ethnicity, sex characteristics, gender
|
||||
identity and expression, level of experience, education, socio-economic status,
|
||||
nationality, personal appearance, race, caste, color, religion, or sexual
|
||||
identity and orientation.
|
||||
nationality, personal appearance, race, religion, or sexual identity
|
||||
and orientation.
|
||||
|
||||
We pledge to act and interact in ways that contribute to an open, welcoming,
|
||||
diverse, inclusive, and healthy community.
|
||||
@ -23,17 +23,17 @@ community include:
|
||||
* Giving and gracefully accepting constructive feedback
|
||||
* Accepting responsibility and apologizing to those affected by our mistakes,
|
||||
and learning from the experience
|
||||
* Focusing on what is best not just for us as individuals, but for the overall
|
||||
community
|
||||
* Focusing on what is best not just for us as individuals, but for the
|
||||
overall community
|
||||
|
||||
Examples of unacceptable behavior include:
|
||||
|
||||
* The use of sexualized language or imagery, and sexual attention or advances of
|
||||
any kind
|
||||
* The use of sexualized language or imagery, and sexual attention or
|
||||
advances of any kind
|
||||
* Trolling, insulting or derogatory comments, and personal or political attacks
|
||||
* Public or private harassment
|
||||
* Publishing others' private information, such as a physical or email address,
|
||||
without their explicit permission
|
||||
* Publishing others' private information, such as a physical or email
|
||||
address, without their explicit permission
|
||||
* Other conduct which could reasonably be considered inappropriate in a
|
||||
professional setting
|
||||
|
||||
@ -83,15 +83,15 @@ behavior was inappropriate. A public apology may be requested.
|
||||
|
||||
### 2. Warning
|
||||
|
||||
**Community Impact**: A violation through a single incident or series of
|
||||
actions.
|
||||
**Community Impact**: A violation through a single incident or series
|
||||
of actions.
|
||||
|
||||
**Consequence**: A warning with consequences for continued behavior. No
|
||||
interaction with the people involved, including unsolicited interaction with
|
||||
those enforcing the Code of Conduct, for a specified period of time. This
|
||||
includes avoiding interactions in community spaces as well as external channels
|
||||
like social media. Violating these terms may lead to a temporary or permanent
|
||||
ban.
|
||||
like social media. Violating these terms may lead to a temporary or
|
||||
permanent ban.
|
||||
|
||||
### 3. Temporary Ban
|
||||
|
||||
@ -107,27 +107,23 @@ Violating these terms may lead to a permanent ban.
|
||||
### 4. Permanent Ban
|
||||
|
||||
**Community Impact**: Demonstrating a pattern of violation of community
|
||||
standards, including sustained inappropriate behavior, harassment of an
|
||||
standards, including sustained inappropriate behavior, harassment of an
|
||||
individual, or aggression toward or disparagement of classes of individuals.
|
||||
|
||||
**Consequence**: A permanent ban from any sort of public interaction within the
|
||||
community.
|
||||
**Consequence**: A permanent ban from any sort of public interaction within
|
||||
the community.
|
||||
|
||||
## Attribution
|
||||
|
||||
This Code of Conduct is adapted from the [Contributor Covenant][homepage],
|
||||
version 2.1, available at
|
||||
[https://www.contributor-covenant.org/version/2/1/code_of_conduct.html][v2.1].
|
||||
version 2.0, available at
|
||||
https://www.contributor-covenant.org/version/2/0/code_of_conduct.html.
|
||||
|
||||
Community Impact Guidelines were inspired by
|
||||
[Mozilla's code of conduct enforcement ladder][Mozilla CoC].
|
||||
|
||||
For answers to common questions about this code of conduct, see the FAQ at
|
||||
[https://www.contributor-covenant.org/faq][FAQ]. Translations are available at
|
||||
[https://www.contributor-covenant.org/translations][translations].
|
||||
Community Impact Guidelines were inspired by [Mozilla's code of conduct
|
||||
enforcement ladder](https://github.com/mozilla/diversity).
|
||||
|
||||
[homepage]: https://www.contributor-covenant.org
|
||||
[v2.1]: https://www.contributor-covenant.org/version/2/1/code_of_conduct.html
|
||||
[Mozilla CoC]: https://github.com/mozilla/diversity
|
||||
[FAQ]: https://www.contributor-covenant.org/faq
|
||||
[translations]: https://www.contributor-covenant.org/translations
|
||||
|
||||
For answers to common questions about this code of conduct, see the FAQ at
|
||||
https://www.contributor-covenant.org/faq. Translations are available at
|
||||
https://www.contributor-covenant.org/translations.
|
||||
|
||||
410
CONTRIBUTING.md
410
CONTRIBUTING.md
@ -14,336 +14,341 @@ See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
-->
|
||||
|
||||
# Contribute to 🤗 Transformers
|
||||
# How to contribute to transformers?
|
||||
|
||||
Everyone is welcome to contribute, and we value everybody's contribution. Code
|
||||
contributions are not the only way to help the community. Answering questions, helping
|
||||
others, and improving the documentation are also immensely valuable.
|
||||
is thus not the only way to help the community. Answering questions, helping
|
||||
others, reaching out and improving the documentations are immensely valuable to
|
||||
the community.
|
||||
|
||||
It also helps us if you spread the word! Reference the library in blog posts
|
||||
about the awesome projects it made possible, shout out on Twitter every time it has
|
||||
helped you, or simply ⭐️ the repository to say thank you.
|
||||
It also helps us if you spread the word: reference the library from blog posts
|
||||
on the awesome projects it made possible, shout out on Twitter every time it has
|
||||
helped you, or simply star the repo to say "thank you".
|
||||
|
||||
However you choose to contribute, please be mindful and respect our
|
||||
[code of conduct](https://github.com/huggingface/transformers/blob/main/CODE_OF_CONDUCT.md).
|
||||
Whichever way you choose to contribute, please be mindful to respect our
|
||||
[code of conduct](https://github.com/huggingface/transformers/blob/master/CODE_OF_CONDUCT.md).
|
||||
|
||||
**This guide was heavily inspired by the awesome [scikit-learn guide to contributing](https://github.com/scikit-learn/scikit-learn/blob/main/CONTRIBUTING.md).**
|
||||
## You can contribute in so many ways!
|
||||
|
||||
## Ways to contribute
|
||||
There are 4 ways you can contribute to transformers:
|
||||
* Fixing outstanding issues with the existing code;
|
||||
* Implementing new models;
|
||||
* Contributing to the examples or to the documentation;
|
||||
* Submitting issues related to bugs or desired new features.
|
||||
|
||||
There are several ways you can contribute to 🤗 Transformers:
|
||||
|
||||
* Fix outstanding issues with the existing code.
|
||||
* Submit issues related to bugs or desired new features.
|
||||
* Implement new models.
|
||||
* Contribute to the examples or to the documentation.
|
||||
|
||||
If you don't know where to start, there is a special [Good First
|
||||
In particular there is a special [Good First
|
||||
Issue](https://github.com/huggingface/transformers/contribute) listing. It will give you a list of
|
||||
open issues that are beginner-friendly and help you start contributing to open-source. The best way to do that is to open a Pull Request and link it to the issue that you'd like to work on. We try to give priority to opened PRs as we can easily track the progress of the fix, and if the contributor does not have time anymore, someone else can take the PR over.
|
||||
open Issues that are open to anybody to work on. Just comment in the issue that you'd like to work
|
||||
on it. In that same listing you will also find some Issues with `Good Second Issue` label. These are
|
||||
typically slightly more complicated than the Issues with just `Good First Issue` label. But if you
|
||||
feel you know what you're doing, go for it.
|
||||
|
||||
For something slightly more challenging, you can also take a look at the [Good Second Issue](https://github.com/huggingface/transformers/labels/Good%20Second%20Issue) list. In general though, if you feel like you know what you're doing, go for it and we'll help you get there! 🚀
|
||||
*All are equally valuable to the community.*
|
||||
|
||||
> All contributions are equally valuable to the community. 🥰
|
||||
## Submitting a new issue or feature request
|
||||
|
||||
## Fixing outstanding issues
|
||||
|
||||
If you notice an issue with the existing code and have a fix in mind, feel free to [start contributing](#create-a-pull-request) and open a Pull Request!
|
||||
|
||||
## Submitting a bug-related issue or feature request
|
||||
|
||||
Do your best to follow these guidelines when submitting a bug-related issue or a feature
|
||||
Do your best to follow these guidelines when submitting an issue or a feature
|
||||
request. It will make it easier for us to come back to you quickly and with good
|
||||
feedback.
|
||||
|
||||
### Did you find a bug?
|
||||
|
||||
The 🤗 Transformers library is robust and reliable thanks to users who report the problems they encounter.
|
||||
The 🤗 Transformers library is robust and reliable thanks to the users who notify us of
|
||||
the problems they encounter. So thank you for reporting an issue.
|
||||
|
||||
Before you report an issue, we would really appreciate it if you could **make sure the bug was not
|
||||
already reported** (use the search bar on GitHub under Issues). Your issue should also be related to bugs in the library itself, and not your code. If you're unsure whether the bug is in your code or the library, please ask in the [forum](https://discuss.huggingface.co/) first. This helps us respond quicker to fixing issues related to the library versus general questions.
|
||||
First, we would really appreciate it if you could **make sure the bug was not
|
||||
already reported** (use the search bar on Github under Issues).
|
||||
|
||||
Once you've confirmed the bug hasn't already been reported, please include the following information in your issue so we can quickly resolve it:
|
||||
Did not find it? :( So we can act quickly on it, please follow these steps:
|
||||
|
||||
* Your **OS type and version** and **Python**, **PyTorch** and
|
||||
**TensorFlow** versions when applicable.
|
||||
* Include your **OS type and version**, the versions of **Python**, **PyTorch** and
|
||||
**Tensorflow** when applicable;
|
||||
* A short, self-contained, code snippet that allows us to reproduce the bug in
|
||||
less than 30s.
|
||||
* The *full* traceback if an exception is raised.
|
||||
* Attach any other additional information, like screenshots, you think may help.
|
||||
less than 30s;
|
||||
* Provide the *full* traceback if an exception is raised.
|
||||
|
||||
To get the OS and software versions automatically, run the following command:
|
||||
To get the OS and software versions automatically, you can run the following command:
|
||||
|
||||
```bash
|
||||
transformers-cli env
|
||||
```
|
||||
|
||||
You can also run the same command from the root of the repository:
|
||||
or from the root of the repository the following command:
|
||||
|
||||
```bash
|
||||
python src/transformers/commands/transformers_cli.py env
|
||||
```
|
||||
|
||||
### Do you want a new feature?
|
||||
|
||||
If there is a new feature you'd like to see in 🤗 Transformers, please open an issue and describe:
|
||||
### Do you want to implement a new model?
|
||||
|
||||
1. What is the *motivation* behind this feature? Is it related to a problem or frustration with the library? Is it a feature related to something you need for a project? Is it something you worked on and think it could benefit the community?
|
||||
Awesome! Please provide the following information:
|
||||
|
||||
Whatever it is, we'd love to hear about it!
|
||||
|
||||
2. Describe your requested feature in as much detail as possible. The more you can tell us about it, the better we'll be able to help you.
|
||||
3. Provide a *code snippet* that demonstrates the features usage.
|
||||
4. If the feature is related to a paper, please include a link.
|
||||
|
||||
If your issue is well written we're already 80% of the way there by the time you create it.
|
||||
|
||||
We have added [templates](https://github.com/huggingface/transformers/tree/main/templates) to help you get started with your issue.
|
||||
|
||||
## Do you want to implement a new model?
|
||||
|
||||
New models are constantly released and if you want to implement a new model, please provide the following information:
|
||||
|
||||
* A short description of the model and a link to the paper.
|
||||
* Link to the implementation if it is open-sourced.
|
||||
* Short description of the model and link to the paper;
|
||||
* Link to the implementation if it is open-source;
|
||||
* Link to the model weights if they are available.
|
||||
|
||||
If you are willing to contribute the model yourself, let us know so we can help you add it to 🤗 Transformers!
|
||||
If you are willing to contribute the model yourself, let us know so we can best
|
||||
guide you.
|
||||
|
||||
We have a technical guide for [how to add a model to 🤗 Transformers](https://huggingface.co/docs/transformers/add_new_model).
|
||||
We have added a **detailed guide and templates** to guide you in the process of adding a new model. You can find them
|
||||
in the [`templates`](https://github.com/huggingface/transformers/tree/master/templates) folder.
|
||||
|
||||
## Do you want to add documentation?
|
||||
### Do you want a new feature (that is not a model)?
|
||||
|
||||
We're always looking for improvements to the documentation that make it more clear and accurate. Please let us know how the documentation can be improved such as typos and any content that is missing, unclear or inaccurate. We'll be happy to make the changes or help you make a contribution if you're interested!
|
||||
A world-class feature request addresses the following points:
|
||||
|
||||
For more details about how to generate, build, and write the documentation, take a look at the documentation [README](https://github.com/huggingface/transformers/tree/main/docs).
|
||||
1. Motivation first:
|
||||
* Is it related to a problem/frustration with the library? If so, please explain
|
||||
why. Providing a code snippet that demonstrates the problem is best.
|
||||
* Is it related to something you would need for a project? We'd love to hear
|
||||
about it!
|
||||
* Is it something you worked on and think could benefit the community?
|
||||
Awesome! Tell us what problem it solved for you.
|
||||
2. Write a *full paragraph* describing the feature;
|
||||
3. Provide a **code snippet** that demonstrates its future use;
|
||||
4. In case this is related to a paper, please attach a link;
|
||||
5. Attach any additional information (drawings, screenshots, etc.) you think may help.
|
||||
|
||||
## Create a Pull Request
|
||||
If your issue is well written we're already 80% of the way there by the time you
|
||||
post it.
|
||||
|
||||
Before writing any code, we strongly advise you to search through the existing PRs or
|
||||
issues to make sure nobody is already working on the same thing. If you are
|
||||
We have added **templates** to guide you in the process of adding a new example script for training or testing the
|
||||
models in the library. You can find them in the [`templates`](https://github.com/huggingface/transformers/tree/master/templates)
|
||||
folder.
|
||||
|
||||
## Start contributing! (Pull Requests)
|
||||
|
||||
Before writing code, we strongly advise you to search through the existing PRs or
|
||||
issues to make sure that nobody is already working on the same thing. If you are
|
||||
unsure, it is always a good idea to open an issue to get some feedback.
|
||||
|
||||
You will need basic `git` proficiency to contribute to
|
||||
🤗 Transformers. While `git` is not the easiest tool to use, it has the greatest
|
||||
manual. Type `git --help` in a shell and enjoy! If you prefer books, [Pro
|
||||
You will need basic `git` proficiency to be able to contribute to
|
||||
🤗 Transformers. `git` is not the easiest tool to use but it has the greatest
|
||||
manual. Type `git --help` in a shell and enjoy. If you prefer books, [Pro
|
||||
Git](https://git-scm.com/book/en/v2) is a very good reference.
|
||||
|
||||
You'll need **[Python 3.8](https://github.com/huggingface/transformers/blob/main/setup.py#L426)** or above to contribute to 🤗 Transformers. Follow the steps below to start contributing:
|
||||
Follow these steps to start contributing:
|
||||
|
||||
1. Fork the [repository](https://github.com/huggingface/transformers) by
|
||||
clicking on the **[Fork](https://github.com/huggingface/transformers/fork)** button on the repository's page. This creates a copy of the code
|
||||
clicking on the 'Fork' button on the repository's page. This creates a copy of the code
|
||||
under your GitHub user account.
|
||||
|
||||
2. Clone your fork to your local disk, and add the base repository as a remote:
|
||||
|
||||
```bash
|
||||
git clone git@github.com:<your Github handle>/transformers.git
|
||||
cd transformers
|
||||
git remote add upstream https://github.com/huggingface/transformers.git
|
||||
$ git clone git@github.com:<your Github handle>/transformers.git
|
||||
$ cd transformers
|
||||
$ git remote add upstream https://github.com/huggingface/transformers.git
|
||||
```
|
||||
|
||||
3. Create a new branch to hold your development changes:
|
||||
|
||||
```bash
|
||||
git checkout -b a-descriptive-name-for-my-changes
|
||||
$ git checkout -b a-descriptive-name-for-my-changes
|
||||
```
|
||||
|
||||
🚨 **Do not** work on the `main` branch!
|
||||
**Do not** work on the `master` branch.
|
||||
|
||||
4. Set up a development environment by running the following command in a virtual environment:
|
||||
|
||||
```bash
|
||||
pip install -e ".[dev]"
|
||||
$ pip install -e ".[dev]"
|
||||
```
|
||||
|
||||
If 🤗 Transformers was already installed in the virtual environment, remove
|
||||
(If transformers was already installed in the virtual environment, remove
|
||||
it with `pip uninstall transformers` before reinstalling it in editable
|
||||
mode with the `-e` flag.
|
||||
mode with the `-e` flag.)
|
||||
|
||||
Depending on your OS, and since the number of optional dependencies of Transformers is growing, you might get a
|
||||
failure with this command. If that's the case make sure to install the Deep Learning framework you are working with
|
||||
(PyTorch, TensorFlow and/or Flax) then do:
|
||||
To run the full test suite, you might need the additional dependency on `datasets` which requires a separate source
|
||||
install:
|
||||
|
||||
```bash
|
||||
pip install -e ".[quality]"
|
||||
$ git clone https://github.com/huggingface/datasets
|
||||
$ cd datasets
|
||||
$ pip install -e .
|
||||
```
|
||||
|
||||
which should be enough for most use cases.
|
||||
If you have already cloned that repo, you might need to `git pull` to get the most recent changes in the `datasets`
|
||||
library.
|
||||
|
||||
5. Develop the features in your branch.
|
||||
5. Develop the features on your branch.
|
||||
|
||||
As you work on your code, you should make sure the test suite
|
||||
passes. Run the tests impacted by your changes like this:
|
||||
As you work on the features, you should make sure that the test suite
|
||||
passes. You should run the tests impacted by your changes like this:
|
||||
|
||||
```bash
|
||||
pytest tests/<TEST_TO_RUN>.py
|
||||
$ pytest tests/<TEST_TO_RUN>.py
|
||||
```
|
||||
|
||||
You can also run the full suite with the following command, but it takes
|
||||
a beefy machine to produce a result in a decent amount of time now that
|
||||
Transformers has grown a lot. Here is the command for it:
|
||||
|
||||
```bash
|
||||
$ make test
|
||||
```
|
||||
|
||||
For more information about tests, check out the
|
||||
[Testing](https://huggingface.co/docs/transformers/testing) guide.
|
||||
[dedicated documentation](https://huggingface.co/docs/transformers/testing)
|
||||
|
||||
🤗 Transformers relies on `black` and `ruff` to format its source code
|
||||
🤗 Transformers relies on `black` and `isort` to format its source code
|
||||
consistently. After you make changes, apply automatic style corrections and code verifications
|
||||
that can't be automated in one go with:
|
||||
|
||||
```bash
|
||||
make fixup
|
||||
$ make fixup
|
||||
```
|
||||
|
||||
This target is also optimized to only work with files modified by the PR you're working on.
|
||||
|
||||
If you prefer to run the checks one after the other, the following command applies the
|
||||
If you prefer to run the checks one after the other, the following command apply the
|
||||
style corrections:
|
||||
|
||||
```bash
|
||||
make style
|
||||
$ make style
|
||||
```
|
||||
|
||||
🤗 Transformers also uses `ruff` and a few custom scripts to check for coding mistakes. Quality
|
||||
controls are run by the CI, but you can run the same checks with:
|
||||
🤗 Transformers also uses `flake8` and a few custom scripts to check for coding mistakes. Quality
|
||||
control runs in CI, however you can also run the same checks with:
|
||||
|
||||
```bash
|
||||
make quality
|
||||
$ make quality
|
||||
```
|
||||
|
||||
Finally, we have a lot of scripts to make sure we don't forget to update
|
||||
some files when adding a new model. You can run these scripts with:
|
||||
Finally we have a lot of scripts that check we didn't forget to update
|
||||
some files when adding a new model, that you can run with
|
||||
|
||||
```bash
|
||||
make repo-consistency
|
||||
$ make repo-consistency
|
||||
```
|
||||
|
||||
To learn more about those checks and how to fix any issues with them, check out the
|
||||
[Checks on a Pull Request](https://huggingface.co/docs/transformers/pr_checks) guide.
|
||||
To learn more about those checks and how to fix any issue with them, check out the
|
||||
[documentation](https://huggingface.co/docs/transformers/pr_checks)
|
||||
|
||||
If you're modifying documents under the `docs/source` directory, make sure the documentation can still be built. This check will also run in the CI when you open a pull request. To run a local check
|
||||
make sure you install the documentation builder:
|
||||
If you're modifying documents under `docs/source`, make sure to validate that
|
||||
they can still be built. This check also runs in CI. To run a local check
|
||||
make sure you have installed the documentation builder requirements. First you will need to clone the
|
||||
repository containing our tools to build the documentation:
|
||||
|
||||
```bash
|
||||
pip install ".[docs]"
|
||||
$ pip install git+https://github.com/huggingface/doc-builder
|
||||
```
|
||||
|
||||
Run the following command from the root of the repository:
|
||||
Then, make sure you have all the dependencies to be able to build the doc with:
|
||||
|
||||
```bash
|
||||
doc-builder build transformers docs/source/en --build_dir ~/tmp/test-build
|
||||
$ pip install ".[docs]"
|
||||
```
|
||||
|
||||
Finally run the following command from the root of the repository:
|
||||
|
||||
```bash
|
||||
$ doc-builder build transformers docs/source/ --build_dir ~/tmp/test-build
|
||||
```
|
||||
|
||||
This will build the documentation in the `~/tmp/test-build` folder where you can inspect the generated
|
||||
Markdown files with your favorite editor. You can also preview the docs on GitHub when you open a pull request.
|
||||
Markdown files with your favorite editor. You won't be able to see the final rendering on the website
|
||||
before your PR is merged, we are actively working on adding a tool for this.
|
||||
|
||||
Once you're happy with your changes, add the changed files with `git add` and
|
||||
record your changes locally with `git commit`:
|
||||
Once you're happy with your changes, add changed files using `git add` and
|
||||
make a commit with `git commit` to record your changes locally:
|
||||
|
||||
```bash
|
||||
git add modified_file.py
|
||||
git commit
|
||||
$ git add modified_file.py
|
||||
$ git commit
|
||||
```
|
||||
|
||||
Please remember to write [good commit
|
||||
messages](https://chris.beams.io/posts/git-commit/) to clearly communicate the changes you made!
|
||||
Please write [good commit
|
||||
messages](https://chris.beams.io/posts/git-commit/).
|
||||
|
||||
To keep your copy of the code up to date with the original
|
||||
repository, rebase your branch on `upstream/branch` *before* you open a pull request or if requested by a maintainer:
|
||||
It is a good idea to sync your copy of the code with the original
|
||||
repository regularly. This way you can quickly account for changes:
|
||||
|
||||
```bash
|
||||
git fetch upstream
|
||||
git rebase upstream/main
|
||||
$ git fetch upstream
|
||||
$ git rebase upstream/master
|
||||
```
|
||||
|
||||
Push your changes to your branch:
|
||||
Push the changes to your account using:
|
||||
|
||||
```bash
|
||||
git push -u origin a-descriptive-name-for-my-changes
|
||||
$ git push -u origin a-descriptive-name-for-my-changes
|
||||
```
|
||||
|
||||
If you've already opened a pull request, you'll need to force push with the `--force` flag. Otherwise, if the pull request hasn't been opened yet, you can just push your changes normally.
|
||||
6. Once you are satisfied (**and the checklist below is happy too**), go to the
|
||||
webpage of your fork on GitHub. Click on 'Pull request' to send your changes
|
||||
to the project maintainers for review.
|
||||
|
||||
6. Now you can go to your fork of the repository on GitHub and click on **Pull Request** to open a pull request. Make sure you tick off all the boxes on our [checklist](#pull-request-checklist) below. When you're ready, you can send your changes to the project maintainers for review.
|
||||
|
||||
7. It's ok if maintainers request changes, it happens to our core contributors
|
||||
too! So everyone can see the changes in the pull request, work in your local
|
||||
7. It's ok if maintainers ask you for changes. It happens to core contributors
|
||||
too! So everyone can see the changes in the Pull request, work in your local
|
||||
branch and push the changes to your fork. They will automatically appear in
|
||||
the pull request.
|
||||
|
||||
### Pull request checklist
|
||||
|
||||
☐ The pull request title should summarize your contribution.<br>
|
||||
☐ If your pull request addresses an issue, please mention the issue number in the pull
|
||||
request description to make sure they are linked (and people viewing the issue know you
|
||||
are working on it).<br>
|
||||
☐ To indicate a work in progress please prefix the title with `[WIP]`. These are
|
||||
useful to avoid duplicated work, and to differentiate it from PRs ready to be merged.<br>
|
||||
☐ Make sure existing tests pass.<br>
|
||||
☐ If adding a new feature, also add tests for it.<br>
|
||||
- If you are adding a new model, make sure you use
|
||||
`ModelTester.all_model_classes = (MyModel, MyModelWithLMHead,...)` to trigger the common tests.
|
||||
### Checklist
|
||||
|
||||
1. The title of your pull request should be a summary of its contribution;
|
||||
2. If your pull request addresses an issue, please mention the issue number in
|
||||
the pull request description to make sure they are linked (and people
|
||||
consulting the issue know you are working on it);
|
||||
3. To indicate a work in progress please prefix the title with `[WIP]`. These
|
||||
are useful to avoid duplicated work, and to differentiate it from PRs ready
|
||||
to be merged;
|
||||
4. Make sure existing tests pass;
|
||||
5. Add high-coverage tests. No quality testing = no merge.
|
||||
- If you are adding a new model, make sure that you use
|
||||
`ModelTester.all_model_classes = (MyModel, MyModelWithLMHead,...)`, which triggers the common tests.
|
||||
- If you are adding new `@slow` tests, make sure they pass using
|
||||
`RUN_SLOW=1 python -m pytest tests/models/my_new_model/test_my_new_model.py`.
|
||||
- If you are adding a new tokenizer, write tests and make sure
|
||||
`RUN_SLOW=1 python -m pytest tests/models/{your_model_name}/test_tokenization_{your_model_name}.py` passes.
|
||||
- CircleCI does not run the slow tests, but GitHub Actions does every night!<br>
|
||||
`RUN_SLOW=1 python -m pytest tests/test_my_new_model.py`.
|
||||
- If you are adding a new tokenizer, write tests, and make sure
|
||||
`RUN_SLOW=1 python -m pytest tests/test_tokenization_{your_model_name}.py` passes.
|
||||
CircleCI does not run the slow tests, but github actions does every night!
|
||||
6. All public methods must have informative docstrings that work nicely with sphinx. See `modeling_bert.py` for an
|
||||
example.
|
||||
7. Due to the rapidly growing repository, it is important to make sure that no files that would significantly weigh down the repository are added. This includes images, videos and other non-text files. We prefer to leverage a hf.co hosted `dataset` like
|
||||
the ones hosted on [`hf-internal-testing`](https://huggingface.co/hf-internal-testing) in which to place these files and reference
|
||||
them by URL. We recommend putting them in the following dataset: [huggingface/documentation-images](https://huggingface.co/datasets/huggingface/documentation-images).
|
||||
If an external contribution, feel free to add the images to your PR and ask a Hugging Face member to migrate your images
|
||||
to this dataset.
|
||||
|
||||
☐ All public methods must have informative docstrings (see
|
||||
[`modeling_bert.py`](https://github.com/huggingface/transformers/blob/main/src/transformers/models/bert/modeling_bert.py)
|
||||
for an example).<br>
|
||||
☐ Due to the rapidly growing repository, don't add any images, videos and other
|
||||
non-text files that'll significantly weigh down the repository. Instead, use a Hub
|
||||
repository such as [`hf-internal-testing`](https://huggingface.co/hf-internal-testing)
|
||||
to host these files and reference them by URL. We recommend placing documentation
|
||||
related images in the following repository:
|
||||
[huggingface/documentation-images](https://huggingface.co/datasets/huggingface/documentation-images).
|
||||
You can open a PR on this dataset repository and ask a Hugging Face member to merge it.
|
||||
|
||||
For more information about the checks run on a pull request, take a look at our [Checks on a Pull Request](https://huggingface.co/docs/transformers/pr_checks) guide.
|
||||
See more about the checks run on a pull request in our [PR guide](pr_checks)
|
||||
|
||||
### Tests
|
||||
|
||||
An extensive test suite is included to test the library behavior and several examples. Library tests can be found in
|
||||
the [tests](https://github.com/huggingface/transformers/tree/main/tests) folder and examples tests in the
|
||||
[examples](https://github.com/huggingface/transformers/tree/main/examples) folder.
|
||||
the [tests folder](https://github.com/huggingface/transformers/tree/master/tests) and examples tests in the
|
||||
[examples folder](https://github.com/huggingface/transformers/tree/master/examples).
|
||||
|
||||
We like `pytest` and `pytest-xdist` because it's faster. From the root of the
|
||||
repository, specify a *path to a subfolder or a test file* to run the test:
|
||||
repository, here's how to run tests with `pytest` for the library:
|
||||
|
||||
```bash
|
||||
python -m pytest -n auto --dist=loadfile -s -v ./tests/models/my_new_model
|
||||
$ python -m pytest -n auto --dist=loadfile -s -v ./tests/
|
||||
```
|
||||
|
||||
Similarly, for the `examples` directory, specify a *path to a subfolder or test file* to run the test. For example, the following command tests the text classification subfolder in the PyTorch `examples` directory:
|
||||
and for the examples:
|
||||
|
||||
```bash
|
||||
pip install -r examples/xxx/requirements.txt # only needed the first time
|
||||
python -m pytest -n auto --dist=loadfile -s -v ./examples/pytorch/text-classification
|
||||
$ pip install -r examples/xxx/requirements.txt # only needed the first time
|
||||
$ python -m pytest -n auto --dist=loadfile -s -v ./examples/
|
||||
```
|
||||
In fact, that's how `make test` and `make test-examples` are implemented (sans the `pip install` line)!
|
||||
|
||||
In fact, this is actually how our `make test` and `make test-examples` commands are implemented (not including the `pip install`)!
|
||||
|
||||
You can also specify a smaller set of tests in order to test only the feature
|
||||
You can specify a smaller set of tests in order to test only the feature
|
||||
you're working on.
|
||||
|
||||
By default, slow tests are skipped but you can set the `RUN_SLOW` environment variable to
|
||||
`yes` to run them. This will download many gigabytes of models so make sure you
|
||||
have enough disk space, a good internet connection or a lot of patience!
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
Remember to specify a *path to a subfolder or a test file* to run the test. Otherwise, you'll run all the tests in the `tests` or `examples` folder, which will take a very long time!
|
||||
|
||||
</Tip>
|
||||
By default, slow tests are skipped. Set the `RUN_SLOW` environment variable to
|
||||
`yes` to run them. This will download many gigabytes of models — make sure you
|
||||
have enough disk space and a good Internet connection, or a lot of patience!
|
||||
|
||||
```bash
|
||||
RUN_SLOW=yes python -m pytest -n auto --dist=loadfile -s -v ./tests/models/my_new_model
|
||||
RUN_SLOW=yes python -m pytest -n auto --dist=loadfile -s -v ./examples/pytorch/text-classification
|
||||
$ RUN_SLOW=yes python -m pytest -n auto --dist=loadfile -s -v ./tests/
|
||||
$ RUN_SLOW=yes python -m pytest -n auto --dist=loadfile -s -v ./examples/
|
||||
```
|
||||
|
||||
Like the slow tests, there are other environment variables available which not enabled by default during testing:
|
||||
- `RUN_CUSTOM_TOKENIZERS`: Enables tests for custom tokenizers.
|
||||
- `RUN_PT_FLAX_CROSS_TESTS`: Enables tests for PyTorch + Flax integration.
|
||||
- `RUN_PT_TF_CROSS_TESTS`: Enables tests for TensorFlow + PyTorch integration.
|
||||
|
||||
More environment variables and additional information can be found in the [testing_utils.py](src/transformers/testing_utils.py).
|
||||
Likewise, set the `RUN_CUSTOM_TOKENIZERS` environment variable to `yes` to run
|
||||
tests for custom tokenizers, which don't run by default either.
|
||||
|
||||
🤗 Transformers uses `pytest` as a test runner only. It doesn't use any
|
||||
`pytest`-specific features in the test suite itself.
|
||||
@ -352,43 +357,44 @@ This means `unittest` is fully supported. Here's how to run tests with
|
||||
`unittest`:
|
||||
|
||||
```bash
|
||||
python -m unittest discover -s tests -t . -v
|
||||
python -m unittest discover -s examples -t examples -v
|
||||
$ python -m unittest discover -s tests -t . -v
|
||||
$ python -m unittest discover -s examples -t examples -v
|
||||
```
|
||||
|
||||
|
||||
### Style guide
|
||||
|
||||
For documentation strings, 🤗 Transformers follows the [Google Python Style Guide](https://google.github.io/styleguide/pyguide.html).
|
||||
Check our [documentation writing guide](https://github.com/huggingface/transformers/tree/main/docs#writing-documentation---specification)
|
||||
For documentation strings, 🤗 Transformers follows the [google style](https://google.github.io/styleguide/pyguide.html).
|
||||
Check our [documentation writing guide](https://github.com/huggingface/transformers/tree/master/docs#writing-documentation---specification)
|
||||
for more information.
|
||||
|
||||
#### This guide was heavily inspired by the awesome [scikit-learn guide to contributing](https://github.com/scikit-learn/scikit-learn/blob/master/CONTRIBUTING.md)
|
||||
|
||||
|
||||
### Develop on Windows
|
||||
|
||||
On Windows (unless you're working in [Windows Subsystem for Linux](https://learn.microsoft.com/en-us/windows/wsl/) or WSL), you need to configure git to transform Windows `CRLF` line endings to Linux `LF` line endings:
|
||||
On windows, you need to configure git to transform Windows `CRLF` line endings to Linux `LF` line endings:
|
||||
|
||||
```bash
|
||||
git config core.autocrlf input
|
||||
```
|
||||
`git config core.autocrlf input`
|
||||
|
||||
One way to run the `make` command on Windows is with MSYS2:
|
||||
One way one can run the make command on Window is to pass by MSYS2:
|
||||
|
||||
1. [Download MSYS2](https://www.msys2.org/), and we assume it's installed in `C:\msys64`.
|
||||
2. Open the command line `C:\msys64\msys2.exe` (it should be available from the **Start** menu).
|
||||
3. Run in the shell: `pacman -Syu` and install `make` with `pacman -S make`.
|
||||
1. [Download MSYS2](https://www.msys2.org/), we assume to have it installed in C:\msys64
|
||||
2. Open the command line C:\msys64\msys2.exe (it should be available from the start menu)
|
||||
3. Run in the shell: `pacman -Syu` and install make with `pacman -S make`
|
||||
4. Add `C:\msys64\usr\bin` to your PATH environment variable.
|
||||
|
||||
You can now use `make` from any terminal (PowerShell, cmd.exe, etc.)! 🎉
|
||||
You can now use `make` from any terminal (Powershell, cmd.exe, etc) 🎉
|
||||
|
||||
### Sync a forked repository with upstream main (the Hugging Face repository)
|
||||
### Syncing forked master with upstream (HuggingFace) master
|
||||
|
||||
When updating the main branch of a forked repository, please follow these steps to avoid pinging the upstream repository which adds reference notes to each upstream PR, and sends unnecessary notifications to the developers involved in these PRs.
|
||||
|
||||
1. When possible, avoid syncing with the upstream using a branch and PR on the forked repository. Instead, merge directly into the forked main.
|
||||
To avoid pinging the upstream repository which adds reference notes to each upstream PR and sends unnecessary notifications to the developers involved in these PRs,
|
||||
when syncing the master branch of a forked repository, please, follow these steps:
|
||||
1. When possible, avoid syncing with the upstream using a branch and PR on the forked repository. Instead merge directly into the forked master.
|
||||
2. If a PR is absolutely necessary, use the following steps after checking out your branch:
|
||||
|
||||
```bash
|
||||
git checkout -b your-branch-for-syncing
|
||||
git pull --squash --no-commit upstream main
|
||||
git commit -m '<your message without GitHub references>'
|
||||
git push --set-upstream origin your-branch-for-syncing
|
||||
```
|
||||
```
|
||||
$ git checkout -b your-branch-for-syncing
|
||||
$ git pull --squash --no-commit upstream master
|
||||
$ git commit -m '<your message without GitHub references>'
|
||||
$ git push --set-upstream origin your-branch-for-syncing
|
||||
```
|
||||
|
||||
14
ISSUES.md
14
ISSUES.md
@ -18,7 +18,7 @@ limitations under the License.
|
||||
|
||||
This is an Open Source Project so please be mindful that like in any other project of this kind there is no obligation to answer all requests for help.
|
||||
|
||||
However, we want to encourage you to ask for help whenever you think it's needed! We are happy about every question we get because it allows us to better understand your needs, possible misunderstandings, and most importantly a way for you to help us make this library better. That being said, this document's main purpose is to provide guidelines at how you can formulate your requests to increase your chances to be understood and to get support.
|
||||
However, we want to encourage you to ask for help whenever you think it's needed! We are happy about every question we get because it allows us to better understand your needs, possible misunderstandings, and most importantly a way for you to help us make this library better. That being said, this document's main purpose is to provide guidelines at how you can formulate your requests to increase your chances to be understood and to get support.
|
||||
|
||||
There are two main venues to receive support: [the forums](https://discuss.huggingface.co/) and [the GitHub issues](https://github.com/huggingface/transformers/issues).
|
||||
|
||||
@ -71,8 +71,8 @@ You are not required to read the following guidelines before opening an issue. H
|
||||
File "/transformers/src/transformers/__init__.py", line 34, in <module>
|
||||
from . import dependency_versions_check
|
||||
File "/transformers/src/transformers/dependency_versions_check.py", line 34, in <module>
|
||||
from .utils import is_tokenizers_available
|
||||
File "/transformers/src/transformers/utils/import_utils.py", line 40, in <module>
|
||||
from .file_utils import is_tokenizers_available
|
||||
File "/transformers/src/transformers/file_utils.py", line 40, in <module>
|
||||
from tqdm.auto import tqdm
|
||||
ModuleNotFoundError: No module named 'tqdm.auto'
|
||||
```
|
||||
@ -124,8 +124,8 @@ You are not required to read the following guidelines before opening an issue. H
|
||||
File "/transformers/src/transformers/__init__.py", line 34, in <module>
|
||||
from . import dependency_versions_check
|
||||
File "/transformers/src/transformers/dependency_versions_check.py", line 34, in <module>
|
||||
from .utils import is_tokenizers_available
|
||||
File "/transformers/src/transformers/utils/import_utils.py", line 40, in <module>
|
||||
from .file_utils import is_tokenizers_available
|
||||
File "/transformers/src/transformers/file_utils.py", line 40, in <module>
|
||||
from tqdm.auto import tqdm
|
||||
ModuleNotFoundError: No module named 'tqdm.auto'
|
||||
```
|
||||
@ -152,13 +152,13 @@ You are not required to read the following guidelines before opening an issue. H
|
||||
|
||||
```bash
|
||||
cd examples/seq2seq
|
||||
torchrun --nproc_per_node=2 ./finetune_trainer.py \
|
||||
python -m torch.distributed.launch --nproc_per_node=2 ./finetune_trainer.py \
|
||||
--model_name_or_path sshleifer/distill-mbart-en-ro-12-4 --data_dir wmt_en_ro \
|
||||
--output_dir output_dir --overwrite_output_dir \
|
||||
--do_train --n_train 500 --num_train_epochs 1 \
|
||||
--per_device_train_batch_size 1 --freeze_embeds \
|
||||
--src_lang en_XX --tgt_lang ro_RO --task translation \
|
||||
--fp16
|
||||
--fp16 --sharded_ddp
|
||||
```
|
||||
|
||||
If you don't break it up, one has to scroll horizontally which often makes it quite difficult to quickly see what's happening.
|
||||
|
||||
1
MANIFEST.in
Normal file
1
MANIFEST.in
Normal file
@ -0,0 +1 @@
|
||||
include LICENSE
|
||||
42
Makefile
42
Makefile
@ -1,18 +1,17 @@
|
||||
.PHONY: deps_table_update modified_only_fixup extra_style_checks quality style fixup fix-copies test test-examples
|
||||
.PHONY: deps_table_update modified_only_fixup extra_quality_checks quality style fixup fix-copies test test-examples docs
|
||||
|
||||
# make sure to test the local checkout in scripts and not the pre-installed one (don't use quotes!)
|
||||
export PYTHONPATH = src
|
||||
|
||||
check_dirs := examples tests src utils
|
||||
|
||||
exclude_folders := examples/research_projects
|
||||
|
||||
modified_only_fixup:
|
||||
$(eval modified_py_files := $(shell python utils/get_modified_files.py $(check_dirs)))
|
||||
@if test -n "$(modified_py_files)"; then \
|
||||
echo "Checking/fixing $(modified_py_files)"; \
|
||||
ruff check $(modified_py_files) --fix --exclude $(exclude_folders); \
|
||||
ruff format $(modified_py_files) --exclude $(exclude_folders);\
|
||||
black $(modified_py_files); \
|
||||
isort $(modified_py_files); \
|
||||
flake8 $(modified_py_files); \
|
||||
else \
|
||||
echo "No library .py files were modified"; \
|
||||
fi
|
||||
@ -40,36 +39,28 @@ repo-consistency:
|
||||
python utils/check_dummies.py
|
||||
python utils/check_repo.py
|
||||
python utils/check_inits.py
|
||||
python utils/check_config_docstrings.py
|
||||
python utils/check_config_attributes.py
|
||||
python utils/check_doctest_list.py
|
||||
python utils/update_metadata.py --check-only
|
||||
python utils/check_docstrings.py
|
||||
python utils/check_support_list.py
|
||||
python utils/tests_fetcher.py --sanity_check
|
||||
|
||||
# this target runs checks on all files
|
||||
|
||||
quality:
|
||||
@python -c "from transformers import *" || (echo '🚨 import failed, this means you introduced unprotected imports! 🚨'; exit 1)
|
||||
ruff check $(check_dirs) setup.py conftest.py
|
||||
ruff format --check $(check_dirs) setup.py conftest.py
|
||||
black --check $(check_dirs)
|
||||
isort --check-only $(check_dirs)
|
||||
python utils/custom_init_isort.py --check_only
|
||||
python utils/sort_auto_mappings.py --check_only
|
||||
python utils/check_doc_toc.py
|
||||
|
||||
flake8 $(check_dirs)
|
||||
python utils/style_doc.py src/transformers docs/source --max_len 119 --check_only
|
||||
|
||||
# Format source code automatically and check is there are any problems left that need manual fixing
|
||||
|
||||
extra_style_checks:
|
||||
python utils/custom_init_isort.py
|
||||
python utils/sort_auto_mappings.py
|
||||
python utils/check_doc_toc.py --fix_and_overwrite
|
||||
python utils/style_doc.py src/transformers docs/source --max_len 119
|
||||
|
||||
# this target runs checks on all files and potentially modifies some of them
|
||||
|
||||
style:
|
||||
ruff check $(check_dirs) setup.py conftest.py --fix --exclude $(exclude_folders)
|
||||
ruff format $(check_dirs) setup.py conftest.py --exclude $(exclude_folders)
|
||||
black $(check_dirs)
|
||||
isort $(check_dirs)
|
||||
${MAKE} autogenerate_code
|
||||
${MAKE} extra_style_checks
|
||||
|
||||
@ -83,8 +74,6 @@ fix-copies:
|
||||
python utils/check_copies.py --fix_and_overwrite
|
||||
python utils/check_table.py --fix_and_overwrite
|
||||
python utils/check_dummies.py --fix_and_overwrite
|
||||
python utils/check_doctest_list.py --fix_and_overwrite
|
||||
python utils/check_docstrings.py --fix_and_overwrite
|
||||
|
||||
# Run tests for the library
|
||||
|
||||
@ -115,10 +104,3 @@ post-release:
|
||||
|
||||
post-patch:
|
||||
python utils/release.py --post_release --patch
|
||||
|
||||
build-release:
|
||||
rm -rf dist
|
||||
rm -rf build
|
||||
python setup.py bdist_wheel
|
||||
python setup.py sdist
|
||||
python utils/check_build.py
|
||||
|
||||
286
README.md
286
README.md
@ -15,20 +15,15 @@ limitations under the License.
|
||||
-->
|
||||
|
||||
<p align="center">
|
||||
<picture>
|
||||
<source media="(prefers-color-scheme: dark)" srcset="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-dark.svg">
|
||||
<source media="(prefers-color-scheme: light)" srcset="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-light.svg">
|
||||
<img alt="Hugging Face Transformers Library" src="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-light.svg" width="352" height="59" style="max-width: 100%;">
|
||||
</picture>
|
||||
<br/>
|
||||
<br/>
|
||||
</p>
|
||||
|
||||
<br>
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers_logo_name.png" width="400"/>
|
||||
<br>
|
||||
<p>
|
||||
<p align="center">
|
||||
<a href="https://circleci.com/gh/huggingface/transformers">
|
||||
<img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/main">
|
||||
<img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/master">
|
||||
</a>
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/LICENSE">
|
||||
<a href="https://github.com/huggingface/transformers/blob/master/LICENSE">
|
||||
<img alt="GitHub" src="https://img.shields.io/github/license/huggingface/transformers.svg?color=blue">
|
||||
</a>
|
||||
<a href="https://huggingface.co/docs/transformers/index">
|
||||
@ -37,7 +32,7 @@ limitations under the License.
|
||||
<a href="https://github.com/huggingface/transformers/releases">
|
||||
<img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/transformers.svg">
|
||||
</a>
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/CODE_OF_CONDUCT.md">
|
||||
<a href="https://github.com/huggingface/transformers/blob/master/CODE_OF_CONDUCT.md">
|
||||
<img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg">
|
||||
</a>
|
||||
<a href="https://zenodo.org/badge/latestdoi/155220641"><img src="https://zenodo.org/badge/155220641.svg" alt="DOI"></a>
|
||||
@ -46,19 +41,10 @@ limitations under the License.
|
||||
<h4 align="center">
|
||||
<p>
|
||||
<b>English</b> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hans.md">简体中文</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hant.md">繁體中文</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_ko.md">한국어</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_es.md">Español</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_ja.md">日本語</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_hd.md">हिन्दी</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_ru.md">Русский</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_pt-br.md">Рortuguês</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_te.md">తెలుగు</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_fr.md">Français</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_de.md">Deutsch</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_vi.md">Tiếng Việt</a> |
|
||||
</p>
|
||||
<a href="https://github.com/huggingface/transformers/blob/master/README_zh-hans.md">简体中文</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/master/README_zh-hant.md">繁體中文</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/master/README_ko.md">한국어</a>
|
||||
<p>
|
||||
</h4>
|
||||
|
||||
<h3 align="center">
|
||||
@ -73,7 +59,7 @@ limitations under the License.
|
||||
|
||||
These models can be applied on:
|
||||
|
||||
* 📝 Text, for tasks like text classification, information extraction, question answering, summarization, translation, and text generation, in over 100 languages.
|
||||
* 📝 Text, for tasks like text classification, information extraction, question answering, summarization, translation, text generation, in over 100 languages.
|
||||
* 🖼️ Images, for tasks like image classification, object detection, and segmentation.
|
||||
* 🗣️ Audio, for tasks like speech recognition and audio classification.
|
||||
|
||||
@ -89,57 +75,30 @@ You can test most of our models directly on their pages from the [model hub](htt
|
||||
|
||||
Here are a few examples:
|
||||
|
||||
In Natural Language Processing:
|
||||
- [Masked word completion with BERT](https://huggingface.co/google-bert/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France)
|
||||
- [Named Entity Recognition with Electra](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city)
|
||||
- [Text generation with Mistral](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2)
|
||||
- [Natural Language Inference with RoBERTa](https://huggingface.co/FacebookAI/roberta-large-mnli?text=The+dog+was+lost.+Nobody+lost+any+animal)
|
||||
In Natural Language Processing:
|
||||
- [Masked word completion with BERT](https://huggingface.co/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France)
|
||||
- [Name Entity Recognition with Electra](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city)
|
||||
- [Text generation with GPT-2](https://huggingface.co/gpt2?text=A+long+time+ago%2C+)
|
||||
- [Natural Language Inference with RoBERTa](https://huggingface.co/roberta-large-mnli?text=The+dog+was+lost.+Nobody+lost+any+animal)
|
||||
- [Summarization with BART](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct)
|
||||
- [Question answering with DistilBERT](https://huggingface.co/distilbert/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species)
|
||||
- [Translation with T5](https://huggingface.co/google-t5/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin)
|
||||
- [Question answering with DistilBERT](https://huggingface.co/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species)
|
||||
- [Translation with T5](https://huggingface.co/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin)
|
||||
|
||||
In Computer Vision:
|
||||
- [Image classification with ViT](https://huggingface.co/google/vit-base-patch16-224)
|
||||
- [Object Detection with DETR](https://huggingface.co/facebook/detr-resnet-50)
|
||||
- [Semantic Segmentation with SegFormer](https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512)
|
||||
- [Panoptic Segmentation with Mask2Former](https://huggingface.co/facebook/mask2former-swin-large-coco-panoptic)
|
||||
- [Depth Estimation with Depth Anything](https://huggingface.co/docs/transformers/main/model_doc/depth_anything)
|
||||
- [Video Classification with VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)
|
||||
- [Universal Segmentation with OneFormer](https://huggingface.co/shi-labs/oneformer_ade20k_dinat_large)
|
||||
- [Image Segmentation with DETR](https://huggingface.co/facebook/detr-resnet-50-panoptic)
|
||||
|
||||
In Audio:
|
||||
- [Automatic Speech Recognition with Whisper](https://huggingface.co/openai/whisper-large-v3)
|
||||
- [Automatic Speech Recognition with Wav2Vec2](https://huggingface.co/facebook/wav2vec2-base-960h)
|
||||
- [Keyword Spotting with Wav2Vec2](https://huggingface.co/superb/wav2vec2-base-superb-ks)
|
||||
- [Audio Classification with Audio Spectrogram Transformer](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593)
|
||||
|
||||
In Multimodal tasks:
|
||||
- [Table Question Answering with TAPAS](https://huggingface.co/google/tapas-base-finetuned-wtq)
|
||||
- [Visual Question Answering with ViLT](https://huggingface.co/dandelin/vilt-b32-finetuned-vqa)
|
||||
- [Image captioning with LLaVa](https://huggingface.co/llava-hf/llava-1.5-7b-hf)
|
||||
- [Zero-shot Image Classification with SigLIP](https://huggingface.co/google/siglip-so400m-patch14-384)
|
||||
- [Document Question Answering with LayoutLM](https://huggingface.co/impira/layoutlm-document-qa)
|
||||
- [Zero-shot Video Classification with X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)
|
||||
- [Zero-shot Object Detection with OWLv2](https://huggingface.co/docs/transformers/en/model_doc/owlv2)
|
||||
- [Zero-shot Image Segmentation with CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)
|
||||
- [Automatic Mask Generation with SAM](https://huggingface.co/docs/transformers/model_doc/sam)
|
||||
|
||||
|
||||
## 100 projects using Transformers
|
||||
|
||||
Transformers is more than a toolkit to use pretrained models: it's a community of projects built around it and the
|
||||
Hugging Face Hub. We want Transformers to enable developers, researchers, students, professors, engineers, and anyone
|
||||
else to build their dream projects.
|
||||
|
||||
In order to celebrate the 100,000 stars of transformers, we have decided to put the spotlight on the
|
||||
community, and we have created the [awesome-transformers](./awesome-transformers.md) page which lists 100
|
||||
incredible projects built in the vicinity of transformers.
|
||||
|
||||
If you own or use a project that you believe should be part of the list, please open a PR to add it!
|
||||
**[Write With Transformer](https://transformer.huggingface.co)**, built by the Hugging Face team, is the official demo of this repo’s text generation capabilities.
|
||||
|
||||
## If you are looking for custom support from the Hugging Face team
|
||||
|
||||
<a target="_blank" href="https://huggingface.co/support">
|
||||
<img alt="HuggingFace Expert Acceleration Program" src="https://cdn-media.huggingface.co/marketing/transformers/new-support-improved.png" style="max-width: 600px; border: 1px solid #eee; border-radius: 4px; box-shadow: 0 1px 2px 0 rgba(0, 0, 0, 0.05);">
|
||||
<img alt="HuggingFace Expert Acceleration Program" src="https://huggingface.co/front/thumbnails/support.png" style="max-width: 600px; border: 1px solid #eee; border-radius: 4px; box-shadow: 0 1px 2px 0 rgba(0, 0, 0, 0.05);">
|
||||
</a><br>
|
||||
|
||||
## Quick tour
|
||||
@ -155,74 +114,49 @@ To immediately use a model on a given input (text, image, audio, ...), we provid
|
||||
[{'label': 'POSITIVE', 'score': 0.9996980428695679}]
|
||||
```
|
||||
|
||||
The second line of code downloads and caches the pretrained model used by the pipeline, while the third evaluates it on the given text. Here, the answer is "positive" with a confidence of 99.97%.
|
||||
The second line of code downloads and caches the pretrained model used by the pipeline, while the third evaluates it on the given text. Here the answer is "positive" with a confidence of 99.97%.
|
||||
|
||||
Many tasks have a pre-trained `pipeline` ready to go, in NLP but also in computer vision and speech. For example, we can easily extract detected objects in an image:
|
||||
Many NLP tasks have a pre-trained `pipeline` ready to go. For example, we can easily extract question answers given context:
|
||||
|
||||
``` python
|
||||
>>> import requests
|
||||
>>> from PIL import Image
|
||||
>>> from transformers import pipeline
|
||||
|
||||
# Download an image with cute cats
|
||||
>>> url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample.png"
|
||||
>>> image_data = requests.get(url, stream=True).raw
|
||||
>>> image = Image.open(image_data)
|
||||
# Allocate a pipeline for question-answering
|
||||
>>> question_answerer = pipeline('question-answering')
|
||||
>>> question_answerer({
|
||||
... 'question': 'What is the name of the repository ?',
|
||||
... 'context': 'Pipeline has been included in the huggingface/transformers repository'
|
||||
... })
|
||||
{'score': 0.30970096588134766, 'start': 34, 'end': 58, 'answer': 'huggingface/transformers'}
|
||||
|
||||
# Allocate a pipeline for object detection
|
||||
>>> object_detector = pipeline('object-detection')
|
||||
>>> object_detector(image)
|
||||
[{'score': 0.9982201457023621,
|
||||
'label': 'remote',
|
||||
'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
|
||||
{'score': 0.9960021376609802,
|
||||
'label': 'remote',
|
||||
'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
|
||||
{'score': 0.9954745173454285,
|
||||
'label': 'couch',
|
||||
'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
|
||||
{'score': 0.9988006353378296,
|
||||
'label': 'cat',
|
||||
'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
|
||||
{'score': 0.9986783862113953,
|
||||
'label': 'cat',
|
||||
'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}]
|
||||
```
|
||||
|
||||
Here, we get a list of objects detected in the image, with a box surrounding the object and a confidence score. Here is the original image on the left, with the predictions displayed on the right:
|
||||
In addition to the answer, the pretrained model used here returned its confidence score, along with the start position and end position of the answer in the tokenized sentence. You can learn more about the tasks supported by the `pipeline` API in [this tutorial](https://huggingface.co/docs/transformers/task_summary).
|
||||
|
||||
<h3 align="center">
|
||||
<a><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample.png" width="400"></a>
|
||||
<a><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample_post_processed.png" width="400"></a>
|
||||
</h3>
|
||||
|
||||
You can learn more about the tasks supported by the `pipeline` API in [this tutorial](https://huggingface.co/docs/transformers/task_summary).
|
||||
|
||||
In addition to `pipeline`, to download and use any of the pretrained models on your given task, all it takes is three lines of code. Here is the PyTorch version:
|
||||
To download and use any of the pretrained models on your given task, all it takes is three lines of code. Here is the PyTorch version:
|
||||
```python
|
||||
>>> from transformers import AutoTokenizer, AutoModel
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
|
||||
>>> model = AutoModel.from_pretrained("google-bert/bert-base-uncased")
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
||||
>>> model = AutoModel.from_pretrained("bert-base-uncased")
|
||||
|
||||
>>> inputs = tokenizer("Hello world!", return_tensors="pt")
|
||||
>>> outputs = model(**inputs)
|
||||
```
|
||||
|
||||
And here is the equivalent code for TensorFlow:
|
||||
```python
|
||||
>>> from transformers import AutoTokenizer, TFAutoModel
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
|
||||
>>> model = TFAutoModel.from_pretrained("google-bert/bert-base-uncased")
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
||||
>>> model = TFAutoModel.from_pretrained("bert-base-uncased")
|
||||
|
||||
>>> inputs = tokenizer("Hello world!", return_tensors="tf")
|
||||
>>> outputs = model(**inputs)
|
||||
```
|
||||
|
||||
The tokenizer is responsible for all the preprocessing the pretrained model expects and can be called directly on a single string (as in the above examples) or a list. It will output a dictionary that you can use in downstream code or simply directly pass to your model using the ** argument unpacking operator.
|
||||
The tokenizer is responsible for all the preprocessing the pretrained model expects, and can be called directly on a single string (as in the above examples) or a list. It will output a dictionary that you can use in downstream code or simply directly pass to your model using the ** argument unpacking operator.
|
||||
|
||||
The model itself is a regular [Pytorch `nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) or a [TensorFlow `tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) (depending on your backend) which you can use as usual. [This tutorial](https://huggingface.co/docs/transformers/training) explains how to integrate such a model into a classic PyTorch or TensorFlow training loop, or how to use our `Trainer` API to quickly fine-tune on a new dataset.
|
||||
The model itself is a regular [Pytorch `nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) or a [TensorFlow `tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) (depending on your backend) which you can use normally. [This tutorial](https://huggingface.co/docs/transformers/training) explains how to integrate such a model into a classic PyTorch or TensorFlow training loop, or how to use our `Trainer` API to quickly fine-tune on a new dataset.
|
||||
|
||||
## Why should I use transformers?
|
||||
|
||||
@ -235,12 +169,12 @@ The model itself is a regular [Pytorch `nn.Module`](https://pytorch.org/docs/sta
|
||||
1. Lower compute costs, smaller carbon footprint:
|
||||
- Researchers can share trained models instead of always retraining.
|
||||
- Practitioners can reduce compute time and production costs.
|
||||
- Dozens of architectures with over 400,000 pretrained models across all modalities.
|
||||
- Dozens of architectures with over 20,000 pretrained models, some in more than 100 languages.
|
||||
|
||||
1. Choose the right framework for every part of a model's lifetime:
|
||||
- Train state-of-the-art models in 3 lines of code.
|
||||
- Move a single model between TF2.0/PyTorch/JAX frameworks at will.
|
||||
- Seamlessly pick the right framework for training, evaluation, and production.
|
||||
- Seamlessly pick the right framework for training, evaluation and production.
|
||||
|
||||
1. Easily customize a model or an example to your needs:
|
||||
- We provide examples for each architecture to reproduce the results published by its original authors.
|
||||
@ -250,21 +184,21 @@ The model itself is a regular [Pytorch `nn.Module`](https://pytorch.org/docs/sta
|
||||
## Why shouldn't I use transformers?
|
||||
|
||||
- This library is not a modular toolbox of building blocks for neural nets. The code in the model files is not refactored with additional abstractions on purpose, so that researchers can quickly iterate on each of the models without diving into additional abstractions/files.
|
||||
- The training API is not intended to work on any model but is optimized to work with the models provided by the library. For generic machine learning loops, you should use another library (possibly, [Accelerate](https://huggingface.co/docs/accelerate)).
|
||||
- While we strive to present as many use cases as possible, the scripts in our [examples folder](https://github.com/huggingface/transformers/tree/main/examples) are just that: examples. It is expected that they won't work out-of-the-box on your specific problem and that you will be required to change a few lines of code to adapt them to your needs.
|
||||
- The training API is not intended to work on any model but is optimized to work with the models provided by the library. For generic machine learning loops, you should use another library.
|
||||
- While we strive to present as many use cases as possible, the scripts in our [examples folder](https://github.com/huggingface/transformers/tree/master/examples) are just that: examples. It is expected that they won't work out-of-the box on your specific problem and that you will be required to change a few lines of code to adapt them to your needs.
|
||||
|
||||
## Installation
|
||||
|
||||
### With pip
|
||||
|
||||
This repository is tested on Python 3.8+, Flax 0.4.1+, PyTorch 1.11+, and TensorFlow 2.6+.
|
||||
This repository is tested on Python 3.6+, Flax 0.3.2+, PyTorch 1.3.1+ and TensorFlow 2.3+.
|
||||
|
||||
You should install 🤗 Transformers in a [virtual environment](https://docs.python.org/3/library/venv.html). If you're unfamiliar with Python virtual environments, check out the [user guide](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/).
|
||||
|
||||
First, create a virtual environment with the version of Python you're going to use and activate it.
|
||||
|
||||
Then, you will need to install at least one of Flax, PyTorch, or TensorFlow.
|
||||
Please refer to [TensorFlow installation page](https://www.tensorflow.org/install/), [PyTorch installation page](https://pytorch.org/get-started/locally/#start-locally) and/or [Flax](https://github.com/google/flax#quick-install) and [Jax](https://github.com/google/jax#installation) installation pages regarding the specific installation command for your platform.
|
||||
Then, you will need to install at least one of Flax, PyTorch or TensorFlow.
|
||||
Please refer to [TensorFlow installation page](https://www.tensorflow.org/install/), [PyTorch installation page](https://pytorch.org/get-started/locally/#start-locally) and/or [Flax](https://github.com/google/flax#quick-install) and [Jax](https://github.com/google/jax#installation) installation pages regarding the specific install command for your platform.
|
||||
|
||||
When one of those backends has been installed, 🤗 Transformers can be installed using pip as follows:
|
||||
|
||||
@ -276,29 +210,134 @@ If you'd like to play with the examples or need the bleeding edge of the code an
|
||||
|
||||
### With conda
|
||||
|
||||
Since Transformers version v4.0.0, we now have a conda channel: `huggingface`.
|
||||
|
||||
🤗 Transformers can be installed using conda as follows:
|
||||
|
||||
```shell script
|
||||
conda install conda-forge::transformers
|
||||
conda install -c huggingface transformers
|
||||
```
|
||||
|
||||
> **_NOTE:_** Installing `transformers` from the `huggingface` channel is deprecated.
|
||||
|
||||
Follow the installation pages of Flax, PyTorch or TensorFlow to see how to install them with conda.
|
||||
|
||||
> **_NOTE:_** On Windows, you may be prompted to activate Developer Mode in order to benefit from caching. If this is not an option for you, please let us know in [this issue](https://github.com/huggingface/huggingface_hub/issues/1062).
|
||||
|
||||
## Model architectures
|
||||
|
||||
**[All the model checkpoints](https://huggingface.co/models)** provided by 🤗 Transformers are seamlessly integrated from the huggingface.co [model hub](https://huggingface.co/models), where they are uploaded directly by [users](https://huggingface.co/users) and [organizations](https://huggingface.co/organizations).
|
||||
**[All the model checkpoints](https://huggingface.co/models)** provided by 🤗 Transformers are seamlessly integrated from the huggingface.co [model hub](https://huggingface.co) where they are uploaded directly by [users](https://huggingface.co/users) and [organizations](https://huggingface.co/organizations).
|
||||
|
||||
Current number of checkpoints: 
|
||||
|
||||
🤗 Transformers currently provides the following architectures: see [here](https://huggingface.co/docs/transformers/model_summary) for a high-level summary of each them.
|
||||
🤗 Transformers currently provides the following architectures (see [here](https://huggingface.co/docs/transformers/model_summary) for a high-level summary of each them):
|
||||
|
||||
1. **[ALBERT](https://huggingface.co/docs/transformers/model_doc/albert)** (from Google Research and the Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.
|
||||
1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (from Facebook) released with the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer.
|
||||
1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (from École polytechnique) released with the paper [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis.
|
||||
1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (from VinAI Research) released with the paper [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen.
|
||||
1. **[BEiT](https://huggingface.co/docs/transformers/model_doc/beit)** (from Microsoft) released with the paper [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) by Hangbo Bao, Li Dong, Furu Wei.
|
||||
1. **[BERT](https://huggingface.co/docs/transformers/model_doc/bert)** (from Google) released with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova.
|
||||
1. **[BERTweet](https://huggingface.co/docs/transformers/model_doc/bertweet)** (from VinAI Research) released with the paper [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) by Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen.
|
||||
1. **[BERT For Sequence Generation](https://huggingface.co/docs/transformers/model_doc/bert-generation)** (from Google) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
|
||||
1. **[BigBird-RoBERTa](https://huggingface.co/docs/transformers/model_doc/big_bird)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
|
||||
1. **[BigBird-Pegasus](https://huggingface.co/docs/transformers/model_doc/bigbird_pegasus)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
|
||||
1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
|
||||
1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
|
||||
1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (from Alexa) released with the paper [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) by Adrian de Wynter and Daniel J. Perry.
|
||||
1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (from Google Research) released with the paper [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel.
|
||||
1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (from Inria/Facebook/Sorbonne) released with the paper [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
|
||||
1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (from Google Research) released with the paper [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting.
|
||||
1. **[ConvNeXT](https://huggingface.co/docs/transformers/master/model_doc/convnext)** (from Facebook AI) released with the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie.
|
||||
1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (from OpenAI) released with the paper [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever.
|
||||
1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (from YituTech) released with the paper [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan.
|
||||
1. **[CPM](https://huggingface.co/docs/transformers/model_doc/cpm)** (from Tsinghua University) released with the paper [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) by Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun.
|
||||
1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
|
||||
1. **[Data2Vec](https://huggingface.co/docs/transformers/master/model_doc/data2vec)** (from Facebook) released with the paper [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli.
|
||||
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
|
||||
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
|
||||
1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (from Facebook) released with the paper [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou.
|
||||
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (from Facebook) released with the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
|
||||
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (from Microsoft Research) released with the paper [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
|
||||
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/master/examples/research_projects/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/master/examples/research_projects/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/master/examples/research_projects/distillation) and a German version of DistilBERT.
|
||||
1. **[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (from Facebook) released with the paper [Dense Passage Retrieval
|
||||
for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) by Vladimir Karpukhin, Barlas Oğuz, Sewon
|
||||
Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
|
||||
1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (from Google Research) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
|
||||
1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
|
||||
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
|
||||
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
|
||||
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
|
||||
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
|
||||
1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (from OpenAI) released with the paper [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/) by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**.
|
||||
1. **[GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj)** (from EleutherAI) released in the repository [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) by Ben Wang and Aran Komatsuzaki.
|
||||
1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (from EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy.
