Compare commits

...

844 Commits

Author SHA1 Message Date
ca56cd7b31 v4.44.1 2024-08-20 19:41:53 +02:00
6e931e1647 Gemma2: fix FA2 generation (#32553)
fix FA2
2024-08-20 19:41:49 +02:00
74f57df61b Fix generate with inputs_embeds as input (#32493)
* I think inputs_embeds has ndim == 3

* fix sequence length catch

* add generate test

* [run-slow]olmo, persimmon, gemma, gemma2, qwen2, llama

* skip whisper

* fix bart test

* more fixes
2024-08-20 19:41:05 +02:00
084fe2ee6c Merge branch 'v4.44-release' of github.com:huggingface/transformers into v4.44-release 2024-08-20 19:41:05 +02:00
fff9be1545 Reduce the error log when using core models that need their weights renamed, and provide a step forward (#32656)
* Fin

* Modify msg

* Finish up nits
2024-08-20 19:41:05 +02:00
4fd0f4802b Fix VLM generation issues (#32836)
* fix in one commit

* add parameterized

* fix tests

* fix test flakiness

* maybe that's why flaky

* style

* flakiness...

---------

Co-authored-by: raushan <raushan@huggingface.co>
2024-08-20 19:41:05 +02:00
5c4b15ae01 fix multi-gpu with static cache (#32543) 2024-08-20 19:41:05 +02:00
b51a82a524 Revert PR 32299, flag users when Zero-3 was missed (#32851)
Revert PR 32299
2024-08-20 19:41:05 +02:00
0dca7d72b8 Use head_dim if in config for RoPE (#32495)
* use head_dim if in config for RoPE

* typo

* simplify with getattr
2024-08-20 19:41:05 +02:00
a3e77bae9a add back the position ids (#32554)
* add back the position ids

* fix failing test
2024-08-20 19:41:05 +02:00
9c7aa7b3c7 Automatically add transformers tag to the modelcard (#32623)
* Automatically add `transformers` tag to the modelcard

* Specify library_name and test
2024-08-20 19:41:05 +02:00
ed6acee21a Fix sliding window attention used in Gemma2FlashAttention2 (#32522)
* fix sliding window attention (flash2) in gemma2 model

* [run-slow] gemma

* fix slicing attention_mask for flash_attn2

* fix slicing attention_mask when flash_attn is used

* add missing comment

* slice the last seq_len tokens in the key, value states

* revert code of slicing key, value states
2024-08-20 19:41:05 +02:00
51741d7e46 Fix: FA2 with packed training (#32487)
* fix check

* add tests

* [run-slow] llama, gemma2

* oops, whisper actually runs but needed some special treatment
2024-08-20 19:41:05 +02:00
984bc11b08 Revert "fixes to properly shard FSDP across cpu and meta for cpu_effcient_loading for prequantized 4bit (#32276)" (#32477)
* Revert "fixes to properly shard FSDP across cpu and meta for cpu_efficient_loading for prequantized 4bit (#32276)"

This reverts commit 62c60a30181a65e1a3a7f19c3055a240a6a21335.

We uncovered an issue with this change that caused our training runs to hang.

* `is_torchdynamo_compiling` -- cast a wide exception net (#32476)

* cast a wide net

* make fix-copies with a few manual changes

* add copied from

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2024-08-06 20:35:22 +02:00
af61272239 is_torchdynamo_compiling -- cast a wide exception net (#32476)
* cast a wide net

* make fix-copies with a few manual changes

* add copied from
2024-08-06 20:35:17 +02:00
3e93524a13 release v4.44.0 2024-08-06 17:00:10 +02:00
80b90e7b2f Add codestral mamba2 (#32080)
* add new model like

* draft cuda forward - mismatched keys (sharding on conv1)

* match keys successfully

* fix split

* get generation/forward running (wrong gens, norm?)

* :update

* some refactoring

* fixes

* works up until copy to cache

* fix

* update

* NON WORKING VERSION

* version that work?

* nit

* fix config

* fix conversion script

* working cuda forward

* nit

* update

* simplifcation

* make mamba slow simple work

* no einops

* todo

* fix style

* no einops

* update fix no einsum

* nit

* remove einops

* bug: scan_output differs strongly

* add rms norm option

* fix fast + slow generation with and w/o cache ✔️

* draft integration tests

* remove a big chunk of the einsum

* fix slow, fast generations, without any einsum

* fix copies

* fix structure

* fix up modeling and tests

* fix tests

* clamping is indeed worse

* recover mamba2 cache test

* fix copies

* no cache position (yet)

* fix tf tests

* fix matmul for generate

* fixup

* skip cache tests for now

* [run-slow]mamba2

* tune out hidden states for padding

* test batched generation

* propagate attention mask changes

* fix past length

* fix integration test

* style

* address comments

* update readme

* add mamba2 version check

* fix tests

* [run-slow]mamba2

* skip edge tests

* [run-slow]mamba2

* last fixup

* [run-slow]mamba2

* update README

---------

Co-authored-by: Arthur Zucker <arthur.zucker@gmail.com>
2024-08-06 16:39:52 +02:00
3d8bd11942 Generate: fix end to end compilation (#32465) 2024-08-06 15:06:47 +01:00
6a03942db7 Add Nemotron HF Support (#31699)
* Add nemotron support

* fix inference

* add unit test

* add layernorm1p as a class to avoid meta device mismatch

* test fixed

* Add copied_from statements

* remove pretraining_tp args

* remove nemotronlayernorm

* force LN computation done in FP32

* remove nemotrontokenizer and use llamatokenizer

* license update

* add option for kv_channels for minitron8b

* remove assert

* o_proj fixed

* o_proj reshape

* add gated_proj option

* typo

* remove todos

* fix broken test after merging latest main

* remove nezha/nat after meging main

* chnage default config to 15b model

* add nemo conversion script

* rename conversion script

* remove gate_proj option

* pr comment resolved

* fix unit test

* rename kv_channels to head_dim

* resolve PR issue

* add nemotron md

* fix broken tests

* refactor rope for nemotron

* test fix

* remove linearscaling

* whitespace and import

* fix some copied-from

* code style fix

* reformatted

* add position_embedding to nemotronattention

* rope refactor to only use config, copied-from fix

* format

* Run make fix-copies

* nemotron md with autodoc

* doc  fix

* fix order

* pass check_config_docstrings.py

* fix config_attributes

* remove all llama BC related code

* Use PreTrainedTokenizerFast

* ruff check examples

* conversion script update

* add nemotron to toctree
2024-08-06 15:42:05 +02:00
36fd35e1cf Dependencies: fix typo (#32389)
deps_2
2024-08-06 12:36:33 +01:00
438d06c95a Fix get large model config for Switch Transformer encoder only tester (#32438) 2024-08-06 11:48:32 +01:00
fb66ef8147 Update kwargs validation for preprocess with decorator (#32024)
* BLIP preprocess

* BIT preprocess

* BRIDGETOWER preprocess

* CHAMELEON preprocess

* CHINESE_CLIP preprocess

* CONVNEXT preprocess

* DEIT preprocess

* DONUT preprocess

* DPT preprocess

* FLAVA preprocess

* EFFICIENTNET preprocess

* FUYU preprocess

* GLPN preprocess

* IMAGEGPT preprocess

* INTRUCTBLIPVIDEO preprocess

* VIVIT preprocess

* ZOEDEPTH preprocess

* VITMATTE preprocess

* VIT preprocess

* VILT preprocess

* VIDEOMAE preprocess

* VIDEOLLAVA

* TVP processing

* TVP fixup

* SWIN2SR preprocess

* SIGLIP preprocess

* SAM preprocess

* RT-DETR preprocess

* PVT preprocess

* POOLFORMER preprocess

* PERCEIVER preprocess

* OWLVIT preprocess

* OWLV2 preprocess

* NOUGAT preprocess

* MOBILEVIT preprocess

* MOBILENETV2 preprocess

* MOBILENETV1 preprocess

* LEVIT preprocess

* LAYOUTLMV2 preprocess

* LAYOUTLMV3 preprocess

* Add test

* Update tests
2024-08-06 11:33:05 +01:00
e85d86398a add the missing flash attention test marker (#32419)
* add flash attention check

* fix

* fix

* add the missing marker

* bug fix

* add one more

* remove order

* add one more
2024-08-06 11:18:58 +01:00
0aa8328293 Llava: fix checkpoint_doc (#32458)
fix: add new llava like model bug
2024-08-06 10:11:59 +01:00
37c5ca5eb9 Cache: create docs (#32150)
* draft

* updates

* works?

* try adding python example in hidden section

* another try

* hwo do i render python

* format as html code?

* Update docs/source/en/kv_cache.md

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update docs/source/en/kv_cache.md

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update docs/source/en/kv_cache.md

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update docs/source/en/kv_cache.md

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update docs/source/en/kv_cache.md

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* one more small update

* should render hidden secrtion now

* add outputs

* fix links

* check links

* update all links

* update with offloaded cache

* all cache is importable, so they appear in docs

* fix copies

* docstring...

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2024-08-06 10:24:19 +05:00
13dc6b0853 Fix documentation links and code reference to model llava-next (#32434) 2024-08-05 15:14:50 -07:00
7e5d46ded4 Respect the config's attn_implementation if set (#32383)
* Respect the config's attn if set

* Update test - can override in from_config

* Fix
2024-08-05 16:33:19 +01:00
458b0cd2c5 fix: Updated test_embeded_special_tokens for luke and mluke models (#32413)
Fixed tokenizertests for luke, mluke models.
2024-08-05 15:19:42 +01:00
baf7e5c927 Persist embedding type of BART and mBART models after resize (#32242)
* fix: persist embedding type of MBartConditonalGeneration after resize

* fix: persist embedding type of BartConditonalGeneration after resize
2024-08-05 14:15:36 +01:00
f5f1e52f6c Fix documentation references to google/bit-50 model (#32407) 2024-08-05 10:18:28 +02:00
ea5da52ebc add values for neftune (#32399)
I always forget what typical values are, and I have to look at the paper everytime. This will be a helpful reminder.
2024-08-05 09:51:58 +02:00
3d7c2f9dea #32184 save total_vocab_size (#32240)
* save total_vocab_size = vocab_size + user added tokens to speed up operation

* updating length when added_tokens_decoder is set

* add test len(tokenizer)
2024-08-05 09:22:48 +02:00
3bb646a54f Phi3 tests: fix typing for Python 3.8 (#32388)
fix phi
2024-08-05 11:58:42 +05:00
05ae3a300d fix: SeamlessM4TFeatureExtractor stride remainder (#32088)
* fix: SeamlessM4TFeatureExtractor stride remainder

* Added attention mask size test

* Reran ruff for style correction
2024-08-05 08:40:58 +02:00
847bb856d5 Bump keras from 2.8.0 to 2.13.1 in /examples/research_projects/decision_transformer (#32393)
Bump keras in /examples/research_projects/decision_transformer

Bumps [keras](https://github.com/keras-team/keras) from 2.8.0 to 2.13.1.
- [Release notes](https://github.com/keras-team/keras/releases)
- [Commits](https://github.com/keras-team/keras/compare/v2.8.0...v2.13.1)

---
updated-dependencies:
- dependency-name: keras
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-08-05 08:38:34 +02:00
621fb3c0ed MixtralFlashAttention2: put "plus 1" inside parentheses when calculating rotary_seq_len, allowing None position_ids input. (#31500)
* Mixtral: remove unnecessary plus 1 when calculating rotary_seq_len, allowing position_ids=None (no auto position_ids generation could be unsafe)

* fix typo [:-1] to [:, -1]

* to meet formatting requirement

* to meet formatting requirement

* remove white space

* MixtralFlashAttention2: put "+ 1" inside parentheses when calculating rotary_seq_len, allowing None position_ids input. Fix format/style issue.

* propagate to startcoder2, phi3, mixtral and qwen2

* update qwen2_moe
2024-08-03 20:07:55 +02:00
7c31d05b59 fix: (issue #32124) Exception raised when running transformers/examples/flax/language-modeling/t5_tokenizer_model.py. (#32157)
fix: Exception raised when running .
2024-08-03 18:24:11 +02:00
c1aa0edb48 [generate] only require an attention mask for mps with torch<2.4 (#32367)
* up

* style

* stopping
2024-08-02 17:32:50 +08:00
083e13b7c4 RoPE: Add numerical tests (#32380)
tests! :D
2024-08-02 09:39:45 +01:00
2af199c42b Update docs (#32368)
nits
2024-08-02 09:54:16 +05:00
82efc53513 Yell at the user if zero-3 init wasn't performed, but expected to have been done (#32299)
* Test this zach

* Test for improper init w/o zero3

* Move back

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Get rid of stars in warning

* Make private

* Make clear

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-08-01 15:18:43 -04:00
51ab25e293 Fixed Hybrid Cache Shape Initialization. (#32163)
* fixed hybrid cache init, added test

* Fix Test Typo

---------

Co-authored-by: Aaron Haag <aaron.haag@siemens.com>
2024-08-01 13:57:42 +01:00
e3d8285a84 Docker: add speech dep to the consistency docker image (#32374) 2024-08-01 13:46:11 +01:00
ca59d6f77c Offloaded KV Cache (#31325)
* Initial implementation of OffloadedCache

* enable usage via cache_implementation

* Address feedback, add tests, remove legacy methods.

* Remove flash-attn, discover synchronization bugs, fix bugs

* Prevent usage in CPU only mode

* Add a section about offloaded KV cache to the docs

* Fix typos in docs

* Clarifications and better explanation of streams
2024-08-01 14:42:07 +02:00
b4727a1216 Fix conflicting key in init kwargs in PreTrainedTokenizerBase (#31233)
* Fix conflicting key in init kwargs in PreTrainedTokenizerBase

* Update code to check for callable key in save_pretrained

* Apply PR suggestions

* Invoke CI

* Updates based on PR suggestion
2024-08-01 14:32:13 +02:00
db8c7caeb6 Empty list in defaults for LLaMA special tokens during weights conversion (#32342)
empty list in defaults
2024-08-01 14:30:10 +02:00
2229ebe722 update clean_up_tokenization_spaces warning (#32371) 2024-08-01 13:57:41 +02:00
05c1f9af9a Check device map for saving tokenizer config on TPU (fix for issue #31971) (#32043)
* Remove TPU device map for saving tokenizer config

* Update tokenization_utils_base.py

* Fix error msg when passing non-string device into tokenizer

* Fix error message for non-string tokenizer device

* Print out tokenizer device type in error msg

* Update tokenization_utils_base.py
2024-08-01 13:52:05 +02:00
9e28284032 add missing attribute _supports_param_buffer_assignment for gpt-j. (#32359)
Co-authored-by: Guoming Zhang <37257613+nv-guomingz@users.noreply.github.com>
2024-08-01 13:51:20 +02:00
48ed24c50a Remove size check between attn_weights and kv_seq_len for phi3 (#32339)
* Remove size check between attn_weights and kv_seq_len

* add unit tests
2024-08-01 13:49:00 +02:00
e234061cdd [whisper] compile compatibility with long-form decoding (#31772)
* [whisper] compile compatibility with long-form decoding

* clarify comment

* fix after rebase

* finalise

* fix bsz

* fix cache split

* remove contiguous

* style

* finish

* update doc

* prevent cuda graph trace
2024-08-01 18:10:56 +08:00
9451a38526 [enc-dec cache] fix bug in indexing (#32370) 2024-08-01 16:05:27 +08:00
453e74884f LLaVa: add cache class attribute (#32278)
cache class flag
2024-08-01 09:48:03 +05:00
14ee2326e5 fix: warmup_steps check for training_args (#32236) 2024-07-31 23:34:22 +01:00
53f0c9c290 fix: Removed unnecessary @staticmethod decorator (#32361)
* Fixed staticmethods with self as first argument.

* Fixed staticmethods with self as first argument.

* Fixed staticmethods with self as first argument.

* Fixed staticmethods with self as first argument.
2024-07-31 20:56:50 +01:00
92abe60334 >3-5x faster torch.compile forward compilation for autoregressive decoder models (#32227)
* draft

* apply changes to all relevant archs

* rerun ci - check_docstrings.py failing?

* fix docstring

* move 2D->4D mask creation to modeling file

* repo consistency

* fix the batch size = 1 case - calling contiguous is not enough

* nit

* style

* propagate to gemma/gemma-2

* prepare inputs for gemma generation

* implement test and tiny fix in gemma2

* Update src/transformers/models/bloom/modeling_bloom.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fix copies

* ci pass

* fix gemma's test_compile_static_cache tests

* flacky

* retrigger ci

---------

Co-authored-by: sanchit-gandhi <sanchit@huggingface.co>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-08-01 02:03:07 +08:00
b46bd8b9d2 Fix error when streaming to gradio with non-string tool arguments (#32360)
Fix error when streaming agent run to gradio with non-string tool arguments
2024-07-31 18:44:53 +02:00
ef177a5e1c Gemma 2: support assisted generation (#32357) 2024-07-31 16:04:48 +01:00
5f1fcc299c [Idefics2] - Fix FA2 call for Perceiver layer (#32275)
* Fix FA2 call for Perciever layer

* [run_slow] idefics2

* [run_slow] idefics2

* [run_slow] idefics2

* Fix up

* [run_slow] idefics2

* [run_slow] idefics2

* [run_slow] idefics2
2024-07-31 14:51:04 +01:00
b75ad56620 Llama 3.1: Fix incorrect inv_freq assignment (#32330)
fix 💩
2024-07-31 11:12:46 +01:00
7f552e28e0 Gemma2 and flash-attention (#32188)
* enable flash-attn & static cache

* this works, not the prev

* fix for sliding window layers

* not needed anymore
2024-07-31 10:33:38 +05:00
a3264332cf LLaVA-NeXT: fix anyres shapes (#32314)
fix
2024-07-31 10:01:12 +05:00
6e2d04e429 Fix slow GemmaTokenizer and improve SPM slow -> fast conversion process (#32191)
* Remove user-defined tokens which can be obtained through merges

* Remove debug line

* formatting

* Refactor spm slow -> fast converter

* revert unnecessary refactor

* set comprehension

* remove test files

* Use `vocab_scores`

* Always replace spiece underline with space in decode

* we no longer need token filtering

* Add save fast load slow unit test

* Remove tokenizers version check

* Remove duplicate code

* Make `<start_of_turn>` and `<end_of_turn>` special tokens

* Bias merge priority with length if score is the same

* Add unit test for merge priority

* CI
2024-07-30 23:36:38 +02:00
026a173a64 Repo checks: skip docstring checks if not in the diff (#32328)
* tmp

* skip files not in the diff

* use git.Repo instead of an external subprocess

* add tiny change to confirm that the diff is working on pushed changes

* add make quality task

* more profesh main commit reference
2024-07-30 18:56:10 +01:00
516af4bb63 fixes #32329 : The Torch code is correct - to get an average of 10% o… (#32335)
fixes #32329 : The Torch code is correct - to get an average of 10% of the total, we want to take 50% of the remainder after we've already masked 80% with [MASK] in the previous step.
2024-07-30 18:21:45 +01:00
62c60a3018 fixes to properly shard FSDP across cpu and meta for cpu_efficient_loading for prequantized 4bit (#32276) 2024-07-30 18:55:59 +02:00
1627108033 fix: Added missing raise keyword for few exceptions (#32333)
Fixed raising of few exceptions.
2024-07-30 17:53:03 +01:00
bd54ed2ed7 Alternative agent plan (#32295)
* new agent plan

* plan type assertion

* style corrections

* better prompt naming

* make fixup
2024-07-30 18:48:18 +02:00
e68ec18ce2 Docs: formatting nits (#32247)
* doc formatting nits

* ignore non-autodocs

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/esm/modeling_esm.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/esm/modeling_esm.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* make fixup

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-07-30 15:49:14 +01:00
2fbbcf5007 Fix M4T for ASR pipeline (#32296)
* tentative fix

* do the same for M4T
2024-07-30 16:00:13 +02:00
084b5094eb feat(ci): set fetch-depth: 0 in trufflehog checkout step (#31663) 2024-07-30 14:49:26 +02:00
20528f067c Cast epochs_trained to int when resuming training (#32286)
* fix epochs_trained as int when resuming training

* refactor

---------

Co-authored-by: teddyferdinan <teddy.ferdinan@pwr.edu.pl>
2024-07-30 11:25:54 +02:00
934fe1504e Fix GGUF dequantize for gguf==0.9.1 (#32298)
* fix gguf dequantize for gguf==0.9.1

* fix old version

* make style
2024-07-30 11:01:00 +02:00
3e8106d253 Docs: fix GaLore optimizer code example (#32249)
Docs: fix GaLore optimizer example

Fix incorrect usage of GaLore optimizer in Transformers trainer code example.

The GaLore optimizer uses low-rank gradient updates to reduce memory usage. GaLore is quite popular and is implemented by the authors in [https://github.com/jiaweizzhao/GaLore](https://github.com/jiaweizzhao/GaLore). A few months ago GaLore was added to the HuggingFace Transformers library in https://github.com/huggingface/transformers/pull/29588.

Documentation of the Trainer module includes a few code examples of how to use GaLore. However, the `optim_targe_modules` argument to the `TrainingArguments` function is incorrect, as discussed in https://github.com/huggingface/transformers/pull/29588#issuecomment-2006289512. This pull request fixes this issue.
2024-07-30 09:19:24 +02:00
f0bc49e7f6 use torch 2.4 in 2 CI jobs (#32302)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-07-29 22:12:21 +02:00
a24a9a66f4 Add stream messages from agent run for gradio chatbot (#32142)
* Add stream_to_gradio method for running agent in gradio demo
2024-07-29 20:12:44 +02:00
811a9caa21 Make static cache compatible with torch.export (#32168) 2024-07-29 18:19:15 +01:00
7f5d644e69 [pipeline] fix padding for 1-d tensors (#31776)
* [pipeline] fix padding for 1-d tensors

* add test

* make style

* Update tests/pipelines/test_pipelines_automatic_speech_recognition.py

Co-authored-by: Kamil Akesbi <45195979+kamilakesbi@users.noreply.github.com>

* Update tests/pipelines/test_pipelines_automatic_speech_recognition.py

---------

Co-authored-by: Kamil Akesbi <45195979+kamilakesbi@users.noreply.github.com>
2024-07-29 21:24:42 +08:00
3fbaaaa64d Whisper tokenizer word level timestamps (#32197)
* fix _fix_key in PreTrainedModel

* fix _find_longest_common_sequence

* add test

* remove result.json

* nit

* update test
2024-07-29 11:19:52 +01:00
7ffe25f2b9 Generate: end-to-end compilation (#30788)
* mvp

* added test (a few models need fixes)

* fix a few test cases

* test nits

* harder test 😈

* revert changes in stablelm

* test with improved condition

* add todo

* tmp commit

* merged with main

* nits

* add todo

* final corrections

* add docs for generation compilation

* docs nits

* add  tip

* PR suggestions

* add more details to the compilation docs

* fix cache positions

* cache is now init in generate; update docs

* tag test as flaky

* docs

* post rebase make fixup and other nits

* remove unintended changes

* whisper (encoder-decoder) not supported

* move token default updates to ; add tests for token defaults

* push changes

* manual rebase

* chameleon doesn't support this

* fix test_static_cache_mha_mqa_gqa (broken in another PR)

* docs: dynamic is better with end-to-end compilation
2024-07-29 10:52:13 +01:00
49928892d6 fix(docs): Fixed a link in docs (#32274)
Fixed a link in docs.
2024-07-29 10:50:43 +01:00
6494479f1d make p_mask a numpy array before passing to select_starts_ends (#32076)
* fix

* bug fix

* refine

* fix
2024-07-29 10:29:11 +01:00
535fe78b9f Repo: remove exceptions in check_docstrings (#32259)
remove exceptions
2024-07-29 11:06:05 +02:00
a2ad9d5ad5 fix: Fixed wrong argument passed to convert_blip_checkpoint function call (#32262)
Removed one wrong argument passed to convert_blip_checkpoint function call.
2024-07-29 10:43:09 +02:00
5019aabfac Optimize t5 tokenize logic to avoid redundant calls (#32270)
* Optimize t5 tokenize logic to avoid redundant calls

* fix and overwrite copies
2024-07-29 09:51:43 +02:00
f2122cc6eb Upload new model failure report to Hub (#32264)
upload

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-07-29 09:42:54 +02:00
f739687684 🚨 Bloom support for cache class (#31445)
* bloom dynamic cache

* bloom follows standard cache format

* no skips for bloom anymore

* use cache position when possible

* clean up

* codestyle

* Update src/transformers/models/bloom/modeling_bloom.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/bloom/modeling_bloom.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/bloom/modeling_bloom.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* pr comments

* isinstance fix

* address comments

* make musicgen test happy

* [run-slow] bloom

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-07-29 10:58:59 +05:00
44f6fdd74f Llama 3.1: replace for loop by tensor ops at inv_freq initialization (#32244)
* replace for loop by tensor ops

* rm assert; readability
2024-07-27 10:19:46 +01:00
8da9068730 More flexible trigger condition (#32251)
update

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-07-26 20:52:45 +02:00
81233c069c Flash-Attn: fix generation when no attention mask or no pading (#32241)
* fix

* fix prev test (half of failures)

* [run-slow] llama, gemma2

* [run-slow] llama, gemma2
2024-07-26 14:45:55 +05:00
27c7f971c0 [tests] fix static cache implementation is not compatible with attn_implementation==flash_attention_2 (#32039)
* add flash attention check

* fix

* fix
2024-07-26 11:41:27 +02:00
5f841c74b6 Add check for target_sizes is None in post_process_image_guided_detection for owlv2 (#31934)
* Add check for target_sizes is None in post_process_image_guided_detection

* Make sure Owlvit and Owlv2 in sync

* Fix incorrect indentation; add check for correct size of target_sizes
2024-07-26 10:05:46 +01:00
f9756d9edb Adds: extra_repr for RMSNorm layers in most models (#32204)
* adds: extra_repr() to RMSNorm layers in multiple models

* adds: extra_repr for deprecated models as well

* formatting as per style guide
2024-07-26 11:05:38 +02:00
b8e5cd5396 Refactor: Removed un-necessary object base class (#32230)
* Refactored to remove un-necessary object base class.

* small fix.
2024-07-26 10:33:02 +02:00
1c7ebf1d6e don't log base model architecture in wandb if log model is false (#32143)
* don't log base model architecture in wandb is log model is false

* Update src/transformers/integrations/integration_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* convert log model setting into an enum

* fix formatting

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-07-26 09:38:59 +02:00
c46edfb823 Resize embeds with DeepSpeed (#32214)
* fix resize when deepspeed

* deepsped uses new embeds

* we needed this
2024-07-26 10:52:06 +05:00
fad15fba78 Llava: generate without images (#32183)
* llava w/o images

* tests
2024-07-26 10:17:27 +05:00
4ab33c2d81 Generation: stop at eos for assisted decoding (#31301)
* fix

* move changes to prompt lookup

* add test

* set eos in assistant model

* style

* fix flakiness

* changes for new `main`

* Update tests/generation/test_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/generation/test_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* add comment to explain

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-07-26 10:16:06 +05:00
9d6c0641c4 Fix code snippet for Grounding DINO (#32229)
Fix code snippet for grounding-dino
2024-07-25 19:20:47 +01:00
3a83ec48a6 Allow a specific microphone to be used by the ffmpeg audio pipeline utility functions. Default to using the currently active microphone on Mac (#31846)
* use currently active microphone on mac for ffmpeg_microphone

* Allow ffmpeg_microphone device to be specified

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-07-25 17:16:13 +01:00
6ed0bf1e85 translate philosophy.md to chinese (#32177)
* translate philosophy.md to chinese

* add the missing link
2024-07-25 09:01:06 -07:00
df6eee9201 Follow up for #31973 (#32025)
* fix

* [test_all] trigger full CI

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-07-25 16:12:23 +02:00
de2318894e [warnings] fix E721 warnings (#32223)
fix E721 warnings
2024-07-25 15:12:23 +02:00
9b9a54e61b [BigBird Pegasus] set _supports_param_buffer_assignment to False (#32222)
set _supports_param_buffer_assignment to False
2024-07-25 15:11:43 +02:00
1ecedf1d9e Update question_answering.py (#32208) 2024-07-25 13:20:27 +01:00
f53a5dec7b remove unnecessary guard code related with pytorch versions 1.4.2 ~ 1.7.0 (#32210)
remove unnecessary guard code related with pytorch versions 1.4.2 ~
1.7.0
2024-07-25 11:04:04 +02:00
5658e749ad [whisper] fix short-form output type (#32178)
* [whisper] fix short-form output type

* add test

* make style

* update long-form tests

* fixes

* last fix

* finalise test
2024-07-25 16:58:02 +08:00
85a1269e19 fix: Replaced deprecated unittest method with the correct one (#32198)
Replaced deprecated unittest method with the correct one.
2024-07-24 18:00:21 +01:00
edd68f4ed8 🚨 No more default chat templates (#31733)
* No more default chat templates

* Add the template to the GPT-SW3 tests since it's not available by default now

* Fix GPT2 test

* Fix Bloom test

* Fix Bloom test

* Remove default templates again
2024-07-24 17:36:32 +01:00
1c122a46dc Support dequantizing GGUF FP16 format (#31783)
* support gguf fp16

* support gguf bf16 with pytorch

* add gguf f16 test

* remove bf16
2024-07-24 17:59:59 +02:00
af0e4b7b37 Fix float8_e4m3fn in modeling_utils (#32193)
* Fix float8_e4m3fn in modeling_utils

* style

* fix

* comment
2024-07-24 17:14:05 +02:00
1392a6867f Fix resize embedding with Deepspeed (#32192)
fix resize when deepspeed
2024-07-24 19:26:20 +05:00
8d2534c4d0 let's not warn when someone is running a forward (#32176)
* let's not warn when someone is running a foward without cache + self.training

* more models

* fixup
2024-07-24 16:06:39 +02:00
e0182f3bd7 RoPE: relaxed rope validation (#32182)
* relaxed rope check

* lets also accept rope_type=None, defaulting to the original implementation

* type and rope_type can coexist
2024-07-24 15:00:48 +01:00
165116bc14 Remove conversational pipeline tests (#32099)
Remove conversation pipeline tests
2024-07-24 14:03:40 +01:00
5f4ee98a7a Update qwen2.md (#32108)
* Update qwen2.md

outdated description

* Update qwen2.md

amended

* Update qwen2.md

Update

* Update qwen2.md

fix wrong version code, now good to go
2024-07-24 11:54:41 +01:00
8678879f1d fix: default value reflects the runtime environment variables rather than the ones present at import time. (#32153)
* fix: default value reflects the runtime environment variables rather than the ones present at import time.