|
||||
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (from Facebook) released with the paper [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed.
|
||||
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (from Berkeley) released with the paper [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer.
|
||||
1. **[ImageGPT](https://huggingface.co/docs/transformers/master/model_doc/imagegpt)** (from OpenAI) released with the paper [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever.
|
||||
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
|
||||
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou.
|
||||
1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
|
||||
1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
|
||||
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
|
||||
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (from Studio Ousia) released with the paper [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.
|
||||
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (from Studio Ousia) released with the paper [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka.
|
||||
1. **[LXMERT](https://huggingface.co/docs/transformers/model_doc/lxmert)** (from UNC Chapel Hill) released with the paper [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal.
|
||||
1. **[M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100)** (from Facebook) released with the paper [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) by Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin.
|
||||
1. **[MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)** Machine translation models trained using [OPUS](http://opus.nlpl.eu/) data by Jörg Tiedemann. The [Marian Framework](https://marian-nmt.github.io/) is being developed by the Microsoft Translator Team.
|
||||
1. **[MaskFormer](https://huggingface.co/docs/transformers/master/model_doc/maskformer)** (from Meta and UIUC) released with the paper [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) by Bowen Cheng, Alexander G. Schwing, Alexander Kirillov.
|
||||
1. **[MBart](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
|
||||
1. **[MBart-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan.
|
||||
1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
|
||||
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
|
||||
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
|
||||
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
|
||||
1. **[Nyströmformer](https://huggingface.co/docs/transformers/master/model_doc/nystromformer)** (from the University of Wisconsin - Madison) released with the paper [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh.
|
||||
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
|
||||
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (from Deepmind) released with the paper [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) by Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira.
|
||||
1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen.
|
||||
1. **[PLBart](https://huggingface.co/docs/transformers/master/model_doc/plbart)** (from UCLA NLP) released with the paper [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) by Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang.
|
||||
1. **[PoolFormer](https://huggingface.co/docs/transformers/master/model_doc/poolformer)** (from Sea AI Labs) released with the paper [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) by Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng.
|
||||
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
|
||||
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (from NVIDIA) released with the paper [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) by Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius.
|
||||
1. **[REALM](https://huggingface.co/transformers/model_doc/realm.html)** (from Google Research) released with the paper [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) by Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang.
|
||||
1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (from Google Research) released with the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
|
||||
1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (from Google Research) released with the paper [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/abs/2010.12821) by Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder.
|
||||
1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (from Facebook), released together with the paper [RoBERTa: A Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
|
||||
1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (from ZhuiyiTechnology), released together with the paper [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/abs/2104.09864) by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu.
|
||||
1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (from NVIDIA) released with the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo.
|
||||
1. **[SEW](https://huggingface.co/docs/transformers/model_doc/sew)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
|
||||
1. **[SEW-D](https://huggingface.co/docs/transformers/model_doc/sew_d)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
|
||||
1. **[SpeechToTextTransformer](https://huggingface.co/docs/transformers/model_doc/speech_to_text)** (from Facebook), released together with the paper [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino.
|
||||
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (from Facebook), released together with the paper [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau.
|
||||
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (from Tel Aviv University), released together with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy.
|
||||
1. **[SqueezeBert](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
|
||||
1. **[Swin Transformer](https://huggingface.co/docs/transformers/master/model_doc/swin)** (from Microsoft) released with the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
|
||||
1. **[T5](https://huggingface.co/docs/transformers/model_doc/t5)** (from Google AI) released with the paper [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
|
||||
1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (from Google AI) released in the repository [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
|
||||
1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (from Google AI) released with the paper [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos.
|
||||
1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
|
||||
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (from Microsoft), released together with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
|
||||
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (from Microsoft Research) released with the paper [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.
|
||||
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (from Microsoft Research) released with the paper [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER
|
||||
AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu.
|
||||
1. **[ViLT](https://huggingface.co/docs/transformers/master/model_doc/vilt)** (from NAVER AI Lab/Kakao Enterprise/Kakao Brain) released with the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Wonjae Kim, Bokyung Son, Ildoo Kim.
|
||||
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
|
||||
1. **[ViTMAE](https://huggingface.co/docs/transformers/master/model_doc/vit_mae)** (from Meta AI) released with the paper [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick.
|
||||
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
|
||||
1. **[WavLM](https://huggingface.co/docs/transformers/master/model_doc/wavlm)** (from Microsoft Research) released with the paper [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei.
|
||||
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (from Facebook AI) released with the paper [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.
|
||||
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/master/transformers/model_doc/wav2vec2_phoneme)** (from Facebook AI) released with the paper [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) by Qiantong Xu, Alexei Baevski, Michael Auli.
|
||||
1. **[XGLM](https://huggingface.co/docs/master/transformers/model_doc/xglm)** (From Facebook AI) released with the paper [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li.
|
||||
1. **[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (from Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau.
|
||||
1. **[XLM-ProphetNet](https://huggingface.co/docs/transformers/model_doc/xlm-prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
|
||||
1. **[XLM-RoBERTa](https://huggingface.co/docs/transformers/model_doc/xlm-roberta)** (from Facebook AI), released together with the paper [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov.
|
||||
1. **[XLM-RoBERTa-XL](https://huggingface.co/docs/transformers/master/model_doc/xlm-roberta-xl)** (from Facebook AI), released together with the paper [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) by Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau.
|
||||
1. **[XLNet](https://huggingface.co/docs/transformers/model_doc/xlnet)** (from Google/CMU) released with the paper [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
|
||||
1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (from Facebook AI) released with the paper [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) by Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli.
|
||||
1. **[XLS-R](https://huggingface.co/docs/master/transformers/model_doc/xls_r)** (from Facebook AI) released with the paper [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) by Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli.
|
||||
1. **[YOSO](https://huggingface.co/docs/transformers/master/model_doc/yoso)** (from the University of Wisconsin - Madison) released with the paper [You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling](https://arxiv.org/abs/2111.09714) by Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh.
|
||||
1. Want to contribute a new model? We have added a **detailed guide and templates** to guide you in the process of adding a new model. You can find them in the [`templates`](./templates) folder of the repository. Be sure to check the [contributing guidelines](./CONTRIBUTING.md) and contact the maintainers or open an issue to collect feedbacks before starting your PR.
|
||||
|
||||
To check if each model has an implementation in Flax, PyTorch or TensorFlow, or has an associated tokenizer backed by the 🤗 Tokenizers library, refer to [this table](https://huggingface.co/docs/transformers/index#supported-frameworks).
|
||||
|
||||
These implementations have been tested on several datasets (see the example scripts) and should match the performance of the original implementations. You can find more details on performance in the Examples section of the [documentation](https://github.com/huggingface/transformers/tree/main/examples).
|
||||
These implementations have been tested on several datasets (see the example scripts) and should match the performance of the original implementations. You can find more details on performance in the Examples section of the [documentation](https://huggingface.co/docs/transformers/examples).
|
||||
|
||||
|
||||
## Learn more
|
||||
@ -307,10 +346,11 @@ These implementations have been tested on several datasets (see the example scri
|
||||
|-|-|
|
||||
| [Documentation](https://huggingface.co/docs/transformers/) | Full API documentation and tutorials |
|
||||
| [Task summary](https://huggingface.co/docs/transformers/task_summary) | Tasks supported by 🤗 Transformers |
|
||||
| [Preprocessing tutorial](https://huggingface.co/docs/transformers/preprocessing) | Using the `Tokenizer` class to prepare data for the models |
|
||||
| [Preprocessing tutorial](https://huggingface.co/docstransformers/preprocessing) | Using the `Tokenizer` class to prepare data for the models |
|
||||
| [Training and fine-tuning](https://huggingface.co/docs/transformers/training) | Using the models provided by 🤗 Transformers in a PyTorch/TensorFlow training loop and the `Trainer` API |
|
||||
| [Quick tour: Fine-tuning/usage scripts](https://github.com/huggingface/transformers/tree/main/examples) | Example scripts for fine-tuning models on a wide range of tasks |
|
||||
| [Quick tour: Fine-tuning/usage scripts](https://github.com/huggingface/transformers/tree/master/examples) | Example scripts for fine-tuning models on a wide range of tasks |
|
||||
| [Model sharing and uploading](https://huggingface.co/docs/transformers/model_sharing) | Upload and share your fine-tuned models with the community |
|
||||
| [Migration](https://huggingface.co/docs/transformers/migration) | Migrate to 🤗 Transformers from `pytorch-transformers` or `pytorch-pretrained-bert` |
|
||||
|
||||
## Citation
|
||||
|
||||
|
||||
326
README_de.md
326
README_de.md
@ -1,326 +0,0 @@
|
||||
<!---
|
||||
Copyright 2024 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
-->
|
||||
|
||||
<p align="center">
|
||||
<picture>
|
||||
<source media="(prefers-color-scheme: dark)" srcset="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-dark.svg">
|
||||
<source media="(prefers-color-scheme: light)" srcset="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-light.svg">
|
||||
<img alt="Hugging Face Transformers Library" src="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-light.svg" width="352" height="59" style="max-width: 100%;">
|
||||
</picture>
|
||||
<br/>
|
||||
<br/>
|
||||
</p>
|
||||
|
||||
<p align="center">
|
||||
<a href="https://circleci.com/gh/huggingface/transformers">
|
||||
<img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/main">
|
||||
</a>
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/LICENSE">
|
||||
<img alt="GitHub" src="https://img.shields.io/github/license/huggingface/transformers.svg?color=blue">
|
||||
</a>
|
||||
<a href="https://huggingface.co/docs/transformers/index">
|
||||
<img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/docs/transformers/index.svg?down_color=red&down_message=offline&up_message=online">
|
||||
</a>
|
||||
<a href="https://github.com/huggingface/transformers/releases">
|
||||
<img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/transformers.svg">
|
||||
</a>
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/CODE_OF_CONDUCT.md">
|
||||
<img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg">
|
||||
</a>
|
||||
<a href="https://zenodo.org/badge/latestdoi/155220641"><img src="https://zenodo.org/badge/155220641.svg" alt="DOI"></a>
|
||||
</p>
|
||||
|
||||
<h4 align="center">
|
||||
<p>
|
||||
<a href="https://github.com/huggingface/transformers/">English</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hans.md">简体中文</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hant.md">繁體中文</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_ko.md">한국어</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_es.md">Español</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_ja.md">日本語</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_hd.md">हिन्दी</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_ru.md">Русский</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_pt-br.md">Рortuguês</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_te.md">తెలుగు</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_fr.md">Français</a> |
|
||||
<b>Deutsch</b> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_vi.md">Tiếng Việt</a> |
|
||||
</p>
|
||||
</h4>
|
||||
|
||||
<h3 align="center">
|
||||
<p>Maschinelles Lernen auf dem neuesten Stand der Technik für JAX, PyTorch und TensorFlow</p>
|
||||
</h3>
|
||||
|
||||
<h3 align="center">
|
||||
<a href="https://hf.co/course"><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/course_banner.png"></a>
|
||||
</h3>
|
||||
|
||||
🤗 Transformers bietet Tausende von vortrainierten Modellen, um Aufgaben in verschiedenen Modalitäten wie Text, Bild und Audio durchzuführen.
|
||||
|
||||
Diese Modelle können angewendet werden, auf:
|
||||
|
||||
* 📝 Text - für Aufgaben wie Textklassifizierung, Informationsextraktion, Question Answering, automatische Textzusammenfassung, maschinelle Übersetzung und Textgenerierung in über 100 Sprachen.
|
||||
* 🖼️ Bilder - für Aufgaben wie Bildklassifizierung, Objekterkennung und Segmentierung.
|
||||
* 🗣️ Audio - für Aufgaben wie Spracherkennung und Audioklassifizierung.
|
||||
|
||||
Transformer-Modelle können auch Aufgaben für **mehrere Modalitäten in Kombination** durchführen, z. B. tabellenbasiertes Question Answering, optische Zeichenerkennung, Informationsextraktion aus gescannten Dokumenten, Videoklassifizierung und visuelles Question Answering.
|
||||
|
||||
🤗 Transformers bietet APIs, um diese vortrainierten Modelle schnell herunterzuladen und für einen gegebenen Text zu verwenden, sie auf Ihren eigenen Datensätzen zu feintunen und dann mit der Community in unserem [Model Hub](https://huggingface.co/models) zu teilen. Gleichzeitig ist jedes Python-Modul, das eine Architektur definiert, komplett eigenständig und kann modifiziert werden, um schnelle Forschungsexperimente zu ermöglichen.
|
||||
|
||||
🤗 Transformers unterstützt die nahtlose Integration von drei der beliebtesten Deep-Learning-Bibliotheken: [Jax](https://jax.readthedocs.io/en/latest/), [PyTorch](https://pytorch.org/) und [TensorFlow](https://www.tensorflow.org/). Trainieren Sie Ihr Modell in einem Framework und laden Sie es zur Inferenz unkompliziert mit einem anderen.
|
||||
|
||||
## Online-Demos
|
||||
|
||||
Sie können die meisten unserer Modelle direkt auf ihren Seiten im [Model Hub](https://huggingface.co/models) testen. Wir bieten auch [privates Modell-Hosting, Versionierung, & eine Inferenz-API](https://huggingface.co/pricing) für öffentliche und private Modelle an.
|
||||
|
||||
Hier sind einige Beispiele:
|
||||
|
||||
In der Computerlinguistik:
|
||||
|
||||
- [Maskierte Wortvervollständigung mit BERT](https://huggingface.co/google-bert/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France)
|
||||
- [Eigennamenerkennung mit Electra](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city)
|
||||
- [Textgenerierung mit GPT-2](https://huggingface.co/openai-community/gpt2?text=A+long+time+ago%2C+)
|
||||
- [Natural Language Inference mit RoBERTa](https://huggingface.co/FacebookAI/roberta-large-mnli?text=The+dog+was+lost.+Nobody+lost+any+animal)
|
||||
- [Automatische Textzusammenfassung mit BART](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct)
|
||||
- [Question Answering mit DistilBERT](https://huggingface.co/distilbert/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species)
|
||||
- [Maschinelle Übersetzung mit T5](https://huggingface.co/google-t5/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin)
|
||||
|
||||
In der Computer Vision:
|
||||
|
||||
- [Bildklassifizierung mit ViT](https://huggingface.co/google/vit-base-patch16-224)
|
||||
- [Objekterkennung mit DETR](https://huggingface.co/facebook/detr-resnet-50)
|
||||
- [Semantische Segmentierung mit SegFormer](https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512)
|
||||
- [Panoptische Segmentierung mit MaskFormer](https://huggingface.co/facebook/maskformer-swin-small-coco)
|
||||
- [Depth Estimation mit DPT](https://huggingface.co/docs/transformers/model_doc/dpt)
|
||||
- [Videoklassifizierung mit VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)
|
||||
- [Universelle Segmentierung mit OneFormer](https://huggingface.co/shi-labs/oneformer_ade20k_dinat_large)
|
||||
|
||||
Im Audio-Bereich:
|
||||
|
||||
- [Automatische Spracherkennung mit Wav2Vec2](https://huggingface.co/facebook/wav2vec2-base-960h)
|
||||
- [Keyword Spotting mit Wav2Vec2](https://huggingface.co/superb/wav2vec2-base-superb-ks)
|
||||
- [Audioklassifizierung mit Audio Spectrogram Transformer](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593)
|
||||
|
||||
In multimodalen Aufgaben:
|
||||
|
||||
- [Tabellenbasiertes Question Answering mit TAPAS](https://huggingface.co/google/tapas-base-finetuned-wtq)
|
||||
- [Visuelles Question Answering mit ViLT](https://huggingface.co/dandelin/vilt-b32-finetuned-vqa)
|
||||
- [Zero-Shot-Bildklassifizierung mit CLIP](https://huggingface.co/openai/clip-vit-large-patch14)
|
||||
- [Dokumentenbasiertes Question Answering mit LayoutLM](https://huggingface.co/impira/layoutlm-document-qa)
|
||||
- [Zero-Shot-Videoklassifizierung mit X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)
|
||||
|
||||
## 100 Projekte, die 🤗 Transformers verwenden
|
||||
|
||||
🤗 Transformers ist mehr als nur ein Toolkit zur Verwendung von vortrainierten Modellen: Es ist eine Gemeinschaft von Projekten, die darum herum und um den Hugging Face Hub aufgebaut sind. Wir möchten, dass 🤗 Transformers es Entwicklern, Forschern, Studenten, Professoren, Ingenieuren und jedem anderen ermöglicht, ihre Traumprojekte zu realisieren.
|
||||
|
||||
Um die 100.000 Sterne von 🤗 Transformers zu feiern, haben wir beschlossen, die Gemeinschaft in den Mittelpunkt zu stellen und die Seite [awesome-transformers](./awesome-transformers.md) erstellt, die 100 unglaubliche Projekte auflistet, die zusammen mit 🤗 Transformers realisiert wurden.
|
||||
|
||||
Wenn Sie ein Projekt besitzen oder nutzen, von dem Sie glauben, dass es Teil der Liste sein sollte, öffnen Sie bitte einen PR, um es hinzuzufügen!
|
||||
|
||||
## Wenn Sie individuelle Unterstützung vom Hugging Face-Team möchten
|
||||
|
||||
<a target="_blank" href="https://huggingface.co/support">
|
||||
<img alt="HuggingFace Expert Acceleration Program" src="https://cdn-media.huggingface.co/marketing/transformers/new-support-improved.png" style="max-width: 600px; border: 1px solid #eee; border-radius: 4px; box-shadow: 0 1px 2px 0 rgba(0, 0, 0, 0.05);">
|
||||
</a><br>
|
||||
|
||||
## Schnelleinstieg
|
||||
|
||||
Um sofort ein Modell mit einer bestimmten Eingabe (Text, Bild, Audio ...) zu verwenden, bieten wir die `pipeline`-API an. Pipelines kombinieren ein vortrainiertes Modell mit der jeweiligen Vorverarbeitung, die während dessen Trainings verwendet wurde. Hier sehen Sie, wie man schnell eine Pipeline verwenden kann, um positive und negative Texte zu klassifizieren:
|
||||
|
||||
```python
|
||||
>>> from transformers import pipeline
|
||||
|
||||
# Zuweisung einer Pipeline für die Sentiment-Analyse
|
||||
>>> classifier = pipeline('sentiment-analysis')
|
||||
>>> classifier('We are very happy to introduce pipeline to the transformers repository.')
|
||||
[{'label': 'POSITIVE', 'score': 0.9996980428695679}]
|
||||
```
|
||||
|
||||
Die zweite Codezeile lädt und cacht das vortrainierte Modell, das von der Pipeline verwendet wird, während die dritte es an dem gegebenen Text evaluiert. Hier ist die Antwort "positiv" mit einer Konfidenz von 99,97 %.
|
||||
|
||||
Viele Aufgaben, sowohl in der Computerlinguistik als auch in der Computer Vision und Sprachverarbeitung, haben eine vortrainierte `pipeline`, die sofort einsatzbereit ist. Z. B. können wir leicht erkannte Objekte in einem Bild extrahieren:
|
||||
|
||||
``` python
|
||||
>>> import requests
|
||||
>>> from PIL import Image
|
||||
>>> from transformers import pipeline
|
||||
|
||||
# Download eines Bildes mit süßen Katzen
|
||||
>>> url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample.png"
|
||||
>>> image_data = requests.get(url, stream=True).raw
|
||||
>>> image = Image.open(image_data)
|
||||
|
||||
# Zuweisung einer Pipeline für die Objekterkennung
|
||||
>>> object_detector = pipeline('object-detection')
|
||||
>>> object_detector(image)
|
||||
[{'score': 0.9982201457023621,
|
||||
'label': 'remote',
|
||||
'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
|
||||
{'score': 0.9960021376609802,
|
||||
'label': 'remote',
|
||||
'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
|
||||
{'score': 0.9954745173454285,
|
||||
'label': 'couch',
|
||||
'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
|
||||
{'score': 0.9988006353378296,
|
||||
'label': 'cat',
|
||||
'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
|
||||
{'score': 0.9986783862113953,
|
||||
'label': 'cat',
|
||||
'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}]
|
||||
```
|
||||
|
||||
Hier erhalten wir eine Liste von Objekten, die im Bild erkannt wurden, mit einer Markierung, die das Objekt eingrenzt, und einem zugehörigen Konfidenzwert. Folgend ist das Originalbild links und die Vorhersagen rechts dargestellt:
|
||||
|
||||
<h3 align="center">
|
||||
<a><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample.png" width="400"></a>
|
||||
<a><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample_post_processed.png" width="400"></a>
|
||||
</h3>
|
||||
|
||||
Sie können mehr über die von der `pipeline`-API unterstützten Aufgaben in [diesem Tutorial](https://huggingface.co/docs/transformers/task_summary) erfahren.
|
||||
|
||||
Zusätzlich zur `pipeline` benötigt es nur drei Zeilen Code, um eines der vortrainierten Modelle für Ihre Aufgabe herunterzuladen und zu verwenden. Hier ist der Code für die PyTorch-Version:
|
||||
|
||||
```python
|
||||
>>> from transformers import AutoTokenizer, AutoModel
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
|
||||
>>> model = AutoModel.from_pretrained("google-bert/bert-base-uncased")
|
||||
|
||||
>>> inputs = tokenizer("Hello world!", return_tensors="pt")
|
||||
>>> outputs = model(**inputs)
|
||||
```
|
||||
|
||||
Und hier ist der entsprechende Code für TensorFlow:
|
||||
|
||||
```python
|
||||
>>> from transformers import AutoTokenizer, TFAutoModel
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
|
||||
>>> model = TFAutoModel.from_pretrained("google-bert/bert-base-uncased")
|
||||
|
||||
>>> inputs = tokenizer("Hello world!", return_tensors="tf")
|
||||
>>> outputs = model(**inputs)
|
||||
```
|
||||
|
||||
Der Tokenizer ist für die gesamte Vorverarbeitung, die das vortrainierte Modell benötigt, verantwortlich und kann direkt auf einem einzelnen String (wie in den obigen Beispielen) oder einer Liste ausgeführt werden. Er gibt ein Dictionary aus, das Sie im darauffolgenden Code verwenden oder einfach direkt Ihrem Modell übergeben können, indem Sie den ** Operator zum Entpacken von Argumenten einsetzen.
|
||||
|
||||
Das Modell selbst ist ein reguläres [PyTorch `nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) oder ein [TensorFlow `tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) (abhängig von Ihrem Backend), das Sie wie gewohnt verwenden können. [Dieses Tutorial](https://huggingface.co/docs/transformers/training) erklärt, wie man ein solches Modell in eine klassische PyTorch- oder TensorFlow-Trainingsschleife integrieren kann oder wie man unsere `Trainer`-API verwendet, um es schnell auf einem neuen Datensatz zu feintunen.
|
||||
|
||||
## Warum sollten Sie 🤗 Transformers verwenden?
|
||||
|
||||
1. Benutzerfreundliche Modelle auf dem neuesten Stand der Technik:
|
||||
- Hohe Leistung bei Aufgaben zu Natural Language Understanding & Generation, Computer Vision und Audio.
|
||||
- Niedrige Einstiegshürde für Bildungskräfte und Praktiker.
|
||||
- Wenige benutzerseitige Abstraktionen mit nur drei zu lernenden Klassen.
|
||||
- Eine einheitliche API für die Verwendung aller unserer vortrainierten Modelle.
|
||||
|
||||
1. Geringere Rechenkosten, kleinerer CO<sub>2</sub>-Fußabdruck:
|
||||
- Forscher können trainierte Modelle teilen, anstatt sie immer wieder neu zu trainieren.
|
||||
- Praktiker können die Rechenzeit und Produktionskosten reduzieren.
|
||||
- Dutzende Architekturen mit über 400.000 vortrainierten Modellen über alle Modalitäten hinweg.
|
||||
|
||||
1. Wählen Sie das richtige Framework für jeden Lebensabschnitt eines Modells:
|
||||
- Trainieren Sie Modelle auf neustem Stand der Technik in nur drei Codezeilen.
|
||||
- Verwenden Sie ein einzelnes Modell nach Belieben mit TF2.0-/PyTorch-/JAX-Frameworks.
|
||||
- Wählen Sie nahtlos das richtige Framework für Training, Evaluation und Produktiveinsatz.
|
||||
|
||||
1. Passen Sie ein Modell oder Beispiel leicht an Ihre Bedürfnisse an:
|
||||
- Wir bieten Beispiele für jede Architektur an, um die von ihren ursprünglichen Autoren veröffentlichten Ergebnisse zu reproduzieren.
|
||||
- Modellinterna sind so einheitlich wie möglich verfügbar gemacht.
|
||||
- Modelldateien können unabhängig von der Bibliothek für schnelle Experimente verwendet werden.
|
||||
|
||||
## Warum sollten Sie 🤗 Transformers nicht verwenden?
|
||||
|
||||
- Diese Bibliothek ist kein modularer Werkzeugkasten mit Bausteinen für neuronale Netze. Der Code in den Modelldateien ist absichtlich nicht mit zusätzlichen Abstraktionen refaktorisiert, sodass Forscher schnell mit jedem der Modelle iterieren können, ohne sich in zusätzliche Abstraktionen/Dateien vertiefen zu müssen.
|
||||
- Die Trainings-API ist nicht dafür gedacht, mit beliebigen Modellen zu funktionieren, sondern ist für die Verwendung mit den von der Bibliothek bereitgestellten Modellen optimiert. Für generische Trainingsschleifen von maschinellem Lernen sollten Sie eine andere Bibliothek verwenden (möglicherweise [Accelerate](https://huggingface.co/docs/accelerate)).
|
||||
- Auch wenn wir bestrebt sind, so viele Anwendungsfälle wie möglich zu veranschaulichen, sind die Beispielskripte in unserem [`examples`](./examples) Ordner genau das: Beispiele. Es ist davon auszugehen, dass sie nicht sofort auf Ihr spezielles Problem anwendbar sind und einige Codezeilen geändert werden müssen, um sie für Ihre Bedürfnisse anzupassen.
|
||||
|
||||
## Installation
|
||||
|
||||
### Mit pip
|
||||
|
||||
Dieses Repository wurde mit Python 3.8+, Flax 0.4.1+, PyTorch 1.11+ und TensorFlow 2.6+ getestet.
|
||||
|
||||
Sie sollten 🤗 Transformers in einer [virtuellen Umgebung](https://docs.python.org/3/library/venv.html) installieren. Wenn Sie mit virtuellen Python-Umgebungen nicht vertraut sind, schauen Sie sich den [Benutzerleitfaden](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/) an.
|
||||
|
||||
Erstellen und aktivieren Sie zuerst eine virtuelle Umgebung mit der Python-Version, die Sie verwenden möchten.
|
||||
|
||||
Dann müssen Sie entweder Flax, PyTorch oder TensorFlow installieren. Bitte beziehe dich entsprechend auf die jeweiligen Installationsanleitungen für [TensorFlow](https://www.tensorflow.org/install/), [PyTorch](https://pytorch.org/get-started/locally/#start-locally), und/oder [Flax](https://github.com/google/flax#quick-install) und [Jax](https://github.com/google/jax#installation) für den spezifischen Installationsbefehl für Ihre Plattform.
|
||||
|
||||
Wenn eines dieser Backends installiert ist, kann 🤗 Transformers wie folgt mit pip installiert werden:
|
||||
|
||||
```bash
|
||||
pip install transformers
|
||||
```
|
||||
|
||||
Wenn Sie mit den Beispielen experimentieren möchten oder die neueste Version des Codes benötigen und nicht auf eine neue Veröffentlichung warten können, müssen Sie [die Bibliothek von der Quelle installieren](https://huggingface.co/docs/transformers/installation#installing-from-source).
|
||||
|
||||
### Mit conda
|
||||
|
||||
🤗 Transformers kann wie folgt mit conda installiert werden:
|
||||
|
||||
```shell script
|
||||
conda install conda-forge::transformers
|
||||
```
|
||||
|
||||
> **_HINWEIS:_** Die Installation von `transformers` aus dem `huggingface`-Kanal ist veraltet.
|
||||
|
||||
Folgen Sie den Installationsanleitungen von Flax, PyTorch oder TensorFlow, um zu sehen, wie sie mit conda installiert werden können.
|
||||
|
||||
> **_HINWEIS:_** Auf Windows werden Sie möglicherweise aufgefordert, den Entwicklermodus zu aktivieren, um von Caching zu profitieren. Wenn das für Sie keine Option ist, lassen Sie es uns bitte in [diesem Issue](https://github.com/huggingface/huggingface_hub/issues/1062) wissen.
|
||||
|
||||
## Modellarchitekturen
|
||||
|
||||
**[Alle Modell-Checkpoints](https://huggingface.co/models)**, die von 🤗 Transformers bereitgestellt werden, sind nahtlos aus dem huggingface.co [Model Hub](https://huggingface.co/models) integriert, wo sie direkt von [Benutzern](https://huggingface.co/users) und [Organisationen](https://huggingface.co/organizations) hochgeladen werden.
|
||||
|
||||
Aktuelle Anzahl der Checkpoints: 
|
||||
|
||||
🤗 Transformers bietet derzeit die folgenden Architekturen an: siehe [hier](https://huggingface.co/docs/transformers/model_summary) für eine jeweilige Übersicht.
|
||||
|
||||
Um zu überprüfen, ob jedes Modell eine Implementierung in Flax, PyTorch oder TensorFlow hat oder über einen zugehörigen Tokenizer verfügt, der von der 🤗 Tokenizers-Bibliothek unterstützt wird, schauen Sie auf [diese Tabelle](https://huggingface.co/docs/transformers/index#supported-frameworks).
|
||||
|
||||
Diese Implementierungen wurden mit mehreren Datensätzen getestet (siehe Beispielskripte) und sollten den Leistungen der ursprünglichen Implementierungen entsprechen. Weitere Details zur Leistung finden Sie im Abschnitt der Beispiele in der [Dokumentation](https://github.com/huggingface/transformers/tree/main/examples).
|
||||
|
||||
## Mehr erfahren
|
||||
|
||||
| Abschnitt | Beschreibung |
|
||||
|-|-|
|
||||
| [Dokumentation](https://huggingface.co/docs/transformers/) | Vollständige API-Dokumentation und Tutorials |
|
||||
| [Zusammenfassung der Aufgaben](https://huggingface.co/docs/transformers/task_summary) | Von 🤗 Transformers unterstützte Aufgaben |
|
||||
| [Vorverarbeitungs-Tutorial](https://huggingface.co/docs/transformers/preprocessing) | Verwendung der `Tokenizer`-Klasse zur Vorverarbeitung der Daten für die Modelle |
|
||||
| [Training und Feintuning](https://huggingface.co/docs/transformers/training) | Verwendung der von 🤗 Transformers bereitgestellten Modelle in einer PyTorch-/TensorFlow-Trainingsschleife und der `Trainer`-API |
|
||||
| [Schnelleinstieg: Feintuning/Anwendungsskripte](https://github.com/huggingface/transformers/tree/main/examples) | Beispielskripte für das Feintuning von Modellen für eine breite Palette von Aufgaben |
|
||||
| [Modellfreigabe und -upload](https://huggingface.co/docs/transformers/model_sharing) | Laden Sie Ihre feingetunten Modelle hoch und teilen Sie sie mit der Community |
|
||||
|
||||
## Zitation
|
||||
|
||||
Wir haben jetzt ein [Paper](https://www.aclweb.org/anthology/2020.emnlp-demos.6/), das Sie für die 🤗 Transformers-Bibliothek zitieren können:
|
||||
|
||||
```bibtex
|
||||
@inproceedings{wolf-etal-2020-transformers,
|
||||
title = "Transformers: State-of-the-Art Natural Language Processing",
|
||||
author = "Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and Rémi Louf and Morgan Funtowicz and Joe Davison and Sam Shleifer and Patrick von Platen and Clara Ma and Yacine Jernite and Julien Plu and Canwen Xu and Teven Le Scao and Sylvain Gugger and Mariama Drame and Quentin Lhoest and Alexander M. Rush",
|
||||
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
|
||||
month = oct,
|
||||
year = "2020",
|
||||
address = "Online",
|
||||
publisher = "Association for Computational Linguistics",
|
||||
url = "https://www.aclweb.org/anthology/2020.emnlp-demos.6",
|
||||
pages = "38--45"
|
||||
}
|
||||
```
|
||||
304
README_es.md
304
README_es.md
@ -1,304 +0,0 @@
|
||||
<!---
|
||||
Copyright 2020 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
-->
|
||||
|
||||
<p align="center">
|
||||
<br>
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers_logo_name.png" width="400"/>
|
||||
<br>
|
||||
</p>
|
||||
<p align="center">
|
||||
<a href="https://circleci.com/gh/huggingface/transformers">
|
||||
<img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/main">
|
||||
</a>
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/LICENSE">
|
||||
<img alt="GitHub" src="https://img.shields.io/github/license/huggingface/transformers.svg?color=blue">
|
||||
</a>
|
||||
<a href="https://huggingface.co/docs/transformers/index">
|
||||
<img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/docs/transformers/index.svg?down_color=red&down_message=offline&up_message=online">
|
||||
</a>
|
||||
<a href="https://github.com/huggingface/transformers/releases">
|
||||
<img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/transformers.svg">
|
||||
</a>
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/CODE_OF_CONDUCT.md">
|
||||
<img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg">
|
||||
</a>
|
||||
<a href="https://zenodo.org/badge/latestdoi/155220641"><img src="https://zenodo.org/badge/155220641.svg" alt="DOI"></a>
|
||||
</p>
|
||||
|
||||
<h4 align="center">
|
||||
<p>
|
||||
<a href="https://github.com/huggingface/transformers/">English</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hans.md">简体中文</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hant.md">繁體中文</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_ko.md">한국어</a> |
|
||||
<b>Español</b> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_ja.md">日本語</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_hd.md">हिन्दी</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_ru.md">Русский</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_pt-br.md">Рortuguês</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_te.md">తెలుగు</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_fr.md">Français</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_de.md">Deutsch</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_vi.md">Tiếng Việt</a> |
|
||||
</p>
|
||||
</h4>
|
||||
|
||||
<h3 align="center">
|
||||
<p>Lo último de Machine Learning para JAX, PyTorch y TensorFlow</p>
|
||||
</h3>
|
||||
|
||||
<h3 align="center">
|
||||
<a href="https://hf.co/course"><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/course_banner.png"></a>
|
||||
</h3>
|
||||
|
||||
🤗 Transformers aporta miles de modelos preentrenados para realizar tareas en diferentes modalidades como texto, visión, y audio.
|
||||
|
||||
Estos modelos pueden ser aplicados en:
|
||||
|
||||
* 📝 Texto, para tareas como clasificación de texto, extracción de información, responder preguntas, resumir, traducir, generación de texto, en más de 100 idiomas.
|
||||
* 🖼️ Imágenes, para tareas como clasificación de imágenes, detección the objetos, y segmentación.
|
||||
* 🗣️ Audio, para tareas como reconocimiento de voz y clasificación de audio.
|
||||
|
||||
Los modelos de Transformer también pueden realizar tareas en **muchas modalidades combinadas**, como responder preguntas, reconocimiento de carácteres ópticos,extracción de información de documentos escaneados, clasificación de video, y respuesta de preguntas visuales.
|
||||
|
||||
🤗 Transformers aporta APIs para descargar rápidamente y usar estos modelos preentrenados en un texto dado, afinarlos en tus propios sets de datos y compartirlos con la comunidad en nuestro [centro de modelos](https://huggingface.co/models). Al mismo tiempo, cada módulo de Python que define una arquitectura es completamente independiente y se puede modificar para permitir experimentos de investigación rápidos.
|
||||
|
||||
🤗 Transformers está respaldado por las tres bibliotecas de deep learning más populares — [Jax](https://jax.readthedocs.io/en/latest/), [PyTorch](https://pytorch.org/) y [TensorFlow](https://www.tensorflow.org/) — con una perfecta integración entre ellos. Es sencillo entrenar sus modelos con uno antes de cargarlos para la inferencia con el otro.
|
||||
|
||||
## Demostraciones en línea
|
||||
|
||||
Puedes probar la mayoría de nuestros modelos directamente en sus páginas desde el [centro de modelos](https://huggingface.co/models). También ofrecemos [alojamiento de modelos privados, control de versiones y una API de inferencia](https://huggingface.co/pricing) para modelos públicos y privados.
|
||||
|
||||
Aquí hay algunos ejemplos:
|
||||
|
||||
En procesamiento del lenguaje natural:
|
||||
- [Terminación de palabras enmascaradas con BERT](https://huggingface.co/google-bert/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France)
|
||||
- [Reconocimiento del nombre de la entidad con Electra](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city)
|
||||
- [Generación de texto con GPT-2](https://huggingface.co/openai-community/gpt2?text=A+long+time+ago%2C+)
|
||||
- [Inferencia del lenguaje natural con RoBERTa](https://huggingface.co/FacebookAI/roberta-large-mnli?text=The+dog+was+lost.+Nobody+lost+any+animal)
|
||||
- [Resumen con BART](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct)
|
||||
- [Responder a preguntas con DistilBERT](https://huggingface.co/distilbert/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species)
|
||||
- [Traducción con T5](https://huggingface.co/google-t5/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin)
|
||||
|
||||
En visión de ordenador:
|
||||
- [Clasificación de imágenes con ViT](https://huggingface.co/google/vit-base-patch16-224)
|
||||
- [Detección de objetos con DETR](https://huggingface.co/facebook/detr-resnet-50)
|
||||
- [Segmentación semántica con SegFormer](https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512)
|
||||
- [Segmentación panóptica con DETR](https://huggingface.co/facebook/detr-resnet-50-panoptic)
|
||||
- [Segmentación Universal con OneFormer (Segmentación Semántica, de Instancia y Panóptica con un solo modelo)](https://huggingface.co/shi-labs/oneformer_ade20k_dinat_large)
|
||||
|
||||
En Audio:
|
||||
- [Reconocimiento de voz automático con Wav2Vec2](https://huggingface.co/facebook/wav2vec2-base-960h)
|
||||
- [Detección de palabras clave con Wav2Vec2](https://huggingface.co/superb/wav2vec2-base-superb-ks)
|
||||
|
||||
En tareas multimodales:
|
||||
- [Respuesta visual a preguntas con ViLT](https://huggingface.co/dandelin/vilt-b32-finetuned-vqa)
|
||||
|
||||
**[Escribe con Transformer](https://transformer.huggingface.co)**, construido por el equipo de Hugging Face, es la demostración oficial de las capacidades de generación de texto de este repositorio.
|
||||
|
||||
## Si está buscando soporte personalizado del equipo de Hugging Face
|
||||
|
||||
<a target="_blank" href="https://huggingface.co/support">
|
||||
<img alt="HuggingFace Expert Acceleration Program" src="https://cdn-media.huggingface.co/marketing/transformers/new-support-improved.png" style="max-width: 600px; border: 1px solid #eee; border-radius: 4px; box-shadow: 0 1px 2px 0 rgba(0, 0, 0, 0.05);">
|
||||
</a><br>
|
||||
|
||||
## Tour rápido
|
||||
|
||||
Para usar inmediatamente un modelo en una entrada determinada (texto, imagen, audio, ...), proporcionamos la API de `pipeline`. Los pipelines agrupan un modelo previamente entrenado con el preprocesamiento que se usó durante el entrenamiento de ese modelo. Aquí se explica cómo usar rápidamente un pipeline para clasificar textos positivos frente a negativos:
|
||||
|
||||
```python
|
||||
>>> from transformers import pipeline
|
||||
|
||||
# Allocate a pipeline for sentiment-analysis
|
||||
>>> classifier = pipeline('sentiment-analysis')
|
||||
>>> classifier('We are very happy to introduce pipeline to the transformers repository.')
|
||||
[{'label': 'POSITIVE', 'score': 0.9996980428695679}]
|
||||
```
|
||||
|
||||
La segunda línea de código descarga y almacena en caché el modelo previamente entrenado que usa la canalización, mientras que la tercera lo evalúa en el texto dado. Aquí la respuesta es "positiva" con una confianza del 99,97%.
|
||||
|
||||
Muchas tareas tienen un `pipeline` preentrenado listo para funcionar, en NLP pero también en visión por ordenador y habla. Por ejemplo, podemos extraer fácilmente los objetos detectados en una imagen:
|
||||
|
||||
``` python
|
||||
>>> import requests
|
||||
>>> from PIL import Image
|
||||
>>> from transformers import pipeline
|
||||
|
||||
# Download an image with cute cats
|
||||
>>> url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample.png"
|
||||
>>> image_data = requests.get(url, stream=True).raw
|
||||
>>> image = Image.open(image_data)
|
||||
|
||||
# Allocate a pipeline for object detection
|
||||
>>> object_detector = pipeline('object_detection')
|
||||
>>> object_detector(image)
|
||||
[{'score': 0.9982201457023621,
|
||||
'label': 'remote',
|
||||
'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
|
||||
{'score': 0.9960021376609802,
|
||||
'label': 'remote',
|
||||
'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
|
||||
{'score': 0.9954745173454285,
|
||||
'label': 'couch',
|
||||
'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
|
||||
{'score': 0.9988006353378296,
|
||||
'label': 'cat',
|
||||
'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
|
||||
{'score': 0.9986783862113953,
|
||||
'label': 'cat',
|
||||
'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}]
|
||||
```
|
||||
|
||||
Aquí obtenemos una lista de objetos detectados en la imagen, con un cuadro que rodea el objeto y una puntuación de confianza. Aquí está la imagen original a la derecha, con las predicciones mostradas a la izquierda:
|
||||
|
||||
<h3 align="center">
|
||||
<a><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample.png" width="400"></a>
|
||||
<a><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample_post_processed.png" width="400"></a>
|
||||
</h3>
|
||||
|
||||
Puedes obtener más información sobre las tareas admitidas por la API de `pipeline` en [este tutorial](https://huggingface.co/docs/transformers/task_summary).
|
||||
|
||||
Además de `pipeline`, para descargar y usar cualquiera de los modelos previamente entrenados en su tarea dada, todo lo que necesita son tres líneas de código. Aquí está la versión de PyTorch:
|
||||
```python
|
||||
>>> from transformers import AutoTokenizer, AutoModel
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
|
||||
>>> model = AutoModel.from_pretrained("google-bert/bert-base-uncased")
|
||||
|
||||
>>> inputs = tokenizer("Hello world!", return_tensors="pt")
|
||||
>>> outputs = model(**inputs)
|
||||
```
|
||||
|
||||
Y aquí está el código equivalente para TensorFlow:
|
||||
```python
|
||||
>>> from transformers import AutoTokenizer, TFAutoModel
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
|
||||
>>> model = TFAutoModel.from_pretrained("google-bert/bert-base-uncased")
|
||||
|
||||
>>> inputs = tokenizer("Hello world!", return_tensors="tf")
|
||||
>>> outputs = model(**inputs)
|
||||
```
|
||||
|
||||
El tokenizador es responsable de todo el preprocesamiento que espera el modelo preentrenado y se puede llamar directamente en una sola cadena (como en los ejemplos anteriores) o en una lista. Este dará como resultado un diccionario que puedes usar en el código descendente o simplemente pasarlo directamente a su modelo usando el operador de desempaquetado de argumento **.
|
||||
|
||||
El modelo en si es un [Pytorch `nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) normal o un [TensorFlow `tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) (dependiendo De tu backend) que puedes usar de forma habitual. [Este tutorial](https://huggingface.co/docs/transformers/training) explica cómo integrar un modelo de este tipo en un ciclo de entrenamiento PyTorch o TensorFlow clásico, o como usar nuestra API `Trainer` para ajustar rápidamente un nuevo conjunto de datos.
|
||||
|
||||
## ¿Por qué debo usar transformers?
|
||||
|
||||
1. Modelos de última generación fáciles de usar:
|
||||
- Alto rendimiento en comprensión y generación de lenguaje natural, visión artificial y tareas de audio.
|
||||
- Baja barrera de entrada para educadores y profesionales.
|
||||
- Pocas abstracciones de cara al usuario con solo tres clases para aprender.
|
||||
- Una API unificada para usar todos nuestros modelos preentrenados.
|
||||
|
||||
1. Menores costes de cómputo, menor huella de carbono:
|
||||
- Los investigadores pueden compartir modelos entrenados en lugar de siempre volver a entrenar.
|
||||
- Los profesionales pueden reducir el tiempo de cómputo y los costos de producción.
|
||||
- Docenas de arquitecturas con más de 60 000 modelos preentrenados en todas las modalidades.
|
||||
|
||||
1. Elija el marco adecuado para cada parte de la vida útil de un modelo:
|
||||
- Entrene modelos de última generación en 3 líneas de código.
|
||||
- Mueva un solo modelo entre los marcos TF2.0/PyTorch/JAX a voluntad.
|
||||
- Elija sin problemas el marco adecuado para la formación, la evaluación y la producción.
|
||||
|
||||
1. Personalice fácilmente un modelo o un ejemplo según sus necesidades:
|
||||
- Proporcionamos ejemplos de cada arquitectura para reproducir los resultados publicados por sus autores originales..
|
||||
- Los internos del modelo están expuestos lo más consistentemente posible..
|
||||
- Los archivos modelo se pueden usar independientemente de la biblioteca para experimentos rápidos.
|
||||
|
||||
## ¿Por qué no debería usar transformers?
|
||||
|
||||
- Esta biblioteca no es una caja de herramientas modular de bloques de construcción para redes neuronales. El código en los archivos del modelo no se refactoriza con abstracciones adicionales a propósito, de modo que los investigadores puedan iterar rápidamente en cada uno de los modelos sin sumergirse en abstracciones/archivos adicionales.
|
||||
- La API de entrenamiento no está diseñada para funcionar en ningún modelo, pero está optimizada para funcionar con los modelos proporcionados por la biblioteca. Para bucles genéricos de aprendizaje automático, debe usar otra biblioteca (posiblemente, [Accelerate](https://huggingface.co/docs/accelerate)).
|
||||
- Si bien nos esforzamos por presentar tantos casos de uso como sea posible, los scripts en nuestra [carpeta de ejemplos](https://github.com/huggingface/transformers/tree/main/examples) son solo eso: ejemplos. Se espera que no funcionen de forma inmediata en su problema específico y que deba cambiar algunas líneas de código para adaptarlas a sus necesidades.
|
||||
|
||||
## Instalación
|
||||
|
||||
### Con pip
|
||||
|
||||
Este repositorio está probado en Python 3.8+, Flax 0.4.1+, PyTorch 1.11+ y TensorFlow 2.6+.
|
||||
|
||||
Deberías instalar 🤗 Transformers en un [entorno virtual](https://docs.python.org/3/library/venv.html). Si no estas familiarizado con los entornos virtuales de Python, consulta la [guía de usuario](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/).
|
||||
|
||||
Primero, crea un entorno virtual con la versión de Python que vas a usar y actívalo.
|
||||
|
||||
Luego, deberás instalar al menos uno entre Flax, PyTorch o TensorFlow.
|
||||
Por favor, ve a la [página de instalación de TensorFlow](https://www.tensorflow.org/install/), [página de instalación de PyTorch](https://pytorch.org/get-started/locally/#start-locally) y/o las páginas de instalación de [Flax](https://github.com/google/flax#quick-install) y [Jax](https://github.com/google/jax#installation) con respecto al comando de instalación específico para tu plataforma.
|
||||
|
||||
Cuando se ha instalado uno de esos backends, los 🤗 Transformers se pueden instalar usando pip de la siguiente manera:
|
||||
|
||||
```bash
|
||||
pip install transformers
|
||||
```
|
||||
|
||||
Si deseas jugar con los ejemplos o necesitas la última versión del código y no puedes esperar a una nueva versión, tienes que [instalar la librería de la fuente](https://huggingface.co/docs/transformers/installation#installing-from-source).
|
||||
|
||||
### Con conda
|
||||
|
||||
🤗 Transformers se puede instalar usando conda de la siguiente manera:
|
||||
|
||||
```shell script
|
||||
conda install conda-forge::transformers
|
||||
```
|
||||
|
||||
> **_NOTA:_** Instalar `transformers` desde el canal `huggingface` está obsoleto.
|
||||
|
||||
Sigue las páginas de instalación de Flax, PyTorch o TensorFlow para ver cómo instalarlos con conda.
|
||||
|
||||
> **_NOTA:_** En Windows, es posible que se le pida que active el modo de desarrollador para beneficiarse del almacenamiento en caché. Si esta no es una opción para usted, háganoslo saber en [esta issue](https://github.com/huggingface/huggingface_hub/issues/1062).
|
||||
|
||||
## Arquitecturas modelo
|
||||
|
||||
**[Todos los puntos de control del modelo](https://huggingface.co/models)** aportados por 🤗 Transformers están perfectamente integrados desde huggingface.co [Centro de modelos](https://huggingface.co) donde son subidos directamente por los [usuarios](https://huggingface.co/users) y [organizaciones](https://huggingface.co/organizations).
|
||||
|
||||
Número actual de puntos de control: 
|
||||
|
||||
🤗 Transformers actualmente proporciona las siguientes arquitecturas: ver [aquí](https://huggingface.co/docs/transformers/model_summary) para un resumen de alto nivel de cada uno de ellas.
|
||||
|
||||
Para comprobar si cada modelo tiene una implementación en Flax, PyTorch o TensorFlow, o tiene un tokenizador asociado respaldado por la librería 🤗 Tokenizers, ve a [esta tabla](https://huggingface.co/docs/transformers/index#supported-frameworks).
|
||||
|
||||
Estas implementaciones se han probado en varios conjuntos de datos (consulte los scripts de ejemplo) y deberían coincidir con el rendimiento de las implementaciones originales. Puede encontrar más detalles sobre el rendimiento en la sección Examples de la [documentación](https://github.com/huggingface/transformers/tree/main/examples).
|
||||
|
||||
|
||||
## Aprender más
|
||||
|
||||
| Sección | Descripción |
|
||||
|-|-|
|
||||
| [Documentación](https://huggingface.co/docs/transformers/) | Toda la documentación de la API y tutoriales |
|
||||
| [Resumen de tareas](https://huggingface.co/docs/transformers/task_summary) | Tareas soportadas 🤗 Transformers |
|
||||
| [Tutorial de preprocesamiento](https://huggingface.co/docs/transformers/preprocessing) | Usando la clase `Tokenizer` para preparar datos para los modelos |
|
||||
| [Entrenamiento y puesta a punto](https://huggingface.co/docs/transformers/training) | Usando los modelos aportados por 🤗 Transformers en un bucle de entreno de PyTorch/TensorFlow y la API de `Trainer` |
|
||||
| [Recorrido rápido: secuencias de comandos de ajuste/uso](https://github.com/huggingface/transformers/tree/main/examples) | Scripts de ejemplo para ajustar modelos en una amplia gama de tareas |
|
||||
| [Compartir y subir modelos](https://huggingface.co/docs/transformers/model_sharing) | Carga y comparte tus modelos perfeccionados con la comunidad |
|
||||
| [Migración](https://huggingface.co/docs/transformers/migration) | Migra a 🤗 Transformers desde `pytorch-transformers` o `pytorch-pretrained-bert` |
|
||||
|
||||
## Citación
|
||||
|
||||
Ahora nosotros tenemos un [paper](https://www.aclweb.org/anthology/2020.emnlp-demos.6/) que puedes citar para la librería de 🤗 Transformers:
|
||||
```bibtex
|
||||
@inproceedings{wolf-etal-2020-transformers,
|
||||
title = "Transformers: State-of-the-Art Natural Language Processing",
|
||||
author = "Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and Rémi Louf and Morgan Funtowicz and Joe Davison and Sam Shleifer and Patrick von Platen and Clara Ma and Yacine Jernite and Julien Plu and Canwen Xu and Teven Le Scao and Sylvain Gugger and Mariama Drame and Quentin Lhoest and Alexander M. Rush",
|
||||
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
|
||||
month = oct,
|
||||
year = "2020",
|
||||
address = "Online",
|
||||
publisher = "Association for Computational Linguistics",
|
||||
url = "https://www.aclweb.org/anthology/2020.emnlp-demos.6",
|
||||
pages = "38--45"
|
||||
}
|
||||
```
|
||||
324
README_fr.md
324
README_fr.md
@ -1,324 +0,0 @@
|
||||
<!---
|
||||
Copyright 2020 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
-->
|
||||
|
||||
<p align="center">
|
||||
<picture>
|
||||
<source media="(prefers-color-scheme: dark)" srcset="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-dark.svg">
|
||||
<source media="(prefers-color-scheme: light)" srcset="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-light.svg">
|
||||
<img alt="Bibliothèque Hugging Face Transformers" src="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-light.svg" width="352" height="59" style="max-width: 100%;">
|
||||
</picture>
|
||||
<br/>
|
||||
<br/>
|
||||
</p>
|
||||
|
||||
<p align="center">
|
||||
<a href="https://circleci.com/gh/huggingface/transformers">
|
||||
<img alt="Construction" src="https://img.shields.io/circleci/build/github/huggingface/transformers/main">
|
||||
</a>
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/LICENSE">
|
||||
<img alt="GitHub" src="https://img.shields.io/github/license/huggingface/transformers.svg?color=blue">
|
||||
</a>
|
||||
<a href="https://huggingface.co/docs/transformers/index">
|
||||
<img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/docs/transformers/index.svg?down_color=red&down_message=offline&up_message=online">
|
||||
</a>
|
||||
<a href="https://github.com/huggingface/transformers/releases">
|
||||
<img alt="Version GitHub" src="https://img.shields.io/github/release/huggingface/transformers.svg">
|
||||
</a>
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/CODE_OF_CONDUCT.md">
|
||||
<img alt="Pacte des contributeurs" src="https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg">
|
||||
</a>
|
||||
<a href="https://zenodo.org/badge/latestdoi/155220641"><img src="https://zenodo.org/badge/155220641.svg" alt="DOI"></a>
|
||||
</p>
|
||||
|
||||
<h4 align="center">
|
||||
<p>
|
||||
<a href="https://github.com/huggingface/transformers/">English</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hans.md">简体中文</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hant.md">繁體中文</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_ko.md">한국어</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_es.md">Español</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_ja.md">日本語</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_hd.md">हिन्दी</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_ru.md">Русский</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_pt-br.md">Рortuguês</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_te.md">తెలుగు</a> |
|
||||
<b>Français</b> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_de.md">Deutsch</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_vi.md">Tiếng Việt</a> |
|
||||
</p>
|
||||
</h4>
|
||||
|
||||
<h3 align="center">
|
||||
<p>Apprentissage automatique de pointe pour JAX, PyTorch et TensorFlow</p>
|
||||
</h3>
|
||||
|
||||
<h3 align="center">
|
||||
<a href="https://hf.co/course"><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/course_banner.png"></a>
|
||||
</h3>
|
||||
|
||||
🤗 Transformers fournit des milliers de modèles pré-entraînés pour effectuer des tâches sur différentes modalités telles que le texte, la vision et l'audio.
|
||||
|
||||
Ces modèles peuvent être appliqués à :
|
||||
|
||||
* 📝 Texte, pour des tâches telles que la classification de texte, l'extraction d'informations, la réponse aux questions, le résumé, la traduction et la génération de texte, dans plus de 100 langues.
|
||||
* 🖼️ Images, pour des tâches telles que la classification d'images, la détection d'objets et la segmentation.
|
||||
* 🗣️ Audio, pour des tâches telles que la reconnaissance vocale et la classification audio.
|
||||
|
||||
Les modèles de transformer peuvent également effectuer des tâches sur **plusieurs modalités combinées**, telles que la réponse aux questions sur des tableaux, la reconnaissance optique de caractères, l'extraction d'informations à partir de documents numérisés, la classification vidéo et la réponse aux questions visuelles.
|
||||
|
||||
🤗 Transformers fournit des API pour télécharger et utiliser rapidement ces modèles pré-entraînés sur un texte donné, les affiner sur vos propres ensembles de données, puis les partager avec la communauté sur notre [hub de modèles](https://huggingface.co/models). En même temps, chaque module Python définissant une architecture est complètement indépendant et peut être modifié pour permettre des expériences de recherche rapides.
|
||||
|
||||
🤗 Transformers est soutenu par les trois bibliothèques d'apprentissage profond les plus populaires — [Jax](https://jax.readthedocs.io/en/latest/), [PyTorch](https://pytorch.org/) et [TensorFlow](https://www.tensorflow.org/) — avec une intégration transparente entre eux. Il est facile de former vos modèles avec l'un avant de les charger pour l'inférence avec l'autre.
|
||||
|
||||
## Démos en ligne
|
||||
|
||||
Vous pouvez tester la plupart de nos modèles directement sur leurs pages du [hub de modèles](https://huggingface.co/models). Nous proposons également [l'hébergement privé de modèles, le versionning et une API d'inférence](https://huggingface.co/pricing) pour des modèles publics et privés.
|
||||
|
||||
Voici quelques exemples :
|
||||
|
||||
En traitement du langage naturel :
|
||||
- [Complétion de mots masqués avec BERT](https://huggingface.co/google-bert/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France)
|
||||
- [Reconnaissance d'entités nommées avec Electra](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city)
|
||||
- [Génération de texte avec GPT-2](https://huggingface.co/openai-community/gpt2?text=A+long+time+ago%2C+)
|
||||
- [Inférence de langage naturel avec RoBERTa](https://huggingface.co/FacebookAI/roberta-large-mnli?text=The+dog+was+lost.+Nobody+lost+any+animal)
|
||||
- [Résumé avec BART](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct)
|
||||
- [Réponse aux questions avec DistilBERT](https://huggingface.co/distilbert/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species)
|
||||
- [Traduction avec T5](https://huggingface.co/google-t5/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin)
|
||||
|
||||
En vision par ordinateur :
|
||||
- [Classification d'images avec ViT](https://huggingface.co/google/vit-base-patch16-224)
|
||||
- [Détection d'objets avec DETR](https://huggingface.co/facebook/detr-resnet-50)
|
||||
- [Segmentation sémantique avec SegFormer](https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512)
|
||||
- [Segmentation panoptique avec MaskFormer](https://huggingface.co/facebook/maskformer-swin-small-coco)
|
||||
- [Estimation de profondeur avec DPT](https://huggingface.co/docs/transformers/model_doc/dpt)
|
||||
- [Classification vidéo avec VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)
|
||||
- [Segmentation universelle avec OneFormer](https://huggingface.co/shi-labs/oneformer_ade20k_dinat_large)
|
||||
|
||||
En audio :
|
||||
- [Reconnaissance automatique de la parole avec Wav2Vec2](https://huggingface.co/facebook/wav2vec2-base-960h)
|
||||
- [Spotting de mots-clés avec Wav2Vec2](https://huggingface.co/superb/wav2vec2-base-superb-ks)
|
||||
- [Classification audio avec Audio Spectrogram Transformer](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593)
|
||||
|
||||
Dans les tâches multimodales :
|
||||
- [Réponses aux questions sur table avec TAPAS](https://huggingface.co/google/tapas-base-finetuned-wtq)
|
||||
- [Réponses aux questions visuelles avec ViLT](https://huggingface.co/dandelin/vilt-b32-finetuned-vqa)
|
||||
- [Classification d'images sans étiquette avec CLIP](https://huggingface.co/openai/clip-vit-large-patch14)
|
||||
- [Réponses aux questions sur les documents avec LayoutLM](https://huggingface.co/impira/layoutlm-document-qa)
|
||||
- [Classification vidéo sans étiquette avec X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)
|
||||
|
||||
|
||||
## 100 projets utilisant Transformers
|
||||
|
||||
Transformers est plus qu'une boîte à outils pour utiliser des modèles pré-entraînés : c'est une communauté de projets construits autour de lui et du Hub Hugging Face. Nous voulons que Transformers permette aux développeurs, chercheurs, étudiants, professeurs, ingénieurs et à quiconque d'imaginer et de réaliser leurs projets de rêve.
|
||||
|
||||
Afin de célébrer les 100 000 étoiles de transformers, nous avons décidé de mettre en avant la communauté et avons créé la page [awesome-transformers](./awesome-transformers.md) qui répertorie 100 projets incroyables construits autour de transformers.
|
||||
|
||||
Si vous possédez ou utilisez un projet que vous pensez devoir figurer dans la liste, veuillez ouvrir une pull request pour l'ajouter !
|
||||
|
||||
## Si vous recherchez un support personnalisé de la part de l'équipe Hugging Face
|
||||
|
||||
<a target="_blank" href="https://huggingface.co/support">
|
||||
<img alt="Programme d'accélération des experts HuggingFace" src="https://cdn-media.huggingface.co/marketing/transformers/new-support-improved.png" style="max-width: 600px; border: 1px solid #eee; border-radius: 4px; box-shadow: 0 1px 2px 0 rgba(0, 0, 0, 0.05);">
|
||||
</a><br>
|
||||
|
||||
## Tour rapide
|
||||
|
||||
Pour utiliser immédiatement un modèle sur une entrée donnée (texte, image, audio,...), nous fournissons l'API `pipeline`. Les pipelines regroupent un modèle pré-entraîné avec la préparation des données qui a été utilisée lors de l'entraînement de ce modèle. Voici comment utiliser rapidement un pipeline pour classer des textes en positif ou négatif :
|
||||
|
||||
```python
|
||||
>>> from transformers import pipeline
|
||||
|
||||
# Allouer un pipeline pour l'analyse de sentiment
|
||||
>>> classifieur = pipeline('sentiment-analysis')
|
||||
>>> classifieur("Nous sommes très heureux d'introduire le pipeline dans le référentiel transformers.")
|
||||
[{'label': 'POSITIF', 'score': 0.9996980428695679}]
|
||||
```
|
||||
|
||||
La deuxième ligne de code télécharge et met en cache le modèle pré-entraîné utilisé par le pipeline, tandis que la troisième l'évalue sur le texte donné. Ici, la réponse est "positive" avec une confiance de 99,97%.
|
||||
|
||||
De nombreuses tâches ont une pipeline pré-entraîné prêt à l'emploi, en NLP, mais aussi en vision par ordinateur et en parole. Par exemple, nous pouvons facilement extraire les objets détectés dans une image :
|
||||
|
||||
```python
|
||||
>>> import requests
|
||||
>>> from PIL import Image
|
||||
>>> from transformers import pipeline
|
||||
|
||||
# Télécharger une image avec de jolis chats
|
||||
>>> url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample.png"
|
||||
>>> donnees_image = requests.get(url, stream=True).raw
|
||||
>>> image = Image.open(donnees_image)
|
||||
|
||||
# Allouer un pipeline pour la détection d'objets
|
||||
>>> detecteur_objets = pipeline('object-detection')
|
||||
>>> detecteur_objets(image)
|
||||
[{'score': 0.9982201457023621,
|
||||
'label': 'télécommande',
|
||||
'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
|
||||
{'score': 0.9960021376609802,
|
||||
'label': 'télécommande',
|
||||
'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
|
||||
{'score': 0.9954745173454285,
|
||||
'label': 'canapé',
|
||||
'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
|
||||
{'score': 0.9988006353378296,
|
||||
'label': 'chat',
|
||||
'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
|
||||
{'score': 0.9986783862113953,
|
||||
'label': 'chat',
|
||||
'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}]
|
||||
```
|
||||
|
||||
Ici, nous obtenons une liste d'objets détectés dans l'image, avec une boîte entourant l'objet et un score de confiance. Voici l'image originale à gauche, avec les prédictions affichées à droite :
|
||||
|
||||
<h3 align="center">
|
||||
<a><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample.png" width="400"></a>
|
||||
<a><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample_post_processed.png" width="400"></a>
|
||||
</h3>
|
||||
|
||||
Vous pouvez en savoir plus sur les tâches supportées par l'API pipeline dans [ce tutoriel](https://huggingface.co/docs/transformers/task_summary).
|
||||
|
||||
En plus de `pipeline`, pour télécharger et utiliser n'importe lequel des modèles pré-entraînés sur votre tâche donnée, il suffit de trois lignes de code. Voici la version PyTorch :
|
||||
|
||||
```python
|
||||
>>> from transformers import AutoTokenizer, AutoModel
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
|
||||
>>> model = AutoModel.from_pretrained("google-bert/bert-base-uncased")
|
||||
|
||||
inputs = tokenizer("Bonjour le monde !", return_tensors="pt")
|
||||
outputs = model(**inputs)
|
||||
```
|
||||
|
||||
Et voici le code équivalent pour TensorFlow :
|
||||
|
||||
```python
|
||||
from transformers import AutoTokenizer, TFAutoModel
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
|
||||
model = TFAutoModel.from_pretrained("google-bert/bert-base-uncased")
|
||||
|
||||
inputs = tokenizer("Bonjour le monde !", return_tensors="tf")
|
||||
outputs = model(**inputs)
|
||||
```
|
||||
|
||||
Le tokenizer est responsable de toutes les étapes de prétraitement que le modèle préentraîné attend et peut être appelé directement sur une seule chaîne de caractères (comme dans les exemples ci-dessus) ou sur une liste. Il produira un dictionnaire que vous pouvez utiliser dans votre code ou simplement passer directement à votre modèle en utilisant l'opérateur de déballage **.
|
||||
|
||||
Le modèle lui-même est un module [`nn.Module` PyTorch](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) ou un modèle [`tf.keras.Model` TensorFlow](https://www.tensorflow.org/api_docs/python/tf/keras/Model) (selon votre backend) que vous pouvez utiliser comme d'habitude. [Ce tutoriel](https://huggingface.co/docs/transformers/training) explique comment intégrer un tel modèle dans une boucle d'entraînement classique PyTorch ou TensorFlow, ou comment utiliser notre API `Trainer` pour affiner rapidement sur un nouvel ensemble de données.
|
||||
|
||||
## Pourquoi devrais-je utiliser transformers ?
|
||||
|
||||
1. Des modèles de pointe faciles à utiliser :
|
||||
- Hautes performances en compréhension et génération de langage naturel, en vision par ordinateur et en tâches audio.
|
||||
- Faible barrière à l'entrée pour les éducateurs et les praticiens.
|
||||
- Peu d'abstractions visibles pour l'utilisateur avec seulement trois classes à apprendre.
|
||||
- Une API unifiée pour utiliser tous nos modèles préentraînés.
|
||||
|
||||
1. Coûts informatiques réduits, empreinte carbone plus petite :
|
||||
- Les chercheurs peuvent partager des modèles entraînés au lieu de toujours les réentraîner.
|
||||
- Les praticiens peuvent réduire le temps de calcul et les coûts de production.
|
||||
- Des dizaines d'architectures avec plus de 400 000 modèles préentraînés dans toutes les modalités.
|
||||
|
||||
1. Choisissez le bon framework pour chaque partie de la vie d'un modèle :
|
||||
- Entraînez des modèles de pointe en 3 lignes de code.
|
||||
- Trasnférer un seul modèle entre les frameworks TF2.0/PyTorch/JAX à volonté.
|
||||
- Choisissez facilement le bon framework pour l'entraînement, l'évaluation et la production.
|
||||
|
||||
1. Personnalisez facilement un modèle ou un exemple selon vos besoins :
|
||||
- Nous fournissons des exemples pour chaque architecture afin de reproduire les résultats publiés par ses auteurs originaux.