* Fix: Change `deterministic` to None by default; use env var if None
2024-07-24 11:38:49 +01:00
01be5b4879 adds: extra_repr() to MambaRMSNorm to include hidden size / size of weights in the layer (#32171)
* adds: extra_repr() to MambaRMSNorm to include the hidden size of the layer

* style fix with ruff:
2024-07-24 09:09:59 +02:00
c85510f958 [docs] change temperature to a positive value (#32077)
fix
2024-07-23 17:47:51 +01:00
bc2adb0112 fix: Fixed an if condition that is always evaluating to true (#32160)
Fixed an if condition always evaluating to true.
2024-07-23 16:52:41 +01:00
23f6a43f82 fix (#32162) 2024-07-23 16:48:16 +01:00
d5a99dfcee Llama 3.1 conversion
Co-authored-by: Arthur Zucker <arthur.zucker@gmail.com>
2024-07-23 17:13:25 +02:00
ff0d708fe6 Dev version: v4.44.0.dev0 2024-07-23 17:12:47 +02:00
d2c687b3f1 Updated ruff to the latest version (#31926)
* Updated ruff version and fixed the required code accorindg to the latest version.

* Updated ruff version and fixed the required code accorindg to the latest version.

* Added noqa directive to ignore 1 error shown by ruff
2024-07-23 17:07:31 +02:00
9cf4f2aa9a Enhancing SFT Training Efficiency Using Packing and FlashAttention2 with Position IDs (#31629)
* add DataCollatorBatchFlattening

* Update data_collator.py

* change name

* new FA2 flow if position_ids is provided

* add comments

* minor fix

* minor fix data collator

* add test cases for models

* add test case for data collator

* remove extra code

* formating for ruff check and check_repo.py

* ruff format

ruff format tests src utils

* custom_init_isort.py
2024-07-23 15:56:41 +02:00
7d92009af6 Added additional kwarg for successful running of optuna hyperparameter search (#31924)
Update integration_utils.py

Added additional kwarg
2024-07-23 14:41:52 +01:00
63700628ad feat(cache): StaticCache uses index_copy_ to avoid useless copy (#31857)
* feat(cache): StaticCache uses index_copy_ to avoid useless copy

Using index_copy_ allows for explicit in-place change of the tensor.
Some backends (XLA) will otherwise copy the tensor, making the code
slower and using more memory.

Proposed implementation will end up using less memory and on XLA will
result in less compilation, but the change is also quite generic, making
no change whatsoever on CUDA or CPU backend.

* feat(cache): SlidingWindowCache uses index_copy_ to avoid useless copy

Applying the same change done in StaticCache.

* fix(cache): fallback of index_copy_ when not implemented

* fix(cache): in index_copy_ ensure tensors are on same device

* [run slow] llama

* fix(cache): add move of cache_position to same device in SlidingWindowCache

* Revert "[run slow] llama"

This reverts commit 02608dd14253ccd464e31c108e0cd94364f0e8b9.
2024-07-23 14:18:19 +02:00
a009fbdab3 Fix typing to be compatible with later py versions (#32155) 2024-07-23 12:23:34 +01:00
3263b34354 Revert "Incorrect Whisper long-form decoding timestamps " (#32148)
Revert "Incorrect Whisper long-form decoding timestamps  (#32003)"

This reverts commit cd48553fc8375e1a28d4d82cfe231dedf6a23af8.
2024-07-23 18:34:30 +08:00
034b477847 Rename Phi-3 rope scaling type (#31436)
* renamed phi3 rope_scaling type

* fixed trailing whitespaces

* fixed test

* added warning

* fixed format
2024-07-23 12:33:22 +02:00
bab32d6fe9 Added mamba.py backend (#30139)
* Update README.md

* tests: forward ok

* backward test done

* done testing

* removed check. scripts

* Update README.md

* added use_mambapy arg

* fixed typo in warning

* protected imports w/ mambapy package

* delete pscan.py + raise rather than assert

* Update import_utils.py

* fix whitespaces and unused import

* trailing whitespace + import block unformatted

* Update modeling_mamba.py

* transpose before pscan

* shape comment

* ran make style

* use_mambapy=False by default

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* ran make fix-copies

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-07-23 12:32:19 +02:00
9ced33ca7f Fix video batching to videollava (#32139)
---------

Co-authored-by: Merve Noyan <mervenoyan@Merve-MacBook-Pro.local>
2024-07-23 13:23:23 +03:00
a5b226ce98 Fix flash attention speed issue (#32028)
Add the lru_cache for speed
2024-07-23 12:21:23 +02:00
a1844a3209 gguf conversion add_prefix_space=None for llama3 (#31937)
* gguf conversion forces add_prefix_space=False for llama3, this is not required and forces from_slow, which fails. changing to None + test

* typo

* clean test
2024-07-23 11:45:54 +02:00
2e113422b3 Llama: RoPE refactor (#32135)
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-07-23 10:42:55 +01:00
5a4a76edb7 Modify resize_token_embeddings to ensure output type is same as input (#31979)
* Change resize_token_embeddings to make it return same Class that is passed to it

* Add explanatory comment as requested in review

* Add explanatory comments for add resizing function in lxmert

* Add comment for padding_idx and moving _resize_bias in lxmert to LxmertForPreTraining

---------

Co-authored-by: Prashanth Sateesh <prasatee@Prashanths-MBP.attlocal.net>
Co-authored-by: Prashanth Sateesh <prasatee@Prashanths-MacBook-Pro.local>
2024-07-23 10:28:44 +01:00
1535a2c93d Disable quick init for TapasPreTrainedModel (#32149)
add attribute to model

Signed-off-by: Daniel Lok <daniel.lok@databricks.com>
2024-07-23 10:26:00 +01:00
34b43211d7 Add YaRN and Dynamic-YaRN RoPE Scaling Methods (#30910)
* Add YaRN and Dynamic-YaRN RoPE Scaling Methods

YaRN (Yet another RoPE extension method) combines the NTK-By-Parts
Interpolation and Attention Scaling methods, improving upon existing
RoPE interpolation methods for longer context window sizes.

Fine-tuned models maintain their original performance across benchmarks
while enabling efficient extrapolation and transfer learning for
quicker convergence, especially in compute-limited environments.

We implement YaRN and Dynamic-YaRN for the following list of models:

 - LLaMA
 - Falcon
 - GPT-NeoX
 - Olmo
 - Persimmon
 - Phi
 - StableLM
 - OpenLLaMA

New unit tests are added to assert YaRN's correct behavior on both
short and long sequence inputs.

For more details, please refer to https://arxiv.org/abs/2309.00071.

Co-authored-by: Miguel Almeida <miguel.pessanha.almeida@tecnico.ulisboa.pt>

* Refactor YaRN implementation for LLaMA

Iterate on YaRN implementation for LLaMA and remove diff from remaining
models for increased PR modularity.

This commit includes the following changes:
- Merge 'yarn_rope_scaling' and 'rope_scaling' dictionaries
- Remove unnecessary attributes ('extrapolation_factor' and 'finetuned')
  from YaRN classes
- Inherit 'forward' method in YaRN classes from superclass
- Rename 'yarn' method to 'compute_yarn_scaling'
- Extend YaRN tests with further assertions
- Fix style inconsistencies

Co-authored-by: Miguel Monte e Freitas <miguelmontefreitas@tecnico.ulisboa.pt>

* Refactor Tensor Building Logic for YaRN

- Comply with the the tensor building logic introduced in #30743
- Add referencing to the optimized Attention Factor equation
- Remove Dynamic YaRN for a more agile deployment

Co-authored-by: mig-mfreitas <mig-mfreitas@users.noreply.github.com>

* remove unwanted file

---------

Co-authored-by: Miguel Almeida <miguel.pessanha.almeida@tecnico.ulisboa.pt>
Co-authored-by: mig-mfreitas <mig-mfreitas@users.noreply.github.com>
Co-authored-by: Joao Gante <joao@huggingface.co>
2024-07-23 10:07:58 +01:00
7405c1c77e Add method to retrieve used chat template (#32032)
encapsulate chat template logic
2024-07-23 10:56:21 +02:00
605f3245dc Fix mask creations of GPTNeoX and GPT2 (#31944)
* fix mask creation of gpt2 and gpt_neox caused by me

* forgot the reshape of masks when shape > 2

* add tests for gpt neox and gpt2

* nit on a comment
2024-07-23 10:11:12 +02:00
2782aadae2 [modelling] remove un-necessary transpose for fa2 attention (#31749)
* [whisper] remove un-necessary transpose for fa2 attention

* propagate
2024-07-23 14:55:16 +08:00
f83c6f1d02 Remove trust_remote_code when loading Libri Dummy (#31748)
* [whisper integration] use parquet dataset for testing

* propagate to others

* more propagation

* last one
2024-07-23 14:54:38 +08:00
3aefb4ec7f LLaVaNeXT: pad on right if training (#32134)
* pad on right if training

* docs

* add tests
2024-07-23 10:23:55 +05:00
251a2409c6 Add llama3-llava-next-8b to llava_next conversion script (#31395)
* Add llama3-llava-next-8b to llava_next conversion script

Adds support for the lmms-lab/llama3-llava-next-8b model to the
convert_llava_next_weights_to_hf.py script, along with an example
prompt generated from the llava_llama_3 conv_template in the LLaVA-NeXT
repo.

* Exclude <|begin_of_text|> from prompt example

This token gets added automatically, so it should not be included in the
prompt example.

* Add llava-next-72b and llava-next-110b

Adds the Qwen-based LLaVA-Next models to the conversion script, along
with changes to load the models on multiple GPUs for inference.

* Add llama3 and qwen prompt formats to docs

* Chat prompt and padding side left for llama3 batched

* update

* Update src/transformers/models/llava_next/convert_llava_next_weights_to_hf.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/llava_next/convert_llava_next_weights_to_hf.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* remove code

* better naming

---------

Co-authored-by: raushan <raushan@huggingface.co>
Co-authored-by: Raushan Turganbay <raushan.turganbay@alumni.nu.edu.kz>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-07-23 10:12:16 +05:00
96a074fa7e Add new quant method (#32047)
* Add new quant method

* update

* fix multi-device

* add test

* add offload

* style

* style

* add simple example

* initial doc

* docstring

* style again

* works ?

* better docs

* switch to non persistant

* remove print

* fix init

* code review
2024-07-22 20:21:59 +02:00
bd9dca3b85 set warning level to info for special tokens have been added (#32138)
fixes #7002
2024-07-22 19:42:47 +02:00
817a676bd7 Don't default to other weights file when use_safetensors=True (#31874)
* Don't default to other weights file when use_safetensors=True

* Add tests

* Update tests/utils/test_modeling_utils.py

* Add clarifying comments to tests

* Update tests/utils/test_modeling_utils.py

* Update tests/utils/test_modeling_utils.py
2024-07-22 18:29:50 +01:00
74d0eb3fed Return assistant generated tokens mask in apply_chat_template (#30650)
return assistant generated tokens mask in apply_chat_template
2024-07-22 18:24:43 +01:00
7987710696 [RoBERTa] Minor clarifications to model doc (#31949)
* minor edits and clarifications

* address comment

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-07-22 10:08:27 -07:00
12b6880c81 fix: Fixed raising TypeError instead of ValueError for invalid type (#32111)
* Raised TypeError instead of ValueError for invalid types.

* Updated formatting using ruff.

* Retrieved few changes.

* Retrieved few changes.

* Updated tests accordingly.
2024-07-22 17:46:17 +01:00
d1ec36b94f Update ko/_toctree.yml and remove custom_tools.md to reflect latest changes (#31969)
update `ko/_toctree.yml` and remove `custom_tools.md`
2024-07-22 08:27:13 -07:00
7ba028fccb Fix failing test with race condition (#32140)
* Fix failing test with race condition

* make fixup

* monotonic_ns instead of randint

* uuid4 instead of monotonic_ns

* Add a finally cleanup step
2024-07-22 16:07:29 +01:00
5a649ff3ec [generate] fix eos/pad id check on mps devices (#31695)
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2024-07-22 15:18:48 +02:00
f2a1e3ca68 Mention model_info.id instead of model_info.modelId (#32106) 2024-07-22 14:14:47 +01:00
0fcfc5ccc9 fix: Replaced deprecated mktemp() function (#32123)
Replaced deprecated mktemp function.
2024-07-22 14:13:39 +01:00
c38c55f4fb Generate: store special token tensors under a unique variable name (#31980)
* rename stuff

* english; this one shouldn't be changed

* add a _ to the new var names

* musicgen

* derp
2024-07-22 14:06:49 +01:00
aa8f86a421 Fix shard order (#32023) 2024-07-22 14:06:22 +02:00
b381880597 Agents planning (#31702)
* Allow planning for agents
2024-07-22 10:49:57 +02:00
0fdea8607d Fix tests after huggingface_hub 0.24 (#32054)
* adapt tests

* style

* comment
2024-07-19 19:32:39 +01:00
fe008d6ebe Chameleon: not supported with fast load (#32091)
fixes
2024-07-19 19:21:45 +05:00
62aa270f2a Disable quick init for deepspeed (#32066)
Disable via deepspeed
2024-07-19 08:58:53 -04:00
89575b567e Support generating with fallback for short form audio in Whisper (#30984)
* remove is_shortform

* adapt _retrieve_max_frames_and_seek for short_form

* return bos token in short and long form

* add decoder_input_ids to short form audios

* add eos token for  short form

* handle short form token_timestamps

* no need to return scores

* add is_shortform conditions

* handle when max_new_tokens is None - short form

* handle assistant decoding

* fix

* handle return_dict_in_generate

* handle split_by_batch for encoder_attentions attribute

* handle num_beams>1

* handle num_return_sequences>1 in generate_with_fallback

* handle num_return_sequences>1 with return_dict_in_generate=True

* raise error if max_new_tokens + decoder_inputs_ids > max_target_pos

* fix

* apply review suggestions

* fix

* Update src/transformers/models/whisper/generation_whisper.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Update src/transformers/models/whisper/generation_whisper.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Update src/transformers/models/whisper/generation_whisper.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* fix

* logits for both short form and long form

* handle if logits_processor is None

* test

* apply review changes to num_return_sequences

* add _expand_variables_for_generation

* remove short form commented section

* update comments

* uncomment num_beams line in generate_with_fallback

* update assistant decoding

* handle return_segment with short form generation

* up

* fix output format is_shortform

* overwrite beam_sample test

* update _set_return_timestamps

* apply review suggestions

* apply review suggestions

* remove seek_outputs_short_form

* fix _stack_split_outputs

* fix stack dim in _stack_split_outputs

* update tests

* fix past_key_values + beam tests

* fix

* clean _expand_variables_for_generation

* make style

* fix slow tests

* make style

* max_length condition

* make style

* add slow tests for shortform fallback

* Update src/transformers/models/whisper/generation_whisper.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Update src/transformers/models/whisper/generation_whisper.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* apply review changes

* Update src/transformers/models/whisper/generation_whisper.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* up

* fix slow tests

* apply review suggestions

* update test

* make style

* small fix

* fix

* fix test_new_cache_format

* fix past_key_values

* fix

* make style

* fix slow tests

* fix

---------

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
2024-07-19 13:42:22 +01:00
46835ec6ae Add image-text-to-text task guide (#31777)
* Add image-text-to-text task page

* Update docs/source/en/tasks/image_text_to_text.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/tasks/image_text_to_text.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/tasks/image_text_to_text.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/tasks/image_text_to_text.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/tasks/image_text_to_text.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/tasks/image_text_to_text.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/tasks/image_text_to_text.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/tasks/image_text_to_text.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/tasks/image_text_to_text.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/tasks/image_text_to_text.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/tasks/image_text_to_text.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Address comments

* Fix heading

* Update docs/source/en/tasks/image_text_to_text.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/tasks/image_text_to_text.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/tasks/image_text_to_text.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/tasks/image_text_to_text.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/tasks/image_text_to_text.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/tasks/image_text_to_text.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Address comments

* Update image_text_to_text.md

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-07-19 13:40:40 +01:00
4bd8f12972 Fixes to chameleon docs (#32078)
* Fixes

* Let's not use auto
2024-07-19 12:50:34 +01:00
566b0f1fbf Fix progress callback deepcopy (#32070)
* Replacing ProgressCallbacks deepcopy with a shallowcopy

* Using items instead of entries

* code cleanup for copy in trainer callback

* Style fix for ProgressCallback
2024-07-19 11:56:45 +01:00
e316c5214f VideoLLaVa: fix chat format in docs (#32083)
fix chat format
2024-07-19 15:38:01 +05:00
22f888b3fa [mistral] Fix FA2 attention reshape for Mistral Nemo (#32065)
* [mistral] Fix FA2 attention reshape

* [run-slow] mistral
2024-07-19 11:19:35 +02:00
cd48553fc8 Incorrect Whisper long-form decoding timestamps (#32003)
* fix lo form timestamps in decode_batch

* Update src/transformers/models/whisper/tokenization_whisper.py

Co-authored-by: Yoach Lacombe <52246514+ylacombe@users.noreply.github.com>

* Update src/transformers/models/whisper/tokenization_whisper.py

Co-authored-by: Yoach Lacombe <52246514+ylacombe@users.noreply.github.com>

* add test

* make style

* fix copies

* Update src/transformers/models/whisper/tokenization_whisper_fast.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/whisper/tokenization_whisper.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/whisper/processing_whisper.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/whisper/tokenization_whisper.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* apply review suggestions

* fix

* fix copies

* fix

* Update src/transformers/models/whisper/tokenization_whisper_fast.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* fix-copies

---------

Co-authored-by: Yoach Lacombe <52246514+ylacombe@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-07-19 09:26:38 +01:00
56a7745704 [Chameleon, Hiera] Improve docs (#32038)
* Improve docs

* Fix docs

* Fix code snippet
2024-07-19 11:20:03 +03:00
b873234cb6 Llava: add default chat templates (#31691)
* add default chat templates

* Update src/transformers/models/llava/processing_llava.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/llava_next/processing_llava_next.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* more clear docstring and docs

* Update docs/source/en/model_doc/llava.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/model_doc/llava_next.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/model_doc/vipllava.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* add tests

* remove default templates (see #31733)

* load chat template from another file

* Update docs/source/en/model_doc/llava_next.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* revert some changes in docs

* forgot vipllava

* chat template file is not temporary hack

* warn if loading from processor

* not that file

* similarly modify `save_pretrained`

* Update tests/models/llava_next/test_processor_llava_next.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/vipllava/test_processor_vipllava.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/model_doc/vipllava.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/processing_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/processing_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/model_doc/vipllava.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/model_doc/llava.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/model_doc/llava.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/model_doc/llava_next.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/model_doc/llava_next.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/processing_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/model_doc/llava_next.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* fix

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2024-07-19 10:08:56 +05:00
271fd8e60d docs: Fixed 2 links in the docs along with some minor fixes (#32058)
* Fixed 2 links in the docs along with some minor fixes.

* Updated Contributing.md
2024-07-18 21:28:36 +01:00
8f0d26c55e fix: Removed duplicate entries in a dictionary (#32041)
Removed duplicate key in a dictionary.
2024-07-18 17:26:08 +01:00
c75969ee28 Add torch.compile Support For Mamba (#31247)
* modify mamba cache

* set up cache

* add test

* [run-slow] mamba

* [run-slow] mamba

* address comments

* [run-slow] mamba

* use_cache_position

* [run-slow] mamba

* [run-slow] mamba

* [run-slow] mamba

* [run-slow] mamba

* fix

* cache in generate

* [run-slow] mamba

* address comments

* [run-slow] mamba

* [run-slow] mamba

* address comments

* [run-slow] mamba

* fix

* [run-slow] mamba

* fix

* [run-slow] mamba

* fix cache name

* [run-slow] mamba
2024-07-18 11:54:54 -04:00
4c040aba02 [mistral] Support passing head_dim through config (and do not require head_dim * num_heads == hidden_size) (#32050)
* Allow `head_dim` to be set in Mistral config

* Add docstring

* Do not require `head_dim * num_heads == hidden_size`

* [run-slow] mistral
2024-07-18 16:41:12 +02:00
c50e0551fd Bump scikit-learn from 1.1.2 to 1.5.0 in /examples/research_projects/codeparrot/examples (#32052)
Bump scikit-learn in /examples/research_projects/codeparrot/examples

Bumps [scikit-learn](https://github.com/scikit-learn/scikit-learn) from 1.1.2 to 1.5.0.
- [Release notes](https://github.com/scikit-learn/scikit-learn/releases)
- [Commits](https://github.com/scikit-learn/scikit-learn/compare/1.1.2...1.5.0)

---
updated-dependencies:
- dependency-name: scikit-learn
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-07-18 13:29:56 +01:00
c25dde1fc9 Bump scikit-learn from 1.0.2 to 1.5.0 in /examples/research_projects/decision_transformer (#31458)
Bump scikit-learn in /examples/research_projects/decision_transformer

Bumps [scikit-learn](https://github.com/scikit-learn/scikit-learn) from 1.0.2 to 1.5.0.
- [Release notes](https://github.com/scikit-learn/scikit-learn/releases)
- [Commits](https://github.com/scikit-learn/scikit-learn/compare/1.0.2...1.5.0)

---
updated-dependencies:
- dependency-name: scikit-learn
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-07-18 13:13:38 +01:00
673d30b826 Chameleon: minor fixes after shipping (#32037)
* fix merging

* make chameleon conditional
2024-07-18 16:54:07 +05:00
765732e92c unpin numpy<2.0 (#32018)
* unpin np

* [test_all] trigger full CI

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-07-18 11:26:01 +02:00
1c37e8c1a6 Add sdpa and FA2 for CLIP (#31940)
* Squashed commit of the following:

commit 102842cd477219b9f9bcb23a0bca3a8b92bd732f
Author: Pavel Iakubovskii <qubvel@gmail.com>
Date:   Fri Jul 12 18:23:52 2024 +0000

    Add model-specific sdpa tests

commit 60e4c88581abf89ec098da84ed8e92aa904c997d
Author: Pavel Iakubovskii <qubvel@gmail.com>
Date:   Fri Jul 12 18:20:53 2024 +0000

    Add fallback to eager (expensive operation)

commit c29033d30e7ffde4327e8a15cbbc6bee37546f80
Author: Pavel Iakubovskii <qubvel@gmail.com>
Date:   Thu Jul 11 17:09:55 2024 +0000

    Fix attn_implementation propagation

commit 783aed05f0f38cb2f99e758f81db6838ac55b9f8
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Sat May 25 09:05:27 2024 +0530

    style

commit e77e703ca75d00447cda277eca6b886cd32bddc0
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Sat May 25 09:04:57 2024 +0530

    add comment to explain why I had to touch forbidden codebase.

commit ab9d8849758e7773a31778ccba71588d18552623
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Sat May 25 09:03:02 2024 +0530

    fix: flax attribute access.

commit c570fc0abf9d1bd58c291aae3c7e384f995996d2
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Sat May 25 08:23:54 2024 +0530

    fix tensorflow attribute name.

commit 32c812871cfdb268d8a6e3e2c61c5c925c8ed47e
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Sat May 25 07:57:10 2024 +0530

    fix attribute access.

commit 4f41a0138b6c417aed9c9332278f8bcd979cb7c2
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Sat May 25 07:44:02 2024 +0530

    _from_config.

commit 35aed64ff602422adcf41d7f677a0a24bd9eccae
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri May 24 18:46:52 2024 +0530

    propagation of attn_implementation.

commit 4c25c19845438b1dc1d35a5adf9436151c8c5940
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri May 24 09:24:36 2024 +0530

    style again

commit 5f7dc5c5015c0f8116408f737e8c318d1802c80c
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri May 24 09:19:05 2024 +0530

    use from_config.

commit b70c409956d0359fa6ae5372275d2a20ba7e3389
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri May 24 09:13:43 2024 +0530

    quality

commit a7b63beff53d0fc754c6564e2a7b51731ddee49d
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri May 10 14:35:10 2024 +0200

    add benchmark numbers

commit 455b0eaea50862b8458c8f422b60fe60ae40fdcb
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri May 10 13:50:16 2024 +0200

    Revert "reflect feedback more"

    This reverts commit dc123e71eff60aae74d5f325f113d515d0d71117.

commit ca674829d28787349c2a9593a14e0f1d41f04ea4
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri May 10 13:50:05 2024 +0200

    Revert "fix"

    This reverts commit 37a1cb35b87acdc4cf7528b8b1ed6da27d244e52.

commit fab2dd8576c099eb1a3464958cb206a664d28247
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri May 10 13:47:46 2024 +0200

    fix

commit fbc6ae50fd6f2d36294d31e191761631b701d696
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri May 10 13:38:30 2024 +0200

    reflect feedback more

commit 87245bb020b2d60a89afe318a951df0159404fc9
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri May 3 08:54:34 2024 +0530

    fixes

commit 1057cc26390ee839251e7f8b3326c4207595fb23
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri May 3 07:49:03 2024 +0530

    don't explicit set attn_implementation in tests

commit e33f75916fc8a99f516b1cf449dbbe9d3aabda81
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri May 3 07:43:54 2024 +0530

    explicitly override attn_implementation in the towers.

commit 4cf41cb1bc885c39df7cb8f2a0694ebf23299235
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri May 3 07:38:42 2024 +0530

    import in one-line.

commit f2cc447ae9e74ccfacb448140cdf88259d4afc8c
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri May 3 07:34:58 2024 +0530

    move sdpa mention to usage tips.

commit 92884766c64dbb456926a3a84dd427be1349fa95
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Mon Apr 29 10:58:26 2024 +0530

    fix: memory allocation problem.

commit d7ffbbfe12f7750b7d0a361420f35c13e0ea787d
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Mon Apr 29 09:56:59 2024 +0530

    fix-copies

commit 8dfc3731cedd02e36acd3fe56bb2e6d61efd25d8
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri Apr 26 20:16:12 2024 +0530

    address arthur's comments.

commit d2ed7b4ce4ff15ae9aa4d3d0500f1544e3dcd9e9
Author: Sayak Paul <spsayakpaul@gmail.com>
Date:   Fri Apr 26 20:08:15 2024 +0530

    Apply suggestions from code review

    Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

commit 46e04361f37ded5c522ff05e9f725b9f82dce40e
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Wed Apr 24 09:55:27 2024 +0530

    add to docs.

commit 831629158ad40d34d8983f209afb2740ba041af2
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Wed Apr 24 09:33:10 2024 +0530

    styling.g

commit d263a119c77314250f4b4c8469caf42559197f22
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Wed Apr 24 09:15:20 2024 +0530

    up

commit d44f9d3d7633d4c241a737a1bc317f791f6aedb3
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Tue Apr 23 18:40:42 2024 +0530

    handle causal and attention mask

commit 122f1d60153df6666b634a94e38d073f3f260926
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Tue Apr 23 15:18:21 2024 +0530

    test fixes.

commit 4382d8cff6fa1dee5dbcf0d06b3e2841231e36f5
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Tue Apr 23 09:39:25 2024 +0530

    fix: scaling inside sdpa.

commit 0f629989efc48b7315cf19405a81e02955efe7e5
Author: Sayak Paul <spsayakpaul@gmail.com>
Date:   Tue Apr 23 08:14:58 2024 +0530

    Update src/transformers/models/clip/modeling_clip.py

    Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

commit 14367316877dc27ea40f767ad1aee38bbc97e4ce
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Mon Apr 22 16:21:36 2024 +0530

    add: sdpa support to clip.

* Remove fallback for empty attention mask (expensive operation)

* Fix typing in copies

* Add flash attention

* Add flash attention tests

* List CLIP in FA docs

* Fix embeddings attributes and tf

* [run-slow] clip

* Update clip documentation

* Remove commented code, skip compile dynamic for CLIPModel

* Fix doc

* Fix doc 2

* Remove double transpose

* Add torch version check for contiguous()

* Add comment to test mixin

* Fix copies

* Add comment for mask

* Update docs

* [run-slow] clip
2024-07-18 10:30:37 +05:30
b31d595040 Add language to word timestamps for Whisper (#31572)
* add language to words

_collate_word_timestamps uses the return_language flag to determine whether the language of the chunk should be added to the word's information

* ran style checks

added missing comma

* add new language test

test that the pipeline can return both the language and timestamp

* remove model configuration in test

Removed model configurations that do not influence test results

* remove model configuration in test

Removed model configurations that do not influence test results
2024-07-17 21:32:53 +01:00
cb23d1b20b Pass missing arguments to SeamlessM4Tv2ConformerEncoderLayer.forward() when gradient checkpointing is enabled (#31945)
* pass missing arguments when gradient checkpointing is enabled for SeamlessM4Tv2

* fix same bug in SeamlessM4Tv1

* pass args, not kwargs
2024-07-17 20:42:53 +01:00
bc36c26fa6 doc: fix broken BEiT and DiNAT model links on Backbone page (#32029)
Signed-off-by: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com>
2024-07-17 20:24:10 +01:00
63be8e6f39 Fix typo in classification function selection logic to improve code consistency (#32031)
Make problem_type condition consistent with num_labels condition

The latter condition generally overrides the former, so this is more of a code reading issue. I'm not sure the bug would ever actually get triggered under normal use.
2024-07-17 20:20:39 +01:00
72fb02c47d Fixed log messages that are resulting in TypeError due to too many arguments (#32017)
* Fixed log messages that are resulting in TypeErrors due to too many arguments.

* Removed un-necessary imports.
2024-07-17 10:56:44 +01:00
691586b0dc Fix tests skip (#32012)
* [run-slow] clip

* [run-slow] clip

* Fix skip -> skipTest

* [run-slow] clip
2024-07-17 08:37:43 +01:00
24cfcc2114 Chameleon: add model (#31534)
* Chameleon model integration

Co-authored-by: Jacob Kahn <jacobkahn1@gmail.com>
Co-authored-by: Leonid Shamis <leonid.shamis@gmail.com>

* fix 7B, again. mask away image tokens

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* remove pretrained_config_map

* make fixup passing up to utils/check_config_docstrings.py; vqgan moved to the modeling file

* remove tokenizer (use llama's); remove codechameleon tests

* a few copied from statements and minor changes

* copied from in ChameleonModel

* some copies in ChameleonForCausalLM

* a few more copies

* VQModel moved to ChameleonModel (as opposed to being in the processor)

* ChameleonProcessor ready

* Fix chameleon weights convert

* update conversion script

* clean-up processing

* update modeling a bit

* update

* update (throws error...)

* correct conversion ready

* fix tests

* fix docs

* docs

* ve swin norm

* fix device for vocab map

* add normalization

* update

* update script with rope rotations

* final fix on model conversion

* add slow tests

* more info in docs

* fix repo consistency tests

* fix repo tests

* fix-copies

* hope this will make CI happy

* fix for 30b model

* Update docs/source/en/index.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/model_doc/chameleon.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/chameleon/modeling_chameleon.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/model_doc/chameleon.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/model_doc/chameleon.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/model_doc/chameleon.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/model_doc/chameleon.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/auto/configuration_auto.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/chameleon/image_processing_chameleon.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/chameleon/image_processing_chameleon.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/chameleon/image_processing_chameleon.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/chameleon/image_processing_chameleon.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/chameleon/modeling_chameleon.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/chameleon/processing_chameleon.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/chameleon/processing_chameleon.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/chameleon/test_modeling_chameleon.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/chameleon/test_modeling_chameleon.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/chameleon/test_modeling_chameleon.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* address comments

* remove assertion in conversion script

* add image processor test

* not copied

* port changes for qk layernorm

* fix-copies

* read token decorator for tests

* [run-slow] chameleon

* one more read-token

* address some comments

* qk norm changes

* tests and repo check

* moved rope permutations to conversion, YAY!

* fix past kv check

* docs

* layernorm done!

* let's be consistent in naming

* fix slow tests

* weird thing with slow CI, but let's see

* once more try

* remove past-kv as tuple following llama

* ignore

* style

---------

Co-authored-by: Pablo Montalvo <39954772+molbap@users.noreply.github.com>
Co-authored-by: ArthurZucker <arthur.zucker@gmail.com>
Co-authored-by: jacobkahn <jacobkahn1@gmail.com>
Co-authored-by: Leonid Shamis <leonid.shamis@gmail.com>
Co-authored-by: Leonid Shamis <lshamis@meta.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Joao Gante <joao@huggingface.co>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-07-17 10:41:43 +05:00
4037a2b5b1 SpeechEncoderDecoder doesn't support param buffer assignments (#32009)
One more model
2024-07-16 18:18:32 -04:00
6f40a213eb Fix if else and *actually* enable superfast init (#32007)
* Fix if else

* rm err raise
2024-07-16 14:35:57 -04:00
e391706420 Fix gather when collecting 'num_input_tokens_seen' (#31974)
* Move token count to device before gathering

* Run 'make style; make quality'
2024-07-16 19:35:10 +01:00
c22efa6196 Bug report update -- round 2 (#32006)
* like this?

* Update .github/ISSUE_TEMPLATE/bug-report.yml

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-07-16 19:22:45 +01:00
88e0813d8d fix: Fixed incorrect dictionary assignment in src/transformers/__init__.py (#31993)
Fixed incorrect dictionary assignment.
2024-07-16 17:28:14 +01:00
036d3de23d add flash-attn deterministic option to flash-attn>=2.4.1 (#31961)
* add flash-attn deterministic option to flash-attn>=2.4.1

* Add Missing Import

* Fix ruff linting issues

* Replace `is_flash_attn_greater_or_equal_2_41` with the existing `is_flash_attn_greater_or_equal`

---------

Co-authored-by: jun.4 <jun.4@kakaobrain.com>
2024-07-16 17:55:41 +02:00
89eec5cf20 Bug report update (#31983) 2024-07-16 16:51:05 +01:00
999981daf4 Tests: remove cuda versions when the result is the same 🧹🧹 (#31955)
remove cuda versions when the result is the same
2024-07-16 16:49:54 +01:00
693cb828ff Fix bad test about slower init (#32002)
Bronked main
2024-07-16 10:33:05 -04:00
25e5e3fa56 [tests] fix deepspeed zero3 config for test_stage3_nvme_offload (#31881)
fix config
2024-07-16 16:11:37 +02:00
e0dfd7bcaf Speedup model init on CPU (by 10x+ for llama-3-8B as one example) (#31771)
* 1,100%!

* Clean

* Don't touch DS

* Experiment with dtype allocation

* skip test_load_save_without_tied_weights test

* A little faster

* Include proper upscaling?

* Fixup tests

* Potentially skip?

* Let's see if this fixes git history

* Maintain new dtype

* Fin

* Rm hook idea for now

* New approach, see what breaks

* stage

* Clean

* Stash

* Should be fin now, just need to mark failing models

* Clean up

* Simplify

* Deal with weird models

* Enc/Dec

* Skip w/ reason

* Adjust test

* Fix test

* one more test

* Keep experimenting

* Fix ref

* TO REMOVE: testing feedback CI

* Right push

* Update tests/utils/test_modeling_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* disable

* Add new func

* Test nits from Amy

* Update src/transformers/modeling_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Adjust comment

* Adjust comment on skip

* make private

* Fin

* Should be a not flag

* Clarify and rename test

---------

Co-authored-by: Marc Sun <marc@huggingface.co>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-07-16 09:32:01 -04:00
03a3becc48 Cambricon MLUs support SDPA and flash_attn (#31102)
* add Cambricon MLUs support

* fix mlu device rng state

* up for quality check

* up mlu to support fp16

* fix mlu device dependency error

* fix mlu device dependency error

* enable mlu device for bf16

* fix mlu device memory tracker

* Cambricon support SDPA and flash_attn
2024-07-16 14:33:22 +02:00
ac946aac25 Fix the incorrect permutation of gguf (#31788)
* Fix the incorrect permutation of gguf

* rename num_kv_heads

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* add typing to num_kv_heads

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* rename variables

* refactor permute function name

* update the expected text of the llama3 q4 test

---------

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2024-07-16 08:20:34 +02:00
6fbea6d237 Generate: doc nits (#31982)
nits
2024-07-15 19:59:20 +01:00
e4682de635 Masking: remove flakiness from test (#31939) 2024-07-15 18:49:37 +01:00
a1a34657d4 Avoid race condition (#31973)
* [test_all] hub

* remove delete

* remove delete

* remove delete

* remove delete

* remove delete

* remove delete

* [test_all]

* [test_all]

* [test_all]

* [test_all]

* [test_all]

* [test_all]

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-07-15 17:56:24 +02:00
11efb4fc09 Notify new docker images built for circleci (#31701)
* hello

* hello

* hello

* hello

* hello

* hello

* hello

* notify

* trigger

* use new channel

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-07-15 17:16:36 +02:00
556a4205f0 fix: Fixed the arguments in create_repo() function call (#31947)
* Fixed the arguments in create_repo() function call.

* Formatted the code properly using ruff.

* Formatted the code more clearly.
2024-07-15 15:56:17 +01:00
907500423d Generate: handle logits_warper update in models with custom generate fn (#31957)
handle logits_warper update in models with custom generate fn
2024-07-15 12:07:53 +02:00
454bc14d90 fix: Removed a wrong key-word argument in sigmoid_focal_loss() function call (#31951)
Removed a wrong key-word argument in sigmoid_focal_loss() function call.
2024-07-15 10:05:08 +01:00
a5c642fe7a Whisper: move to tensor cpu before converting to np array at decode time (#31954) 2024-07-14 16:39:42 +01:00
df1c248a6d Generate: v4.42 deprecations 🧹🧹 (#31956)
v4_42 deprecations
2024-07-14 16:39:24 +01:00
739a63166d Generate: remove deprecated code due to Cache and cache_position being default (#31898)
* tmp commit

* shorter

* nit

* explicit kwargs

* propagate changes

* mass propagation with a few manual touches (let's see how CI behaves)

* fix cacheless case

* Update src/transformers/generation/utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* make fixup

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-07-14 15:16:58 +01:00
8480fda6ee Fix GenerationMixin.generate compatibility with pytorch profiler (#31935)
use torch.compiler.is_compiling() when possible
2024-07-14 14:44:38 +01:00
7f79a97399 fix prompt strip to support tensors and np arrays (#27818)
* fix prompt strip to support tensors and np arrays

* framework agnostic

* change logic check before converting prompt into list

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* adding _convert_to_list to tokenization_whisper_fast

* adding tests for prompt decoding

* adding comment

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* adding comment

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* revert minor

* make style formatting

* style formatting after update

* Update src/transformers/models/whisper/tokenization_whisper_fast.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* fixing _strip_prompt to handle _decode_with_timestamps

* fix copies

---------

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
2024-07-12 20:07:10 +01:00
d1a1bcf56a Docker: TF pin on the consistency job (#31928)
* pin

* dev-ci

* dev-ci

* dev-ci

* test pushed image
2024-07-12 14:28:46 +02:00
aec1ca3a58 [Bug Fix] fix qa pipeline tensor to numpy (#31585)
* fix qa pipeline

* fix tensor to numpy
2024-07-11 22:22:26 +01:00
c1e139c2b0 Adding hiera (#30356)
* initialized Structure

* Updated variable names

* Added Config class, basic HF setup, convert_to_hf

* Fixed Convert function, added hiera to HF files, Initilized test files

* better naming for x in forward pass

* Moved utils to hiera

* Change hiera -> hiera_model

* Fixed integration into tranformers

* Fix: Convert Checkpoint

* added documentation for hiera

* added documentation for hiera

* added Docstings to models, Transformers based changes

* make style and quality

* make style and quality

* Integration & Block tests running

* Fixed bugs

* initialized Structure

* Updated variable names

* Added Config class, basic HF setup, convert_to_hf

* Fixed Convert function, added hiera to HF files, Initilized test files

* better naming for x in forward pass

* Moved utils to hiera

* Change hiera -> hiera_model

* Fixed integration into tranformers

* Fix: Convert Checkpoint

* added documentation for hiera

* added documentation for hiera

* added Docstings to models, Transformers based changes

* make style and quality

* make style and quality

* Integration & Block tests running

* Fixed bugs

* Removed tim dependency

* added HieraBlock

* fixed: Model name

* added tests for HieraModel, HieraBlock

* fixed imports

* fixed quality & copies

* Fixes

* Update docs/source/en/model_doc/hiera.md

Fix name

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/hiera.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/hiera.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update src/transformers/models/hiera/configuration_hiera.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update src/transformers/models/hiera/configuration_hiera.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update src/transformers/models/hiera/modeling_hiera.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update src/transformers/models/hiera/modeling_hiera.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Fixed formatting

* Code quality & Import differences

* quality and repo-consistency fix

* fixed no torch error

* Docstring fix

* Docstring fix

* doc string fix

* fixed example usage

* Resolved issues in modeling_hiera

* Removed Hiera MAE

* Added test and resolved bug

* fixed doc string

* First commit

* Finished conversion script and model forward working

* Resolved all issues

* nits

* Improving tests

* Nits

* More nits

* Improving HieraForMaskedImageModeling

* More improvements and nits

* Fixed docstrings of outputs

* More fixes

* More imrpovments

* Updated conversion script

* Fixed docstrings

* Improved tests

* Fixed attentou outputs test

* All tests green

* Removed unnecessary file

* contribution attribution

* Resolved a few issues

* Resolved Comments

* Updated model repo id and fixed bugs

* Removed loss print

* Make tests green

* Updated docstrings

* Fix style

* Fixed num_heads in config

* Removed unnecessary video checkpoint related code in the conversion script

* Fix style

* Changed atol in conversion script

* HieraConfig

* Fix copies

* Fixed typo

* Resolved few issues

* make

* converted conv_nd -> nn.Module

* Removed video complexities

* Removed video complexities

* fix style

* Addressing comments

* Update src/transformers/models/hiera/modeling_hiera.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/hiera/modeling_hiera.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/hiera/modeling_hiera.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Fix style

* Fixed tests

* Fixed typo

* Fixed interpolate test

* Made torch fx compatible

* Made sure imageprocesor is correct

* Addressed comments

* Noise directly as torch

* Remove unnecesary attr

* Added return_dit

* Update src/transformers/models/hiera/__init__.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Updated checkpoints

* [run_slow] hiera

* Fixed device mismatch

* [run_slow] hiera

* Fixed GPU tests

* [run_slow] hiera

---------

Co-authored-by: Ubuntu <ubuntu@ip-172-31-29-50.us-east-2.compute.internal>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Eduardo Pacheco <eduardo.pach@hotmail.com>
Co-authored-by: Eduardo Pacheco <69953243+EduardoPach@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-07-11 22:13:56 +01:00
574e68d554 Allow Trainer.get_optimizer_cls_and_kwargs to be overridden (#31875)
* Change `Trainer.get_optimizer_cls_and_kwargs` to `self.`

* Make `get_optimizer_cls_and_kwargs` an instance method

* Fixing typo

* Revert `get_optimizer_cls_and_kwargs` to staticmethod

* restore newline to trainer.py eof
2024-07-11 22:13:06 +01:00
52585019a1 🚨 fix(SigLip): remove spurious exclusion of first vision output token (#30952)
fix(SigLip): remove spurious exclusion of first vision output token in classifier
2024-07-11 19:40:57 +01:00
6a05f68f51 Generate: fix SlidingWindowCache.reset() (#31917)
fix sliding cache
2024-07-11 19:35:46 +01:00
e314395277 Refactor flash attention implementation in transformers (#31446)
* dumb commit

* nit

* update

* something like this

* unpack in modeling utils

* safe import

* oups

* update

* nits

* diff convert gemma

* update

* start propagating

* udpate other modeling code as well

* update for sliding window models

* nits

* more init cleanups

* styling

* fixup

* noice

* pass fixup

* typo typing_extension -> typing_extensions

* torch.nn.functionnal -> torch.nn.functional

* add to import structure

* unpack

* simplify a bit more for this first version

* nut

* update

* update

* nit

* ease the import of `Unpack`

* remove useless `use_sliding_window`

* no qua please

* protect import?

* style

* [run-slow]

* [run slow] llama,gemma,mistral,mixtral

* remove extra kwargs

* fix llama

* address review comments

* apply diff_model_converter to modeling_gemma.py

* remove cache_position 1

* remove cache_position 2

* some cleaning

* refactor gemma2 as well

* apply review comments

* rename file to modeling_flash_attention_utils.py

* siglip refactor

* remove dead code

* is the hub down?

* still down?

* fix siglip

* fix gemma2

* fatal: Could not read from remote repository.

* fix typo in softcap implem

* flacky

* Failed: Timeout >120.0s

---------

Co-authored-by: fxmarty <9808326+fxmarty@users.noreply.github.com>
2024-07-11 20:37:31 +08:00
ad4ef3a290 Fix fx tests with inputs_embeds (#31862)
* fix tests

* [test_all] check

* address review comments
2024-07-11 20:14:03 +08:00
1499a55008 Add warning message for beta and gamma parameters (#31654)
* Add warning message for  and  parameters

* Fix when the warning is raised

* Formatting changes

* Improve testing and remove duplicated warning from _fix_key
2024-07-11 13:01:47 +01:00
23d6d0cc06 add gather_use_object arguments II (#31799)
* add gather_use_object arguments

* fix name and pass the CI test for Seq2SeqTrainer

* make style

* make it to functools

* fix typo

* add accelerate version:

* adding warning

* Update src/transformers/trainer.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* make style

* Update src/transformers/training_args.py

* check function move to initial part

* add test for eval_use_gather_object

* fix minor

---------

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2024-07-11 12:23:02 +01:00
2e48b3e872 fix: Fixed the 1st argument name in classmethods (#31907)
Fixed the first argument name in few classmethods.
2024-07-11 12:11:50 +01:00
48c20700e1 Fix missing methods for Fuyu (#31880)
* add missing methods for FuyuForCausalLM

* fix a typo

* format code

* add missing tie_weights

* format code
2024-07-11 11:01:46 +01:00
f4ec7a286a [Gemma2] Support FA2 softcapping (#31887)
* Support softcapping

* strictly greater than

* update
2024-07-11 11:57:35 +02:00
f67e0f7fb7 [ConvertSlow] make sure the order is preserved for addedtokens (#31902)
* preserve the order

* oups

* oups

* nit

* trick

* fix issues
2024-07-11 11:56:41 +02:00
14d3b3f0f0 Processor accepts any kwargs (#31889)
* accept kwargs in processors

* return unused kwargs

* fix tests

* typo

* update the other way
2024-07-11 13:20:30 +05:00
a695c18649 Fixes to alternating SWA layers in Gemma2 (#31775)
* HybridCache: Flip order of alternating global-attn/sliding-attn layers

* HybridCache: Read sliding_window argument from cache_kwargs

* Gemma2Model: Flip order of alternating global-attn/sliding-attn layers

* Code formatting
2024-07-11 10:03:46 +02:00
d625294d79 InstructBlipVideo: Update docstring (#31886)
* update docs

* one more change
2024-07-11 10:13:29 +05:00
c54af4c77e Add a condition for nested_detach (#31855)
fix bug: https://github.com/huggingface/transformers/issues/31852
2024-07-10 21:37:22 +01:00
080e14b24c Modify warnings in a with block to avoid flaky tests (#31893)
* fix

* [test_all] check before merge

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-07-10 17:56:12 +02:00
ec03d97b27 [RT-DETR] Add resources (#31815)
* Add resources

* Address comments
2024-07-10 16:34:53 +01:00
8df28bb308 Push sharded checkpoint to hub when push_to_hub=True in TrainingArguments (#31808)
Save sharded checkpoint in Trainer
2024-07-10 15:14:20 +02:00
da79b18087 fix: Removed duplicate field definitions in some classes (#31888)
Removed duplicate field definitions in classes.
2024-07-10 13:46:31 +01:00
9d98706b3f Fix failed tests in #31851 (#31879)
* Revert "Revert "Fix `_init_weights` for `ResNetPreTrainedModel`" (#31868)"

This reverts commit b45dd5de9c8426db5dbda1797a4790566a278919.

* fix

* [test_all] check

* fix

* [test_all] check

* fix

* [test_all] check

* fix

* [test_all] check

* fix

* [test_all] check

* fix

* [test_all] check

* fix

* [test_all] check

* fix

* [test_all] check

* fix

* [test_all] check

* fix

* [test_all] check

* fix

* [test_all] check

* fix

* [test_all] check

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-07-10 14:25:24 +02:00
a0a3e2f469 Fix file type checks in data splits for contrastive training example script (#31720)
fix data split file type checks
2024-07-10 10:17:03 +01:00
e9eeedaf3b remove duplicate words in msg (#31876) 2024-07-10 09:54:45 +01:00
97aa3e2905 Add conversion for interleave llava (#31858)
* add conversion for interleave llava

* remove debug lines

* remove unused imports

* Update src/transformers/models/llava/convert_llava_weights_to_hf.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* small changes + docs

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-07-10 12:12:21 +05:00
ad35309a62 add warning when using gradient_checkpointing with FSDP full shard (#31578)
* add warning when using  with FSDP full shard

* fix style

* Update src/transformers/training_args.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/training_args.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* add hybrid shard warn

* fix style

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-07-09 23:55:57 +01:00
6176d8f5ee Bump certifi from 2023.7.22 to 2024.7.4 in /examples/research_projects/visual_bert (#31872)
Bump certifi in /examples/research_projects/visual_bert

Bumps [certifi](https://github.com/certifi/python-certifi) from 2023.7.22 to 2024.7.4.
- [Commits](https://github.com/certifi/python-certifi/compare/2023.07.22...2024.07.04)

---
updated-dependencies:
- dependency-name: certifi
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-07-09 22:20:39 +01:00
b45dd5de9c Revert "Fix _init_weights for ResNetPreTrainedModel" (#31868)
Revert "Fix `_init_weights` for `ResNetPreTrainedModel` (#31851)"

This reverts commit 4c8149d643576c23d4df559d4931ccf08fa7aee4.
2024-07-09 23:00:56 +02:00
c5bc2d5fd5 Add return type annotation to PreTrainedModel.from_pretrained (#31869)
Update modeling_utils.py

Add return type annotation to PreTrainedModel.from_pretrained
2024-07-09 21:49:29 +01:00
6e59b30841 Bump zipp from 3.7.0 to 3.19.1 in /examples/research_projects/decision_transformer (#31871)
Bump zipp in /examples/research_projects/decision_transformer

Bumps [zipp](https://github.com/jaraco/zipp) from 3.7.0 to 3.19.1.
- [Release notes](https://github.com/jaraco/zipp/releases)
- [Changelog](https://github.com/jaraco/zipp/blob/main/NEWS.rst)
- [Commits](https://github.com/jaraco/zipp/compare/v3.7.0...v3.19.1)

---
updated-dependencies:
- dependency-name: zipp
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-07-09 21:44:48 +01:00
e3a7d9bd47 Update depth estimation task guide (#31860)
---------

Co-authored-by: Merve Noyan <mervenoyan@Merve-MacBook-Pro.local>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-07-09 22:13:30 +03:00
4c8149d643 Fix _init_weights for ResNetPreTrainedModel (#31851)
* init

* test

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-07-09 20:09:08 +02:00
d094d8d9ec Generate: Add new decoding strategy "DoLa" in .generate() (#29619)
Co-authored-by: Joao Gante <joao@huggingface.co>
2024-07-09 17:37:38 +01:00
99c0e55335 docs: typo in tf qa example (#31864)
Signed-off-by: chenk <hen.keinan@gmail.com>
2024-07-09 16:30:06 +01:00
4c2538b863 Test loading generation config with safetensor weights (#31550)
fix test
2024-07-09 16:22:43 +02:00
cffa2b9c1d save_pretrained: use tqdm when saving checkpoint shards from offloaded params (#31856) 2024-07-09 12:55:57 +01:00
350aed7076 chore: remove duplicate words (#31853)
remove duplicate words
2024-07-09 10:38:29 +01:00
bd760cd13d [Grounding DINO] Add processor to auto mapping (#31845)
Add model
2024-07-09 11:28:53 +02:00
0abf5e8eae FX symbolic_trace: do not test decoder_inputs_embeds (#31840)
only test input_embeds, not decoder_input_embeds
2024-07-09 08:07:46 +02:00
952dfd4867 Deprecate vocab_size in other two VLMs (#31681)
* deprrecate `vocab_size` in other two VLMs

* Update src/transformers/models/fuyu/configuration_fuyu.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* depracate until 4.44

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-07-09 10:40:06 +05:00
594c1610fa Mamba & RecurrentGemma: enable strict signature (#31549)
* enable strict signature

* this should not have been deleted

* recurrent_gemma too
2024-07-08 15:48:32 +01:00
ae9dd02ee1 Fix incorrect accelerator device handling for MPS in TrainingArguments (#31812)
* Fix wrong acclerator device setup when using MPS

* More robust TrainingArguments MPS handling

* Update training_args.py

* Cleanup
2024-07-08 12:49:30 +01:00
4879ac2b33 Avoid failure TFBlipModelTest::test_pipeline_image_to_text (#31827)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-07-08 13:49:21 +02:00
ba743700f4 transformers.fx.symbolic_trace supports inputs_embeds (#31574)
* symbolic trace supports inputs_embeds

* fix test?

* Update tests/test_modeling_common.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-07-08 19:17:28 +08:00
e5ca9b057c Fix typos (#31819)
* fix typo

* fix typo

* fix typos

* fix typo

* fix typos
2024-07-08 11:52:47 +01:00
f4711844a3 Bump certifi from 2023.7.22 to 2024.7.4 in /examples/research_projects/lxmert (#31838)
Bump certifi in /examples/research_projects/lxmert

Bumps [certifi](https://github.com/certifi/python-certifi) from 2023.7.22 to 2024.7.4.
- [Commits](https://github.com/certifi/python-certifi/compare/2023.07.22...2024.07.04)

---
updated-dependencies:
- dependency-name: certifi
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-07-08 11:17:49 +01:00
9f3f58c905 Bump transformers from 4.26.1 to 4.38.0 in /examples/tensorflow/language-modeling-tpu (#31837)
Bump transformers in /examples/tensorflow/language-modeling-tpu

Bumps [transformers](https://github.com/huggingface/transformers) from 4.26.1 to 4.38.0.
- [Release notes](https://github.com/huggingface/transformers/releases)
- [Commits](https://github.com/huggingface/transformers/compare/v4.26.1...v4.38.0)

---
updated-dependencies:
- dependency-name: transformers
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-07-08 11:12:33 +01:00
a177821b24 Add FA2 and sdpa support for SigLIP (#31499)
* Rebase to main

* Fix attention implementation autoset for tex and vision configs

* Fixup

* Minor fixes

* Fix copies

* Fix attention_mask for FA2

* Add eqvivalence tests for siglip

* Remove right padding test

* Uncomment flaky

* Fix import

* Add to docs

* Fix test message

* Add sdpa

* Add sdpa equivalence test

* Add siglip sdpa to docs

* Fix typing for attention output

* Add sdpa tests

* Fix signature of FA2

* Autoset attn_implementation in config

* Rename bsz -> batch_size

* Move back autoset attn method

* Mark as flaky

* Correct attention mask padding

* [run-slow] siglip

* Add FA2 and sdpa docs

* Style fix

* Remove flaky for FA2 test

* Change attention implementation set

* Change attn_implementaiton propogation

* Fix typos

* Add modality to assert message

* Add more sdpa backends in test

* [run slow] siglip

* Add math sdpa backend for all options

* [run slow] siglip
2024-07-08 11:10:02 +01:00
076e66e479 Bump certifi from 2023.7.22 to 2024.7.4 in /examples/research_projects/decision_transformer (#31813)
Bump certifi in /examples/research_projects/decision_transformer

Bumps [certifi](https://github.com/certifi/python-certifi) from 2023.7.22 to 2024.7.4.
- [Commits](https://github.com/certifi/python-certifi/compare/2023.07.22...2024.07.04)

---
updated-dependencies:
- dependency-name: certifi
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-07-08 10:52:10 +01:00
c1cda0ee2c Fix Seq2SeqTrainer crash when BatchEncoding data is None (#31418)
avoiding crash when BatchEncoding data is None
2024-07-08 10:51:23 +01:00
06fd7972ac Add ZoeDepth (#30136)
* First draft

* Add docs

* Clean up code

* Convert model

* Add image processor

* Convert Zoe_K

* More improvements

* Improve variable names and docstrings

* Improve variable names

* Improve variable names

* Replace nn.sequential

* More improvements

* Convert ZoeD_NK

* Fix most tests

* Verify pixel values

* Verify pixel values

* Add squeeze

* Update beit to support arbitrary window sizes

* Improve image processor

* Improve docstring

* Improve beit

* Improve model outputs

* Add figure

* Fix beit

* Update checkpoint

* Fix repo id

* Add _keys_to_ignore_on_load_unexpected

* More improvements

* Address comments

* Address comments

* Address comments

* Address comments

* Rename variable name

* Add backbone_hidden_size

* Vectorize

* Vectorize more

* Address comments

* Clarify docstring

* Remove backbone_hidden_size

* Fix image processor

* Remove print statements

* Remove print statement

* Add integration test

* Address comments

* Address comments

* Address comments

* Address comments

* Add requires_backends

* Clean up

* Simplify conversion script

* Simplify more

* Simplify more

* Simplify more

* Clean up

* Make sure beit is loaded correctly

* Address comment

* Address bin_configurations

* Use bin_configurations

* Convert models, add integration tests

* Fix doc test

* Address comments

* Unify regressor classes

* Clarify arguments

* Improve resize_image

* Add num_relative_features

* Address comment

* [run-slow]beit,data2vec,zoedepth

* [run-slow]beit,data2vec,zoedepth

* Address comments

* Address comment

* Address comment

* Replace nn.TransformerEncoderLayer and nn.TransformerEncoder

* Replace nn.MultiheadAttention

* Add attributes for patch transformer to config

* Add tests for ensure_multiple_of

* Update organization

* Add tests

* [run-slow] beit data2vec

* Update ruff

* [run-slow] beit data2vec

* Add comment

* Improve docstrings, add test

* Fix interpolate_pos_encoding

* Fix slow tests

* Add docstring

* Update src/transformers/models/zoedepth/image_processing_zoedepth.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/zoedepth/image_processing_zoedepth.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Improve tests and docstrings

* Use run_common_tests

* Improve docstrings

* Improve docstrings

* Improve tests

* Improve tests

* Remove print statements

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-07-08 11:43:33 +02:00
1082361a19 Depth Anything: update conversion script for V2 (#31522)
* Depth Anything: update conversion script for V2

* Update docs

* Style

* Revert "Update docs"

This reverts commit be0ca47ea1be4f3cd9aa2113bdd8efcc9959119e.