|
||||
- Les détails internes du modèle sont exposés de manière aussi cohérente que possible.
|
||||
- Les fichiers de modèle peuvent être utilisés indépendamment de la bibliothèque pour des expériences rapides.
|
||||
|
||||
## Pourquoi ne devrais-je pas utiliser transformers ?
|
||||
|
||||
- Cette bibliothèque n'est pas une boîte à outils modulaire de blocs de construction pour les réseaux neuronaux. Le code dans les fichiers de modèle n'est pas refactored avec des abstractions supplémentaires à dessein, afin que les chercheurs puissent itérer rapidement sur chacun des modèles sans plonger dans des abstractions/fichiers supplémentaires.
|
||||
- L'API d'entraînement n'est pas destinée à fonctionner avec n'importe quel modèle, mais elle est optimisée pour fonctionner avec les modèles fournis par la bibliothèque. Pour des boucles génériques d'apprentissage automatique, vous devriez utiliser une autre bibliothèque (éventuellement, [Accelerate](https://huggingface.co/docs/accelerate)).
|
||||
- Bien que nous nous efforcions de présenter autant de cas d'utilisation que possible, les scripts de notre [dossier d'exemples](https://github.com/huggingface/transformers/tree/main/examples) ne sont que cela : des exemples. Il est prévu qu'ils ne fonctionnent pas immédiatement sur votre problème spécifique et que vous devrez probablement modifier quelques lignes de code pour les adapter à vos besoins.
|
||||
|
||||
## Installation
|
||||
|
||||
### Avec pip
|
||||
|
||||
Ce référentiel est testé sur Python 3.8+, Flax 0.4.1+, PyTorch 1.11+ et TensorFlow 2.6+.
|
||||
|
||||
Vous devriez installer 🤗 Transformers dans un [environnement virtuel](https://docs.python.org/3/library/venv.html). Si vous n'êtes pas familier avec les environnements virtuels Python, consultez le [guide utilisateur](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/).
|
||||
|
||||
D'abord, créez un environnement virtuel avec la version de Python que vous allez utiliser et activez-le.
|
||||
|
||||
Ensuite, vous devrez installer au moins l'un de Flax, PyTorch ou TensorFlow.
|
||||
Veuillez vous référer à la page d'installation de [TensorFlow](https://www.tensorflow.org/install/), de [PyTorch](https://pytorch.org/get-started/locally/#start-locally) et/ou de [Flax](https://github.com/google/flax#quick-install) et [Jax](https://github.com/google/jax#installation) pour connaître la commande d'installation spécifique à votre plateforme.
|
||||
|
||||
Lorsqu'un de ces backends est installé, 🤗 Transformers peut être installé avec pip comme suit :
|
||||
|
||||
```bash
|
||||
pip install transformers
|
||||
```
|
||||
|
||||
Si vous souhaitez jouer avec les exemples ou avez besoin de la dernière version du code et ne pouvez pas attendre une nouvelle version, vous devez [installer la bibliothèque à partir de la source](https://huggingface.co/docs/transformers/installation#installing-from-source).
|
||||
|
||||
### Avec conda
|
||||
|
||||
🤗 Transformers peut être installé avec conda comme suit :
|
||||
|
||||
```shell
|
||||
conda install conda-forge::transformers
|
||||
```
|
||||
|
||||
> **_NOTE:_** L'installation de `transformers` depuis le canal `huggingface` est obsolète.
|
||||
|
||||
Suivez les pages d'installation de Flax, PyTorch ou TensorFlow pour voir comment les installer avec conda.
|
||||
|
||||
> **_NOTE:_** Sur Windows, on peut vous demander d'activer le mode développeur pour bénéficier de la mise en cache. Si ce n'est pas une option pour vous, veuillez nous le faire savoir dans [cette issue](https://github.com/huggingface/huggingface_hub/issues/1062).
|
||||
|
||||
## Architectures de modèles
|
||||
|
||||
**[Tous les points de contrôle](https://huggingface.co/models)** de modèle fournis par 🤗 Transformers sont intégrés de manière transparente depuis le [hub de modèles](https://huggingface.co/models) huggingface.co, où ils sont téléchargés directement par les [utilisateurs](https://huggingface.co/users) et les [organisations](https://huggingface.co/organizations).
|
||||
|
||||
Nombre actuel de points de contrôle : 
|
||||
|
||||
|
||||
🤗 Transformers fournit actuellement les architectures suivantes: consultez [ici](https://huggingface.co/docs/transformers/model_summary) pour un résumé global de chacune d'entre elles.
|
||||
|
||||
Pour vérifier si chaque modèle a une implémentation en Flax, PyTorch ou TensorFlow, ou s'il a un tokenizer associé pris en charge par la bibliothèque 🤗 Tokenizers, consultez [ce tableau](https://huggingface.co/docs/transformers/index#supported-frameworks).
|
||||
|
||||
Ces implémentations ont été testées sur plusieurs ensembles de données (voir les scripts d'exemple) et devraient correspondre aux performances des implémentations originales. Vous pouvez trouver plus de détails sur les performances dans la section Exemples de la [documentation](https://github.com/huggingface/transformers/tree/main/examples).
|
||||
|
||||
## En savoir plus
|
||||
|
||||
| Section | Description |
|
||||
|-|-|
|
||||
| [Documentation](https://huggingface.co/docs/transformers/) | Documentation complète de l'API et tutoriels |
|
||||
| [Résumé des tâches](https://huggingface.co/docs/transformers/task_summary) | Tâches prises en charge par les 🤗 Transformers |
|
||||
| [Tutoriel de prétraitement](https://huggingface.co/docs/transformers/preprocessing) | Utilisation de la classe `Tokenizer` pour préparer les données pour les modèles |
|
||||
| [Entraînement et ajustement fin](https://huggingface.co/docs/transformers/training) | Utilisation des modèles fournis par les 🤗 Transformers dans une boucle d'entraînement PyTorch/TensorFlow et de l'API `Trainer` |
|
||||
| [Tour rapide : Scripts d'ajustement fin/d'utilisation](https://github.com/huggingface/transformers/tree/main/examples) | Scripts d'exemple pour ajuster finement les modèles sur une large gamme de tâches |
|
||||
| [Partage et téléversement de modèles](https://huggingface.co/docs/transformers/model_sharing) | Téléchargez et partagez vos modèles ajustés avec la communauté |
|
||||
|
||||
## Citation
|
||||
|
||||
Nous disposons désormais d'un [article](https://www.aclweb.org/anthology/2020.emnlp-demos.6/) que vous pouvez citer pour la bibliothèque 🤗 Transformers :
|
||||
```bibtex
|
||||
@inproceedings{wolf-etal-2020-transformers,
|
||||
title = "Transformers: State-of-the-Art Natural Language Processing",
|
||||
author = "Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and Rémi Louf and Morgan Funtowicz and Joe Davison and Sam Shleifer and Patrick von Platen and Clara Ma and Yacine Jernite and Julien Plu and Canwen Xu and Teven Le Scao and Sylvain Gugger and Mariama Drame and Quentin Lhoest and Alexander M. Rush",
|
||||
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
|
||||
month = oct,
|
||||
year = "2020",
|
||||
address = "Online",
|
||||
publisher = "Association for Computational Linguistics",
|
||||
url = "https://www.aclweb.org/anthology/2020.emnlp-demos.6",
|
||||
pages = "38--45"
|
||||
}
|
||||
```
|
||||
278
README_hd.md
278
README_hd.md
@ -1,278 +0,0 @@
|
||||
<!---
|
||||
Copyright 2020 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
-->
|
||||
|
||||
<!---
|
||||
A useful guide for English-Hindi translation of Hugging Face documentation
|
||||
- Add space around English words and numbers when they appear between Hindi characters. E.g., कुल मिलाकर 100 से अधिक भाषाएँ; ट्रांसफॉर्मर लाइब्रेरी का उपयोग करता है।
|
||||
- वर्गाकार उद्धरणों का प्रयोग करें, जैसे, "उद्धरण"
|
||||
|
||||
Dictionary
|
||||
|
||||
Hugging Face: गले लगाओ चेहरा
|
||||
token: शब्द (और मूल अंग्रेजी को कोष्ठक में चिह्नित करें)
|
||||
tokenize: टोकननाइज़ करें (और मूल अंग्रेज़ी को चिह्नित करने के लिए कोष्ठक का उपयोग करें)
|
||||
tokenizer: Tokenizer (मूल अंग्रेजी में कोष्ठक के साथ)
|
||||
transformer: transformer
|
||||
pipeline: समनुक्रम
|
||||
API: API (अनुवाद के बिना)
|
||||
inference: विचार
|
||||
Trainer: प्रशिक्षक। कक्षा के नाम के रूप में प्रस्तुत किए जाने पर अनुवादित नहीं किया गया।
|
||||
pretrained/pretrain: पूर्व प्रशिक्षण
|
||||
finetune: फ़ाइन ट्यूनिंग
|
||||
community: समुदाय
|
||||
example: जब विशिष्ट गोदाम example कैटलॉग करते समय "केस केस" के रूप में अनुवादित
|
||||
Python data structures (e.g., list, set, dict): मूल अंग्रेजी को चिह्नित करने के लिए सूचियों, सेटों, शब्दकोशों में अनुवाद करें और कोष्ठक का उपयोग करें
|
||||
NLP/Natural Language Processing: द्वारा NLP अनुवाद के बिना प्रकट होते हैं Natural Language Processing प्रस्तुत किए जाने पर प्राकृतिक भाषा संसाधन में अनुवाद करें
|
||||
checkpoint: जाँच बिंदु
|
||||
-->
|
||||
|
||||
<p align="center">
|
||||
<br>
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers_logo_name.png" width="400"/>
|
||||
<br>
|
||||
</p>
|
||||
<p align="center">
|
||||
<a href="https://circleci.com/gh/huggingface/transformers">
|
||||
<img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/main">
|
||||
</a>
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/LICENSE">
|
||||
<img alt="GitHub" src="https://img.shields.io/github/license/huggingface/transformers.svg?color=blue">
|
||||
</a>
|
||||
<a href="https://huggingface.co/docs/transformers/index">
|
||||
<img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/docs/transformers/index.svg?down_color=red&down_message=offline&up_message=online">
|
||||
</a>
|
||||
<a href="https://github.com/huggingface/transformers/releases">
|
||||
<img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/transformers.svg">
|
||||
</a>
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/CODE_OF_CONDUCT.md">
|
||||
<img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg">
|
||||
</a>
|
||||
<a href="https://zenodo.org/badge/latestdoi/155220641"><img src="https://zenodo.org/badge/155220641.svg" alt="DOI"></a>
|
||||
</p>
|
||||
|
||||
<h4 align="center">
|
||||
<p>
|
||||
<a href="https://github.com/huggingface/transformers/">English</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hans.md">简体中文</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hant.md">繁體中文</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_ko.md">한국어</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_es.md">Español</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_ja.md">日本語</a> |
|
||||
<b>हिन्दी</b> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_ru.md">Русский</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_pt-br.md">Рortuguês</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_te.md">తెలుగు</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_fr.md">Français</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_de.md">Deutsch</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_vi.md">Tiếng Việt</a> |
|
||||
</p>
|
||||
</h4>
|
||||
|
||||
<h3 align="center">
|
||||
<p>Jax, PyTorch और TensorFlow के लिए उन्नत मशीन लर्निंग</p>
|
||||
</h3>
|
||||
|
||||
<h3 align="center">
|
||||
<a href="https://hf.co/course"><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/course_banner.png"></a>
|
||||
</h3>
|
||||
|
||||
🤗 Transformers 100 से अधिक भाषाओं में पाठ वर्गीकरण, सूचना निष्कर्षण, प्रश्न उत्तर, सारांशीकरण, अनुवाद, पाठ निर्माण का समर्थन करने के लिए हजारों पूर्व-प्रशिक्षित मॉडल प्रदान करता है। इसका उद्देश्य सबसे उन्नत एनएलपी तकनीक को सभी के लिए सुलभ बनाना है।
|
||||
|
||||
🤗 Transformers त्वरित डाउनलोड और उपयोग के लिए एक एपीआई प्रदान करता है, जिससे आप किसी दिए गए पाठ पर एक पूर्व-प्रशिक्षित मॉडल ले सकते हैं, इसे अपने डेटासेट पर ठीक कर सकते हैं और इसे [मॉडल हब](https://huggingface.co/models) के माध्यम से समुदाय के साथ साझा कर सकते हैं। इसी समय, प्रत्येक परिभाषित पायथन मॉड्यूल पूरी तरह से स्वतंत्र है, जो संशोधन और तेजी से अनुसंधान प्रयोगों के लिए सुविधाजनक है।
|
||||
|
||||
🤗 Transformers तीन सबसे लोकप्रिय गहन शिक्षण पुस्तकालयों का समर्थन करता है: [Jax](https://jax.readthedocs.io/en/latest/), [PyTorch](https://pytorch.org/) and [TensorFlow](https://www.tensorflow.org/) — और इसके साथ निर्बाध रूप से एकीकृत होता है। आप अपने मॉडल को सीधे एक ढांचे के साथ प्रशिक्षित कर सकते हैं और दूसरे के साथ लोड और अनुमान लगा सकते हैं।
|
||||
|
||||
## ऑनलाइन डेमो
|
||||
|
||||
आप सबसे सीधे मॉडल पृष्ठ पर परीक्षण कर सकते हैं [model hub](https://huggingface.co/models) मॉडल पर। हम [निजी मॉडल होस्टिंग, मॉडल संस्करण, और अनुमान एपीआई](https://huggingface.co/pricing) भी प्रदान करते हैं।。
|
||||
|
||||
यहाँ कुछ उदाहरण हैं:
|
||||
- [शब्द को भरने के लिए मास्क के रूप में BERT का प्रयोग करें](https://huggingface.co/google-bert/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France)
|
||||
- [इलेक्ट्रा के साथ नामित इकाई पहचान](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city)
|
||||
- [जीपीटी-2 के साथ टेक्स्ट जनरेशन](https://huggingface.co/openai-community/gpt2?text=A+long+time+ago%2C+)
|
||||
- [रॉबर्टा के साथ प्राकृतिक भाषा निष्कर्ष](https://huggingface.co/FacebookAI/roberta-large-mnli?text=The+dog+was+lost.+Nobody+lost+any+animal)
|
||||
- [बार्ट के साथ पाठ सारांश](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct)
|
||||
- [डिस्टिलबर्ट के साथ प्रश्नोत्तर](https://huggingface.co/distilbert/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species)
|
||||
- [अनुवाद के लिए T5 का प्रयोग करें](https://huggingface.co/google-t5/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin)
|
||||
|
||||
**[Write With Transformer](https://transformer.huggingface.co)**,हगिंग फेस टीम द्वारा बनाया गया, यह एक आधिकारिक पाठ पीढ़ी है demo。
|
||||
|
||||
## यदि आप हगिंग फेस टीम से बीस्पोक समर्थन की तलाश कर रहे हैं
|
||||
|
||||
<a target="_blank" href="https://huggingface.co/support">
|
||||
<img alt="HuggingFace Expert Acceleration Program" src="https://huggingface.co/front/thumbnails/support.png" style="max-width: 600px; border: 1px solid #eee; border-radius: 4px; box-shadow: 0 1px 2px 0 rgba(0, 0, 0, 0.05);">
|
||||
</a><br>
|
||||
|
||||
## जल्दी शुरू करें
|
||||
|
||||
हम त्वरित उपयोग के लिए मॉडल प्रदान करते हैं `pipeline` (पाइपलाइन) एपीआई। पाइपलाइन पूर्व-प्रशिक्षित मॉडल और संबंधित पाठ प्रीप्रोसेसिंग को एकत्रित करती है। सकारात्मक और नकारात्मक भावना को निर्धारित करने के लिए पाइपलाइनों का उपयोग करने का एक त्वरित उदाहरण यहां दिया गया है:
|
||||
|
||||
```python
|
||||
>>> from transformers import pipeline
|
||||
|
||||
# भावना विश्लेषण पाइपलाइन का उपयोग करना
|
||||
>>> classifier = pipeline('sentiment-analysis')
|
||||
>>> classifier('We are very happy to introduce pipeline to the transformers repository.')
|
||||
[{'label': 'POSITIVE', 'score': 0.9996980428695679}]
|
||||
```
|
||||
|
||||
कोड की दूसरी पंक्ति पाइपलाइन द्वारा उपयोग किए गए पूर्व-प्रशिक्षित मॉडल को डाउनलोड और कैश करती है, जबकि कोड की तीसरी पंक्ति दिए गए पाठ पर मूल्यांकन करती है। यहां उत्तर 99 आत्मविश्वास के स्तर के साथ "सकारात्मक" है।
|
||||
|
||||
कई एनएलपी कार्यों में आउट ऑफ़ द बॉक्स पाइपलाइनों का पूर्व-प्रशिक्षण होता है। उदाहरण के लिए, हम किसी दिए गए पाठ से किसी प्रश्न का उत्तर आसानी से निकाल सकते हैं:
|
||||
|
||||
``` python
|
||||
>>> from transformers import pipeline
|
||||
|
||||
# प्रश्नोत्तर पाइपलाइन का उपयोग करना
|
||||
>>> question_answerer = pipeline('question-answering')
|
||||
>>> question_answerer({
|
||||
... 'question': 'What is the name of the repository ?',
|
||||
... 'context': 'Pipeline has been included in the huggingface/transformers repository'
|
||||
... })
|
||||
{'score': 0.30970096588134766, 'start': 34, 'end': 58, 'answer': 'huggingface/transformers'}
|
||||
|
||||
```
|
||||
|
||||
उत्तर देने के अलावा, पूर्व-प्रशिक्षित मॉडल संगत आत्मविश्वास स्कोर भी देता है, जहां उत्तर टोकनयुक्त पाठ में शुरू और समाप्त होता है। आप [इस ट्यूटोरियल](https://huggingface.co/docs/transformers/task_summary) से पाइपलाइन एपीआई द्वारा समर्थित कार्यों के बारे में अधिक जान सकते हैं।
|
||||
|
||||
अपने कार्य पर किसी भी पूर्व-प्रशिक्षित मॉडल को डाउनलोड करना और उसका उपयोग करना भी कोड की तीन पंक्तियों की तरह सरल है। यहाँ PyTorch संस्करण के लिए एक उदाहरण दिया गया है:
|
||||
```python
|
||||
>>> from transformers import AutoTokenizer, AutoModel
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
|
||||
>>> model = AutoModel.from_pretrained("google-bert/bert-base-uncased")
|
||||
|
||||
>>> inputs = tokenizer("Hello world!", return_tensors="pt")
|
||||
>>> outputs = model(**inputs)
|
||||
```
|
||||
यहाँ समकक्ष है TensorFlow कोड:
|
||||
```python
|
||||
>>> from transformers import AutoTokenizer, TFAutoModel
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
|
||||
>>> model = TFAutoModel.from_pretrained("google-bert/bert-base-uncased")
|
||||
|
||||
>>> inputs = tokenizer("Hello world!", return_tensors="tf")
|
||||
>>> outputs = model(**inputs)
|
||||
```
|
||||
|
||||
टोकननाइज़र सभी पूर्व-प्रशिक्षित मॉडलों के लिए प्रीप्रोसेसिंग प्रदान करता है और इसे सीधे एक स्ट्रिंग (जैसे ऊपर दिए गए उदाहरण) या किसी सूची पर बुलाया जा सकता है। यह एक डिक्शनरी (तानाशाही) को आउटपुट करता है जिसे आप डाउनस्ट्रीम कोड में उपयोग कर सकते हैं या `**` अनपैकिंग एक्सप्रेशन के माध्यम से सीधे मॉडल को पास कर सकते हैं।
|
||||
|
||||
मॉडल स्वयं एक नियमित [Pytorch `nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) या [TensorFlow `tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) (आपके बैकएंड के आधार पर), जो हो सकता है सामान्य तरीके से उपयोग किया जाता है। [यह ट्यूटोरियल](https://huggingface.co/transformers/training.html) बताता है कि इस तरह के मॉडल को क्लासिक PyTorch या TensorFlow प्रशिक्षण लूप में कैसे एकीकृत किया जाए, या हमारे `ट्रेनर` एपीआई का उपयोग कैसे करें ताकि इसे जल्दी से फ़ाइन ट्यून किया जा सके।एक नया डेटासेट पे।
|
||||
|
||||
## ट्रांसफार्मर का उपयोग क्यों करें?
|
||||
|
||||
1. उपयोग में आसानी के लिए उन्नत मॉडल:
|
||||
- एनएलयू और एनएलजी पर बेहतर प्रदर्शन
|
||||
- प्रवेश के लिए कम बाधाओं के साथ शिक्षण और अभ्यास के अनुकूल
|
||||
- उपयोगकर्ता-सामना करने वाले सार तत्व, केवल तीन वर्गों को जानने की जरूरत है
|
||||
- सभी मॉडलों के लिए एकीकृत एपीआई
|
||||
|
||||
1. कम कम्प्यूटेशनल ओवरहेड और कम कार्बन उत्सर्जन:
|
||||
- शोधकर्ता हर बार नए सिरे से प्रशिक्षण देने के बजाय प्रशिक्षित मॉडल साझा कर सकते हैं
|
||||
- इंजीनियर गणना समय और उत्पादन ओवरहेड को कम कर सकते हैं
|
||||
- दर्जनों मॉडल आर्किटेक्चर, 2,000 से अधिक पूर्व-प्रशिक्षित मॉडल, 100 से अधिक भाषाओं का समर्थन
|
||||
|
||||
1.मॉडल जीवनचक्र के हर हिस्से को शामिल करता है:
|
||||
- कोड की केवल 3 पंक्तियों में उन्नत मॉडलों को प्रशिक्षित करें
|
||||
- मॉडल को मनमाने ढंग से विभिन्न डीप लर्निंग फ्रेमवर्क के बीच स्थानांतरित किया जा सकता है, जैसा आप चाहते हैं
|
||||
- निर्बाध रूप से प्रशिक्षण, मूल्यांकन और उत्पादन के लिए सबसे उपयुक्त ढांचा चुनें
|
||||
|
||||
1. आसानी से अनन्य मॉडल को अनुकूलित करें और अपनी आवश्यकताओं के लिए मामलों का उपयोग करें:
|
||||
- हम मूल पेपर परिणामों को पुन: पेश करने के लिए प्रत्येक मॉडल आर्किटेक्चर के लिए कई उपयोग के मामले प्रदान करते हैं
|
||||
- मॉडल की आंतरिक संरचना पारदर्शी और सुसंगत रहती है
|
||||
- मॉडल फ़ाइल को अलग से इस्तेमाल किया जा सकता है, जो संशोधन और त्वरित प्रयोग के लिए सुविधाजनक है
|
||||
|
||||
## मुझे ट्रांसफॉर्मर का उपयोग कब नहीं करना चाहिए?
|
||||
|
||||
- यह लाइब्रेरी मॉड्यूलर न्यूरल नेटवर्क टूलबॉक्स नहीं है। मॉडल फ़ाइल में कोड जानबूझकर अल्पविकसित है, बिना अतिरिक्त सार इनकैप्सुलेशन के, ताकि शोधकर्ता अमूर्तता और फ़ाइल जंपिंग में शामिल हुए जल्दी से पुनरावृति कर सकें।
|
||||
- `ट्रेनर` एपीआई किसी भी मॉडल के साथ संगत नहीं है, यह केवल इस पुस्तकालय के मॉडल के लिए अनुकूलित है। यदि आप सामान्य मशीन लर्निंग के लिए उपयुक्त प्रशिक्षण लूप कार्यान्वयन की तलाश में हैं, तो कहीं और देखें।
|
||||
- हमारे सर्वोत्तम प्रयासों के बावजूद, [उदाहरण निर्देशिका](https://github.com/huggingface/transformers/tree/main/examples) में स्क्रिप्ट केवल उपयोग के मामले हैं। आपकी विशिष्ट समस्या के लिए, वे जरूरी नहीं कि बॉक्स से बाहर काम करें, और आपको कोड की कुछ पंक्तियों को सूट करने की आवश्यकता हो सकती है।
|
||||
|
||||
## स्थापित करना
|
||||
|
||||
### पिप का उपयोग करना
|
||||
|
||||
इस रिपॉजिटरी का परीक्षण Python 3.8+, Flax 0.4.1+, PyTorch 1.11+ और TensorFlow 2.6+ के तहत किया गया है।
|
||||
|
||||
आप [वर्चुअल एनवायरनमेंट](https://docs.python.org/3/library/venv.html) में 🤗 ट्रांसफॉर्मर इंस्टॉल कर सकते हैं। यदि आप अभी तक पायथन के वर्चुअल एनवायरनमेंट से परिचित नहीं हैं, तो कृपया इसे [उपयोगकर्ता निर्देश](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/) पढ़ें।
|
||||
|
||||
सबसे पहले, पायथन के उस संस्करण के साथ एक आभासी वातावरण बनाएं जिसका आप उपयोग करने और उसे सक्रिय करने की योजना बना रहे हैं।
|
||||
|
||||
फिर, आपको Flax, PyTorch या TensorFlow में से किसी एक को स्थापित करने की आवश्यकता है। अपने प्लेटफ़ॉर्म पर इन फ़्रेमवर्क को स्थापित करने के लिए, [TensorFlow स्थापना पृष्ठ](https://www.tensorflow.org/install/), [PyTorch स्थापना पृष्ठ](https://pytorch.org/get-started/locally)
|
||||
|
||||
देखें start-locally या [Flax स्थापना पृष्ठ](https://github.com/google/flax#quick-install).
|
||||
|
||||
जब इनमें से कोई एक बैकएंड सफलतापूर्वक स्थापित हो जाता है, तो ट्रांसफॉर्मर निम्नानुसार स्थापित किए जा सकते हैं:
|
||||
|
||||
```bash
|
||||
pip install transformers
|
||||
```
|
||||
|
||||
यदि आप उपयोग के मामलों को आज़माना चाहते हैं या आधिकारिक रिलीज़ से पहले नवीनतम इन-डेवलपमेंट कोड का उपयोग करना चाहते हैं, तो आपको [सोर्स से इंस्टॉल करना होगा](https://huggingface.co/docs/transformers/installation#installing-from-) स्रोत।
|
||||
|
||||
### कोंडा का उपयोग करना
|
||||
|
||||
ट्रांसफॉर्मर कोंडा के माध्यम से निम्नानुसार स्थापित किया जा सकता है:
|
||||
|
||||
```shell script
|
||||
conda install conda-forge::transformers
|
||||
```
|
||||
|
||||
> **_नोट:_** `huggingface` चैनल से `transformers` इंस्टॉल करना पुराना पड़ चुका है।
|
||||
|
||||
कोंडा के माध्यम से Flax, PyTorch, या TensorFlow में से किसी एक को स्थापित करने के लिए, निर्देशों के लिए उनके संबंधित स्थापना पृष्ठ देखें।
|
||||
|
||||
## मॉडल आर्किटेक्चर
|
||||
[उपयोगकर्ता](https://huggingface.co/users) और [organization](https://huggingface.co) द्वारा ट्रांसफॉर्मर समर्थित [**सभी मॉडल चौकियों**](https://huggingface.co/models/users) हगिंगफेस.को/ऑर्गनाइजेशन), सभी को बिना किसी बाधा के हगिंगफेस.को [मॉडल हब](https://huggingface.co) के साथ एकीकृत किया गया है।
|
||||
|
||||
चौकियों की वर्तमान संख्या: 
|
||||
|
||||
🤗 ट्रांसफॉर्मर वर्तमान में निम्नलिखित आर्किटेक्चर का समर्थन करते हैं: मॉडल के अवलोकन के लिए [यहां देखें](https://huggingface.co/docs/transformers/model_summary):
|
||||
|
||||
यह जांचने के लिए कि क्या किसी मॉडल में पहले से ही Flax, PyTorch या TensorFlow का कार्यान्वयन है, या यदि उसके पास Tokenizers लाइब्रेरी में संबंधित टोकन है, तो [यह तालिका](https://huggingface.co/docs/transformers/index#supported) देखें। -फ्रेमवर्क)।
|
||||
|
||||
इन कार्यान्वयनों का परीक्षण कई डेटासेट पर किया गया है (देखें केस स्क्रिप्ट का उपयोग करें) और वैनिला कार्यान्वयन के लिए तुलनात्मक रूप से प्रदर्शन करना चाहिए। आप उपयोग के मामले के दस्तावेज़ [इस अनुभाग](https://huggingface.co/docs/transformers/examples) में व्यवहार का विवरण पढ़ सकते हैं।
|
||||
|
||||
|
||||
## अधिक समझें
|
||||
|
||||
|अध्याय | विवरण |
|
||||
|-|-|
|
||||
| [दस्तावेज़ीकरण](https://huggingface.co/transformers/) | पूरा एपीआई दस्तावेज़ीकरण और ट्यूटोरियल |
|
||||
| [कार्य सारांश](https://huggingface.co/docs/transformers/task_summary) | ट्रांसफॉर्मर समर्थित कार्य |
|
||||
| [प्रीप्रोसेसिंग ट्यूटोरियल](https://huggingface.co/docs/transformers/preprocessing) | मॉडल के लिए डेटा तैयार करने के लिए `टोकनाइज़र` का उपयोग करना |
|
||||
| [प्रशिक्षण और फाइन-ट्यूनिंग](https://huggingface.co/docs/transformers/training) | PyTorch/TensorFlow के ट्रेनिंग लूप या `ट्रेनर` API में ट्रांसफॉर्मर द्वारा दिए गए मॉडल का उपयोग करें |
|
||||
| [क्विक स्टार्ट: ट्वीकिंग एंड यूज़ केस स्क्रिप्ट्स](https://github.com/huggingface/transformers/tree/main/examples) | विभिन्न कार्यों के लिए केस स्क्रिप्ट का उपयोग करें |
|
||||
| [मॉडल साझा करना और अपलोड करना](https://huggingface.co/docs/transformers/model_sharing) | समुदाय के साथ अपने फाइन टूनड मॉडल अपलोड और साझा करें |
|
||||
| [माइग्रेशन](https://huggingface.co/docs/transformers/migration) | `पाइटोरच-ट्रांसफॉर्मर्स` या `पाइटोरच-प्रीट्रेनड-बर्ट` से ट्रांसफॉर्मर में माइग्रेट करना |
|
||||
|
||||
## उद्धरण
|
||||
|
||||
हमने आधिकारिक तौर पर इस लाइब्रेरी का [पेपर](https://www.aclweb.org/anthology/2020.emnlp-demos.6/) प्रकाशित किया है, अगर आप ट्रान्सफ़ॉर्मर्स लाइब्रेरी का उपयोग करते हैं, तो कृपया उद्धृत करें:
|
||||
```bibtex
|
||||
@inproceedings{wolf-etal-2020-transformers,
|
||||
title = "Transformers: State-of-the-Art Natural Language Processing",
|
||||
author = "Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and Rémi Louf and Morgan Funtowicz and Joe Davison and Sam Shleifer and Patrick von Platen and Clara Ma and Yacine Jernite and Julien Plu and Canwen Xu and Teven Le Scao and Sylvain Gugger and Mariama Drame and Quentin Lhoest and Alexander M. Rush",
|
||||
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
|
||||
month = oct,
|
||||
year = "2020",
|
||||
address = "Online",
|
||||
publisher = "Association for Computational Linguistics",
|
||||
url = "https://www.aclweb.org/anthology/2020.emnlp-demos.6",
|
||||
pages = "38--45"
|
||||
}
|
||||
```
|
||||
338
README_ja.md
338
README_ja.md
@ -1,338 +0,0 @@
|
||||
<!---
|
||||
Copyright 2020 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
-->
|
||||
|
||||
<!---
|
||||
A useful guide for English-Traditional Japanese translation of Hugging Face documentation
|
||||
- Use square quotes, e.g.,「引用」
|
||||
|
||||
Dictionary
|
||||
|
||||
API: API(翻訳しない)
|
||||
add: 追加
|
||||
checkpoint: チェックポイント
|
||||
code: コード
|
||||
community: コミュニティ
|
||||
confidence: 信頼度
|
||||
dataset: データセット
|
||||
documentation: ドキュメント
|
||||
example: 例
|
||||
finetune: 微調整
|
||||
Hugging Face: Hugging Face(翻訳しない)
|
||||
implementation: 実装
|
||||
inference: 推論
|
||||
library: ライブラリ
|
||||
module: モジュール
|
||||
NLP/Natural Language Processing: NLPと表示される場合は翻訳されず、Natural Language Processingと表示される場合は翻訳される
|
||||
online demos: オンラインデモ
|
||||
pipeline: pipeline(翻訳しない)
|
||||
pretrained/pretrain: 学習済み
|
||||
Python data structures (e.g., list, set, dict): リスト、セット、ディクショナリと訳され、括弧内は原文英語
|
||||
repository: repository(翻訳しない)
|
||||
summary: 概要
|
||||
token-: token-(翻訳しない)
|
||||
Trainer: Trainer(翻訳しない)
|
||||
transformer: transformer(翻訳しない)
|
||||
tutorial: チュートリアル
|
||||
user: ユーザ
|
||||
-->
|
||||
|
||||
<p align="center">
|
||||
<br>
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers_logo_name.png" width="400"/>
|
||||
<br>
|
||||
</p>
|
||||
<p align="center">
|
||||
<a href="https://circleci.com/gh/huggingface/transformers">
|
||||
<img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/main">
|
||||
</a>
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/LICENSE">
|
||||
<img alt="GitHub" src="https://img.shields.io/github/license/huggingface/transformers.svg?color=blue">
|
||||
</a>
|
||||
<a href="https://huggingface.co/docs/transformers/index">
|
||||
<img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/docs/transformers/index.svg?down_color=red&down_message=offline&up_message=online">
|
||||
</a>
|
||||
<a href="https://github.com/huggingface/transformers/releases">
|
||||
<img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/transformers.svg">
|
||||
</a>
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/CODE_OF_CONDUCT.md">
|
||||
<img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg">
|
||||
</a>
|
||||
<a href="https://zenodo.org/badge/latestdoi/155220641"><img src="https://zenodo.org/badge/155220641.svg" alt="DOI"></a>
|
||||
</p>
|
||||
|
||||
<h4 align="center">
|
||||
<p>
|
||||
<a href="https://github.com/huggingface/transformers/">English</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hans.md">简体中文</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hant.md">繁體中文</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_ko.md">한국어</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_es.md">Español</a> |
|
||||
<b>日本語</b> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_hd.md">हिन्दी</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_ru.md">Русский</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_pt-br.md">Рortuguês</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_te.md">తెలుగు</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_fr.md">Français</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_de.md">Deutsch</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_vi.md">Tiếng Việt</a> |
|
||||
</p>
|
||||
</h4>
|
||||
|
||||
<h3 align="center">
|
||||
<p>JAX、PyTorch、TensorFlowのための最先端機械学習</p>
|
||||
</h3>
|
||||
|
||||
<h3 align="center">
|
||||
<a href="https://hf.co/course"><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/course_banner.png"></a>
|
||||
</h3>
|
||||
|
||||
🤗Transformersは、テキスト、視覚、音声などの異なるモダリティに対してタスクを実行するために、事前に学習させた数千のモデルを提供します。
|
||||
|
||||
これらのモデルは次のような場合に適用できます:
|
||||
|
||||
* 📝 テキストは、テキストの分類、情報抽出、質問応答、要約、翻訳、テキスト生成などのタスクのために、100以上の言語に対応しています。
|
||||
* 🖼️ 画像分類、物体検出、セグメンテーションなどのタスクのための画像。
|
||||
* 🗣️ 音声は、音声認識や音声分類などのタスクに使用します。
|
||||
|
||||
トランスフォーマーモデルは、テーブル質問応答、光学文字認識、スキャン文書からの情報抽出、ビデオ分類、視覚的質問応答など、**複数のモダリティを組み合わせた**タスクも実行可能です。
|
||||
|
||||
🤗Transformersは、与えられたテキストに対してそれらの事前学習されたモデルを素早くダウンロードして使用し、あなた自身のデータセットでそれらを微調整し、私たちの[model hub](https://huggingface.co/models)でコミュニティと共有するためのAPIを提供します。同時に、アーキテクチャを定義する各Pythonモジュールは完全にスタンドアロンであり、迅速な研究実験を可能にするために変更することができます。
|
||||
|
||||
🤗Transformersは[Jax](https://jax.readthedocs.io/en/latest/)、[PyTorch](https://pytorch.org/)、[TensorFlow](https://www.tensorflow.org/)という3大ディープラーニングライブラリーに支えられ、それぞれのライブラリをシームレスに統合しています。片方でモデルを学習してから、もう片方で推論用にロードするのは簡単なことです。
|
||||
|
||||
## オンラインデモ
|
||||
|
||||
[model hub](https://huggingface.co/models)から、ほとんどのモデルのページで直接テストすることができます。また、パブリックモデル、プライベートモデルに対して、[プライベートモデルのホスティング、バージョニング、推論API](https://huggingface.co/pricing)を提供しています。
|
||||
|
||||
以下はその一例です:
|
||||
|
||||
自然言語処理にて:
|
||||
- [BERTによるマスクドワード補完](https://huggingface.co/google-bert/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France)
|
||||
- [Electraによる名前実体認識](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city)
|
||||
- [GPT-2によるテキスト生成](https://huggingface.co/openai-community/gpt2?text=A+long+time+ago%2C+)
|
||||
- [RoBERTaによる自然言語推論](https://huggingface.co/FacebookAI/roberta-large-mnli?text=The+dog+was+lost.+Nobody+lost+any+animal)
|
||||
- [BARTによる要約](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct)
|
||||
- [DistilBERTによる質問応答](https://huggingface.co/distilbert/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species)
|
||||
- [T5による翻訳](https://huggingface.co/google-t5/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin)
|
||||
|
||||
コンピュータビジョンにて:
|
||||
- [ViTによる画像分類](https://huggingface.co/google/vit-base-patch16-224)
|
||||
- [DETRによる物体検出](https://huggingface.co/facebook/detr-resnet-50)
|
||||
- [SegFormerによるセマンティックセグメンテーション](https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512)
|
||||
- [DETRによるパノプティックセグメンテーション](https://huggingface.co/facebook/detr-resnet-50-panoptic)
|
||||
|
||||
オーディオにて:
|
||||
- [Wav2Vec2による自動音声認識](https://huggingface.co/facebook/wav2vec2-base-960h)
|
||||
- [Wav2Vec2によるキーワード検索](https://huggingface.co/superb/wav2vec2-base-superb-ks)
|
||||
|
||||
マルチモーダルなタスクにて:
|
||||
- [ViLTによる視覚的質問応答](https://huggingface.co/dandelin/vilt-b32-finetuned-vqa)
|
||||
|
||||
Hugging Faceチームによって作られた **[トランスフォーマーを使った書き込み](https://transformer.huggingface.co)** は、このリポジトリのテキスト生成機能の公式デモである。
|
||||
|
||||
## Hugging Faceチームによるカスタム・サポートをご希望の場合
|
||||
|
||||
<a target="_blank" href="https://huggingface.co/support">
|
||||
<img alt="HuggingFace Expert Acceleration Program" src="https://cdn-media.huggingface.co/marketing/transformers/new-support-improved.png" style="max-width: 600px; border: 1px solid #eee; border-radius: 4px; box-shadow: 0 1px 2px 0 rgba(0, 0, 0, 0.05);">
|
||||
</a><br>
|
||||
|
||||
## クイックツアー
|
||||
|
||||
与えられた入力(テキスト、画像、音声、...)に対してすぐにモデルを使うために、我々は`pipeline`というAPIを提供しております。pipelineは、学習済みのモデルと、そのモデルの学習時に使用された前処理をグループ化したものです。以下は、肯定的なテキストと否定的なテキストを分類するためにpipelineを使用する方法です:
|
||||
|
||||
```python
|
||||
>>> from transformers import pipeline
|
||||
|
||||
# Allocate a pipeline for sentiment-analysis
|
||||
>>> classifier = pipeline('sentiment-analysis')
|
||||
>>> classifier('We are very happy to introduce pipeline to the transformers repository.')
|
||||
[{'label': 'POSITIVE', 'score': 0.9996980428695679}]
|
||||
```
|
||||
|
||||
2行目のコードでは、pipelineで使用される事前学習済みモデルをダウンロードしてキャッシュし、3行目では与えられたテキストに対してそのモデルを評価します。ここでは、答えは99.97%の信頼度で「ポジティブ」です。
|
||||
|
||||
自然言語処理だけでなく、コンピュータビジョンや音声処理においても、多くのタスクにはあらかじめ訓練された`pipeline`が用意されている。例えば、画像から検出された物体を簡単に抽出することができる:
|
||||
|
||||
``` python
|
||||
>>> import requests
|
||||
>>> from PIL import Image
|
||||
>>> from transformers import pipeline
|
||||
|
||||
# Download an image with cute cats
|
||||
>>> url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample.png"
|
||||
>>> image_data = requests.get(url, stream=True).raw
|
||||
>>> image = Image.open(image_data)
|
||||
|
||||
# Allocate a pipeline for object detection
|
||||
>>> object_detector = pipeline('object-detection')
|
||||
>>> object_detector(image)
|
||||
[{'score': 0.9982201457023621,
|
||||
'label': 'remote',
|
||||
'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
|
||||
{'score': 0.9960021376609802,
|
||||
'label': 'remote',
|
||||
'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
|
||||
{'score': 0.9954745173454285,
|
||||
'label': 'couch',
|
||||
'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
|
||||
{'score': 0.9988006353378296,
|
||||
'label': 'cat',
|
||||
'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
|
||||
{'score': 0.9986783862113953,
|
||||
'label': 'cat',
|
||||
'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}]
|
||||
```
|
||||
|
||||
ここでは、画像から検出されたオブジェクトのリストが得られ、オブジェクトを囲むボックスと信頼度スコアが表示されます。左側が元画像、右側が予測結果を表示したものです:
|
||||
|
||||
<h3 align="center">
|
||||
<a><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample.png" width="400"></a>
|
||||
<a><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample_post_processed.png" width="400"></a>
|
||||
</h3>
|
||||
|
||||
[このチュートリアル](https://huggingface.co/docs/transformers/task_summary)では、`pipeline`APIでサポートされているタスクについて詳しく説明しています。
|
||||
|
||||
`pipeline`に加えて、与えられたタスクに学習済みのモデルをダウンロードして使用するために必要なのは、3行のコードだけです。以下はPyTorchのバージョンです:
|
||||
```python
|
||||
>>> from transformers import AutoTokenizer, AutoModel
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
|
||||
>>> model = AutoModel.from_pretrained("google-bert/bert-base-uncased")
|
||||
|
||||
>>> inputs = tokenizer("Hello world!", return_tensors="pt")
|
||||
>>> outputs = model(**inputs)
|
||||
```
|
||||
|
||||
そしてこちらはTensorFlowと同等のコードとなります:
|
||||
```python
|
||||
>>> from transformers import AutoTokenizer, TFAutoModel
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
|
||||
>>> model = TFAutoModel.from_pretrained("google-bert/bert-base-uncased")
|
||||
|
||||
>>> inputs = tokenizer("Hello world!", return_tensors="tf")
|
||||
>>> outputs = model(**inputs)
|
||||
```
|
||||
|
||||
トークナイザは学習済みモデルが期待するすべての前処理を担当し、単一の文字列 (上記の例のように) またはリストに対して直接呼び出すことができます。これは下流のコードで使用できる辞書を出力します。また、単純に ** 引数展開演算子を使用してモデルに直接渡すこともできます。
|
||||
|
||||
モデル自体は通常の[Pytorch `nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) または [TensorFlow `tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) (バックエンドによって異なる)で、通常通り使用することが可能です。[このチュートリアル](https://huggingface.co/docs/transformers/training)では、このようなモデルを従来のPyTorchやTensorFlowの学習ループに統合する方法や、私たちの`Trainer`APIを使って新しいデータセットで素早く微調整を行う方法について説明します。
|
||||
|
||||
## なぜtransformersを使う必要があるのでしょうか?
|
||||
|
||||
1. 使いやすい最新モデル:
|
||||
- 自然言語理解・生成、コンピュータビジョン、オーディオの各タスクで高いパフォーマンスを発揮します。
|
||||
- 教育者、実務者にとっての低い参入障壁。
|
||||
- 学習するクラスは3つだけで、ユーザが直面する抽象化はほとんどありません。
|
||||
- 学習済みモデルを利用するための統一されたAPI。
|
||||
|
||||
1. 低い計算コスト、少ないカーボンフットプリント:
|
||||
- 研究者は、常に再トレーニングを行うのではなく、トレーニングされたモデルを共有することができます。
|
||||
- 実務家は、計算時間や生産コストを削減することができます。
|
||||
- すべてのモダリティにおいて、60,000以上の事前学習済みモデルを持つ数多くのアーキテクチャを提供します。
|
||||
|
||||
1. モデルのライフタイムのあらゆる部分で適切なフレームワークを選択可能:
|
||||
- 3行のコードで最先端のモデルをトレーニング。
|
||||
- TF2.0/PyTorch/JAXフレームワーク間で1つのモデルを自在に移動させる。
|
||||
- 学習、評価、生産に適したフレームワークをシームレスに選択できます。
|
||||
|
||||
1. モデルやサンプルをニーズに合わせて簡単にカスタマイズ可能:
|
||||
- 原著者が発表した結果を再現するために、各アーキテクチャの例を提供しています。
|
||||
- モデル内部は可能な限り一貫して公開されています。
|
||||
- モデルファイルはライブラリとは独立して利用することができ、迅速な実験が可能です。
|
||||
|
||||
## なぜtransformersを使ってはいけないのでしょうか?
|
||||
|
||||
- このライブラリは、ニューラルネットのためのビルディングブロックのモジュール式ツールボックスではありません。モデルファイルのコードは、研究者が追加の抽象化/ファイルに飛び込むことなく、各モデルを素早く反復できるように、意図的に追加の抽象化でリファクタリングされていません。
|
||||
- 学習APIはどのようなモデルでも動作するわけではなく、ライブラリが提供するモデルで動作するように最適化されています。一般的な機械学習のループには、別のライブラリ(おそらく[Accelerate](https://huggingface.co/docs/accelerate))を使用する必要があります。
|
||||
- 私たちはできるだけ多くの使用例を紹介するよう努力していますが、[examples フォルダ](https://github.com/huggingface/transformers/tree/main/examples) にあるスクリプトはあくまで例です。あなたの特定の問題に対してすぐに動作するわけではなく、あなたのニーズに合わせるために数行のコードを変更する必要があることが予想されます。
|
||||
|
||||
## インストール
|
||||
|
||||
### pipにて
|
||||
|
||||
このリポジトリは、Python 3.8+, Flax 0.4.1+, PyTorch 1.11+, TensorFlow 2.6+ でテストされています。
|
||||
|
||||
🤗Transformersは[仮想環境](https://docs.python.org/3/library/venv.html)にインストールする必要があります。Pythonの仮想環境に慣れていない場合は、[ユーザーガイド](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/)を確認してください。
|
||||
|
||||
まず、使用するバージョンのPythonで仮想環境を作成し、アクティベートします。
|
||||
|
||||
その後、Flax, PyTorch, TensorFlowのうち少なくとも1つをインストールする必要があります。
|
||||
[TensorFlowインストールページ](https://www.tensorflow.org/install/)、[PyTorchインストールページ](https://pytorch.org/get-started/locally/#start-locally)、[Flax](https://github.com/google/flax#quick-install)、[Jax](https://github.com/google/jax#installation)インストールページで、お使いのプラットフォーム別のインストールコマンドを参照してください。
|
||||
|
||||
これらのバックエンドのいずれかがインストールされている場合、🤗Transformersは以下のようにpipを使用してインストールすることができます:
|
||||
|
||||
```bash
|
||||
pip install transformers
|
||||
```
|
||||
|
||||
もしサンプルを試したい、またはコードの最先端が必要で、新しいリリースを待てない場合は、[ライブラリをソースからインストール](https://huggingface.co/docs/transformers/installation#installing-from-source)する必要があります。
|
||||
|
||||
### condaにて
|
||||
|
||||
🤗Transformersは以下のようにcondaを使って設置することができます:
|
||||
|
||||
```shell script
|
||||
conda install conda-forge::transformers
|
||||
```
|
||||
|
||||
> **_注意:_** `huggingface` チャンネルから `transformers` をインストールすることは非推奨です。
|
||||
|
||||
Flax、PyTorch、TensorFlowをcondaでインストールする方法は、それぞれのインストールページに従ってください。
|
||||
|
||||
> **_注意:_** Windowsでは、キャッシュの恩恵を受けるために、デベロッパーモードを有効にするよう促されることがあります。このような場合は、[このissue](https://github.com/huggingface/huggingface_hub/issues/1062)でお知らせください。
|
||||
|
||||
## モデルアーキテクチャ
|
||||
|
||||
🤗Transformersが提供する **[全モデルチェックポイント](https://huggingface.co/models)** は、[ユーザー](https://huggingface.co/users)や[組織](https://huggingface.co/organizations)によって直接アップロードされるhuggingface.co [model hub](https://huggingface.co)からシームレスに統合されています。
|
||||
|
||||
現在のチェックポイント数: 
|
||||
|
||||
🤗Transformersは現在、以下のアーキテクチャを提供しています: それぞれのハイレベルな要約は[こちら](https://huggingface.co/docs/transformers/model_summary)を参照してください.
|
||||
|
||||
各モデルがFlax、PyTorch、TensorFlowで実装されているか、🤗Tokenizersライブラリに支えられた関連トークナイザを持っているかは、[この表](https://huggingface.co/docs/transformers/index#supported-frameworks)を参照してください。
|
||||
|
||||
これらの実装はいくつかのデータセットでテストされており(サンプルスクリプトを参照)、オリジナルの実装の性能と一致するはずである。性能の詳細は[documentation](https://github.com/huggingface/transformers/tree/main/examples)のExamplesセクションで見ることができます。
|
||||
|
||||
|
||||
## さらに詳しく
|
||||
|
||||
| セクション | 概要 |
|
||||
|-|-|
|
||||
| [ドキュメント](https://huggingface.co/docs/transformers/) | 完全なAPIドキュメントとチュートリアル |
|
||||
| [タスク概要](https://huggingface.co/docs/transformers/task_summary) | 🤗Transformersがサポートするタスク |
|
||||
| [前処理チュートリアル](https://huggingface.co/docs/transformers/preprocessing) | モデル用のデータを準備するために`Tokenizer`クラスを使用 |
|
||||
| [トレーニングと微調整](https://huggingface.co/docs/transformers/training) | PyTorch/TensorFlowの学習ループと`Trainer`APIで🤗Transformersが提供するモデルを使用 |
|
||||
| [クイックツアー: 微調整/使用方法スクリプト](https://github.com/huggingface/transformers/tree/main/examples) | 様々なタスクでモデルの微調整を行うためのスクリプト例 |
|
||||
| [モデルの共有とアップロード](https://huggingface.co/docs/transformers/model_sharing) | 微調整したモデルをアップロードしてコミュニティで共有する |
|
||||
| [マイグレーション](https://huggingface.co/docs/transformers/migration) | `pytorch-transformers`または`pytorch-pretrained-bert`から🤗Transformers に移行する |
|
||||
|
||||
## 引用
|
||||
|
||||
🤗 トランスフォーマーライブラリに引用できる[論文](https://www.aclweb.org/anthology/2020.emnlp-demos.6/)が出来ました:
|
||||
```bibtex
|
||||
@inproceedings{wolf-etal-2020-transformers,
|
||||
title = "Transformers: State-of-the-Art Natural Language Processing",
|
||||
author = "Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and Rémi Louf and Morgan Funtowicz and Joe Davison and Sam Shleifer and Patrick von Platen and Clara Ma and Yacine Jernite and Julien Plu and Canwen Xu and Teven Le Scao and Sylvain Gugger and Mariama Drame and Quentin Lhoest and Alexander M. Rush",
|
||||
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
|
||||
month = oct,
|
||||
year = "2020",
|
||||
address = "Online",
|
||||
publisher = "Association for Computational Linguistics",
|
||||
url = "https://www.aclweb.org/anthology/2020.emnlp-demos.6",
|
||||
pages = "38--45"
|
||||
}
|
||||
```
|
||||
163
README_ko.md
163
README_ko.md
@ -18,12 +18,12 @@ limitations under the License.
|
||||
<br>
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers_logo_name.png" width="400"/>
|
||||
<br>
|
||||
</p>
|
||||
<p>
|
||||
<p align="center">
|
||||
<a href="https://circleci.com/gh/huggingface/transformers">
|
||||
<img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/main">
|
||||
<img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/master">
|
||||
</a>
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/LICENSE">
|
||||
<a href="https://github.com/huggingface/transformers/blob/master/LICENSE">
|
||||
<img alt="GitHub" src="https://img.shields.io/github/license/huggingface/transformers.svg?color=blue">
|
||||
</a>
|
||||
<a href="https://huggingface.co/docs/transformers/index">
|
||||
@ -32,7 +32,7 @@ limitations under the License.
|
||||
<a href="https://github.com/huggingface/transformers/releases">
|
||||
<img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/transformers.svg">
|
||||
</a>
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/CODE_OF_CONDUCT.md">
|
||||
<a href="https://github.com/huggingface/transformers/blob/master/CODE_OF_CONDUCT.md">
|
||||
<img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg">
|
||||
</a>
|
||||
<a href="https://zenodo.org/badge/latestdoi/155220641"><img src="https://zenodo.org/badge/155220641.svg" alt="DOI"></a>
|
||||
@ -41,19 +41,10 @@ limitations under the License.
|
||||
<h4 align="center">
|
||||
<p>
|
||||
<a href="https://github.com/huggingface/transformers/">English</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hans.md">简体中文</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hant.md">繁體中文</a> |
|
||||
<b>한국어</b> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_es.md">Español</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_ja.md">日本語</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_hd.md">हिन्दी</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_ru.md">Русский</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_pt-br.md">Рortuguês</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_te.md">తెలుగు</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_fr.md">Français</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_de.md">Deutsch</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_vi.md">Tiếng Việt</a> |
|
||||
</p>
|
||||
<a href="https://github.com/huggingface/transformers/blob/master/README_zh-hans.md">简体中文</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/master/README_zh-hant.md">繁體中文</a> |
|
||||
<b>한국어</b>
|
||||
<p>
|
||||
</h4>
|
||||
|
||||
<h3 align="center">
|
||||
@ -75,13 +66,13 @@ limitations under the License.
|
||||
대부분의 모델을 [모델 허브](https://huggingface.co/models) 페이지에서 바로 테스트해볼 수 있습니다. 공개 및 비공개 모델을 위한 [비공개 모델 호스팅, 버전 관리, 추론 API](https://huggingface.co/pricing)도 제공합니다.
|
||||
|
||||
예시:
|
||||
- [BERT로 마스킹된 단어 완성하기](https://huggingface.co/google-bert/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France)
|
||||
- [BERT로 마스킹된 단어 완성하기](https://huggingface.co/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France)
|
||||
- [Electra를 이용한 개체명 인식](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city)
|
||||
- [GPT-2로 텍스트 생성하기](https://huggingface.co/openai-community/gpt2?text=A+long+time+ago%2C+)
|
||||
- [RoBERTa로 자연어 추론하기](https://huggingface.co/FacebookAI/roberta-large-mnli?text=The+dog+was+lost.+Nobody+lost+any+animal)
|
||||
- [GPT-2로 텍스트 생성하기](https://huggingface.co/gpt2?text=A+long+time+ago%2C+)
|
||||
- [RoBERTa로 자연어 추론하기](https://huggingface.co/roberta-large-mnli?text=The+dog+was+lost.+Nobody+lost+any+animal)
|
||||
- [BART를 이용한 요약](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct)
|
||||
- [DistilBERT를 이용한 질문 답변](https://huggingface.co/distilbert/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species)
|
||||
- [T5로 번역하기](https://huggingface.co/google-t5/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin)
|
||||
- [DistilBERT를 이용한 질문 답변](https://huggingface.co/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species)
|
||||
- [T5로 번역하기](https://huggingface.co/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin)
|
||||
|
||||
**[Transformer와 글쓰기](https://transformer.huggingface.co)** 는 이 저장소의 텍스트 생성 능력에 관한 Hugging Face 팀의 공식 데모입니다.
|
||||
|
||||
@ -127,8 +118,8 @@ limitations under the License.
|
||||
```python
|
||||
>>> from transformers import AutoTokenizer, AutoModel
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
|
||||
>>> model = AutoModel.from_pretrained("google-bert/bert-base-uncased")
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
||||
>>> model = AutoModel.from_pretrained("bert-base-uncased")
|
||||
|
||||
>>> inputs = tokenizer("Hello world!", return_tensors="pt")
|
||||
>>> outputs = model(**inputs)
|
||||
@ -137,8 +128,8 @@ limitations under the License.
|
||||
```python
|
||||
>>> from transformers import AutoTokenizer, TFAutoModel
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
|
||||
>>> model = TFAutoModel.from_pretrained("google-bert/bert-base-uncased")
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
||||
>>> model = TFAutoModel.from_pretrained("bert-base-uncased")
|
||||
|
||||
>>> inputs = tokenizer("Hello world!", return_tensors="tf")
|
||||
>>> outputs = model(**inputs)
|
||||
@ -175,13 +166,13 @@ limitations under the License.
|
||||
|
||||
- 이 라이브러리는 신경망 블록을 만들기 위한 모듈이 아닙니다. 연구자들이 여러 파일을 살펴보지 않고 바로 각 모델을 사용할 수 있도록, 모델 파일 코드의 추상화 수준을 적정하게 유지했습니다.
|
||||
- 학습 API는 모든 모델에 적용할 수 있도록 만들어지진 않았지만, 라이브러리가 제공하는 모델들에 적용할 수 있도록 최적화되었습니다. 일반적인 머신 러닝을 위해선, 다른 라이브러리를 사용하세요.
|
||||
- 가능한 많은 사용 예시를 보여드리고 싶어서, [예시 폴더](https://github.com/huggingface/transformers/tree/main/examples)의 스크립트를 준비했습니다. 이 스크립트들을 수정 없이 특정한 문제에 바로 적용하지 못할 수 있습니다. 필요에 맞게 일부 코드를 수정해야 할 수 있습니다.
|
||||
- 가능한 많은 사용 예시를 보여드리고 싶어서, [예시 폴더](https://github.com/huggingface/transformers/tree/master/examples)의 스크립트를 준비했습니다. 이 스크립트들을 수정 없이 특정한 문제에 바로 적용하지 못할 수 있습니다. 필요에 맞게 일부 코드를 수정해야 할 수 있습니다.
|
||||
|
||||
## 설치
|
||||
|
||||
### pip로 설치하기
|
||||
|
||||
이 저장소는 Python 3.8+, Flax 0.4.1+, PyTorch 1.11+, TensorFlow 2.6+에서 테스트 되었습니다.
|
||||
이 저장소는 Python 3.6+, Flax 0.3.2+, PyTorch 1.3.1+, TensorFlow 2.3+에서 테스트 되었습니다.
|
||||
|
||||
[가상 환경](https://docs.python.org/3/library/venv.html)에 🤗 Transformers를 설치하세요. Python 가상 환경에 익숙하지 않다면, [사용자 가이드](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/)를 확인하세요.
|
||||
|
||||
@ -200,14 +191,14 @@ pip install transformers
|
||||
|
||||
### conda로 설치하기
|
||||
|
||||
Transformers 버전 v4.0.0부터, conda 채널이 생겼습니다: `huggingface`.
|
||||
|
||||
🤗 Transformers는 다음과 같이 conda로 설치할 수 있습니다:
|
||||
|
||||
```shell script
|
||||
conda install conda-forge::transformers
|
||||
conda install -c huggingface transformers
|
||||
```
|
||||
|
||||
> **_노트:_** `huggingface` 채널에서 `transformers`를 설치하는 것은 사용이 중단되었습니다.
|
||||
|
||||
Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는 방법을 확인하세요.
|
||||
|
||||
## 모델 구조
|
||||
@ -216,7 +207,113 @@ Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는
|
||||
|
||||
현재 사용 가능한 모델 체크포인트의 개수: 
|
||||
|
||||
🤗 Transformers는 다음 모델들을 제공합니다: 각 모델의 요약은 [여기](https://huggingface.co/docs/transformers/model_summary)서 확인하세요.
|
||||
🤗 Transformers는 다음 모델들을 제공합니다 (각 모델의 요약은 [여기](https://huggingface.co/docs/transformers/model_summary)서 확인하세요):
|
||||
|
||||
1. **[ALBERT](https://huggingface.co/docs/transformers/model_doc/albert)** (from Google Research and the Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.
|
||||
1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (from Facebook) released with the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/pdf/1910.13461.pdf) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer.
|
||||
1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (from École polytechnique) released with the paper [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis.
|
||||
1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (from VinAI Research) released with the paper [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen.
|
||||
1. **[BEiT](https://huggingface.co/docs/transformers/model_doc/beit)** (from Microsoft) released with the paper [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) by Hangbo Bao, Li Dong, Furu Wei.
|
||||
1. **[BERT](https://huggingface.co/docs/transformers/model_doc/bert)** (from Google) released with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova.
|
||||
1. **[BERT For Sequence Generation](https://huggingface.co/docs/transformers/model_doc/bert-generation)** (from Google) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
|
||||
1. **[BERTweet](https://huggingface.co/docs/transformers/model_doc/bertweet)** (from VinAI Research) released with the paper [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) by Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen.
|
||||
1. **[BigBird-Pegasus](https://huggingface.co/docs/transformers/model_doc/bigbird_pegasus)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
|
||||
1. **[BigBird-RoBERTa](https://huggingface.co/docs/transformers/model_doc/big_bird)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
|
||||
1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
|
||||
1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
|
||||
1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (from Alexa) released with the paper [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) by Adrian de Wynter and Daniel J. Perry.
|
||||
1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (from Google Research) released with the paper [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel.
|
||||
1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (from Inria/Facebook/Sorbonne) released with the paper [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
|
||||
1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (from Google Research) released with the paper [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting.
|
||||
1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (from OpenAI) released with the paper [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever.
|
||||
1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (from YituTech) released with the paper [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan.
|
||||
1. **[ConvNeXT](https://huggingface.co/docs/transformers/master/model_doc/convnext)** (from Facebook AI) released with the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie.
|
||||
1. **[CPM](https://huggingface.co/docs/transformers/model_doc/cpm)** (from Tsinghua University) released with the paper [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) by Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun.
|
||||
1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
|
||||
1. **[Data2Vec](https://huggingface.co/docs/transformers/master/model_doc/data2vec)** (from Facebook) released with the paper [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli.
|
||||
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
|
||||
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
|
||||
1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (from Facebook) released with the paper [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou.
|
||||
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (from Facebook) released with the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
|
||||
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (from Microsoft Research) released with the paper [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
|
||||
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/master/examples/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/master/examples/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/master/examples/distillation) and a German version of DistilBERT.
|
||||
1. **[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (from Facebook) released with the paper [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) by Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
|
||||
1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
|
||||
1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (from Google Research) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
|
||||
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
|
||||
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
|
||||
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
|
||||
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
|
||||
1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (from EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy.
|
||||
1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (from OpenAI) released with the paper [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/) by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**.
|
||||
1. **[GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj)** (from EleutherAI) released in the repository [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) by Ben Wang and Aran Komatsuzaki.
|
||||
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (from Facebook) released with the paper [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed.
|
||||
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (from Berkeley) released with the paper [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer.
|
||||
1. **[ImageGPT](https://huggingface.co/docs/transformers/master/model_doc/imagegpt)** (from OpenAI) released with the paper [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever.
|
||||
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
|
||||
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou.
|
||||
1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
|
||||
1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
|
||||
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
|
||||
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (from Studio Ousia) released with the paper [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.
|
||||
1. **[LXMERT](https://huggingface.co/docs/transformers/model_doc/lxmert)** (from UNC Chapel Hill) released with the paper [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal.
|
||||
1. **[M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100)** (from Facebook) released with the paper [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) by Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin.
|
||||
1. **[MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)** Machine translation models trained using [OPUS](http://opus.nlpl.eu/) data by Jörg Tiedemann. The [Marian Framework](https://marian-nmt.github.io/) is being developed by the Microsoft Translator Team.
|
||||
1. **[MaskFormer](https://huggingface.co/docs/transformers/master/model_doc/maskformer)** (from Meta and UIUC) released with the paper [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) by Bowen Cheng, Alexander G. Schwing, Alexander Kirillov.
|
||||
1. **[MBart](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
|
||||
1. **[MBart-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan.
|
||||
1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
|
||||
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
|
||||
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (from Studio Ousia) released with the paper [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka.
|
||||
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
|
||||
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
|
||||
1. **[Nyströmformer](https://huggingface.co/docs/transformers/master/model_doc/nystromformer)** (from the University of Wisconsin - Madison) released with the paper [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh.
|
||||
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
|
||||
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (from Deepmind) released with the paper [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) by Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira.
|
||||
1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen.
|
||||
1. **[PLBart](https://huggingface.co/docs/transformers/master/model_doc/plbart)** (from UCLA NLP) released with the paper [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) by Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang.
|
||||
1. **[PoolFormer](https://huggingface.co/docs/transformers/master/model_doc/poolformer)** (from Sea AI Labs) released with the paper [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) by Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng.
|
||||
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
|
||||
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (from NVIDIA) released with the paper [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) by Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius.
|
||||
1. **[REALM](https://huggingface.co/transformers/model_doc/realm.html)** (from Google Research) released with the paper [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) by Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang.
|
||||
1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (from Google Research) released with the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
|
||||
1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (from Google Research) released with the paper [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/pdf/2010.12821.pdf) by Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder.
|
||||
1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (from Facebook), released together with the paper a [Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
|
||||
1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (from ZhuiyiTechnology), released together with the paper a [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/pdf/2104.09864v1.pdf) by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu.
|
||||
1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (from NVIDIA) released with the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo.
|
||||
1. **[SEW](https://huggingface.co/docs/transformers/model_doc/sew)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
|
||||
1. **[SEW-D](https://huggingface.co/docs/transformers/model_doc/sew_d)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
|
||||
1. **[SpeechToTextTransformer](https://huggingface.co/docs/transformers/model_doc/speech_to_text)** (from Facebook), released together with the paper [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino.
|
||||
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (from Facebook), released together with the paper [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau.
|
||||
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (from Tel Aviv University), released together with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy.
|
||||
1. **[SqueezeBert](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
|
||||
1. **[Swin Transformer](https://huggingface.co/docs/transformers/master/model_doc/swin)** (from Microsoft) released with the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
|
||||
1. **[T5](https://huggingface.co/docs/transformers/model_doc/t5)** (from Google AI) released with the paper [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
|
||||
1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (from Google AI) released in the repository [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
|
||||
1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (from Google AI) released with the paper [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos.
|
||||
1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
|
||||
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (from Microsoft), released together with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
|
||||
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (from Microsoft Research) released with the paper [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.