* Add docs for depth anything v2

* Add depth_anything_v2 to MODEL_NAMES_MAPPING

Done similarly to Flan-T5: https://github.com/huggingface/transformers/pull/19892/files

* Add tip in original docs
2024-07-05 19:28:41 +01:00
a8fa6fbbec Fix Wav2Vec2 Fairseq conversion (weight norm state dict keys) (#31714)
* handle new weight norm

* fix

* fix trailing space
2024-07-05 19:26:21 +01:00
a01b033cb4 Fix galore lr display with schedulers (#31710)
* fix galore lr display with lr schedulers

* style

* add some tests to check for displayed lrs

* copy-paste err for warmup steps

* standardize the default lr to be only in the optimizer

* trying out my luck with the reads
2024-07-05 18:59:09 +01:00
ac26260436 Allow FP16 or other precision inference for Pipelines (#31342)
* cast image features to model.dtype where needed to support FP16 or other precision in pipelines

* Update src/transformers/pipelines/image_feature_extraction.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Use .to instead

* Add FP16 pipeline support for zeroshot audio classification

* Remove unused torch imports

* Add docs on FP16 pipeline

* Remove unused import

* Add FP16 tests to pipeline mixin

* Add fp16 placeholder for mask_generation pipeline test

* Add FP16 tests for all pipelines

* Fix formatting

* Remove torch_dtype arg from is_pipeline_test_to_skip*

* Fix format

* trigger ci

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-07-05 17:21:50 +01:00
e786844425 Repeating an important warning in the chat template docs (#31796)
* Repeating an important warning in the chat template docs

* Update docs/source/en/chat_templating.md

Co-authored-by: Lysandre Debut <hi@lysand.re>

* Reword for clarity

* Reword for clarity

---------

Co-authored-by: Lysandre Debut <hi@lysand.re>
2024-07-05 15:30:24 +01:00
1d3eaa6f7e Add training support for SigLIP (#31495)
* Add siglip loss function

* Update docs

* Enable training tests
[experimental] enable GC training tests as it has worked for my own data

* Remove test_training* overrides to enable training tests
[run_slow] siglip

* Skip training tests for Siglip text model and ImageClassificationModel
[run_slow] siglip

* Skip GC training tests for SiglipForImageClassification

* Explicitly skip training tests for SiglipVisionModel
Add skip reason for training tests for SiglipTextModel

* Remove copied from to fix CI
2024-07-05 14:50:39 +01:00
1556025271 Code agent: allow function persistence between steps (#31769)
* Code agent: allow function persistence between steps
2024-07-05 11:09:11 +02:00
eef0507f3d Fix gemma tests (#31794)
* skip 3 7b tests

* fix

* fix

* fix

* [run-slow] gemma

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-07-05 10:17:59 +02:00
9e599d1d94 Update CometCallback to allow reusing of the running experiment (#31366)
* Update CometCallback to allow reusing of the running experiment

* Fixups

* Remove useless TODO

* Add checks for minimum version of the Comet SDK

* Fix documentation and links.

Also simplify how the Comet Experiment name is passed
2024-07-05 08:13:46 +02:00
d19b5a90c2 Exclude torch.compile time from metrics computation (#31443)
* exclude compile time from metrics computation

* fix the quality issue
2024-07-05 08:11:55 +02:00
2aa2a14481 Make tensor device correct when ACCELERATE_TORCH_DEVICE is defined (#31751)
return correct device when ACCELERATE_TORCH_DEVICE is defined
2024-07-05 08:09:04 +02:00
8c5c180de0 Fix serialization for offloaded model (#31727)
* Fix serialization

* style

* add test
2024-07-05 08:07:07 +02:00
eaa5f41439 Fix ClapProcessor to merge feature_extractor output into the returned BatchEncoding (#31767)
* fixed ClapProcessor to merge all values output from the feature extractor into the returned BatchEncoding.

* fixed trailing whitespace
2024-07-05 07:55:47 +02:00
43ffb785c0 Add torch_empty_cache_steps to TrainingArguments (#31546)
* Add torch_empty_cache_steps to TrainingArguments

* Fix formatting

* Add torch_empty_cache_steps to docs on single gpu training

* Remove check for torch_empty_cache_steps <= max_steps

* Captalize Tip

* Be device agnostic

* Fix linting
2024-07-04 13:20:49 -04:00
cee768d97e Fix Gemma2 types (#31779)
Update __init__.py
2024-07-04 15:37:32 +02:00
87726a08ed pytest_num_workers=4 for some CircleCI jobs (#31764)
pytest_num_workers=4

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-07-04 14:44:58 +02:00
048f599f35 Fix RT-DETR weights initialization (#31724)
* Fix init for rt-detr heads

* Fixup

* Add separate prior_prob value to config for initialization

* Add bbox init

* Change to 1 / num_labels init

* Adjust weights init test

* Fix style for test
2024-07-03 14:29:02 +01:00
b97521614a Fix RT-DETR cache for generate_anchors (#31671)
* Fix cache and type conversion

* Add test

* Fixup

* nit

* [run slow] rt_detr

* Fix test

* Fixup

* [run slow] rt_detr

* Update src/transformers/models/rt_detr/modeling_rt_detr.py
2024-07-03 14:19:57 +01:00
534cbf8a5d [fix bug] logits's shape different from label's shape in preprocess_logits_for_metrics (#31447)
* [fix BUG] pad labels before use it in preprocess_logits_for_metrics

* a more readable fix

labels can't use  `gather` before pass to `preprocess_logits_for_metrics`, so must split into 2 if-block

* add a comment

* oh code quality check
2024-07-03 06:58:27 -04:00
65a02cd27d Add ignore_errors=True to trainer.py rmtree in _inner_training_loop (#31668)
Update trainer.py
2024-07-03 06:54:49 -04:00
ddfaf11926 Gemma 2: Update slow tests (#31759)
gemma 2 slow tests
2024-07-03 11:43:44 +02:00
c1fe12595e handle (processor_class, None) returned by ModelPatterns (#31753) 2024-07-03 11:42:30 +02:00
0fd885b91c Adds final answer tool for all agents (#31703)
* Adds final answer tool for all agents

* Typo

* Add clarification in doc

* Put final_answer tool adition in agent for clarity
2024-07-03 11:36:09 +02:00
dc72fd7edd Requires for torch.tensor before casting (#31755) 2024-07-03 11:12:51 +02:00
7f91f168a1 fix assisted decoding (#31401)
* fix assisted decoding

* check None

* fix typo

* fix _prepare_special_tokens

* fix style

* fix lint

* add tests for assisted decoding

* fix style

* fix tests check
2024-07-03 09:22:56 +01:00
f91c16d270 Fix documentation for Gemma2. (#31682)
* Fix documentation for Gemma2. 

Model sizes and Blog post URL are wrong in the documentation.

* Update docs/source/en/model_doc/gemma2.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-07-02 23:04:53 +01:00
cd0935dd55 Make tool JSON schemas consistent (#31756)
Make the order of array items consistent using sorted()
2024-07-02 20:00:42 +01:00
82486e5995 🚨🚨 TextGenerationPipeline: rely on the tokenizer default kwargs (#31747)
* rely on the tokenizer default kwargs

* fix a few tests
2024-07-02 16:17:42 +02:00
a9701953ff [whisper] static kv cache (#31166)
* make work with cache abstraction

* correct for static cache

* hacks for compile

* make fast

* fix

* fix pos ids

* generate

* fix sdpa

* fix sdpa cache pos

* fix fa2

* clean fa2

* integrate cache into generate

* make style

* copies

* more copies

* update eager

* update sdpa

* update fa2

* simplify

* use cache pos

* always compute cross-cache for debug

* avoid recompiles
Co-authored-by: Arthur Zucker <arthur@huggingface.co>

* fix fix

* fix fix fix

* more fix

* try encoder-decoder cache (too messy)

* revert encoder-decoder cache

* check cross-attn cache

* use enc-dec dataclass

* use richer enc-dec dataclass

* clean-up

* revert static cache changes

* small fixes

* revert to cpu flag

* fix copies

* add static slow test

* past k/v docstring

* more docstrings

* cache_position docstrings

* add to docs

* add enc-dec cache to docs

* make style

* fix after rebase

* fix beam

* style

* fix generation strategies

* fix most decoder-only tests

* style

* skip test

* more clean up

* small docstrings

* Apply suggestions from code review

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* add todo

* only crop self-attn

* check cache in mixin

* style

* fix re-compile after rebase

* move `is_updated` logic to enc-dec wrapper

* revert back

* revert cache back

* finalise design

* fix

* fix fix

* style

* Update src/transformers/cache_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* deprecate

* updates

* final updates

* style

* style

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-07-02 13:24:15 +01:00
57d7594a79 Fix mistral ONNX export (#31696)
* use bitwise or

* why is the CI not triggered?
2024-07-02 19:54:10 +08:00
93cd94b79d Move some test files (tets/test_xxx_utils.py) to tests/utils (#31730)
* move

* move

* move

* move

* Update tests/utils/test_image_processing_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-07-02 13:46:03 +02:00
cf85e86e9a remove incorrect urls pointing to the llava repository (#31107)
* remove incorrect urls pointing to the llava repository

* remove incorrect urls pointing to the llava repository; removing entire comments

* remove incorrect urls pointing to the llava repository; removing entire comments; ran fix-copies

* ran fixup
2024-07-02 12:24:55 +01:00
3345ae733b dependencies: keras-nlp<0.14 pin (#31684)
* keras nlp pin

* this should use the new docker images:dev

* dev-ci
2024-07-01 17:39:33 +01:00
e655029515 Add French version of run scripts tutorial (#31483)
* Add French translation of run scripts tutorial

* Update docs/source/fr/run_scripts_fr.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update docs/source/fr/run_scripts_fr.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update docs/source/fr/run_scripts_fr.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update docs/source/fr/run_scripts_fr.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update docs/source/fr/run_scripts_fr.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

---------

Co-authored-by: Jade Choghari <chogharijade@icloud.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-06-28 18:02:30 +02:00
bbf1e61864 Gemma capping is a must for big models (#31698)
* softcapping

* soft cap before the mask

* style

* ...

* super nit
2024-06-28 17:16:17 +02:00
cb298978ad add gather_use_object arguments (#31514)
* add gather_use_object arguments

* fix name and pass the CI test for Seq2SeqTrainer

* make style

* make it to functools

* fix typo

* add accelerate version:

* adding warning

* Update src/transformers/trainer.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* make style

* Update src/transformers/training_args.py

* check function move to initial part

* add test for eval_use_gather_object

---------

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2024-06-28 13:50:27 +01:00
82a1fc7256 Fix return_dict in encodec (#31646)
* fix: use return_dict parameter

* fix: type checks

* fix: unused imports

* update: one-line if else

* remove: recursive check
2024-06-28 12:18:01 +01:00
5e89b335ab Fix Gemma2 4d attention mask (#31674)
Update modeling_gemma2.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-06-28 08:20:30 +02:00
0142aab7f8 don't zero out the attention_mask when using sliding window with flash attention (#31670)
* don't zero out the attention_mask when using sliding window with flash attention

* chore: lint
2024-06-28 07:59:54 +02:00
1c68f2cafb [HybridCache] Fix get_seq_length method (#31661)
* fix gemma2

* handle in generate
2024-06-27 19:40:40 +02:00
464aa74659 [docs] Llama3 (#31662)
quick usage to top
2024-06-27 10:32:51 -07:00
e44b878c02 Fix float out of range in owlvit and owlv2 when using FP16 or lower precision (#31657) 2024-06-27 18:07:33 +01:00
75a6319864 Fix post gemma merge (#31660)
* nit

* toctree issue

* protect gemma2 tests as well

* sdpa supported
2024-06-27 17:51:42 +02:00
727eea4ab0 v4.43.0.dev0 2024-06-27 17:40:07 +02:00
0cf60f13ab Add gemma 2 (#31659)
* inital commit

* Add doc

* protect?

* fixup stuffs

* update tests

* fix build documentation

* mmmmmmm config attributes

* style

* nit

* uodate

* nit

* Fix docs

* protect some stuff

---------

Co-authored-by: Lysandre <lysandre@huggingface.co>
2024-06-27 17:36:19 +02:00
4aa17d0069 Remove deprecated config attribute in VLMs (#31655)
remove
2024-06-27 16:54:41 +05:00
be50a0338b change anchor_image_size None for compatibility (#31640)
* change anchor_image_size None for compatibility

* make fix-copies
2024-06-27 12:36:55 +01:00
3a028101e9 [QoL] Allow dtype str for torch_dtype arg of from_pretrained (#31590)
* Allow dtype str for torch_dtype in from_pretrained

* Update docstring

* Add tests for str torch_dtype
2024-06-27 12:41:49 +02:00
11138ca013 [Llama] Conversion: fix and simplify the script! (#31591)
* fix and simplify the script!

* add co-author

---------

Co-authored-by: crackalamoo <crackalamoo@users.noreply.github.com>
2024-06-27 12:35:19 +02:00
c9f191a0b7 Fix ONNX exports for Optimum compatible models (#31311)
* fixed models

* format with bumped ruff version on my local

* fix copies

* add tracing checks

* format

* Update src/transformers/utils/generic.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* format

* style fix

* Update modeling_mobilevit.py

* add docstring and change name

* Update __init__.py

* Update __init__.py

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-06-27 10:46:36 +01:00
dc76e9fa7f Generation: past kv can be None (#31051)
* fix

* better
2024-06-27 09:55:33 +05:00
1de7dc7403 Skip tests properly (#31308)
* Skip tests properly

* [test_all]

* Add 'reason' as kwarg for skipTest

* [test_all] Fix up

* [test_all]
2024-06-26 21:59:08 +01:00
1f9f57ab4c Fix dtype casting in swinv2 and swinv2sr to allow non-FP32 inference (#31589)
* Fix dtype casting in modeling_swin2sr to allow non-FP32 inference

* Fix formattting

* Fix for swinv2 too

* Update src/transformers/models/swin2sr/modeling_swin2sr.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/swinv2/modeling_swinv2.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Add FP16 tests for swin2sr and swinv2

* [run_slow] swin2sr, swinv2

* [run_slow] swin2sr, swinv2

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-06-26 18:46:48 +01:00
a3fb96a42a Generate: fix assisted generation with past_key_values passed as kwargs (#31644) 2024-06-26 18:24:04 +01:00
492ee17ec3 Fix paligemma detection inference (#31587)
* fix extended attention mask

* add slow test for detection instance

* [run-slow]paligemma
2024-06-26 19:17:09 +02:00
e71f2863d7 Add LLaVa NeXT Video (#31252)
* squash into single commit

* run diff once more

* docstring

* tests

* minor chnages and ready to go

* Update src/transformers/models/llava_next_video/processing_llava_next_video.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/vipllava/test_modeling_vipllava.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* [run-slow] llava-next-video

* [run-slow] llava-next-video

* [run-slow] llava_next_video

* fix two tests

* fix slow tests

* remove logit checks due to numeric errors

* run test once more

* [run-slow] llava_next_video

* final try to pass the test

* [run-slow] llava_next_video

* [run-slow] llava_next_video

* [run-slow] llava_next_video

* style

* fix

* style

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-06-26 21:52:28 +05:00
b1ec745475 Fix RT-DETR inference with float16 and bfloat16 (#31639)
* [run_slow] rt_detr

* Fix positional embeddings and anchors dtypes

* [run slow] rt_detr

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Fixup

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-06-26 17:50:10 +01:00
3f93fd0694 Llama et al. / FSDP : Fix breaking change in 4.40 for FSDP (#31161)
* fix llama fsdp

* fixup

* adding FSDP tests for CPU offloading

* fixes

* fix tests

* fix tests

* add it for mixtral

* propagate the changes on other models

* Update src/transformers/models/phi/modeling_phi.py

* Delete utils/testing_scripts/fsdp_cpu_offloading.py

Remove script - FSDP + CPU offloading it tested in the test suite

* Delete utils/testing_scripts/dummy_fsdp_config.yml

* Update + add cache_positions docstring

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-06-26 14:50:08 +01:00
ac52084bf2 Update RT-DETR code snippet (#31631)
Update code snippet
2024-06-26 14:42:20 +01:00
915cce39c9 Fix llama gguf converter (#31575) 2024-06-26 15:02:40 +02:00
b07770c5eb [GPT-NeoX] Add SDPA support (#31031)
* starting support for sdpa in `gptneox` models

* small comment on tests

* fix dropout

* documentation and style

* clarify concrete paths for reference

* generalise attn projections and rope application

added head mask check to sdpa mask creation

handle sdpa memory backend bug via own version flag

* update docs and style

* move dtype casting outside of general attn_projection_and_rope function

fix flash_attn_2 stuff

* more generic attn warning if output_attns or head_mask

* simplify head mask check by moving head mask creation to a later point

* remove copied llama artifact

* remove padding_mask from attention function signature

* removing unnecessary comments, only "save" attn implementation once

* [run_slow] gpt_neox
2024-06-26 13:56:36 +01:00
1218e439b5 Removed unnecessary self.projection call in VivitTubeletEmbeddings (#31632)
removes unnecessary second projection call
2024-06-26 11:19:26 +01:00
2daf2c3eaa docs: move translations to i18n (#31584)
docs: move translations to i18n
2024-06-26 10:32:54 +02:00
0f67ba1d74 Add ViTImageProcessorFast to tests (#31424)
* Add ViTImageProcessor to tests

* Correct data format

* Review comments
2024-06-25 13:36:58 +01:00
aab0829790 Improve error message for mismatched copies in code blocks (#31535)
improve error message for mismatched code blocks
2024-06-25 13:55:11 +02:00
e73a97a2b3 add preprocessing_num_workers to run_classification.py (#31586)
preprocessing_num_workers option to speedup preprocess
2024-06-25 12:35:50 +01:00
fc689d75a0 Add video modality for InstrucBLIP (#30182)
* squash in single commit

* add docs

* dummy obj

* more changes in diff converter

* tiny fix

* make docs happy

* skip test

* repo consistency tests

* update docstring

* style

* fix tests

* change diff imports

* [run-slow] instructblipvideo

* [run-slow] instructblipvideo

* fix tests and remove logit check

* [run-slow] instructblipvideo
2024-06-25 15:45:39 +05:00
a958c4a801 fix output data type of image classification (#31444)
* fix output data type of image classification

* add tests for low-precision pipeline

* add bf16 pipeline tests

* fix bf16 tests

* Update tests/pipelines/test_pipelines_image_classification.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* fix import

* fix import torch

* fix style

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-06-25 11:14:39 +01:00
7e86cb6c6f Siglip: add _no_split_module (#31566)
* device-map siglip

* move split modules to PretrainedSigLip
2024-06-25 09:49:55 +05:00
74b92c6256 Added version constraint on numpy for version <2.0 (#31569)
* Contrained numpy to <2.0

* Updated dependency_versions_table

---------

Co-authored-by: René Gentzen <rene.gentzen@mittelstand.ai>
2024-06-24 17:47:34 +01:00
3a49ebe0d8 Fix is_torch_xpu_available for torch < 2.3 (#31573) 2024-06-24 16:57:49 +01:00
2fc9d8e9b1 Fix doc typo in TrainingArguments (#31503) 2024-06-24 08:39:12 -07:00
2d4820284d Add Jinja as a requirement with the right version cutoff (#31536)
* Add Jinja as a requirement with the right version cutoff

* Correct package name!
2024-06-24 14:42:16 +01:00
0e23e60a5a Fix bug about add_special_tokens and so on (#31496)
* fix bug about add_special_tokens and so on

* improve add_special_tokens and padding behavior

* add a test case for add_special_tokens and padding
2024-06-24 14:05:16 +01:00
aac8ee4237 Fix the error caused by incorrect use of logger in pipeline (#31565) 2024-06-24 14:04:52 +01:00
c54a8ca48e Update git templates (#31539)
remove younes
2024-06-24 12:32:50 +02:00
0dd65a0319 chore: fix typos (#31559)
Signed-off-by: snoppy <michaleli@foxmail.com>
2024-06-24 09:48:16 +01:00
dce253f645 Add implementation of spectrogram_batch (#27159)
* Add initial implementation of `spectrogram_batch`

* Format the initial implementation

* Add test suite for the `spectrogram_batch`

* Update `spectrogram_batch` to ensure compatibility with test suite

* Update `spectrogram_batch` to include pre and post-processing

* Add `amplitude_to_db_batch` function and associated tests

* Add `power_to_db_batch` function and associated tests

* Reimplement the test suite for `spectrogram_batch`

* Fix errors in `spectrogram_batch`

* Add the function annotation for `spectrogram_batch`

* Address code quality

* Re-add `test_chroma_equivalence` function

* Update src/transformers/audio_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/audio_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-06-24 09:19:12 +02:00
3c2d4d60d7 Correct @is_flaky test decoration (#31480)
* Correct @is_flaky decorator
2024-06-24 08:09:21 +01:00
4b822560a1 Update mask_generation.md (#31543)
Minor bug fixes -- rearrange import & add missing parentheses
2024-06-23 20:27:21 +01:00
74a207404e New model support RTDETR (#29077)
* fill out docs string in configuration
75dcd3a0e8 (r1506391856)

* reduce the input image size for the tests

* remove the unappropriate tests

* only 5 failes exists

* make style

* fill up missed architecture for object detection in docs

* fix auto modeling

* simple fix in missing import

* major change including backbone refactor and objectdetectionoutput refactor

* minor fix only 4 fails left

* intermediate fix

* revert __init__.py

* revert __init__.py

* make style

* fixes in pr_docs

* intermediate fix

* make style

* two fixes

* pass doctest

* only one fix left

* intermediate commit

* all fixed

* Update src/transformers/models/rt_detr/image_processing_rt_detr.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/rt_detr/convert_rt_detr_original_pytorch_checkpoint_to_pytorch.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/rt_detr/configuration_rt_detr.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/rt_detr/test_modeling_rt_detr.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* function class above the model definition in dice_loss

* Update src/transformers/models/rt_detr/modeling_rt_detr.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* simple fix

* layernorm add config.layer_norm_eps

* fix inputs_docstring

* make style

* simple fix

* add custom coco loading test in image_processor

* fix error in BaseModelOutput
https://github.com/huggingface/transformers/pull/29077#discussion_r1516657790

* simple typo

* Update src/transformers/models/rt_detr/modeling_rt_detr.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* intermediate fix

* fix with load_backbone format

* remove unused configuration

* 3 fix test left

* make style

* Update src/transformers/models/rt_detr/image_processing_rt_detr.py

Co-authored-by: Sounak Dey <dey.sounak@gmail.com>

* change last_hidden_state to first index

* all pass fix
TO DO: minor update in comments

* make fix-copies

* remove deepcopy

* pr_document fix

* revert deepcopy due to the issue of unexpceted behavior in decoderlayer

* add atol in final

* add no_split_module

* _no_split_modules = None

* device transfer for model parallelism

* minor fix

* make fix-copies

* fix typo

* add test_image_processor with post_processing

* Update src/transformers/models/rt_detr/configuration_rt_detr.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* add config in RTDETRPredictionHead

* Update src/transformers/models/rt_detr/modeling_rt_detr.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* set lru_cache with max_size 32

* Update src/transformers/models/rt_detr/configuration_rt_detr.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* add lru_cache import and configuration change

* change the order of definition

* make fix-copies

* add docs and change config error

* revert strange make-fix

* Update src/transformers/models/rt_detr/modeling_rt_detr.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* test pass

* fix get_clones related and remove deepcopy

* Update src/transformers/models/rt_detr/configuration_rt_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/rt_detr/configuration_rt_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/rt_detr/image_processing_rt_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/rt_detr/image_processing_rt_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/rt_detr/modeling_rt_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/rt_detr/modeling_rt_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/rt_detr/image_processing_rt_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/rt_detr/modeling_rt_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/rt_detr/image_processing_rt_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* nit for paper section

* Update src/transformers/models/rt_detr/configuration_rt_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* rename denoising related parameters

* Update src/transformers/models/rt_detr/image_processing_rt_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* check the image transformation logic

* make style

* make style

* Update src/transformers/models/rt_detr/configuration_rt_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/rt_detr/modeling_rt_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/rt_detr/modeling_rt_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/rt_detr/modeling_rt_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/rt_detr/modeling_rt_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/rt_detr/modeling_rt_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* pe_encoding -> positional_encoding_temperature

* remove TODO

* Update src/transformers/models/rt_detr/image_processing_rt_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* remove eval_idx since transformer DETR is giving all decoder output

* Update src/transformers/models/rt_detr/configuration_rt_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/rt_detr/configuration_rt_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* change variable name

* make style and docs import update

* Revert "Update src/transformers/models/rt_detr/image_processing_rt_detr.py"

This reverts commit 74aa3e1de0ca0cd3d354161d38ef28b4389c0eee.

* fix typo

* add postprocessing in docs

* move import scipy to top

* change varaible name

* make fix-copies

* remove eval_idx in test

* move to after first sentence

* update image_processor since box loss requires normalized one

* change appropriate name to auxiliary_outputs

* Update src/transformers/models/rt_detr/__init__.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/rt_detr/__init__.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/model_doc/rt_detr.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/model_doc/rt_detr.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* make style

* remove panoptic related comments

* make style

* revert valid_processor_keys

* fix aux related test

* make style

* change origination from config to backbone API

* enable the dn_loss

* fix test and conversion

* renewal weight initialization

* change initializer_range

* make fix-up

* fix the loss issue in the auxiliary output and denoising part

* change weight loss to original RTDETR

* fix in initialization

* sync shape format of dn and aux

* make style

* stable fine-tuning and compatible conversion for resnet101

* make style

* skip input_embed

* change encoder related variable

* enable converting rtdetr_r101

* add r101 related conversion code

* Update src/transformers/models/rt_detr/modeling_rt_detr.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/rt_detr/modeling_rt_detr.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/model_doc/rt_detr.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/rt_detr/configuration_rt_detr.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/__init__.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/__init__.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/rt_detr/image_processing_rt_detr.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/rt_detr/image_processing_rt_detr.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/rt_detr/modeling_rt_detr.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* change name _shape to _reshape

* Update src/transformers/__init__.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/__init__.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* maket style

* make fix-copies

* remove deprecated import

* more fix

* remove last_hidden_state for task-specific model

* Revert "remove last_hidden_state for task-specific model"

This reverts commit ccb7a34051d69b9fc7aa17ed8644664d3fdbdaca.

* minore change in convert

* remove print

* make style and fix-copies

* add custom rtdetr backbone for r18, r34

* remove print

* change copied

* add pad_size

* make style

* change layertype to optional to pass the CI

* make style

* add test in modeling_resnet_rt_detr

* make fix-copies

* skip tmp file test

* fix comment

* add docs

* change to modeling_resnet file format

* enabling resnet50 above

* Update src/transformers/models/rt_detr/modeling_rt_detr.py

Co-authored-by: Jason Wu <jasonkit@users.noreply.github.com>

* enable all the rtdetr model :)

* finish except CI

* add RTDetrResNetBackbone

* make fix-copies

* fix
TO DO: CI enable

* make style

* rename test

* add docs

* add special fix

* revert resnet

* Update src/transformers/models/rt_detr/modeling_rt_detr_resnet.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* add more comment

* remove swin comment

* Update src/transformers/models/rt_detr/configuration_rt_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* rename convert and add verify backbone

* Update docs/source/en/_toctree.yml

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/model_doc/rt_detr.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/model_doc/rt_detr.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* make style

* requests for docs

* more general test docs

* general script docs

* make fix-copies

* final commit

* Revert "Update src/transformers/models/rt_detr/configuration_rt_detr.py"

This reverts commit d136225cd3f64f510d303ce1d227698174f43fff.

* skip test_model_get_set_embeddings

* remove target

* add changes

* make fix-copies

* remove decoder_attention_mask

* add load_backbone function for auto_backbone

* remove comment

* fix repo name

* Update src/transformers/models/rt_detr/configuration_rt_detr.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* final commit

* remove unused downsample_in_bottleneck

* new test for autobackbone

* change to appropriate indices

* test fix

* fix dict in test_image_processor

* fix test

* [run-slow] rt_detr, rt_detr_resnet

* change the slow test

* [run-slow] rt_detr

* [run-slow] rt_detr, rt_detr_resnet

* make in to same cuda in CSPRepLayer

* [run-slow] rt_detr, rt_detr_resnet

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Sounak Dey <dey.sounak@gmail.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Jason Wu <jasonkit@users.noreply.github.com>
Co-authored-by: ChoiSangBum <choisangbum@ChoiSangBumui-MacBookPro.local>
2024-06-21 17:50:08 +01:00
8b7cd40273 Removed torch.cuda.empty_cache from train loop. (#31530) 2024-06-21 14:45:27 +01:00
1e79eade41 SPLIT PR: add user defined symbols and control symbols (#31305)
* PR SPLIT: moving origina changes for adding user defined symbols

* adding gemma test and generalizing gemma converter

* ruff

* update common test

* update serialization test

* deberta v2 tests updates as rust version adds '.' as a user added token, so a space is not added

* removing commented lines

* applying feedback - user only added_tokens to add and check piece.type instead of trainer_spec for user_defined_symbols

* add comment referencing sentencepiece
2024-06-21 01:48:10 -07:00
730a440734 Deprecate legacy cache + use cache position (#31491)
* tmp

* update models

* revert utils

* delete

* Update src/transformers/models/dbrx/modeling_dbrx.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* modify warning msg

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-06-21 09:28:14 +05:00
12b1620e61 Bump urllib3 from 1.26.18 to 1.26.19 in /examples/research_projects/lxmert (#31524)
Bump urllib3 in /examples/research_projects/lxmert

Bumps [urllib3](https://github.com/urllib3/urllib3) from 1.26.18 to 1.26.19.
- [Release notes](https://github.com/urllib3/urllib3/releases)
- [Changelog](https://github.com/urllib3/urllib3/blob/main/CHANGES.rst)
- [Commits](https://github.com/urllib3/urllib3/compare/1.26.18...1.26.19)

---
updated-dependencies:
- dependency-name: urllib3
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-06-20 19:45:53 +01:00
d4564df1d4 Revive Nightly/Past CI (#31159)
* build

* build

* build

* build

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-06-20 18:57:24 +02:00
ec905f3a76 unskip 2 tests in cohere (#31517)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-06-20 17:21:08 +02:00
1fd60fec75 RWKV: enable generation tests (#31490)
* add rwkv tests

* has_attentions set in individual tests
2024-06-20 14:15:01 +01:00
d28e647f28 Fix mismatched ` in doc & other common typos (#31516)
fix common doc typos

Co-authored-by: Jiahui Wei <jiahui.wei@tusen.ai>
2024-06-20 14:03:07 +01:00
6d4306160a GGUF: Fix llama 3 GGUF (#31358)
* Create push-important-models.yml

* llama3 support for GGUF

* fixup

* Update src/transformers/integrations/ggml.py

* fix pre-tokenizer

* fix

* fix

* fix

* fix

* fix

* fix

* address final comment

* handle special tokens + add tests
2024-06-20 14:29:58 +02:00
35b112d344 Fix a teeny-tiny typo in tokenization_utils_base.py's docstring (#31510)
Update tokenization_utils_base.py
2024-06-20 10:35:52 +01:00
0ed3ffcb44 Add valid columns check in _remove_unused_columns method (#31466)
* Add valid columns checking in _remove_unused_columns method

https://github.com/huggingface/datasets/issues/6973#issue-2355517362
https://github.com/huggingface/datasets/issues/6535
https://discuss.huggingface.co/t/indexerror-invalid-key-16-is-out-of-bounds-for-size-0/14298/25

* Update modeling_mixtral.py

* Update modeling_mixtral.py

* Update modeling_mixtral.py
2024-06-19 13:26:37 +01:00
547b5582ec Consider inheritance in type checking for tensors (#31378)
* Consider inheritance in type checking for tensors

Add an additional check to bypass type assertion when both tensors are
torch.Tensor instances.

* Fix the quality issue
2024-06-19 14:05:20 +02:00
3b5fa14fb8 Fix wandb integration with SetFit model (#30021)
Fix W&B integration with SetFit model

Co-authored-by: PEARCE Timothe <timothe_pearce@ext.connect-tech.sncf>
2024-06-19 13:23:05 +02:00
f4d189441d Fix typo: pas_token_id (#30894)
Fix typo
2024-06-19 11:23:08 +01:00
4144c354e9 auto-detect device when no device is passed to pipeline (#31398)
* fix device

* Update src/transformers/pipelines/base.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* bug fix

* add warning

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-06-19 11:12:39 +01:00
cd5f7c1790 Add docs on zeroshot image classification prompt templates (#31343)
* Add docs on pipeline templates

* Fix example and comments
Update usage tips

* Update docs/source/en/tasks/zero_shot_image_classification.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/model_doc/siglip.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Trigger CI

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-06-19 11:11:44 +01:00
1c1aec2ef1 Update object_detection.md (#31488)
Define MAX_SIZE before it is used.
2024-06-19 10:36:44 +01:00
83259e406d Mamba: add generative tests (#31478) 2024-06-19 10:27:23 +01:00
7d683f7bae Docs / AQLM: Clarify torch.compile support for AQLM (#31473)
Update overview.md
2024-06-19 11:26:25 +02:00
077c139f57 [tests] rename test_config_object to test_ds_config_object (#31403)
fix name
2024-06-19 11:19:15 +02:00
609e662243 Use self.config_tester.run_common_tests() (#31431)
* First testing updating config tests

* Use run_common_tests
2024-06-19 10:18:08 +01:00
7c71b61dae Fix autocast incompatibility in RecurrentGemma (#30832) 2024-06-19 09:59:34 +02:00
b275a41005 [GPT2] Add SDPA support (#31172)
* `gpt2` sdpa support

* fix (at least) one test, style, repo consistency

* fix sdpa mask in forward --> fixes generation

* test

* test2

* test3

* test4

* simplify shapes for attn mask creation and small comments

* hub fail test

* benchmarks

* flash attn 2 mask should not be inverted on enc-dec setup

* fix comment

* apply some suggestion from code review

- only save _attn_implentation once
- remove unnecessary comment

* change elif logic

* [run-slow] gpt2

* modify `test_gpt2_sample_max_time` to follow previous assertion patterns
2024-06-19 09:40:57 +02:00
22b41b3f8a Update perf_train_gpu_many.md (#31451)
* Update perf_train_gpu_many.md

* Update docs/source/en/perf_train_gpu_many.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/perf_train_gpu_many.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-06-18 11:00:26 -07:00
280cef51b3 Give more useful metric_for_best_model errors (#31450)
Give more useful metric_for_best_model errors
2024-06-18 16:56:30 +01:00
2505357e4f Fix documentation typos (#31476)
Fix doc typo
2024-06-18 16:09:50 +01:00
4691ffbd41 Bump urllib3 from 1.26.18 to 1.26.19 in /examples/research_projects/visual_bert (#31472)
Bump urllib3 in /examples/research_projects/visual_bert

Bumps [urllib3](https://github.com/urllib3/urllib3) from 1.26.18 to 1.26.19.
- [Release notes](https://github.com/urllib3/urllib3/releases)
- [Changelog](https://github.com/urllib3/urllib3/blob/1.26.19/CHANGES.rst)
- [Commits](https://github.com/urllib3/urllib3/compare/1.26.18...1.26.19)

---
updated-dependencies:
- dependency-name: urllib3
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-06-18 16:08:15 +01:00
1c7c34bc64 Improve PreTrainedTokenizerFast loading time when there are many added tokens (#31404)
* use hash

* use hash

* update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-06-18 15:20:14 +02:00
6e56b83453 Update chat template docs and bump Jinja version (#31455)
* Update chat template docs

* Minor bug in the version check

* Update docs/source/en/chat_templating.md

Co-authored-by: Joshua Lochner <admin@xenova.com>

* Update docs/source/en/chat_templating.md

Co-authored-by: Joshua Lochner <admin@xenova.com>

* Update docs/source/en/chat_templating.md

Co-authored-by: Joshua Lochner <admin@xenova.com>

* Replace backticks with bolding because the doc builder was trying to parse them

* Replace backticks with bolding because the doc builder was trying to parse them

* Replace backticks with bolding because the doc builder was trying to parse them

* More cleanups to avoid upsetting the doc builder

* Add one more tip at the end

---------

Co-authored-by: Joshua Lochner <admin@xenova.com>
2024-06-18 14:16:30 +01:00
28316d0e8b Fix single letter stop strings (#31448)
* Fix single letter stop strings

* Change the 0 to a 1 to avoid potential empty vector headaches later

* Restructure for clarity

* Update tests/generation/test_stopping_criteria.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Add the unsqueeze

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-06-18 14:07:16 +01:00
dabf01973a Make "tool_use" the default chat template key when tools are passed (#31429)
* Make "tool_use" the default when tools are passed

* Add some opinionated text to the docs

* Add some opinionated text to the docs
2024-06-18 13:54:42 +01:00
cd71f9381b Donut: fix generate call from local path (#31470)
* local donut path fix

* engrish

* Update src/transformers/generation/utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-06-18 13:28:06 +01:00
76289fbc7c Bump urllib3 from 1.26.18 to 1.26.19 in /examples/research_projects/decision_transformer (#31459)
Bump urllib3 in /examples/research_projects/decision_transformer

Bumps [urllib3](https://github.com/urllib3/urllib3) from 1.26.18 to 1.26.19.
- [Release notes](https://github.com/urllib3/urllib3/releases)
- [Changelog](https://github.com/urllib3/urllib3/blob/1.26.19/CHANGES.rst)
- [Commits](https://github.com/urllib3/urllib3/compare/1.26.18...1.26.19)

---
updated-dependencies:
- dependency-name: urllib3
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-06-18 12:22:25 +01:00
b38612d312 Agents: Improve python interpreter (#31409)
* Improve Python interpreter
* Add with and assert statements
* Prevent overwriting existing tools
* Check interpreter errors are well logged in code agent
* Add lazy evaluation for and and or
* Improve variable assignment
* Fix early return statements in functions
* Add small import fix on interpreter tool
2024-06-18 11:55:36 +02:00
1f9387d33d Fix typing errors in Qwen2ForTokenClassification (#31440)
* Update modeling_qwen2.py

* Fix llama

* More fixes
2024-06-18 10:27:18 +01:00
9ba9369a25 simple fix (#31456) 2024-06-17 22:30:37 +01:00
02300273e2 🚨 Remove dataset with restrictive license (#31452)
remove dataset with restrictive license
2024-06-17 17:56:51 +01:00
a14b055b65 Pass datasets trust_remote_code (#31406)
* Pass datasets trust_remote_code

* Pass trust_remote_code in more tests

* Add trust_remote_dataset_code arg to some tests

* Revert "Temporarily pin datasets upper version to fix CI"

This reverts commit b7672826cad31e30319487af876e608d8af7d37b.

* Pass trust_remote_code in librispeech_asr_dummy docstrings

* Revert "Pin datasets<2.20.0 for examples"

This reverts commit 833fc17a3e3f0dcb40cff2ffd86c00ad9ecadab9.

* Pass trust_remote_code to all examples

* Revert "Add trust_remote_dataset_code arg to some tests" to research_projects

* Pass trust_remote_code to tests

* Pass trust_remote_code to docstrings

* Fix flax examples tests requirements

* Pass trust_remote_dataset_code arg to tests

* Replace trust_remote_dataset_code with trust_remote_code in one example

* Fix duplicate trust_remote_code

* Replace args.trust_remote_dataset_code with args.trust_remote_code

* Replace trust_remote_dataset_code with trust_remote_code in parser

* Replace trust_remote_dataset_code with trust_remote_code in dataclasses

* Replace trust_remote_dataset_code with trust_remote_code arg
2024-06-17 17:29:13 +01:00
485fd81471 Support multiple validation datasets when dataloader_persistent_workers=True (#30627)
* Support multiple validation datasets when dataloader_persistent_workers=True

* Test support of multiple validation datasets
2024-06-17 16:58:39 +01:00
147c404fb1 Bump idna from 2.8 to 3.7 in /examples/research_projects/visual_bert (#30201)
Bumps [idna](https://github.com/kjd/idna) from 2.8 to 3.7.
- [Release notes](https://github.com/kjd/idna/releases)
- [Changelog](https://github.com/kjd/idna/blob/master/HISTORY.rst)
- [Commits](https://github.com/kjd/idna/compare/v2.8...v3.7)

---
updated-dependencies:
- dependency-name: idna
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-06-17 16:39:42 +01:00
9454f437b0 [tests] make TestDeepSpeedModelZoo device-agnostic (#31402)
* fix

* use accelerator device count

* ci fix
2024-06-17 16:42:57 +02:00
7977f206dc Bump idna from 2.8 to 3.7 in /examples/research_projects/lxmert (#30200)
Bumps [idna](https://github.com/kjd/idna) from 2.8 to 3.7.
- [Release notes](https://github.com/kjd/idna/releases)
- [Changelog](https://github.com/kjd/idna/blob/master/HISTORY.rst)
- [Commits](https://github.com/kjd/idna/compare/v2.8...v3.7)

---
updated-dependencies:
- dependency-name: idna
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-06-17 15:13:33 +01:00
ee197e2b9e Bump idna from 3.3 to 3.7 in /examples/research_projects/decision_transformer (#30203)
Bump idna in /examples/research_projects/decision_transformer

Bumps [idna](https://github.com/kjd/idna) from 3.3 to 3.7.
- [Release notes](https://github.com/kjd/idna/releases)
- [Changelog](https://github.com/kjd/idna/blob/master/HISTORY.rst)
- [Commits](https://github.com/kjd/idna/compare/v3.3...v3.7)

---
updated-dependencies:
- dependency-name: idna
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-06-17 11:13:16 +01:00
377e903928 Generate: fix tokenizer being popped twice (#31427) 2024-06-17 10:36:10 +01:00
02c525d226 Rename misnamed image processor test files (#31430) 2024-06-17 10:21:28 +01:00
7ae4fc271d Fix Bark logits processors device misplacement (#31416)
Fix Logits Processors device misplacement
2024-06-17 09:54:06 +02:00
9af1b6a80a Musicgen special tokens in tensors (#31420)
fix
2024-06-17 10:09:27 +05:00
eed9ed6798 xpu: support xpu backend from stock pytorch (>=2.4) (#31238)
* xpu: support xpu backend from stock pytorch (>=2.4)

Fixes: https://github.com/huggingface/transformers/issues/31237

XPU backend is available in the stock PyTorch starting from
version 2.4, see [1]. This commit extends huggingface transformers
to support XPU from both IPEX and the stock pytorch. IPEX is being
tried first.

See: https://github.com/pytorch/pytorch/issues/114842
Requires: https://github.com/huggingface/accelerate/pull/2825
Signed-off-by: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com>

* xpu: enable gpt2 and decision_transformer tests for xpu pytorch backend

Note that running xpu tests requires TRANSFORMERS_TEST_DEVICE_SPEC=spec.py
passed to the test runner:

  import torch
  DEVICE_NAME = 'xpu'
  MANUAL_SEED_FN = torch.xpu.manual_seed
  EMPTY_CACHE_FN = torch.xpu.empty_cache
  DEVICE_COUNT_FN = torch.xpu.device_count

Signed-off-by: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com>

---------

Signed-off-by: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com>
2024-06-14 21:31:35 +02:00
20812237ce Remove empty create_and_test_config_common_properties tests (#31359)
Remove empty tests
2024-06-14 20:15:48 +01:00
3d0bd86915 Install the tensorflow example requirements in docker (#31428) 2024-06-14 19:35:43 +01:00
11f43c15d3 Remove duplicate image processor in auto map (#31383) 2024-06-14 18:23:55 +01:00
c212ac9a02 Change potential inputs_embeds padding logger.warning to logger.warning_once (#31411)
change embeddings padding warning to warning_once
2024-06-14 17:36:15 +01:00
7e1c7dc8b6 Fix SpeechT5 decoder_attention_mask shape (#28071)
* Fix SpeechT5

* add test foward with labels and attention mask

* make style
2024-06-14 15:20:11 +02:00
d9daeff297 Set seed for M4T retain grad test (#31419) 2024-06-14 14:48:04 +02:00
43ee58588b Fix MusicGen SDPA (#31208)
* fix sdpa musicgen

* make style

* remove copied from statement from Musicgen SDPA
2024-06-14 13:30:44 +02:00
833fc17a3e Pin datasets<2.20.0 for examples (#31417) 2024-06-14 12:06:56 +01:00
cfb22e035e Support Clip QKV for MPT (#31307) 2024-06-14 11:47:06 +01:00
b7672826ca Temporarily pin datasets upper version to fix CI (#31407)
Temporarily pin datasets upper version
2024-06-13 18:01:18 +01:00
67a4ef89d4 Add missing French translation of tutoriel_pipeline.md (#31396)
* Update french translation of tutoriel_pipeline.md

* Update docs/source/fr/tutoriel_pipeline.md

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update docs/source/fr/tutoriel_pipeline.md

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update docs/source/fr/tutoriel_pipeline.md

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update docs/source/fr/tutoriel_pipeline.md

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update docs/source/fr/tutoriel_pipeline.md

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update docs/source/fr/tutoriel_pipeline.md

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update docs/source/fr/tutoriel_pipeline.md

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update docs/source/fr/tutoriel_pipeline.md

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

---------

Co-authored-by: Jade Choghari <chogharijade@icloud.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2024-06-13 17:48:54 +02:00
c624d5ba0b add initial design for uniform processors + align model (#31197)
* add initial design for uniform processors + align model

* fix mutable default 👀

* add configuration test

* handle structured kwargs w defaults + add test

* protect torch-specific test

* fix style

* fix

* fix assertEqual

* move kwargs merging to processing common

* rework kwargs for type hinting

* just get Unpack from extensions

* run-slow[align]

* handle kwargs passed as nested dict

* add from_pretrained test for nested kwargs handling

* [run-slow]align

* update documentation + imports

* update audio inputs

* protect audio types, silly

* try removing imports

* make things simpler

* simplerer

* move out kwargs test to common mixin

* [run-slow]align

* skip tests for old processors

* [run-slow]align, clip

* !$#@!! protect imports, darn it

* [run-slow]align, clip

* [run-slow]align, clip

* update doc

* improve documentation for default values

* add model_max_length testing

This parameter depends on tokenizers received.

* Raise if kwargs are specified in two places

* fix

* expand VideoInput

* fix

* fix style

* remove defaults values

* add comment to indicate documentation on adding kwargs

* protect imports

* [run-slow]align

* fix

* remove set() that breaks ordering

* test more

* removed unused func

* [run-slow]align
2024-06-13 16:27:16 +02:00
15b3923d65 Make chat templates part of ProcessorMixin (#30744)
* Let's try moving chat templates out of IDEFICS and into the generic ProcessorMixin

* Chat templates should not be mandatory

* Chat templates should not be mandatory

* Not all classes will have default chat templates

* stash commit

* Add chat template docstring

* Clean up docstring

* Add chat templates to LLaVA/LLaVA-next

* Docstring fixup

* Quick IDEFICS2 fixup

* Remove some old references to the Conversation class

* make fixup
2024-06-13 14:35:30 +01:00
3c4a8dca0c [QoL fix] [Image processing] Add warning on assumption of channel dim and avoid infering when inputs are PIL.Image (#31364)
* Add warning on assumption of channel dim
Use PIL info whenever possible to decide channel axis

* Fix ruff format

* Remove type checking
Improve warning message

* Update src/transformers/models/siglip/image_processing_siglip.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/image_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/image_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-06-13 10:34:58 +01:00
348e2294ac feat(ci): add trufflehog secrets detection (#31344) 2024-06-12 18:00:43 +02:00
17896f6783 Change JSON serialization to custom json.dumps (#31100)
* Change JSON serialization to custom json.dumps to prevent escaping of "<", ">", "&", "'"

* caller has control over the order, remove sort_key=True

* Move tojson into a proper function and expose a couple of other args

---------

Co-authored-by: jun.4 <jun.4@kakaobrain.com>
Co-authored-by: Matt <rocketknight1@gmail.com>
2024-06-12 14:59:35 +01:00
1c77b3d9cf Bump jupyter-core from 4.6.3 to 4.11.2 in /examples/research_projects/visual_bert (#31386)
Bump jupyter-core in /examples/research_projects/visual_bert

Bumps [jupyter-core](https://github.com/jupyter/jupyter_core) from 4.6.3 to 4.11.2.
- [Release notes](https://github.com/jupyter/jupyter_core/releases)
- [Changelog](https://github.com/jupyter/jupyter_core/blob/main/CHANGELOG.md)
- [Commits](https://github.com/jupyter/jupyter_core/compare/4.6.3...4.11.2)

---
updated-dependencies:
- dependency-name: jupyter-core
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-06-12 14:12:53 +01:00
254b25abd9 Use huggingface_hub helper function to split state dict (#31091)
* shard saving from hf hub

* index = None

* fix tests

* indent
2024-06-12 14:10:32 +02:00
1c73d85b86 Update comment in modeling_utils.py (#31299) 2024-06-12 12:01:42 +01:00
9f863d9a5b README underline between badges fix (#31376)
Badge underline fix
2024-06-12 11:49:50 +01:00
d218a2e51f backbone_utils - fix relative import (#31382)
Fix relative import
2024-06-12 11:42:20 +01:00
84351d57eb docs: fix broken link (#31370)
* docs: fix broken link

* fix link
2024-06-12 11:33:00 +01:00
20fac1f249 [Bug Fix] Renamed loss to losses to suppress UnboundLocalError (#31365)
Renamed loss to losses to suppress UnboundLocalError

Co-authored-by: Your Name <you@example.com>
2024-06-12 11:29:25 +01:00
08ad34b19e Fix idefics cache (#31377)
* fix idefics cache

* fix tests
2024-06-12 15:24:32 +05:00
a2ede66674 Add support to declare imports for code agent (#31355)
* Support import declaration in Code Agent
2024-06-12 09:32:28 +02:00
35a6d9d648 Add french translation of AutoBackbone (#31300) 2024-06-11 18:28:52 +01:00
f53fe35b29 Fast image processor (#28847)
* Draft fast image processors

* Draft working fast version

* py3.8 compatible cache

* Enable loading fast image processors through auto

* Tidy up; rescale behaviour based on input type

* Enable tests for fast image processors

* Smarter rescaling

* Don't default to Fast

* Safer imports

* Add necessary Pillow requirement

* Woops

* Add AutoImageProcessor test

* Fix up

* Fix test for imagegpt

* Fix test

* Review comments

* Add warning for TF and JAX input types

* Rearrange

* Return transforms

* NumpyToTensor transformation

* Rebase - include changes from upstream in ImageProcessingMixin

* Safe typing

* Fix up

* convert mean/std to tesnor to rescale

* Don't store transforms in state

* Fix up

* Update src/transformers/image_processing_utils_fast.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/auto/image_processing_auto.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/auto/image_processing_auto.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/auto/image_processing_auto.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Warn if fast image processor available

* Update src/transformers/models/vit/image_processing_vit_fast.py

* Transpose incoming numpy images to be in CHW format

* Update mapping names based on packages, auto set fast to None

* Fix up

* Fix

* Add AutoImageProcessor.from_pretrained(checkpoint, use_fast=True) test

* Update src/transformers/models/vit/image_processing_vit_fast.py

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* Add equivalence and speed tests

* Fix up

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
2024-06-11 15:47:38 +01:00
edc1dffd00 Chat Template support for function calling and RAG (#30621)
* First draft, still missing automatic function conversion

* First draft of the automatic schema generator

* Lots of small fixes

* the walrus has betrayed me

* please stop committing your debug breakpoints

* Lots of cleanup and edge cases, looking better now

* Comments and bugfixes for the type hint parser

* More cleanup

* Add tests, update schema generator

* Update tests, proper handling of return values

* Small docstring change

* More doc updates

* More doc updates

* Add json_schema decorator

* Clean up the TODOs and finish the docs

* self.maxDiff = None to see the whole diff for the nested list test

* add import for add_json_schema

* Quick test fix

* Fix something that was bugging me in the chat template docstring

* Less "anyOf" when unnecessary

* Support return types for the templates that need them

* Proper return type tests

* Switch to Google format docstrings

* Update chat templating docs to match new format

* Stop putting the return type in with the other parameters

* Add Tuple support

* No more decorator - we just do it implicitly!

* Add enum support to get_json_schema

* Update docstring

* Add copyright header

* Update src/transformers/tokenization_utils_base.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/chat_templating.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/utils/chat_template_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/utils/chat_template_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Add copyright header

* make fixup

* Fix indentation

* Reformat chat_template_utils

* Correct return value

* Make regexes module-level

* Support more complex, multi-line arg docstrings

* Update error message for ...

* Update ruff

* Add document type validation

* Refactor docs

* Refactor docs

* Refactor docs

* Clean up Tuple error

* Add an extra test for very complex defs and docstrings and clean everything up for it

* Document enum block

* Quick test fixes

* Stop supporting type hints in docstring to fix bugs and simplify the regex

* Update docs for the regex change

* Clean up enum regex

* Wrap functions in {"type": "function", "function": ...}

* Update src/transformers/utils/chat_template_utils.py

Co-authored-by: Pablo Montalvo <39954772+molbap@users.noreply.github.com>

* Temporary tool calling commit

* Add type hints to chat template utils, partially update docs (incomplete!)

* Code cleanup based on @molbap's suggestion

* Add comments to explain regexes

* Fix up type parsing for unions and lists

* Add custom exception types and adjust tests to look for them

* Update docs with a demo!