|
||||
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (from Microsoft Research) released with the paper [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu.
|
||||
1. **[ViLT](https://huggingface.co/docs/transformers/master/model_doc/vilt)** (from NAVER AI Lab/Kakao Enterprise/Kakao Brain) released with the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Wonjae Kim, Bokyung Son, Ildoo Kim.
|
||||
1. **[ViLT)](https://huggingface.co/docs/transformers/master/model_doc/vilt)** (from NAVER AI Lab/Kakao Enterprise/Kakao Brain) released with the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Wonjae Kim, Bokyung Son, Ildoo Kim.
|
||||
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
|
||||
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
|
||||
1. **[ViTMAE](https://huggingface.co/docs/transformers/master/model_doc/vit_mae)** (from Meta AI) released with the paper [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick.
|
||||
1. **[ViTMAE)](https://huggingface.co/docs/transformers/master/model_doc/vit_mae)** (from Meta AI) released with the paper [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick.
|
||||
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (from Facebook AI) released with the paper [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.
|
||||
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/master/transformers/model_doc/wav2vec2_phoneme)** (from Facebook AI) released with the paper [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) by Qiantong Xu, Alexei Baevski, Michael Auli.
|
||||
1. **[WavLM](https://huggingface.co/docs/transformers/master/model_doc/wavlm)** (from Microsoft Research) released with the paper [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei.
|
||||
1. **[XGLM](https://huggingface.co/docs/master/transformers/model_doc/xglm)** (From Facebook AI) released with the paper [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li.
|
||||
1. **[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (from Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau.
|
||||
1. **[XLM-ProphetNet](https://huggingface.co/docs/transformers/model_doc/xlm-prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
|
||||
1. **[XLM-RoBERTa](https://huggingface.co/docs/transformers/model_doc/xlm-roberta)** (from Facebook AI), released together with the paper [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov.
|
||||
1. **[XLM-RoBERTa-XL](https://huggingface.co/docs/transformers/master/model_doc/xlm-roberta-xl)** (from Facebook AI) released with the paper [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) by Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau.
|
||||
1. **[XLNet](https://huggingface.co/docs/transformers/model_doc/xlnet)** (from Google/CMU) released with the paper [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
|
||||
1. **[XLS-R](https://huggingface.co/docs/master/transformers/model_doc/xls_r)** (from Facebook AI) released with the paper [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) by Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli.
|
||||
1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (from Facebook AI) released with the paper [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) by Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli.
|
||||
1. **[YOSO](https://huggingface.co/docs/transformers/master/model_doc/yoso)** (from the University of Wisconsin - Madison) released with the paper [You Only Sample (Almost) by Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh.
|
||||
1. 새로운 모델을 올리고 싶나요? 우리가 **상세한 가이드와 템플릿** 으로 새로운 모델을 올리도록 도와드릴게요. 가이드와 템플릿은 이 저장소의 [`templates`](./templates) 폴더에서 확인하실 수 있습니다. [컨트리뷰션 가이드라인](./CONTRIBUTING.md)을 꼭 확인해주시고, PR을 올리기 전에 메인테이너에게 연락하거나 이슈를 오픈해 피드백을 받으시길 바랍니다.
|
||||
|
||||
각 모델이 Flax, PyTorch, TensorFlow으로 구현되었는지 또는 🤗 Tokenizers 라이브러리가 지원하는 토크나이저를 사용하는지 확인하려면, [이 표](https://huggingface.co/docs/transformers/index#supported-frameworks)를 확인하세요.
|
||||
|
||||
@ -230,7 +327,7 @@ Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는
|
||||
| [과제 요약](https://huggingface.co/docs/transformers/task_summary) | 🤗 Transformers가 지원하는 과제들 |
|
||||
| [전처리 튜토리얼](https://huggingface.co/docs/transformers/preprocessing) | `Tokenizer` 클래스를 이용해 모델을 위한 데이터 준비하기 |
|
||||
| [학습과 fine-tuning](https://huggingface.co/docs/transformers/training) | 🤗 Transformers가 제공하는 모델 PyTorch/TensorFlow 학습 과정과 `Trainer` API에서 사용하기 |
|
||||
| [퀵 투어: Fine-tuning/사용 스크립트](https://github.com/huggingface/transformers/tree/main/examples) | 다양한 과제에서 모델 fine-tuning하는 예시 스크립트 |
|
||||
| [퀵 투어: Fine-tuning/사용 스크립트](https://github.com/huggingface/transformers/tree/master/examples) | 다양한 과제에서 모델 fine-tuning하는 예시 스크립트 |
|
||||
| [모델 공유 및 업로드](https://huggingface.co/docs/transformers/model_sharing) | 커뮤니티에 fine-tune된 모델을 업로드 및 공유하기 |
|
||||
| [마이그레이션](https://huggingface.co/docs/transformers/migration) | `pytorch-transformers`나 `pytorch-pretrained-bert`에서 🤗 Transformers로 이동하기|
|
||||
|
||||
|
||||
335
README_pt-br.md
335
README_pt-br.md
@ -1,335 +0,0 @@
|
||||
<!---
|
||||
Copyright 2023 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
-->
|
||||
|
||||
<p align="center">
|
||||
<picture>
|
||||
<source media="(prefers-color-scheme: dark)" srcset="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-dark.svg">
|
||||
<source media="(prefers-color-scheme: light)" srcset="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-light.svg">
|
||||
<img alt="Hugging Face Transformers Library" src="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-light.svg" width="352" height="59" style="max-width: 100%;">
|
||||
</picture>
|
||||
<br/>
|
||||
<br/>
|
||||
</p>
|
||||
|
||||
<p align="center">
|
||||
<a href="https://circleci.com/gh/huggingface/transformers">
|
||||
<img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/main">
|
||||
</a>
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/LICENSE">
|
||||
<img alt="GitHub" src="https://img.shields.io/github/license/huggingface/transformers.svg?color=blue">
|
||||
</a>
|
||||
<a href="https://huggingface.co/docs/transformers/index">
|
||||
<img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/docs/transformers/index.svg?down_color=red&down_message=offline&up_message=online">
|
||||
</a>
|
||||
<a href="https://github.com/huggingface/transformers/releases">
|
||||
<img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/transformers.svg">
|
||||
</a>
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/CODE_OF_CONDUCT.md">
|
||||
<img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg">
|
||||
</a>
|
||||
<a href="https://zenodo.org/badge/latestdoi/155220641"><img src="https://zenodo.org/badge/155220641.svg" alt="DOI"></a>
|
||||
</p>
|
||||
|
||||
<h4 align="center">
|
||||
<p>
|
||||
<a href="https://github.com/huggingface/transformers/">English</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hans.md">简体中文</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hant.md">繁體中文</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_ko.md">한국어</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_es.md">Español</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_ja.md">日本語</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_hd.md">हिन्दी</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_ru.md">Русский</a> |
|
||||
<b>Рortuguês</b> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_te.md">తెలుగు</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_fr.md">Français</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_de.md">Deutsch</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_vi.md">Tiếng Việt</a> |
|
||||
</p>
|
||||
</h4>
|
||||
|
||||
<h3 align="center">
|
||||
<p>Aprendizado de máquina de última geração para JAX, PyTorch e TensorFlow</p>
|
||||
</h3>
|
||||
|
||||
<h3 align="center">
|
||||
<a href="https://hf.co/course"><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/course_banner.png"></a>
|
||||
</h3>
|
||||
|
||||
|
||||
A biblioteca 🤗 Transformers oferece milhares de modelos pré-treinados para executar tarefas em diferentes modalidades, como texto, visão e áudio.
|
||||
|
||||
Esses modelos podem ser aplicados a:
|
||||
|
||||
* 📝 Texto, para tarefas como classificação de texto, extração de informações, resposta a perguntas, sumarização, tradução, geração de texto, em mais de 100 idiomas.
|
||||
* 🖼️ Imagens, para tarefas como classificação de imagens, detecção de objetos e segmentação.
|
||||
* 🗣️ Áudio, para tarefas como reconhecimento de fala e classificação de áudio.
|
||||
|
||||
Os modelos Transformer também podem executar tarefas em diversas modalidades combinadas, como responder a perguntas em tabelas, reconhecimento óptico de caracteres, extração de informações de documentos digitalizados, classificação de vídeo e resposta a perguntas visuais.
|
||||
|
||||
|
||||
A biblioteca 🤗 Transformers oferece APIs para baixar e usar rapidamente esses modelos pré-treinados em um texto específico, ajustá-los em seus próprios conjuntos de dados e, em seguida, compartilhá-los com a comunidade em nosso [model hub](https://huggingface.co/models). Ao mesmo tempo, cada módulo Python que define uma arquitetura é totalmente independente e pode ser modificado para permitir experimentos de pesquisa rápidos.
|
||||
|
||||
A biblioteca 🤗 Transformers é respaldada pelas três bibliotecas de aprendizado profundo mais populares — [Jax](https://jax.readthedocs.io/en/latest/), [PyTorch](https://pytorch.org/) e [TensorFlow](https://www.tensorflow.org/) — com uma integração perfeita entre elas. É simples treinar seus modelos com uma delas antes de carregá-los para inferência com a outra
|
||||
|
||||
## Demonstração Online
|
||||
|
||||
Você pode testar a maioria de nossos modelos diretamente em suas páginas a partir do [model hub](https://huggingface.co/models). Também oferecemos [hospedagem de modelos privados, versionamento e uma API de inferência](https://huggingface.co/pricing)
|
||||
para modelos públicos e privados.
|
||||
|
||||
Aqui estão alguns exemplos:
|
||||
|
||||
Em Processamento de Linguagem Natural:
|
||||
|
||||
- [Completar palavra mascarada com BERT](https://huggingface.co/google-bert/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France)
|
||||
- [Reconhecimento de Entidades Nomeadas com Electra](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city)
|
||||
- [Geração de texto com GPT-2](https://huggingface.co/openai-community/gpt2?text=A+long+time+ago%2C)
|
||||
- [Inferência de Linguagem Natural com RoBERTa](https://huggingface.co/FacebookAI/roberta-large-mnli?text=The+dog+was+lost.+Nobody+lost+any+animal)
|
||||
- [Sumarização com BART](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct)
|
||||
- [Resposta a perguntas com DistilBERT](https://huggingface.co/distilbert/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species)
|
||||
- [Tradução com T5](https://huggingface.co/google-t5/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin)
|
||||
|
||||
|
||||
Em Visão Computacional:
|
||||
- [Classificação de Imagens com ViT](https://huggingface.co/google/vit-base-patch16-224)
|
||||
- [Detecção de Objetos com DETR](https://huggingface.co/facebook/detr-resnet-50)
|
||||
- [Segmentação Semântica com SegFormer](https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512)
|
||||
- [Segmentação Panóptica com MaskFormer](https://huggingface.co/facebook/maskformer-swin-small-coco)
|
||||
- [Estimativa de Profundidade com DPT](https://huggingface.co/docs/transformers/model_doc/dpt)
|
||||
- [Classificação de Vídeo com VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)
|
||||
- [Segmentação Universal com OneFormer](https://huggingface.co/shi-labs/oneformer_ade20k_dinat_large)
|
||||
|
||||
|
||||
Em Áudio:
|
||||
- [Reconhecimento Automático de Fala com Wav2Vec2](https://huggingface.co/facebook/wav2vec2-base-960h)
|
||||
- [Detecção de Palavras-Chave com Wav2Vec2](https://huggingface.co/superb/wav2vec2-base-superb-ks)
|
||||
- [Classificação de Áudio com Transformer de Espectrograma de Áudio](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593)
|
||||
|
||||
Em Tarefas Multimodais:
|
||||
- [Respostas de Perguntas em Tabelas com TAPAS](https://huggingface.co/google/tapas-base-finetuned-wtq)
|
||||
- [Respostas de Perguntas Visuais com ViLT](https://huggingface.co/dandelin/vilt-b32-finetuned-vqa)
|
||||
- [Classificação de Imagens sem Anotação com CLIP](https://huggingface.co/openai/clip-vit-large-patch14)
|
||||
- [Respostas de Perguntas em Documentos com LayoutLM](https://huggingface.co/impira/layoutlm-document-qa)
|
||||
- [Classificação de Vídeo sem Anotação com X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)
|
||||
|
||||
## 100 Projetos Usando Transformers
|
||||
|
||||
Transformers é mais do que um conjunto de ferramentas para usar modelos pré-treinados: é uma comunidade de projetos construídos ao seu redor e o Hugging Face Hub. Queremos que o Transformers permita que desenvolvedores, pesquisadores, estudantes, professores, engenheiros e qualquer outra pessoa construa seus projetos dos sonhos.
|
||||
|
||||
Para celebrar as 100.000 estrelas do Transformers, decidimos destacar a comunidade e criamos a página [awesome-transformers](./awesome-transformers.md), que lista 100 projetos incríveis construídos nas proximidades dos Transformers.
|
||||
|
||||
Se você possui ou utiliza um projeto que acredita que deveria fazer parte da lista, abra um PR para adicioná-lo!
|
||||
|
||||
## Se você está procurando suporte personalizado da equipe Hugging Face
|
||||
|
||||
<a target="_blank" href="https://huggingface.co/support">
|
||||
<img alt="HuggingFace Expert Acceleration Program" src="https://cdn-media.huggingface.co/marketing/transformers/new-support-improved.png" style="max-width: 600px; border: 1px solid #eee; border-radius: 4px; box-shadow: 0 1px 2px 0 rgba(0, 0, 0, 0.05);">
|
||||
</a><br>
|
||||
|
||||
|
||||
## Tour Rápido
|
||||
|
||||
Para usar imediatamente um modelo em uma entrada específica (texto, imagem, áudio, ...), oferecemos a API `pipeline`. Os pipelines agrupam um modelo pré-treinado com o pré-processamento que foi usado durante o treinamento desse modelo. Aqui está como usar rapidamente um pipeline para classificar textos como positivos ou negativos:
|
||||
|
||||
```python
|
||||
from transformers import pipeline
|
||||
|
||||
# Carregue o pipeline de classificação de texto
|
||||
>>> classifier = pipeline("sentiment-analysis")
|
||||
|
||||
# Classifique o texto como positivo ou negativo
|
||||
>>> classifier("Estamos muito felizes em apresentar o pipeline no repositório dos transformers.")
|
||||
[{'label': 'POSITIVE', 'score': 0.9996980428695679}]
|
||||
```
|
||||
|
||||
A segunda linha de código baixa e armazena em cache o modelo pré-treinado usado pelo pipeline, enquanto a terceira linha o avalia no texto fornecido. Neste exemplo, a resposta é "positiva" com uma confiança de 99,97%.
|
||||
|
||||
Muitas tarefas têm um `pipeline` pré-treinado pronto para uso, não apenas em PNL, mas também em visão computacional e processamento de áudio. Por exemplo, podemos facilmente extrair objetos detectados em uma imagem:
|
||||
|
||||
``` python
|
||||
>>> import requests
|
||||
>>> from PIL import Image
|
||||
>>> from transformers import pipeline
|
||||
|
||||
# Download an image with cute cats
|
||||
>>> url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample.png"
|
||||
>>> image_data = requests.get(url, stream=True).raw
|
||||
>>> image = Image.open(image_data)
|
||||
|
||||
# Allocate a pipeline for object detection
|
||||
>>> object_detector = pipeline('object-detection')
|
||||
>>> object_detector(image)
|
||||
[{'score': 0.9982201457023621,
|
||||
'label': 'remote',
|
||||
'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
|
||||
{'score': 0.9960021376609802,
|
||||
'label': 'remote',
|
||||
'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
|
||||
{'score': 0.9954745173454285,
|
||||
'label': 'couch',
|
||||
'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
|
||||
{'score': 0.9988006353378296,
|
||||
'label': 'cat',
|
||||
'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
|
||||
{'score': 0.9986783862113953,
|
||||
'label': 'cat',
|
||||
'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}]
|
||||
```
|
||||
|
||||
|
||||
Aqui obtemos uma lista de objetos detectados na imagem, com uma caixa envolvendo o objeto e uma pontuação de confiança. Aqui está a imagem original à esquerda, com as previsões exibidas à direita:
|
||||
|
||||
<h3 align="center">
|
||||
<a><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample.png" width="400"></a>
|
||||
<a><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample_post_processed.png" width="400"></a>
|
||||
</h3>
|
||||
|
||||
Você pode aprender mais sobre as tarefas suportadas pela API `pipeline` em [este tutorial](https://huggingface.co/docs/transformers/task_summary).
|
||||
|
||||
|
||||
Além do `pipeline`, para baixar e usar qualquer um dos modelos pré-treinados em sua tarefa específica, tudo o que é necessário são três linhas de código. Aqui está a versão em PyTorch:
|
||||
|
||||
```python
|
||||
>>> from transformers import AutoTokenizer, AutoModel
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
|
||||
>>> model = AutoModel.from_pretrained("google-bert/bert-base-uncased")
|
||||
|
||||
>>> inputs = tokenizer("Hello world!", return_tensors="pt")
|
||||
>>> outputs = model(**inputs)
|
||||
```
|
||||
|
||||
E aqui está o código equivalente para TensorFlow:
|
||||
|
||||
```python
|
||||
>>> from transformers import AutoTokenizer, TFAutoModel
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
|
||||
>>> model = TFAutoModel.from_pretrained("google-bert/bert-base-uncased")
|
||||
|
||||
>>> inputs = tokenizer("Hello world!", return_tensors="tf")
|
||||
>>> outputs = model(**inputs)
|
||||
```
|
||||
|
||||
O tokenizador é responsável por todo o pré-processamento que o modelo pré-treinado espera, e pode ser chamado diretamente em uma única string (como nos exemplos acima) ou em uma lista. Ele produzirá um dicionário que você pode usar no código subsequente ou simplesmente passar diretamente para o seu modelo usando o operador de descompactação de argumentos **.
|
||||
|
||||
O modelo em si é um [Pytorch `nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) ou um [TensorFlow `tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model)(dependendo do seu back-end) que você pode usar como de costume. [Este tutorial](https://huggingface.co/docs/transformers/training) explica como integrar esse modelo em um ciclo de treinamento clássico do PyTorch ou TensorFlow, ou como usar nossa API `Trainer` para ajuste fino rápido em um novo conjunto de dados.
|
||||
|
||||
## Por que devo usar transformers?
|
||||
|
||||
1. Modelos state-of-the-art fáceis de usar:
|
||||
- Alto desempenho em compreensão e geração de linguagem natural, visão computacional e tarefas de áudio.
|
||||
- Barreira de entrada baixa para educadores e profissionais.
|
||||
- Poucas abstrações visíveis para o usuário, com apenas três classes para aprender.
|
||||
- Uma API unificada para usar todos os nossos modelos pré-treinados.
|
||||
|
||||
1. Menores custos de computação, menor pegada de carbono:
|
||||
- Pesquisadores podem compartilhar modelos treinados em vez de treinar sempre do zero.
|
||||
- Profissionais podem reduzir o tempo de computação e os custos de produção.
|
||||
- Dezenas de arquiteturas com mais de 60.000 modelos pré-treinados em todas as modalidades.
|
||||
|
||||
1. Escolha o framework certo para cada parte da vida de um modelo:
|
||||
- Treine modelos state-of-the-art em 3 linhas de código.
|
||||
- Mova um único modelo entre frameworks TF2.0/PyTorch/JAX à vontade.
|
||||
- Escolha o framework certo de forma contínua para treinamento, avaliação e produção.
|
||||
|
||||
1. Personalize facilmente um modelo ou um exemplo para atender às suas necessidades:
|
||||
- Fornecemos exemplos para cada arquitetura para reproduzir os resultados publicados pelos autores originais.
|
||||
- Os detalhes internos do modelo são expostos de maneira consistente.
|
||||
- Os arquivos do modelo podem ser usados de forma independente da biblioteca para experimentos rápidos.
|
||||
|
||||
## Por que não devo usar transformers?
|
||||
|
||||
- Esta biblioteca não é uma caixa de ferramentas modular para construir redes neurais. O código nos arquivos do modelo não é refatorado com abstrações adicionais de propósito, para que os pesquisadores possam iterar rapidamente em cada um dos modelos sem se aprofundar em abstrações/arquivos adicionais.
|
||||
- A API de treinamento não é projetada para funcionar com qualquer modelo, mas é otimizada para funcionar com os modelos fornecidos pela biblioteca. Para loops de aprendizado de máquina genéricos, você deve usar outra biblioteca (possivelmente, [Accelerate](https://huggingface.co/docs/accelerate)).
|
||||
- Embora nos esforcemos para apresentar o maior número possível de casos de uso, os scripts em nossa [pasta de exemplos](https://github.com/huggingface/transformers/tree/main/examples) são apenas isso: exemplos. É esperado que eles não funcionem prontos para uso em seu problema específico e que seja necessário modificar algumas linhas de código para adaptá-los às suas necessidades.
|
||||
|
||||
|
||||
|
||||
### Com pip
|
||||
|
||||
Este repositório é testado no Python 3.8+, Flax 0.4.1+, PyTorch 1.11+ e TensorFlow 2.6+.
|
||||
|
||||
Você deve instalar o 🤗 Transformers em um [ambiente virtual](https://docs.python.org/3/library/venv.html). Se você não está familiarizado com ambientes virtuais em Python, confira o [guia do usuário](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/).
|
||||
|
||||
Primeiro, crie um ambiente virtual com a versão do Python que você vai usar e ative-o.
|
||||
|
||||
Em seguida, você precisará instalar pelo menos um dos back-ends Flax, PyTorch ou TensorFlow.
|
||||
Consulte a [página de instalação do TensorFlow](https://www.tensorflow.org/install/), a [página de instalação do PyTorch](https://pytorch.org/get-started/locally/#start-locally) e/ou [Flax](https://github.com/google/flax#quick-install) e [Jax](https://github.com/google/jax#installation) páginas de instalação para obter o comando de instalação específico para a sua plataforma.
|
||||
|
||||
Quando um desses back-ends estiver instalado, o 🤗 Transformers pode ser instalado usando pip da seguinte forma:
|
||||
|
||||
```bash
|
||||
pip install transformers
|
||||
```
|
||||
Se você deseja experimentar com os exemplos ou precisa da versão mais recente do código e não pode esperar por um novo lançamento, você deve instalar a [biblioteca a partir do código-fonte](https://huggingface.co/docs/transformers/installation#installing-from-source).
|
||||
|
||||
### Com conda
|
||||
|
||||
O 🤗 Transformers pode ser instalado com conda da seguinte forma:
|
||||
|
||||
```bash
|
||||
conda install conda-forge::transformers
|
||||
```
|
||||
|
||||
> **_NOTA:_** Instalar `transformers` pelo canal `huggingface` está obsoleto.
|
||||
|
||||
Siga as páginas de instalação do Flax, PyTorch ou TensorFlow para ver como instalá-los com conda.
|
||||
|
||||
Siga as páginas de instalação do Flax, PyTorch ou TensorFlow para ver como instalá-los com o conda.
|
||||
|
||||
> **_NOTA:_** No Windows, você pode ser solicitado a ativar o Modo de Desenvolvedor para aproveitar o cache. Se isso não for uma opção para você, por favor nos avise [neste problema](https://github.com/huggingface/huggingface_hub/issues/1062).
|
||||
|
||||
## Arquiteturas de Modelos
|
||||
|
||||
**[Todos os pontos de verificação de modelo](https://huggingface.co/models)** fornecidos pelo 🤗 Transformers são integrados de forma transparente do [model hub](https://huggingface.co/models) do huggingface.co, onde são carregados diretamente por [usuários](https://huggingface.co/users) e [organizações](https://huggingface.co/organizations).
|
||||
|
||||
Número atual de pontos de verificação: 
|
||||
|
||||
🤗 Transformers atualmente fornece as seguintes arquiteturas: veja [aqui](https://huggingface.co/docs/transformers/model_summary) para um resumo de alto nível de cada uma delas.
|
||||
|
||||
Para verificar se cada modelo tem uma implementação em Flax, PyTorch ou TensorFlow, ou possui um tokenizador associado com a biblioteca 🤗 Tokenizers, consulte [esta tabela](https://huggingface.co/docs/transformers/index#supported-frameworks).
|
||||
|
||||
Essas implementações foram testadas em vários conjuntos de dados (veja os scripts de exemplo) e devem corresponder ao desempenho das implementações originais. Você pode encontrar mais detalhes sobre o desempenho na seção de Exemplos da [documentação](https://github.com/huggingface/transformers/tree/main/examples).
|
||||
|
||||
|
||||
## Saiba mais
|
||||
|
||||
| Seção | Descrição |
|
||||
|-|-|
|
||||
| [Documentação](https://huggingface.co/docs/transformers/) | Documentação completa da API e tutoriais |
|
||||
| [Resumo de Tarefas](https://huggingface.co/docs/transformers/task_summary) | Tarefas suportadas pelo 🤗 Transformers |
|
||||
| [Tutorial de Pré-processamento](https://huggingface.co/docs/transformers/preprocessing) | Usando a classe `Tokenizer` para preparar dados para os modelos |
|
||||
| [Treinamento e Ajuste Fino](https://huggingface.co/docs/transformers/training) | Usando os modelos fornecidos pelo 🤗 Transformers em um loop de treinamento PyTorch/TensorFlow e a API `Trainer` |
|
||||
| [Tour Rápido: Scripts de Ajuste Fino/Utilização](https://github.com/huggingface/transformers/tree/main/examples) | Scripts de exemplo para ajuste fino de modelos em uma ampla gama de tarefas |
|
||||
| [Compartilhamento e Envio de Modelos](https://huggingface.co/docs/transformers/model_sharing) | Envie e compartilhe seus modelos ajustados com a comunidade |
|
||||
|
||||
## Citação
|
||||
|
||||
Agora temos um [artigo](https://www.aclweb.org/anthology/2020.emnlp-demos.6/) que você pode citar para a biblioteca 🤗 Transformers:
|
||||
```bibtex
|
||||
@inproceedings{wolf-etal-2020-transformers,
|
||||
title = "Transformers: State-of-the-Art Natural Language Processing",
|
||||
author = "Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and Rémi Louf and Morgan Funtowicz and Joe Davison and Sam Shleifer and Patrick von Platen and Clara Ma and Yacine Jernite and Julien Plu and Canwen Xu and Teven Le Scao and Sylvain Gugger and Mariama Drame and Quentin Lhoest and Alexander M. Rush",
|
||||
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
|
||||
month = out,
|
||||
year = "2020",
|
||||
address = "Online",
|
||||
publisher = "Association for Computational Linguistics",
|
||||
url = "https://www.aclweb.org/anthology/2020.emnlp-demos.6",
|
||||
pages = "38--45"
|
||||
}
|
||||
```
|
||||
325
README_ru.md
325
README_ru.md
@ -1,325 +0,0 @@
|
||||
<!---
|
||||
Copyright 2023 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
-->
|
||||
|
||||
<p align="center">
|
||||
<picture>
|
||||
<source media="(prefers-color-scheme: dark)" srcset="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-dark.svg">
|
||||
<source media="(prefers-color-scheme: light)" srcset="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-light.svg">
|
||||
<img alt="Hugging Face Transformers Library" src="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-light.svg" width="352" height="59" style="max-width: 100%;">
|
||||
</picture>
|
||||
<br/>
|
||||
<br/>
|
||||
</p>
|
||||
|
||||
<p align="center">
|
||||
<a href="https://circleci.com/gh/huggingface/transformers">
|
||||
<img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/main">
|
||||
</a>
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/LICENSE">
|
||||
<img alt="GitHub" src="https://img.shields.io/github/license/huggingface/transformers.svg?color=blue">
|
||||
</a>
|
||||
<a href="https://huggingface.co/docs/transformers/index">
|
||||
<img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/docs/transformers/index.svg?down_color=red&down_message=offline&up_message=online">
|
||||
</a>
|
||||
<a href="https://github.com/huggingface/transformers/releases">
|
||||
<img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/transformers.svg">
|
||||
</a>
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/CODE_OF_CONDUCT.md">
|
||||
<img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg">
|
||||
</a>
|
||||
<a href="https://zenodo.org/badge/latestdoi/155220641"><img src="https://zenodo.org/badge/155220641.svg" alt="DOI"></a>
|
||||
</p>
|
||||
|
||||
<h4 align="center">
|
||||
<p>
|
||||
<a href="https://github.com/huggingface/transformers/">English</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hans.md">简体中文</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hant.md">繁體中文</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_ko.md">한국어</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_es.md">Español</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_ja.md">日本語</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_hd.md">हिन्दी</a> |
|
||||
<b>Русский</b> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_pt-br.md">Рortuguês</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_te.md">తెలుగు</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_fr.md">Français</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_de.md">Deutsch</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_vi.md">Tiếng Việt</a> |
|
||||
<p>
|
||||
</h4>
|
||||
|
||||
<h3 align="center">
|
||||
<p>Современное машинное обучение для JAX, PyTorch и TensorFlow</p>
|
||||
</h3>
|
||||
|
||||
<h3 align="center">
|
||||
<a href="https://hf.co/course"><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/course_banner.png"></a>
|
||||
</h3>
|
||||
|
||||
🤗 Transformers предоставляет тысячи предварительно обученных моделей для выполнения различных задач, таких как текст, зрение и аудио.
|
||||
|
||||
Эти модели могут быть применены к:
|
||||
|
||||
* 📝 Тексту для таких задач, как классификация текстов, извлечение информации, ответы на вопросы, обобщение, перевод, генерация текстов на более чем 100 языках.
|
||||
* 🖼️ Изображениям для задач классификации изображений, обнаружения объектов и сегментации.
|
||||
* 🗣️ Аудио для задач распознавания речи и классификации аудио.
|
||||
|
||||
Модели transformers также могут выполнять несколько задач, такие как ответы на табличные вопросы, распознавание оптических символов, извлечение информации из отсканированных документов, классификация видео и ответы на визуальные вопросы.
|
||||
|
||||
🤗 Transformers предоставляет API для быстрой загрузки и использования предварительно обученных моделей, их тонкой настройки на собственных датасетах и последующего взаимодействия ими с сообществом на нашем [сайте](https://huggingface.co/models). В то же время каждый python модуль, определяющий архитектуру, полностью автономен и может быть модифицирован для проведения быстрых исследовательских экспериментов.
|
||||
|
||||
🤗 Transformers опирается на три самые популярные библиотеки глубокого обучения - [Jax](https://jax.readthedocs.io/en/latest/), [PyTorch](https://pytorch.org/) и [TensorFlow](https://www.tensorflow.org/) - и легко интегрируется между ними. Это позволяет легко обучать модели с помощью одной из них, а затем загружать их для выводов с помощью другой.
|
||||
|
||||
## Онлайн демонстрация
|
||||
|
||||
Большинство наших моделей можно протестировать непосредственно на их страницах с [сайта](https://huggingface.co/models). Мы также предлагаем [привтаный хостинг моделей, контроль версий и API для выводов](https://huggingface.co/pricing) для публичных и частных моделей.
|
||||
|
||||
Вот несколько примеров:
|
||||
|
||||
В области NLP ( Обработка текстов на естественном языке ):
|
||||
- [Маскированное заполнение слов с помощью BERT](https://huggingface.co/google-bert/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France)
|
||||
- [Распознавание сущностей с помощью Electra](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city)
|
||||
- [Генерация текста с помощью GPT-2](https://huggingface.co/openai-community/gpt2?text=A+long+time+ago%2C+)
|
||||
- [Выводы на естественном языке с помощью RoBERTa](https://huggingface.co/FacebookAI/roberta-large-mnli?text=The+dog+was+lost.+Nobody+lost+any+animal)
|
||||
- [Обобщение с помощью BART](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct)
|
||||
- [Ответы на вопросы с помощью DistilBERT](https://huggingface.co/distilbert/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species)
|
||||
- [Перевод с помощью T5](https://huggingface.co/google-t5/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin)
|
||||
|
||||
В области компьютерного зрения:
|
||||
- [Классификация изображений с помощью ViT](https://huggingface.co/google/vit-base-patch16-224)
|
||||
- [Обнаружение объектов с помощью DETR](https://huggingface.co/facebook/detr-resnet-50)
|
||||
- [Семантическая сегментация с помощью SegFormer](https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512)
|
||||
- [Сегментация паноптикума с помощью MaskFormer](https://huggingface.co/facebook/maskformer-swin-small-coco)
|
||||
- [Оценка глубины с помощью DPT](https://huggingface.co/docs/transformers/model_doc/dpt)
|
||||
- [Классификация видео с помощью VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)
|
||||
- [Универсальная сегментация с помощью OneFormer](https://huggingface.co/shi-labs/oneformer_ade20k_dinat_large)
|
||||
|
||||
В области звука:
|
||||
- [Автоматическое распознавание речи с помощью Wav2Vec2](https://huggingface.co/facebook/wav2vec2-base-960h)
|
||||
- [Поиск ключевых слов с помощью Wav2Vec2](https://huggingface.co/superb/wav2vec2-base-superb-ks)
|
||||
- [Классификация аудиоданных с помощью траснформера аудиоспектрограмм](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593)
|
||||
|
||||
В мультимодальных задачах:
|
||||
- [Ответы на вопросы по таблице с помощью TAPAS](https://huggingface.co/google/tapas-base-finetuned-wtq)
|
||||
- [Визуальные ответы на вопросы с помощью ViLT](https://huggingface.co/dandelin/vilt-b32-finetuned-vqa)
|
||||
- [Zero-shot классификация изображений с помощью CLIP](https://huggingface.co/openai/clip-vit-large-patch14)
|
||||
- [Ответы на вопросы по документам с помощью LayoutLM](https://huggingface.co/impira/layoutlm-document-qa)
|
||||
- [Zero-shot классификация видео с помощью X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)
|
||||
|
||||
|
||||
## 100 проектов, использующих Transformers
|
||||
|
||||
Transformers - это не просто набор инструментов для использования предварительно обученных моделей: это сообщество проектов, созданное на его основе, и
|
||||
Hugging Face Hub. Мы хотим, чтобы Transformers позволил разработчикам, исследователям, студентам, профессорам, инженерам и всем желающим
|
||||
создавать проекты своей мечты.
|
||||
|
||||
Чтобы отпраздновать 100 тысяч звезд Transformers, мы решили сделать акцент на сообществе, и создали страницу [awesome-transformers](./awesome-transformers.md), на которой перечислены 100
|
||||
невероятных проектов, созданных с помощью transformers.
|
||||
|
||||
Если вы являетесь владельцем или пользователем проекта, который, по вашему мнению, должен быть включен в этот список, пожалуйста, откройте PR для его добавления!
|
||||
|
||||
## Если вы хотите получить индивидуальную поддержку от команды Hugging Face
|
||||
|
||||
<a target="_blank" href="https://huggingface.co/support">
|
||||
<img alt="HuggingFace Expert Acceleration Program" src="https://cdn-media.huggingface.co/marketing/transformers/new-support-improved.png" style="max-width: 600px; border: 1px solid #eee; border-radius: 4px; box-shadow: 0 1px 2px 0 rgba(0, 0, 0, 0.05);">
|
||||
</a><br>
|
||||
|
||||
## Быстрый гайд
|
||||
|
||||
Для использования модели на заданном входе (текст, изображение, звук, ...) мы предоставляем API `pipeline`. Конвейеры объединяют предварительно обученную модель с препроцессингом, который использовался при ее обучении. Вот как можно быстро использовать конвейер для классификации положительных и отрицательных текстов:
|
||||
|
||||
```python
|
||||
>>> from transformers import pipeline
|
||||
|
||||
# Выделение конвейера для анализа настроений
|
||||
>>> classifier = pipeline('sentiment-analysis')
|
||||
>>> classifier('Мы очень рады представить конвейер в transformers.')
|
||||
[{'label': 'POSITIVE', 'score': 0.9996980428695679}]
|
||||
```
|
||||
|
||||
Вторая строка кода загружает и кэширует предварительно обученную модель, используемую конвейером, а третья оценивает ее на заданном тексте. Здесь ответ "POSITIVE" с уверенностью 99,97%.
|
||||
|
||||
Во многих задачах, как в НЛП, так и в компьютерном зрении и речи, уже есть готовый `pipeline`. Например, мы можем легко извлечь обнаруженные объекты на изображении:
|
||||
|
||||
``` python
|
||||
>>> import requests
|
||||
>>> from PIL import Image
|
||||
>>> from transformers import pipeline
|
||||
|
||||
# Скачиваем изображение с милыми котиками
|
||||
>>> url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample.png"
|
||||
>>> image_data = requests.get(url, stream=True).raw
|
||||
>>> image = Image.open(image_data)
|
||||
|
||||
# Выделение конвейера для обнаружения объектов
|
||||
>>> object_detector = pipeline('object-detection')
|
||||
>>> object_detector(image)
|
||||
[{'score': 0.9982201457023621,
|
||||
'label': 'remote',
|
||||
'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
|
||||
{'score': 0.9960021376609802,
|
||||
'label': 'remote',
|
||||
'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
|
||||
{'score': 0.9954745173454285,
|
||||
'label': 'couch',
|
||||
'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
|
||||
{'score': 0.9988006353378296,
|
||||
'label': 'cat',
|
||||
'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
|
||||
{'score': 0.9986783862113953,
|
||||
'label': 'cat',
|
||||
'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}]
|
||||
```
|
||||
|
||||
Здесь мы получаем список объектов, обнаруженных на изображении, с рамкой вокруг объекта и оценкой достоверности. Слева - исходное изображение, справа прогнозы:
|
||||
|
||||
<h3 align="center">
|
||||
<a><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample.png" width="400"></a>
|
||||
<a><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample_post_processed.png" width="400"></a>
|
||||
</h3>
|
||||
|
||||
Подробнее о задачах, поддерживаемых API `pipeline`, можно узнать в [этом учебном пособии](https://huggingface.co/docs/transformers/task_sum)
|
||||
|
||||
В дополнение к `pipeline`, для загрузки и использования любой из предварительно обученных моделей в заданной задаче достаточно трех строк кода. Вот версия для PyTorch:
|
||||
```python
|
||||
>>> from transformers import AutoTokenizer, AutoModel
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
|
||||
>>> model = AutoModel.from_pretrained("google-bert/bert-base-uncased")
|
||||
|
||||
>>> inputs = tokenizer("Привет мир!", return_tensors="pt")
|
||||
>>> outputs = model(**inputs)
|
||||
```
|
||||
|
||||
А вот эквивалентный код для TensorFlow:
|
||||
```python
|
||||
>>> from transformers import AutoTokenizer, TFAutoModel
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
|
||||
>>> model = TFAutoModel.from_pretrained("google-bert/bert-base-uncased")
|
||||
|
||||
>>> inputs = tokenizer("Привет мир!", return_tensors="tf")
|
||||
>>> outputs = model(**inputs)
|
||||
```
|
||||
|
||||
Токенизатор отвечает за всю предварительную обработку, которую ожидает предварительно обученная модель, и может быть вызван непосредственно с помощью одной строки (как в приведенных выше примерах) или на списке. В результате будет получен словарь, который можно использовать в последующем коде или просто напрямую передать в модель с помощью оператора распаковки аргументов **.
|
||||
|
||||
Сама модель представляет собой обычный [Pytorch `nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) или [TensorFlow `tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) (в зависимости от используемого бэкенда), который можно использовать как обычно. [В этом руководстве](https://huggingface.co/docs/transformers/training) рассказывается, как интегрировать такую модель в классический цикл обучения PyTorch или TensorFlow, или как использовать наш API `Trainer` для быстрой тонкой настройки на новом датасете.
|
||||
|
||||
## Почему необходимо использовать transformers?
|
||||
|
||||
1. Простые в использовании современные модели:
|
||||
- Высокая производительность в задачах понимания и генерации естественного языка, компьютерного зрения и аудио.
|
||||
- Низкий входной барьер для преподавателей и практиков.
|
||||
- Небольшое количество абстракций для пользователя и всего три класса для изучения.
|
||||
- Единый API для использования всех наших предварительно обученных моделей.
|
||||
|
||||
1. Более низкие вычислительные затраты, меньший "углеродный след":
|
||||
- Исследователи могут обмениваться обученными моделями вместо того, чтобы постоянно их переобучать.
|
||||
- Практики могут сократить время вычислений и производственные затраты.
|
||||
- Десятки архитектур с более чем 60 000 предварительно обученных моделей для всех модальностей.
|
||||
|
||||
1. Выбор подходящего фреймворка для каждого этапа жизни модели:
|
||||
- Обучение самых современных моделей за 3 строки кода.
|
||||
- Перемещайте одну модель между фреймворками TF2.0/PyTorch/JAX по своему усмотрению.
|
||||
- Беспрепятственный выбор подходящего фреймворка для обучения, оценки и производства.
|
||||
|
||||
1. Легко настроить модель или пример под свои нужды:
|
||||
- Мы предоставляем примеры для каждой архитектуры, чтобы воспроизвести результаты, опубликованные их авторами.
|
||||
- Внутренние компоненты модели раскрываются максимально последовательно.
|
||||
- Файлы моделей можно использовать независимо от библиотеки для проведения быстрых экспериментов.
|
||||
|
||||
## Почему я не должен использовать transformers?
|
||||
|
||||
- Данная библиотека не является модульным набором строительных блоков для нейронных сетей. Код в файлах моделей специально не рефакторится дополнительными абстракциями, чтобы исследователи могли быстро итеративно работать с каждой из моделей, не погружаясь в дополнительные абстракции/файлы.
|
||||
- API обучения не предназначен для работы с любой моделью, а оптимизирован для работы с моделями, предоставляемыми библиотекой. Для работы с общими циклами машинного обучения следует использовать другую библиотеку (возможно, [Accelerate](https://huggingface.co/docs/accelerate)).
|
||||
- Несмотря на то, что мы стремимся представить как можно больше примеров использования, скрипты в нашей папке [примеров](https://github.com/huggingface/transformers/tree/main/examples) являются именно примерами. Предполагается, что они не будут работать "из коробки" для решения вашей конкретной задачи, и вам придется изменить несколько строк кода, чтобы адаптировать их под свои нужды.
|
||||
|
||||
## Установка
|
||||
|
||||
### С помощью pip
|
||||
|
||||
Данный репозиторий протестирован на Python 3.8+, Flax 0.4.1+, PyTorch 1.11+ и TensorFlow 2.6+.
|
||||
|
||||
Устанавливать 🤗 Transformers следует в [виртуальной среде](https://docs.python.org/3/library/venv.html). Если вы не знакомы с виртуальными средами Python, ознакомьтесь с [руководством пользователя](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/).
|
||||
|
||||
Сначала создайте виртуальную среду с той версией Python, которую вы собираетесь использовать, и активируйте ее.
|
||||
|
||||
Затем необходимо установить хотя бы один бекенд из Flax, PyTorch или TensorFlow.
|
||||
Пожалуйста, обратитесь к страницам [TensorFlow установочная страница](https://www.tensorflow.org/install/), [PyTorch установочная страница](https://pytorch.org/get-started/locally/#start-locally) и/или [Flax](https://github.com/google/flax#quick-install) и [Jax](https://github.com/google/jax#installation), где описаны команды установки для вашей платформы.
|
||||
|
||||
После установки одного из этих бэкендов 🤗 Transformers может быть установлен с помощью pip следующим образом:
|
||||
|
||||
```bash
|
||||
pip install transformers
|
||||
```
|
||||
|
||||
Если вы хотите поиграть с примерами или вам нужен самый современный код и вы не можете ждать нового релиза, вы должны [установить библиотеку из исходного кода](https://huggingface.co/docs/transformers/installation#installing-from-source).
|
||||
|
||||
### С помощью conda
|
||||
|
||||
Установить Transformers с помощью conda можно следующим образом:
|
||||
|
||||
```bash
|
||||
conda install conda-forge::transformers
|
||||
```
|
||||
|
||||
> **_ЗАМЕТКА:_** Установка `transformers` через канал `huggingface` устарела.
|
||||
|
||||
О том, как установить Flax, PyTorch или TensorFlow с помощью conda, читайте на страницах, посвященных их установке.
|
||||
|
||||
> **_ЗАМЕТКА:_** В операционной системе Windows вам может быть предложено активировать режим разработчика, чтобы воспользоваться преимуществами кэширования. Если для вас это невозможно, сообщите нам об этом [здесь](https://github.com/huggingface/huggingface_hub/issues/1062).
|
||||
|
||||
## Модельные архитектуры
|
||||
|
||||
**[Все контрольные точки моделей](https://huggingface.co/models)**, предоставляемые 🤗 Transformers, беспрепятственно интегрируются с huggingface.co [model hub](https://huggingface.co/models), куда они загружаются непосредственно [пользователями](https://huggingface.co/users) и [организациями](https://huggingface.co/organizations).
|
||||
|
||||
Текущее количество контрольных точек: 
|
||||
|
||||
🤗 В настоящее время Transformers предоставляет следующие архитектуры: подробное описание каждой из них см. [здесь](https://huggingface.co/docs/transformers/model_summary).
|
||||
|
||||
Чтобы проверить, есть ли у каждой модели реализация на Flax, PyTorch или TensorFlow, или связанный с ней токенизатор, поддерживаемый библиотекой 🤗 Tokenizers, обратитесь к [этой таблице](https://huggingface.co/docs/transformers/index#supported-frameworks).
|
||||
|
||||
Эти реализации были протестированы на нескольких наборах данных (см. примеры скриптов) и должны соответствовать производительности оригинальных реализаций. Более подробную информацию о производительности можно найти в разделе "Примеры" [документации](https://github.com/huggingface/transformers/tree/main/examples).
|
||||
|
||||
|
||||
## Изучи больше
|
||||
|
||||
| Секция | Описание |
|
||||
|-|-|
|
||||
| [Документация](https://huggingface.co/docs/transformers/) | Полная документация по API и гайды |
|
||||
| [Краткие описания задач](https://huggingface.co/docs/transformers/task_summary) | Задачи поддерживаются 🤗 Transformers |
|
||||
| [Пособие по предварительной обработке](https://huggingface.co/docs/transformers/preprocessing) | Использование класса `Tokenizer` для подготовки данных для моделей |
|
||||
| [Обучение и доработка](https://huggingface.co/docs/transformers/training) | Использование моделей, предоставляемых 🤗 Transformers, в цикле обучения PyTorch/TensorFlow и API `Trainer`. |
|
||||
| [Быстрый тур: Тонкая настройка/скрипты использования](https://github.com/huggingface/transformers/tree/main/examples) | Примеры скриптов для тонкой настройки моделей на широком спектре задач |
|
||||
| [Совместное использование и загрузка моделей](https://huggingface.co/docs/transformers/model_sharing) | Загружайте и делитесь с сообществом своими доработанными моделями |
|
||||
|
||||
## Цитирование
|
||||
|
||||
Теперь у нас есть [статья](https://www.aclweb.org/anthology/2020.emnlp-demos.6/), которую можно цитировать для библиотеки 🤗 Transformers:
|
||||
```bibtex
|
||||
@inproceedings{wolf-etal-2020-transformers,
|
||||
title = "Transformers: State-of-the-Art Natural Language Processing",
|
||||
author = "Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and Rémi Louf and Morgan Funtowicz and Joe Davison and Sam Shleifer and Patrick von Platen and Clara Ma and Yacine Jernite and Julien Plu and Canwen Xu and Teven Le Scao and Sylvain Gugger and Mariama Drame and Quentin Lhoest and Alexander M. Rush",
|
||||
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
|
||||
month = oct,
|
||||
year = "2020",
|
||||
address = "Online",
|
||||
publisher = "Association for Computational Linguistics",
|
||||
url = "https://www.aclweb.org/anthology/2020.emnlp-demos.6",
|
||||
pages = "38--45"
|
||||
}
|
||||
```
|
||||
325
README_te.md
325
README_te.md
@ -1,325 +0,0 @@
|
||||
<!---
|
||||
Copyright 2020 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
-->
|
||||
|
||||
<p align="center">
|
||||
<picture>
|
||||
<source media="(prefers-color-scheme: dark)" srcset="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-dark.svg">
|
||||
<source media="(prefers-color-scheme: light)" srcset="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-light.svg">
|
||||
<img alt="Hugging Face Transformers Library" src="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-light.svg" width="352" height="59" style="max-width: 100%;">
|
||||
</picture>
|
||||
<br/>
|
||||
<br/>
|
||||
</p>
|
||||
|
||||
|
||||
<p align="center">
|
||||
<a href="https://circleci.com/gh/huggingface/transformers">
|
||||
<img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/main">
|
||||
</a>
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/LICENSE">
|
||||
<img alt="GitHub" src="https://img.shields.io/github/license/huggingface/transformers.svg?color=blue">
|
||||
</a>
|
||||
<a href="https://huggingface.co/docs/transformers/index">
|
||||
<img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/docs/transformers/index.svg?down_color=red&down_message=offline&up_message=online">
|
||||
</a>
|
||||
<a href="https://github.com/huggingface/transformers/releases">
|
||||
<img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/transformers.svg">
|
||||
</a>
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/CODE_OF_CONDUCT.md">
|
||||
<img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg">
|
||||
</a>
|
||||
<a href="https://zenodo.org/badge/latestdoi/155220641"><img src="https://zenodo.org/badge/155220641.svg" alt="DOI"></a>
|
||||
</p>
|
||||
|
||||
|
||||
<h4 align="center">
|
||||
<p>
|
||||
<a href="https://github.com/huggingface/transformers/">English</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hans.md">简体中文</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hant.md">繁體中文</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_ko.md">한국어</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_es.md">Español</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_ja.md">日本語</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_hd.md">हिन्दी</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_ru.md">Русский</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_pt-br.md">Рortuguês</a> |
|
||||
<b>తెలుగు</b> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_fr.md">Français</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_de.md">Deutsch</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_vi.md">Tiếng Việt</a> |
|
||||
</p>
|
||||
</h4>
|
||||
|
||||
<h3 align="center">
|
||||
<p>JAX, PyTorch మరియు TensorFlow కోసం అత్యాధునిక యంత్ర అభ్యాసం</p>
|
||||
</h3>
|
||||
|
||||
<h3 align="center">
|
||||
<a href="https://hf.co/course"><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/course_banner.png"></a>
|
||||
</h3>
|
||||
|
||||
🤗 ట్రాన్స్ఫార్మర్లు టెక్స్ట్, విజన్ మరియు ఆడియో వంటి విభిన్న పద్ధతులపై టాస్క్లను నిర్వహించడానికి వేలాది ముందుగా శిక్షణ పొందిన మోడల్లను అందిస్తాయి.
|
||||
|
||||
ఈ నమూనాలు వర్తించవచ్చు:
|
||||
|
||||
* 📝 టెక్స్ట్, 100కి పైగా భాషల్లో టెక్స్ట్ క్లాసిఫికేషన్, ఇన్ఫర్మేషన్ ఎక్స్ట్రాక్షన్, ప్రశ్నలకు సమాధానాలు, సారాంశం, అనువాదం, టెక్స్ట్ జనరేషన్ వంటి పనుల కోసం.
|
||||
* 🖼️ ఇమేజ్లు, ఇమేజ్ వర్గీకరణ, ఆబ్జెక్ట్ డిటెక్షన్ మరియు సెగ్మెంటేషన్ వంటి పనుల కోసం.
|
||||
* 🗣️ ఆడియో, స్పీచ్ రికగ్నిషన్ మరియు ఆడియో వర్గీకరణ వంటి పనుల కోసం.
|
||||
|
||||
ట్రాన్స్ఫార్మర్ మోడల్లు టేబుల్ క్వశ్చన్ ఆన్సర్ చేయడం, ఆప్టికల్ క్యారెక్టర్ రికగ్నిషన్, స్కాన్ చేసిన డాక్యుమెంట్ల నుండి ఇన్ఫర్మేషన్ ఎక్స్ట్రాక్షన్, వీడియో క్లాసిఫికేషన్ మరియు విజువల్ క్వశ్చన్ ఆన్సర్ చేయడం వంటి **అనేక పద్ధతులతో కలిపి** పనులను కూడా చేయగలవు.
|
||||
|
||||
🤗 ట్రాన్స్ఫార్మర్లు అందించిన టెక్స్ట్లో ప్రీట్రైన్డ్ మోడల్లను త్వరగా డౌన్లోడ్ చేయడానికి మరియు ఉపయోగించడానికి, వాటిని మీ స్వంత డేటాసెట్లలో ఫైన్-ట్యూన్ చేయడానికి మరియు వాటిని మా [మోడల్ హబ్](https://huggingface.co/models)లో సంఘంతో భాగస్వామ్యం చేయడానికి API లను అందిస్తుంది. అదే సమయంలో, ఆర్కిటెక్చర్ని నిర్వచించే ప్రతి పైథాన్ మాడ్యూల్ పూర్తిగా స్వతంత్రంగా ఉంటుంది మరియు త్వరిత పరిశోధన ప్రయోగాలను ప్రారంభించడానికి సవరించవచ్చు.
|
||||
|
||||
🤗 ట్రాన్స్ఫార్మర్లకు మూడు అత్యంత ప్రజాదరణ పొందిన డీప్ లెర్నింగ్ లైబ్రరీలు ఉన్నాయి — [Jax](https://jax.readthedocs.io/en/latest/), [PyTorch](https://pytorch.org/) మరియు [TensorFlow](https://www.tensorflow.org/) — వాటి మధ్య అతుకులు లేని ఏకీకరణతో. మీ మోడల్లను ఒకదానితో మరొకదానితో అనుమితి కోసం లోడ్ చేసే ముందు వాటికి శిక్షణ ఇవ్వడం చాలా సులభం.
|
||||
|
||||
## ఆన్లైన్ డెమోలు
|
||||
|
||||
మీరు [మోడల్ హబ్](https://huggingface.co/models) నుండి మా మోడళ్లలో చాలా వరకు వాటి పేజీలలో నేరుగా పరీక్షించవచ్చు. మేము పబ్లిక్ మరియు ప్రైవేట్ మోడల్ల కోసం [ప్రైవేట్ మోడల్ హోస్టింగ్, సంస్కరణ & అనుమితి API](https://huggingface.co/pricing)ని కూడా అందిస్తాము.
|
||||
|
||||
ఇక్కడ కొన్ని ఉదాహరణలు ఉన్నాయి:
|
||||
|
||||
సహజ భాషా ప్రాసెసింగ్లో:
|
||||
- [BERT తో మాస్క్డ్ వర్డ్ కంప్లీషన్](https://huggingface.co/google-bert/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France)
|
||||
- [Electra తో పేరు ఎంటిటీ గుర్తింపు](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city)
|
||||
- [GPT-2 తో టెక్స్ట్ జనరేషన్](https://huggingface.co/openai-community/gpt2?text=A+long+time+ago%2C+)
|
||||
- [RoBERTa తో సహజ భాషా అనుమితి](https://huggingface.co/FacebookAI/roberta-large-mnli?text=The+dog+was+Lost.+Nobody+lost+any+animal)
|
||||
- [BART తో సారాంశం](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct)
|
||||
- [DistilBERT తో ప్రశ్న సమాధానం](https://huggingface.co/distilbert/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species)
|
||||
- [T5 తో అనువాదం](https://huggingface.co/google-t5/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin)
|
||||
|
||||
కంప్యూటర్ దృష్టిలో:
|
||||
- [VIT తో చిత్ర వర్గీకరణ](https://huggingface.co/google/vit-base-patch16-224)
|
||||
- [DETR తో ఆబ్జెక్ట్ డిటెక్షన్](https://huggingface.co/facebook/detr-resnet-50)
|
||||
- [SegFormer తో సెమాంటిక్ సెగ్మెంటేషన్](https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512)
|
||||
- [MaskFormer తో పానోప్టిక్ సెగ్మెంటేషన్](https://huggingface.co/facebook/maskformer-swin-small-coco)
|
||||
- [DPT తో లోతు అంచనా](https://huggingface.co/docs/transformers/model_doc/dpt)
|
||||
- [VideoMAE తో వీడియో వర్గీకరణ](https://huggingface.co/docs/transformers/model_doc/videomae)
|
||||
- [OneFormer తో యూనివర్సల్ సెగ్మెంటేషన్](https://huggingface.co/shi-labs/oneformer_ade20k_dinat_large)
|
||||
|
||||
ఆడియోలో:
|
||||
- [Wav2Vec2 తో ఆటోమేటిక్ స్పీచ్ రికగ్నిషన్](https://huggingface.co/facebook/wav2vec2-base-960h)
|
||||
- [Wav2Vec2 తో కీవర్డ్ స్పాటింగ్](https://huggingface.co/superb/wav2vec2-base-superb-ks)
|
||||
- [ఆడియో స్పెక్ట్రోగ్రామ్ ట్రాన్స్ఫార్మర్తో ఆడియో వర్గీకరణ](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593)
|
||||
|
||||
మల్టీమోడల్ టాస్క్లలో:
|
||||
- [TAPAS తో టేబుల్ ప్రశ్న సమాధానాలు](https://huggingface.co/google/tapas-base-finetuned-wtq)
|
||||
- [ViLT తో దృశ్యమాన ప్రశ్నకు సమాధానం](https://huggingface.co/dandelin/vilt-b32-finetuned-vqa)
|
||||
- [CLIP తో జీరో-షాట్ ఇమేజ్ వర్గీకరణ](https://huggingface.co/openai/clip-vit-large-patch14)
|
||||
- [LayoutLM తో డాక్యుమెంట్ ప్రశ్నకు సమాధానం](https://huggingface.co/impira/layoutlm-document-qa)
|
||||
- [X-CLIP తో జీరో-షాట్ వీడియో వర్గీకరణ](https://huggingface.co/docs/transformers/model_doc/xclip)
|
||||
|
||||
## ట్రాన్స్ఫార్మర్లను ఉపయోగించి 100 ప్రాజెక్టులు
|
||||
|
||||
ట్రాన్స్ఫార్మర్లు ప్రీట్రైన్డ్ మోడల్లను ఉపయోగించడానికి టూల్కిట్ కంటే ఎక్కువ: ఇది దాని చుట్టూ నిర్మించిన ప్రాజెక్ట్ల సంఘం మరియు
|
||||
హగ్గింగ్ ఫేస్ హబ్. డెవలపర్లు, పరిశోధకులు, విద్యార్థులు, ప్రొఫెసర్లు, ఇంజనీర్లు మరియు ఎవరినైనా అనుమతించేలా ట్రాన్స్ఫార్మర్లను మేము కోరుకుంటున్నాము
|
||||
వారి కలల ప్రాజెక్టులను నిర్మించడానికి.
|
||||
|
||||
ట్రాన్స్ఫార్మర్ల 100,000 నక్షత్రాలను జరుపుకోవడానికి, మేము స్పాట్లైట్ని ఉంచాలని నిర్ణయించుకున్నాము
|
||||
సంఘం, మరియు మేము 100 జాబితాలను కలిగి ఉన్న [awesome-transformers](./awesome-transformers.md) పేజీని సృష్టించాము.
|
||||
ట్రాన్స్ఫార్మర్ల పరిసరాల్లో అద్భుతమైన ప్రాజెక్టులు నిర్మించబడ్డాయి.
|
||||
|
||||
జాబితాలో భాగమని మీరు విశ్వసించే ప్రాజెక్ట్ను మీరు కలిగి ఉంటే లేదా ఉపయోగిస్తుంటే, దయచేసి దానిని జోడించడానికి PRని తెరవండి!
|
||||
|
||||
## మీరు హగ్గింగ్ ఫేస్ టీమ్ నుండి అనుకూల మద్దతు కోసం చూస్తున్నట్లయితే
|
||||
|
||||
<a target="_blank" href="https://huggingface.co/support">
|
||||
<img alt="HuggingFace Expert Acceleration Program" src="https://cdn-media.huggingface.co/marketing/transformers/new-support-improved.png" style="max-width: 600px; border: 1px solid #eee; border-radius: 4px; box-shadow: 0 1px 2px 0 rgba(0, 0, 0, 0.05);">
|
||||
</a><br>
|
||||
|
||||
## త్వరిత పర్యటన
|
||||
|
||||
ఇచ్చిన ఇన్పుట్ (టెక్స్ట్, ఇమేజ్, ఆడియో, ...)పై తక్షణమే మోడల్ను ఉపయోగించడానికి, మేము `pipeline` API ని అందిస్తాము. పైప్లైన్లు ఆ మోడల్ శిక్షణ సమయంలో ఉపయోగించిన ప్రీప్రాసెసింగ్తో కూడిన ప్రీట్రైన్డ్ మోడల్ను సమూహపరుస్తాయి. సానుకూల మరియు ప్రతికూల పాఠాలను వర్గీకరించడానికి పైప్లైన్ను త్వరగా ఎలా ఉపయోగించాలో ఇక్కడ ఉంది:
|
||||
|
||||
```python
|
||||
>>> from transformers import pipeline
|
||||
|
||||
# Allocate a pipeline for sentiment-analysis
|
||||
>>> classifier = pipeline('sentiment-analysis')
|
||||
>>> classifier('We are very happy to introduce pipeline to the transformers repository.')
|
||||
[{'label': 'POSITIVE', 'score': 0.9996980428695679}]
|
||||
```
|
||||
|
||||
రెండవ లైన్ కోడ్ డౌన్లోడ్ మరియు పైప్లైన్ ఉపయోగించే ప్రీట్రైన్డ్ మోడల్ను కాష్ చేస్తుంది, మూడవది ఇచ్చిన టెక్స్ట్పై మూల్యాంకనం చేస్తుంది. ఇక్కడ సమాధానం 99.97% విశ్వాసంతో "పాజిటివ్".
|
||||
|
||||
చాలా పనులు NLPలో కానీ కంప్యూటర్ విజన్ మరియు స్పీచ్లో కూడా ముందుగా శిక్షణ పొందిన `pipeline` సిద్ధంగా ఉన్నాయి. ఉదాహరణకు, మనం చిత్రంలో గుర్తించిన వస్తువులను సులభంగా సంగ్రహించవచ్చు:
|
||||
|
||||
``` python
|
||||
>>> import requests
|
||||
>>> from PIL import Image
|
||||
>>> from transformers import pipeline
|
||||
|
||||
# Download an image with cute cats
|
||||
>>> url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample.png"
|
||||
>>> image_data = requests.get(url, stream=True).raw
|
||||
>>> image = Image.open(image_data)
|
||||
|
||||
# Allocate a pipeline for object detection
|
||||
>>> object_detector = pipeline('object-detection')
|
||||
>>> object_detector(image)
|
||||
[{'score': 0.9982201457023621,
|
||||
'label': 'remote',
|
||||
'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
|
||||
{'score': 0.9960021376609802,
|
||||
'label': 'remote',
|
||||
'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
|
||||
{'score': 0.9954745173454285,
|
||||
'label': 'couch',
|
||||
'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
|
||||
{'score': 0.9988006353378296,
|
||||
'label': 'cat',
|
||||
'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
|
||||
{'score': 0.9986783862113953,
|
||||
'label': 'cat',
|
||||
'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}]
|
||||
```
|
||||
|
||||
ఇక్కడ మనం ఆబ్జెక్ట్ చుట్టూ ఉన్న బాక్స్ మరియు కాన్ఫిడెన్స్ స్కోర్తో చిత్రంలో గుర్తించబడిన వస్తువుల జాబితాను పొందుతాము. ఇక్కడ ఎడమవైపున ఉన్న అసలు చిత్రం, కుడివైపున అంచనాలు ప్రదర్శించబడతాయి:
|
||||
|
||||
<h3 align="center">
|
||||
<a><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample.png" width="400"></a>
|
||||
<a><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample_post_processed.png" width="400"></a>
|
||||
</h3>
|
||||
|
||||
మీరు [ఈ ట్యుటోరియల్](https://huggingface.co/docs/transformers/task_summary)లో `pipeline` API ద్వారా సపోర్ట్ చేసే టాస్క్ల గురించి మరింత తెలుసుకోవచ్చు.
|
||||
|
||||
`pipeline`తో పాటు, మీరు ఇచ్చిన టాస్క్లో ఏదైనా ప్రీట్రైన్డ్ మోడల్లను డౌన్లోడ్ చేయడానికి మరియు ఉపయోగించడానికి, దీనికి మూడు లైన్ల కోడ్ సరిపోతుంది. ఇక్కడ PyTorch వెర్షన్ ఉంది:
|
||||
```python
|
||||
>>> from transformers import AutoTokenizer, AutoModel
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
|
||||
>>> model = AutoModel.from_pretrained("google-bert/bert-base-uncased")
|
||||
|
||||
>>> inputs = tokenizer("Hello world!", return_tensors="pt")
|
||||
>>> outputs = model(**inputs)
|
||||
```
|
||||
|
||||
మరియు TensorFlow కి సమానమైన కోడ్ ఇక్కడ ఉంది:
|
||||
```python
|
||||
>>> from transformers import AutoTokenizer, TFAutoModel
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
|
||||
>>> model = TFAutoModel.from_pretrained("google-bert/bert-base-uncased")
|
||||
|
||||
>>> inputs = tokenizer("Hello world!", return_tensors="tf")
|
||||
>>> outputs = model(**inputs)
|
||||
```
|
||||
|
||||
ప్రిట్రైన్డ్ మోడల్ ఆశించే అన్ని ప్రీప్రాసెసింగ్లకు టోకెనైజర్ బాధ్యత వహిస్తుంది మరియు నేరుగా ఒకే స్ట్రింగ్ (పై ఉదాహరణలలో వలె) లేదా జాబితాపై కాల్ చేయవచ్చు. ఇది మీరు డౌన్స్ట్రీమ్ కోడ్లో ఉపయోగించగల నిఘంటువుని అవుట్పుట్ చేస్తుంది లేదా ** ఆర్గ్యుమెంట్ అన్ప్యాకింగ్ ఆపరేటర్ని ఉపయోగించి నేరుగా మీ మోడల్కి పంపుతుంది.
|
||||
|
||||
మోడల్ కూడా సాధారణ [Pytorch `nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) లేదా [TensorFlow `tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) (మీ బ్యాకెండ్ని బట్టి) మీరు మామూలుగా ఉపయోగించవచ్చు. [ఈ ట్యుటోరియల్](https://huggingface.co/docs/transformers/training) అటువంటి మోడల్ని క్లాసిక్ PyTorch లేదా TensorFlow ట్రైనింగ్ లూప్లో ఎలా ఇంటిగ్రేట్ చేయాలో లేదా మా `Trainer` API ని ఎలా ఉపయోగించాలో వివరిస్తుంది కొత్త డేటాసెట్.
|
||||
|
||||
## నేను ట్రాన్స్ఫార్మర్లను ఎందుకు ఉపయోగించాలి?
|
||||
|
||||
1. ఉపయోగించడానికి సులభమైన స్టేట్ ఆఫ్ ది ఆర్ట్ మోడల్లు:
|
||||
- సహజ భాషా అవగాహన & ఉత్పత్తి, కంప్యూటర్ దృష్టి మరియు ఆడియో పనులపై అధిక పనితీరు.
|
||||
- విద్యావేత్తలు మరియు అభ్యాసకుల ప్రవేశానికి తక్కువ అవరోధం.