* Docs cleanup

* Pass content as string

* Update tool call formatting

* Update docs with new function format

* Update docs

* Update docs with a second tool to show the model choosing correctly

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Pablo Montalvo <39954772+molbap@users.noreply.github.com>
2024-06-11 15:46:38 +01:00
ce3647ad2d Bump jupyter-core from 4.6.3 to 4.11.2 in /examples/research_projects/lxmert (#31360)
Bump jupyter-core in /examples/research_projects/lxmert

Bumps [jupyter-core](https://github.com/jupyter/jupyter_core) from 4.6.3 to 4.11.2.
- [Release notes](https://github.com/jupyter/jupyter_core/releases)
- [Changelog](https://github.com/jupyter/jupyter_core/blob/main/CHANGELOG.md)
- [Commits](https://github.com/jupyter/jupyter_core/compare/4.6.3...4.11.2)

---
updated-dependencies:
- dependency-name: jupyter-core
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-06-11 12:11:10 +01:00
12ae6d3573 Fix gradio tool demos (#31230)
* Fix gradio tool demos
2024-06-11 11:35:27 +02:00
dcdda5324b Bump transformers from 3.5.1 to 4.38.0 in /examples/research_projects/pplm (#31352)
Bump transformers in /examples/research_projects/pplm

Bumps [transformers](https://github.com/huggingface/transformers) from 3.5.1 to 4.38.0.
- [Release notes](https://github.com/huggingface/transformers/releases)
- [Commits](https://github.com/huggingface/transformers/compare/v3.5.1...v4.38.0)

---
updated-dependencies:
- dependency-name: transformers
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-06-10 18:59:46 +01:00
a1e06af15f Bump tornado from 6.3.3 to 6.4.1 in /examples/research_projects/lxmert (#31353)
Bumps [tornado](https://github.com/tornadoweb/tornado) from 6.3.3 to 6.4.1.
- [Changelog](https://github.com/tornadoweb/tornado/blob/master/docs/releases.rst)
- [Commits](https://github.com/tornadoweb/tornado/compare/v6.3.3...v6.4.1)

---
updated-dependencies:
- dependency-name: tornado
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-06-10 18:59:27 +01:00
a4e1a1d028 🚨 FLAVA: Remove double softmax (#31322)
Remove double softmax
2024-06-10 15:01:27 +01:00
8fff07ded0 Fix Cohere CI (#31263)
* [run-slow] cohere

* [run-slow] cohere

* [run-slow] cohere

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-06-10 15:16:58 +02:00
dc6eb44841 Improve error msg when using bitsandbytes (#31350)
improve error msg when using bnb
2024-06-10 14:22:14 +02:00
517df566f5 Decorators for deprecation and named arguments validation (#30799)
* Fix do_reduce_labels for maskformer image processor

* Deprecate reduce_labels in favor to do_reduce_labels

* Deprecate reduce_labels in favor to do_reduce_labels (segformer)

* Deprecate reduce_labels in favor to do_reduce_labels (oneformer)

* Deprecate reduce_labels in favor to do_reduce_labels (maskformer)

* Deprecate reduce_labels in favor to do_reduce_labels (mask2former)

* Fix typo

* Update mask2former test

* fixup

* Update segmentation examples

* Update docs

* Fixup

* Imports fixup

* Add deprecation decorator draft

* Add deprecation decorator

* Fixup

* Add deprecate_kwarg decorator

* Validate kwargs decorator

* Kwargs validation (beit)

* fixup

* Kwargs validation (mask2former)

* Kwargs validation (maskformer)

* Kwargs validation (oneformer)

* Kwargs validation (segformer)

* Better message

* Fix oneformer processor save-load test

* Update src/transformers/utils/deprecation.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/utils/deprecation.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/utils/deprecation.py

Co-authored-by: Pablo Montalvo <39954772+molbap@users.noreply.github.com>

* Update src/transformers/utils/deprecation.py

Co-authored-by: Pablo Montalvo <39954772+molbap@users.noreply.github.com>

* Better handle classmethod warning

* Fix typo, remove warn

* Add header

* Docs and `additional_message`

* Move to filter decorator ot generic

* Proper deprecation for semantic segm scripts

* Add to __init__ and update import

* Basic tests for filter decorator

* Fix doc

* Override `to_dict()` to pop depracated `_max_size`

* Pop unused parameters

* Fix trailing whitespace

* Add test for deprecation

* Add deprecation warning control parameter

* Update generic test

* Fixup deprecation tests

* Introduce init service kwargs

* Revert popping unused params

* Revert oneformer test

* Allow "metadata" to pass

* Better docs

* Fix test

* Add notion in docstring

* Fix notification for both names

* Add func name to warning message

* Fixup

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Pablo Montalvo <39954772+molbap@users.noreply.github.com>
2024-06-10 12:35:10 +01:00
4fa4dcb2be docs/zh: fix style (#31334) 2024-06-10 11:40:40 +01:00
6b11f89c6b Fix paligemma inverted mask (#31207)
* pass inverted causal mask

* add sanity check for paligemma finetuning

* [run-slow]paligemma
2024-06-10 11:22:39 +02:00
807483edba docs: fix style (#31340) 2024-06-10 09:53:25 +01:00
2f16a45d5f Use unused prepare_img() function in dinov2 conversion script (#31335) 2024-06-10 09:42:01 +01:00
25245ec26d Rename test_model_common_attributes -> test_model_get_set_embeddings (#31321)
* Rename to test_model_common_attributes
The method name is misleading - it is testing being able to get and set embeddings, not common attributes to all models

* Explicitly skip
2024-06-07 19:40:26 +01:00
c1be42f6f7 Bump transformers from 3.5.1 to 4.38.0 in /examples/research_projects/adversarial (#31320)
Bump transformers in /examples/research_projects/adversarial

Bumps [transformers](https://github.com/huggingface/transformers) from 3.5.1 to 4.38.0.
- [Release notes](https://github.com/huggingface/transformers/releases)
- [Commits](https://github.com/huggingface/transformers/compare/v3.5.1...v4.38.0)

---
updated-dependencies:
- dependency-name: transformers
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-06-07 19:28:45 +01:00
3b9174f248 interpolation added for TVP. (#30863)
* Update TVP model to interpolate pre-trained image pad prompter encodings

* feat: Add 2D positional embeddings interpolation in TvpVisualInputEmbedding

* added required comments

* Update TVP model to interpolate pre-trained image pad prompter encodings

* feat: Add 2D positional embeddings interpolation in TvpVisualInputEmbedding

* added required comments

* docstring and argument fix

* doc fixes and test case fix suggested in review.

* varibale typo fix

* styling and name fixes for padding interpolation flag.
2024-06-07 18:44:16 +01:00
ea50b64bea Bump pillow from 10.2.0 to 10.3.0 in /examples/research_projects/decision_transformer (#31319)
Bump pillow in /examples/research_projects/decision_transformer

Bumps [pillow](https://github.com/python-pillow/Pillow) from 10.2.0 to 10.3.0.
- [Release notes](https://github.com/python-pillow/Pillow/releases)
- [Changelog](https://github.com/python-pillow/Pillow/blob/main/CHANGES.rst)
- [Commits](https://github.com/python-pillow/Pillow/compare/10.2.0...10.3.0)

---
updated-dependencies:
- dependency-name: pillow
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-06-07 18:09:02 +01:00
065729a692 Remove ConversationalPipeline and Conversation object (#31165)
* Remove ConversationalPipeline and Conversation object, as they have been deprecated for some time and are due for removal

* Update not-doctested.txt

* Fix JA and ZH docs

* Fix JA and ZH docs some more

* Fix JA and ZH docs some more
2024-06-07 17:50:18 +01:00
3a10058201 Bump transformers from 3.5.1 to 4.38.0 in /examples/research_projects/bert-loses-patience (#31291)
Bump transformers in /examples/research_projects/bert-loses-patience

Bumps [transformers](https://github.com/huggingface/transformers) from 3.5.1 to 4.38.0.
- [Release notes](https://github.com/huggingface/transformers/releases)
- [Commits](https://github.com/huggingface/transformers/compare/v3.5.1...v4.38.0)

---
updated-dependencies:
- dependency-name: transformers
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-06-07 16:45:54 +01:00
e3f03789a9 Bump aiohttp from 3.9.0 to 3.9.4 in /examples/research_projects/decision_transformer (#31317)
Bump aiohttp in /examples/research_projects/decision_transformer

Bumps [aiohttp](https://github.com/aio-libs/aiohttp) from 3.9.0 to 3.9.4.
- [Release notes](https://github.com/aio-libs/aiohttp/releases)
- [Changelog](https://github.com/aio-libs/aiohttp/blob/master/CHANGES.rst)
- [Commits](https://github.com/aio-libs/aiohttp/compare/v3.9.0...v3.9.4)

---
updated-dependencies:
- dependency-name: aiohttp
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-06-07 16:43:57 +01:00
48d35b2178 Bump tornado from 6.3.3 to 6.4.1 in /examples/research_projects/visual_bert (#31298)
Bump tornado in /examples/research_projects/visual_bert

Bumps [tornado](https://github.com/tornadoweb/tornado) from 6.3.3 to 6.4.1.
- [Changelog](https://github.com/tornadoweb/tornado/blob/master/docs/releases.rst)
- [Commits](https://github.com/tornadoweb/tornado/compare/v6.3.3...v6.4.1)

---
updated-dependencies:
- dependency-name: tornado
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-06-07 15:44:38 +01:00
60861fe1fd Implement JSON dump conversion for torch_dtype in TrainingArguments (#31224)
* Implement JSON dump conversion for torch_dtype in TrainingArguments

* Add unit test for converting torch_dtype in TrainingArguments to JSON

* move unit test for converting torch_dtype into TrainerIntegrationTest class

* reformating using ruff

* convert dict_torch_dtype_to_str to private method _dict_torch_dtype_to_str

---------

Co-authored-by: jun.4 <jun.4@kakaobrain.com>
2024-06-07 15:43:34 +01:00
ff689f57aa Extend save_pretrained to offloaded models (#27412)
* added hidden subset

* debugged hidden subset contrastive search

* added contrastive search compression

* debugged compressed contrastive search

* memory reduction for contrastive search

* debugged mem red

* added low memory option feature

* debugged mem optmimization output stack

* debugged mem optmimization output stack

* debugged low mem

* added low mem cache

* fixed 2047 tensor view

* debugged 2042 past key val inputs

* reformatted tensors

* changed low mem output

* final clean

* removed subset hidden csearch

* fixed hidden device

* fixed hidden device

* changed compressor dtype

* removed hstate compression

* integrated csearch in generate

* test csearch integration into generation

exit()

* fixed csearch kwarg integration with generation

* final wrap and added doc

* Update src/transformers/generation/utils.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/generation/utils.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/generation/utils.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* added debug print

* direct hstate cat

* direct hstate cat

* direct hstate cat debug

* direct hstate cat debug

* expanded full hidden state stack

* expanded full hidden state stack

* matched dims for hstates

* matched dims for hstates

* logits fix

* equality test

* equality hidden debug

* debug

* added prints for debug

* added prints for debug

* equality check

* switched squeeze dim

* input format debug

* tracing top_k_ids

* removed trace

* added test context

* added jitter

* added jitter

* added jitter

* returned state

* rebuilt past key value reconstruction

* debugged

* cleaned traces

* added selection for pkv

* changed output to dict

* cleaned

* cleaned

* cleaned up contrastive search test

* moved low_memory kwarg

* debugged

* changed low mem test batch size to 1

* removed output

* debugged test input shape

* reformatted csearch test

* added trace

* removed unsqueeze on final forward pass

* replaced unsqueeze with view

* removed traces

* cleaned

* debugged model kwargs

* removed special models from test

* ran make quality

* Update src/transformers/generation/configuration_utils.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/generation/configuration_utils.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* refactored

* refactored

* refactored

* make fixup

* renamed flag sequential

* renamed flag sequential

* iterative onloading

* black style and test utils

* added traces for integrated test

* debugged

* added traces

* make style

* removed traces, make style

* included suggestions and added test

* debugged test

* added offload module check and make style

* is_accelerate_available and make style

* added test decorator

* changed test model and config spec

* added offload condition

* added lazy loading for each shard

* debugged

* modified sharding

* debugged

* added traces

* removed safe serialization

* no index overload;

* trace on safe save ptrs

* added ptr condition

* debugged

* debugged ptr

* moved module map init

* remake shard only for offloaded modules

* refactored

* debugged

* refactored

* debugged

* cleaned and make style

* cleaned and make style

* added trace

* sparse module map

* debugged

* removed module map conditional

* refactored

* debug

* debugged

* added traces

* added shard mem trace

* added shard mem trace

* removed underlying storage check

* refactored

* memory leak removal and make style

* cleaned

* swapped test decs and make style

* added mem checks and make style

* added free mem warning

* implemented some suggestions

* moved onloading to accelerate

* refactored for accelerate integration

* cleaned test

* make style

* debugged offload map name

* cleaned and make style

* replaced meta device check for sharding

* cleaned and make style

* implemented some suggestions

* more suggestions

* update warning

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* more suggestions

* make style

* new make style

* Update src/transformers/modeling_utils.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* Update src/transformers/modeling_utils.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* Update src/transformers/modeling_utils.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* Update src/transformers/modeling_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-06-07 07:50:35 -04:00
8bcf9c8dd4 Fix jetmoe model (#31279)
* Fix jetmoe model

* Remove skip-tests
2024-06-07 11:51:41 +02:00
f868cf731a Fixed Wav2Vec2ProcessorWithLM decoding error (#31188)
* fix: wav2vec2_with_lm decoding error

Fixed an error where some language models could
not be loaded due to a decoding error, since it
was impossible to select the 'unigram_encoding'
value.

* fix: unexpected keyword argument

Fixed unexpected keyword argument caused by
passing kwargs directly to BeamSearchDecoderCTC.

* style: wav2vec2_with_lm

Changed single quotes to double quotes.
2024-06-07 11:50:07 +02:00
bdf36dcd48 Enable HF pretrained backbones (#31145)
* Enable load HF or tim backbone checkpoints

* Fix up

* Fix test - pass in proper out_indices

* Update docs

* Fix tvp tests

* Fix doc examples

* Fix doc examples

* Try to resolve DPT backbone param init

* Don't conditionally set to None

* Add condition based on whether backbone is defined

* Address review comments
2024-06-06 22:02:38 +01:00
a3d351c00f Update text-to-speech.md (#31269)
SpeechBrain usage has changed
2024-06-06 21:59:22 +01:00
3b4d3d09fd Fix SwinLayer / DonutSwinLayer / ClapAudioLayer attention mask device (#31295)
Fix DonutSwinLayer attention mask device
2024-06-06 21:52:14 +01:00
b6c9f47fd6 Bump transformers from 3.5.1 to 4.38.0 in /examples/research_projects/bertabs (#31290)
Bump transformers in /examples/research_projects/bertabs

Bumps [transformers](https://github.com/huggingface/transformers) from 3.5.1 to 4.38.0.
- [Release notes](https://github.com/huggingface/transformers/releases)
- [Commits](https://github.com/huggingface/transformers/compare/v3.5.1...v4.38.0)

---
updated-dependencies:
- dependency-name: transformers
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-06-06 16:13:18 +01:00
f9296249a3 Pipeline VQA: Add support for list of images and questions as pipeline input (#31217)
* Add list check for image and question

* Handle passing two lists and update docstring

* Add tests

* Add support for dataset

* Add test for dataset as input

* fixup

* fix unprotected import

* fix unprotected import

* fix import again

* fix param type
2024-06-06 14:50:45 +01:00
4c82102523 Bump transformers from 4.19.0 to 4.38.0 in /examples/research_projects/codeparrot (#31285)
Bump transformers in /examples/research_projects/codeparrot

Bumps [transformers](https://github.com/huggingface/transformers) from 4.19.0 to 4.38.0.
- [Release notes](https://github.com/huggingface/transformers/releases)
- [Commits](https://github.com/huggingface/transformers/compare/v4.19.0...v4.38.0)

---
updated-dependencies:
- dependency-name: transformers
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-06-06 14:49:31 +01:00
c53fcd8381 Mark MobileNetV1ModelTest::test_batching_equivalence as flaky (#31258)
* Mark MobileNetV1ModelTest::test_batching_equivalence as flaky

* Add link to issue

* woops
2024-06-06 14:47:58 +01:00
681183974a Enable dynamic resolution input for Beit (#31053)
* Initial attempt

* Updates: PR suggestions

* Interpolate the relative position bias when interpolate_pos_encoding is True

* Add slow tag for the added tests

* Add in DATA2VEC_VISION_INPUTS_DOCSTRING
2024-06-06 14:47:41 +01:00
99895ae5e2 fix accelerate tests for roberta xl (#31288)
* fix accelerate tests for roberta xl

* style
2024-06-06 14:44:35 +01:00
5ba8ac54f5 Fix _save_tpu: use _maybe_convert_to_cpu instead of to cpu. (#31264)
* Fix _save_tpu: use _maybe_convert_to_cpu instead of to cpu.

* fix lint
2024-06-06 09:42:55 -04:00
14ff5dd962 Bump transformers from 3.5.1 to 4.38.0 in /examples/research_projects/bertology (#31256)
Bump transformers in /examples/research_projects/bertology

Bumps [transformers](https://github.com/huggingface/transformers) from 3.5.1 to 4.38.0.
- [Release notes](https://github.com/huggingface/transformers/releases)
- [Commits](https://github.com/huggingface/transformers/compare/v3.5.1...v4.38.0)

---
updated-dependencies:
- dependency-name: transformers
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-06-06 12:42:40 +01:00
9e9679c022 fix: str should be used not int when setting env variables (#31272) 2024-06-06 12:41:31 +01:00
9ef93fccad Switch from cached_download to hf_hub_download in remaining occurrences (#31284)
Switch from hf_hub_url to hf_hub_download in remaining occurences
2024-06-06 12:05:59 +01:00
5fabd1e83b Generation: fix handling of special tokens (#31254)
* fix special tokens in generatioon

* fix test

* add warning

* fix the check

* warn once

* fix
2024-06-06 15:21:32 +05:00
7729b77478 Make mamba use cache (#31116)
* make mamba use cache

* uss cache naming as in mamba

* fix musicgen
2024-06-06 13:37:29 +05:00
f5c0fa9f6f fix loading special_tokens_map_file (#31012) 2024-06-06 09:15:27 +02:00
9b85e405ab [SwitchTransformer] Significant performance improvement on MoE blocks (#31173)
* SwitchTransformer MoE layer performance improvement

* make fixup

* comments about shapes

* make fixup
2024-06-06 09:10:12 +02:00
8177aa0e1a no need for explicit EXTRA_TOKENS in processing_paligemma.py (#31022)
no need for explicit EXTRA_TOKENS
2024-06-06 08:41:41 +02:00
940fde8daf Skip failing JetMOE generation tests (#31266)
Skip failing tests for now
2024-06-05 19:06:46 +01:00
bd5091df8d Reduce by 2 the memory requirement in generate() 🔥🔥🔥 (#30536)
* Fix contrastive_search for new cache structure, and improve performance by removing inneficient torch.stack(torch.split(x, top_k, dim=0))

* Fix _contrastive_search for non-standard cache using ellipsis slicing

* Fix all outputs.logits memory leaks for all decoding strategies!

* Fix small error in _contrastive_search()

* Make all necessary change and revert for the new class

* Apply coding style

* Remove pipes in type hints for compatibility

* correct type hint

* apply style

* Use DynamicCache by default and solve conflicts

* Fix rebase issues

* Add `_supports_dynamic_cache_class` in models for models that support DynamicCache but not other caches to make DynamicCache the default for more models

* Create generation config to return legacy format by default, or to choose not to

* style

* Fix case when use_cache is False

* Remove default DynamicCache in assiste_decoding if assistant_model does not support it + fix _seen_tokens when cropping cache

* Update prepare_inputs_for_generation() for case with empty DynamicCache

* Correct return of args in _assisted_decoding

* Remove EfficientDynamicCache as it is no longer needed

* Correct mistake in generation config

* Move cache logic of assisted decoding to AssistedCandidateGenerator.__init__

* change DynamicCache function names from "split" to "batch_split" for readability + apply coding style

* Remove `_supports_dynamic_cache_class` attribute after rebase

* Correct missing line lost in conflict resolution during rebasing

* Add special case for Jamba

* Fix jamba test

* Coding style

* coding style

* Correct missing import in rebasing

* Simplify _validate_model_kwargs based on removal of _supports_dynamic_cache attribute

* Simplify code paths in _contrastive_search

* coding style

* Update docstrings of cache methods

* Update prepare_inputs_for_generation() -> past_key_values are always Cache objects
2024-06-05 17:05:01 +02:00
d6276f0fc5 Add condition to benchmark job in push-important-models.yml (#31259)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-06-05 15:19:16 +02:00
b72752f068 Fix circular reference issue in CLIPTokenizerFast (#31075) 2024-06-05 14:01:13 +02:00
464d986b6c Add missing Flaubert tokenizer tests (#30492)
* add flaubert tokenization test, enrich inheritance in FlaubertTokenizer.

* fix quality code ci

* ensure parameter consistency

* fix ci

* fix copyright year and flatten vocab list.

* fix style
2024-06-05 13:52:16 +02:00
41cf4097f7 enable deterministic mode for npu (#31253) 2024-06-05 07:35:35 -04:00
4a6024921f doc: add info about wav2vec2 bert in older wav2vec2 models. (#31120)
* doc: add info about wav2vec2 bert in older wav2vec2 models.

* apply suggestions from review.

* forward contrib credits from review

---------

Co-authored-by: Sanchit Gandhi <sanchit-gandhi@users.noreply.github.com>
2024-06-05 11:56:11 +01:00
c39aaea972 Bump transformers from 3.5.1 to 4.38.0 in /examples/research_projects/deebert (#31244)
Bump transformers in /examples/research_projects/deebert

Bumps [transformers](https://github.com/huggingface/transformers) from 3.5.1 to 4.38.0.
- [Release notes](https://github.com/huggingface/transformers/releases)
- [Commits](https://github.com/huggingface/transformers/compare/v3.5.1...v4.38.0)

---
updated-dependencies:
- dependency-name: transformers
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-06-05 11:12:58 +01:00
54659048a2 Early labels validation (#31240)
* Move label validation checks - fail early

* Remove some formatting changes - add back labels change wav2vec2
2024-06-05 10:50:55 +01:00
03ea160937 Benchmark GitHub Actions workflow (#31163)
* benchmark workflow

* benchmark workflow

* benchmark workflow

* benchmark workflow

* build

* build

* build

* build

* build

* build

* build

* build

* build

* build

* build

* build

* build

* build

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-06-05 10:39:00 +02:00
63fb253df0 Fixing name 'torch' is not defined in bitsandbytes integration (#31243)
Fixed torch definition error
2024-06-05 08:00:30 +02:00
66875ac070 Specify dtype=torch.bool to avoid xla error (#31191)
The StoppingCriteriaList allocates is_done without specifying dtype=torch.bool. On XLA this allocates a float tensor and causes a failure on the following line:

is_done = is_done | criteria(input_ids, scores, **kwargs)

by attempting to OR float with bool.
2024-06-05 07:50:54 +02:00
8685b3c5d2 Bump transformers from 4.26.0 to 4.38.0 in /examples/research_projects/vqgan-clip (#31242)
Bump transformers in /examples/research_projects/vqgan-clip

Bumps [transformers](https://github.com/huggingface/transformers) from 4.26.0 to 4.38.0.
- [Release notes](https://github.com/huggingface/transformers/releases)
- [Commits](https://github.com/huggingface/transformers/compare/v4.26.0...v4.38.0)

---
updated-dependencies:
- dependency-name: transformers
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-06-04 22:11:45 +01:00
3714f3f86b Upload (daily) CI results to Hub (#31168)
* build

* build

* build

* build

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-06-04 21:20:54 +02:00
99de3a844b Move out common backbone config param validation (#31144)
* Move out common validation

* Add missing backbone config arguments
2024-06-04 18:15:37 +01:00
485d913dfb Blip: Deprecate BlipModel (#31235)
* deprecate blip

* mention deprecation on docs
2024-06-04 18:29:45 +02:00
fd3238b4b0 Fix MistralIntegrationTest (#31231)
* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-06-04 18:04:08 +02:00
2965b20459 add no split modules for xlmrobertaxl (#31223) 2024-06-04 15:46:19 +01:00
821b772ab9 Add new line switch before logging ***** Running {description} ***** (#31225)
 Add new line switch before logging "***** Running {description} *****".

Signed-off-by: jacklanda <yonyonlau@gmail.com>
2024-06-04 13:38:17 +01:00
4ba66fdb4c Fix pipeline tests - torch imports (#31227)
* Fix pipeline tests - torch imports

* Frameowrk dependant float conversion
2024-06-04 12:30:23 +01:00
6b22a8f2d8 fix bf16 issue in text classification pipeline (#30996)
* fix logits dtype

* Add bf16/fp16 tests for text_classification pipeline

* Update test_pipelines_text_classification.py

* fix

* fix
2024-06-04 11:20:48 +01:00
de460e28e1 Add dynamic resolution input/interpolate position embedding to deit (#31131)
* Added interpolate pos encoding feature and test to deit

* Added interpolate pos encoding feature and test for deit TF model

* readded accidentally delted test for multi_gpu

* storing only patch_size instead of entire config and removed commented code

* Update modeling_tf_deit.py to remove extra line

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-06-04 10:29:01 +01:00
d64e4da713 Video-LLaVa: handle any number of frames (#31221)
video-llava can handle more frames
2024-06-04 14:20:03 +05:00
36ade4a32b fix(PatchTST): Wrong dropout used for PretainHead (#31117)
* fix(PatchTST): Wrong dropout used for PretainHead

* feat(PatchTST): remove unused config.dropout

---------

Co-authored-by: Strobel Maximilian (IFAG PSS SIS SCE ACM) <Maximilian.Strobel@infineon.com>
2024-06-04 10:11:36 +01:00
e83cf58145 Fix sentence fragment within test comments (#31218) 2024-06-04 10:09:24 +01:00
83238eeebc Pass device in Logits Processor's init (#29804)
* add device in logits processor

* remove device when not needed

* codestyle

* tests

* forgot `melody` version

* Update src/transformers/models/whisper/generation_whisper.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* codestyle

* updates

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2024-06-04 10:19:19 +05:00
c73ee1333d [docs] Spanish translation of tokenizer_summary.md (#31154)
* add tokenizer_summary to es/_toctree.yml

* add tokenizer_summary to es/

* fix link to Transformes XL in en/

* translate until Subword tokenization section

* fix GPT link in en/

* fix other GPT link in en/

* fix typo in en/

* translate the doc

* run make fixup

* Remove .md in Transformer XL link

* fix some link issues in es/

* fix typo
2024-06-03 16:52:23 -07:00
8a1a23ae4d Fix GPU OOM for mistral.py::Mask4DTestHard (#31212)
* build

* build

* build

* build

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-06-03 19:25:15 +02:00
df5abae894 Set greater_is_better to False if metric_for_best_model ends with "loss" (#31142)
* update to not(endswith(loss))

* ruff formatting
2024-06-03 17:52:28 +01:00
924c46d40c Cohere: Fix copied from (#31213)
Update modeling_cohere.py
2024-06-03 18:29:31 +02:00
98dd842339 Wrong translation FR : Contents = Contenu (#31186)
Update index.md - Contents = Contenu

French typo -
Contents = Contenu
2024-06-03 17:40:14 +02:00
c6c78733d7 Rename sanity_evaluation to eval_on_start (#31192)
* Rename sanity_evaluation to eval_on_start

* move arg back to last
2024-06-03 16:32:21 +01:00
c230504b36 Fix typo in utils (#31169)
fix typo
2024-06-03 17:27:53 +02:00
874ac129bb fix the get_size_with_aspect_ratio in max_size situation (#30902)
* fix the get_size_with_aspect_ratio in max_size situation

* make fix-up

* add more general solution

* consider when max_size is not defined

* fix typo

* fix typo

* simple fix

* fix error

* fix if else error

* fix error of size overwrite

* fix yolos image processing

* fix detr image processing

* make

* add longest related test script

* Update src/transformers/models/yolos/image_processing_yolos.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* add more test

* add test script about longest size

* remove deprecated

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-06-03 16:12:08 +01:00
e4628434d8 Add Qwen2 GGUF loading support (#31175)
* add qwen2 gguf support

* Update docs

* fix qwen2 tokenizer

* add qwen2 gguf test

* fix typo in qwen2 gguf test

* format code

* Remove mistral, clarify the error message

* format code

* add typing and update docstring
2024-06-03 14:55:10 +01:00
df848acc5d Fix test_compile_static_cache (#30991)
* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-06-03 15:16:28 +02:00
70c8713872 🚨 [Mistral and friends] Update MLP (#31057)
Update MLP
2024-06-03 14:57:07 +02:00
d475f76745 SlidingWindowCache: reduce differences to other Cache classes (#30970)
* tmp commit

* sliding window with fewer differences

* make fixup + rebase

* missing overwrite
2024-06-03 14:04:24 +02:00
221aaec6ec Ignore non-causal mask in more cases with SDPA (#30138)
* update non-causal mask for sdpa

* add test

* update docstrings

* add one more test

* fix cross attention bug

* gentler atol/rtol
2024-06-03 19:08:41 +08:00
f4f696255f Fix Cannot convert [array()] to EagerTensor of dtype int64 (#31109)
While running the model.prepare_tf_dataset() method,
it raises the error below:
```
TypeError: Cannot convert [array([322.,   1.])] to EagerTensor of dtype int64
```

This happens, in  "DataCollatorForSeq2Seq" function when we are try
to convert the labels to tensors. While converting the labels to tensors,
the labels can be in the format of list of list or list of ndarrays.
There is no problem converting the list of list lables. There is a problem
when the list of ndarrays are float values(like below).

```
[array([322.,   1.])]
```

so the exception raises while trying to convert this label to tensors using
below code.

```
batch["labels"] = tf.constant(batch["labels"], dtype=tf.int64)
```

The labels are always integer values, so this got converted to float
values in the label padding operation below.
```
batch["labels"] = [
                    call(label)
                    if padding_side == "right"
                    else np.concatenate([[self.label_pad_token_id] * (max_label_length - len(label)), label])
                    for label in labels
                    ]
```
Here we have 2 cases:
1 - Concatenating an array having integer padding token value with labels.
2 - Concatenating an empty array with labels.

----------------------------------------------------------------------------------------
case 1: Concatenating an array having integer padding token value with labels.
WORKS EXPECTED:
----------------------------------------------------------------------------------------
```
label = np.array([233, 1])
max_label_length = 4
label_pad_token_id = -100
np.concatenate([[label_pad_token_id] * (max_label_length - len(label)), label])
o/p:
array([-100, -100,  233,    1])
```

----------------------------------------------------------------------------------------
Case 2: Concatenating an empty array with labels.
GIVES THE ISSUE:
This scenorio can happen when the label has the maximum label length -- No padding needed.
----------------------------------------------------------------------------------------
```
label = np.array([233, 1])
max_label_length = 2
label_pad_token_id = -100
np.concatenate([[label_pad_token_id] * (max_label_length - len(label)), label])
o/p:
array([233.,   1.])
```

----------------------------------------------------------------------------------------
Solution:
----------------------------------------------------------------------------------------
We need to concatenate a ndarray of dtype int with labels.

AFTER FIX:
----------
case 1:
```

label = np.array([233, 1])
max_label_length = 4
label_pad_token_id = -100
np.concatenate([np.array([label_pad_token_id] * (max_label_length - len(label)), dtype=np.int64),label])

o/p:
array([-100, -100,  233,    1])
```

case 2:
```

label = np.array([233, 1])
max_label_length = 2
label_pad_token_id = -100
np.concatenate([np.array([label_pad_token_id] * (max_label_length - len(label)), dtype=np.int64),label])

o/p:
array([233,   1])
```
2024-06-03 10:49:03 +01:00
1749841a0e [GemmaModel] fix small typo (#31202)
* fixes

* fix-copies
2024-06-03 11:02:38 +02:00
39b2ff69d6 Token healing (#30081)
* token healing impl + trie with extensions

* make fixup

* prefix-robust space tokenization

* examples readme and requirements

* make fixup

* allow input prompt and model

* redundant defaults

* Specialized Trie

* make fixup

* updated tests with new inherited Tree

* input ids to auto device_map

* rm unused import

* Update src/transformers/generation/utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* naming convention

* Revert "naming convention"

This reverts commit dd39d9c5b7a969e2d8a8d2a8e54f121b82dc44f0.