|
||||
- తెలుసుకోవడానికి కేవలం మూడు తరగతులతో కొన్ని వినియోగదారు-ముఖ సంగ్రహణలు.
|
||||
- మా అన్ని ప్రీట్రైన్డ్ మోడల్లను ఉపయోగించడం కోసం ఏకీకృత API.
|
||||
|
||||
2. తక్కువ గణన ఖర్చులు, చిన్న కార్బన్ పాదముద్ర:
|
||||
- పరిశోధకులు ఎల్లప్పుడూ మళ్లీ శిక్షణ పొందే బదులు శిక్షణ పొందిన నమూనాలను పంచుకోవచ్చు.
|
||||
- అభ్యాసకులు గణన సమయాన్ని మరియు ఉత్పత్తి ఖర్చులను తగ్గించగలరు.
|
||||
- అన్ని పద్ధతుల్లో 60,000 కంటే ఎక్కువ ప్రీట్రైన్డ్ మోడల్లతో డజన్ల కొద్దీ ఆర్కిటెక్చర్లు.
|
||||
|
||||
3. మోడల్ జీవితకాలంలో ప్రతి భాగానికి సరైన ఫ్రేమ్వర్క్ను ఎంచుకోండి:
|
||||
- 3 లైన్ల కోడ్లో స్టేట్ ఆఫ్ ది ఆర్ట్ మోడల్లకు శిక్షణ ఇవ్వండి.
|
||||
- TF2.0/PyTorch/JAX ఫ్రేమ్వర్క్ల మధ్య ఒకే మోడల్ను ఇష్టానుసారంగా తరలించండి.
|
||||
- శిక్షణ, మూల్యాంకనం మరియు ఉత్పత్తి కోసం సరైన ఫ్రేమ్వర్క్ను సజావుగా ఎంచుకోండి.
|
||||
|
||||
4. మీ అవసరాలకు అనుగుణంగా మోడల్ లేదా ఉదాహరణను సులభంగా అనుకూలీకరించండి:
|
||||
- ప్రతి ఆర్కిటెక్చర్ దాని అసలు రచయితలు ప్రచురించిన ఫలితాలను పునరుత్పత్తి చేయడానికి మేము ఉదాహరణలను అందిస్తాము.
|
||||
- మోడల్ ఇంటర్నల్లు వీలైనంత స్థిరంగా బహిర్గతమవుతాయి.
|
||||
- శీఘ్ర ప్రయోగాల కోసం లైబ్రరీ నుండి స్వతంత్రంగా మోడల్ ఫైల్లను ఉపయోగించవచ్చు.
|
||||
|
||||
## నేను ట్రాన్స్ఫార్మర్లను ఎందుకు ఉపయోగించకూడదు?
|
||||
|
||||
- ఈ లైబ్రరీ న్యూరల్ నెట్ల కోసం బిల్డింగ్ బ్లాక్ల మాడ్యులర్ టూల్బాక్స్ కాదు. మోడల్ ఫైల్లలోని కోడ్ ఉద్దేశపూర్వకంగా అదనపు సంగ్రహణలతో రీఫ్యాక్టరింగ్ చేయబడదు, తద్వారా పరిశోధకులు అదనపు సంగ్రహణలు/ఫైళ్లలోకి ప్రవేశించకుండా ప్రతి మోడల్పై త్వరగా మళ్లించగలరు.
|
||||
- శిక్షణ API ఏ మోడల్లో పని చేయడానికి ఉద్దేశించబడలేదు కానీ లైబ్రరీ అందించిన మోడల్లతో పని చేయడానికి ఆప్టిమైజ్ చేయబడింది. సాధారణ మెషిన్ లెర్నింగ్ లూప్ల కోసం, మీరు మరొక లైబ్రరీని ఉపయోగించాలి (బహుశా, [Accelerate](https://huggingface.co/docs/accelerate)).
|
||||
- మేము వీలైనన్ని ఎక్కువ వినియోగ సందర్భాలను ప్రదర్శించడానికి ప్రయత్నిస్తున్నప్పుడు, మా [ఉదాహరణల ఫోల్డర్](https://github.com/huggingface/transformers/tree/main/examples)లోని స్క్రిప్ట్లు కేవలం: ఉదాహరణలు. మీ నిర్దిష్ట సమస్యపై అవి పని చేయవు మరియు వాటిని మీ అవసరాలకు అనుగుణంగా మార్చుకోవడానికి మీరు కొన్ని కోడ్ లైన్లను మార్చవలసి ఉంటుంది.
|
||||
|
||||
## సంస్థాపన
|
||||
|
||||
### పిప్ తో
|
||||
|
||||
ఈ రిపోజిటరీ పైథాన్ 3.8+, ఫ్లాక్స్ 0.4.1+, PyTorch 1.11+ మరియు TensorFlow 2.6+లో పరీక్షించబడింది.
|
||||
|
||||
మీరు [వర్చువల్ వాతావరణం](https://docs.python.org/3/library/venv.html)లో 🤗 ట్రాన్స్ఫార్మర్లను ఇన్స్టాల్ చేయాలి. మీకు పైథాన్ వర్చువల్ పరిసరాల గురించి తెలియకుంటే, [యూజర్ గైడ్](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/) చూడండి.
|
||||
|
||||
ముందుగా, మీరు ఉపయోగించబోతున్న పైథాన్ వెర్షన్తో వర్చువల్ వాతావరణాన్ని సృష్టించండి మరియు దానిని సక్రియం చేయండి.
|
||||
|
||||
అప్పుడు, మీరు ఫ్లాక్స్, పైటార్చ్ లేదా టెన్సర్ఫ్లోలో కనీసం ఒకదానిని ఇన్స్టాల్ చేయాలి.
|
||||
దయచేసి [TensorFlow ఇన్స్టాలేషన్ పేజీ](https://www.tensorflow.org/install/), [PyTorch ఇన్స్టాలేషన్ పేజీ](https://pytorch.org/get-started/locally/#start-locally) మరియు/ని చూడండి లేదా మీ ప్లాట్ఫారమ్ కోసం నిర్దిష్ట ఇన్స్టాలేషన్ కమాండ్కు సంబంధించి [Flax](https://github.com/google/flax#quick-install) మరియు [Jax](https://github.com/google/jax#installation) ఇన్స్టాలేషన్ పేజీలు .
|
||||
|
||||
ఆ బ్యాకెండ్లలో ఒకటి ఇన్స్టాల్ చేయబడినప్పుడు, 🤗 ట్రాన్స్ఫార్మర్లను ఈ క్రింది విధంగా పిప్ని ఉపయోగించి ఇన్స్టాల్ చేయవచ్చు:
|
||||
|
||||
```bash
|
||||
pip install transformers
|
||||
```
|
||||
|
||||
మీరు ఉదాహరణలతో ప్లే చేయాలనుకుంటే లేదా కోడ్ యొక్క బ్లీడింగ్ ఎడ్జ్ అవసరం మరియు కొత్త విడుదల కోసం వేచి ఉండలేకపోతే, మీరు తప్పనిసరిగా [మూలం నుండి లైబ్రరీని ఇన్స్టాల్ చేయాలి](https://huggingface.co/docs/transformers/installation#installing-from-source).
|
||||
|
||||
### కొండా తో
|
||||
|
||||
🤗 కింది విధంగా కొండా ఉపయోగించి ట్రాన్స్ఫార్మర్లను ఇన్స్టాల్ చేయవచ్చు:
|
||||
|
||||
```shell script
|
||||
conda install conda-forge::transformers
|
||||
```
|
||||
|
||||
> **_గమనిక:_** `huggingface` ఛానెల్ నుండి `transformers` ఇన్స్టాల్ చేయడం పురాతనంగా ఉంది.
|
||||
|
||||
Flax, PyTorch లేదా TensorFlow యొక్క ఇన్స్టాలేషన్ పేజీలను కొండాతో ఎలా ఇన్స్టాల్ చేయాలో చూడటానికి వాటిని అనుసరించండి.
|
||||
|
||||
> **_గమనిక:_** Windowsలో, కాషింగ్ నుండి ప్రయోజనం పొందేందుకు మీరు డెవలపర్ మోడ్ని సక్రియం చేయమని ప్రాంప్ట్ చేయబడవచ్చు. ఇది మీకు ఎంపిక కాకపోతే, దయచేసి [ఈ సంచిక](https://github.com/huggingface/huggingface_hub/issues/1062)లో మాకు తెలియజేయండి.
|
||||
|
||||
## మోడల్ ఆర్కిటెక్చర్లు
|
||||
|
||||
**[అన్ని మోడల్ చెక్పాయింట్లు](https://huggingface.co/models)** 🤗 అందించిన ట్రాన్స్ఫార్మర్లు huggingface.co [model hub](https://huggingface.co/models) నుండి సజావుగా ఏకీకృతం చేయబడ్డాయి [users](https://huggingface.co/users) మరియు [organizations](https://huggingface.co/organizations) ద్వారా నేరుగా అప్లోడ్ చేయబడతాయి.
|
||||
|
||||
ప్రస్తుత తనిఖీ కేంద్రాల సంఖ్య: 
|
||||
|
||||
🤗 ట్రాన్స్ఫార్మర్లు ప్రస్తుతం కింది ఆర్కిటెక్చర్లను అందజేస్తున్నాయి: వాటిలో ప్రతి ఒక్కటి ఉన్నత స్థాయి సారాంశం కోసం [ఇక్కడ](https://huggingface.co/docs/transformers/model_summary) చూడండి.
|
||||
|
||||
|
||||
ఈ అమలులు అనేక డేటాసెట్లలో పరీక్షించబడ్డాయి (ఉదాహరణ స్క్రిప్ట్లను చూడండి) మరియు అసలైన అమలుల పనితీరుతో సరిపోలాలి. మీరు [డాక్యుమెంటేషన్](https://github.com/huggingface/transformers/tree/main/examples) యొక్క ఉదాహరణల విభాగంలో పనితీరుపై మరిన్ని వివరాలను కనుగొనవచ్చు.
|
||||
|
||||
## ఇంకా నేర్చుకో
|
||||
|
||||
| విభాగం | వివరణ |
|
||||
|-|-|
|
||||
| [డాక్యుమెంటేషన్](https://huggingface.co/docs/transformers/) | పూర్తి API డాక్యుమెంటేషన్ మరియు ట్యుటోరియల్స్ |
|
||||
| [టాస్క్ సారాంశం](https://huggingface.co/docs/transformers/task_summary) | 🤗 ట్రాన్స్ఫార్మర్ల ద్వారా సపోర్ట్ చేయబడిన విధులు |
|
||||
| [ప్రీప్రాసెసింగ్ ట్యుటోరియల్](https://huggingface.co/docs/transformers/preprocessing) | మోడల్ల కోసం డేటాను సిద్ధం చేయడానికి `Tokenizer` క్లాస్ని ఉపయోగించడం |
|
||||
| [ట్రైనింగ్ మరియు ఫైన్-ట్యూనింగ్](https://huggingface.co/docs/transformers/training) | PyTorch/TensorFlow ట్రైనింగ్ లూప్ మరియు `Trainer` APIలో 🤗 ట్రాన్స్ఫార్మర్లు అందించిన మోడల్లను ఉపయోగించడం |
|
||||
| [త్వరిత పర్యటన: ఫైన్-ట్యూనింగ్/యూసేజ్ స్క్రిప్ట్లు](https://github.com/huggingface/transformers/tree/main/examples) | విస్తృత శ్రేణి టాస్క్లపై ఫైన్-ట్యూనింగ్ మోడల్స్ కోసం ఉదాహరణ స్క్రిప్ట్లు |
|
||||
| [మోడల్ భాగస్వామ్యం మరియు అప్లోడ్ చేయడం](https://huggingface.co/docs/transformers/model_sharing) | కమ్యూనిటీతో మీ ఫైన్-ట్యూన్డ్ మోడల్లను అప్లోడ్ చేయండి మరియు భాగస్వామ్యం చేయండి |
|
||||
|
||||
## అనులేఖనం
|
||||
|
||||
🤗 ట్రాన్స్ఫార్మర్స్ లైబ్రరీ కోసం మీరు ఉదహరించగల [పేపర్](https://www.aclweb.org/anthology/2020.emnlp-demos.6/) ఇప్పుడు మా వద్ద ఉంది:
|
||||
```bibtex
|
||||
@inproceedings{wolf-etal-2020-transformers,
|
||||
title = "Transformers: State-of-the-Art Natural Language Processing",
|
||||
author = "Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and Rémi Louf and Morgan Funtowicz and Joe Davison and Sam Shleifer and Patrick von Platen and Clara Ma and Yacine Jernite and Julien Plu and Canwen Xu and Teven Le Scao and Sylvain Gugger and Mariama Drame and Quentin Lhoest and Alexander M. Rush",
|
||||
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
|
||||
month = oct,
|
||||
year = "2020",
|
||||
address = "Online",
|
||||
publisher = "Association for Computational Linguistics",
|
||||
url = "https://www.aclweb.org/anthology/2020.emnlp-demos.6",
|
||||
pages = "38--45"
|
||||
}
|
||||
```
|
||||
326
README_vi.md
326
README_vi.md
@ -1,326 +0,0 @@
|
||||
<!---
|
||||
Copyright 2020 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
-->
|
||||
|
||||
<p align="center">
|
||||
<picture>
|
||||
<source media="(prefers-color-scheme: dark)" srcset="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-dark.svg">
|
||||
<source media="(prefers-color-scheme: light)" srcset="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-light.svg">
|
||||
<img alt="Hugging Face Transformers Library" src="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-light.svg" width="352" height="59" style="max-width: 100%;">
|
||||
</picture>
|
||||
<br/>
|
||||
<br/>
|
||||
</p>
|
||||
|
||||
<p align="center">
|
||||
<a href="https://circleci.com/gh/huggingface/transformers">
|
||||
<img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/main">
|
||||
</a>
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/LICENSE">
|
||||
<img alt="GitHub" src="https://img.shields.io/github/license/huggingface/transformers.svg?color=blue">
|
||||
</a>
|
||||
<a href="https://huggingface.co/docs/transformers/index">
|
||||
<img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/docs/transformers/index.svg?down_color=red&down_message=offline&up_message=online">
|
||||
</a>
|
||||
<a href="https://github.com/huggingface/transformers/releases">
|
||||
<img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/transformers.svg">
|
||||
</a>
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/CODE_OF_CONDUCT.md">
|
||||
<img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg">
|
||||
</a>
|
||||
<a href="https://zenodo.org/badge/latestdoi/155220641"><img src="https://zenodo.org/badge/155220641.svg" alt="DOI"></a>
|
||||
</p>
|
||||
|
||||
<h4 align="center">
|
||||
<p>
|
||||
<a href="https://github.com/huggingface/transformers/">English</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hans.md">简体中文</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hant.md">繁體中文</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_ko.md">한국어</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_es.md">Español</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_ja.md">日本語</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_hd.md">हिन्दी</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_ru.md">Русский</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_pt-br.md">Рortuguês</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_te.md">తెలుగు</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_fr.md">Français</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_de.md">Deutsch</a> |
|
||||
<b>Tiếng việt</b> |
|
||||
</p>
|
||||
</h4>
|
||||
|
||||
<h3 align="center">
|
||||
<p>Công nghệ Học máy tiên tiến cho JAX, PyTorch và TensorFlow</p>
|
||||
</h3>
|
||||
|
||||
<h3 align="center">
|
||||
<a href="https://hf.co/course"><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/course_banner.png"></a>
|
||||
</h3>
|
||||
|
||||
🤗 Transformers cung cấp hàng ngàn mô hình được huấn luyện trước để thực hiện các nhiệm vụ trên các modalities khác nhau như văn bản, hình ảnh và âm thanh.
|
||||
|
||||
Các mô hình này có thể được áp dụng vào:
|
||||
|
||||
* 📝 Văn bản, cho các nhiệm vụ như phân loại văn bản, trích xuất thông tin, trả lời câu hỏi, tóm tắt, dịch thuật và sinh văn bản, trong hơn 100 ngôn ngữ.
|
||||
* 🖼️ Hình ảnh, cho các nhiệm vụ như phân loại hình ảnh, nhận diện đối tượng và phân đoạn.
|
||||
* 🗣️ Âm thanh, cho các nhiệm vụ như nhận dạng giọng nói và phân loại âm thanh.
|
||||
|
||||
Các mô hình Transformer cũng có thể thực hiện các nhiệm vụ trên **nhiều modalities kết hợp**, như trả lời câu hỏi về bảng, nhận dạng ký tự quang học, trích xuất thông tin từ tài liệu quét, phân loại video và trả lời câu hỏi hình ảnh.
|
||||
|
||||
🤗 Transformers cung cấp các API để tải xuống và sử dụng nhanh chóng các mô hình được huấn luyện trước đó trên văn bản cụ thể, điều chỉnh chúng trên tập dữ liệu của riêng bạn và sau đó chia sẻ chúng với cộng đồng trên [model hub](https://huggingface.co/models) của chúng tôi. Đồng thời, mỗi module python xác định một kiến trúc là hoàn toàn độc lập và có thể được sửa đổi để cho phép thực hiện nhanh các thí nghiệm nghiên cứu.
|
||||
|
||||
🤗 Transformers được hỗ trợ bởi ba thư viện học sâu phổ biến nhất — [Jax](https://jax.readthedocs.io/en/latest/), [PyTorch](https://pytorch.org/) và [TensorFlow](https://www.tensorflow.org/) — với tích hợp mượt mà giữa chúng. Việc huấn luyện mô hình của bạn với một thư viện trước khi tải chúng để sử dụng trong suy luận với thư viện khác là rất dễ dàng.
|
||||
|
||||
## Các demo trực tuyến
|
||||
|
||||
Bạn có thể kiểm tra hầu hết các mô hình của chúng tôi trực tiếp trên trang của chúng từ [model hub](https://huggingface.co/models). Chúng tôi cũng cung cấp [dịch vụ lưu trữ mô hình riêng tư, phiên bản và API suy luận](https://huggingface.co/pricing) cho các mô hình công khai và riêng tư.
|
||||
|
||||
Dưới đây là một số ví dụ:
|
||||
|
||||
Trong Xử lý Ngôn ngữ Tự nhiên:
|
||||
- [Hoàn thành từ vụng về từ với BERT](https://huggingface.co/google-bert/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France)
|
||||
- [Nhận dạng thực thể đặt tên với Electra](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city)
|
||||
- [Tạo văn bản tự nhiên với Mistral](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2)
|
||||
- [Suy luận Ngôn ngữ Tự nhiên với RoBERTa](https://huggingface.co/FacebookAI/roberta-large-mnli?text=The+dog+was+lost.+Nobody+lost+any+animal)
|
||||
- [Tóm tắt văn bản với BART](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct)
|
||||
- [Trả lời câu hỏi với DistilBERT](https://huggingface.co/distilbert/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species)
|
||||
- [Dịch văn bản với T5](https://huggingface.co/google-t5/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin)
|
||||
|
||||
Trong Thị giác Máy tính:
|
||||
- [Phân loại hình ảnh với ViT](https://huggingface.co/google/vit-base-patch16-224)
|
||||
- [Phát hiện đối tượng với DETR](https://huggingface.co/facebook/detr-resnet-50)
|
||||
- [Phân đoạn ngữ nghĩa với SegFormer](https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512)
|
||||
- [Phân đoạn toàn diện với Mask2Former](https://huggingface.co/facebook/mask2former-swin-large-coco-panoptic)
|
||||
- [Ước lượng độ sâu với Depth Anything](https://huggingface.co/docs/transformers/main/model_doc/depth_anything)
|
||||
- [Phân loại video với VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)
|
||||
- [Phân đoạn toàn cầu với OneFormer](https://huggingface.co/shi-labs/oneformer_ade20k_dinat_large)
|
||||
|
||||
Trong âm thanh:
|
||||
- [Nhận dạng giọng nói tự động với Whisper](https://huggingface.co/openai/whisper-large-v3)
|
||||
- [Phát hiện từ khóa với Wav2Vec2](https://huggingface.co/superb/wav2vec2-base-superb-ks)
|
||||
- [Phân loại âm thanh với Audio Spectrogram Transformer](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593)
|
||||
|
||||
Trong các nhiệm vụ đa phương thức:
|
||||
- [Trả lời câu hỏi về bảng với TAPAS](https://huggingface.co/google/tapas-base-finetuned-wtq)
|
||||
- [Trả lời câu hỏi hình ảnh với ViLT](https://huggingface.co/dandelin/vilt-b32-finetuned-vqa)
|
||||
- [Mô tả hình ảnh với LLaVa](https://huggingface.co/llava-hf/llava-1.5-7b-hf)
|
||||
- [Phân loại hình ảnh không cần nhãn với SigLIP](https://huggingface.co/google/siglip-so400m-patch14-384)
|
||||
- [Trả lời câu hỏi văn bản tài liệu với LayoutLM](https://huggingface.co/impira/layoutlm-document-qa)
|
||||
- [Phân loại video không cần nhãn với X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)
|
||||
- [Phát hiện đối tượng không cần nhãn với OWLv2](https://huggingface.co/docs/transformers/en/model_doc/owlv2)
|
||||
- [Phân đoạn hình ảnh không cần nhãn với CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)
|
||||
- [Tạo mặt nạ tự động với SAM](https://huggingface.co/docs/transformers/model_doc/sam)
|
||||
|
||||
|
||||
## 100 dự án sử dụng Transformers
|
||||
|
||||
Transformers không chỉ là một bộ công cụ để sử dụng các mô hình được huấn luyện trước: đó là một cộng đồng các dự án xây dựng xung quanh nó và Hugging Face Hub. Chúng tôi muốn Transformers giúp các nhà phát triển, nhà nghiên cứu, sinh viên, giáo sư, kỹ sư và bất kỳ ai khác xây dựng những dự án mơ ước của họ.
|
||||
|
||||
Để kỷ niệm 100.000 sao của transformers, chúng tôi đã quyết định tập trung vào cộng đồng và tạo ra trang [awesome-transformers](./awesome-transformers.md) liệt kê 100 dự án tuyệt vời được xây dựng xung quanh transformers.
|
||||
|
||||
Nếu bạn sở hữu hoặc sử dụng một dự án mà bạn tin rằng nên được thêm vào danh sách, vui lòng mở một PR để thêm nó!
|
||||
|
||||
## Nếu bạn đang tìm kiếm hỗ trợ tùy chỉnh từ đội ngũ Hugging Face
|
||||
|
||||
<a target="_blank" href="https://huggingface.co/support">
|
||||
<img alt="HuggingFace Expert Acceleration Program" src="https://cdn-media.huggingface.co/marketing/transformers/new-support-improved.png" style="max-width: 600px; border: 1px solid #eee; border-radius: 4px; box-shadow: 0 1px 2px 0 rgba(0, 0, 0, 0.05);">
|
||||
</a><br>
|
||||
|
||||
## Hành trình nhanh
|
||||
|
||||
Để ngay lập tức sử dụng một mô hình trên một đầu vào cụ thể (văn bản, hình ảnh, âm thanh, ...), chúng tôi cung cấp API `pipeline`. Pipelines nhóm một mô hình được huấn luyện trước với quá trình tiền xử lý đã được sử dụng trong quá trình huấn luyện của mô hình đó. Dưới đây là cách sử dụng nhanh một pipeline để phân loại văn bản tích cực so với tiêu cực:
|
||||
|
||||
```python
|
||||
>>> from transformers import pipeline
|
||||
|
||||
# Cấp phát một pipeline cho phân tích cảm xúc
|
||||
>>> classifier = pipeline('sentiment-analysis')
|
||||
>>> classifier('We are very happy to introduce pipeline to the transformers repository.')
|
||||
[{'label': 'POSITIVE', 'score': 0.9996980428695679}]
|
||||
```
|
||||
|
||||
Dòng code thứ hai tải xuống và lưu trữ bộ mô hình được huấn luyện được sử dụng bởi pipeline, trong khi dòng thứ ba đánh giá nó trên văn bản đã cho. Ở đây, câu trả lời là "tích cực" với độ tin cậy là 99,97%.
|
||||
|
||||
Nhiều nhiệm vụ có sẵn một `pipeline` được huấn luyện trước, trong NLP nhưng cũng trong thị giác máy tính và giọng nói. Ví dụ, chúng ta có thể dễ dàng trích xuất các đối tượng được phát hiện trong một hình ảnh:
|
||||
|
||||
``` python
|
||||
>>> import requests
|
||||
>>> from PIL import Image
|
||||
>>> from transformers import pipeline
|
||||
|
||||
# Tải xuống một hình ảnh với những con mèo dễ thương
|
||||
>>> url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample.png"
|
||||
>>> image_data = requests.get(url, stream=True).raw
|
||||
>>> image = Image.open(image_data)
|
||||
|
||||
# Cấp phát một pipeline cho phát hiện đối tượng
|
||||
>>> object_detector = pipeline('object-detection')
|
||||
>>> object_detector(image)
|
||||
[{'score': 0.9982201457023621,
|
||||
'label': 'remote',
|
||||
'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
|
||||
{'score': 0.9960021376609802,
|
||||
'label': 'remote',
|
||||
'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
|
||||
{'score': 0.9954745173454285,
|
||||
'label': 'couch',
|
||||
'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
|
||||
{'score': 0.9988006353378296,
|
||||
'label': 'cat',
|
||||
'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
|
||||
{'score': 0.9986783862113953,
|
||||
'label': 'cat',
|
||||
'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}]
|
||||
```
|
||||
|
||||
Ở đây, chúng ta nhận được một danh sách các đối tượng được phát hiện trong hình ảnh, với một hộp bao quanh đối tượng và một điểm đánh giá độ tin cậy. Đây là hình ảnh gốc ở bên trái, với các dự đoán hiển thị ở bên phải:
|
||||
|
||||
<h3 align="center">
|
||||
<a><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample.png" width="400"></a>
|
||||
<a><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample_post_processed.png" width="400"></a>
|
||||
</h3>
|
||||
|
||||
Bạn có thể tìm hiểu thêm về các nhiệm vụ được hỗ trợ bởi API `pipeline` trong [hướng dẫn này](https://huggingface.co/docs/transformers/task_summary).
|
||||
|
||||
Ngoài `pipeline`, để tải xuống và sử dụng bất kỳ mô hình được huấn luyện trước nào cho nhiệm vụ cụ thể của bạn, chỉ cần ba dòng code. Đây là phiên bản PyTorch:
|
||||
```python
|
||||
>>> from transformers import AutoTokenizer, AutoModel
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
|
||||
>>> model = AutoModel.from_pretrained("google-bert/bert-base-uncased")
|
||||
|
||||
>>> inputs = tokenizer("Hello world!", return_tensors="pt")
|
||||
>>> outputs = model(**inputs)
|
||||
```
|
||||
|
||||
Và đây là mã tương đương cho TensorFlow:
|
||||
```python
|
||||
>>> from transformers import AutoTokenizer, TFAutoModel
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
|
||||
>>> model = TFAutoModel.from_pretrained("google-bert/bert-base-uncased")
|
||||
|
||||
>>> inputs = tokenizer("Hello world!", return_tensors="tf")
|
||||
>>> outputs = model(**inputs)
|
||||
```
|
||||
|
||||
Tokenizer là thành phần chịu trách nhiệm cho việc tiền xử lý mà mô hình được huấn luyện trước mong đợi và có thể được gọi trực tiếp trên một chuỗi đơn (như trong các ví dụ trên) hoặc một danh sách. Nó sẽ xuất ra một từ điển mà bạn có thể sử dụng trong mã phụ thuộc hoặc đơn giản là truyền trực tiếp cho mô hình của bạn bằng cách sử dụng toán tử ** để giải nén đối số.
|
||||
|
||||
Chính mô hình là một [Pytorch `nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) thông thường hoặc một [TensorFlow `tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) (tùy thuộc vào backend của bạn) mà bạn có thể sử dụng như bình thường. [Hướng dẫn này](https://huggingface.co/docs/transformers/training) giải thích cách tích hợp một mô hình như vậy vào một vòng lặp huấn luyện cổ điển PyTorch hoặc TensorFlow, hoặc cách sử dụng API `Trainer` của chúng tôi để tinh chỉnh nhanh chóng trên một bộ dữ liệu mới.
|
||||
|
||||
## Tại sao tôi nên sử dụng transformers?
|
||||
|
||||
1. Các mô hình tiên tiến dễ sử dụng:
|
||||
- Hiệu suất cao trong việc hiểu và tạo ra ngôn ngữ tự nhiên, thị giác máy tính và âm thanh.
|
||||
- Ngưỡng vào thấp cho giảng viên và người thực hành.
|
||||
- Ít trừu tượng dành cho người dùng với chỉ ba lớp học.
|
||||
- Một API thống nhất để sử dụng tất cả các mô hình được huấn luyện trước của chúng tôi.
|
||||
|
||||
2. Giảm chi phí tính toán, làm giảm lượng khí thải carbon:
|
||||
- Các nhà nghiên cứu có thể chia sẻ các mô hình đã được huấn luyện thay vì luôn luôn huấn luyện lại.
|
||||
- Người thực hành có thể giảm thời gian tính toán và chi phí sản xuất.
|
||||
- Hàng chục kiến trúc với hơn 400.000 mô hình được huấn luyện trước trên tất cả các phương pháp.
|
||||
|
||||
3. Lựa chọn framework phù hợp cho mọi giai đoạn của mô hình:
|
||||
- Huấn luyện các mô hình tiên tiến chỉ trong 3 dòng code.
|
||||
- Di chuyển một mô hình duy nhất giữa các framework TF2.0/PyTorch/JAX theo ý muốn.
|
||||
- Dễ dàng chọn framework phù hợp cho huấn luyện, đánh giá và sản xuất.
|
||||
|
||||
4. Dễ dàng tùy chỉnh một mô hình hoặc một ví dụ theo nhu cầu của bạn:
|
||||
- Chúng tôi cung cấp các ví dụ cho mỗi kiến trúc để tái tạo kết quả được công bố bởi các tác giả gốc.
|
||||
- Các thành phần nội tại của mô hình được tiết lộ một cách nhất quán nhất có thể.
|
||||
- Các tệp mô hình có thể được sử dụng độc lập với thư viện để thực hiện các thử nghiệm nhanh chóng.
|
||||
|
||||
## Tại sao tôi không nên sử dụng transformers?
|
||||
|
||||
- Thư viện này không phải là một bộ công cụ modul cho các khối xây dựng mạng neural. Mã trong các tệp mô hình không được tái cấu trúc với các trừu tượng bổ sung một cách cố ý, để các nhà nghiên cứu có thể lặp nhanh trên từng mô hình mà không cần đào sâu vào các trừu tượng/tệp bổ sung.
|
||||
- API huấn luyện không được thiết kế để hoạt động trên bất kỳ mô hình nào, mà được tối ưu hóa để hoạt động với các mô hình được cung cấp bởi thư viện. Đối với vòng lặp học máy chung, bạn nên sử dụng một thư viện khác (có thể là [Accelerate](https://huggingface.co/docs/accelerate)).
|
||||
- Mặc dù chúng tôi cố gắng trình bày càng nhiều trường hợp sử dụng càng tốt, nhưng các tập lệnh trong thư mục [examples](https://github.com/huggingface/transformers/tree/main/examples) chỉ là ví dụ. Dự kiến rằng chúng sẽ không hoạt động ngay tức khắc trên vấn đề cụ thể của bạn và bạn sẽ phải thay đổi một số dòng mã để thích nghi với nhu cầu của bạn.
|
||||
|
||||
## Cài đặt
|
||||
|
||||
### Sử dụng pip
|
||||
|
||||
Thư viện này được kiểm tra trên Python 3.8+, Flax 0.4.1+, PyTorch 1.11+ và TensorFlow 2.6+.
|
||||
|
||||
Bạn nên cài đặt 🤗 Transformers trong một [môi trường ảo Python](https://docs.python.org/3/library/venv.html). Nếu bạn chưa quen với môi trường ảo Python, hãy xem [hướng dẫn sử dụng](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/).
|
||||
|
||||
Trước tiên, tạo một môi trường ảo với phiên bản Python bạn sẽ sử dụng và kích hoạt nó.
|
||||
|
||||
Sau đó, bạn sẽ cần cài đặt ít nhất một trong số các framework Flax, PyTorch hoặc TensorFlow.
|
||||
Vui lòng tham khảo [trang cài đặt TensorFlow](https://www.tensorflow.org/install/), [trang cài đặt PyTorch](https://pytorch.org/get-started/locally/#start-locally) và/hoặc [Flax](https://github.com/google/flax#quick-install) và [Jax](https://github.com/google/jax#installation) để biết lệnh cài đặt cụ thể cho nền tảng của bạn.
|
||||
|
||||
Khi đã cài đặt một trong các backend đó, 🤗 Transformers có thể được cài đặt bằng pip như sau:
|
||||
|
||||
```bash
|
||||
pip install transformers
|
||||
```
|
||||
|
||||
Nếu bạn muốn thực hiện các ví dụ hoặc cần phiên bản mới nhất của mã và không thể chờ đợi cho một phiên bản mới, bạn phải [cài đặt thư viện từ nguồn](https://huggingface.co/docs/transformers/installation#installing-from-source).
|
||||
|
||||
### Với conda
|
||||
|
||||
🤗 Transformers có thể được cài đặt bằng conda như sau:
|
||||
|
||||
```shell script
|
||||
conda install conda-forge::transformers
|
||||
```
|
||||
|
||||
> **_GHI CHÚ:_** Cài đặt `transformers` từ kênh `huggingface` đã bị lỗi thời.
|
||||
|
||||
Hãy làm theo trang cài đặt của Flax, PyTorch hoặc TensorFlow để xem cách cài đặt chúng bằng conda.
|
||||
|
||||
> **_GHI CHÚ:_** Trên Windows, bạn có thể được yêu cầu kích hoạt Chế độ phát triển để tận dụng việc lưu cache. Nếu điều này không phải là một lựa chọn cho bạn, hãy cho chúng tôi biết trong [vấn đề này](https://github.com/huggingface/huggingface_hub/issues/1062).
|
||||
|
||||
## Kiến trúc mô hình
|
||||
|
||||
**[Tất cả các điểm kiểm tra mô hình](https://huggingface.co/models)** được cung cấp bởi 🤗 Transformers được tích hợp một cách mượt mà từ trung tâm mô hình huggingface.co [model hub](https://huggingface.co/models), nơi chúng được tải lên trực tiếp bởi [người dùng](https://huggingface.co/users) và [tổ chức](https://huggingface.co/organizations).
|
||||
|
||||
Số lượng điểm kiểm tra hiện tại: 
|
||||
|
||||
🤗 Transformers hiện đang cung cấp các kiến trúc sau đây: xem [ở đây](https://huggingface.co/docs/transformers/model_summary) để có một tóm tắt tổng quan về mỗi kiến trúc.
|
||||
|
||||
Để kiểm tra xem mỗi mô hình có một phiên bản thực hiện trong Flax, PyTorch hoặc TensorFlow, hoặc có một tokenizer liên quan được hỗ trợ bởi thư viện 🤗 Tokenizers, vui lòng tham khảo [bảng này](https://huggingface.co/docs/transformers/index#supported-frameworks).
|
||||
|
||||
Những phiên bản này đã được kiểm tra trên một số tập dữ liệu (xem các tập lệnh ví dụ) và nên tương đương với hiệu suất của các phiên bản gốc. Bạn có thể tìm thấy thêm thông tin về hiệu suất trong phần Ví dụ của [tài liệu](https://github.com/huggingface/transformers/tree/main/examples).
|
||||
|
||||
|
||||
## Tìm hiểu thêm
|
||||
|
||||
| Phần | Mô tả |
|
||||
|-|-|
|
||||
| [Tài liệu](https://huggingface.co/docs/transformers/) | Toàn bộ tài liệu API và hướng dẫn |
|
||||
| [Tóm tắt nhiệm vụ](https://huggingface.co/docs/transformers/task_summary) | Các nhiệm vụ được hỗ trợ bởi 🤗 Transformers |
|
||||
| [Hướng dẫn tiền xử lý](https://huggingface.co/docs/transformers/preprocessing) | Sử dụng lớp `Tokenizer` để chuẩn bị dữ liệu cho các mô hình |
|
||||
| [Huấn luyện và điều chỉnh](https://huggingface.co/docs/transformers/training) | Sử dụng các mô hình được cung cấp bởi 🤗 Transformers trong vòng lặp huấn luyện PyTorch/TensorFlow và API `Trainer` |
|
||||
| [Hướng dẫn nhanh: Điều chỉnh/sử dụng các kịch bản](https://github.com/huggingface/transformers/tree/main/examples) | Các kịch bản ví dụ để điều chỉnh mô hình trên nhiều nhiệm vụ khác nhau |
|
||||
| [Chia sẻ và tải lên mô hình](https://huggingface.co/docs/transformers/model_sharing) | Tải lên và chia sẻ các mô hình đã điều chỉnh của bạn với cộng đồng |
|
||||
|
||||
## Trích dẫn
|
||||
|
||||
Bây giờ chúng ta có một [bài báo](https://www.aclweb.org/anthology/2020.emnlp-demos.6/) mà bạn có thể trích dẫn cho thư viện 🤗 Transformers:
|
||||
```bibtex
|
||||
@inproceedings{wolf-etal-2020-transformers,
|
||||
title = "Transformers: State-of-the-Art Natural Language Processing",
|
||||
author = "Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and Rémi Louf and Morgan Funtowicz and Joe Davison and Sam Shleifer and Patrick von Platen and Clara Ma and Yacine Jernite and Julien Plu and Canwen Xu and Teven Le Scao and Sylvain Gugger and Mariama Drame and Quentin Lhoest and Alexander M. Rush",
|
||||
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
|
||||
month = oct,
|
||||
year = "2020",
|
||||
address = "Online",
|
||||
publisher = "Association for Computational Linguistics",
|
||||
url = "https://www.aclweb.org/anthology/2020.emnlp-demos.6",
|
||||
pages = "38--45"
|
||||
}
|
||||
```
|
||||
@ -26,7 +26,7 @@ token: 词符(并用括号标注原英文)
|
||||
tokenize: 词符化(并用括号标注原英文)
|
||||
tokenizer: 词符化器(并用括号标注原英文)
|
||||
transformer: transformer(不翻译)
|
||||
pipeline: 流水线
|
||||
pipeline: 流水线
|
||||
API: API (不翻译)
|
||||
inference: 推理
|
||||
Trainer: 训练器。当作为类名出现时不翻译。
|
||||
@ -43,12 +43,12 @@ checkpoint: 检查点
|
||||
<br>
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers_logo_name.png" width="400"/>
|
||||
<br>
|
||||
</p>
|
||||
<p>
|
||||
<p align="center">
|
||||
<a href="https://circleci.com/gh/huggingface/transformers">
|
||||
<img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/main">
|
||||
<img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/master">
|
||||
</a>
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/LICENSE">
|
||||
<a href="https://github.com/huggingface/transformers/blob/master/LICENSE">
|
||||
<img alt="GitHub" src="https://img.shields.io/github/license/huggingface/transformers.svg?color=blue">
|
||||
</a>
|
||||
<a href="https://huggingface.co/docs/transformers/index">
|
||||
@ -57,7 +57,7 @@ checkpoint: 检查点
|
||||
<a href="https://github.com/huggingface/transformers/releases">
|
||||
<img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/transformers.svg">
|
||||
</a>
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/CODE_OF_CONDUCT.md">
|
||||
<a href="https://github.com/huggingface/transformers/blob/master/CODE_OF_CONDUCT.md">
|
||||
<img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg">
|
||||
</a>
|
||||
<a href="https://zenodo.org/badge/latestdoi/155220641"><img src="https://zenodo.org/badge/155220641.svg" alt="DOI"></a>
|
||||
@ -67,18 +67,9 @@ checkpoint: 检查点
|
||||
<p>
|
||||
<a href="https://github.com/huggingface/transformers/">English</a> |
|
||||
<b>简体中文</b> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hant.md">繁體中文</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_ko.md">한국어</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_es.md">Español</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_ja.md">日本語</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_hd.md">हिन्दी</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_ru.md">Русский</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_pt-br.md">Рortuguês</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_te.md">తెలుగు</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_fr.md">Français</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_de.md">Deutsch</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_vi.md">Tiếng Việt</a> |
|
||||
</p>
|
||||
<a href="https://github.com/huggingface/transformers/blob/master/README_zh-hant.md">繁體中文</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/master/README_ko.md">한국어</a>
|
||||
<p>
|
||||
</h4>
|
||||
|
||||
<h3 align="center">
|
||||
@ -89,24 +80,24 @@ checkpoint: 检查点
|
||||
<a href="https://hf.co/course"><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/course_banner.png"></a>
|
||||
</h3>
|
||||
|
||||
🤗 Transformers 提供了数以千计的预训练模型,支持 100 多种语言的文本分类、信息抽取、问答、摘要、翻译、文本生成。它的宗旨是让最先进的 NLP 技术人人易用。
|
||||
🤗 Transformers 提供了数以千计的预训练模型,支持 100 多种语言的文本分类、信息抽取、问答、摘要、翻译、文本生成。它的宗旨让最先进的 NLP 技术人人易用。
|
||||
|
||||
🤗 Transformers 提供了便于快速下载和使用的API,让你可以把预训练模型用在给定文本、在你的数据集上微调然后通过 [model hub](https://huggingface.co/models) 与社区共享。同时,每个定义的 Python 模块均完全独立,方便修改和快速研究实验。
|
||||
|
||||
🤗 Transformers 支持三个最热门的深度学习库: [Jax](https://jax.readthedocs.io/en/latest/), [PyTorch](https://pytorch.org/) 以及 [TensorFlow](https://www.tensorflow.org/) — 并与之无缝整合。你可以直接使用一个框架训练你的模型然后用另一个加载和推理。
|
||||
🤗 Transformers 支持三个最热门的深度学习库: [Jax](https://jax.readthedocs.io/en/latest/), [PyTorch](https://pytorch.org/) and [TensorFlow](https://www.tensorflow.org/) — 并与之无缝整合。你可以直接使用一个框架训练你的模型然后用另一个加载和推理。
|
||||
|
||||
## 在线演示
|
||||
|
||||
你可以直接在模型页面上测试大多数 [model hub](https://huggingface.co/models) 上的模型。 我们也提供了 [私有模型托管、模型版本管理以及推理API](https://huggingface.co/pricing)。
|
||||
|
||||
这里是一些例子:
|
||||
- [用 BERT 做掩码填词](https://huggingface.co/google-bert/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France)
|
||||
- [用 BERT 做掩码填词](https://huggingface.co/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France)
|
||||
- [用 Electra 做命名实体识别](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city)
|
||||
- [用 GPT-2 做文本生成](https://huggingface.co/openai-community/gpt2?text=A+long+time+ago%2C+)
|
||||
- [用 RoBERTa 做自然语言推理](https://huggingface.co/FacebookAI/roberta-large-mnli?text=The+dog+was+lost.+Nobody+lost+any+animal)
|
||||
- [用 GPT-2 做文本生成](https://huggingface.co/gpt2?text=A+long+time+ago%2C+)
|
||||
- [用 RoBERTa 做自然语言推理](https://huggingface.co/roberta-large-mnli?text=The+dog+was+lost.+Nobody+lost+any+animal)
|
||||
- [用 BART 做文本摘要](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct)
|
||||
- [用 DistilBERT 做问答](https://huggingface.co/distilbert/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species)
|
||||
- [用 T5 做翻译](https://huggingface.co/google-t5/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin)
|
||||
- [用 DistilBERT 做问答](https://huggingface.co/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species)
|
||||
- [用 T5 做翻译](https://huggingface.co/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin)
|
||||
|
||||
**[Write With Transformer](https://transformer.huggingface.co)**,由抱抱脸团队打造,是一个文本生成的官方 demo。
|
||||
|
||||
@ -152,8 +143,8 @@ checkpoint: 检查点
|
||||
```python
|
||||
>>> from transformers import AutoTokenizer, AutoModel
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
|
||||
>>> model = AutoModel.from_pretrained("google-bert/bert-base-uncased")
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
||||
>>> model = AutoModel.from_pretrained("bert-base-uncased")
|
||||
|
||||
>>> inputs = tokenizer("Hello world!", return_tensors="pt")
|
||||
>>> outputs = model(**inputs)
|
||||
@ -162,8 +153,8 @@ checkpoint: 检查点
|
||||
```python
|
||||
>>> from transformers import AutoTokenizer, TFAutoModel
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
|
||||
>>> model = TFAutoModel.from_pretrained("google-bert/bert-base-uncased")
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
||||
>>> model = TFAutoModel.from_pretrained("bert-base-uncased")
|
||||
|
||||
>>> inputs = tokenizer("Hello world!", return_tensors="tf")
|
||||
>>> outputs = model(**inputs)
|
||||
@ -182,7 +173,7 @@ checkpoint: 检查点
|
||||
- 对所有模型统一的API
|
||||
|
||||
1. 更低计算开销,更少的碳排放:
|
||||
- 研究人员可以分享已训练的模型而非每次从头开始训练
|
||||
- 研究人员可以分享亿训练的模型而非次次从头开始训练
|
||||
- 工程师可以减少计算用时和生产环境开销
|
||||
- 数十种模型架构、两千多个预训练模型、100多种语言支持
|
||||
|
||||
@ -200,13 +191,13 @@ checkpoint: 检查点
|
||||
|
||||
- 本库并不是模块化的神经网络工具箱。模型文件中的代码特意呈若璞玉,未经额外抽象封装,以便研究人员快速迭代魔改而不致溺于抽象和文件跳转之中。
|
||||
- `Trainer` API 并非兼容任何模型,只为本库之模型优化。若是在寻找适用于通用机器学习的训练循环实现,请另觅他库。
|
||||
- 尽管我们已尽力而为,[examples 目录](https://github.com/huggingface/transformers/tree/main/examples)中的脚本也仅为用例而已。对于你的特定问题,它们并不一定开箱即用,可能需要改几行代码以适之。
|
||||
- 尽管我们已尽力而为,[examples 目录](https://github.com/huggingface/transformers/tree/master/examples)中的脚本也仅为用例而已。对于你的特定问题,它们并不一定开箱即用,可能需要改几行代码以适之。
|
||||
|
||||
## 安装
|
||||
|
||||
### 使用 pip
|
||||
|
||||
这个仓库已在 Python 3.8+、Flax 0.4.1+、PyTorch 1.11+ 和 TensorFlow 2.6+ 下经过测试。
|
||||
这个仓库已在 Python 3.6+、Flax 0.3.2+、PyTorch 1.3.1+ 和 TensorFlow 2.3+ 下经过测试。
|
||||
|
||||
你可以在[虚拟环境](https://docs.python.org/3/library/venv.html)中安装 🤗 Transformers。如果你还不熟悉 Python 的虚拟环境,请阅此[用户说明](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/)。
|
||||
|
||||
@ -224,23 +215,129 @@ pip install transformers
|
||||
|
||||
### 使用 conda
|
||||
|
||||
自 Transformers 4.0.0 版始,我们有了一个 conda 频道: `huggingface`。
|
||||
|
||||
🤗 Transformers 可以通过 conda 依此安装:
|
||||
|
||||
```shell script
|
||||
conda install conda-forge::transformers
|
||||
conda install -c huggingface transformers
|
||||
```
|
||||
|
||||
> **_笔记:_** 从 `huggingface` 渠道安装 `transformers` 已被废弃。
|
||||
|
||||
要通过 conda 安装 Flax、PyTorch 或 TensorFlow 其中之一,请参阅它们各自安装页的说明。
|
||||
|
||||
## 模型架构
|
||||
|
||||
🤗 Transformers 支持的[**所有的模型检查点**](https://huggingface.co/models)由[用户](https://huggingface.co/users)和[组织](https://huggingface.co/organizations)上传,均与 huggingface.co [model hub](https://huggingface.co) 无缝整合。
|
||||
**🤗 Transformers 支持的[所有的模型检查点](https://huggingface.co/models)** 由[用户](https://huggingface.co/users)和[组织](https://huggingface.co/organizations)上传,均与 huggingface.co [model hub](https://huggingface.co) 无缝整合。
|
||||
|
||||
目前的检查点数量: 
|
||||
|
||||
🤗 Transformers 目前支持如下的架构: 模型概述请阅[这里](https://huggingface.co/docs/transformers/model_summary).
|
||||
🤗 Transformers 目前支持如下的架构(模型概述请阅[这里](https://huggingface.co/docs/transformers/model_summary)):
|
||||
|
||||
1. **[ALBERT](https://huggingface.co/docs/transformers/model_doc/albert)** (来自 Google Research and the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。
|
||||
1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (来自 Facebook) 伴随论文 [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/pdf/1910.13461.pdf) 由 Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer 发布。
|
||||
1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (来自 École polytechnique) 伴随论文 [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) 由 Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis 发布。
|
||||
1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (来自 VinAI Research) 伴随论文 [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) 由 Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen 发布。
|
||||
1. **[BEiT](https://huggingface.co/docs/transformers/model_doc/beit)** (来自 Microsoft) 伴随论文 [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) 由 Hangbo Bao, Li Dong, Furu Wei 发布。
|
||||
1. **[BERT](https://huggingface.co/docs/transformers/model_doc/bert)** (来自 Google) 伴随论文 [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) 由 Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova 发布。
|
||||
1. **[BERT For Sequence Generation](https://huggingface.co/docs/transformers/model_doc/bert-generation)** (来自 Google) 伴随论文 [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) 由 Sascha Rothe, Shashi Narayan, Aliaksei Severyn 发布。
|
||||
1. **[BERTweet](https://huggingface.co/docs/transformers/model_doc/bertweet)** (来自 VinAI Research) 伴随论文 [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) 由 Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen 发布。
|
||||
1. **[BigBird-Pegasus](https://huggingface.co/docs/transformers/model_doc/bigbird_pegasus)** (来自 Google Research) 伴随论文 [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) 由 Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed 发布。
|
||||
1. **[BigBird-RoBERTa](https://huggingface.co/docs/transformers/model_doc/big_bird)** (来自 Google Research) 伴随论文 [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) 由 Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed 发布。
|
||||
1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (来自 Facebook) 伴随论文 [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) 由 Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston 发布。
|
||||
1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (来自 Facebook) 伴随论文 [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) 由 Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston 发布。
|
||||
1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (来自 Alexa) 伴随论文 [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) 由 Adrian de Wynter and Daniel J. Perry 发布。
|
||||
1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (来自 Google Research) 伴随论文 [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) 由 Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel 发布。
|
||||
1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (来自 Inria/Facebook/Sorbonne) 伴随论文 [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) 由 Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot 发布。
|
||||
1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (来自 Google Research) 伴随论文 [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) 由 Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting 发布。
|
||||
1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (来自 OpenAI) 伴随论文 [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) 由 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever 发布。
|
||||
1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (来自 YituTech) 伴随论文 [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) 由 Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan 发布。
|
||||
1. **[ConvNeXT](https://huggingface.co/docs/transformers/master/model_doc/convnext)** (来自 Facebook AI) 伴随论文 [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) 由 Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie 发布。
|
||||
1. **[CPM](https://huggingface.co/docs/transformers/model_doc/cpm)** (来自 Tsinghua University) 伴随论文 [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) 由 Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun 发布。
|
||||
1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (来自 Salesforce) 伴随论文 [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) 由 Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher 发布。
|
||||
1. **[Data2Vec](https://huggingface.co/docs/transformers/master/model_doc/data2vec)** (来自 Facebook) 伴随论文 [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) 由 Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli 发布。
|
||||
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (来自 Microsoft) 伴随论文 [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) 由 Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen 发布。
|
||||
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (来自 Microsoft) 伴随论文 [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) 由 Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen 发布。
|
||||
1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (来自 Facebook) 伴随论文 [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) 由 Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou 发布。
|
||||
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (来自 Facebook) 伴随论文 [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) 由 Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko 发布。
|
||||
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (来自 Microsoft Research) 伴随论文 [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) 由 Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan 发布。
|
||||
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (来自 HuggingFace), 伴随论文 [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 同样的方法也应用于压缩 GPT-2 到 [DistilGPT2](https://github.com/huggingface/transformers/tree/master/examples/distillation), RoBERTa 到 [DistilRoBERTa](https://github.com/huggingface/transformers/tree/master/examples/distillation), Multilingual BERT 到 [DistilmBERT](https://github.com/huggingface/transformers/tree/master/examples/distillation) 和德语版 DistilBERT。
|
||||
1. **[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (来自 Facebook) 伴随论文 [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) 由 Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih 发布。
|
||||
1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (来自 Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning 发布。
|
||||
1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (来自 Google Research) 伴随论文 [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) 由 Sascha Rothe, Shashi Narayan, Aliaksei Severyn 发布。
|
||||
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (来自 CNRS) 伴随论文 [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) 由 Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab 发布。
|
||||
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (来自 Google Research) 伴随论文 [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) 由 James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon 发布。
|
||||
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (来自 CMU/Google Brain) 伴随论文 [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) 由 Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le 发布。
|
||||
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (来自 OpenAI) 伴随论文 [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) 由 Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever 发布。
|
||||
1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (来自 EleutherAI) 随仓库 [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) 发布。作者为 Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy 发布。
|
||||
1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (来自 OpenAI) 伴随论文 [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/) 由 Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever** 发布。
|
||||
1. **[GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj)** (来自 EleutherAI) 伴随论文 [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) 由 Ben Wang and Aran Komatsuzaki 发布。
|
||||
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (来自 Facebook) 伴随论文 [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) 由 Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed 发布。
|
||||
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (来自 Berkeley) 伴随论文 [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) 由 Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer 发布。
|
||||
1. **[ImageGPT](https://huggingface.co/docs/transformers/master/model_doc/imagegpt)** (来自 OpenAI) 伴随论文 [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) 由 Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever 发布。
|
||||
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (来自 Microsoft Research Asia) 伴随论文 [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) 由 Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou 发布。
|
||||
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (来自 Microsoft Research Asia) 伴随论文 [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) 由 Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou 发布。
|
||||
1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (来自 Microsoft Research Asia) 伴随论文 [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) 由 Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei 发布。
|
||||
1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (来自 AllenAI) 伴随论文 [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) 由 Iz Beltagy, Matthew E. Peters, Arman Cohan 发布。
|
||||
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (来自 AllenAI) 伴随论文 [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) 由 Iz Beltagy, Matthew E. Peters, Arman Cohan 发布。
|
||||
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (来自 Studio Ousia) 伴随论文 [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) 由 Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto 发布。
|
||||
1. **[LXMERT](https://huggingface.co/docs/transformers/model_doc/lxmert)** (来自 UNC Chapel Hill) 伴随论文 [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) 由 Hao Tan and Mohit Bansal 发布。
|
||||
1. **[M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100)** (来自 Facebook) 伴随论文 [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) 由 Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin 发布。
|
||||
1. **[MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)** 用 [OPUS](http://opus.nlpl.eu/) 数据训练的机器翻译模型由 Jörg Tiedemann 发布。[Marian Framework](https://marian-nmt.github.io/) 由微软翻译团队开发。
|
||||
1. **[MaskFormer](https://huggingface.co/docs/transformers/master/model_doc/maskformer)** (from Meta and UIUC) released with the paper [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) by Bowen Cheng, Alexander G. Schwing, Alexander Kirillov
|
||||
1. **[MBart](https://huggingface.co/docs/transformers/model_doc/mbart)** (来自 Facebook) 伴随论文 [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) 由 Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer 发布。
|
||||
1. **[MBart-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (来自 Facebook) 伴随论文 [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) 由 Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan 发布。
|
||||
1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (来自 NVIDIA) 伴随论文 [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) 由 Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro 发布。
|
||||
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (来自 NVIDIA) 伴随论文 [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) 由 Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro 发布。
|
||||
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (来自 Studio Ousia) 伴随论文 [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) 由 Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka 发布。
|
||||
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (来自 Microsoft Research) 伴随论文 [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) 由 Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu 发布。
|
||||
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (来自 Google AI) 伴随论文 [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) 由 Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel 发布。
|
||||
1. **[Nyströmformer](https://huggingface.co/docs/transformers/master/model_doc/nystromformer)** (来自 the University of Wisconsin - Madison) 伴随论文 [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) 由 Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh 发布。
|
||||
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (来自 Google) 伴随论文 [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) 由 Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu 发布。
|
||||
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (来自 Deepmind) 伴随论文 [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) 由 Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira 发布。
|
||||
1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (来自 VinAI Research) 伴随论文 [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) 由 Dat Quoc Nguyen and Anh Tuan Nguyen 发布。
|
||||
1. **[PLBart](https://huggingface.co/docs/transformers/master/model_doc/plbart)** (来自 UCLA NLP) 伴随论文 [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) 由 Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang 发布。
|
||||
1. **[PoolFormer](https://huggingface.co/docs/transformers/master/model_doc/poolformer)** (来自 Sea AI Labs) 伴随论文 [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) 由 Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng 发布。
|
||||
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (来自 Microsoft Research) 伴随论文 [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) 由 Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou 发布。
|
||||
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (来自 NVIDIA) 伴随论文 [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) 由 Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius 发布。
|
||||
1. **[REALM](https://huggingface.co/transformers/model_doc/realm.html)** (来自 Google Research) 伴随论文 [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) 由 Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang 发布。
|
||||
1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (来自 Google Research) 伴随论文 [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) 由 Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya 发布。
|
||||
1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (来自 Google Research) 伴随论文 [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/pdf/2010.12821.pdf) 由 Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder 发布。
|
||||
1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (来自 Facebook), 伴随论文 [Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) 由 Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov 发布。
|
||||
1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (来自 ZhuiyiTechnology), 伴随论文 [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/pdf/2104.09864v1.pdf) 由 Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu 发布。
|
||||
1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (来自 NVIDIA) 伴随论文 [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) 由 Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo 发布。
|
||||
1. **[SEW](https://huggingface.co/docs/transformers/model_doc/sew)** (来自 ASAPP) 伴随论文 [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) 由 Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi 发布。
|
||||
1. **[SEW-D](https://huggingface.co/docs/transformers/model_doc/sew_d)** (来自 ASAPP) 伴随论文 [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) 由 Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi 发布。
|
||||
1. **[SpeechToTextTransformer](https://huggingface.co/docs/transformers/model_doc/speech_to_text)** (来自 Facebook), 伴随论文 [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) 由 Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino 发布。
|
||||
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (来自 Facebook) 伴随论文 [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) 由 Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau 发布。
|
||||
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (来自 Tel Aviv University) 伴随论文 [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) 由 Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy 发布。
|
||||
1. **[SqueezeBert](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (来自 Berkeley) 伴随论文 [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) 由 Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer 发布。
|
||||
1. **[Swin Transformer](https://huggingface.co/docs/transformers/master/model_doc/swin)** (来自 Microsoft) 伴随论文 [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) 由 Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo 发布。
|
||||
1. **[T5](https://huggingface.co/docs/transformers/model_doc/t5)** (来自 Google AI) 伴随论文 [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) 由 Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu 发布。
|
||||
1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (来自 Google AI) 伴随论文 [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) 由 Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu 发布。
|
||||
1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (来自 Google AI) 伴随论文 [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) 由 Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos 发布。
|
||||
1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (来自 Google/CMU) 伴随论文 [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) 由 Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov 发布。
|
||||
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (来自 Microsoft) 伴随论文 [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) 由 Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei 发布。
|
||||
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (来自 Microsoft Research) 伴随论文 [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) 由 Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang 发布。
|
||||
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (来自 Microsoft Research) 伴随论文 [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) 由 Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu 发布。
|
||||
1. **[ViLT](https://huggingface.co/docs/transformers/master/model_doc/vilt)** (来自 NAVER AI Lab/Kakao Enterprise/Kakao Brain) 伴随论文 [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) 由 Wonjae Kim, Bokyung Son, Ildoo Kim 发布。
|
||||
1. **[ViLT)](https://huggingface.co/docs/transformers/master/model_doc/vilt)** (来自 NAVER AI Lab/Kakao Enterprise/Kakao Brain) 伴随论文 [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) 由 Wonjae Kim, Bokyung Son, Ildoo Kim 发布。
|
||||
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (来自 Google AI) 伴随论文 [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) 由 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby 发布。
|
||||
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (来自 UCLA NLP) 伴随论文 [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) 由 Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang 发布。
|
||||
1. **[ViTMAE](https://huggingface.co/docs/transformers/master/model_doc/vit_mae)** (来自 Meta AI) 伴随论文 [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) 由 Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick 发布。
|
||||
1. **[ViTMAE)](https://huggingface.co/docs/transformers/master/model_doc/vit_mae)** (来自 Meta AI) 伴随论文 [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) 由 Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick 发布。
|
||||
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (来自 Facebook AI) 伴随论文 [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) 由 Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli 发布。
|
||||
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/master/transformers/model_doc/wav2vec2_phoneme)** (来自 Facebook AI) 伴随论文 [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) 由 Qiantong Xu, Alexei Baevski, Michael Auli 发布。
|
||||
1. **[WavLM](https://huggingface.co/docs/transformers/master/model_doc/wavlm)** (from Microsoft Research) released with the paper [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei.
|
||||
1. **[XGLM](https://huggingface.co/docs/master/transformers/model_doc/xglm)** (From Facebook AI) released with the paper [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li.
|
||||
1. **[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (来自 Facebook) 伴随论文 [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) 由 Guillaume Lample and Alexis Conneau 发布。
|
||||
1. **[XLM-ProphetNet](https://huggingface.co/docs/transformers/model_doc/xlm-prophetnet)** (来自 Microsoft Research) 伴随论文 [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) 由 Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou 发布。
|
||||
1. **[XLM-RoBERTa](https://huggingface.co/docs/transformers/model_doc/xlm-roberta)** (来自 Facebook AI), 伴随论文 [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) 由 Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov 发布。
|
||||
1. **[XLM-RoBERTa-XL](https://huggingface.co/docs/transformers/master/model_doc/xlm-roberta-xl)** (来自 Facebook AI) 伴随论文 [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) 由 Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau 发布。
|
||||
1. **[XLNet](https://huggingface.co/docs/transformers/model_doc/xlnet)** (来自 Google/CMU) 伴随论文 [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) 由 Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le 发布。
|
||||
1. **[XLS-R](https://huggingface.co/docs/master/transformers/model_doc/xls_r)** (来自 Facebook AI) 伴随论文 [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) 由 Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli 发布。
|
||||
1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (来自 Facebook AI) 伴随论文 [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) 由 Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli 发布。
|
||||
1. **[YOSO](https://huggingface.co/docs/transformers/master/model_doc/yoso)** (来自 the University of Wisconsin - Madison) 伴随论文 [You Only Sample (Almost) 由 Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh 发布。
|
||||
1. 想要贡献新的模型?我们这里有一份**详细指引和模板**来引导你添加新的模型。你可以在 [`templates`](./templates) 目录中找到他们。记得查看 [贡献指南](./CONTRIBUTING.md) 并在开始写 PR 前联系维护人员或开一个新的 issue 来获得反馈。
|
||||
|
||||
要检查某个模型是否已有 Flax、PyTorch 或 TensorFlow 的实现,或其是否在 🤗 Tokenizers 库中有对应词符化器(tokenizer),敬请参阅[此表](https://huggingface.co/docs/transformers/index#supported-frameworks)。
|
||||
|
||||
@ -251,11 +348,11 @@ conda install conda-forge::transformers
|
||||
|
||||
| 章节 | 描述 |
|
||||
|-|-|
|
||||
| [文档](https://huggingface.co/docs/transformers/) | 完整的 API 文档和教程 |
|
||||
| [文档](https://huggingface.co/transformers/) | 完整的 API 文档和教程 |
|
||||
| [任务总结](https://huggingface.co/docs/transformers/task_summary) | 🤗 Transformers 支持的任务 |
|
||||
| [预处理教程](https://huggingface.co/docs/transformers/preprocessing) | 使用 `Tokenizer` 来为模型准备数据 |
|
||||
| [训练和微调](https://huggingface.co/docs/transformers/training) | 在 PyTorch/TensorFlow 的训练循环或 `Trainer` API 中使用 🤗 Transformers 提供的模型 |
|
||||
| [快速上手:微调和用例脚本](https://github.com/huggingface/transformers/tree/main/examples) | 为各种任务提供的用例脚本 |
|
||||
| [训练和微调](https://huggingface.co/docstransformers/training) | 在 PyTorch/TensorFlow 的训练循环或 `Trainer` API 中使用 🤗 Transformers 提供的模型 |
|
||||
| [快速上手:微调和用例脚本](https://github.com/huggingface/transformers/tree/master/examples) | 为各种任务提供的用例脚本 |
|
||||
| [模型分享和上传](https://huggingface.co/docs/transformers/model_sharing) | 和社区上传和分享你微调的模型 |
|
||||
| [迁移](https://huggingface.co/docs/transformers/migration) | 从 `pytorch-transformers` 或 `pytorch-pretrained-bert` 迁移到 🤗 Transformers |
|
||||
|
||||
|
||||
@ -39,7 +39,7 @@ library: 函式庫
|
||||
module: 模組
|
||||
NLP/Natural Language Processing: 以 NLP 出現時不翻譯,以 Natural Language Processing 出現時翻譯為自然語言處理
|
||||
online demos: 線上Demo
|
||||
pipeline: pipeline(不翻譯)
|
||||
pipeline: pipeline(不翻譯)
|
||||
pretrained/pretrain: 預訓練
|
||||
Python data structures (e.g., list, set, dict): 翻譯為串列,集合,字典,並用括號標註原英文
|
||||
repository: repository(不翻譯)
|
||||
@ -55,12 +55,12 @@ user: 使用者
|
||||
<br>
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers_logo_name.png" width="400"/>
|
||||
<br>
|
||||
</p>
|
||||
<p>
|
||||
<p align="center">
|
||||
<a href="https://circleci.com/gh/huggingface/transformers">
|
||||
<img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/main">
|
||||
<img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/master">
|
||||
</a>
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/LICENSE">
|
||||
<a href="https://github.com/huggingface/transformers/blob/master/LICENSE">
|
||||
<img alt="GitHub" src="https://img.shields.io/github/license/huggingface/transformers.svg?color=blue">
|
||||
</a>
|
||||
<a href="https://huggingface.co/docs/transformers/index">
|
||||
@ -69,7 +69,7 @@ user: 使用者
|
||||
<a href="https://github.com/huggingface/transformers/releases">
|
||||
<img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/transformers.svg">
|
||||
</a>
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/CODE_OF_CONDUCT.md">
|
||||
<a href="https://github.com/huggingface/transformers/blob/master/CODE_OF_CONDUCT.md">
|
||||
<img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg">
|
||||
</a>
|
||||
<a href="https://zenodo.org/badge/latestdoi/155220641"><img src="https://zenodo.org/badge/155220641.svg" alt="DOI"></a>
|
||||
@ -78,19 +78,10 @@ user: 使用者
|
||||
<h4 align="center">
|
||||
<p>
|
||||
<a href="https://github.com/huggingface/transformers/">English</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hans.md">简体中文</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/master/README_zh-hans.md">简体中文</a> |
|
||||
<b>繁體中文</b> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_ko.md">한국어</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_es.md">Español</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_ja.md">日本語</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_hd.md">हिन्दी</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_ru.md">Русский</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_pt-br.md">Рortuguês</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_te.md">తెలుగు</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_fr.md">Français</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_de.md">Deutsch</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/README_vi.md">Tiếng Việt</a> |
|
||||
</p>
|
||||
<a href="https://github.com/huggingface/transformers/blob/master/README_ko.md">한국어</a>
|
||||
<p>
|
||||
</h4>
|
||||
|
||||
<h3 align="center">
|
||||
@ -112,13 +103,13 @@ user: 使用者
|
||||
你可以直接在 [model hub](https://huggingface.co/models) 上測試大多數的模型。我們也提供了 [私有模型託管、模型版本管理以及推論API](https://huggingface.co/pricing)。
|
||||
|
||||
這裡是一些範例:
|
||||
- [用 BERT 做遮蓋填詞](https://huggingface.co/google-bert/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France)
|
||||
- [用 BERT 做遮蓋填詞](https://huggingface.co/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France)
|
||||
- [用 Electra 做專有名詞辨識](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city)
|
||||
- [用 GPT-2 做文本生成](https://huggingface.co/openai-community/gpt2?text=A+long+time+ago%2C+)
|
||||
- [用 RoBERTa 做自然語言推論](https://huggingface.co/FacebookAI/roberta-large-mnli?text=The+dog+was+lost.+Nobody+lost+any+animal)
|
||||
- [用 GPT-2 做文本生成](https://huggingface.co/gpt2?text=A+long+time+ago%2C+)
|
||||
- [用 RoBERTa 做自然語言推論](https://huggingface.co/roberta-large-mnli?text=The+dog+was+lost.+Nobody+lost+any+animal)
|
||||
- [用 BART 做文本摘要](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct)
|
||||
- [用 DistilBERT 做問答](https://huggingface.co/distilbert/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species)
|
||||
- [用 T5 做翻譯](https://huggingface.co/google-t5/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin)
|
||||
- [用 DistilBERT 做問答](https://huggingface.co/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species)
|
||||
- [用 T5 做翻譯](https://huggingface.co/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin)
|
||||
|
||||
**[Write With Transformer](https://transformer.huggingface.co)**,由 Hugging Face 團隊所打造,是一個文本生成的官方 demo。
|
||||
|
||||
@ -164,8 +155,8 @@ user: 使用者
|
||||
```python
|
||||
>>> from transformers import AutoTokenizer, AutoModel
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
|
||||
>>> model = AutoModel.from_pretrained("google-bert/bert-base-uncased")
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
||||
>>> model = AutoModel.from_pretrained("bert-base-uncased")
|
||||
|
||||
>>> inputs = tokenizer("Hello world!", return_tensors="pt")
|
||||
>>> outputs = model(**inputs)
|
||||
@ -174,8 +165,8 @@ user: 使用者
|
||||
```python
|
||||
>>> from transformers import AutoTokenizer, TFAutoModel
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
|
||||
>>> model = TFAutoModel.from_pretrained("google-bert/bert-base-uncased")
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
||||
>>> model = TFAutoModel.from_pretrained("bert-base-uncased")
|
||||
|
||||
>>> inputs = tokenizer("Hello world!", return_tensors="tf")
|
||||
>>> outputs = model(**inputs)
|
||||
@ -194,7 +185,7 @@ Tokenizer 為所有的預訓練模型提供了預處理,並可以直接轉換
|
||||
- 對所有模型使用的制式化API
|
||||
|
||||
1. 更低的運算成本,更少的碳排放:
|
||||
- 研究人員可以分享已訓練的模型而非每次從頭開始訓練
|
||||
- 研究人員可以分享預訓練的模型而非從頭開始訓練
|
||||
- 工程師可以減少計算時間以及生產成本
|
||||
- 數十種模型架構、兩千多個預訓練模型、100多種語言支援
|
||||
|
||||
@ -212,13 +203,13 @@ Tokenizer 為所有的預訓練模型提供了預處理,並可以直接轉換
|
||||
|
||||
- 本函式庫並不是模組化的神經網絡工具箱。模型文件中的程式碼並未做額外的抽象封裝,以便研究人員快速地翻閱及修改程式碼,而不會深陷複雜的類別包裝之中。
|
||||
- `Trainer` API 並非相容任何模型,它只為本函式庫中的模型最佳化。對於一般的機器學習用途,請使用其他函式庫。
|
||||
- 儘管我們已盡力而為,[examples 目錄](https://github.com/huggingface/transformers/tree/main/examples)中的腳本也僅為範例而已。對於特定問題,它們並不一定隨選即用,可能需要修改幾行程式碼以符合需求。
|
||||
- 儘管我們已盡力而為,[examples 目錄](https://github.com/huggingface/transformers/tree/master/examples)中的腳本也僅為範例而已。對於特定問題,它們並不一定隨選即用,可能需要修改幾行程式碼以符合需求。
|
||||
|
||||
## 安裝
|
||||
|
||||
### 使用 pip
|
||||
|
||||
這個 Repository 已在 Python 3.8+、Flax 0.4.1+、PyTorch 1.11+ 和 TensorFlow 2.6+ 下經過測試。
|
||||
這個 Repository 已在 Python 3.6+、Flax 0.3.2+、PyTorch 1.3.1+ 和 TensorFlow 2.3+ 下經過測試。
|
||||
|
||||
你可以在[虛擬環境](https://docs.python.org/3/library/venv.html)中安裝 🤗 Transformers。如果你還不熟悉 Python 的虛擬環境,請閱此[使用者指引](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/)。
|
||||
|
||||
@ -236,14 +227,14 @@ pip install transformers
|
||||
|
||||
### 使用 conda
|
||||
|
||||
自 Transformers 4.0.0 版始,我們有了一個 conda channel: `huggingface`。
|
||||
|
||||
🤗 Transformers 可以藉由 conda 依此安裝:
|
||||
|
||||
```shell script
|
||||
conda install conda-forge::transformers
|
||||
conda install -c huggingface transformers
|
||||
```
|
||||
|
||||
> **_筆記:_** 從 `huggingface` 頻道安裝 `transformers` 已被淘汰。
|
||||
|
||||
要藉由 conda 安裝 Flax、PyTorch 或 TensorFlow 其中之一,請參閱它們各自安裝頁面的說明。
|
||||
|
||||
## 模型架構
|
||||
@ -252,7 +243,113 @@ conda install conda-forge::transformers
|
||||
|
||||
目前的檢查點數量: 
|
||||
|
||||
🤗 Transformers 目前支援以下的架構: 模型概覽請參閱[這裡](https://huggingface.co/docs/transformers/model_summary).
|
||||
🤗 Transformers 目前支援以下的架構(模型概覽請參閱[這裡](https://huggingface.co/docs/transformers/model_summary)):
|
||||
|
||||
1. **[ALBERT](https://huggingface.co/docs/transformers/model_doc/albert)** (from Google Research and the Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.
|
||||
1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (from Facebook) released with the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/pdf/1910.13461.pdf) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer.
|
||||
1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (from École polytechnique) released with the paper [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis.
|
||||
1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (from VinAI Research) released with the paper [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen.
|
||||
1. **[BEiT](https://huggingface.co/docs/transformers/model_doc/beit)** (from Microsoft) released with the paper [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) by Hangbo Bao, Li Dong, Furu Wei.
|
||||
1. **[BERT](https://huggingface.co/docs/transformers/model_doc/bert)** (from Google) released with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova.
|
||||
1. **[BERT For Sequence Generation](https://huggingface.co/docs/transformers/model_doc/bert-generation)** (from Google) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
|
||||
1. **[BERTweet](https://huggingface.co/docs/transformers/model_doc/bertweet)** (from VinAI Research) released with the paper [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) by Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen.
|
||||
1. **[BigBird-Pegasus](https://huggingface.co/docs/transformers/model_doc/bigbird_pegasus)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
|
||||
1. **[BigBird-RoBERTa](https://huggingface.co/docs/transformers/model_doc/big_bird)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
|
||||
1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
|
||||
1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
|
||||
1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (from Alexa) released with the paper [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) by Adrian de Wynter and Daniel J. Perry.
|
||||
1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (from Google Research) released with the paper [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel.
|
||||
1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (from Inria/Facebook/Sorbonne) released with the paper [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
|
||||
1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (from Google Research) released with the paper [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting.
|
||||
1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (from OpenAI) released with the paper [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever.
|
||||
1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (from YituTech) released with the paper [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan.
|
||||
1. **[ConvNeXT](https://huggingface.co/docs/transformers/master/model_doc/convnext)** (from Facebook AI) released with the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie.
|
||||
1. **[CPM](https://huggingface.co/docs/transformers/model_doc/cpm)** (from Tsinghua University) released with the paper [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) by Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun.
|
||||
1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
|
||||
1. **[Data2Vec](https://huggingface.co/docs/transformers/master/model_doc/data2vec)** (from Facebook) released with the paper [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli.
|
||||
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
|
||||
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
|
||||
1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (from Facebook) released with the paper [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou.
|
||||
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (from Facebook) released with the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
|
||||
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (from Microsoft Research) released with the paper [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
|
||||
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/master/examples/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/master/examples/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/master/examples/distillation) and a German version of DistilBERT.
|
||||
1. **[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (from Facebook) released with the paper [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) by Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
|
||||
1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
|
||||
1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (from Google Research) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
|
||||
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
|
||||
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
|
||||
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
|
||||
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
|
||||
1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (from EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy.
|
||||
1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (from OpenAI) released with the paper [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/) by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**.
|
||||
1. **[GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj)** (from EleutherAI) released with the paper [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) by Ben Wang and Aran Komatsuzaki.
|
||||
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (from Facebook) released with the paper [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed.
|
||||
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (from Berkeley) released with the paper [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer.
|
||||
1. **[ImageGPT](https://huggingface.co/docs/transformers/master/model_doc/imagegpt)** (from OpenAI) released with the paper [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever.
|
||||
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
|
||||
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou.
|
||||
1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
|
||||
1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
|
||||
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
|
||||
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (from Studio Ousia) released with the paper [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.
|
||||
1. **[LXMERT](https://huggingface.co/docs/transformers/model_doc/lxmert)** (from UNC Chapel Hill) released with the paper [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal.
|
||||
1. **[M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100)** (from Facebook) released with the paper [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) by Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin.
|
||||
1. **[MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)** Machine translation models trained using [OPUS](http://opus.nlpl.eu/) data by Jörg Tiedemann. The [Marian Framework](https://marian-nmt.github.io/) is being developed by the Microsoft Translator Team.
|
||||
1. **[MaskFormer](https://huggingface.co/docs/transformers/master/model_doc/maskformer)** (from Meta and UIUC) released with the paper [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) by Bowen Cheng, Alexander G. Schwing, Alexander Kirillov
|
||||
1. **[MBart](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
|
||||
1. **[MBart-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan.
|
||||
1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
|
||||
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
|
||||
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (from Studio Ousia) released with the paper [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka.
|
||||
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
|
||||
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
|
||||
1. **[Nyströmformer](https://huggingface.co/docs/transformers/master/model_doc/nystromformer)** (from the University of Wisconsin - Madison) released with the paper [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh.
|
||||
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
|
||||
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (from Deepmind) released with the paper [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) by Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira.
|
||||
1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen.
|
||||
1. **[PLBart](https://huggingface.co/docs/transformers/master/model_doc/plbart)** (from UCLA NLP) released with the paper [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) by Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang.
|
||||
1. **[PoolFormer](https://huggingface.co/docs/transformers/master/model_doc/poolformer)** (from Sea AI Labs) released with the paper [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) by Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng.
|
||||
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
|
||||
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (from NVIDIA) released with the paper [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) by Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius.
|
||||
1. **[REALM](https://huggingface.co/transformers/model_doc/realm.html)** (from Google Research) released with the paper [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) by Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang.
|
||||
1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (from Google Research) released with the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
|
||||
1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (from Google Research) released with the paper [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/pdf/2010.12821.pdf) by Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder.
|
||||
1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (from Facebook), released together with the paper a [Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
|
||||
1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (from ZhuiyiTechnology), released together with the paper a [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/pdf/2104.09864v1.pdf) by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu.
|
||||
1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (from NVIDIA) released with the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo.
|
||||
1. **[SEW](https://huggingface.co/docs/transformers/model_doc/sew)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
|
||||
1. **[SEW-D](https://huggingface.co/docs/transformers/model_doc/sew_d)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
|
||||
1. **[SpeechToTextTransformer](https://huggingface.co/docs/transformers/model_doc/speech_to_text)** (from Facebook), released together with the paper [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino.
|
||||
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (from Facebook) released with the paper [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau.
|
||||
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (from Tel Aviv University) released with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy.
|
||||
1. **[SqueezeBert](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
|
||||
1. **[Swin Transformer](https://huggingface.co/docs/transformers/master/model_doc/swin)** (from Microsoft) released with the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
|
||||
1. **[T5](https://huggingface.co/docs/transformers/model_doc/t5)** (from Google AI) released with the paper [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
|
||||
1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (from Google AI) released with the paper [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
|
||||
1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (from Google AI) released with the paper [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos.
|
||||
1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
|
||||
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (from Microsoft) released with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
|
||||
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (from Microsoft Research) released with the paper [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.
|
||||
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (from Microsoft Research) released with the paper [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu.
|
||||
1. **[ViLT](https://huggingface.co/docs/transformers/master/model_doc/vilt)** (from NAVER AI Lab/Kakao Enterprise/Kakao Brain) released with the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Wonjae Kim, Bokyung Son, Ildoo Kim.
|
||||
1. **[ViLT)](https://huggingface.co/docs/transformers/master/model_doc/vilt)** (from NAVER AI Lab/Kakao Enterprise/Kakao Brain) released with the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Wonjae Kim, Bokyung Son, Ildoo Kim.
|
||||
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
|
||||
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
|
||||
1. **[ViTMAE](https://huggingface.co/docs/transformers/master/model_doc/vit_mae)** (from Meta AI) released with the paper [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick.
|
||||
1. **[ViTMAE)](https://huggingface.co/docs/transformers/master/model_doc/vit_mae)** (from Meta AI) released with the paper [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick.
|
||||
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (from Facebook AI) released with the paper [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.
|
||||
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/master/transformers/model_doc/wav2vec2_phoneme)** (from Facebook AI) released with the paper [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) by Qiantong Xu, Alexei Baevski, Michael Auli.
|
||||
1. **[WavLM](https://huggingface.co/docs/transformers/master/model_doc/wavlm)** (from Microsoft Research) released with the paper [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei.
|
||||
1. **[XGLM](https://huggingface.co/docs/master/transformers/model_doc/xglm)** (From Facebook AI) released with the paper [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li.
|
||||
1. **[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (from Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau.
|
||||
1. **[XLM-ProphetNet](https://huggingface.co/docs/transformers/model_doc/xlm-prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
|
||||
1. **[XLM-RoBERTa](https://huggingface.co/docs/transformers/model_doc/xlm-roberta)** (from Facebook AI), released together with the paper [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov.
|
||||
1. **[XLM-RoBERTa-XL](https://huggingface.co/docs/transformers/master/model_doc/xlm-roberta-xl)** (from Facebook AI) released with the paper [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) by Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau.
|
||||
1. **[XLNet](https://huggingface.co/docs/transformers/model_doc/xlnet)** (from Google/CMU) released with the paper [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
|
||||
1. **[XLS-R](https://huggingface.co/docs/master/transformers/model_doc/xls_r)** (from Facebook AI) released with the paper [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) by Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli.
|
||||
1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (from Facebook AI) released with the paper [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) by Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli.
|
||||
1. **[YOSO](https://huggingface.co/docs/transformers/master/model_doc/yoso)** (from the University of Wisconsin - Madison) released with the paper [You Only Sample (Almost) by Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh.
|
||||
1. 想要貢獻新的模型?我們這裡有一份**詳細指引和模板**來引導你加入新的模型。你可以在 [`templates`](./templates) 目錄中找到它們。記得查看[貢獻指引](./CONTRIBUTING.md)並在開始寫 PR 前聯繫維護人員或開一個新的 issue 來獲得 feedbacks。
|
||||
|
||||
要檢查某個模型是否已有 Flax、PyTorch 或 TensorFlow 的實作,或其是否在🤗 Tokenizers 函式庫中有對應的 tokenizer,敬請參閱[此表](https://huggingface.co/docs/transformers/index#supported-frameworks)。
|
||||
|
||||
@ -267,7 +364,7 @@ conda install conda-forge::transformers
|
||||
| [任務概覽](https://huggingface.co/docs/transformers/task_summary) | 🤗 Transformers 支援的任務 |
|
||||
| [預處理教學](https://huggingface.co/docs/transformers/preprocessing) | 使用 `Tokenizer` 來為模型準備資料 |
|
||||
| [訓練和微調](https://huggingface.co/docs/transformers/training) | 使用 PyTorch/TensorFlow 的內建的訓練方式或於 `Trainer` API 中使用 🤗 Transformers 提供的模型 |
|
||||
| [快速上手:微調和範例腳本](https://github.com/huggingface/transformers/tree/main/examples) | 為各種任務提供的範例腳本 |
|
||||
| [快速上手:微調和範例腳本](https://github.com/huggingface/transformers/tree/master/examples) | 為各種任務提供的範例腳本 |
|
||||
| [模型分享和上傳](https://huggingface.co/docs/transformers/model_sharing) | 上傳並與社群分享你微調的模型 |
|
||||
| [遷移](https://huggingface.co/docs/transformers/migration) | 從 `pytorch-transformers` 或 `pytorch-pretrained-bert` 遷移到 🤗 Transformers |
|
||||
|
||||
|
||||
40
SECURITY.md
40
SECURITY.md
@ -1,40 +0,0 @@
|
||||
# Security Policy
|
||||
|
||||
## Hugging Face Hub, remote artefacts, and remote code
|
||||
|
||||
Transformers is open-source software that is tightly coupled to the Hugging Face Hub. While you have the ability to use it
|
||||
offline with pre-downloaded model weights, it provides a very simple way to download, use, and manage models locally.
|
||||
|
||||
When downloading artefacts that have been uploaded by others on any platform, you expose yourself to risks. Please
|
||||
read below for the security recommendations in order to keep your runtime and local environment safe.
|
||||
|
||||
### Remote artefacts
|
||||
|
||||
Models uploaded on the Hugging Face Hub come in different formats. We heavily recommend uploading and downloading
|
||||
models in the [`safetensors`](https://github.com/huggingface/safetensors) format (which is the default prioritized
|
||||
by the transformers library), as developed specifically to prevent arbitrary code execution on your system.
|
||||
|
||||
To avoid loading models from unsafe formats(e.g. [pickle](https://docs.python.org/3/library/pickle.html), you should use the `use_safetenstors` parameter. If doing so, in the event that no .safetensors file is present, transformers will error when loading the model.
|
||||
|
||||
### Remote code
|
||||
|
||||
#### Modeling
|
||||
|
||||
Transformers supports many model architectures, but is also the bridge between your Python runtime and models that
|
||||
are stored in model repositories on the Hugging Face Hub.
|
||||
|
||||
These models require the `trust_remote_code=True` parameter to be set when using them; please **always** verify
|
||||
the content of the modeling files when using this argument. We recommend setting a revision in order to ensure you
|
||||
protect yourself from updates on the repository.
|
||||
|
||||
#### Tools
|
||||
|
||||
Through the `Agent` framework, remote tools can be downloaded to be used by the Agent. You're to specify these tools
|
||||
yourself, but please keep in mind that their code will be run on your machine if the Agent chooses to run them.
|
||||
|
||||
Please inspect the code of the tools before passing them to the Agent to protect your runtime and local setup.
|
||||
|
||||
## Reporting a Vulnerability
|
||||
|
||||
🤗 Please feel free to submit vulnerability reports to our private bug bounty program at https://hackerone.com/hugging_face. You'll need to request access to the program by emailing security@huggingface.co.
|
||||
Note that you'll need to be invited to our program, so send us a quick email at security@huggingface.co if you've found a vulnerability.
|
||||
@ -1,609 +0,0 @@
|
||||
# Awesome projects built with Transformers
|
||||
|
||||
This page lists awesome projects built on top of Transformers. Transformers is more than a toolkit to use pretrained
|
||||
models: it's a community of projects built around it and the Hugging Face Hub. We want Transformers to enable
|
||||
developers, researchers, students, professors, engineers, and anyone else to build their dream projects.
|
||||
|
||||
In this list, we showcase incredibly impactful and novel projects that have pushed the field forward. We celebrate
|
||||
100 of these projects as we reach the milestone of 100k stars as a community; but we're very open to pull requests
|
||||
adding other projects to the list. If you believe a project should be here and it's not, then please, open a PR
|
||||
to add it.
|
||||
|
||||
## [gpt4all](https://github.com/nomic-ai/gpt4all)
|
||||
|
||||
[gpt4all](https://github.com/nomic-ai/gpt4all) is an ecosystem of open-source chatbots trained on massive collections of clean assistant data including code, stories and dialogue. It offers open-source, large language models such as LLaMA and GPT-J trained in an assistant-style.
|
||||
|
||||
Keywords: Open-source, LLaMa, GPT-J, instruction, assistant
|
||||
|
||||
## [recommenders](https://github.com/microsoft/recommenders)
|
||||
|
||||
This repository contains examples and best practices for building recommendation systems, provided as Jupyter notebooks. It goes over several aspects required to build efficient recommendation systems: data preparation, modeling, evaluation, model selection & optimization, as well as operationalization
|
||||
|
||||
Keywords: Recommender systems, AzureML
|
||||
|
||||
## [IOPaint](https://github.com/Sanster/IOPaint)
|
||||
|
||||
Image inpainting tool powered by Stable Diffusion. Remove any unwanted object, defect, people from your pictures or erase and replace anything on your pictures.
|
||||
|
||||
Keywords: inpainting, SD, Stable Diffusion
|
||||
|
||||
## [flair](https://github.com/flairNLP/flair)
|
||||
|
||||
FLAIR is a powerful PyTorch NLP framework, convering several important tasks: NER, sentiment-analysis, part-of-speech tagging, text and document embeddings, among other things.
|
||||
|
||||
Keywords: NLP, text embedding, document embedding, biomedical, NER, PoS, sentiment-analysis
|
||||
|
||||
## [mindsdb](https://github.com/mindsdb/mindsdb)
|
||||
|
||||
MindsDB is a low-code ML platform, which automates and integrates several ML frameworks into the data stack as "AI Tables" to streamline the integration of AI into applications, making it accessible to developers of all skill levels.
|
||||
|
||||
Keywords: Database, low-code, AI table
|
||||
|
||||
## [langchain](https://github.com/hwchase17/langchain)
|
||||
|
||||
[langchain](https://github.com/hwchase17/langchain) is aimed at assisting in the development of apps merging both LLMs and other sources of knowledge. The library allows chaining calls to applications, creating a sequence across many tools.
|
||||
|
||||
Keywords: LLMs, Large Language Models, Agents, Chains
|
||||
|
||||
## [LlamaIndex](https://github.com/jerryjliu/llama_index)
|
||||
|
||||
[LlamaIndex](https://github.com/jerryjliu/llama_index) is a project that provides a central interface to connect your LLM's with external data. It provides various kinds of indices and retreival mechanisms to perform different LLM tasks and obtain knowledge-augmented results.
|
||||
|
||||
Keywords: LLMs, Large Language Models, Data Retrieval, Indices, Knowledge Augmentation
|
||||
|
||||
## [ParlAI](https://github.com/facebookresearch/ParlAI)
|
||||
|
||||
[ParlAI](https://github.com/facebookresearch/ParlAI) is a python framework for sharing, training and testing dialogue models, from open-domain chitchat, to task-oriented dialogue, to visual question answering. It provides more than 100 datasets under the same API, a large zoo of pretrained models, a set of agents, and has several integrations.
|
||||
|
||||
Keywords: Dialogue, Chatbots, VQA, Datasets, Agents
|
||||
|
||||
## [sentence-transformers](https://github.com/UKPLab/sentence-transformers)
|
||||
|
||||
This framework provides an easy method to compute dense vector representations for sentences, paragraphs, and images. The models are based on transformer networks like BERT / RoBERTa / XLM-RoBERTa etc. and achieve state-of-the-art performance in various task. Text is embedding in vector space such that similar text is close and can efficiently be found using cosine similarity.
|
||||
|
||||
Keywords: Dense vector representations, Text embeddings, Sentence embeddings
|
||||
|
||||
## [ludwig](https://github.com/ludwig-ai/ludwig)
|
||||
|
||||
Ludwig is a declarative machine learning framework that makes it easy to define machine learning pipelines using a simple and flexible data-driven configuration system. Ludwig is targeted at a wide variety of AI tasks. It provides a data-driven configuration system, training, prediction, and evaluation scripts, as well as a programmatic API.
|
||||
|
||||
Keywords: Declarative, Data-driven, ML Framework
|
||||
|
||||
## [InvokeAI](https://github.com/invoke-ai/InvokeAI)
|
||||
|
||||
[InvokeAI](https://github.com/invoke-ai/InvokeAI) is an engine for Stable Diffusion models, aimed at professionals, artists, and enthusiasts. It leverages the latest AI-driven technologies through CLI as well as a WebUI.
|
||||
|
||||
Keywords: Stable-Diffusion, WebUI, CLI
|
||||
|
||||
## [PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP)
|
||||
|
||||
[PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP) is an easy-to-use and powerful NLP library particularly targeted at the Chinese languages. It has support for multiple pre-trained model zoos, and supports a wide-range of NLP tasks from research to industrial applications.
|
||||
|
||||
Keywords: NLP, Chinese, Research, Industry
|
||||
|
||||
## [stanza](https://github.com/stanfordnlp/stanza)
|
||||
|
||||
The Stanford NLP Group's official Python NLP library. It contains support for running various accurate natural language processing tools on 60+ languages and for accessing the Java Stanford CoreNLP software from Python.
|
||||
|
||||
Keywords: NLP, Multilingual, CoreNLP
|
||||
|
||||
## [DeepPavlov](https://github.com/deeppavlov/DeepPavlov)
|
||||
|
||||
[DeepPavlov](https://github.com/deeppavlov/DeepPavlov) is an open-source conversational AI library. It is designed for the development of production ready chat-bots and complex conversational systems, as well as research in the area of NLP and, particularly, of dialog systems.
|
||||
|
||||
Keywords: Conversational, Chatbot, Dialog
|
||||
|
||||
## [alpaca-lora](https://github.com/tloen/alpaca-lora)
|
||||
|
||||
Alpaca-lora contains code for reproducing the Stanford Alpaca results using low-rank adaptation (LoRA). The repository provides training (fine-tuning) as well as generation scripts.
|
||||
|
||||
Keywords: LoRA, Parameter-efficient fine-tuning
|
||||
|
||||
## [imagen-pytorch](https://github.com/lucidrains/imagen-pytorch)
|
||||
|
||||
An open-source Implementation of Imagen, Google's closed-source Text-to-Image Neural Network that beats DALL-E2. As of release, it is the new SOTA for text-to-image synthesis.
|
||||
|
||||
Keywords: Imagen, Text-to-image
|
||||
|
||||
## [adapters](https://github.com/adapter-hub/adapters)
|
||||
|
||||
[adapters](https://github.com/adapter-hub/adapters) is an extension of HuggingFace's Transformers library, integrating adapters into state-of-the-art language models by incorporating AdapterHub, a central repository for pre-trained adapter modules. It is a drop-in replacement for transformers, which is regularly updated to stay up-to-date with the developments of transformers.
|
||||
|
||||
Keywords: Adapters, LoRA, Parameter-efficient fine-tuning, Hub
|
||||
|
||||
## [NeMo](https://github.com/NVIDIA/NeMo)
|
||||
|
||||
NVIDIA [NeMo](https://github.com/NVIDIA/NeMo) is a conversational AI toolkit built for researchers working on automatic speech recognition (ASR), text-to-speech synthesis (TTS), large language models (LLMs), and natural language processing (NLP). The primary objective of [NeMo](https://github.com/NVIDIA/NeMo) is to help researchers from industry and academia to reuse prior work (code and pretrained models) and make it easier to create new https://developer.nvidia.com/conversational-ai#started.
|
||||
|
||||
Keywords: Conversational, ASR, TTS, LLMs, NLP
|
||||
|
||||
## [Runhouse](https://github.com/run-house/runhouse)
|
||||
|
||||
[Runhouse](https://github.com/run-house/runhouse) allows to send code and data to any of your compute or data infra, all in Python, and continue to interact with them normally from your existing code and environment. Runhouse developers mention:
|
||||
|
||||
> Think of it as an expansion pack to your Python interpreter that lets it take detours to remote machines or manipulate remote data.
|
||||
|
||||
Keywords: MLOps, Infrastructure, Data storage, Modeling
|
||||
|
||||
## [MONAI](https://github.com/Project-MONAI/MONAI)
|
||||
|
||||
[MONAI](https://github.com/Project-MONAI/MONAI) is a PyTorch-based, open-source framework for deep learning in healthcare imaging, part of PyTorch Ecosystem. Its ambitions are:
|
||||
- developing a community of academic, industrial and clinical researchers collaborating on a common foundation;
|
||||
- creating state-of-the-art, end-to-end training workflows for healthcare imaging;
|
||||
- providing researchers with the optimized and standardized way to create and evaluate deep learning models.
|
||||
|
||||
Keywords: Healthcare imaging, Training, Evaluation
|
||||
|
||||
## [simpletransformers](https://github.com/ThilinaRajapakse/simpletransformers)
|
||||
|
||||
Simple Transformers lets you quickly train and evaluate Transformer models. Only 3 lines of code are needed to initialize, train, and evaluate a model. It supports a wide variety of NLP tasks.
|
||||
|
||||
Keywords: Framework, simplicity, NLP
|
||||
|
||||
## [JARVIS](https://github.com/microsoft/JARVIS)
|
||||
|
||||
[JARVIS](https://github.com/microsoft/JARVIS) is a system attempting to merge LLMs such as GPT-4 with the rest of the open-source ML community: leveraging up to 60 downstream models in order to perform tasks identified by the LLM.
|
||||
|
||||
Keywords: LLM, Agents, HF Hub
|
||||
|
||||
## [transformers.js](https://xenova.github.io/transformers.js/)
|
||||
|
||||
[transformers.js](https://xenova.github.io/transformers.js/) is a JavaScript library targeted at running models from transformers directly within the browser.
|
||||
|
||||
Keywords: Transformers, JavaScript, browser
|
||||
|
||||
## [bumblebee](https://github.com/elixir-nx/bumblebee)
|
||||
|
||||
Bumblebee provides pre-trained Neural Network models on top of Axon, a neural networks library for the Elixir language. It includes integration with 🤗 Models, allowing anyone to download and perform Machine Learning tasks with few lines of code.
|
||||
|
||||
Keywords: Elixir, Axon
|
||||
|
||||
## [argilla](https://github.com/argilla-io/argilla)
|
||||
|
||||
Argilla is an open-source platform providing advanced NLP labeling, monitoring, and workspaces. It is compatible with many open source ecosystems such as Hugging Face, Stanza, FLAIR, and others.
|
||||
|
||||
Keywords: NLP, Labeling, Monitoring, Workspaces
|
||||
|
||||
## [haystack](https://github.com/deepset-ai/haystack)
|
||||
|
||||
Haystack is an open source NLP framework to interact with your data using Transformer models and LLMs. It offers production-ready tools to quickly build complex decision making, question answering, semantic search, text generation applications, and more.
|
||||
|
||||
Keywords: NLP, Framework, LLM
|
||||
|
||||
## [spaCy](https://github.com/explosion/spaCy)
|
||||
|
||||
[spaCy](https://github.com/explosion/spaCy) is a library for advanced Natural Language Processing in Python and Cython. It's built on the very latest research, and was designed from day one to be used in real products. It offers support for transformers models through its third party package, spacy-transformers.
|
||||
|
||||
Keywords: NLP, Framework
|
||||
|
||||
## [speechbrain](https://github.com/speechbrain/speechbrain)
|
||||
|
||||
SpeechBrain is an open-source and all-in-one conversational AI toolkit based on PyTorch.
|
||||
The goal is to create a single, flexible, and user-friendly toolkit that can be used to easily develop state-of-the-art speech technologies, including systems for speech recognition, speaker recognition, speech enhancement, speech separation, language identification, multi-microphone signal processing, and many others.
|
||||
|
||||
Keywords: Conversational, Speech
|
||||
|
||||
## [skorch](https://github.com/skorch-dev/skorch)
|
||||
|
||||
Skorch is a scikit-learn compatible neural network library that wraps PyTorch. It has support for models within transformers, and tokenizers from tokenizers.
|
||||
|
||||
Keywords: Scikit-Learn, PyTorch
|
||||
|
||||
## [bertviz](https://github.com/jessevig/bertviz)
|
||||
|
||||
BertViz is an interactive tool for visualizing attention in Transformer language models such as BERT, GPT2, or T5. It can be run inside a Jupyter or Colab notebook through a simple Python API that supports most Huggingface models.
|
||||
|
||||
Keywords: Visualization, Transformers
|
||||
|
||||
## [mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax)
|
||||
|
||||
[mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax) is a haiku library using the xmap/pjit operators in JAX for model parallelism of transformers. This library is designed for scalability up to approximately 40B parameters on TPUv3s. It was the library used to train the GPT-J model.
|
||||
|
||||
Keywords: Haiku, Model parallelism, LLM, TPU
|
||||
|
||||
## [deepchem](https://github.com/deepchem/deepchem)
|
||||
|
||||
DeepChem aims to provide a high quality open-source toolchain that democratizes the use of deep-learning in drug discovery, materials science, quantum chemistry, and biology.
|
||||
|
||||
Keywords: Drug discovery, Materials Science, Quantum Chemistry, Biology
|
||||
|
||||
## [OpenNRE](https://github.com/thunlp/OpenNRE)
|
||||
|
||||
An Open-Source Package for Neural Relation Extraction (NRE). It is targeted at a wide range of users, from newcomers to relation extraction, to developers, researchers, or students.
|
||||
|
||||
Keywords: Neural Relation Extraction, Framework
|
||||
|
||||
## [pycorrector](https://github.com/shibing624/pycorrector)
|
||||
|
||||
PyCorrector is a Chinese Text Error Correction Tool. It uses a language model to detect errors, pinyin feature and shape feature to correct Chinese text errors. it can be used for Chinese Pinyin and stroke input method.
|
||||
|
||||
Keywords: Chinese, Error correction tool, Language model, Pinyin
|
||||
|
||||
## [nlpaug](https://github.com/makcedward/nlpaug)
|
||||
|
||||
This python library helps you with augmenting nlp for machine learning projects. It is a lightweight library featuring synthetic data generation for improving model performance, support for audio and text, and compatibility with several ecosystems (scikit-learn, pytorch, tensorflow).
|
||||
|
||||
Keywords: Data augmentation, Synthetic data generation, Audio, NLP
|
||||
|
||||
## [dream-textures](https://github.com/carson-katri/dream-textures)
|
||||
|
||||
[dream-textures](https://github.com/carson-katri/dream-textures) is a library targeted at bringing stable-diffusion support within Blender. It supports several use-cases, such as image generation, texture projection, inpainting/outpainting, ControlNet, and upscaling.
|
||||
|
||||
Keywords: Stable-Diffusion, Blender
|
||||
|
||||
## [seldon-core](https://github.com/SeldonIO/seldon-core)
|
||||
|
||||
Seldon core converts your ML models (Tensorflow, Pytorch, H2o, etc.) or language wrappers (Python, Java, etc.) into production REST/GRPC microservices.
|
||||
Seldon handles scaling to thousands of production machine learning models and provides advanced machine learning capabilities out of the box including Advanced Metrics, Request Logging, Explainers, Outlier Detectors, A/B Tests, Canaries and more.
|
||||
|
||||
Keywords: Microservices, Modeling, Language wrappers
|
||||
|
||||
## [open_model_zoo](https://github.com/openvinotoolkit/open_model_zoo)
|
||||
|
||||
This repository includes optimized deep learning models and a set of demos to expedite development of high-performance deep learning inference applications. Use these free pre-trained models instead of training your own models to speed-up the development and production deployment process.
|
||||
|
||||
Keywords: Optimized models, Demos
|
||||
|
||||
## [ml-stable-diffusion](https://github.com/apple/ml-stable-diffusion)
|
||||
|
||||
ML-Stable-Diffusion is a repository by Apple bringing Stable Diffusion support to Core ML, on Apple Silicon devices. It supports stable diffusion checkpoints hosted on the Hugging Face Hub.
|
||||
|
||||
Keywords: Stable Diffusion, Apple Silicon, Core ML
|
||||
|
||||
## [stable-dreamfusion](https://github.com/ashawkey/stable-dreamfusion)
|
||||
|
||||
Stable-Dreamfusion is a pytorch implementation of the text-to-3D model Dreamfusion, powered by the Stable Diffusion text-to-2D model.
|
||||
|
||||
Keywords: Text-to-3D, Stable Diffusion
|
||||
|
||||
## [txtai](https://github.com/neuml/txtai)
|
||||
|
||||
[txtai](https://github.com/neuml/txtai) is an open-source platform for semantic search and workflows powered by language models. txtai builds embeddings databases, which are a union of vector indexes and relational databases enabling similarity search with SQL. Semantic workflows connect language models together into unified applications.
|
||||
|
||||
Keywords: Semantic search, LLM
|
||||
|
||||
## [djl](https://github.com/deepjavalibrary/djl)
|
||||
|
||||
Deep Java Library (DJL) is an open-source, high-level, engine-agnostic Java framework for deep learning. DJL is designed to be easy to get started with and simple to use for developers. DJL provides a native Java development experience and functions like any other regular Java library. DJL offers [a Java binding](https://github.com/deepjavalibrary/djl/tree/master/extensions/tokenizers) for HuggingFace Tokenizers and easy conversion toolkit for HuggingFace model to deploy in Java.
|
||||
|
||||
Keywords: Java, Framework
|
||||
|
||||
## [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/)
|
||||
|
||||
This project provides a unified framework to test generative language models on a large number of different evaluation tasks. It has support for more than 200 tasks, and supports different ecosystems: HF Transformers, GPT-NeoX, DeepSpeed, as well as the OpenAI API.
|
||||
|
||||
Keywords: LLM, Evaluation, Few-shot
|
||||
|
||||
## [gpt-neox](https://github.com/EleutherAI/gpt-neox)
|
||||
|
||||
This repository records EleutherAI's library for training large-scale language models on GPUs. The framework is based on NVIDIA's Megatron Language Model and has been augmented with techniques from DeepSpeed as well as some novel optimizations. It is focused on training multi-billion-parameter models.
|
||||
|
||||
Keywords: Training, LLM, Megatron, DeepSpeed
|
||||
|
||||
## [muzic](https://github.com/microsoft/muzic)
|
||||
|
||||
Muzic is a research project on AI music that empowers music understanding and generation with deep learning and artificial intelligence. Muzic was created by researchers from Microsoft Research Asia.
|
||||
|
||||
Keywords: Music understanding, Music generation
|
||||
|
||||
## [dalle-flow](https://github.com/jina-ai/dalle-flow)
|
||||
|
||||
DALL·E Flow is an interactive workflow for generating high-definition images from a text prompt. Itt leverages DALL·E-Mega, GLID-3 XL, and Stable Diffusion to generate image candidates, and then calls CLIP-as-service to rank the candidates w.r.t. the prompt.
|
||||
The preferred candidate is fed to GLID-3 XL for diffusion, which often enriches the texture and background. Finally, the candidate is upscaled to 1024x1024 via SwinIR.
|
||||
|
||||
Keywords: High-definition image generation, Stable Diffusion, DALL-E Mega, GLID-3 XL, CLIP, SwinIR
|
||||
|
||||
## [lightseq](https://github.com/bytedance/lightseq)
|
||||
|
||||
LightSeq is a high performance training and inference library for sequence processing and generation implemented in CUDA. It enables highly efficient computation of modern NLP and CV models such as BERT, GPT, Transformer, etc. It is therefore best useful for machine translation, text generation, image classification, and other sequence related tasks.
|
||||
|
||||
Keywords: Training, Inference, Sequence Processing, Sequence Generation
|
||||
|
||||
## [LaTeX-OCR](https://github.com/lukas-blecher/LaTeX-OCR)
|
||||
|
||||
The goal of this project is to create a learning based system that takes an image of a math formula and returns corresponding LaTeX code.
|
||||
|
||||
Keywords: OCR, LaTeX, Math formula
|
||||
|
||||
## [open_clip](https://github.com/mlfoundations/open_clip)
|
||||
|
||||
OpenCLIP is an open source implementation of OpenAI's CLIP.
|
||||
|
||||
The goal of this repository is to enable training models with contrastive image-text supervision, and to investigate their properties such as robustness to distribution shift.
|
||||
The starting point is an implementation of CLIP that matches the accuracy of the original CLIP models when trained on the same dataset.
|
||||
|
||||
Specifically, a ResNet-50 model trained with this codebase on OpenAI's 15 million image subset of YFCC achieves 32.7% top-1 accuracy on ImageNet.
|
||||
|
||||
Keywords: CLIP, Open-source, Contrastive, Image-text
|
||||
|
||||
## [dalle-playground](https://github.com/saharmor/dalle-playground)
|
||||
|
||||
A playground to generate images from any text prompt using Stable Diffusion and Dall-E mini.
|
||||
|
||||
Keywords: WebUI, Stable Diffusion, Dall-E mini
|
||||
|
||||
## [FedML](https://github.com/FedML-AI/FedML)
|
||||
|
||||
[FedML](https://github.com/FedML-AI/FedML) is a federated learning and analytics library enabling secure and collaborative machine learning on decentralized data anywhere at any scale.
|
||||
|
||||
It supports large-scale cross-silo federated learning, and cross-device federated learning on smartphones/IoTs, and research simulation.
|
||||
|
||||
Keywords: Federated Learning, Analytics, Collaborative ML, Decentralized
|
||||
|
||||
## [gpt-code-clippy](https://github.com/CodedotAl/gpt-code-clippy)
|
||||
|
||||
GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot, a language model -- based on GPT-3, called GPT-Codex -- that is fine-tuned on publicly available code from GitHub.
|
||||
|
||||
Keywords: LLM, Code
|
||||
|
||||
## [TextAttack](https://github.com/QData/TextAttack)
|
||||
|
||||
[TextAttack](https://github.com/QData/TextAttack) 🐙 is a Python framework for adversarial attacks, data augmentation, and model training in NLP.
|
||||
|
||||
Keywords: Adversarial attacks, Data augmentation, NLP
|
||||
|
||||
## [OpenPrompt](https://github.com/thunlp/OpenPrompt)
|
||||
|
||||
Prompt-learning is a paradigm to adapt pre-trained language models (PLMs) to downstream NLP tasks, which modify the input text with a textual template and directly uses PLMs to conduct pre-trained tasks. This library provides a standard, flexible and extensible framework to deploy the prompt-learning pipeline. [OpenPrompt](https://github.com/thunlp/OpenPrompt) supports loading PLMs directly from https://github.com/huggingface/transformers.
|
||||
|
||||
## [text-generation-webui](https://github.com/oobabooga/text-generation-webui/)
|
||||
|
||||
[text-generation-webui](https://github.com/oobabooga/text-generation-webui/) is a Gradio Web UI for running Large Language Models like LLaMA, llama.cpp, GPT-J, Pythia, OPT, and GALACTICA.
|
||||
|
||||
Keywords: LLM, WebUI
|
||||
|
||||
## [libra](https://github.com/Palashio/libra)
|
||||
|
||||
An ergonomic machine learning [libra](https://github.com/Palashio/libra)ry for non-technical users. It focuses on ergonomics and on ensuring that training a model is as simple as it can be.
|
||||
|
||||
Keywords: Ergonomic, Non-technical
|
||||
|
||||
## [alibi](https://github.com/SeldonIO/alibi)
|
||||
|
||||
Alibi is an open source Python library aimed at machine learning model inspection and interpretation. The focus of the library is to provide high-quality implementations of black-box, white-box, local and global explanation methods for classification and regression models.
|
||||
|
||||
Keywords: Model inspection, Model interpretation, Black-box, White-box
|
||||
|
||||
## [tortoise-tts](https://github.com/neonbjb/tortoise-tts)
|
||||
|
||||
Tortoise is a text-to-speech program built with the following priorities: strong multi-voice capabilities, and highly realistic prosody and intonation.
|
||||
|
||||
Keywords: Text-to-speech
|
||||
|
||||
## [flower](https://github.com/adap/flower)
|
||||
|
||||
Flower (flwr) is a framework for building federated learning systems. The design of Flower is based on a few guiding principles: customizability, extendability, framework agnosticity, and ease-of-use.
|
||||
|
||||
Keywords: Federated learning systems, Customizable, Extendable, Framework-agnostic, Simplicity
|
||||
|
||||
## [fast-bert](https://github.com/utterworks/fast-bert)
|
||||
|
||||
Fast-Bert is a deep learning library that allows developers and data scientists to train and deploy BERT and XLNet based models for natural language processing tasks beginning with Text Classification. It is aimed at simplicity.
|
||||
|
||||
Keywords: Deployment, BERT, XLNet
|
||||
|
||||
## [towhee](https://github.com/towhee-io/towhee)
|
||||
|
||||
Towhee makes it easy to build neural data processing pipelines for AI applications. We provide hundreds of models, algorithms, and transformations that can be used as standard pipeline building blocks. Users can use Towhee's Pythonic API to build a prototype of their pipeline and automatically optimize it for production-ready environments.
|
||||
|
||||
Keywords: Data processing pipeline, Optimization
|
||||
|
||||
## [alibi-detect](https://github.com/SeldonIO/alibi-detect)
|
||||
|
||||
Alibi Detect is an open source Python library focused on outlier, adversarial and drift detection. The package aims to cover both online and offline detectors for tabular data, text, images and time series. Both TensorFlow and PyTorch backends are supported for drift detection.
|
||||
|
||||
Keywords: Adversarial, Outlier, Drift detection
|
||||
|
||||
## [FARM](https://github.com/deepset-ai/FARM)
|
||||
|
||||
[FARM](https://github.com/deepset-ai/FARM) makes Transfer Learning with BERT & Co simple, fast and enterprise-ready. It's built upon transformers and provides additional features to simplify the life of developers: Parallelized preprocessing, highly modular design, multi-task learning, experiment tracking, easy debugging and close integration with AWS SageMaker.
|
||||
|
||||
Keywords: Transfer Learning, Modular design, Multi-task learning, Experiment tracking
|
||||
|
||||
## [aitextgen](https://github.com/minimaxir/aitextgen)
|
||||
|
||||
A robust Python tool for text-based AI training and generation using OpenAI's GPT-2 and EleutherAI's GPT Neo/GPT-3 architecture.
|
||||
[aitextgen](https://github.com/minimaxir/aitextgen) is a Python package that leverages PyTorch, Hugging Face Transformers and pytorch-lightning with specific optimizations for text generation using GPT-2, plus many added features.
|
||||
|
||||
Keywords: Training, Generation
|
||||
|
||||
## [diffgram](https://github.com/diffgram/diffgram)
|
||||
|
||||
Diffgram aims to integrate human supervision into platforms. We support your team programmatically changing the UI (Schema, layout, etc.) like in Streamlit. This means that you can collect and annotate timely data from users. In other words, we are the platform behind your platform, an integrated part of your application, to ship new & better AI products faster.
|
||||
|
||||
Keywords: Human supervision, Platform
|
||||
|
||||
## [ecco](https://github.com/jalammar/ecco)
|
||||
|
||||
Explain, analyze, and visualize NLP language models. Ecco creates interactive visualizations directly in Jupyter notebooks explaining the behavior of Transformer-based language models (like GPT2, BERT, RoBERTA, T5, and T0).
|
||||
|
||||
Keywords: Model explainability
|
||||
|
||||
## [s3prl](https://github.com/s3prl/s3prl)
|
||||
|
||||
[s3prl](https://github.com/s3prl/s3prl) stands for Self-Supervised Speech Pre-training and Representation Learning. Self-supervised speech pre-trained models are called upstream in this toolkit, and are utilized in various downstream tasks.
|
||||
|
||||
Keywords: Speech, Training
|
||||
|
||||
## [ru-dalle](https://github.com/ai-forever/ru-dalle)
|
||||
|
||||
RuDALL-E aims to be similar to DALL-E, targeted to Russian.
|
||||
|
||||
Keywords: DALL-E, Russian
|
||||
|
||||
## [DeepKE](https://github.com/zjunlp/DeepKE)
|
||||
|
||||
[DeepKE](https://github.com/zjunlp/DeepKE) is a knowledge extraction toolkit for knowledge graph construction supporting cnSchema,low-resource, document-level and multimodal scenarios for entity, relation and attribute extraction.
|
||||
|
||||
Keywords: Knowledge Extraction, Knowledge Graphs
|
||||
|
||||
## [Nebuly](https://github.com/nebuly-ai/nebuly)
|
||||
|
||||
Nebuly is the next-generation platform to monitor and optimize your AI costs in one place. The platform connects to all your AI cost sources (compute, API providers, AI software licenses, etc) and centralizes them in one place to give you full visibility on a model basis. The platform also provides optimization recommendations and a co-pilot model that can guide during the optimization process. The platform builds on top of the open-source tools allowing you to optimize the different steps of your AI stack to squeeze out the best possible cost performances.
|
||||
|
||||
Keywords: Optimization, Performance, Monitoring
|
||||
|
||||
## [imaginAIry](https://github.com/brycedrennan/imaginAIry)
|
||||
|
||||
Offers a CLI and a Python API to generate images with Stable Diffusion. It has support for many tools, like image structure control (controlnet), instruction-based image edits (InstructPix2Pix), prompt-based masking (clipseg), among others.
|
||||
|
||||
Keywords: Stable Diffusion, CLI, Python API
|
||||
|
||||
## [sparseml](https://github.com/neuralmagic/sparseml)
|
||||
|
||||
SparseML is an open-source model optimization toolkit that enables you to create inference-optimized sparse models using pruning, quantization, and distillation algorithms. Models optimized with SparseML can then be exported to the ONNX and deployed with DeepSparse for GPU-class performance on CPU hardware.
|
||||
|
||||
Keywords: Model optimization, Pruning, Quantization, Distillation
|
||||
|
||||
## [opacus](https://github.com/pytorch/opacus)
|
||||
|
||||
Opacus is a library that enables training PyTorch models with differential privacy. It supports training with minimal code changes required on the client, has little impact on training performance, and allows the client to online track the privacy budget expended at any given moment.
|
||||
|
||||
Keywords: Differential privacy
|
||||
|
||||
## [LAVIS](https://github.com/salesforce/LAVIS)
|
||||
|
||||
[LAVIS](https://github.com/salesforce/LAVIS) is a Python deep learning library for LAnguage-and-VISion intelligence research and applications. This library aims to provide engineers and researchers with a one-stop solution to rapidly develop models for their specific multimodal scenarios, and benchmark them across standard and customized datasets. It features a unified interface design to access
|
||||
|
||||
Keywords: Multimodal, NLP, Vision
|
||||
|
||||
## [buzz](https://github.com/chidiwilliams/buzz)
|
||||
|
||||
Buzz transcribes and translates audio offline on your personal computer. Powered by OpenAI's Whisper.
|
||||
|
||||
Keywords: Audio transcription, Translation
|
||||
|
||||
## [rust-bert](https://github.com/guillaume-be/rust-bert)
|
||||
|
||||
Rust-native state-of-the-art Natural Language Processing models and pipelines. Port of Hugging Face's Transformers library, using the tch-rs crate and pre-processing from rust-tokenizers. Supports multi-threaded tokenization and GPU inference. This repository exposes the model base architecture, task-specific heads and ready-to-use pipelines.
|
||||
|
||||
Keywords: Rust, BERT, Inference
|
||||
|
||||
## [EasyNLP](https://github.com/alibaba/EasyNLP)
|
||||
|
||||
[EasyNLP](https://github.com/alibaba/EasyNLP) is an easy-to-use NLP development and application toolkit in PyTorch, first released inside Alibaba in 2021. It is built with scalable distributed training strategies and supports a comprehensive suite of NLP algorithms for various NLP applications. [EasyNLP](https://github.com/alibaba/EasyNLP) integrates knowledge distillation and few-shot learning for landing large pre-trained models, together with various popular multi-modality pre-trained models. It provides a unified framework of model training, inference, and deployment for real-world applications.
|
||||
|
||||
Keywords: NLP, Knowledge distillation, Few-shot learning, Multi-modality, Training, Inference, Deployment
|
||||
|
||||
## [TurboTransformers](https://github.com/Tencent/TurboTransformers)
|
||||
|
||||
A fast and user-friendly runtime for transformer inference (Bert, Albert, GPT2, Decoders, etc) on CPU and GPU.
|
||||
|
||||
Keywords: Optimization, Performance
|
||||
|
||||
## [hivemind](https://github.com/learning-at-home/hivemind)
|
||||
|
||||
Hivemind is a PyTorch library for decentralized deep learning across the Internet. Its intended usage is training one large model on hundreds of computers from different universities, companies, and volunteers.
|
||||
|
||||
Keywords: Decentralized training
|
||||
|
||||
## [docquery](https://github.com/impira/docquery)
|
||||
|
||||
DocQuery is a library and command-line tool that makes it easy to analyze semi-structured and unstructured documents (PDFs, scanned images, etc.) using large language models (LLMs). You simply point DocQuery at one or more documents and specify a question you want to ask. DocQuery is created by the team at Impira.
|
||||
|
||||
Keywords: Semi-structured documents, Unstructured documents, LLM, Document Question Answering
|
||||
|
||||
## [CodeGeeX](https://github.com/THUDM/CodeGeeX)
|
||||
|
||||
[CodeGeeX](https://github.com/THUDM/CodeGeeX) is a large-scale multilingual code generation model with 13 billion parameters, pre-trained on a large code corpus of more than 20 programming languages. It has several unique features:
|
||||
- Multilingual code generation
|
||||
- Crosslingual code translation
|
||||
- Is a customizable programming assistant
|
||||
|
||||
Keywords: Code Generation Model
|
||||
|
||||
## [ktrain](https://github.com/amaiya/ktrain)
|
||||
|
||||
[ktrain](https://github.com/amaiya/ktrain) is a lightweight wrapper for the deep learning library TensorFlow Keras (and other libraries) to help build, train, and deploy neural networks and other machine learning models. Inspired by ML framework extensions like fastai and ludwig, [ktrain](https://github.com/amaiya/ktrain) is designed to make deep learning and AI more accessible and easier to apply for both newcomers and experienced practitioners.
|
||||
|
||||
Keywords: Keras wrapper, Model building, Training, Deployment
|
||||
|
||||
## [FastDeploy](https://github.com/PaddlePaddle/FastDeploy)
|
||||
|
||||
[FastDeploy](https://github.com/PaddlePaddle/FastDeploy) is an Easy-to-use and High Performance AI model deployment toolkit for Cloud, Mobile and Edge with packageout-of-the-box and unified experience, endend-to-end optimization for over fire160+ Text, Vision, Speech and Cross-modal AI models. Including image classification, object detection, OCR, face detection, matting, pp-tracking, NLP, stable diffusion, TTS and other tasks to meet developers' industrial deployment needs for multi-scenario, multi-hardware and multi-platform.
|
||||
|
||||
Keywords: Model deployment, CLoud, Mobile, Edge
|
||||
|
||||
## [underthesea](https://github.com/undertheseanlp/underthesea)
|
||||
|
||||
[underthesea](https://github.com/undertheseanlp/underthesea) is a Vietnamese NLP toolkit. Underthesea is a suite of open source Python modules data sets and tutorials supporting research and development in Vietnamese Natural Language Processing. We provides extremely easy API to quickly apply pretrained NLP models to your Vietnamese text, such as word segmentation, part-of-speech tagging (PoS), named entity recognition (NER), text classification and dependency parsing.
|
||||
|
||||
Keywords: Vietnamese, NLP
|
||||
|
||||
## [hasktorch](https://github.com/hasktorch/hasktorch)
|
||||
|
||||
Hasktorch is a library for tensors and neural networks in Haskell. It is an independent open source community project which leverages the core C++ libraries shared by PyTorch.
|
||||
|
||||
Keywords: Haskell, Neural Networks
|
||||
|
||||
## [donut](https://github.com/clovaai/donut)
|
||||
|
||||
Donut, or Document understanding transformer, is a new method of document understanding that utilizes an OCR-free end-to-end Transformer model.
|
||||
|
||||
Donut does not require off-the-shelf OCR engines/APIs, yet it shows state-of-the-art performances on various visual document understanding tasks, such as visual document classification or information extraction (a.k.a. document parsing).
|
||||
|
||||
Keywords: Document Understanding
|
||||
|
||||
## [transformers-interpret](https://github.com/cdpierse/transformers-interpret)
|
||||
|
||||
Transformers Interpret is a model explainability tool designed to work exclusively with the transformers package.
|
||||
|
||||
In line with the philosophy of the Transformers package Transformers Interpret allows any transformers model to be explained in just two lines. Explainers are available for both text and computer vision models. Visualizations are also available in notebooks and as savable png and html files
|
||||
|
||||
Keywords: Model interpretation, Visualization
|
||||
|
||||
## [mlrun](https://github.com/mlrun/mlrun)
|
||||
|
||||
MLRun is an open MLOps platform for quickly building and managing continuous ML applications across their lifecycle. MLRun integrates into your development and CI/CD environment and automates the delivery of production data, ML pipelines, and online applications, significantly reducing engineering efforts, time to production, and computation resources. With MLRun, you can choose any IDE on your local machine or on the cloud. MLRun breaks the silos between data, ML, software, and DevOps/MLOps teams, enabling collaboration and fast continuous improvements.
|
||||
|
||||
Keywords: MLOps
|
||||
|
||||
## [FederatedScope](https://github.com/alibaba/FederatedScope)
|
||||
|
||||
[FederatedScope](https://github.com/alibaba/FederatedScope) is a comprehensive federated learning platform that provides convenient usage and flexible customization for various federated learning tasks in both academia and industry. Based on an event-driven architecture, [FederatedScope](https://github.com/alibaba/FederatedScope) integrates rich collections of functionalities to satisfy the burgeoning demands from federated learning, and aims to build up an easy-to-use platform for promoting learning safely and effectively.
|
||||
|
||||
Keywords: Federated learning, Event-driven
|
||||
|
||||
## [pythainlp](https://github.com/PyThaiNLP/pythainlp)
|
||||
|
||||
PyThaiNLP is a Python package for text processing and linguistic analysis, similar to NLTK with focus on Thai language.
|
||||
|
||||
Keywords: Thai, NLP, NLTK
|
||||
|
||||
## [FlagAI](https://github.com/FlagAI-Open/FlagAI)
|
||||
|
||||
[FlagAI](https://github.com/FlagAI-Open/FlagAI) (Fast LArge-scale General AI models) is a fast, easy-to-use and extensible toolkit for large-scale model. Our goal is to support training, fine-tuning, and deployment of large-scale models on various downstream tasks with multi-modality.
|
||||
|
||||
Keywords: Large models, Training, Fine-tuning, Deployment, Multi-modal
|
||||
|
||||
## [pyserini](https://github.com/castorini/pyserini)
|
||||
|
||||
[pyserini](https://github.com/castorini/pyserini) is a Python toolkit for reproducible information retrieval research with sparse and dense representations. Retrieval using sparse representations is provided via integration with the group's Anserini IR toolkit. Retrieval using dense representations is provided via integration with Facebook's Faiss library.
|
||||
|
||||
Keywords: IR, Information Retrieval, Dense, Sparse
|
||||
|
||||
## [baal](https://github.com/baal-org/baal)
|
||||
|
||||
[baal](https://github.com/baal-org/baal) is an active learning library that supports both industrial applications and research usecases. [baal](https://github.com/baal-org/baal) currently supports Monte-Carlo Dropout, MCDropConnect, deep ensembles, and semi-supervised learning.
|
||||
|
||||
Keywords: Active Learning, Research, Labeling
|
||||
|
||||
## [cleanlab](https://github.com/cleanlab/cleanlab)
|
||||
|
||||
[cleanlab](https://github.com/cleanlab/cleanlab) is the standard data-centric AI package for data quality and machine learning with messy, real-world data and labels. For text, image, tabular, audio (among others) datasets, you can use cleanlab to automatically: detect data issues (outliers, label errors, near duplicates, etc), train robust ML models, infer consensus + annotator-quality for multi-annotator data, suggest data to (re)label next (active learning).
|
||||
|
||||
Keywords: Data-Centric AI, Data Quality, Noisy Labels, Outlier Detection, Active Learning
|
||||
|
||||
## [BentoML](https://github.com/bentoml/BentoML)
|
||||
|
||||
[BentoML](https://github.com/bentoml) is the unified framework for for building, shipping, and scaling production-ready AI applications incorporating traditional ML, pre-trained AI models, Generative and Large Language Models.
|
||||
All Hugging Face models and pipelines can be seamlessly integrated into BentoML applications, enabling the running of models on the most suitable hardware and independent scaling based on usage.
|
||||
|
||||
Keywords: BentoML, Framework, Deployment, AI Applications
|
||||
|
||||
## [LLaMA Factory](https://github.com/hiyouga/LLaMA-Factory)
|
||||
|
||||
[LLaMA Factory](https://github.com/hiyouga/LLaMA-Factory) offers a user-friendly fine-tuning framework that incorporates PEFT. The repository includes training(fine-tuning) and inference examples for LLaMA-2, BLOOM, Falcon, Baichuan, Qwen, and other LLMs. A ChatGLM version is also available in [ChatGLM-Efficient-Tuning](https://github.com/hiyouga/ChatGLM-Efficient-Tuning).