* naming convention

* last -hopefully- changes

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-06-03 10:53:15 +02:00
5b5b48b11d Remove copied froms for deprecated models (#31153)
* Remove copied froms for deprecated models

* Remove automatically in script
2024-06-03 09:42:53 +01:00
97e5a7072c Fix typo: use_safetenstors to use_safetensors (#31184)
Corrected a typo in security.md. Changed `use_safetenstors` to `use_safetensors` in the section discussing the usage of safe formats for loading models to prevent arbitrary code execution.
2024-06-03 10:33:02 +02:00
96eb06286b Diff converter v2 (#30868)
* current working example!

* commit regex and result file

* update

* nit

* push the conversion file

* oups

* roadmap and nits

* attempt diffs for 3 files

* persimmon

* nit

* add diff file that is the same as the modeling_llama.py

* fix rope nits

* updates

* updates with converted versions

* give some breathing space to the code

* delete

* update

* update

* push the actual result

* update regex patterns

* update regex patterns

* fix some issues

* fix some issues

* fix some issues

* updates

* updates

* updates

* updates

* updates

* revert changes done to llama

* updates

* update gemma

* updates

* oups

* current state

* current state

* update

* ouiiii

* nit

* clear diffs

* nit

* fixup

* update

* doc 🚀

* 🔥

* for now use gemma

* deal with comments

* style

* handle funtions

* deal with assigns

* todos

* process inheritage

* keep decorators?

* 🤗

* deal with duplicates

* fixup

* correctly remove duplicate code

* run ruff post script

* ruff deals pretty well with imports, let's leave it to him

* ah maybe not lol

* for now remove all imports from child.

* nit

* conversion of llama

* okay

* convert starcoder2

* synch with main

* update llama diff

* updates

* https://docs.astral.sh/ruff/rules/redefined-while-unused/ fixes the imports, bit needs later version of ruff

* updates

* okay actual state

* non zero exit

* update!

* revert unrelated

* remove other diff files

* updates

* cleanup

* update

* less diff!

* stash

* current updates

* updates

* No need for call

* finished fining deps

* update

* current changes

* current state

* current state

* new status

* nit

* finally

* fixes

* nits

* order is now expected

* use logger info instead of prints

* fixup

* up

* nit

* update

* nits

* update

* correct merge

* update

* update

* update

* add warning

* update caution message

* update

* better merging strategy

* copy class statements :wink

* fixups

* nits

* update

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* nits

* smaller header

* do cleanup some stuff

* even simpler header?

* fixup

* updates

* ruff

* update examples

* nit

* TODO

* state

* OUUUUUUF

* current state

* nits

* final state

* add a readme

* fixup

* remove diff llama

* fix

* nit

* dummy noy funny

* ruff format tests src utils --check

* everless diffs

* less diffs and fix test

* fixes

* naming nit?

* update converter and add supper example

* nits

* updated for function signatures

* update

* update

* add converted dummies

* autoformat

* single target assign fix

* fixup

* fix some imports

* fixes

* don't push them

* `# noqa: F841`

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-05-31 18:37:43 +02:00
372baec2e6 Added description of quantization_config (#31133)
* Description of quantization_config

Added missing description about quantization_config in replace_with_bnb_linear for better readability.

* Removed trailing spaces
2024-05-31 18:23:11 +02:00
cdc813113a Instance segmentation examples (#31084)
* Initial setup

* Metrics

* Overfit on two batches

* Train 40 epochs

* Memory leak debugging

* Trainer fine-tuning

* Draft

* Fixup

* Trained end-to-end

* Add requirements

* Rewrite evaluator

* nits

* Add readme

* Add instance-segmentation to the table

* Support void masks

* Remove sh

* Update docs

* Add pytorch test

* Add accelerate test

* Update examples/pytorch/instance-segmentation/README.md

* Update examples/pytorch/instance-segmentation/run_instance_segmentation.py

* Update examples/pytorch/instance-segmentation/run_instance_segmentation_no_trainer.py

* Update examples/pytorch/instance-segmentation/run_instance_segmentation_no_trainer.py

* Update examples/pytorch/instance-segmentation/run_instance_segmentation.py

* Fix consistency oneformer

* Fix imports

* Fix imports sort

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update examples/pytorch/instance-segmentation/run_instance_segmentation.py

Co-authored-by: Sangbum Daniel Choi <34004152+SangbumChoi@users.noreply.github.com>

* Add resources to docs

* Update examples/pytorch/instance-segmentation/README.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update examples/pytorch/instance-segmentation/README.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Remove explicit model_type argument

* Fix tests

* Update readme

* Note about other models

---------

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Sangbum Daniel Choi <34004152+SangbumChoi@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-05-31 16:56:17 +01:00
9837a25481 Add streaming, various fixes (#30838)
* Implement streaming run in ReAct agents
* Allow additional imports in code agents
* Python interpreter: support classes and exceptions, fixes
2024-05-31 14:16:23 +02:00
f8e6ba454c [trainer] add sanity evaluation option (#31146)
* add sanity evaluation

* fix

* Apply suggestions from code review

Co-authored-by: Zach Mueller <muellerzr@gmail.com>

* fix

---------

Co-authored-by: Zach Mueller <muellerzr@gmail.com>
2024-05-31 12:44:20 +02:00
fc5d3e112a Quantization: Enhance bnb error message (#31160)
enhance error message
2024-05-31 12:36:46 +02:00
bd9d1ddf41 Update sam.md (#31130)
`mask` variable is not defined. probably a writing mistake. it should be `segmentation_map`. `segmentation_map` should be a `1` channel image rather than `RGB`.
[on a different note, the `mask_url` is the same as `raw_image`. could provide a better example.
2024-05-31 12:34:29 +02:00
48cada87c3 Fix quantized cache output (#31143) 2024-05-31 12:08:55 +02:00
d19566e852 pytest -rsfE (#31140)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-05-31 10:35:54 +02:00
f3f640dce1 helper (#31152)
* helper

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* updates

* more doc

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-05-31 08:49:33 +02:00
6bd511a45a Workflow: Remove IS_GITHUB_CI (#31147)
remove `IS_GITHUB_CI`
2024-05-30 17:21:10 +02:00
f5590deaa8 Docs / Quantization: Replace all occurences of load_in_8bit with bnb config (#31136)
Replace all occurences of `load_in_8bit` with bnb config
2024-05-30 16:47:35 +02:00
cda9c82a63 fix get_scheduler when name is warmup_stable_decay (#31128)
fix get_scheduler args
2024-05-30 15:25:43 +01:00
5e5c4d629d FIX / Quantization: Add extra validation for bnb config (#31135)
add validation for bnb config
2024-05-30 11:45:03 +02:00
2b9e252b16 Cleanup docker build (#31119)
* remove

* build

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-05-29 19:43:51 +02:00
5c88253556 Add on_optimizer_step to callback options (#31095)
* Modified test

* Added on_optimizer_step to callbacks

* Move callback after step is called

* Added on optimizer step callback
2024-05-29 16:20:59 +02:00
4af705c6ce Add VLM generation default contributor (#31115)
* add Raushan

* add Raushan
2024-05-29 15:17:14 +01:00
cb879c5801 FIX / Docs: Fix GPTQ expected number of bits (#31111)
Update overview.md
2024-05-29 15:56:28 +02:00
1f84141391 Fix nightly circleci (#31114)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-05-29 15:42:39 +02:00
d16053c867 Rm maintainer + migrate (#31089) 2024-05-29 09:35:37 -04:00
0bef4a2738 Fix faulty rstrip in module loading (#31108) 2024-05-29 13:33:26 +01:00
97a58a5d2c Fix env.py in cases where torch is not present (#31113)
* Fix env.py in cases where torch is not present

* Simplify the fix (and avoid some issues)
2024-05-29 13:20:36 +01:00
c8861376ad Improve transformers-cli env reporting (#31003)
* Improve `transformers-cli env` reporting

* move the line `"Using GPU in script?": "<fill in>"` to in if conditional
statement

* same option for npu
2024-05-29 11:57:54 +01:00
c3044ec2f3 Use HF_HUB_OFFLINE + fix has_file in offline mode (#31016)
* Fix has_file in offline mode

* harmonize env variable for offline mode

* Switch to HF_HUB_OFFLINE

* fix test

* revert test_offline to test TRANSFORMERS_OFFLINE

* Add new offline test

* merge conflicts

* docs
2024-05-29 11:55:43 +01:00
bfe6f513b9 FEAT: Add mistral v3 conversion script (#30981)
* add mistral v3 conversion script

* Update src/transformers/models/mistral/convert_mistral_weights_to_hf.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fixup

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-05-29 11:43:54 +02:00
d521ba5797 Quantized KV cache: update quanto (#31052)
* quanto latest version was refactored

* add error msg

* incorrect compare sign

* Update src/transformers/cache_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-05-29 14:25:44 +05:00
a564d10afe Deprecate low use models (#30781)
* Deprecate models
- graphormer
- time_series_transformer
- xlm_prophetnet
- qdqbert
- nat
- ernie_m
- tvlt
- nezha
- mega
- jukebox
- vit_hybrid
- x_clip
- deta
- speech_to_text_2
- efficientformer
- realm
- gptsan_japanese

* Fix up

* Fix speech2text2 imports

* Make sure message isn't indented

* Fix docstrings

* Correctly map for deprecated models from model_type

* Uncomment out

* Add back time series transformer and x-clip

* Import fix and fix-up

* Fix up with updated ruff
2024-05-28 18:07:07 +01:00
7f08817be4 Docs / Quantization: Redirect deleted page (#31063)
Update _redirects.yml
2024-05-28 18:29:22 +02:00
3264be4114 TST: Fix instruct-blip tests (#31088)
* fix flan t5 tests

* better format
2024-05-28 18:29:11 +02:00
476890e9ae Fix DeepSpeed compatibility with weight_norm (#30881) (#31018) 2024-05-28 17:25:15 +01:00
aada568f73 Fix PretrainedConfig docstring with deprecated resume_download (#31014) 2024-05-28 17:47:35 +02:00
3af7bf30ad skip test_multi_gpu_data_parallel_forward for vit and deit (#31086)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-05-28 17:44:52 +02:00
ab19f907fd FIX / OPT: Fix OPT multi-GPU training for OPTForQuestionAnswering (#31092)
Update modeling_opt.py
2024-05-28 17:06:00 +02:00
94d416f018 FIX: Add accelerate as a hard requirement (#31090)
add accelerate
2024-05-28 17:05:44 +02:00
22dab246c5 Render chat template tojson filter as unicode (#31041)
* Render chat template tojson filter as unicode

* ruff--
2024-05-28 15:02:51 +01:00
4f98b14465 Docs / PEFT: Add PEFT API documentation (#31078)
* add peft references

* add peft references

* Update docs/source/en/peft.md

* Update docs/source/en/peft.md
2024-05-28 15:04:43 +02:00
779bc360ff Watermark: fix tests (#30961)
* fix tests

* style

* Update tests/generation/test_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-05-28 17:07:42 +05:00
a3c7b59e31 Fix failing tokenizer tests (#31083)
* Fix failing tokenizer tests

* Use small tokenizer

* Fix remaining reference
2024-05-28 13:34:23 +02:00
90da0b1c9f [SuperPoint, PaliGemma] Update docs (#31025)
* Update docs

* Add PaliGemma resources

* Address comment

* Update docs
2024-05-28 13:22:06 +02:00
66add161dc Fix typo in trainer.py (#31048) 2024-05-28 12:09:32 +01:00
98e2d48e9a Fix OWLv2 post_process_object_detection for multiple images (#31082)
* Add test for multiple images

* [run slow] owlv2

* Fix box rescaling

* [run slow] owlv2
2024-05-28 12:06:06 +01:00
c31473ed44 Remove float64 cast for OwlVit and OwlV2 to support MPS device (#31071)
Remove float64
2024-05-28 11:41:40 +01:00
936ab7bae5 fix from_pretrained in offline mode when model is preloaded in cache (#31010)
* Unit test to verify fix

Signed-off-by: Raphael Glon <oOraph@users.noreply.github.com>

* fix from_pretrained in offline mode when model is preloaded in cache

Signed-off-by: Raphael Glon <oOraph@users.noreply.github.com>

* minor: fmt

Signed-off-by: Raphael Glon <oOraph@users.noreply.github.com>

---------

Signed-off-by: Raphael Glon <oOraph@users.noreply.github.com>
Co-authored-by: Raphael Glon <oOraph@users.noreply.github.com>
2024-05-28 11:56:05 +02:00
537deb7869 Remove redundant backend checks in training_args.py (#30999)
* Remove backend checks in training_args.py

* Expilicit initialize the device

---------

Co-authored-by: tonghengwen <tonghengwen@cambricon.com>
2024-05-28 11:52:47 +02:00
AP
dd4654eab7 Update quicktour.md to fix broken link to Glossary (#31072)
Update quicktour.md to fix broken link

Missing '/' in attention mask link in the transformers quicktour
2024-05-28 11:50:45 +02:00
e18da4e3f2 fix "piano" typo (#31027) 2024-05-28 11:48:23 +02:00
8e3b1fef97 Remove ninja from docker image build (#31080)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-05-28 11:36:26 +02:00
8f0f7271d0 use @main (#31065)
use main

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-05-28 10:53:28 +02:00
9d35edbb30 skip test_model_parallelism for 2 model test classes (#31067)
skip

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-05-27 18:36:39 +02:00
d355741eca Fix pad_to_max_length Whisper (#30787)
* fix pad_to_max_length Whisper

* add tests

* make style
2024-05-27 16:09:05 +02:00
b84cd67526 Fix quanto tests (#31062)
fix quanto tests
2024-05-27 15:53:45 +02:00
cd797778e4 Update feature request label in template (#30940) 2024-05-27 15:16:47 +02:00
0a064dc0fc Follow up: Fix link in dbrx.md (#30514)
* Fix link in dbrx.md

* remove "though this may not be up to date"

---------

Co-authored-by: Lysandre Debut <hi@lysand.re>
2024-05-27 14:57:43 +02:00
d7942d9d27 unpin uv (#31055)
[push-ci-image]

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-05-27 13:47:47 +02:00
84c4b72ee9 Redirect transformers_agents doc to agents (#31054) 2024-05-27 10:34:14 +02:00
bdb9106f24 Paligemma- fix devices and dtype assignments (#31008)
* fix devices and dtype assignments

* [run-slow]paligemma
2024-05-24 19:02:55 +02:00
deba7655e6 Add split special tokens (#30772)
* seems like `split_special_tokens` is used here

* split special token

* add new line at end of file

* moving split special token test to common tests

* added assertions

* test

* fixup

* add co-author

* passing rest of args to gptsan_japanese, fixing tests

* removing direct comparison of fast and slow models

* adding test support for UDOP and LayoutXLM

* ruff fix

* readd check if slow tokenizer

* modify test to handle bos tokens

* removing commented function

* trigger build

* applying review feedback - updated docstrings, var names, and simplified tests

* ruff fixes

* Update tests/test_tokenization_common.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* applying feedback, comments

* shutil temp directory fix

---------

Co-authored-by: Arthur Zucker <arthur.zucker@gmail.com>
Co-authored-by: Ita Zaporozhets <itazaporozhets@Itas-MBP.localdomain>
Co-authored-by: itazap <itazap@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Ita Zaporozhets <itazaporozhets@Itas-MacBook-Pro.local>
2024-05-24 08:38:58 -07:00
e5103a76cc added interpolation for vitmae model in pytorch as well as tf. (#30732)
* added interpolation for vitmae model in pytorch as well as tf.

* Update modeling_vit_mae.py

irreugalr import fixed

* small changes and proper formatting

* changes suggested in review.

* modified decoder interpolate_func

* arguments and docstring fix

* Apply suggestions from code review

doc fixes

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-05-24 16:20:09 +01:00
a3cdff417b save the list of new model failures (#31013)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-05-24 15:20:25 +02:00
658b849aeb Quantization / TST: Fix remaining quantization tests (#31000)
* Fix remaining quant tests

* Update test_quanto.py
2024-05-24 14:35:59 +02:00
fd3c128040 Fix resume_download future warning (#31007)
* Fix resume_download future warning

* better like this

* Add regression test
2024-05-24 14:35:40 +02:00
acbfaf69cc allow multi-gpu (#31011)
* allow multi-gpu

* allow multi-gpu

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-05-24 14:20:06 +02:00
ae87f9797b FIX / TST: Fix expected results on Mistral AWQ test (#30971)
fix awq mistral test
2024-05-24 14:06:31 +02:00
04c7c176d7 [tests] make test_model_parallelism device-agnostic (#30844)
* enable on xpu

* fix style

* add comment and mps
2024-05-24 11:51:51 +01:00
42d8dd8716 Perceiver interpolate position embedding (#30979)
* add test that currently fails

* test passed

* all perceiver passed

* fixup, style, quality, repo-consistency, all passed

* Apply suggestions from code review: default to False + compute sqrt once only

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* fix a minor bracket

* replace dim with self._num_channels

* add arguments to the rest preprocessors

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-05-24 11:13:58 +01:00
5855afd1f3 pin uv==0.1.45 (#31006)
* fix

* [push-ci-image]

* run with latest

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-05-24 12:00:50 +02:00
03935d300d Do not trigger autoconversion if local_files_only (#31004) 2024-05-24 11:00:59 +02:00
21e259d8c5 Fix training speed regression introduced by "optimize VRAM for calculating pos_bias in LayoutLM v2, v3 (#26139)" (#30988)
* Revert "optimize VRAM for calculating pos_bias in LayoutLM v2, v3 (#26139)"

This reverts commit a7e0ed829c398a67a641a401e23dae13e2f8b217.

* Instead of reverting commit, wrap indexing in torch.no_grad context

* Apply wrapping in LayoutLMv2

* Add comments explaining reason for no_grad

* Fix code format

---------

Co-authored-by: Kevin Koehncke <kevin.koehncke@uipath.com>
2024-05-24 10:43:44 +02:00
7f6e87413f add prefix space ignored in llama #29625 (#30964)
* add prefix space ignored in llama #29625

* adding test with add_prefix_space=False

* ruff

---------

Co-authored-by: Ita Zaporozhets <itazaporozhets@Itas-MBP.localdomain>
2024-05-24 01:03:00 -07:00
6657fb5fed Bugfix: WandbCallback uploads initial model checkpoint (#30897)
* fix wandb always uploading initial model

* Update comment.

* Optionally log initial model

* Revert "Optionally log initial model"

This reverts commit 9602cc1fad3feaf218f82a7339a194d3d2fbb946.
2024-05-23 20:29:00 +01:00
6d3d5b1039 Remove deprecated properties in tokenization_nllb.py and tokenization_nllb_fast.py (#29834)
* Fix typo in tokenization_nllb.py

Change `adder_tokens_decoder` into `added_tokens_decoder` and improve the warning's readability.

* Fix typo in tokenization_nllb_fast.py

Change `adder_tokens_decoder` into `added_tokens_decoder` and improve the warning's readability.

* Remove deprecated attributes in tokenization_nllb.py

Remove deprecated attributes: `lang_code_to_id`, `fairseq_tokens_to_ids`, `id_to_lang_code`, and `fairseq_ids_to_tokens`

* Remove deprecated attribute in tokenization_nllb_fast.py

Remove deprecated attribute `lang_code_to_id`

* Remove deprecated properties in tokenization_nllb.py

Remove deprecated properties - fix format

* Remove deprecated properties in tokenization_nllb_fast.py

Remove deprecated properties - fix format

* Update test_tokenization_nllb.py

* update test_tokenization_nllb.py

* Update tokenization_nllb.py

* Update test_tokenization_seamless_m4t.py

* Update test_tokenization_seamless_m4t.py
2024-05-23 18:53:26 +02:00
965e98dc54 [Port] TensorFlow implementation of Mistral (#29708)
* chore: initial commit

* chore: adding imports and inits

* chore: adding the causal and classification code

* chore: adding names to the layers

* chore: using single self attn layer

* chore: built the model and layers

* chore: start with testing

* chore: docstring change, transpose fix

* fix: rotary embedding

* chore: adding cache implementation

* remove unused torch

* chore: fixing the indexing issue

* make fix-copies

* Use modeling_tf_utils.keras

* make fixup

* chore: fixing tests

* chore: adding past key value logic

* chore: adding multi label classfication test

* fix: switching on the built parameters in the layers

* fixing repo consistency

* ruff formats

* style changes

* fix: tf and pt equivalence

* removing returns from docstrings

* fix docstrings

* fix docstrings

* removing todos

* fix copies

* fix docstring

* fix docstring

* chore: using easier rotate_half

* adding integration tests

* chore: addressing review related to rotary embedding layer

* review changes

* [run-slow] mistral

* skip: test save load after resize token embedding

* style

---------

Co-authored-by: Matt <rocketknight1@gmail.com>
2024-05-23 17:48:49 +01:00
2a89673fe5 Update 4 MptIntegrationTests expected outputs (#30989)
* fix

* fix

* fix

* fix

* fix

* [run-slow] mpt

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-05-23 18:27:54 +02:00
892b13d3cf Add a check that warmup_setps is either 0 or >= 1 (#30764)
* Add a check that warmup_setps is either 0 or >= 1

Update training_args.py to add a check that warmup_setps is either 0 or >= 1. Otherwise, raise an error.

* Update src/transformers/training_args.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-05-23 17:23:59 +01:00
21339a5213 [tests] add torch.use_deterministic_algorithms for XPU (#30774)
* add xpu check

* add marker

* add documentation

* update doc

* fix ci

* remove from global init

* fix
2024-05-23 16:53:07 +01:00
8366b57241 Fix accelerate failing tests (#30836)
* Fix accelerate tests

* fix clip

* skip dbrx tests

* fix GPTSan

* fix M2M100Model

* same fix as jamba

* fix mt5

* Fix T5Model

* Fix umt5 model

* fix switch_transformers

* fix whisper

* fix gptsan again

* fix siglip recent test

* skip siglip tests

* wrong place fixed
2024-05-23 17:18:58 +02:00
5a74ae6dbe FIX / Docs: Minor changes in quantization docs (#30985)
* Change in quantization docs

* Update overview.md

* Update docs/source/en/quantization/overview.md

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

---------

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2024-05-23 16:36:49 +02:00
046c2ad792 Finish adding support for torch.compile dynamic shapes (#30919)
add torch.compile dynamic support
2024-05-23 16:01:29 +02:00
6739e1d261 test_custom_4d_attention_mask skip with sliding window attn (#30833) 2024-05-23 15:22:10 +02:00
87a351818e Docs / Quantization: refactor quantization documentation (#30942)
* refactor quant docs

* delete file

* rename to overview

* fix

* fix table

* fix

* add content

* fix library versions

* fix table

* fix table

* fix table

* fix table

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* replace to quantization_config

* fix aqlm snippet

* add DLAI courses

* fix

* fix table

* fix bulet points

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-05-23 14:31:52 +02:00
d583f1317b Quantized KV Cache (#30483)
* clean-up

* Update src/transformers/cache_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/cache_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/cache_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fixup

* Update tests/quantization/quanto_integration/test_quanto.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update src/transformers/generation/configuration_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* more suggestions

* mapping if torch available

* run tests & add 'support_quantized' flag

* fix jamba test

* revert, will be fixed by another PR

* codestyle

* HQQ and versatile cache classes

* final update

* typo

* make tests happy

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2024-05-23 17:25:20 +05:00
e05baad861 Bump requests from 2.31.0 to 2.32.2 in /examples/research_projects/visual_bert (#30983)
Bump requests in /examples/research_projects/visual_bert

Bumps [requests](https://github.com/psf/requests) from 2.31.0 to 2.32.2.
- [Release notes](https://github.com/psf/requests/releases)
- [Changelog](https://github.com/psf/requests/blob/main/HISTORY.md)
- [Commits](https://github.com/psf/requests/compare/v2.31.0...v2.32.2)

---
updated-dependencies:
- dependency-name: requests
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-05-23 12:38:00 +01:00
4ef85fee71 Push ci image (#30982)
* [build-ci-image]

* correct branch

* push ci image

* [build-ci-image]

* update scheduled as well

* [push-ci-image]

* [build-ci-image]

* [push-ci-image]

* update deps

* [build-ci-image]

* [build-ci-image]

* [build-ci-image]

* [build-ci-image]

* [build-ci-image]

* [build-ci-image]

* oups [build-ci-image]

* [push-ci-image]

* fix

* [build-ci-image]

* [build-ci-image]

* [build-ci-image]

* [build-ci-image]

* [build-ci-image]

* [build-ci-image]

* [build-ci-image]

* updated

* [build-ci-image] update tag

* [build-ci-image]

* [build-ci-image]

* fix tag

* [build-ci-image]

* [build-ci-image]

* [build-ci-image]

* [build-ci-image]

* github name

* commit_title?

* fetch

* update

* it not found

* dev

* dev

* [push-ci-image]

* dev

* dev

* update

* dev

* dev print dev commit message dev

* dev ? dev

* dev

* dev

* dev

* dev

* [build-ci-image]

* [build-ci-image]

* [push-ci-image]

* revert unwanted

* revert convert as well

* no you are not important

* [build-ci-image]

* Update .circleci/config.yml

* pin tf probability dev

* [push-ci-image] skip

* [push-ci-image] test

* [push-ci-image]

* fix

* device
2024-05-23 11:45:31 +02:00
eb1a77bbb0 Using assistant in AutomaticSpeechRecognitionPipeline with different encoder size (#30637)
* fiw input to generate in pipeline

* fixup

* pass input_features to generate with assistant

* error if model and assistant with different enc size

* fix

* apply review suggestions

* use self.config.is_encoder_decoder

* pass inputs to generate directly

* add slow tests

* Update src/transformers/generation/utils.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Update tests/pipelines/test_pipelines_automatic_speech_recognition.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Update tests/pipelines/test_pipelines_automatic_speech_recognition.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Update tests/pipelines/test_pipelines_automatic_speech_recognition.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Update tests/pipelines/test_pipelines_automatic_speech_recognition.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Update tests/pipelines/test_pipelines_automatic_speech_recognition.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* apply review

* Update src/transformers/generation/utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/pipelines/test_pipelines_automatic_speech_recognition.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* apply code review

* update attributes encoder_xyz to check

* Update src/transformers/generation/utils.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/generation/utils.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/generation/utils.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* add slow test

* solve conflicts

---------

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2024-05-23 09:59:38 +01:00
15585b81a5 Update object detection with latest resize and pad strategies (#30955)
* Update with new resizing and pad strategy

* Return pixel mask param

* Update inference in guide

* Fix empty compose

* Update guide
2024-05-23 00:13:56 +01:00
a25f7d3c12 Paligemma causal attention mask (#30967)
* PaliGemma working causal attention

* Formatting

* Style

* Docstrings + remove commented code

* Update docstring for PaliGemma Config

* PaliGemma - add separator ind to model/labels

* Refactor + docstring paligemma processor method

* Style

* return token type ids when tokenizing labels

* use token type ids when building causal mask

* add token type ids to tester

* remove separator from config

* fix style

* don't ignore separator

* add processor documentation

* simplify tokenization

* fix causal mask

* style

* fix label propagation, revert suffix naming

* fix style

* fix labels tokenization

* [run-slow]paligemma

* add eos if suffixes are present

* [run-slow]paligemma

* [run-slow]paligemma

* add misssing tokens to fast version

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fix style

* [run-slow]paligemma

---------

Co-authored-by: Peter Robicheaux <peter@roboflow.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-05-22 19:37:15 +02:00
Jun
d44e1ae036 Fix link in Pipeline documentation (#30948)
fix documentation as suggested by stevhliu

Co-authored-by: Jun <jun@reliant.ai>
2024-05-22 09:39:46 -07:00
0948c827de [Whisper] Strip prompt before finding common subsequence (#27836) 2024-05-22 17:25:47 +01:00
b1065aa08a Generation: get special tokens from model config (#30899)
* fix

* let's do this way?