|
||||
|
||||
Keywords: PEFT, fine-tuning, LLaMA-2, ChatGLM, Qwen
|
||||
|
||||
70
conftest.py
70
conftest.py
@ -20,62 +20,9 @@ import sys
|
||||
import warnings
|
||||
from os.path import abspath, dirname, join
|
||||
|
||||
import _pytest
|
||||
import pytest
|
||||
|
||||
from transformers.testing_utils import HfDoctestModule, HfDocTestParser
|
||||
|
||||
|
||||
NOT_DEVICE_TESTS = {
|
||||
"test_tokenization",
|
||||
"test_processor",
|
||||
"test_processing",
|
||||
"test_beam_constraints",
|
||||
"test_configuration_utils",
|
||||
"test_data_collator",
|
||||
"test_trainer_callback",
|
||||
"test_trainer_utils",
|
||||
"test_feature_extraction",
|
||||
"test_image_processing",
|
||||
"test_image_processor",
|
||||
"test_image_transforms",
|
||||
"test_optimization",
|
||||
"test_retrieval",
|
||||
"test_config",
|
||||
"test_from_pretrained_no_checkpoint",
|
||||
"test_keep_in_fp32_modules",
|
||||
"test_gradient_checkpointing_backward_compatibility",
|
||||
"test_gradient_checkpointing_enable_disable",
|
||||
"test_save_load_fast_init_from_base",
|
||||
"test_fast_init_context_manager",
|
||||
"test_fast_init_tied_embeddings",
|
||||
"test_save_load_fast_init_to_base",
|
||||
"test_torch_save_load",
|
||||
"test_initialization",
|
||||
"test_forward_signature",
|
||||
"test_model_common_attributes",
|
||||
"test_model_main_input_name",
|
||||
"test_correct_missing_keys",
|
||||
"test_tie_model_weights",
|
||||
"test_can_use_safetensors",
|
||||
"test_load_save_without_tied_weights",
|
||||
"test_tied_weights_keys",
|
||||
"test_model_weights_reload_no_missing_tied_weights",
|
||||
"test_pt_tf_model_equivalence",
|
||||
"test_mismatched_shapes_have_properly_initialized_weights",
|
||||
"test_matched_shapes_have_loaded_weights_when_some_mismatched_shapes_exist",
|
||||
"test_model_is_small",
|
||||
"test_tf_from_pt_safetensors",
|
||||
"test_flax_from_pt_safetensors",
|
||||
"ModelTest::test_pipeline_", # None of the pipeline tests from PipelineTesterMixin (of which XxxModelTest inherits from) are running on device
|
||||
"ModelTester::test_pipeline_",
|
||||
"/repo_utils/",
|
||||
"/utils/",
|
||||
"/tools/",
|
||||
}
|
||||
|
||||
# allow having multiple repository checkouts and not needing to remember to rerun
|
||||
# `pip install -e '.[dev]'` when switching between checkouts and running tests.
|
||||
# 'pip install -e .[dev]' when switching between checkouts and running tests.
|
||||
git_repo_path = abspath(join(dirname(__file__), "src"))
|
||||
sys.path.insert(1, git_repo_path)
|
||||
|
||||
@ -85,23 +32,14 @@ warnings.simplefilter(action="ignore", category=FutureWarning)
|
||||
|
||||
|
||||
def pytest_configure(config):
|
||||
config.addinivalue_line("markers", "is_pipeline_test: mark test to run only when pipeline are tested")
|
||||
config.addinivalue_line(
|
||||
"markers", "is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested"
|
||||
)
|
||||
config.addinivalue_line(
|
||||
"markers", "is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested"
|
||||
)
|
||||
config.addinivalue_line("markers", "is_pipeline_test: mark test to run only when pipelines are tested")
|
||||
config.addinivalue_line("markers", "is_staging_test: mark test to run only in the staging environment")
|
||||
config.addinivalue_line("markers", "accelerate_tests: mark test that require accelerate")
|
||||
config.addinivalue_line("markers", "tool_tests: mark the tool tests that are run on their specific schedule")
|
||||
config.addinivalue_line("markers", "not_device_test: mark the tests always running on cpu")
|
||||
|
||||
|
||||
def pytest_collection_modifyitems(items):
|
||||
for item in items:
|
||||
if any(test_name in item.nodeid for test_name in NOT_DEVICE_TESTS):
|
||||
item.add_marker(pytest.mark.not_device_test)
|
||||
|
||||
|
||||
def pytest_addoption(parser):
|
||||
@ -125,7 +63,7 @@ def pytest_sessionfinish(session, exitstatus):
|
||||
|
||||
|
||||
# Doctest custom flag to ignore output.
|
||||
IGNORE_RESULT = doctest.register_optionflag("IGNORE_RESULT")
|
||||
IGNORE_RESULT = doctest.register_optionflag('IGNORE_RESULT')
|
||||
|
||||
OutputChecker = doctest.OutputChecker
|
||||
|
||||
@ -138,5 +76,3 @@ class CustomOutputChecker(OutputChecker):
|
||||
|
||||
|
||||
doctest.OutputChecker = CustomOutputChecker
|
||||
_pytest.doctest.DoctestModule = HfDoctestModule
|
||||
doctest.DocTestParser = HfDocTestParser
|
||||
|
||||
@ -1,63 +1,22 @@
|
||||
FROM nvidia/cuda:11.8.0-cudnn8-devel-ubuntu20.04
|
||||
FROM nvidia/cuda:11.2.2-cudnn8-runtime-ubuntu20.04
|
||||
LABEL maintainer="Hugging Face"
|
||||
|
||||
ARG DEBIAN_FRONTEND=noninteractive
|
||||
|
||||
# Use login shell to read variables from `~/.profile` (to pass dynamic created variables between RUN commands)
|
||||
SHELL ["sh", "-lc"]
|
||||
|
||||
# The following `ARG` are mainly used to specify the versions explicitly & directly in this docker file, and not meant
|
||||
# to be used as arguments for docker build (so far).
|
||||
|
||||
ARG PYTORCH='2.2.1'
|
||||
# (not always a valid torch version)
|
||||
ARG INTEL_TORCH_EXT='2.2.0'
|
||||
# Example: `cu102`, `cu113`, etc.
|
||||
ARG CUDA='cu118'
|
||||
|
||||
RUN apt update
|
||||
RUN apt install -y git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-pip ffmpeg git-lfs
|
||||
RUN git lfs install
|
||||
RUN apt install -y git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-pip ffmpeg
|
||||
RUN python3 -m pip install --no-cache-dir --upgrade pip
|
||||
|
||||
ARG REF=main
|
||||
ARG REF=master
|
||||
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
|
||||
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev,onnxruntime]
|
||||
|
||||
# 1. Put several commands in a single `RUN` to avoid image/layer exporting issue. Could be revised in the future.
|
||||
# 2. Regarding `torch` part, We might need to specify proper versions for `torchvision` and `torchaudio`.
|
||||
# Currently, let's not bother to specify their versions explicitly (so installed with their latest release versions).
|
||||
RUN python3 -m pip install --no-cache-dir -U tensorflow==2.13 protobuf==3.20.3 tensorflow_text tensorflow_probability && python3 -m pip install --no-cache-dir -e ./transformers[dev,onnxruntime] && [ ${#PYTORCH} -gt 0 -a "$PYTORCH" != "pre" ] && VERSION='torch=='$PYTORCH'.*' || VERSION='torch'; echo "export VERSION='$VERSION'" >> ~/.profile && echo torch=$VERSION && [ "$PYTORCH" != "pre" ] && python3 -m pip install --no-cache-dir -U $VERSION torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/$CUDA || python3 -m pip install --no-cache-dir -U --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/$CUDA
|
||||
|
||||
RUN python3 -m pip install --no-cache-dir -U torch tensorflow
|
||||
RUN python3 -m pip uninstall -y flax jax
|
||||
|
||||
RUN python3 -m pip install --no-cache-dir intel_extension_for_pytorch==$INTEL_TORCH_EXT -f https://developer.intel.com/ipex-whl-stable-cpu
|
||||
|
||||
RUN python3 -m pip install --no-cache-dir git+https://github.com/facebookresearch/detectron2.git pytesseract
|
||||
RUN python3 -m pip install --no-cache-dir torch-scatter -f https://data.pyg.org/whl/torch-$(python3 -c "from torch import version; print(version.__version__.split('+')[0])")+cu102.html
|
||||
RUN python3 -m pip install --no-cache-dir git+https://github.com/facebookresearch/detectron2.git pytesseract https://github.com/kpu/kenlm/archive/master.zip
|
||||
RUN python3 -m pip install -U "itsdangerous<2.1.0"
|
||||
|
||||
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate
|
||||
|
||||
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/peft@main#egg=peft
|
||||
|
||||
# For bettertransformer
|
||||
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/optimum@main#egg=optimum
|
||||
|
||||
# For video model testing
|
||||
RUN python3 -m pip install --no-cache-dir decord av==9.2.0
|
||||
|
||||
# Some slow tests require bnb
|
||||
RUN python3 -m pip install --no-cache-dir bitsandbytes
|
||||
|
||||
# For `dinat` model
|
||||
# The `XXX` part in `torchXXX` needs to match `PYTORCH` (to some extent)
|
||||
RUN python3 -m pip install --no-cache-dir natten==0.15.1+torch220$CUDA -f https://shi-labs.com/natten/wheels
|
||||
|
||||
# For `nougat` tokenizer
|
||||
RUN python3 -m pip install --no-cache-dir python-Levenshtein
|
||||
|
||||
# For `FastSpeech2ConformerTokenizer` tokenizer
|
||||
RUN python3 -m pip install --no-cache-dir g2p-en
|
||||
|
||||
# When installing in editable mode, `transformers` is not recognized as a package.
|
||||
# this line must be added in order for python to be aware of transformers.
|
||||
RUN cd transformers && python3 setup.py develop
|
||||
|
||||
26
docker/transformers-cpu/Dockerfile
Normal file
26
docker/transformers-cpu/Dockerfile
Normal file
@ -0,0 +1,26 @@
|
||||
FROM ubuntu:18.04
|
||||
LABEL maintainer="Hugging Face"
|
||||
LABEL repository="transformers"
|
||||
|
||||
RUN apt update && \
|
||||
apt install -y bash \
|
||||
build-essential \
|
||||
git \
|
||||
curl \
|
||||
ca-certificates \
|
||||
python3 \
|
||||
python3-pip && \
|
||||
rm -rf /var/lib/apt/lists
|
||||
|
||||
RUN python3 -m pip install --no-cache-dir --upgrade pip && \
|
||||
python3 -m pip install --no-cache-dir \
|
||||
jupyter \
|
||||
tensorflow-cpu \
|
||||
torch
|
||||
|
||||
WORKDIR /workspace
|
||||
COPY . transformers/
|
||||
RUN cd transformers/ && \
|
||||
python3 -m pip install --no-cache-dir .
|
||||
|
||||
CMD ["/bin/bash"]
|
||||
@ -1,18 +1,16 @@
|
||||
FROM python:3.10
|
||||
FROM python:3.8
|
||||
LABEL maintainer="Hugging Face"
|
||||
|
||||
RUN apt update
|
||||
RUN git clone https://github.com/huggingface/transformers
|
||||
|
||||
RUN python3 -m pip install --no-cache-dir --upgrade pip && python3 -m pip install --no-cache-dir git+https://github.com/huggingface/doc-builder ./transformers[dev]
|
||||
RUN python3 -m pip install --no-cache-dir --upgrade pip && python3 -m pip install --no-cache-dir git+https://github.com/huggingface/doc-builder ./transformers[dev,deepspeed]
|
||||
RUN apt-get -y update && apt-get install -y libsndfile1-dev && apt install -y tesseract-ocr
|
||||
|
||||
# Torch needs to be installed before deepspeed
|
||||
RUN python3 -m pip install --no-cache-dir ./transformers[deepspeed]
|
||||
|
||||
RUN python3 -m pip install --no-cache-dir torchvision git+https://github.com/facebookresearch/detectron2.git pytesseract
|
||||
RUN python3 -m pip install --no-cache-dir torch-scatter -f https://data.pyg.org/whl/torch-$(python -c "from torch import version; print(version.__version__.split('+')[0])")+cpu.html
|
||||
RUN python3 -m pip install --no-cache-dir torchvision git+https://github.com/facebookresearch/detectron2.git pytesseract https://github.com/kpu/kenlm/archive/master.zip
|
||||
RUN python3 -m pip install --no-cache-dir pytorch-quantization --extra-index-url https://pypi.ngc.nvidia.com
|
||||
RUN python3 -m pip install -U "itsdangerous<2.1.0"
|
||||
|
||||
# Test if the image could successfully build the doc. before publishing the image
|
||||
RUN doc-builder build transformers transformers/docs/source/en --build_dir doc-build-dev --notebook_dir notebooks/transformers_doc --clean
|
||||
RUN doc-builder build transformers transformers/docs/source --build_dir doc-build-dev --notebook_dir notebooks/transformers_doc --clean --version pr_$PR_NUMBER
|
||||
RUN rm -rf doc-build-dev
|
||||
@ -1,59 +0,0 @@
|
||||
ARG BASE_DOCKER_IMAGE
|
||||
FROM $BASE_DOCKER_IMAGE
|
||||
LABEL maintainer="Hugging Face"
|
||||
|
||||
ARG DEBIAN_FRONTEND=noninteractive
|
||||
|
||||
# Use login shell to read variables from `~/.profile` (to pass dynamic created variables between RUN commands)
|
||||
SHELL ["sh", "-lc"]
|
||||
|
||||
RUN apt update
|
||||
RUN apt install -y git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-pip ffmpeg git-lfs libaio-dev
|
||||
RUN git lfs install
|
||||
RUN python3 -m pip install --no-cache-dir --upgrade pip
|
||||
|
||||
ARG REF=main
|
||||
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
|
||||
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev,onnxruntime]
|
||||
|
||||
# When installing in editable mode, `transformers` is not recognized as a package.
|
||||
# this line must be added in order for python to be aware of transformers.
|
||||
RUN cd transformers && python3 setup.py develop
|
||||
|
||||
ARG FRAMEWORK
|
||||
ARG VERSION
|
||||
|
||||
# Control `setuptools` version to avoid some issues
|
||||
RUN [ "$VERSION" != "1.10" ] && python3 -m pip install -U setuptools || python3 -m pip install -U "setuptools<=59.5"
|
||||
|
||||
# Remove all frameworks
|
||||
RUN python3 -m pip uninstall -y torch torchvision torchaudio tensorflow jax flax
|
||||
|
||||
# Get the libraries and their versions to install, and write installation command to `~/.profile`.
|
||||
RUN python3 ./transformers/utils/past_ci_versions.py --framework $FRAMEWORK --version $VERSION
|
||||
|
||||
# Install the target framework
|
||||
RUN echo "INSTALL_CMD = $INSTALL_CMD"
|
||||
RUN $INSTALL_CMD
|
||||
|
||||
RUN [ "$FRAMEWORK" != "pytorch" ] && echo "`deepspeed-testing` installation is skipped" || python3 -m pip install --no-cache-dir ./transformers[deepspeed-testing]
|
||||
|
||||
# Remove `accelerate`: it requires `torch`, and this causes import issues for TF-only testing
|
||||
# We will install `accelerate@main` in Past CI workflow file
|
||||
RUN python3 -m pip uninstall -y accelerate
|
||||
|
||||
# Uninstall `torch-tensorrt` and `apex` shipped with the base image
|
||||
RUN python3 -m pip uninstall -y torch-tensorrt apex
|
||||
|
||||
# Pre-build **nightly** release of DeepSpeed, so it would be ready for testing (otherwise, the 1st deepspeed test will timeout)
|
||||
RUN python3 -m pip uninstall -y deepspeed
|
||||
# This has to be run inside the GPU VMs running the tests. (So far, it fails here due to GPU checks during compilation.)
|
||||
# Issue: https://github.com/microsoft/DeepSpeed/issues/2010
|
||||
# RUN git clone https://github.com/microsoft/DeepSpeed && cd DeepSpeed && rm -rf build && \
|
||||
# DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 DS_BUILD_UTILS=1 python3 -m pip install . --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check 2>&1
|
||||
|
||||
RUN python3 -m pip install -U "itsdangerous<2.1.0"
|
||||
|
||||
# When installing in editable mode, `transformers` is not recognized as a package.
|
||||
# this line must be added in order for python to be aware of transformers.
|
||||
RUN cd transformers && python3 setup.py develop
|
||||
@ -1,39 +0,0 @@
|
||||
FROM rocm/dev-ubuntu-20.04:5.6
|
||||
# rocm/pytorch has no version with 2.1.0
|
||||
LABEL maintainer="Hugging Face"
|
||||
|
||||
ARG DEBIAN_FRONTEND=noninteractive
|
||||
|
||||
ARG PYTORCH='2.1.0'
|
||||
ARG TORCH_VISION='0.16.0'
|
||||
ARG TORCH_AUDIO='2.1.0'
|
||||
ARG ROCM='5.6'
|
||||
|
||||
RUN apt update && \
|
||||
apt install -y --no-install-recommends git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-dev python3-pip ffmpeg && \
|
||||
apt clean && \
|
||||
rm -rf /var/lib/apt/lists/*
|
||||
|
||||
RUN python3 -m pip install --no-cache-dir --upgrade pip
|
||||
|
||||
RUN python3 -m pip install torch==$PYTORCH torchvision==$TORCH_VISION torchaudio==$TORCH_AUDIO --index-url https://download.pytorch.org/whl/rocm$ROCM
|
||||
|
||||
RUN python3 -m pip install --no-cache-dir --upgrade pip setuptools ninja git+https://github.com/facebookresearch/detectron2.git pytesseract "itsdangerous<2.1.0"
|
||||
|
||||
ARG REF=main
|
||||
WORKDIR /
|
||||
|
||||
# Invalidate docker cache from here if new commit is available.
|
||||
ADD https://api.github.com/repos/huggingface/transformers/git/refs/heads/main version.json
|
||||
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
|
||||
|
||||
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev-torch,testing,video]
|
||||
|
||||
RUN python3 -m pip uninstall -y tensorflow flax
|
||||
|
||||
# When installing in editable mode, `transformers` is not recognized as a package.
|
||||
# this line must be added in order for python to be aware of transformers.
|
||||
RUN cd transformers && python3 setup.py develop
|
||||
|
||||
# Remove nvml as it is not compatible with ROCm
|
||||
RUN python3 -m pip uninstall py3nvml pynvml -y
|
||||
25
docker/transformers-pytorch-cpu/Dockerfile
Normal file
25
docker/transformers-pytorch-cpu/Dockerfile
Normal file
@ -0,0 +1,25 @@
|
||||
FROM ubuntu:18.04
|
||||
LABEL maintainer="Hugging Face"
|
||||
LABEL repository="transformers"
|
||||
|
||||
RUN apt update && \
|
||||
apt install -y bash \
|
||||
build-essential \
|
||||
git \
|
||||
curl \
|
||||
ca-certificates \
|
||||
python3 \
|
||||
python3-pip && \
|
||||
rm -rf /var/lib/apt/lists
|
||||
|
||||
RUN python3 -m pip install --no-cache-dir --upgrade pip && \
|
||||
python3 -m pip install --no-cache-dir \
|
||||
jupyter \
|
||||
torch
|
||||
|
||||
WORKDIR /workspace
|
||||
COPY . transformers/
|
||||
RUN cd transformers/ && \
|
||||
python3 -m pip install --no-cache-dir .
|
||||
|
||||
CMD ["/bin/bash"]
|
||||
@ -1,48 +0,0 @@
|
||||
FROM rocm/dev-ubuntu-22.04:5.6
|
||||
LABEL maintainer="Hugging Face"
|
||||
|
||||
ARG DEBIAN_FRONTEND=noninteractive
|
||||
ARG PYTORCH='2.1.1'
|
||||
ARG TORCH_VISION='0.16.1'
|
||||
ARG TORCH_AUDIO='2.1.1'
|
||||
ARG ROCM='5.6'
|
||||
|
||||
RUN apt update && \
|
||||
apt install -y --no-install-recommends \
|
||||
libaio-dev \
|
||||
git \
|
||||
# These are required to build deepspeed.
|
||||
python3-dev \
|
||||
python-is-python3 \
|
||||
rocrand-dev \
|
||||
rocthrust-dev \
|
||||
hipsparse-dev \
|
||||
hipblas-dev \
|
||||
rocblas-dev && \
|
||||
apt clean && \
|
||||
rm -rf /var/lib/apt/lists/*
|
||||
|
||||
RUN python3 -m pip install --no-cache-dir --upgrade pip ninja "pydantic<2"
|
||||
RUN python3 -m pip uninstall -y apex torch torchvision torchaudio
|
||||
RUN python3 -m pip install torch==$PYTORCH torchvision==$TORCH_VISION torchaudio==$TORCH_AUDIO --index-url https://download.pytorch.org/whl/rocm$ROCM --no-cache-dir
|
||||
|
||||
# Pre-build DeepSpeed, so it's be ready for testing (to avoid timeout)
|
||||
RUN DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 python3 -m pip install deepspeed --global-option="build_ext" --global-option="-j8" --no-cache-dir -v --disable-pip-version-check 2>&1
|
||||
|
||||
ARG REF=main
|
||||
WORKDIR /
|
||||
|
||||
# Invalidate docker cache from here if new commit is available.
|
||||
ADD https://api.github.com/repos/huggingface/transformers/git/refs/heads/main version.json
|
||||
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
|
||||
|
||||
RUN python3 -m pip install --no-cache-dir ./transformers[accelerate,testing,sentencepiece,sklearn]
|
||||
|
||||
# When installing in editable mode, `transformers` is not recognized as a package.
|
||||
# this line must be added in order for python to be aware of transformers.
|
||||
RUN cd transformers && python3 setup.py develop
|
||||
|
||||
RUN python3 -c "from deepspeed.launcher.runner import main"
|
||||
|
||||
# Remove nvml as it is not compatible with ROCm
|
||||
RUN python3 -m pip uninstall py3nvml pynvml -y
|
||||
@ -1,53 +1,21 @@
|
||||
# https://docs.nvidia.com/deeplearning/frameworks/pytorch-release-notes/rel-23-11.html#rel-23-11
|
||||
FROM nvcr.io/nvidia/pytorch:23.04-py3
|
||||
FROM nvcr.io/nvidia/pytorch:21.03-py3
|
||||
LABEL maintainer="Hugging Face"
|
||||
|
||||
ARG DEBIAN_FRONTEND=noninteractive
|
||||
|
||||
ARG PYTORCH='2.2.0'
|
||||
# Example: `cu102`, `cu113`, etc.
|
||||
ARG CUDA='cu121'
|
||||
|
||||
RUN apt -y update
|
||||
RUN apt install -y libaio-dev
|
||||
RUN python3 -m pip install --no-cache-dir --upgrade pip
|
||||
|
||||
ARG REF=main
|
||||
ARG REF=master
|
||||
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
|
||||
RUN python3 -m pip install --no-cache-dir -e ./transformers[testing,deepspeed]
|
||||
|
||||
RUN python3 -m pip install --no-cache-dir ./transformers[deepspeed-testing]
|
||||
|
||||
# Install latest release PyTorch
|
||||
# (PyTorch must be installed before pre-compiling any DeepSpeed c++/cuda ops.)
|
||||
# (https://www.deepspeed.ai/tutorials/advanced-install/#pre-install-deepspeed-ops)
|
||||
RUN python3 -m pip uninstall -y torch torchvision torchaudio && python3 -m pip install --no-cache-dir -U torch==$PYTORCH torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/$CUDA
|
||||
|
||||
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate
|
||||
|
||||
# Uninstall `transformer-engine` shipped with the base image
|
||||
RUN python3 -m pip uninstall -y transformer-engine
|
||||
|
||||
# Uninstall `torch-tensorrt` shipped with the base image
|
||||
RUN python3 -m pip uninstall -y torch-tensorrt
|
||||
|
||||
# recompile apex
|
||||
RUN python3 -m pip uninstall -y apex
|
||||
# RUN git clone https://github.com/NVIDIA/apex
|
||||
# `MAX_JOBS=1` disables parallel building to avoid cpu memory OOM when building image on GitHub Action (standard) runners
|
||||
# TODO: check if there is alternative way to install latest apex
|
||||
# RUN cd apex && MAX_JOBS=1 python3 -m pip install --global-option="--cpp_ext" --global-option="--cuda_ext" --no-cache -v --disable-pip-version-check .
|
||||
|
||||
# Pre-build **latest** DeepSpeed, so it would be ready for testing (otherwise, the 1st deepspeed test will timeout)
|
||||
RUN python3 -m pip uninstall -y deepspeed
|
||||
# This has to be run (again) inside the GPU VMs running the tests.
|
||||
# The installation works here, but some tests fail, if we don't pre-build deepspeed again in the VMs running the tests.
|
||||
# TODO: Find out why test fail.
|
||||
RUN DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 python3 -m pip install deepspeed --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check 2>&1
|
||||
RUN git clone https://github.com/microsoft/DeepSpeed && cd DeepSpeed && rm -rf build && \
|
||||
DS_BUILD_CPU_ADAM=1 DS_BUILD_AIO=1 DS_BUILD_UTILS=1 python3 -m pip install -e . --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check 2>&1
|
||||
|
||||
# When installing in editable mode, `transformers` is not recognized as a package.
|
||||
# this line must be added in order for python to be aware of transformers.
|
||||
RUN cd transformers && python3 setup.py develop
|
||||
|
||||
# The base image ships with `pydantic==1.8.2` which is not working - i.e. the next command fails
|
||||
RUN python3 -m pip install -U --no-cache-dir "pydantic<2"
|
||||
RUN python3 -c "from deepspeed.launcher.runner import main"
|
||||
|
||||
@ -1,64 +0,0 @@
|
||||
# https://docs.nvidia.com/deeplearning/frameworks/pytorch-release-notes/rel-23-11.html#rel-23-11
|
||||
FROM nvcr.io/nvidia/pytorch:23.11-py3
|
||||
LABEL maintainer="Hugging Face"
|
||||
|
||||
ARG DEBIAN_FRONTEND=noninteractive
|
||||
|
||||
# Example: `cu102`, `cu113`, etc.
|
||||
ARG CUDA='cu121'
|
||||
|
||||
RUN apt -y update
|
||||
RUN apt install -y libaio-dev
|
||||
RUN python3 -m pip install --no-cache-dir --upgrade pip
|
||||
|
||||
ARG REF=main
|
||||
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
|
||||
|
||||
RUN python3 -m pip uninstall -y torch torchvision torchaudio
|
||||
|
||||
# Install **nightly** release PyTorch (flag `--pre`)
|
||||
# (PyTorch must be installed before pre-compiling any DeepSpeed c++/cuda ops.)
|
||||
# (https://www.deepspeed.ai/tutorials/advanced-install/#pre-install-deepspeed-ops)
|
||||
RUN python3 -m pip install --no-cache-dir -U --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/$CUDA
|
||||
|
||||
RUN python3 -m pip install --no-cache-dir ./transformers[deepspeed-testing]
|
||||
|
||||
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate
|
||||
|
||||
# Uninstall `transformer-engine` shipped with the base image
|
||||
RUN python3 -m pip uninstall -y transformer-engine
|
||||
|
||||
# Uninstall `torch-tensorrt` and `apex` shipped with the base image
|
||||
RUN python3 -m pip uninstall -y torch-tensorrt apex
|
||||
|
||||
# Pre-build **nightly** release of DeepSpeed, so it would be ready for testing (otherwise, the 1st deepspeed test will timeout)
|
||||
RUN python3 -m pip uninstall -y deepspeed
|
||||
# This has to be run inside the GPU VMs running the tests. (So far, it fails here due to GPU checks during compilation.)
|
||||
# Issue: https://github.com/microsoft/DeepSpeed/issues/2010
|
||||
# RUN git clone https://github.com/microsoft/DeepSpeed && cd DeepSpeed && rm -rf build && \
|
||||
# DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 DS_BUILD_UTILS=1 python3 -m pip install . --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check 2>&1
|
||||
|
||||
## For `torchdynamo` tests
|
||||
## (see https://github.com/huggingface/transformers/pull/17765)
|
||||
#RUN git clone https://github.com/pytorch/functorch
|
||||
#RUN python3 -m pip install --no-cache-dir ./functorch[aot]
|
||||
#RUN cd functorch && python3 setup.py develop
|
||||
#
|
||||
#RUN git clone https://github.com/pytorch/torchdynamo
|
||||
#RUN python3 -m pip install -r ./torchdynamo/requirements.txt
|
||||
#RUN cd torchdynamo && python3 setup.py develop
|
||||
#
|
||||
## install TensorRT
|
||||
#RUN python3 -m pip install --no-cache-dir -U nvidia-pyindex
|
||||
#RUN python3 -m pip install --no-cache-dir -U nvidia-tensorrt==8.2.4.2
|
||||
#
|
||||
## install torch_tensorrt (fx path)
|
||||
#RUN git clone https://github.com/pytorch/TensorRT.git
|
||||
#RUN cd TensorRT/py && python3 setup.py install --fx-only
|
||||
|
||||
# When installing in editable mode, `transformers` is not recognized as a package.
|
||||
# this line must be added in order for python to be aware of transformers.
|
||||
RUN cd transformers && python3 setup.py develop
|
||||
|
||||
# Disable for now as deepspeed is not installed above. To be enabled once the issue is fixed.
|
||||
# RUN python3 -c "from deepspeed.launcher.runner import main"
|
||||
@ -1,4 +1,4 @@
|
||||
FROM nvidia/cuda:12.1.0-cudnn8-devel-ubuntu20.04
|
||||
FROM nvidia/cuda:11.2.2-cudnn8-runtime-ubuntu20.04
|
||||
LABEL maintainer="Hugging Face"
|
||||
|
||||
ARG DEBIAN_FRONTEND=noninteractive
|
||||
@ -7,25 +7,18 @@ RUN apt update
|
||||
RUN apt install -y git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-pip ffmpeg
|
||||
RUN python3 -m pip install --no-cache-dir --upgrade pip
|
||||
|
||||
ARG REF=main
|
||||
ARG REF=master
|
||||
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
|
||||
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev-torch,testing]
|
||||
|
||||
# If set to nothing, will install the latest version
|
||||
ARG PYTORCH='2.1.1'
|
||||
ARG TORCH_VISION=''
|
||||
ARG TORCH_AUDIO=''
|
||||
# Example: `cu102`, `cu113`, etc.
|
||||
ARG CUDA='cu121'
|
||||
|
||||
RUN [ ${#PYTORCH} -gt 0 ] && VERSION='torch=='$PYTORCH'.*' || VERSION='torch'; python3 -m pip install --no-cache-dir -U $VERSION --extra-index-url https://download.pytorch.org/whl/$CUDA
|
||||
RUN [ ${#TORCH_VISION} -gt 0 ] && VERSION='torchvision=='TORCH_VISION'.*' || VERSION='torchvision'; python3 -m pip install --no-cache-dir -U $VERSION --extra-index-url https://download.pytorch.org/whl/$CUDA
|
||||
RUN [ ${#TORCH_AUDIO} -gt 0 ] && VERSION='torchaudio=='TORCH_AUDIO'.*' || VERSION='torchaudio'; python3 -m pip install --no-cache-dir -U $VERSION --extra-index-url https://download.pytorch.org/whl/$CUDA
|
||||
|
||||
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev-torch,testing,video]
|
||||
ARG PYTORCH=''
|
||||
|
||||
RUN [ ${#PYTORCH} -gt 0 ] && VERSION='torch=='$PYTORCH'.*' || VERSION='torch'; python3 -m pip install --no-cache-dir -U $VERSION
|
||||
RUN python3 -m pip uninstall -y tensorflow flax
|
||||
|
||||
RUN python3 -m pip install --no-cache-dir git+https://github.com/facebookresearch/detectron2.git pytesseract
|
||||
RUN python3 -m pip install --no-cache-dir torch-scatter -f https://data.pyg.org/whl/torch-$(python3 -c "from torch import version; print(version.__version__.split('+')[0])")+cu102.html
|
||||
RUN python3 -m pip install --no-cache-dir git+https://github.com/facebookresearch/detectron2.git pytesseract https://github.com/kpu/kenlm/archive/master.zip
|
||||
RUN python3 -m pip install -U "itsdangerous<2.1.0"
|
||||
|
||||
# When installing in editable mode, `transformers` is not recognized as a package.
|
||||
|
||||
@ -1,7 +1,7 @@
|
||||
FROM google/cloud-sdk:slim
|
||||
|
||||
# Build args.
|
||||
ARG GITHUB_REF=refs/heads/main
|
||||
ARG GITHUB_REF=refs/heads/master
|
||||
|
||||
# TODO: This Dockerfile installs pytorch/xla 3.6 wheels. There are also 3.7
|
||||
# wheels available; see below.
|
||||
|
||||
@ -1,60 +0,0 @@
|
||||
FROM nvidia/cuda:11.8.0-cudnn8-devel-ubuntu20.04
|
||||
LABEL maintainer="Hugging Face"
|
||||
|
||||
ARG DEBIAN_FRONTEND=noninteractive
|
||||
|
||||
# Use login shell to read variables from `~/.profile` (to pass dynamic created variables between RUN commands)
|
||||
SHELL ["sh", "-lc"]
|
||||
|
||||
# The following `ARG` are mainly used to specify the versions explicitly & directly in this docker file, and not meant
|
||||
# to be used as arguments for docker build (so far).
|
||||
|
||||
ARG PYTORCH='2.2.1'
|
||||
# Example: `cu102`, `cu113`, etc.
|
||||
ARG CUDA='cu118'
|
||||
|
||||
RUN apt update
|
||||
RUN apt install -y git libsndfile1-dev tesseract-ocr espeak-ng python python3-pip ffmpeg
|
||||
RUN python3 -m pip install --no-cache-dir --upgrade pip
|
||||
|
||||
ARG REF=main
|
||||
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
|
||||
|
||||
RUN [ ${#PYTORCH} -gt 0 ] && VERSION='torch=='$PYTORCH'.*' || VERSION='torch'; echo "export VERSION='$VERSION'" >> ~/.profile
|
||||
RUN echo torch=$VERSION
|
||||
# `torchvision` and `torchaudio` should be installed along with `torch`, especially for nightly build.
|
||||
# Currently, let's just use their latest releases (when `torch` is installed with a release version)
|
||||
RUN python3 -m pip install --no-cache-dir -U $VERSION torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/$CUDA
|
||||
|
||||
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev-torch]
|
||||
|
||||
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate
|
||||
|
||||
# needed in bnb and awq
|
||||
RUN python3 -m pip install --no-cache-dir einops
|
||||
|
||||
# Add bitsandbytes for mixed int8 testing
|
||||
RUN python3 -m pip install --no-cache-dir bitsandbytes
|
||||
|
||||
# Add auto-gptq for gtpq quantization testing
|
||||
RUN python3 -m pip install --no-cache-dir auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/
|
||||
|
||||
# Add optimum for gptq quantization testing
|
||||
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/optimum@main#egg=optimum
|
||||
|
||||
# Add aqlm for quantization testing
|
||||
RUN python3 -m pip install --no-cache-dir aqlm[gpu]==1.0.2
|
||||
|
||||
# Add autoawq for quantization testing
|
||||
# >=v0.2.3 needed for compatibility with torch 2.2.1
|
||||
RUN python3 -m pip install --no-cache-dir https://github.com/casper-hansen/AutoAWQ/releases/download/v0.2.3/autoawq-0.2.3+cu118-cp38-cp38-linux_x86_64.whl
|
||||
|
||||
# Add quanto for quantization testing
|
||||
RUN python3 -m pip install --no-cache-dir quanto
|
||||
|
||||
# Add eetq for quantization testing
|
||||
RUN python3 -m pip install git+https://github.com/NetEase-FuXi/EETQ.git
|
||||
|
||||
# When installing in editable mode, `transformers` is not recognized as a package.
|
||||
# this line must be added in order for python to be aware of transformers.
|
||||
RUN cd transformers && python3 setup.py develop
|
||||
25
docker/transformers-tensorflow-cpu/Dockerfile
Normal file
25
docker/transformers-tensorflow-cpu/Dockerfile
Normal file
@ -0,0 +1,25 @@
|
||||
FROM ubuntu:18.04
|
||||
LABEL maintainer="Hugging Face"
|
||||
LABEL repository="transformers"
|
||||
|
||||
RUN apt update && \
|
||||
apt install -y bash \
|
||||
build-essential \
|
||||
git \
|
||||
curl \
|
||||
ca-certificates \
|
||||
python3 \
|
||||
python3-pip && \
|
||||
rm -rf /var/lib/apt/lists
|
||||
|
||||
RUN python3 -m pip install --no-cache-dir --upgrade pip && \
|
||||
python3 -m pip install --no-cache-dir \
|
||||
mkl \
|
||||
tensorflow-cpu
|
||||
|
||||
WORKDIR /workspace
|
||||
COPY . transformers/
|
||||
RUN cd transformers/ && \
|
||||
python3 -m pip install --no-cache-dir .
|
||||
|
||||
CMD ["/bin/bash"]
|
||||
@ -1,4 +1,4 @@
|
||||
FROM nvidia/cuda:11.8.0-cudnn8-devel-ubuntu20.04
|
||||
FROM nvidia/cuda:11.2.2-cudnn8-runtime-ubuntu20.04
|
||||
LABEL maintainer="Hugging Face"
|
||||
|
||||
ARG DEBIAN_FRONTEND=noninteractive
|
||||
@ -7,19 +7,17 @@ RUN apt update
|
||||
RUN apt install -y git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-pip ffmpeg
|
||||
RUN python3 -m pip install --no-cache-dir --upgrade pip
|
||||
|
||||
ARG REF=main
|
||||
ARG REF=master
|
||||
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
|
||||
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev-tensorflow,testing]
|
||||
|
||||
# If set to nothing, will install the latest version
|
||||
ARG TENSORFLOW='2.13'
|
||||
ARG TENSORFLOW=''
|
||||
|
||||
RUN [ ${#TENSORFLOW} -gt 0 ] && VERSION='tensorflow=='$TENSORFLOW'.*' || VERSION='tensorflow'; python3 -m pip install --no-cache-dir -U $VERSION
|
||||
RUN python3 -m pip uninstall -y torch flax
|
||||
RUN python3 -m pip install -U "itsdangerous<2.1.0"
|
||||
|
||||
RUN python3 -m pip install --no-cache-dir -U tensorflow_probability
|
||||
|
||||
# When installing in editable mode, `transformers` is not recognized as a package.
|
||||
# this line must be added in order for python to be aware of transformers.
|
||||
RUN cd transformers && python3 setup.py develop
|
||||
|
||||
135
docs/README.md
135
docs/README.md
@ -26,71 +26,50 @@ pip install -e ".[docs]"
|
||||
Then you need to install our special tool that builds the documentation:
|
||||
|
||||
```bash
|
||||
pip install git+https://github.com/huggingface/doc-builder
|
||||
pip install git+https://github.com/huggingface/hf-doc-utils
|
||||
```
|
||||
|
||||
---
|
||||
**NOTE**
|
||||
|
||||
You only need to generate the documentation to inspect it locally (if you're planning changes and want to
|
||||
check how they look before committing for instance). You don't have to commit the built documentation.
|
||||
check how they look like before committing for instance). You don't have to commit the built documentation.
|
||||
|
||||
---
|
||||
|
||||
## Building the documentation
|
||||
|
||||
Once you have setup the `doc-builder` and additional packages, you can generate the documentation by
|
||||
Once you have setup the `hf-doc-utilsr` and additional packages, you can generate the documentation by
|
||||
typing the following command:
|
||||
|
||||
```bash
|
||||
doc-builder build transformers docs/source/en/ --build_dir ~/tmp/test-build
|
||||
hf-doc-utils build transformers docs/source/ --build_dir ~/tmp/test-build
|
||||
```
|
||||
|
||||
You can adapt the `--build_dir` to set any temporary folder that you prefer. This command will create it and generate
|
||||
the MDX files that will be rendered as the documentation on the main website. You can inspect them in your favorite
|
||||
Markdown editor.
|
||||
|
||||
## Previewing the documentation
|
||||
|
||||
To preview the docs, first install the `watchdog` module with:
|
||||
|
||||
```bash
|
||||
pip install watchdog
|
||||
```
|
||||
|
||||
Then run the following command:
|
||||
|
||||
```bash
|
||||
doc-builder preview {package_name} {path_to_docs}
|
||||
```
|
||||
|
||||
For example:
|
||||
|
||||
```bash
|
||||
doc-builder preview transformers docs/source/en/
|
||||
```
|
||||
|
||||
The docs will be viewable at [http://localhost:3000](http://localhost:3000). You can also preview the docs once you have opened a PR. You will see a bot add a comment to a link where the documentation with your changes lives.
|
||||
|
||||
---
|
||||
**NOTE**
|
||||
|
||||
The `preview` command only works with existing doc files. When you add a completely new file, you need to update `_toctree.yml` & restart `preview` command (`ctrl-c` to stop it & call `doc-builder preview ...` again).
|
||||
It's not possible to see locally how the final documentation will look like for now. Once you have opened a PR, you
|
||||
will see a bot add a comment to a link where the documentation with your changes lives.
|
||||
|
||||
---
|
||||
|
||||
## Adding a new element to the navigation bar
|
||||
|
||||
Accepted files are Markdown (.md).
|
||||
Accepted files are Markdown (.md or .mdx).
|
||||
|
||||
Create a file with its extension and put it in the source directory. You can then link it to the toc-tree by putting
|
||||
the filename without the extension in the [`_toctree.yml`](https://github.com/huggingface/transformers/blob/main/docs/source/en/_toctree.yml) file.
|
||||
the filename without the extension in the [`_toctree.yml`](https://github.com/huggingface/transformers/blob/master/docs/source/_toctree.yml) file.
|
||||
|
||||
## Renaming section headers and moving sections
|
||||
|
||||
It helps to keep the old links working when renaming the section header and/or moving sections from one document to another. This is because the old links are likely to be used in Issues, Forums, and Social media and it'd make for a much more superior user experience if users reading those months later could still easily navigate to the originally intended information.
|
||||
It helps to keep the old links working when renaming section header and/or moving sections from one document to another. This is because the old links are likely to be used in Issues, Forums and Social media and it'd be make for a much more superior user experience if users reading those months later could still easily navigate to the originally intended information.
|
||||
|
||||
Therefore, we simply keep a little map of moved sections at the end of the document where the original section was. The key is to preserve the original anchor.
|
||||
Therefore we simply keep a little map of moved sections at the end of the document where the original section was. The key is to preserve the original anchor.
|
||||
|
||||
So if you renamed a section from: "Section A" to "Section B", then you can add at the end of the file:
|
||||
|
||||
@ -99,7 +78,7 @@ Sections that were moved:
|
||||
|
||||
[ <a href="#section-b">Section A</a><a id="section-a"></a> ]
|
||||
```
|
||||
and of course, if you moved it to another file, then:
|
||||
and of course if you moved it to another file, then:
|
||||
|
||||
```
|
||||
Sections that were moved:
|
||||
@ -109,7 +88,7 @@ Sections that were moved:
|
||||
|
||||
Use the relative style to link to the new file so that the versioned docs continue to work.
|
||||
|
||||
For an example of a rich moved section set please see the very end of [the Trainer doc](https://github.com/huggingface/transformers/blob/main/docs/source/en/main_classes/trainer.md).
|
||||
For an example of a rich moved sections set please see the very end of [the Trainer doc](https://github.com/huggingface/transformers/blob/master/docs/source/main_classes/trainer.mdx).
|
||||
|
||||
|
||||
## Writing Documentation - Specification
|
||||
@ -126,19 +105,14 @@ Adding a new tutorial or section is done in two steps:
|
||||
- Link that file in `./source/_toctree.yml` on the correct toc-tree.
|
||||
|
||||
Make sure to put your new file under the proper section. It's unlikely to go in the first section (*Get Started*), so
|
||||
depending on the intended targets (beginners, more advanced users, or researchers) it should go in sections two, three, or
|
||||
depending on the intended targets (beginners, more advanced users or researchers) it should go in section two, three or
|
||||
four.
|
||||
|
||||
### Translating
|
||||
|
||||
When translating, refer to the guide at [./TRANSLATING.md](https://github.com/huggingface/transformers/blob/main/docs/TRANSLATING.md).
|
||||
|
||||
|
||||
### Adding a new model
|
||||
|
||||
When adding a new model:
|
||||
|
||||
- Create a file `xxx.md` or under `./source/model_doc` (don't hesitate to copy an existing file as template).
|
||||
- Create a file `xxx.mdx` or under `./source/model_doc` (don't hesitate to copy an existing file as template).
|
||||
- Link that file in `./source/_toctree.yml`.
|
||||
- Write a short overview of the model:
|
||||
- Overview with paper & authors
|
||||
@ -147,7 +121,7 @@ When adding a new model:
|
||||
- Add the classes that should be linked in the model. This generally includes the configuration, the tokenizer, and
|
||||
every model of that class (the base model, alongside models with additional heads), both in PyTorch and TensorFlow.
|
||||
The order is generally:
|
||||
- Configuration
|
||||
- Configuration,
|
||||
- Tokenizer
|
||||
- PyTorch base model
|
||||
- PyTorch head models
|
||||
@ -177,8 +151,8 @@ not to be displayed in the documentation, you can do so by specifying which meth
|
||||
- save_vocabulary
|
||||
```
|
||||
|
||||
If you just want to add a method that is not documented (for instance magic methods like `__call__` are not documented
|
||||
by default) you can put the list of methods to add in a list that contains `all`:
|
||||
If you just want to add a method that is not documented (for instance magic method like `__call__` are not documented
|
||||
byt default) you can put the list of methods to add in a list that contains `all`:
|
||||
|
||||
```
|
||||
## XXXTokenizer
|
||||
@ -191,23 +165,23 @@ by default) you can put the list of methods to add in a list that contains `all`
|
||||
### Writing source documentation
|
||||
|
||||
Values that should be put in `code` should either be surrounded by backticks: \`like so\`. Note that argument names
|
||||
and objects like True, None, or any strings should usually be put in `code`.
|
||||
and objects like True, None or any strings should usually be put in `code`.
|
||||
|
||||
When mentioning a class, function, or method, it is recommended to use our syntax for internal links so that our tool
|
||||
When mentioning a class, function or method, it is recommended to use our syntax for internal links so that our tool
|
||||
adds a link to its documentation with this syntax: \[\`XXXClass\`\] or \[\`function\`\]. This requires the class or
|
||||
function to be in the main package.
|
||||
|
||||
If you want to create a link to some internal class or function, you need to
|
||||
provide its path. For instance: \[\`utils.ModelOutput\`\]. This will be converted into a link with
|
||||
`utils.ModelOutput` in the description. To get rid of the path and only keep the name of the object you are
|
||||
linking to in the description, add a ~: \[\`~utils.ModelOutput\`\] will generate a link with `ModelOutput` in the description.
|
||||
provide its path. For instance: \[\`file_utils.ModelOutput\`\]. This will be converted into a link with
|
||||
`file_utils.ModelOutput` in the description. To get rid of the path and only keep the name of the object you are
|
||||
linking to in the description, add a ~: \[\`~file_utils.ModelOutput\`\] will generate a link with `ModelOutput` in the description.
|
||||
|
||||
The same works for methods so you can either use \[\`XXXClass.method\`\] or \[\`~XXXClass.method\`\].
|
||||
The same works for methods so you can either use \[\`XXXClass.method\`\] or \[~\`XXXClass.method\`\].
|
||||
|
||||
#### Defining arguments in a method
|
||||
|
||||
Arguments should be defined with the `Args:` (or `Arguments:` or `Parameters:`) prefix, followed by a line return and
|
||||
an indentation. The argument should be followed by its type, with its shape if it is a tensor, a colon, and its
|
||||
an indentation. The argument should be followed by its type, with its shape if it is a tensor, a colon and its
|
||||
description:
|
||||
|
||||
```
|
||||
@ -216,7 +190,7 @@ description:
|
||||
```
|
||||
|
||||
If the description is too long to fit in one line, another indentation is necessary before writing the description
|
||||
after the argument.
|
||||
after th argument.
|
||||
|
||||
Here's an example showcasing everything so far:
|
||||
|
||||
@ -250,7 +224,7 @@ then its documentation should look like this:
|
||||
|
||||
Note that we always omit the "defaults to \`None\`" when None is the default for any argument. Also note that even
|
||||
if the first line describing your argument type and its default gets long, you can't break it on several lines. You can
|
||||
however, write as many lines as you want in the indented description (see the example above with `input_ids`).
|
||||
however write as many lines as you want in the indented description (see the example above with `input_ids`).
|
||||
|
||||
#### Writing a multi-line code block
|
||||
|
||||
@ -266,7 +240,7 @@ Multi-line code blocks can be useful for displaying examples. They are done betw
|
||||
````
|
||||
|
||||
We follow the [doctest](https://docs.python.org/3/library/doctest.html) syntax for the examples to automatically test
|
||||
the results to stay consistent with the library.
|
||||
the results stay consistent with the library.
|
||||
|
||||
#### Writing a return block
|
||||
|
||||
@ -274,27 +248,27 @@ The return block should be introduced with the `Returns:` prefix, followed by a
|
||||
The first line should be the type of the return, followed by a line return. No need to indent further for the elements
|
||||
building the return.
|
||||
|
||||
Here's an example of a single value return:
|
||||
Here's an example for a single value return:
|
||||
|
||||
```
|
||||
Returns:
|
||||
`List[int]`: A list of integers in the range [0, 1] --- 1 for a special token, 0 for a sequence token.
|
||||
```
|
||||
|
||||
Here's an example of a tuple return, comprising several objects:
|
||||
Here's an example for tuple return, comprising several objects:
|
||||
|
||||
```
|
||||
Returns:
|
||||
`tuple(torch.FloatTensor)` comprising various elements depending on the configuration ([`BertConfig`]) and inputs:
|
||||
- ** loss** (*optional*, returned when `masked_lm_labels` is provided) `torch.FloatTensor` of shape `(1,)` --
|
||||
Total loss is the sum of the masked language modeling loss and the next sequence prediction (classification) loss.
|
||||
Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss.
|
||||
- **prediction_scores** (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`) --
|
||||
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
||||
```
|
||||
|
||||
#### Adding an image
|
||||
|
||||
Due to the rapidly growing repository, it is important to make sure that no files that would significantly weigh down the repository are added. This includes images, videos, and other non-text files. We prefer to leverage a hf.co hosted `dataset` like
|
||||
Due to the rapidly growing repository, it is important to make sure that no files that would significantly weigh down the repository are added. This includes images, videos and other non-text files. We prefer to leverage a hf.co hosted `dataset` like
|
||||
the ones hosted on [`hf-internal-testing`](https://huggingface.co/hf-internal-testing) in which to place these files and reference
|
||||
them by URL. We recommend putting them in the following dataset: [huggingface/documentation-images](https://huggingface.co/datasets/huggingface/documentation-images).
|
||||
If an external contribution, feel free to add the images to your PR and ask a Hugging Face member to migrate your images
|
||||
@ -312,13 +286,13 @@ easily.
|
||||
|
||||
# Testing documentation examples
|
||||
|
||||
Good documentation often comes with an example of how a specific function or class should be used.
|
||||
Good documentation oftens comes with an example of how a specific function or class should be used.
|
||||
Each model class should contain at least one example showcasing
|
||||
how to use this model class in inference. *E.g.* the class [Wav2Vec2ForCTC](https://huggingface.co/docs/transformers/model_doc/wav2vec2#transformers.Wav2Vec2ForCTC)
|
||||
includes an example of how to transcribe speech to text in the
|
||||
[docstring of its forward function](https://huggingface.co/docs/transformers/model_doc/wav2vec2#transformers.Wav2Vec2ForCTC.forward).
|
||||
|
||||
## Writing documentation examples
|
||||
## Writing documenation examples
|
||||
|
||||
The syntax for Example docstrings can look as follows:
|
||||
|
||||
@ -354,7 +328,7 @@ The docstring should give a minimal, clear example of how the respective model
|
||||
is to be used in inference and also include the expected (ideally sensible)
|
||||
output.
|
||||
Often, readers will try out the example before even going through the function
|
||||
or class definitions. Therefore, it is of utmost importance that the example
|
||||
or class definitions. Therefore it is of utmost importance that the example
|
||||
works as expected.
|
||||
|
||||
## Docstring testing
|
||||
@ -364,9 +338,18 @@ We use pytests' [doctest integration](https://docs.pytest.org/doctest.html) to v
|
||||
For Transformers, the doctests are run on a daily basis via GitHub Actions as can be
|
||||
seen [here](https://github.com/huggingface/transformers/actions/workflows/doctests.yml).
|
||||
|
||||
To include your example in the daily doctests, you need add the filename that
|
||||
contains the example docstring to the [documentation_tests.txt](../utils/documentation_tests.txt).
|
||||
|
||||
### For Python files
|
||||
|
||||
Run all the tests in the docstrings of a given file with the following command, here is how we test the modeling file of Wav2Vec2 for instance:
|
||||
You will first need to run the following command (from the root of the repository) to prepare the doc file (doc-testing needs to add additional lines that we don't include in the doc source files):
|
||||
|
||||
```bash
|
||||
python utils/prepare_for_doc_test.py src docs
|
||||
```
|
||||
|
||||
Then you can run all the tests in the docstrings of a given file with the following command, here is how we test the modeling file of Wav2Vec2 for instance:
|
||||
|
||||
```bash
|
||||
pytest --doctest-modules src/transformers/models/wav2vec2/modeling_wav2vec2.py -sv --doctest-continue-on-failure
|
||||
@ -378,12 +361,30 @@ If you want to isolate a specific docstring, just add `::` after the file name t
|
||||
pytest --doctest-modules src/transformers/models/wav2vec2/modeling_wav2vec2.py::transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForCTC.forward -sv --doctest-continue-on-failure
|
||||
```
|
||||
|
||||
### For Markdown files
|
||||
|
||||
You can test locally a given file with this command (here testing the quicktour):
|
||||
Once you're done, you can run the following command (still from the root of the repository) to undo the changes made by the first command before committing:
|
||||
|
||||
```bash
|
||||
pytest --doctest-modules docs/source/quicktour.md -sv --doctest-continue-on-failure --doctest-glob="*.md"
|
||||
python utils/prepare_for_doc_test.py src docs --remove_new_line
|
||||
```
|
||||
|
||||
### For Markdown files
|
||||
|
||||
You will first need to run the following command (from the root of the repository) to prepare the doc file (doc-testing needs to add additional lines that we don't include in the doc source files):
|
||||
|
||||
```bash
|
||||
python utils/prepare_for_doc_test.py src docs
|
||||
```
|
||||
|
||||
Then you can test locally a given file with this command (here testing the quicktour):
|
||||
|
||||
```bash
|
||||
pytest --doctest-modules docs/source/quicktour.mdx -sv --doctest-continue-on-failure --doctest-glob="*.mdx"
|
||||
```
|
||||
|
||||
Once you're done, you can run the following command (still from the root of the repository) to undo the changes made by the first command before committing:
|
||||
|
||||
```bash
|
||||
python utils/prepare_for_doc_test.py src docs --remove_new_line
|
||||
```
|
||||
|
||||
### Writing doctests
|
||||
@ -392,6 +393,6 @@ Here are a few tips to help you debug the doctests and make them pass:
|
||||
|
||||
- The outputs of the code need to match the expected output **exactly**, so make sure you have the same outputs. In particular doctest will see a difference between single quotes and double quotes, or a missing parenthesis. The only exceptions to that rule are:
|
||||
* whitespace: one give whitespace (space, tabulation, new line) is equivalent to any number of whitespace, so you can add new lines where there are spaces to make your output more readable.
|
||||
* numerical values: you should never put more than 4 or 5 digits to expected results as different setups or library versions might get you slightly different results. `doctest` is configured to ignore any difference lower than the precision to which you wrote (so 1e-4 if you write 4 digits).
|
||||
* numerical values: you should never put more than 4 or 5 digits to expected results as different setups or library versions might get you slightly different results. `doctest` is configure to ignore any difference lower than the precision to which you wrote (so 1e-4 if you write 4 digits).
|
||||
- Don't leave a block of code that is very long to execute. If you can't make it fast, you can either not use the doctest syntax on it (so that it's ignored), or if you want to use the doctest syntax to show the results, you can add a comment `# doctest: +SKIP` at the end of the lines of code too long to execute
|
||||
- Each line of code that produces a result needs to have that result written below. You can ignore an output if you don't want to show it in your code example by adding a comment ` # doctest: +IGNORE_RESULT` at the end of the line of code producing it.
|
||||
- Each line of code that produces a result needs to have that result written below. You can ignore an output if you don't want to show it in your code example by adding a comment ` # doctest: +IGNORE_RESULT` at the end of the line of code produing it.
|
||||
|
||||
@ -1,57 +0,0 @@
|
||||
### Translating the Transformers documentation into your language
|
||||
|
||||
As part of our mission to democratize machine learning, we'd love to make the Transformers library available in many more languages! Follow the steps below if you want to help translate the documentation into your language 🙏.
|
||||
|
||||
**🗞️ Open an issue**
|
||||
|
||||
To get started, navigate to the [Issues](https://github.com/huggingface/transformers/issues) page of this repo and check if anyone else has opened an issue for your language. If not, open a new issue by selecting the "Translation template" from the "New issue" button.
|
||||
|
||||
Once an issue exists, post a comment to indicate which chapters you'd like to work on, and we'll add your name to the list.
|
||||
|
||||
|
||||
**🍴 Fork the repository**
|
||||
|
||||
First, you'll need to [fork the Transformers repo](https://docs.github.com/en/get-started/quickstart/fork-a-repo). You can do this by clicking on the **Fork** button on the top-right corner of this repo's page.
|
||||
|
||||
Once you've forked the repo, you'll want to get the files on your local machine for editing. You can do that by cloning the fork with Git as follows:
|
||||
|
||||
```bash
|
||||
git clone https://github.com/YOUR-USERNAME/transformers.git
|
||||
```
|
||||
|
||||
**📋 Copy-paste the English version with a new language code**
|
||||
|
||||
The documentation files are in one leading directory:
|
||||
|
||||
- [`docs/source`](https://github.com/huggingface/transformers/tree/main/docs/source): All the documentation materials are organized here by language.
|
||||
|
||||
You'll only need to copy the files in the [`docs/source/en`](https://github.com/huggingface/transformers/tree/main/docs/source/en) directory, so first navigate to your fork of the repo and run the following:
|
||||
|
||||
```bash
|
||||
cd ~/path/to/transformers/docs
|
||||
cp -r source/en source/LANG-ID
|
||||
```
|
||||
|
||||
Here, `LANG-ID` should be one of the ISO 639-1 or ISO 639-2 language codes -- see [here](https://www.loc.gov/standards/iso639-2/php/code_list.php) for a handy table.
|
||||
|
||||
**✍️ Start translating**
|
||||
|
||||
The fun part comes - translating the text!
|
||||
|
||||
The first thing we recommend is translating the part of the `_toctree.yml` file that corresponds to your doc chapter. This file is used to render the table of contents on the website.
|
||||
|
||||
> 🙋 If the `_toctree.yml` file doesn't yet exist for your language, you can create one by copy-pasting from the English version and deleting the sections unrelated to your chapter. Just make sure it exists in the `docs/source/LANG-ID/` directory!
|
||||
|
||||
The fields you should add are `local` (with the name of the file containing the translation; e.g. `autoclass_tutorial`), and `title` (with the title of the doc in your language; e.g. `Load pretrained instances with an AutoClass`) -- as a reference, here is the `_toctree.yml` for [English](https://github.com/huggingface/transformers/blob/main/docs/source/en/_toctree.yml):
|
||||
|
||||
```yaml
|
||||
- sections:
|
||||
- local: pipeline_tutorial # Do not change this! Use the same name for your .md file
|
||||
title: Pipelines for inference # Translate this!
|
||||
...
|
||||
title: Tutorials # Translate this!
|
||||
```
|
||||
|
||||
Once you have translated the `_toctree.yml` file, you can start translating the [MDX](https://mdxjs.com/) files associated with your docs chapter.
|
||||
|
||||
> 🙋 If you'd like others to help you with the translation, you should [open an issue](https://github.com/huggingface/transformers/issues) and tag @stevhliu and @MKhalusova.
|
||||
@ -1,14 +1,9 @@
|
||||
# docstyle-ignore
|
||||
INSTALL_CONTENT = """
|
||||
# Transformers installation
|
||||
! pip install transformers datasets evaluate accelerate
|
||||
! pip install transformers datasets
|
||||
# To install from source instead of the last release, comment the command above and uncomment the following one.
|
||||
# ! pip install git+https://github.com/huggingface/transformers.git
|
||||
"""
|
||||
|
||||
notebook_first_cells = [{"type": "code", "content": INSTALL_CONTENT}]
|
||||
black_avoid_patterns = {
|
||||
"{processor_class}": "FakeProcessorClass",
|
||||
"{model_class}": "FakeModelClass",
|
||||
"{object_class}": "FakeObjectClass",
|
||||
}
|
||||
|
||||
376
docs/source/_toctree.yml
Normal file
376
docs/source/_toctree.yml
Normal file
@ -0,0 +1,376 @@
|
||||
- sections:
|
||||
- local: index
|
||||
title: 🤗 Transformers
|
||||
- local: quicktour
|
||||
title: Quick tour
|
||||
- local: installation
|
||||
title: Installation
|
||||
- local: philosophy
|
||||
title: Philosophy
|
||||
- local: glossary
|
||||
title: Glossary
|
||||
title: Get started
|
||||
- sections:
|
||||
- local: pipeline_tutorial
|
||||
title: Pipelines for inference
|
||||
- local: autoclass_tutorial
|
||||
title: Load pretrained instances with an AutoClass
|
||||
- local: preprocessing
|
||||
title: Preprocess
|
||||
- local: task_summary
|
||||
title: Summary of the tasks
|
||||
- local: model_summary
|
||||
title: Summary of the models
|
||||
- local: training
|
||||
title: Fine-tuning a pretrained model
|
||||
- local: accelerate
|
||||
title: Distributed training with 🤗 Accelerate
|
||||
- local: model_sharing
|
||||
title: Share a model
|
||||
- local: tokenizer_summary
|
||||
title: Summary of the tokenizers
|
||||
- local: multilingual
|
||||
title: Multi-lingual models
|
||||
title: Tutorials
|
||||
- sections:
|
||||
- local: create_a_model
|
||||
title: Create a custom model
|
||||
- local: multilingual
|
||||
title: Inference for multilingual models
|
||||
- local: troubleshooting
|
||||
title: Troubleshooting
|
||||
- local: custom_datasets
|
||||
title: Fine-tuning with custom datasets
|
||||
- sections:
|
||||
- local: tasks/sequence_classification
|
||||
title: Text classification
|
||||
- local: tasks/token_classification
|
||||
title: Token classification
|
||||
- local: tasks/question_answering
|
||||
title: Question answering
|
||||
- local: tasks/language_modeling
|
||||
title: Language modeling
|
||||
- local: tasks/translation
|
||||
title: Translation
|
||||
- local: tasks/summarization
|
||||
title: Summarization
|
||||
- local: tasks/multiple_choice
|
||||
title: Multiple choice
|
||||
title: Fine-tune for downstream tasks
|
||||
- local: run_scripts
|
||||
title: Train with a script
|
||||
- local: notebooks
|
||||
title: "🤗 Transformers Notebooks"
|
||||
- local: sagemaker
|
||||
title: Run training on Amazon SageMaker
|
||||
- local: community
|
||||
title: Community
|
||||
- local: converting_tensorflow_models
|
||||
title: Converting Tensorflow Checkpoints
|
||||
- local: migration
|
||||
title: Migrating from previous packages
|
||||
- local: contributing
|
||||
title: How to contribute to transformers?
|
||||
- local: add_new_model
|
||||
title: "How to add a model to 🤗 Transformers?"
|
||||
- local: add_new_pipeline
|
||||
title: "How to add a pipeline to 🤗 Transformers?"
|
||||
- local: fast_tokenizers
|
||||
title: "Using tokenizers from 🤗 Tokenizers"
|
||||
- local: performance
|
||||
title: 'Performance and Scalability: How To Fit a Bigger Model and Train It Faster'
|
||||
- local: parallelism
|
||||
title: Model Parallelism
|
||||
- local: testing
|
||||
title: Testing
|
||||
- local: debugging
|
||||
title: Debugging
|
||||
- local: serialization
|
||||
title: Exporting 🤗 Transformers models
|
||||
- local: custom_models
|
||||
title: Sharing custom models
|
||||
- local: pr_checks
|
||||
title: Checks on a Pull Request
|
||||
title: How-to guides
|
||||
- sections:
|
||||
- local: bertology
|
||||
title: BERTology
|
||||
- local: perplexity
|
||||
title: Perplexity of fixed-length models
|
||||
- local: benchmarks
|
||||
title: Benchmarks
|
||||
title: Research
|
||||
- sections:
|
||||
- sections:
|
||||
- local: main_classes/callback
|
||||
title: Callbacks
|
||||
- local: main_classes/configuration
|
||||
title: Configuration
|
||||
- local: main_classes/data_collator
|
||||
title: Data Collator
|
||||
- local: main_classes/keras_callbacks
|
||||
title: Keras callbacks
|
||||
- local: main_classes/logging
|
||||
title: Logging
|
||||
- local: main_classes/model
|
||||
title: Models
|
||||
- local: main_classes/onnx
|
||||
title: ONNX
|
||||
- local: main_classes/optimizer_schedules
|
||||
title: Optimization
|
||||
- local: main_classes/output
|
||||
title: Model outputs
|
||||
- local: main_classes/pipelines
|
||||
title: Pipelines
|
||||
- local: main_classes/processors
|
||||
title: Processors
|
||||
- local: main_classes/tokenizer
|
||||
title: Tokenizer
|
||||
- local: main_classes/trainer
|
||||
title: Trainer
|
||||
- local: main_classes/deepspeed
|
||||
title: DeepSpeed Integration
|
||||
- local: main_classes/feature_extractor
|
||||
title: Feature Extractor
|
||||
title: Main Classes
|
||||
- sections:
|
||||
- local: model_doc/albert
|
||||
title: ALBERT
|
||||
- local: model_doc/auto
|
||||
title: Auto Classes
|
||||
- local: model_doc/bart
|
||||
title: BART
|
||||
- local: model_doc/barthez
|
||||
title: BARThez
|
||||
- local: model_doc/bartpho
|
||||
title: BARTpho
|
||||
- local: model_doc/beit
|
||||
title: BEiT
|
||||
- local: model_doc/bert
|
||||
title: BERT
|
||||
- local: model_doc/bertweet
|
||||
title: Bertweet
|
||||
- local: model_doc/bert-generation
|
||||
title: BertGeneration
|
||||
- local: model_doc/bert-japanese
|
||||
title: BertJapanese
|
||||
- local: model_doc/big_bird
|
||||
title: BigBird
|
||||
- local: model_doc/bigbird_pegasus
|
||||
title: BigBirdPegasus
|
||||
- local: model_doc/blenderbot
|
||||
title: Blenderbot
|
||||
- local: model_doc/blenderbot-small
|
||||
title: Blenderbot Small
|
||||
- local: model_doc/bort
|
||||
title: BORT
|
||||
- local: model_doc/byt5
|
||||
title: ByT5
|
||||
- local: model_doc/camembert
|
||||
title: CamemBERT
|
||||
- local: model_doc/canine
|
||||
title: CANINE
|
||||
- local: model_doc/convnext
|
||||
title: ConvNeXT
|
||||
- local: model_doc/clip
|
||||
title: CLIP
|
||||
- local: model_doc/convbert
|
||||
title: ConvBERT
|
||||
- local: model_doc/cpm
|
||||
title: CPM
|
||||
- local: model_doc/ctrl
|
||||
title: CTRL
|
||||
- local: model_doc/data2vec
|
||||
title: Data2Vec
|
||||
- local: model_doc/deberta
|
||||
title: DeBERTa
|
||||
- local: model_doc/deberta-v2
|
||||
title: DeBERTa-v2
|
||||
- local: model_doc/deit
|
||||
title: DeiT
|
||||
- local: model_doc/detr
|
||||
title: DETR
|
||||
- local: model_doc/dialogpt
|
||||
title: DialoGPT
|
||||
- local: model_doc/distilbert
|
||||
title: DistilBERT
|
||||
- local: model_doc/dpr
|
||||
title: DPR
|
||||
- local: model_doc/electra
|
||||
title: ELECTRA
|
||||
- local: model_doc/encoder-decoder
|
||||
title: Encoder Decoder Models
|
||||
- local: model_doc/flaubert
|
||||
title: FlauBERT
|
||||
- local: model_doc/fnet
|
||||
title: FNet
|
||||
- local: model_doc/fsmt
|
||||
title: FSMT
|
||||
- local: model_doc/funnel
|
||||
title: Funnel Transformer
|
||||
- local: model_doc/herbert
|
||||
title: HerBERT
|
||||
- local: model_doc/ibert
|
||||
title: I-BERT
|
||||
- local: model_doc/imagegpt
|
||||
title: ImageGPT
|
||||
- local: model_doc/layoutlm
|
||||
title: LayoutLM
|
||||
- local: model_doc/layoutlmv2
|
||||
title: LayoutLMV2
|
||||
- local: model_doc/layoutxlm
|
||||
title: LayoutXLM
|
||||
- local: model_doc/led
|
||||
title: LED
|
||||
- local: model_doc/longformer
|
||||
title: Longformer
|
||||
- local: model_doc/luke
|
||||
title: LUKE
|
||||
- local: model_doc/lxmert
|
||||
title: LXMERT
|
||||
- local: model_doc/marian
|
||||
title: MarianMT
|
||||
- local: model_doc/maskformer
|
||||
title: MaskFormer
|
||||
- local: model_doc/m2m_100
|
||||
title: M2M100
|
||||
- local: model_doc/mbart
|
||||
title: MBart and MBart-50
|
||||
- local: model_doc/megatron-bert
|
||||
title: MegatronBERT
|
||||
- local: model_doc/megatron_gpt2
|
||||
title: MegatronGPT2
|
||||
- local: model_doc/mluke
|
||||
title: MLUKE
|
||||
- local: model_doc/mobilebert
|
||||
title: MobileBERT
|
||||
- local: model_doc/mluke
|
||||
title: mLUKE
|
||||
- local: model_doc/mpnet
|
||||
title: MPNet
|
||||
- local: model_doc/mt5
|
||||
title: MT5
|
||||
- local: model_doc/nystromformer
|
||||
title: Nyströmformer
|
||||
- local: model_doc/openai-gpt
|
||||
title: OpenAI GPT
|
||||
- local: model_doc/gpt2
|
||||
title: OpenAI GPT2
|
||||
- local: model_doc/gptj
|
||||
title: GPT-J
|
||||
- local: model_doc/gpt_neo
|
||||
title: GPT Neo
|
||||
- local: model_doc/hubert
|
||||
title: Hubert
|
||||
- local: model_doc/perceiver
|
||||
title: Perceiver
|
||||
- local: model_doc/pegasus
|
||||
title: Pegasus
|
||||
- local: model_doc/phobert
|
||||
title: PhoBERT
|
||||
- local: model_doc/plbart
|
||||
title: PLBart
|
||||
- local: model_doc/poolformer
|
||||
title: PoolFormer
|
||||
- local: model_doc/prophetnet
|
||||
title: ProphetNet
|
||||
- local: model_doc/qdqbert
|
||||
title: QDQBert
|
||||
- local: model_doc/rag
|
||||
title: RAG
|
||||
- local: model_doc/realm
|
||||
title: REALM
|
||||
- local: model_doc/reformer
|
||||
title: Reformer
|
||||
- local: model_doc/rembert
|
||||
title: RemBERT
|
||||
- local: model_doc/retribert
|
||||
title: RetriBERT
|
||||
- local: model_doc/roberta
|
||||
title: RoBERTa
|
||||
- local: model_doc/roformer
|
||||
title: RoFormer
|
||||
- local: model_doc/segformer
|
||||
title: SegFormer
|
||||
- local: model_doc/sew
|
||||
title: SEW
|
||||
- local: model_doc/sew-d
|
||||
title: SEW-D
|
||||
- local: model_doc/speech-encoder-decoder
|
||||
title: Speech Encoder Decoder Models
|
||||
- local: model_doc/speech_to_text
|
||||
title: Speech2Text
|
||||
- local: model_doc/speech_to_text_2
|
||||
title: Speech2Text2
|
||||
- local: model_doc/splinter
|
||||
title: Splinter
|
||||
- local: model_doc/squeezebert
|
||||
title: SqueezeBERT
|
||||
- local: model_doc/swin
|
||||
title: Swin Transformer
|
||||
- local: model_doc/t5
|
||||
title: T5
|
||||
- local: model_doc/t5v1.1
|
||||
title: T5v1.1
|
||||
- local: model_doc/tapas
|
||||
title: TAPAS
|
||||
- local: model_doc/transfo-xl
|
||||
title: Transformer XL
|
||||
- local: model_doc/trocr
|
||||
title: TrOCR
|
||||
- local: model_doc/unispeech
|
||||
title: UniSpeech
|
||||
- local: model_doc/unispeech-sat
|
||||
title: UniSpeech-SAT
|
||||
- local: model_doc/vilt
|
||||
title: ViLT
|
||||
- local: model_doc/vision-encoder-decoder
|
||||
title: Vision Encoder Decoder Models
|
||||
- local: model_doc/vision-text-dual-encoder
|
||||
title: Vision Text Dual Encoder
|
||||
- local: model_doc/vit
|
||||
title: Vision Transformer (ViT)
|
||||
- local: model_doc/vit_mae
|
||||
title: ViTMAE
|
||||
- local: model_doc/visual_bert
|
||||
title: VisualBERT
|
||||
- local: model_doc/wav2vec2
|
||||
title: Wav2Vec2
|
||||
- local: model_doc/wav2vec2_phoneme
|
||||
title: Wav2Vec2Phoneme
|
||||
- local: model_doc/wavlm
|
||||
title: WavLM
|
||||
- local: model_doc/xglm
|
||||
title: XGLM
|
||||
- local: model_doc/xlm
|
||||
title: XLM
|
||||
- local: model_doc/xlm-prophetnet
|
||||
title: XLM-ProphetNet
|
||||
- local: model_doc/xlm-roberta
|
||||
title: XLM-RoBERTa
|
||||
- local: model_doc/xlm-roberta-xl
|
||||
title: XLM-RoBERTa-XL
|
||||
- local: model_doc/xlnet
|
||||
title: XLNet
|
||||
- local: model_doc/xlsr_wav2vec2
|
||||
title: XLSR-Wav2Vec2
|
||||
- local: model_doc/xls_r
|
||||
title: XLS-R
|
||||
- local: model_doc/yoso
|
||||
title: YOSO
|
||||
title: Models
|
||||
- sections:
|
||||
- local: internal/modeling_utils
|
||||
title: Custom Layers and Utilities
|
||||
- local: internal/pipelines_utils
|
||||
title: Utilities for pipelines
|
||||
- local: internal/tokenization_utils
|
||||
title: Utilities for Tokenizers
|
||||
- local: internal/trainer_utils
|
||||
title: Utilities for Trainer
|
||||
- local: internal/generation_utils
|
||||
title: Utilities for Generation
|
||||
- local: internal/file_utils
|
||||
title: General Utilities
|
||||
title: Internal Helpers
|
||||
title: API
|
||||
@ -8,15 +8,11 @@ http://www.apache.org/licenses/LICENSE-2.0
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# Distributed training with 🤗 Accelerate
|
||||
|
||||
As models get bigger, parallelism has emerged as a strategy for training larger models on limited hardware and accelerating training speed by several orders of magnitude. At Hugging Face, we created the [🤗 Accelerate](https://huggingface.co/docs/accelerate) library to help users easily train a 🤗 Transformers model on any type of distributed setup, whether it is multiple GPU's on one machine or multiple GPU's across several machines. In this tutorial, learn how to customize your native PyTorch training loop to enable training in a distributed environment.
|
||||
As models get bigger, parallelism has emerged as a strategy for training larger models on limited hardware and accelerating training speed by several orders of magnitude. At Hugging Face, we created the [🤗 Accelerate](https://huggingface.co/docs/accelerate/index.html) library to help users easily train a 🤗 Transformers model on any type of distributed setup, whether it is multiple GPU's on one machine or multiple GPU's across several machines. In this tutorial, learn how to customize your native PyTorch training loop to enable training in a distributed environment.
|
||||
|
||||
## Setup
|
||||
|
||||
@ -26,7 +22,7 @@ Get started by installing 🤗 Accelerate:
|
||||
pip install accelerate
|
||||
```
|
||||
|
||||
Then import and create an [`~accelerate.Accelerator`] object. The [`~accelerate.Accelerator`] will automatically detect your type of distributed setup and initialize all the necessary components for training. You don't need to explicitly place your model on a device.
|
||||
Then import and create an [`Accelerator`](https://huggingface.co/docs/accelerate/accelerator.html#accelerate.Accelerator) object. `Accelerator` will automatically detect your type of distributed setup and initialize all the necessary components for training. You don't need to explicitly place your model on a device.
|
||||
|
||||
```py
|
||||
>>> from accelerate import Accelerator
|
||||
@ -36,7 +32,7 @@ Then import and create an [`~accelerate.Accelerator`] object. The [`~accelerate.
|
||||
|
||||
## Prepare to accelerate
|
||||
|
||||
The next step is to pass all the relevant training objects to the [`~accelerate.Accelerator.prepare`] method. This includes your training and evaluation DataLoaders, a model and an optimizer:
|
||||
The next step is to pass all the relevant training objects to the [`prepare`](https://huggingface.co/docs/accelerate/accelerator.html#accelerate.Accelerator.prepare) method. This includes your training and evaluation DataLoaders, a model and an optimizer:
|
||||
|
||||
```py
|
||||
>>> train_dataloader, eval_dataloader, model, optimizer = accelerator.prepare(
|
||||
@ -46,7 +42,7 @@ The next step is to pass all the relevant training objects to the [`~accelerate.
|
||||
|
||||
## Backward
|
||||
|
||||
The last addition is to replace the typical `loss.backward()` in your training loop with 🤗 Accelerate's [`~accelerate.Accelerator.backward`]method:
|
||||
The last addition is to replace the typical `loss.backward()` in your training loop with 🤗 Accelerate's [`backward`](https://huggingface.co/docs/accelerate/accelerator.html#accelerate.Accelerator.backward) method:
|
||||
|
||||
```py
|
||||
>>> for epoch in range(num_epochs):
|
||||
@ -125,7 +121,7 @@ accelerate launch train.py
|
||||
|
||||
### Train with a notebook
|
||||
|
||||
🤗 Accelerate can also run in a notebook if you're planning on using Colaboratory's TPUs. Wrap all the code responsible for training in a function, and pass it to [`~accelerate.notebook_launcher`]:
|
||||
🤗 Accelerate can also run in a notebook if you're planning on using Colaboratory's TPUs. Wrap all the code responsible for training in a function, and pass it to `notebook_launcher`:
|
||||
|
||||
```py
|
||||
>>> from accelerate import notebook_launcher
|
||||
@ -133,4 +129,4 @@ accelerate launch train.py
|
||||
>>> notebook_launcher(training_function)
|
||||
```
|
||||
|
||||
For more information about 🤗 Accelerate and its rich features, refer to the [documentation](https://huggingface.co/docs/accelerate).
|
||||
For more information about 🤗 Accelerate and it's rich features, refer to the [documentation](https://huggingface.co/docs/accelerate/index.html).
|
||||
@ -7,28 +7,36 @@ http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# How to add a model to 🤗 Transformers?
|
||||
|
||||
The 🤗 Transformers library is often able to offer new models thanks to community contributors. But this can be a challenging project and requires an in-depth knowledge of the 🤗 Transformers library and the model to implement. At Hugging Face, we're trying to empower more of the community to actively add models and we've put together this guide to walk you through the process of adding a PyTorch model (make sure you have [PyTorch installed](https://pytorch.org/get-started/locally/)).
|
||||
Adding a new model is often difficult and requires an in-depth knowledge of the 🤗 Transformers library and ideally also
|
||||
of the model's original repository. At Hugging Face, we are trying to empower the community more and more to add models
|
||||
independently. Thus, for some new models that the community wants to be added to 🤗 Transformers, we create a customized
|
||||
*call-for-model-addition* that explains step-by-step how to add the requested model. With this
|
||||
*call-for-model-addition*, we want to teach a motivated and experienced contributor of the community how to port a
|
||||
model to 🤗 Transformers.
|
||||
|
||||
Along the way, you'll:
|
||||
If this sounds like something you would be interested in, feel free to check out the currently open
|
||||
“calls-for-model-addition” [here](https://github.com/huggingface/transformers/tree/master/templates/adding_a_new_model/open_model_proposals/README.md)
|
||||
and to contact us.
|
||||
|
||||
- get insights into open-source best practices
|
||||
- understand the design principles behind one of the most popular deep learning libraries
|
||||
- learn how to efficiently test large models
|
||||
- learn how to integrate Python utilities like `black`, `ruff`, and `make fix-copies` to ensure clean and readable code
|
||||
If selected, you will then work closely with one member of the Hugging Face team to integrate the model into 🤗
|
||||
Transformers. By doing so, you will both gain a theoretical and deep practical understanding of the proposed model. But
|
||||
more importantly, you will have made a major open-source contribution to 🤗 Transformers. Along the way, you will:
|
||||
|
||||
A Hugging Face team member will be available to help you along the way so you'll never be alone. 🤗 ❤️
|
||||
- get insights into open-source best practices
|
||||
- understand the design principles of one of the most popular NLP libraries
|
||||
- learn how to do efficiently test large NLP models
|
||||
- learn how to integrate Python utilities like `black`, `isort`, `make fix-copies` into a library to always
|
||||
ensure clean and readable code
|
||||
|
||||
To get started, open a [New model addition](https://github.com/huggingface/transformers/issues/new?assignees=&labels=New+model&template=new-model-addition.yml) issue for the model you want to see in 🤗 Transformers. If you're not especially picky about contributing a specific model, you can filter by the [New model label](https://github.com/huggingface/transformers/labels/New%20model) to see if there are any unclaimed model requests and work on it.
|
||||
We are also more than happy if you want to add a model that cannot be found in the “calls-for-model-addition” folder.
|
||||
The following sections explain in detail how to add a new model. It might also be very helpful to check out already
|
||||
added models to see if those resemble the model you would like to add [here](https://github.com/huggingface/transformers/pulls?q=is%3Apr+label%3A%22PR+for+Model+Addition%22+is%3Aclosed).
|
||||
|
||||
Once you've opened a new model request, the first step is to get familiar with 🤗 Transformers if you aren't already!
|
||||
To start, let's try to get a general overview of the Transformers library.
|
||||
|
||||
## General overview of 🤗 Transformers
|
||||
|
||||
@ -46,7 +54,7 @@ A good first starting point to better understand the library is to read the [doc
|
||||
|
||||
In our opinion, the library's code is not just a means to provide a product, *e.g.* the ability to use BERT for
|
||||
inference, but also as the very product that we want to improve. Hence, when adding a model, the user is not only the
|
||||
person who will use your model, but also everybody who will read, try to understand, and possibly tweak your code.
|
||||
person that will use your model, but also everybody that will read, try to understand, and possibly tweak your code.
|
||||
|
||||
With this in mind, let's go a bit deeper into the general library design.
|
||||
|
||||
@ -83,28 +91,10 @@ model.config # model has access to its config
|
||||
Similar to the model, the configuration inherits basic serialization and deserialization functionalities from
|
||||
[`PretrainedConfig`]. Note that the configuration and the model are always serialized into two
|
||||
different formats - the model to a *pytorch_model.bin* file and the configuration to a *config.json* file. Calling
|
||||
the model's [`~PreTrainedModel.save_pretrained`] will automatically call
|
||||
the config's [`~PretrainedConfig.save_pretrained`], so that both model and configuration are saved.
|
||||
[`~PreTrainedModel.save_pretrained`] will automatically call
|
||||
[`~PretrainedConfig.save_pretrained`], so that both model and configuration are saved.
|
||||
|
||||
|
||||
### Code style
|
||||
|
||||
When coding your new model, keep in mind that Transformers is an opinionated library and we have a few quirks of our
|
||||
own regarding how code should be written :-)
|
||||
|
||||
1. The forward pass of your model should be fully written in the modeling file while being fully independent of other
|
||||
models in the library. If you want to reuse a block from another model, copy the code and paste it with a
|
||||
`# Copied from` comment on top (see [here](https://github.com/huggingface/transformers/blob/v4.17.0/src/transformers/models/roberta/modeling_roberta.py#L160)
|
||||
for a good example and [there](pr_checks#check-copies) for more documentation on Copied from).
|
||||
2. The code should be fully understandable, even by a non-native English speaker. This means you should pick
|
||||
descriptive variable names and avoid abbreviations. As an example, `activation` is preferred to `act`.
|
||||
One-letter variable names are strongly discouraged unless it's an index in a for loop.
|
||||
3. More generally we prefer longer explicit code to short magical one.
|
||||
4. Avoid subclassing `nn.Sequential` in PyTorch but subclass `nn.Module` and write the forward pass, so that anyone
|
||||
using your code can quickly debug it by adding print statements or breaking points.
|
||||
5. Your function signature should be type-annotated. For the rest, good variable names are way more readable and
|
||||
understandable than type annotations.
|
||||
|
||||
### Overview of tokenizers
|
||||
|
||||
Not quite ready yet :-( This section will be added soon!
|
||||
@ -125,9 +115,9 @@ From experience, we can tell you that the most important things to keep in mind
|
||||
friends. Note that it might very well happen that your model's tokenizer is based on one model implementation, and
|
||||
your model's modeling code on another one. *E.g.* FSMT's modeling code is based on BART, while FSMT's tokenizer code
|
||||
is based on XLM.
|
||||
- It's more of an engineering challenge than a scientific challenge. You should spend more time creating an
|
||||
efficient debugging environment rather than trying to understand all theoretical aspects of the model in the paper.
|
||||
- Ask for help, when you're stuck! Models are the core component of 🤗 Transformers so we at Hugging Face are more
|
||||
- It's more of an engineering challenge than a scientific challenge. You should spend more time on creating an
|
||||
efficient debugging environment than trying to understand all theoretical aspects of the model in the paper.
|
||||
- Ask for help, when you're stuck! Models are the core component of 🤗 Transformers so that we at Hugging Face are more
|
||||
than happy to help you at every step to add your model. Don't hesitate to ask if you notice you are not making
|
||||
progress.
|
||||
|
||||
@ -136,24 +126,24 @@ In the following, we try to give you a general recipe that we found most useful
|
||||
The following list is a summary of everything that has to be done to add a model and can be used by you as a To-Do
|
||||
List:
|
||||
|
||||
☐ (Optional) Understood the model's theoretical aspects<br>
|
||||
☐ Prepared 🤗 Transformers dev environment<br>
|
||||
☐ Set up debugging environment of the original repository<br>
|
||||
☐ Created script that successfully runs the `forward()` pass using the original repository and checkpoint<br>
|
||||
☐ Successfully added the model skeleton to 🤗 Transformers<br>
|
||||
☐ Successfully converted original checkpoint to 🤗 Transformers checkpoint<br>
|
||||
☐ Successfully ran `forward()` pass in 🤗 Transformers that gives identical output to original checkpoint<br>
|
||||
☐ Finished model tests in 🤗 Transformers<br>
|
||||
☐ Successfully added tokenizer in 🤗 Transformers<br>
|
||||
☐ Run end-to-end integration tests<br>
|
||||
☐ Finished docs<br>
|
||||
☐ Uploaded model weights to the Hub<br>
|
||||
☐ Submitted the pull request<br>
|
||||
☐ (Optional) Added a demo notebook
|
||||
- 1. ☐ (Optional) Understood theoretical aspects
|
||||
- 2. ☐ Prepared transformers dev environment
|
||||
- 3. ☐ Set up debugging environment of the original repository
|
||||
- 4. ☐ Created script that successfully runs forward pass using original repository and checkpoint
|
||||
- 5. ☐ Successfully added the model skeleton to Transformers
|
||||
- 6. ☐ Successfully converted original checkpoint to Transformers checkpoint
|
||||
- 7. ☐ Successfully ran forward pass in Transformers that gives identical output to original checkpoint
|
||||
- 8. ☐ Finished model tests in Transformers
|
||||
- 9. ☐ Successfully added Tokenizer in Transformers
|
||||
- 10. ☐ Run end-to-end integration tests
|
||||
- 11. ☐ Finished docs
|
||||
- 12. ☐ Uploaded model weights to the hub
|
||||
- 13. ☐ Submitted the pull request
|
||||
- 14. ☐ (Optional) Added a demo notebook
|
||||
|
||||
To begin with, we usually recommend starting by getting a good theoretical understanding of `BrandNewBert`. However,
|
||||
To begin with, we usually recommend to start by getting a good theoretical understanding of `BrandNewBert`. However,
|
||||
if you prefer to understand the theoretical aspects of the model *on-the-job*, then it is totally fine to directly dive
|
||||
into the `BrandNewBert`'s code-base. This option might suit you better if your engineering skills are better than
|
||||
into the `BrandNewBert`'s code-base. This option might suit you better, if your engineering skills are better than
|
||||
your theoretical skill, if you have trouble understanding `BrandNewBert`'s paper, or if you just enjoy programming
|
||||
much more than reading scientific papers.
|
||||
|
||||
@ -169,7 +159,7 @@ theoretical aspects, but rather focus on the practical ones, namely:
|
||||
encoder-decoder model? Look at the [model_summary](model_summary) if you're not familiar with the differences between those.
|
||||
- What are the applications of *brand_new_bert*? Text classification? Text generation? Seq2Seq tasks, *e.g.,*
|
||||
summarization?
|
||||
- What is the novel feature of the model that makes it different from BERT/GPT-2/BART?
|
||||
- What is the novel feature of the model making it different from BERT/GPT-2/BART?
|
||||
- Which of the already existing [🤗 Transformers models](https://huggingface.co/transformers/#contents) is most
|
||||
similar to *brand_new_bert*?
|
||||
- What type of tokenizer is used? A sentencepiece tokenizer? Word piece tokenizer? Is it the same tokenizer as used
|
||||
@ -186,46 +176,38 @@ its attention layer, etc. We will be more than happy to help you.
|
||||
|
||||
2. Clone your `transformers` fork to your local disk, and add the base repository as a remote:
|
||||
|
||||
```bash
|
||||
git clone https://github.com/[your Github handle]/transformers.git
|
||||
cd transformers
|
||||
git remote add upstream https://github.com/huggingface/transformers.git
|
||||
```
|
||||
```bash
|
||||
git clone https://github.com/[your Github handle]/transformers.git
|
||||
cd transformers
|
||||
git remote add upstream https://github.com/huggingface/transformers.git
|
||||
```
|
||||
|
||||
3. Set up a development environment, for instance by running the following command:
|
||||
|
||||
```bash
|
||||
python -m venv .env
|
||||
source .env/bin/activate
|
||||
pip install -e ".[dev]"
|
||||
```
|
||||
```bash
|
||||
python -m venv .env
|
||||
source .env/bin/activate
|
||||
pip install -e ".[dev]"
|
||||
```
|
||||
|
||||
Depending on your OS, and since the number of optional dependencies of Transformers is growing, you might get a
|
||||
failure with this command. If that's the case make sure to install the Deep Learning framework you are working with
|
||||
(PyTorch, TensorFlow and/or Flax) then do:
|
||||
and return to the parent directory
|
||||
|
||||
```bash
|
||||
pip install -e ".[quality]"
|
||||
```
|
||||
|
||||
which should be enough for most use cases. You can then return to the parent directory
|
||||
|
||||
```bash
|
||||
cd ..
|
||||
```
|
||||
```bash
|
||||
cd ..
|
||||
```
|
||||
|
||||
4. We recommend adding the PyTorch version of *brand_new_bert* to Transformers. To install PyTorch, please follow the
|
||||
instructions on https://pytorch.org/get-started/locally/.
|
||||
|
||||
**Note:** You don't need to have CUDA installed. Making the new model work on CPU is sufficient.
|
||||
**Note:** You don't need to have CUDA installed. Making the new model work on CPU is sufficient.
|
||||
|
||||
5. To port *brand_new_bert*, you will also need access to its original repository:
|
||||
|
||||
```bash
|
||||
git clone https://github.com/org_that_created_brand_new_bert_org/brand_new_bert.git
|
||||
cd brand_new_bert
|
||||
pip install -e .
|
||||
```
|
||||
```bash
|
||||
git clone https://github.com/org_that_created_brand_new_bert_org/brand_new_bert.git
|
||||
cd brand_new_bert
|
||||
pip install -e .
|
||||
```
|
||||
|
||||
Now you have set up a development environment to port *brand_new_bert* to 🤗 Transformers.
|
||||
|
||||
@ -255,7 +237,7 @@ figure out the following:
|
||||
- How can you debug the model in the original environment of the repo? Do you have to add *print* statements, can you
|
||||
work with an interactive debugger like *ipdb*, or should you use an efficient IDE to debug the model, like PyCharm?
|
||||
|
||||
It is very important that before you start the porting process, you can **efficiently** debug code in the original
|
||||
It is very important that before you start the porting process, that you can **efficiently** debug code in the original
|
||||
repository! Also, remember that you are working with an open-source library, so do not hesitate to open an issue, or
|
||||
even a pull request in the original repository. The maintainers of this repository are most likely very happy about
|
||||
someone looking into their code!
|
||||
@ -274,10 +256,10 @@ In general, there are two possible debugging environments for running the origin
|
||||
Jupyter notebooks have the advantage that they allow for cell-by-cell execution which can be helpful to better split
|
||||
logical components from one another and to have faster debugging cycles as intermediate results can be stored. Also,
|
||||
notebooks are often easier to share with other contributors, which might be very helpful if you want to ask the Hugging
|
||||
Face team for help. If you are familiar with Jupyter notebooks, we strongly recommend you work with them.
|
||||
Face team for help. If you are familiar with Jupiter notebooks, we strongly recommend you to work with them.
|
||||
|
||||
The obvious disadvantage of Jupyter notebooks is that if you are not used to working with them you will have to spend
|
||||
some time adjusting to the new programming environment and you might not be able to use your known debugging tools
|
||||
some time adjusting to the new programming environment and that you might not be able to use your known debugging tools
|
||||
anymore, like `ipdb`.
|
||||
|
||||
For each code-base, a good first step is always to load a **small** pretrained checkpoint and to be able to reproduce a
|
||||
@ -323,7 +305,7 @@ example is [T5's MeshTensorFlow](https://github.com/tensorflow/mesh/tree/master/
|
||||
very complex and does not offer a simple way to decompose the model into its sub-components. For such libraries, one
|
||||
often relies on verifying print statements.
|
||||
|
||||
No matter which strategy you choose, the recommended procedure is often the same that you should start to debug the
|
||||
No matter which strategy you choose, the recommended procedure is often the same in that you should start to debug the
|
||||
starting layers first and the ending layers last.
|
||||
|
||||
It is recommended that you retrieve the output, either by print statements or sub-component functions, of the following
|
||||
@ -355,10 +337,10 @@ We expect that every model added to 🤗 Transformers passes a couple of integra
|
||||
model and the reimplemented version in 🤗 Transformers have to give the exact same output up to a precision of 0.001!
|
||||
Since it is normal that the exact same model written in different libraries can give a slightly different output
|
||||
depending on the library framework, we accept an error tolerance of 1e-3 (0.001). It is not enough if the model gives
|
||||
nearly the same output, they have to be almost identical. Therefore, you will certainly compare the intermediate
|
||||
nearly the same output, they have to be the almost identical. Therefore, you will certainly compare the intermediate
|
||||
outputs of the 🤗 Transformers version multiple times against the intermediate outputs of the original implementation of
|
||||
*brand_new_bert* in which case an **efficient** debugging environment of the original repository is absolutely
|
||||
important. Here is some advice to make your debugging environment as efficient as possible.
|
||||
important. Here is some advice is to make your debugging environment as efficient as possible.
|
||||
|
||||
- Find the best way of debugging intermediate results. Is the original repository written in PyTorch? Then you should
|
||||
probably take the time to write a longer script that decomposes the original model into smaller sub-components to
|
||||
@ -381,7 +363,7 @@ important. Here is some advice to make your debugging environment as efficient a
|
||||
original code so that you can directly input the ids instead of an input string.
|
||||
- Make sure that the model in your debugging setup is **not** in training mode, which often causes the model to yield
|
||||
random outputs due to multiple dropout layers in the model. Make sure that the forward pass in your debugging
|
||||
environment is **deterministic** so that the dropout layers are not used. Or use *transformers.utils.set_seed*
|
||||
environment is **deterministic** so that the dropout layers are not used. Or use *transformers.file_utils.set_seed*
|
||||
if the old and new implementations are in the same framework.
|
||||
|
||||
The following section gives you more specific details/tips on how you can do this for *brand_new_bert*.
|
||||
@ -398,14 +380,15 @@ In the special case that you are adding a model whose architecture exactly match
|
||||
existing model you only have to add a conversion script as described in [this section](#write-a-conversion-script).
|
||||
In this case, you can just re-use the whole model architecture of the already existing model.
|
||||
|
||||
Otherwise, let's start generating a new model. We recommend using the following script to add a model starting from
|
||||
an existing model:
|
||||
Otherwise, let's start generating a new model with the amazing Cookiecutter!
|
||||
|
||||
```bash
|
||||
transformers-cli add-new-model-like
|
||||
```
|
||||
**Use the Cookiecutter to automatically generate the model's code**
|
||||
|
||||
You will be prompted with a questionnaire to fill in the basic information of your model.
|
||||
To begin with head over to the [🤗 Transformers templates](https://github.com/huggingface/transformers/tree/master/templates/adding_a_new_model) to make use of our
|
||||
`cookiecutter` implementation to automatically generate all the relevant files for your model. Again, we recommend
|
||||
only adding the PyTorch version of the model at first. Make sure you follow the instructions of the `README.md` on
|
||||
the [🤗 Transformers templates](https://github.com/huggingface/transformers/tree/master/templates/adding_a_new_model)
|
||||
carefully.
|
||||
|
||||
**Open a Pull Request on the main huggingface/transformers repo**
|
||||
|
||||
@ -415,31 +398,31 @@ side-by-side on integrating the model into 🤗 Transformers.
|
||||
|
||||
You should do the following:
|
||||
|
||||
1. Create a branch with a descriptive name from your main branch
|
||||
1. Create a branch with a descriptive name from your master branch
|
||||
|
||||
```bash
|
||||
git checkout -b add_brand_new_bert
|
||||
```
|
||||
```bash
|
||||
git checkout -b add_brand_new_bert
|
||||
```
|
||||
|
||||
2. Commit the automatically generated code:
|
||||
|
||||
```bash
|
||||
git add .
|
||||
git commit
|
||||
```
|
||||
```bash
|
||||
git add .
|
||||
git commit
|
||||
```
|
||||
|
||||
3. Fetch and rebase to current main
|
||||
3. Fetch and rebase to current master
|
||||
|
||||
```bash
|
||||
git fetch upstream
|
||||
git rebase upstream/main
|
||||
```
|
||||
```bash
|
||||
git fetch upstream
|
||||
git rebase upstream/master
|
||||
```
|
||||
|
||||
4. Push the changes to your account using:
|
||||
|
||||
```bash
|
||||
git push -u origin a-descriptive-name-for-my-changes
|
||||
```
|
||||
```bash
|
||||
git push -u origin a-descriptive-name-for-my-changes
|
||||
```
|
||||
|
||||
5. Once you are satisfied, go to the webpage of your fork on GitHub. Click on “Pull request”. Make sure to add the
|
||||
GitHub handle of some members of the Hugging Face team as reviewers, so that the Hugging Face team gets notified for
|
||||
@ -447,13 +430,13 @@ You should do the following:
|
||||
|
||||
6. Change the PR into a draft by clicking on “Convert to draft” on the right of the GitHub pull request web page.
|
||||
|
||||
In the following, whenever you have made some progress, don't forget to commit your work and push it to your account so
|
||||
that it shows in the pull request. Additionally, you should make sure to update your work with the current main from
|
||||
In the following, whenever you have done some progress, don't forget to commit your work and push it to your account so
|
||||
that it shows in the pull request. Additionally, you should make sure to update your work with the current master from
|
||||
time to time by doing:
|
||||
|
||||
```bash
|
||||
git fetch upstream
|
||||
git merge upstream/main
|
||||
git merge upstream/master
|
||||
```
|
||||
|
||||
In general, all questions you might have regarding the model or your implementation should be asked in your PR and
|
||||
@ -479,7 +462,7 @@ Now you can finally start coding :). The generated code in
|
||||
`src/transformers/models/brand_new_bert/modeling_brand_new_bert.py` will either have the same architecture as BERT if
|
||||
it's an encoder-only model or BART if it's an encoder-decoder model. At this point, you should remind yourself what
|
||||
you've learned in the beginning about the theoretical aspects of the model: *How is the model different from BERT or
|
||||
BART?*". Implement those changes which often means changing the *self-attention* layer, the order of the normalization
|
||||
BART?*". Implement those changes which often means to change the *self-attention* layer, the order of the normalization
|
||||
layer, etc… Again, it is often useful to look at the similar architecture of already existing models in Transformers to
|
||||
get a better feeling of how your model should be implemented.
|
||||
|
||||
@ -500,48 +483,6 @@ model = BrandNewBertModel(BrandNewBertConfig())
|
||||
The above command will create a model according to the default parameters as defined in `BrandNewBertConfig()` with
|
||||
random weights, thus making sure that the `init()` methods of all components works.
|
||||
|
||||
Note that all random initialization should happen in the `_init_weights` method of your `BrandnewBertPreTrainedModel`
|
||||
class. It should initialize all leaf modules depending on the variables of the config. Here is an example with the
|
||||
BERT `_init_weights` method:
|
||||
|
||||
```py
|
||||
def _init_weights(self, module):
|
||||
"""Initialize the weights"""
|
||||
if isinstance(module, nn.Linear):
|
||||
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
||||
if module.bias is not None:
|
||||
module.bias.data.zero_()
|
||||
elif isinstance(module, nn.Embedding):
|
||||
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
||||
if module.padding_idx is not None:
|
||||
module.weight.data[module.padding_idx].zero_()
|
||||
elif isinstance(module, nn.LayerNorm):
|
||||
module.bias.data.zero_()
|
||||
module.weight.data.fill_(1.0)
|
||||
```
|
||||
|
||||
You can have some more custom schemes if you need a special initialization for some modules. For instance, in
|
||||
`Wav2Vec2ForPreTraining`, the last two linear layers need to have the initialization of the regular PyTorch `nn.Linear`
|
||||
but all the other ones should use an initialization as above. This is coded like this:
|
||||
|
||||
```py
|
||||
def _init_weights(self, module):
|
||||
"""Initialize the weights"""
|
||||
if isinstance(module, Wav2Vec2ForPreTraining):
|
||||
module.project_hid.reset_parameters()
|
||||
module.project_q.reset_parameters()
|
||||
module.project_hid._is_hf_initialized = True
|
||||
module.project_q._is_hf_initialized = True
|
||||
elif isinstance(module, nn.Linear):
|
||||
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
||||
if module.bias is not None:
|
||||
module.bias.data.zero_()
|
||||
```
|
||||
|
||||
The `_is_hf_initialized` flag is internally used to make sure we only initialize a submodule once. By setting it to
|
||||
`True` for `module.project_q` and `module.project_hid`, we make sure the custom initialization we did is not overridden later on,
|
||||
the `_init_weights` function won't be applied to them.
|
||||
|
||||
**6. Write a conversion script**
|
||||
|
||||
Next, you should write a conversion script that lets you convert the checkpoint you used to debug *brand_new_bert* in
|
||||
@ -553,7 +494,7 @@ slightly adapt it for your use case. Don't hesitate to ask the Hugging Face team
|
||||
existing conversion script for your model.
|
||||
|
||||
- If you are porting a model from TensorFlow to PyTorch, a good starting point might be BERT's conversion script [here](https://github.com/huggingface/transformers/blob/7acfa95afb8194f8f9c1f4d2c6028224dbed35a2/src/transformers/models/bert/modeling_bert.py#L91)
|
||||
- If you are porting a model from PyTorch to PyTorch, a good starting point might be BART's conversion script [here](https://github.com/huggingface/transformers/blob/main/src/transformers/models/bart/convert_bart_original_pytorch_checkpoint_to_pytorch.py)
|
||||
- If you are porting a model from PyTorch to PyTorch, a good starting point might be BART's conversion script [here](https://github.com/huggingface/transformers/blob/master/src/transformers/models/bart/convert_bart_original_pytorch_checkpoint_to_pytorch.py)
|
||||
|
||||
In the following, we'll quickly explain how PyTorch models store layer weights and define layer names. In PyTorch, the
|
||||
name of a layer is defined by the name of the class attribute you give the layer. Let's define a dummy model in
|
||||
@ -661,7 +602,7 @@ PyTorch's implementation of a layer requires the weight to be transposed beforeh
|
||||
|
||||
Finally, you should also check that **all** required weights are initialized and print out all checkpoint weights that
|
||||
were not used for initialization to make sure the model is correctly converted. It is completely normal, that the
|
||||
conversion trials fail with either a wrong shape statement or a wrong name assignment. This is most likely because either
|
||||
conversion trials fail with either a wrong shape statement or wrong name assignment. This is most likely because either
|
||||
you used incorrect parameters in `BrandNewBertConfig()`, have a wrong architecture in the 🤗 Transformers
|
||||
implementation, you have a bug in the `init()` functions of one of the components of the 🤗 Transformers
|
||||
implementation or you need to transpose one of the checkpoint weights.
|
||||
@ -678,7 +619,7 @@ model.save_pretrained("/path/to/converted/checkpoint/folder")
|
||||
**7. Implement the forward pass**
|
||||
|
||||
Having managed to correctly load the pretrained weights into the 🤗 Transformers implementation, you should now make
|
||||
sure that the forward pass is correctly implemented. In [Get familiar with the original repository](#3-4-run-a-pretrained-checkpoint-using-the-original-repository), you have already created a script that runs a forward
|
||||
sure that the forward pass is correctly implemented. In [Get familiar with the original repository](#run-a-pretrained-checkpoint-using-the-original-repository), you have already created a script that runs a forward
|
||||
pass of the model using the original repository. Now you should write an analogous script using the 🤗 Transformers
|
||||
implementation instead of the original one. It should look as follows:
|
||||
|
||||
@ -718,7 +659,7 @@ in the 🤗 Transformers implementation. From our experience, a simple and effic
|
||||
in both the original implementation and 🤗 Transformers implementation, at the same positions in the network
|
||||
respectively, and to successively remove print statements showing the same values for intermediate presentations.
|
||||
|
||||
When you're confident that both implementations yield the same output, verify the outputs with
|
||||
When you're confident that both implementations yield the same output, verifying the outputs with
|
||||
`torch.allclose(original_output, output, atol=1e-3)`, you're done with the most difficult part! Congratulations - the
|
||||
work left to be done should be a cakewalk 😊.
|
||||
|
||||
@ -727,11 +668,10 @@ work left to be done should be a cakewalk 😊.
|
||||
At this point, you have successfully added a new model. However, it is very much possible that the model does not yet
|
||||
fully comply with the required design. To make sure, the implementation is fully compatible with 🤗 Transformers, all
|
||||
common tests should pass. The Cookiecutter should have automatically added a test file for your model, probably under
|
||||
the same `tests/models/brand_new_bert/test_modeling_brand_new_bert.py`. Run this test file to verify that all common
|
||||
tests pass:
|
||||
the same `tests/test_modeling_brand_new_bert.py`. Run this test file to verify that all common tests pass:
|
||||
|
||||
```bash
|
||||
pytest tests/models/brand_new_bert/test_modeling_brand_new_bert.py
|
||||
pytest tests/test_modeling_brand_new_bert.py
|
||||
```
|
||||
|
||||
Having fixed all common tests, it is now crucial to ensure that all the nice work you have done is well tested, so that
|
||||
@ -740,12 +680,12 @@ Having fixed all common tests, it is now crucial to ensure that all the nice wor
|
||||
- b) Future changes to your model will not break any important feature of the model.
|
||||
|
||||
At first, integration tests should be added. Those integration tests essentially do the same as the debugging scripts
|
||||
you used earlier to implement the model to 🤗 Transformers. A template of those model tests has already added by the
|
||||
you used earlier to implement the model to 🤗 Transformers. A template of those model tests is already added by the
|
||||
Cookiecutter, called `BrandNewBertModelIntegrationTests` and only has to be filled out by you. To ensure that those
|
||||
tests are passing, run
|
||||
|
||||
```bash
|
||||
RUN_SLOW=1 pytest -sv tests/models/brand_new_bert/test_modeling_brand_new_bert.py::BrandNewBertModelIntegrationTests
|
||||
RUN_SLOW=1 pytest -sv tests/test_modeling_brand_new_bert.py::BrandNewBertModelIntegrationTests
|
||||
```
|
||||
|
||||
<Tip>
|
||||
@ -755,7 +695,7 @@ In case you are using Windows, you should replace `RUN_SLOW=1` with `SET RUN_SLO
|
||||
</Tip>
|
||||
|
||||
Second, all features that are special to *brand_new_bert* should be tested additionally in a separate test under
|
||||
`BrandNewBertModelTester`/`BrandNewBertModelTest`. This part is often forgotten but is extremely useful in two
|
||||
`BrandNewBertModelTester`/``BrandNewBertModelTest`. This part is often forgotten but is extremely useful in two
|
||||
ways:
|
||||
|
||||
- It helps to transfer the knowledge you have acquired during the model addition to the community by showing how the
|
||||
@ -765,14 +705,14 @@ ways:
|
||||
|
||||
**9. Implement the tokenizer**
|
||||
|
||||
Next, we should add the tokenizer of *brand_new_bert*. Usually, the tokenizer is equivalent to or very similar to an
|
||||
Next, we should add the tokenizer of *brand_new_bert*. Usually, the tokenizer is equivalent or very similar to an
|
||||
already existing tokenizer of 🤗 Transformers.
|
||||
|
||||
It is very important to find/extract the original tokenizer file and to manage to load this file into the 🤗
|
||||
Transformers' implementation of the tokenizer.
|
||||
|
||||
To ensure that the tokenizer works correctly, it is recommended to first create a script in the original repository
|
||||
that inputs a string and returns the `input_ids`. It could look similar to this (in pseudo-code):
|
||||
that inputs a string and returns the `input_ids``. It could look similar to this (in pseudo-code):
|
||||
|
||||
```python
|
||||
input_str = "This is a long example input string containing special characters .$?-, numbers 2872 234 12 and words."
|
||||
@ -803,8 +743,7 @@ contain a couple of hard-coded integration tests.
|
||||
**10. Run End-to-end integration tests**
|
||||
|
||||
Having added the tokenizer, you should also add a couple of end-to-end integration tests using both the model and the
|
||||
tokenizer to `tests/models/brand_new_bert/test_modeling_brand_new_bert.py` in 🤗 Transformers.
|
||||
Such a test should show on a meaningful
|
||||
tokenizer to `tests/test_modeling_brand_new_bert.py` in 🤗 Transformers. Such a test should show on a meaningful
|
||||
text-to-text sample that the 🤗 Transformers implementation works as expected. A meaningful text-to-text sample can
|
||||
include *e.g.* a source-to-target-translation pair, an article-to-summary pair, a question-to-answer pair, etc… If none
|
||||
of the ported checkpoints has been fine-tuned on a downstream task it is enough to simply rely on the model tests. In a
|
||||
@ -817,13 +756,13 @@ tests for you.
|
||||
|
||||
Now, all the necessary functionality for *brand_new_bert* is added - you're almost done! The only thing left to add is
|
||||
a nice docstring and a doc page. The Cookiecutter should have added a template file called
|
||||
`docs/source/model_doc/brand_new_bert.md` that you should fill out. Users of your model will usually first look at
|
||||
`docs/source/model_doc/brand_new_bert.rst` that you should fill out. Users of your model will usually first look at
|
||||
this page before using your model. Hence, the documentation must be understandable and concise. It is very useful for
|
||||
the community to add some *Tips* to show how the model should be used. Don't hesitate to ping the Hugging Face team
|
||||
regarding the docstrings.
|
||||
|
||||
Next, make sure that the docstring added to `src/transformers/models/brand_new_bert/modeling_brand_new_bert.py` is
|
||||
correct and included all necessary inputs and outputs. We have a detailed guide about writing documentation and our docstring format [here](writing-documentation). It is always good to remind oneself that documentation should
|
||||
correct and included all necessary inputs and outputs. We have a detailed guide about writing documentation and our docstring format [here](writing-documentation). It is always to good to remind oneself that documentation should
|
||||
be treated at least as carefully as the code in 🤗 Transformers since the documentation is usually the first contact
|
||||
point of the community with the model.
|
||||
|
||||
@ -859,9 +798,13 @@ checkpoint and to get the required access rights to be able to upload the model
|
||||
*brand_new_bert*. The `push_to_hub` method, present in all models in `transformers`, is a quick and efficient way to push your checkpoint to the hub. A little snippet is pasted below:
|
||||
|
||||
```python
|
||||
brand_new_bert.push_to_hub("brand_new_bert")
|
||||
# Uncomment the following line to push to an organization.
|
||||
# brand_new_bert.push_to_hub("<organization>/brand_new_bert")
|
||||
brand_new_bert.push_to_hub(
|
||||
repo_path_or_name="brand_new_bert",
|
||||
# Uncomment the following line to push to an organization
|
||||
# organization="<ORGANIZATION>",
|
||||
commit_message="Add model",
|
||||
use_temp_dir=True,
|
||||
)
|
||||
```
|
||||
|
||||
It is worth spending some time to create fitting model cards for each checkpoint. The model cards should highlight the
|
||||
@ -876,7 +819,7 @@ fine-tuned on a downstream task. This is not mandatory to merge your PR, but ver
|
||||
|
||||
**14. Submit your finished PR**
|
||||
|
||||
You're done programming now and can move to the last step, which is getting your PR merged into main. Usually, the
|
||||
You're done programming now and can move to the last step, which is getting your PR merged into master. Usually, the
|
||||
Hugging Face team should have helped you already at this point, but it is worth taking some time to give your finished
|
||||
PR a nice description and eventually add comments to your code, if you want to point out certain design choices to your
|
||||
reviewer.
|
||||
@ -886,6 +829,6 @@ reviewer.
|
||||
Now, it's time to get some credit from the community for your work! Having completed a model addition is a major
|
||||
contribution to Transformers and the whole NLP community. Your code and the ported pre-trained models will certainly be
|
||||
used by hundreds and possibly even thousands of developers and researchers. You should be proud of your work and share
|
||||
your achievements with the community.
|
||||
your achievement with the community.
|
||||
|
||||
**You have made another model that is super easy to access for everyone in the community! 🤯**
|
||||
@ -7,16 +7,9 @@ http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# How to create a custom pipeline?
|
||||
|
||||
In this guide, we will see how to create a custom pipeline and share it on the [Hub](https://hf.co/models) or add it to the
|
||||
🤗 Transformers library.
|
||||
# How to add a pipeline to 🤗 Transformers?
|
||||
|
||||
First and foremost, you need to decide the raw entries the pipeline will be able to take. It can be strings, raw bytes,
|
||||
dictionaries or whatever seems to be the most likely desired input. Try to keep these inputs as pure Python as possible
|
||||
@ -26,8 +19,8 @@ pipeline (`preprocess`).
|
||||
Then define the `outputs`. Same policy as the `inputs`. The simpler, the better. Those will be the outputs of
|
||||
`postprocess` method.
|
||||
|
||||
Start by inheriting the base class `Pipeline` with the 4 methods needed to implement `preprocess`,
|
||||
`_forward`, `postprocess`, and `_sanitize_parameters`.
|
||||
Start by inheriting the base class `Pipeline`. with the 4 methods needed to implement `preprocess`,
|
||||
`_forward`, `postprocess` and `_sanitize_parameters`.
|
||||
|
||||
|
||||
```python
|
||||
@ -66,14 +59,14 @@ contain more information and is usually a `Dict`.
|
||||
called method as it contains safeguards to make sure everything is working on the expected device. If anything is
|
||||
linked to a real model it belongs in the `_forward` method, anything else is in the preprocess/postprocess.
|
||||
|
||||
`postprocess` methods will take the output of `_forward` and turn it into the final output that was decided
|
||||
`postprocess` methods will take the output of `_forward` and turn it into the final output that were decided
|
||||
earlier.
|
||||
|
||||
`_sanitize_parameters` exists to allow users to pass any parameters whenever they wish, be it at initialization
|
||||
time `pipeline(...., maybe_arg=4)` or at call time `pipe = pipeline(...); output = pipe(...., maybe_arg=4)`.
|
||||
|
||||
The returns of `_sanitize_parameters` are the 3 dicts of kwargs that will be passed directly to `preprocess`,
|
||||
`_forward`, and `postprocess`. Don't fill anything if the caller didn't call with any extra parameter. That
|
||||
`_forward` and `postprocess`. Don't fill anything if the caller didn't call with any extra parameter. That
|
||||
allows to keep the default arguments in the function definition which is always more "natural".
|
||||
|
||||
A classic example would be a `top_k` argument in the post processing in classification tasks.
|
||||
@ -106,138 +99,31 @@ def _sanitize_parameters(self, **kwargs):
|
||||
|
||||
postprocess_kwargs = {}
|
||||
if "top_k" in kwargs:
|
||||
postprocess_kwargs["top_k"] = kwargs["top_k"]
|
||||
preprocess_kwargs["top_k"] = kwargs["top_k"]
|
||||
return preprocess_kwargs, {}, postprocess_kwargs
|
||||
```
|
||||
|
||||
Try to keep the inputs/outputs very simple and ideally JSON-serializable as it makes the pipeline usage very easy
|
||||
without requiring users to understand new kinds of objects. It's also relatively common to support many different types
|
||||
of arguments for ease of use (audio files, which can be filenames, URLs or pure bytes)
|
||||
without requiring users to understand new kind of objects. It's also relatively common to support many different types
|
||||
of arguments for ease of use (audio files, can be filenames, URLs or pure bytes)
|
||||
|
||||
|
||||
|
||||
## Adding it to the list of supported tasks
|
||||
|
||||
To register your `new-task` to the list of supported tasks, you have to add it to the `PIPELINE_REGISTRY`:
|
||||
Go to `src/transformers/pipelines/__init__.py` and fill in `SUPPORTED_TASKS` with your newly created pipeline.
|
||||
If possible it should provide a default model.
|
||||
|
||||
```python
|
||||
from transformers.pipelines import PIPELINE_REGISTRY
|
||||
## Adding tests
|
||||
|
||||
PIPELINE_REGISTRY.register_pipeline(
|
||||
"new-task",
|
||||
pipeline_class=MyPipeline,
|
||||
pt_model=AutoModelForSequenceClassification,
|
||||
)
|
||||
```
|
||||
|
||||
You can specify a default model if you want, in which case it should come with a specific revision (which can be the name of a branch or a commit hash, here we took `"abcdef"`) as well as the type:
|
||||
|
||||
```python
|
||||
PIPELINE_REGISTRY.register_pipeline(
|
||||
"new-task",
|
||||
pipeline_class=MyPipeline,
|
||||
pt_model=AutoModelForSequenceClassification,
|
||||
default={"pt": ("user/awesome_model", "abcdef")},
|
||||
type="text", # current support type: text, audio, image, multimodal
|
||||
)
|
||||
```
|
||||
|
||||
## Share your pipeline on the Hub
|
||||
|
||||
To share your custom pipeline on the Hub, you just have to save the custom code of your `Pipeline` subclass in a
|
||||
python file. For instance, let's say we want to use a custom pipeline for sentence pair classification like this:
|
||||
|
||||
```py
|
||||
import numpy as np
|
||||
|
||||
from transformers import Pipeline
|
||||
|
||||
|
||||
def softmax(outputs):
|
||||
maxes = np.max(outputs, axis=-1, keepdims=True)
|
||||
shifted_exp = np.exp(outputs - maxes)
|
||||
return shifted_exp / shifted_exp.sum(axis=-1, keepdims=True)
|
||||
|
||||
|
||||
class PairClassificationPipeline(Pipeline):
|
||||
def _sanitize_parameters(self, **kwargs):
|
||||
preprocess_kwargs = {}
|
||||
if "second_text" in kwargs:
|
||||
preprocess_kwargs["second_text"] = kwargs["second_text"]
|
||||
return preprocess_kwargs, {}, {}
|
||||
|
||||
def preprocess(self, text, second_text=None):
|
||||
return self.tokenizer(text, text_pair=second_text, return_tensors=self.framework)
|
||||
|
||||
def _forward(self, model_inputs):
|
||||
return self.model(**model_inputs)
|
||||
|
||||
def postprocess(self, model_outputs):
|
||||
logits = model_outputs.logits[0].numpy()
|
||||
probabilities = softmax(logits)
|
||||
|
||||
best_class = np.argmax(probabilities)
|
||||
label = self.model.config.id2label[best_class]
|
||||
score = probabilities[best_class].item()
|
||||
logits = logits.tolist()
|
||||
return {"label": label, "score": score, "logits": logits}
|
||||
```
|
||||
|
||||
The implementation is framework agnostic, and will work for PyTorch and TensorFlow models. If we have saved this in
|
||||
a file named `pair_classification.py`, we can then import it and register it like this:
|
||||
|
||||
```py
|
||||
from pair_classification import PairClassificationPipeline
|
||||
from transformers.pipelines import PIPELINE_REGISTRY
|
||||
from transformers import AutoModelForSequenceClassification, TFAutoModelForSequenceClassification
|
||||
|
||||
PIPELINE_REGISTRY.register_pipeline(
|
||||
"pair-classification",
|
||||
pipeline_class=PairClassificationPipeline,
|
||||
pt_model=AutoModelForSequenceClassification,
|
||||
tf_model=TFAutoModelForSequenceClassification,
|
||||
)
|
||||
```
|
||||
|
||||
Once this is done, we can use it with a pretrained model. For instance `sgugger/finetuned-bert-mrpc` has been
|
||||
fine-tuned on the MRPC dataset, which classifies pairs of sentences as paraphrases or not.
|
||||
|
||||
```py
|
||||
from transformers import pipeline
|
||||
|
||||
classifier = pipeline("pair-classification", model="sgugger/finetuned-bert-mrpc")
|
||||
```
|
||||
|
||||
Then we can share it on the Hub by using the `push_to_hub` method:
|
||||
|
||||
```py
|
||||
classifier.push_to_hub("test-dynamic-pipeline")
|
||||
```
|
||||
|
||||
This will copy the file where you defined `PairClassificationPipeline` inside the folder `"test-dynamic-pipeline"`,
|
||||
along with saving the model and tokenizer of the pipeline, before pushing everything into the repository
|
||||
`{your_username}/test-dynamic-pipeline`. After that, anyone can use it as long as they provide the option
|
||||
`trust_remote_code=True`:
|
||||
|
||||
```py
|
||||
from transformers import pipeline
|
||||
|
||||
classifier = pipeline(model="{your_username}/test-dynamic-pipeline", trust_remote_code=True)
|
||||
```
|
||||
|
||||
## Add the pipeline to 🤗 Transformers
|
||||
|
||||
If you want to contribute your pipeline to 🤗 Transformers, you will need to add a new module in the `pipelines` submodule
|
||||
with the code of your pipeline, then add it to the list of tasks defined in `pipelines/__init__.py`.
|
||||
|
||||
Then you will need to add tests. Create a new file `tests/test_pipelines_MY_PIPELINE.py` with examples of the other tests.
|
||||
Create a new file `tests/test_pipelines_MY_PIPELINE.py` with example with the other tests.
|
||||
|
||||
The `run_pipeline_test` function will be very generic and run on small random models on every possible
|
||||
architecture as defined by `model_mapping` and `tf_model_mapping`.
|
||||
|
||||
This is very important to test future compatibility, meaning if someone adds a new model for
|
||||
`XXXForQuestionAnswering` then the pipeline test will attempt to run on it. Because the models are random it's
|
||||
impossible to check for actual values, that's why there is a helper `ANY` that will simply attempt to match the
|
||||
impossible to check for actual values, that's why There is a helper `ANY` that will simply attempt to match the
|
||||
output of the pipeline TYPE.
|
||||
|
||||
You also *need* to implement 2 (ideally 4) tests.
|
||||
@ -248,7 +134,7 @@ You also *need* to implement 2 (ideally 4) tests.
|
||||
and test the pipeline outputs. The results should be the same as `test_small_model_pt`.
|
||||
- `test_large_model_pt` (`optional`): Tests the pipeline on a real pipeline where the results are supposed to
|
||||
make sense. These tests are slow and should be marked as such. Here the goal is to showcase the pipeline and to make
|
||||
sure there is no drift in future releases.
|
||||
sure there is no drift in future releases
|
||||
- `test_large_model_tf` (`optional`): Tests the pipeline on a real pipeline where the results are supposed to
|
||||
make sense. These tests are slow and should be marked as such. Here the goal is to showcase the pipeline and to make
|
||||
sure there is no drift in future releases.
|
||||
sure there is no drift in future releases
|
||||
104
docs/source/autoclass_tutorial.mdx
Normal file
104
docs/source/autoclass_tutorial.mdx
Normal file
@ -0,0 +1,104 @@
|
||||
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# Load pretrained instances with an AutoClass
|
||||
|
||||
With so many different Transformer architectures, it can be challenging to create one for your checkpoint. As a part of 🤗 Transformers core philosophy to make the library easy, simple and flexible to use, an `AutoClass` automatically infer and load the correct architecture from a given checkpoint. The `from_pretrained` method lets you quickly load a pretrained model for any architecture so you don't have to devote time and resources to train a model from scratch. Producing this type of checkpoint-agnostic code means if your code works for one checkpoint, it will work with another checkpoint - as long as it was trained for a similar task - even if the architecture is different.
|
||||
|
||||
<Tip>
|
||||
|
||||
Remember, architecture refers to the skeleton of the model and checkpoints are the weights for a given architecture. For example, [BERT](https://huggingface.co/bert-base-uncased) is an architecture, while `bert-base-uncased` is a checkpoint. Model is a general term that can mean either architecture or checkpoint.
|
||||
|
||||
</Tip>
|
||||
|
||||
In this tutorial, learn to:
|
||||
|
||||
* Load a pretrained tokenizer.
|
||||
* Load a pretrained feature extractor.
|
||||
* Load a pretrained processor.
|
||||
* Load a pretrained model.
|
||||
|
||||
## AutoTokenizer
|
||||
|
||||
Nearly every NLP task begins with a tokenizer. A tokenizer converts your input into a format that can be processed by the model.
|
||||
|
||||
Load a tokenizer with [`AutoTokenizer.from_pretrained`]:
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoTokenizer
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
||||
```
|
||||
|
||||
Then tokenize your input as shown below:
|
||||
|
||||
```py
|
||||
>>> sequence = "In a hole in the ground there lived a hobbit."
|
||||
>>> print(tokenizer(sequence))
|
||||
{'input_ids': [101, 1999, 1037, 4920, 1999, 1996, 2598, 2045, 2973, 1037, 7570, 10322, 4183, 1012, 102],
|
||||
'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
||||
'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}
|
||||
```
|
||||
|
||||
## AutoFeatureExtractor
|
||||
|
||||
For audio and vision tasks, a feature extractor processes the audio signal or image into the correct input format.
|
||||
|
||||
Load a feature extractor with [`AutoFeatureExtractor.from_pretrained`]:
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoFeatureExtractor
|
||||
|
||||
>>> feature_extractor = AutoFeatureExtractor.from_pretrained(
|
||||
... "ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition"
|
||||
... )
|
||||
```
|
||||
|
||||
## AutoProcessor
|
||||
|
||||
Multimodal tasks require a processor that combines two types of preprocessing tools. For example, the [LayoutLMV2](model_doc/layoutlmv2) model requires a feature extractor to handle images and a tokenizer to handle text; a processor combines both of them.
|
||||
|
||||
Load a processor with [`AutoProcessor.from_pretrained`]:
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoProcessor
|
||||
|
||||
>>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv2-base-uncased")
|
||||
```
|
||||
|
||||
## AutoModel
|
||||
|
||||
Finally, the `AutoModelFor` classes let you load a pretrained model for a given task (see [here](model_doc/auto) for a complete list of available tasks). For example, load a model for sequence classification with [`AutoModelForSequenceClassification.from_pretrained`]:
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoModelForSequenceClassification
|
||||
|
||||
>>> model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased")
|
||||
===PT-TF-SPLIT===
|
||||
>>> from transformers import TFAutoModelForSequenceClassification
|
||||
|
||||
>>> model = TFAutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased")
|
||||
```
|
||||
|
||||
Easily reuse the same checkpoint to load an architecture for a different task:
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoModelForTokenClassification
|
||||
|
||||
>>> model = AutoModelForTokenClassification.from_pretrained("distilbert-base-uncased")
|
||||
===PT-TF-SPLIT===
|
||||
>>> from transformers import TFAutoModelForTokenClassification
|
||||
|
||||
>>> model = TFAutoModelForTokenClassification.from_pretrained("distilbert-base-uncased")
|
||||
```
|
||||
|
||||
Generally, we recommend using the `AutoTokenizer` class and the `AutoModelFor` class to load pretrained instances of models. This will ensure you load the correct architecture every time. In the next [tutorial](preprocessing), learn how to use your newly loaded tokenizer, feature extractor and processor to preprocess a dataset for fine-tuning.
|
||||
@ -8,10 +8,6 @@ http://www.apache.org/licenses/LICENSE-2.0
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# Benchmarks
|
||||
@ -27,7 +23,7 @@ and memory complexity of Transformer models.
|
||||
|
||||
Let's take a look at how 🤗 Transformers models can be benchmarked, best practices, and already available benchmarks.
|
||||
|
||||
A notebook explaining in more detail how to benchmark 🤗 Transformers models can be found [here](https://github.com/huggingface/notebooks/tree/main/examples/benchmark.ipynb).
|
||||
A notebook explaining in more detail how to benchmark 🤗 Transformers models can be found [here](https://github.com/huggingface/notebooks/tree/master/examples/benchmark.ipynb).
|
||||
|
||||
## How to benchmark 🤗 Transformers models
|
||||
|
||||
@ -43,26 +39,19 @@ backward pass.
|
||||
The benchmark classes [`PyTorchBenchmark`] and [`TensorFlowBenchmark`] expect an object of type [`PyTorchBenchmarkArguments`] and
|
||||
[`TensorFlowBenchmarkArguments`], respectively, for instantiation. [`PyTorchBenchmarkArguments`] and [`TensorFlowBenchmarkArguments`] are data classes and contain all relevant configurations for their corresponding benchmark class. In the following example, it is shown how a BERT model of type _bert-base-cased_ can be benchmarked.
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
```py
|
||||
>>> from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments
|
||||
|
||||
>>> args = PyTorchBenchmarkArguments(models=["google-bert/bert-base-uncased"], batch_sizes=[8], sequence_lengths=[8, 32, 128, 512])
|
||||
>>> args = PyTorchBenchmarkArguments(models=["bert-base-uncased"], batch_sizes=[8], sequence_lengths=[8, 32, 128, 512])
|
||||
>>> benchmark = PyTorchBenchmark(args)
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
```py
|
||||
===PT-TF-SPLIT===
|
||||
>>> from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments
|
||||
|
||||
>>> args = TensorFlowBenchmarkArguments(
|
||||
... models=["google-bert/bert-base-uncased"], batch_sizes=[8], sequence_lengths=[8, 32, 128, 512]
|
||||
... models=["bert-base-uncased"], batch_sizes=[8], sequence_lengths=[8, 32, 128, 512]
|
||||
... )
|
||||
>>> benchmark = TensorFlowBenchmark(args)
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
Here, three arguments are given to the benchmark argument data classes, namely `models`, `batch_sizes`, and
|
||||
`sequence_lengths`. The argument `models` is required and expects a `list` of model identifiers from the
|
||||
@ -74,10 +63,11 @@ and `src/transformers/benchmark/benchmark_args_tf.py` (for Tensorflow). Alternat
|
||||
commands from root will print out a descriptive list of all configurable parameters for PyTorch and Tensorflow
|
||||
respectively.
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
```bash
|
||||
python examples/pytorch/benchmarking/run_benchmark.py --help
|
||||
|
||||
===PT-TF-SPLIT===
|
||||
python examples/tensorflow/benchmarking/run_benchmark_tf.py --help
|
||||
```
|
||||
|
||||
An instantiated benchmark object can then simply be run by calling `benchmark.run()`.
|
||||
@ -89,20 +79,20 @@ An instantiated benchmark object can then simply be run by calling `benchmark.ru
|
||||
--------------------------------------------------------------------------------
|
||||
Model Name Batch Size Seq Length Time in s
|
||||
--------------------------------------------------------------------------------
|
||||
google-bert/bert-base-uncased 8 8 0.006
|
||||
google-bert/bert-base-uncased 8 32 0.006
|
||||
google-bert/bert-base-uncased 8 128 0.018
|
||||
google-bert/bert-base-uncased 8 512 0.088
|
||||
bert-base-uncased 8 8 0.006
|
||||
bert-base-uncased 8 32 0.006
|
||||
bert-base-uncased 8 128 0.018
|
||||
bert-base-uncased 8 512 0.088
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
==================== INFERENCE - MEMORY - RESULT ====================
|
||||
--------------------------------------------------------------------------------
|
||||
Model Name Batch Size Seq Length Memory in MB
|
||||
--------------------------------------------------------------------------------
|
||||
google-bert/bert-base-uncased 8 8 1227
|
||||
google-bert/bert-base-uncased 8 32 1281
|
||||
google-bert/bert-base-uncased 8 128 1307
|
||||
google-bert/bert-base-uncased 8 512 1539
|
||||
bert-base-uncased 8 8 1227
|
||||
bert-base-uncased 8 32 1281
|
||||
bert-base-uncased 8 128 1307
|
||||
bert-base-uncased 8 512 1539
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
==================== ENVIRONMENT INFORMATION ====================
|
||||
@ -128,38 +118,28 @@ google-bert/bert-base-uncased 8 512 1539
|
||||
- gpu_power_watts: 280.0
|
||||
- gpu_performance_state: 2
|
||||
- use_tpu: False
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
```bash
|
||||
python examples/tensorflow/benchmarking/run_benchmark_tf.py --help
|
||||
```
|
||||
|
||||
An instantiated benchmark object can then simply be run by calling `benchmark.run()`.
|
||||
|
||||
```py
|
||||
>>> results = benchmark.run()
|
||||
>>> print(results)
|
||||
===PT-TF-SPLIT===
|
||||
>>> results = benchmark.run()
|
||||
>>> print(results)
|
||||
==================== INFERENCE - SPEED - RESULT ====================
|
||||
--------------------------------------------------------------------------------
|
||||
Model Name Batch Size Seq Length Time in s
|
||||
--------------------------------------------------------------------------------
|
||||
google-bert/bert-base-uncased 8 8 0.005
|
||||
google-bert/bert-base-uncased 8 32 0.008
|
||||
google-bert/bert-base-uncased 8 128 0.022
|
||||
google-bert/bert-base-uncased 8 512 0.105
|
||||
bert-base-uncased 8 8 0.005
|
||||
bert-base-uncased 8 32 0.008
|
||||
bert-base-uncased 8 128 0.022
|
||||
bert-base-uncased 8 512 0.105
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
==================== INFERENCE - MEMORY - RESULT ====================
|
||||
--------------------------------------------------------------------------------
|
||||
Model Name Batch Size Seq Length Memory in MB
|
||||
--------------------------------------------------------------------------------
|
||||
google-bert/bert-base-uncased 8 8 1330
|
||||
google-bert/bert-base-uncased 8 32 1330
|
||||
google-bert/bert-base-uncased 8 128 1330
|
||||
google-bert/bert-base-uncased 8 512 1770
|
||||
bert-base-uncased 8 8 1330
|
||||
bert-base-uncased 8 32 1330
|
||||
bert-base-uncased 8 128 1330
|
||||
bert-base-uncased 8 512 1770
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
==================== ENVIRONMENT INFORMATION ====================
|
||||
@ -186,8 +166,6 @@ google-bert/bert-base-uncased 8 512 1770
|
||||
- gpu_performance_state: 2
|
||||
- use_tpu: False
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
By default, the _time_ and the _required memory_ for _inference_ are benchmarked. In the example output above the first
|
||||
two sections show the result corresponding to _inference time_ and _inference memory_. In addition, all relevant
|
||||
@ -197,12 +175,10 @@ when adding the argument `save_to_csv=True` to [`PyTorchBenchmarkArguments`] and
|
||||
[`TensorFlowBenchmarkArguments`] respectively. In this case, every section is saved in a separate
|
||||
_.csv_ file. The path to each _.csv_ file can optionally be defined via the argument data classes.
|
||||
|
||||
Instead of benchmarking pre-trained models via their model identifier, _e.g._ `google-bert/bert-base-uncased`, the user can
|
||||
Instead of benchmarking pre-trained models via their model identifier, _e.g._ `bert-base-uncased`, the user can
|
||||
alternatively benchmark an arbitrary configuration of any available model class. In this case, a `list` of
|
||||
configurations must be inserted with the benchmark args as follows.
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
```py
|
||||
>>> from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments, BertConfig
|
||||
|
||||
@ -274,10 +250,8 @@ bert-6-lay 8 512 1359
|
||||
- gpu_power_watts: 280.0
|
||||
- gpu_performance_state: 2
|
||||
- use_tpu: False
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
```py
|
||||
|
||||
===PT-TF-SPLIT===
|
||||
>>> from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments, BertConfig
|
||||
|
||||
>>> args = TensorFlowBenchmarkArguments(
|
||||
@ -349,8 +323,6 @@ bert-6-lay 8 512 1540
|
||||
- gpu_performance_state: 2
|
||||
- use_tpu: False
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
Again, _inference time_ and _required memory_ for _inference_ are measured, but this time for customized configurations
|
||||
of the `BertModel` class. This feature can especially be helpful when deciding for which configuration the model
|
||||
@ -383,5 +355,5 @@ available [here](https://docs.google.com/spreadsheets/d/1sryqufw2D0XlUH4sq3e9Wnx
|
||||
|
||||
With the new _benchmark_ tools, it is easier than ever to share your benchmark results with the community
|
||||
|
||||
- [PyTorch Benchmarking Results](https://github.com/huggingface/transformers/tree/main/examples/pytorch/benchmarking/README.md).
|
||||
- [TensorFlow Benchmarking Results](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/benchmarking/README.md).
|
||||
- [PyTorch Benchmarking Results](https://github.com/huggingface/transformers/tree/master/examples/pytorch/benchmarking/README.md).
|
||||
- [TensorFlow Benchmarking Results](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/benchmarking/README.md).
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user