* codestyle

* update

* add tests
2024-05-22 18:15:41 +02:00
1d568dfab2 legacy to init the slow tokenizer when converting from slow was wrong (#30972) 2024-05-22 18:06:50 +02:00
1432f641b8 Finally fix the missing new model failure CI report (#30968)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-05-22 17:48:26 +02:00
dff54ad2d9 🚨 out_indices always a list (#30941)
* out_indices always a list

* Update src/transformers/utils/backbone_utils.py

* Update src/transformers/utils/backbone_utils.py

* Move type casting

* nit
2024-05-22 15:23:04 +01:00
250ae9f746 Paligemma - fix slow tests, add bf16 and f16 slow tests (#30851)
* fix slow tests, add bf16 and f16 slow tests

* few fixes

* [run-slow]paligemma

* add gate decorator

* [run-slow]paligemma

* add missing gating

* [run-slow]paligemma

* [run-slow]paligemma
2024-05-22 16:20:07 +02:00
ada86f973c [whisper] only trigger forced ids warning once (#30966) 2024-05-22 15:06:51 +01:00
1518508467 Avoid extra chunk in speech recognition (#29539) 2024-05-22 14:07:51 +01:00
24d2a5e1a3 [doc] Add references to the fine-tuning blog and distil-whisper to Whisper. (#30938)
[doc] Add references to the fine-tuning blog and distil-whisper to Whisper doc.
2024-05-22 14:06:09 +01:00
5c186003b8 Fix low cpu mem usage tests (#30808)
* Fix tests

* fix udop failing test

* remove skip

* style
2024-05-22 14:09:01 +02:00
934e1b84e9 Update video-llava docs (#30935)
* update video-llava

* Update docs/source/en/model_doc/video_llava.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-05-22 16:56:41 +05:00
edb14eba64 Bump requests from 2.31.0 to 2.32.2 in /examples/research_projects/lxmert (#30956)
---
updated-dependencies:
- dependency-name: requests
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-05-22 11:27:41 +01:00
8e8786e5f0 Update build ci image [push-ci-image] (#30933)
* [build-ci-image]

* correct branch

* push ci image

* [build-ci-image]

* update scheduled as well

* [push-ci-image]

* [build-ci-image]

* [push-ci-image]

* update deps

* [build-ci-image]

* [build-ci-image]

* [build-ci-image]

* [build-ci-image]

* [build-ci-image]

* [build-ci-image]

* oups [build-ci-image]

* [push-ci-image]

* fix

* [build-ci-image]

* [build-ci-image]

* [build-ci-image]

* [build-ci-image]

* [build-ci-image]

* [build-ci-image]

* [build-ci-image]

* updated

* [build-ci-image] update tag

* [build-ci-image]

* [build-ci-image]

* fix tag

* [build-ci-image]

* [build-ci-image]

* [build-ci-image]

* [build-ci-image]

* github name

* commit_title?

* fetch

* update

* it not found

* dev

* dev

* [push-ci-image]

* dev

* dev

* update

* dev

* dev print dev commit message dev

* dev ? dev

* dev

* dev

* dev

* dev

* [build-ci-image]

* [build-ci-image]

* [push-ci-image]

* revert unwanted

* revert convert as well

* no you are not important

* [build-ci-image]

* Update .circleci/config.yml

* pin tf probability dev
2024-05-22 10:52:59 +02:00
673440d073 update ruff version (#30932)
* update ruff version

* fix research projects

* Empty

* Fix errors

---------

Co-authored-by: Lysandre <lysandre@huggingface.co>
2024-05-22 06:40:15 +02:00
60bb571e99 🚨 [Idefics2] Update ignore index (#30898)
* Update ignore index

* Update docs

* Update docs
2024-05-21 19:38:02 +02:00
5bf9caa06d Fix inhomogeneous shape error in example (#30434)
Fix inhomogeneous shape error in example.
2024-05-21 18:14:11 +01:00
d24097e022 Fix swin embeddings interpolation (#30936) 2024-05-21 15:40:19 +01:00
eae2b6b89e TST / Workflows: Get slack notifications for docker image build (#30891)
* Get slack notifications for docker image build

* Apply suggestions from code review

* Apply suggestions from code review
2024-05-21 15:54:41 +02:00
64e0573a81 [Benchmark] Reuse optimum-benchmark (#30615)
* benchmark

* update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-05-21 15:15:19 +02:00
3b09d3f05f fix: center_crop occasionally outputs off-by-one dimension matrix (#30934)
If required padding for a crop larger than input image is odd-numbered,
the padding would be rounded down instead of rounded up, causing the
output dimension to be one smaller than it should be.
2024-05-21 13:56:52 +01:00
daf281f44f Enforce saving at end of training if saving option chosen (#30160)
* Enforce saving at end of training

* Fix test

* Rework test

* Fixup tests'

* Update comment based on sourab feedback

* Clean
2024-05-21 07:50:11 -04:00
7a4792e6b3 CI: AMD MI300 tests fix (#30797)
* add fix

* update import

* updated dicts and comments

* remove prints

* Update testing_utils.py
2024-05-21 12:46:07 +01:00
a755745546 PaliGemma - fix processor with no input text (#30916)
Update processing_paligemma.py
2024-05-21 10:43:22 +01:00
d502bd6475 Bump requests from 2.31.0 to 2.32.0 in /examples/research_projects/decision_transformer (#30925)
---
updated-dependencies:
- dependency-name: requests
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-05-21 09:41:29 +01:00
8871b26150 FEAT / Trainer: LOMO optimizer support (#30178)
* add V1 - adalomo not working yet

* add todo docs + refactor from comments

* adjust LR

* add docs

* add more elaborated test

* Apply suggestions from code review

Co-authored-by: Zach Mueller <muellerzr@gmail.com>

* fix

* push

* add accelerate check

* fix DDP case

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* fix

* init kwargs

* safely add attribute

* revert to enum logic

* Update src/transformers/trainer.py

---------

Co-authored-by: Zach Mueller <muellerzr@gmail.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-05-21 10:16:37 +02:00
c876d12127 FIX / TST: Fix expected results on Mistral slow test (A10) (#30909)
Update test_modeling_mistral.py
2024-05-21 09:14:14 +02:00
0df888ffb7 [docs] Spanish translation of model_memory_anatomy.md (#30885)
* add model_memory_anatomy to es/_toctree.yml

* copy model_memory_anatomy.md to es/

* translate first section

* translate doc

* chage forward activations

* fix sentence and and link to Trainer

* fix Trainer link
2024-05-20 16:48:52 -07:00
616bb11d48 Add torch.compile for Mistral (#30642)
* first version

* fix sliding window

* fix style

* add sliding window cache

* fix style

* address comments

* fix test

* fix style

* move sliding window check inside cache init

* revert changes on irrelevant files & add comment on SlidingWindowCache

* address comments & fix style

fix style

* update causal mask

* [run-slow] mistral

* [run-slow] mistral

* [run-slow] mistral

* [run-slow] mistral

* [run-slow] mistral

* [run-slow] llama

* [run-slow] mistral

* [run-slow] mistral

* [run-slow] mistral

* revert CI from a10 to t4

* wrap up
2024-05-20 16:27:24 +02:00
92d1d97c05 Introduce configured_state arg for accelerator_config (#29781)
* Introduce configured_state

* Include note on tuning

* Allow for users to have defined a state already

* Include tests

* Add note on hpam tune

* Guard a bit better

* Update src/transformers/training_args.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/training_args.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Finish rebase

* Finish rebase

* Guard carefully

* Fixup test

* Refactor

* Fin refactor

* Comment

* Update wrt feedback

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-05-20 09:21:40 -04:00
bb48e92186 tokenizer_class = "AutoTokenizer" Llava Family (#30912)
propagate changes to more models
2024-05-20 13:56:11 +02:00
76e05301c3 Fix a shape annotation and typos in mamba slow forward (#30691)
* fix typos and one shape comment

* fix `intermediade` typo in jamba
2024-05-20 13:55:57 +02:00
e6708709cb Add AutoFeatureExtractor support to Wav2Vec2ProcessorWithLM (#28706)
* Add AutoFeatureExtractor support to Wav2Vec2ProcessorWithLM

* update with a type filter

* add raises error test

* fix added test
2024-05-20 13:40:42 +02:00
c11ac7857b fix for custom pipeline configuration (#29004)
* fix for custom pipeline configuration

* fix for custom pipelines

* remove extra exception

* added test for custom pipelines extra tag

* format with ruff

* limit extra tag for first time only

* format with ruff

* improve tests for custom pipelines
2024-05-20 11:38:32 +02:00
7b4b456438 separate kwargs in processor (similar to #30193) (#30905)
* Fix similar bug in processor (related to #30193)

* Reformat processing_git.py to comply with ruff formatting
2024-05-20 10:18:17 +01:00
1834916481 Fix num_hidden_layers in initialization of new model in Mamba (#30403)
Fix num_hidden_layers in initialization

Originally, the initialization was using config.num_layers instead of config.num_hidden_layers. This fixes that.
2024-05-20 11:18:09 +02:00
1c2bb3ac54 add return_token_timestamps to WhisperProcessor (#30812)
* compute num_frames in WhisperFeatureExtractor

* add return_num_frames in WhisperFeatureProcessor + adapt pipeline

* return_timestamps renaming + pipeline fix

* fix

* fix

* fix

* add tests

* Update src/transformers/models/whisper/feature_extraction_whisper.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* apply review changes

* fix

* Update src/transformers/models/whisper/feature_extraction_whisper.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Update tests/models/whisper/test_modeling_whisper.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* apply review

* fix

* review changes

* Update src/transformers/models/whisper/feature_extraction_whisper.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* make style quality

* EXPECTED_OUTPUT in single line

* small numpy->torch fix

* fix

---------

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-05-20 09:53:58 +01:00
66b0d9ee5d DeformableDETR two stage support bfloat16 (#30907)
Update modeling_deformable_detr.py
2024-05-20 09:51:04 +01:00
5d0bf59b4d LLaVa-Next: Update docs with batched inference (#30857)
* update docs with batch ex

* Update docs/source/en/model_doc/llava_next.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* accept nested list of img

---------

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2024-05-20 13:45:56 +05:00
cd6bd0af34 Add support for torch.compile dynamic shapes (#30560)
* add torch.compile dynamic support

* Add SDPA dynamic shapes compile test & improve SDPA comment

* comment consistency
2024-05-20 10:36:57 +02:00
fce78fd0e9 FIX / Quantization: Fix Dockerfile build (#30890)
* Update Dockerfile

* Update docker/transformers-quantization-latest-gpu/Dockerfile
2024-05-20 10:08:26 +02:00
07bf2dff78 Add TokenClassification for Mistral, Mixtral and Qwen2 (#29878)
* Add MistralForTokenClassification

* Add tests and docs

* Add token classification for Mixtral and Qwen2

* Save llma for token classification draft

* Add token classification support for Llama, Gemma, Persimmon, StableLm and StarCoder2

* Formatting

* Add token classification support for Qwen2Moe model

* Add dropout layer to each ForTokenClassification model

* Add copied from in tests

* Update src/transformers/models/llama/modeling_llama.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Propagate suggested changes

* Style

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2024-05-20 10:06:57 +02:00
481a957814 Enable dynamic resolution input for Swin Transformer and variants (#30656)
* add interpolation of positional encoding support to swin

* add style changes

* use default image processor and make size a dictionary

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* remove logits testing

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Refactor image size validation logic when interpolation is disabled

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* remove asserts in modeling

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* add dynamic resolution input support to swinv2

* change size to ensure interpolation encoding path is triggered

* set interpolate_pos_encoding default value to False

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* set interpolate_pos_encoding default value to False

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* set interpolate_pos_encoding default value to False

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* set interpolate_pos_encoding default value to False

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* set interpolate_pos_encoding default value to False

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* set interpolate_pos_encoding default value to False

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* set interpolate_pos_encoding default value to False

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* set interpolate_pos_encoding default value to False

* add dynamic resolution input to donut swin

* add dynamic resolution input to maskformer swin

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-05-17 18:38:46 +01:00
b6eb708bf1 v4.42.dev.0 2024-05-17 17:30:41 +02:00
bf646fbf2d Add fixed resize and pad strategy for object detection (#30742)
* Add resize and pad strategy

* Merge get_size functions

* Add pad_size + tests to object detection models

* Fixup

* Update docstrings

* Fixup
2024-05-17 16:21:26 +01:00
e9a8041d1c update release script (#30880)
* update release script

* update release script
2024-05-17 17:09:30 +02:00
0a9300f474 Support arbitrary processor (#30875)
* Support arbitrary processor

* fix

* nit

* update

* nit

* nit

* fix and revert

* add a small test

* better check

* fixup

* bug so let's just use class for now

* oups

* .
2024-05-17 16:51:31 +02:00
57edd84bdb [whisper] fix multilingual fine-tuning (#30865)
* [whisper] fix multilingual fine-tuning

* config ids as well
2024-05-17 15:12:44 +01:00
977ce58a78 Fix dependencies for image classification example (#30842)
* fix: missing dependencies

* fix: image classification dependencies
2024-05-17 13:57:47 +01:00
3802e786ef Enable device map (#30870)
* added_no_split_modules

* added LlavaNextVisionAttention to _no_split_modules
2024-05-17 12:50:24 +01:00
57c965a8f1 Remove deprecated logic and warnings (#30743)
* Remove deprecated logic and warnings

* Add back some code that seems to be important...

* Let's just add all he nllb stuff back; removing it is a bit more involved

* Remove kwargs

* Remove more kwargs
2024-05-17 12:15:59 +01:00
3d7d3a87a0 TEST: Add llama logits tests (#30835)
* add llama logits test

* fix

* fix tests
"

"

* fix for a10

* format

* format

* fix

* [run-slow] remove fmt: skip

* Your commit message

* test commit

* Revert "test commit"

This reverts commit b66e01e55f5e31d4c0479cac4bcacc0f123dc9d2.

* [run-slow]llama

* Update tests/models/llama/test_modeling_llama.py

* [run-slow]llama

* empty commit
2024-05-17 12:23:00 +02:00
15c74a2829 Fix VideoLlava imports (#30867)
* Fix VideoLlava imports

* Update dummy objects
2024-05-16 17:06:21 +01:00
4e17e7dcf8 TST / Quantization: Reverting to torch==2.2.1 (#30866)
Reverting to 2.2.1
2024-05-16 17:30:02 +02:00
f4014e75db Docs: update example with assisted generation + sample (#30853) 2024-05-16 14:32:21 +01:00
95b3c3814d Video-LLaVa: Fix docs (#30855)
fix model id in docs
2024-05-16 17:23:01 +05:00
1b3dba9417 Make Gemma work with torch.compile (#30775)
* fix

* [run-slow] gemma

* add test

* add `test_compile_static_cache`

* fix

* style

* remove subprocess

* use attribute

* fix

* style

* update

* [run-slow] dbrx,gemma,jetmoe,phi3,recurrent_gemma

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-05-16 13:41:33 +02:00
0753134f4d Disable the FA backend for SDPA on AMD GPUs (#30850)
* disable fa

* disable fa

* update warning

* update warning
2024-05-16 13:31:14 +02:00
9d889f870e Cache: add new flag to distinguish models that Cache but not static cache (#30800)
* jamba cache

* new flag

* generate exception
2024-05-16 12:08:35 +01:00
17cc71e149 [Idefics2] Improve docs, add resources (#30717)
* Add resources

* Address comment

* Address comments

* Update docs/source/en/model_doc/idefics2.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update figure

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-05-16 12:22:13 +02:00
1c21f48a50 add sdpa to ViT [follow up of #29325] (#30555)
remove blank line (+1 squashed commit)
Squashed commits:
[24ccd2061] [run-slow]vit_msn,vision_encoder_decoder (+24 squashed commits)
Squashed commits:
[08bd27e7a] [run-slow]vit_msn,vision_encoder_decoder
[ec96a8db3] [run-slow]vit_msn
[ead817eca] fix vit msn multi gpu
[d12cdc8fd] [run-slow]audio_spectrogram_transformer,deit,vision_encoder_decoder,vision_text_dual_encoder,vit,vit_hybrid,vit_mae,vit_msn,videomae,yolos
[3fdbfa88f] doc
[a3ff33e4a] finish implementation
[e20b7b7fb] Update test_modeling_common.py
[e290c5810] Update test_modeling_flax_common.py
[d3af86f46] comment
[ff7dd32d8] more comments
[59b137889] suggestion
[7e2ba6d67] attn_implementation as attribute of the class
[fe66ab71f] minor
[38642b568] Apply suggestions from code review

Accept comments

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
[22cde7d52] Update tests/test_modeling_common.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
[48e137cc6] Update tests/test_modeling_common.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
[99f4c679f] Update tests/test_modeling_common.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
[96cf20a6d] Update src/transformers/models/vit_msn/modeling_vit_msn.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
[c59377d23] Update src/transformers/models/vit_mae/modeling_vit_mae.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
[b70a47259] Update tests/models/vision_text_dual_encoder/test_modeling_vision_text_dual_encoder.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
[00c84d216] [run-slow]audio_spectrogram_transformer,deit,vision_encoder_decoder,vision_text_dual_encoder,vit,vit_hybrid,vit_mae,vit_msn,videomae,yolos
[61f00ebb0] all tests are passing locally
[e9e0b82b7] vision encoder/decoder
[4d5076b56] test-vision (+20 squashed commits)
Squashed commits:
[d1add8db9] yolo
[9fde65716] fix flax
[986566c28] minor
[ca2f21d1f] vit
[3333efd7a] easy models change
[ebfc21402] [run-slow]audio_spectrogram_transformer,deit,vision_encoder_decoder,vision_text_dual_encoder,vit,vit_hybrid,vit_mae,vit_msn,videomae,yolos
[b8b8603ed] [run-slow]vision_encoder_decoder,vision_text_dual_encoder,yolos
[48ecc7e26] all tests are passing locally
[bff7fc366] minor
[62f88306f] fix yolo and text_encoder tests
[121507555] [run-slow]audio_spectrogram_transformer,deit,vit,vit_hybrid,vit_mae,vit_msn,videomae
[1064cae0a] [run-slow]vision_encoder_decoder,vision_text_dual_encoder,yolos
[b7f52ff3a] [run-slow]audio_spectrogram_transformer,deit,vit,vit_hybrid,vit_mae,vit_msn,videomae
[cffaa10dd] fix-copies
[ef6c511c4] test vit hybrid
[7d4ba8644] vit hybrid
[66f919033] [run-slow]audio_spectrogram_transformer,deit,vit,vit_hybrid,vit_mae,vit_msn,videomae
[1fcc0a031] fixes
[cfde6eb21] fixup
[e77df1ed3] all except yolo end encoder decoder (+17 squashed commits)
Squashed commits:
[602913e22] vit + vit_mae are working
[547f6c4cc] RUN_SLOW=1 pytest tests/models/audio_spectrogram_transformer/ tests/models/deit/ tests/models/videomae/  passes
[61a97dfa9] it s the complete opposite...
[aefab37d4] fix more tests
[71802a1b9] fix all torch tests
[40b12eb58] encoder - decoder tests
[941552b69] slow decorator where appropriate
[14d055d80] has_attentions to yolo and msn
[3381fa19f] add correct name
[e261316a7] repo consistency
[31c6d0c08] fixup
[9d214276c] minor fix
[11ed2e1b7] chore
[eca6644c4] add sdpa to vit-based models
[cffbf390b] make fix-copies result
[6468319b0] fix style
[d324cd02a] add sdpa for vit

Co-authored-by: Liubov Yaronskaya <luba.yaronskaya@gmail.com>
2024-05-16 10:56:11 +01:00
9fd606dbdb [LLaVa-NeXT] Small fixes (#30841)
* First draft

* Update docstring
2024-05-16 08:19:15 +02:00
4b3eb19fa7 Fix llama model sdpa attention forward function masking bug when output_attentions=True (#30652)
* Fix llama model forward function with attention=True, same-length encoded sequence.

* Fix style

* propagate fix to modeling_cohere, gemma, dbrx, and olmo (which copy the same sdpa masking logic from llama)

* Fix style

* ignore unnecessary sdpa mask converter when output_attentions=True

* add tests checking sdpa and eager outputs match when output_attentions=True

* Split if statements in two lines

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Fix formatting

* Add fix to new jetmoe model

* Add missing output_attentions argument to jetmoe mask creation

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-05-15 19:48:19 +02:00
2d83324ecf Use torch 2.3 for CI (#30837)
2.3

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-05-15 19:31:52 +02:00
3f435823e0 FEAT / Bitsandbytes: Add dequantize API for bitsandbytes quantized models (#30806)
* add  method

* change method name

* more comments

* Apply suggestions from code review

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* fixup

* add docstrings and fix comment

* warn users on the de-quantized dtype

* Update src/transformers/quantizers/base.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* Update src/transformers/integrations/bitsandbytes.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* final suggestion - use private method

---------

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-05-15 17:17:09 +02:00
58faa7b824 Deprecate models script - correctly set the model name for the doc file (#30785)
* Correctly set the moel name for the doc file

* Fix up
2024-05-15 15:14:11 +01:00
5ca085b882 Better llava next. (#29850)
* Better llava next.
- Batched forward with multiple image of different sizes (number of patches).
- Support training, for cases without any image.
- Support multi-image in same sequence. e.g: ["<image> <image> the first image is a dog while the second is a cat", "<image> <image> <image> <image> these 4 image are..."]

Current limitation:
- Haven't done testing
- Only support right padding (for training)
- left padding (batched generation) is not ready yet.
- PR not ready.

* fix bugs in batched generation

* add tests

* fix batch-gen bugs, left-padding positions and incorrect attention mask

* remove better modeling llava

* fix formatting

* fix test

* fix test

* fix testing

* fix test

* fix formatting

* Update src/transformers/models/llava_next/modeling_llava_next.py

add clarity

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update modeling_llava_next.py

remove assert

* fix bug modeling_llava_next.py

* update modeling

* fix bugs

* fix format

* fix error

* fix new_token_positions

* Update modeling_llava_next.py

* update formatting

* add args

* removecomments

* add slow tests for batched inference

* failing tf/flax tests

* this one ic correct

* Update src/transformers/models/llava_next/modeling_llava_next.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* fix docs

* make fixup

* more fixup

* add test for batch equivalence

* Update tests/models/llava_next/test_modeling_llava_next.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/llava_next/image_processing_llava_next.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/llava_next/image_processing_llava_next.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/llava_next/modeling_llava_next.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/llava_next/modeling_llava_next.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/llava_next/modeling_llava_next.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/llava_next/modeling_llava_next.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/llava_next/modeling_llava_next.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/llava_next/modeling_llava_next.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* pr comments

* hardcode padding side for bs=1

* update

* [run-slow] llava_next

* [run-slow] llava_next

* make fix-copies

---------

Co-authored-by: NGUYEN, Xuan Phi <x.nguyen@alibaba-inc.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: raushan <raushan@huggingface.co>
Co-authored-by: Raushan Turganbay <raushan.turganbay@alumni.nu.edu.kz>
2024-05-15 19:02:56 +05:00
bdfefbadaf Update ds_config_zero3.json (#30829) 2024-05-15 10:02:31 -04:00
92544cb8f3 Missing Optional in typing. (#30821)
The function checks for None in its first line.
2024-05-15 15:00:43 +01:00
64c06df325 Jamba - Skip 4d custom attention mask test (#30826)
* Jamba - Skip 4d custom attention mask test

* Skip assistant greedy test
2024-05-15 13:57:28 +01:00
a42844955f Loading GGUF files support (#30391)
* Adds support for loading GGUF files

Co-authored-by: Younes Belkada <younesbelkada@gmail.com>
Co-authored-by: 99991 <99991@users.noreply.github.com>

* add q2_k q3_k q5_k support from @99991

* fix tests

* Update doc

* Style

* Docs

* fix CI

* Update docs/source/en/gguf.md

* Update docs/source/en/gguf.md

* Compute merges

* change logic

* add comment for clarity

* add comment for clarity

* Update src/transformers/models/auto/tokenization_auto.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* change logic

* Update src/transformers/modeling_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* change

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/modeling_gguf_pytorch_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* put back comment

* add comment about mistral

* comments and added tests

* fix unconsistent type

* more

* fix tokenizer

* Update src/transformers/modeling_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* address comments about tests and tokenizer + add added_tokens

* from_gguf -> gguf_file

* replace on docs too

---------

Co-authored-by: Younes Belkada <younesbelkada@gmail.com>
Co-authored-by: 99991 <99991@users.noreply.github.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-05-15 14:28:20 +02:00
bd9f4d7951 Add Video Llava (#29733)
* add model draft

* update docstring

* add tests

* support image and video as input

* update for better handling of mixed input and clean-up a bit

* bug when mixed inputs & add tests

* Update README.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Merge remote-tracking branch 'upstream/main' into video_llava

* link to abstract of paper in README

* fix test

* fix-copies

* make tests happy

* skip docstest for now

* do not run doctest for now

* Update src/transformers/models/video_llava/processing_video_llava.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/video_llava/image_processing_video_llava.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/video_llava/image_processing_video_llava.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/video_llava/image_processing_video_llava.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/video_llava/image_processing_video_llava.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/video_llava/test_modeling_video_llava.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/video_llava/image_processing_video_llava.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* address review comments

* failing tests

* Fix vocab_size in common tests for VLMs

* codestyle

* Update src/transformers/models/video_llava/configuration_video_llava.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/video_llava/configuration_video_llava.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/video_llava/modeling_video_llava.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/video_llava/modeling_video_llava.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/model_doc/video_llava.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/model_doc/video_llava.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/video_llava/image_processing_video_llava.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/model_doc/video_llava.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/video_llava/processing_video_llava.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/video_llava/test_modeling_video_llava.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/video_llava/test_modeling_video_llava.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/video_llava/test_modeling_video_llava.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* PR suggestions

* fix-copies

* Update src/transformers/models/video_llava/configuration_video_llava.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/video_llava/configuration_video_llava.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* add full example in docs

* clean-up with new model-id

* [run-slow] video_llava

* update docstring

* [run-slow] video_llava

* remove all achive maps

* fix some tests

* test was supposed to be skipped for llava :)

---------

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-05-15 16:42:29 +05:00
b8aee2e918 Remove unused module DETR based models (#30823)
* removing heads for classification from DETR models.

* quality fix
2024-05-15 11:19:43 +01:00
be3aa43e5f Support mixed-language batches in WhisperGenerationMixin (#29688)
* Add support for mixing languages in a single batch

* Update docstring

* Enable different detected languages in batch

* Do not require input_features

* Test list of languages

* Fix comment

* Make init_tokens length-1 if possible, broadcast at the end

* Test for ValueError with language list of incorrect length

* Slow test for batched multilingual transcription

* fixup

* Apply suggestions from code review

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Address review, refactor

* Second attempt to move this line where it was originally

* Split test, fix a bug

---------

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
2024-05-15 09:53:17 +02:00
37543bad3c Add missing dependencies in image classification example (#30820)
fix: missing dependencies
2024-05-15 08:38:30 +02:00
99e16120ab Add support for custom checkpoints in MusicGen (#30011)
* feat: support custom checkpoint

* update: revert changes and add TODO

* update: docs and exception handling

* fix: ah, extra space
2024-05-15 08:30:33 +02:00
1360801a69 Add PaliGemma (#30814)
* add new model like

* add state dict slicing + new model config

* update palma config and weights, passes vision activations

* fix

* update

* reorder loading/unpacking

* clean up

* add debug statements

* change device

* fix

* debugging

* fix noncausal mask

* fixup sdpa + causal mask

* fix activation function

* remove debug before changing modeling file

* add variants

* debug attention mask in generate

* revert to non-debug sdpa

* revert gemma modifications

* add custom language modeling

* use Processor

* add language modeling file to init

* try thin wrapper around generate

* Update

* update mask

* breakpoints galore

* remove conflict

* switch to left-padding

* add incomplete model doc

* add paligemma global files

* batch rename paligemma

* make generation match outputs and captioning

* style

* style

* remove copied from + doc

* remove more copied from

* remove copy from projector

* minor fix

* update config and style

* add readme - dummy

* CORRECT image captioning

* moving to args

* add siglip proper + fix merging image + text features

* take update_causal_mask from upstream

* remove breakpoint

* leverage AutoModel

* fix input_ids slicing

* make siglip head conditional

* remove encoder_decoder value

* remove unneeded modeling file

* add commented 4d attention mask

* FIXED generation with 4D mask

* Update src/transformers/models/siglip/modeling_siglip.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fix left padding detection

* shuffle order of verifications

* fix missing labels for training

* fix

* vectorize merging of features, improve slicing

* improve testing before conversion

* handle merging in processor

* image token index depends on checkpoint

* add variants, save processor too

* save processors, base tokenizer off spm file

* expand model embeddings due to additional image token

* pass image processing args

* add convert rgb to siglip processor

* add \n token separately

* fix tokenizer and prompts

* fix docstrings

* change to camel

* fix casing

* debug pos_ids and sdpa

* pass and use cache_position

* add flag for newline tokenization

* Update src/transformers/models/paligemma/processing_paligemma.py

Co-authored-by: Merve Noyan <merveenoyan@gmail.com>

* simplify conversion script

* add copied from

* add precision to conversion script

* Update src/transformers/models/paligemma/modeling_paligemma.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* clean up

* Shift attention mask from `1:`

After discussion with @molbap

* add docs, fix quality

* quality, tied weights inheritance, and logits/label alignment

* fix more tests

* pass attn_implementation to language model correctly

* add SiglipVisionTransformer to no split modules

* skip paligemma test for sdpa dispatch to flash

* skip incompatible tests

* quality

* [broken archive maps]

* Apply suggestions

- remove archive lists
- style
- take shape of inputs_embeds for batch

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/utils/dummy_pt_objects.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* simplify conversion script

* add suggestions

* add suggestions

* add copied from

* fix

* move labels out

* revert

* fix

* remove placeholder labels if None

* use cache_position

* fix quality + docstrings

* fix quality

* fix paligemma 4d gemma mask incompatibility

* fix config docstring

* fix query and attn_mask dtype

---------

Co-authored-by: ArthurZucker <arthur.zucker@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Merve Noyan <merveenoyan@gmail.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2024-05-14 22:07:15 +02:00
c96aca3a8d Added the necessay import of module (#30804) 2024-05-14 18:45:06 +01:00
ccdabc5642 Add JetMoE model (#30005)
* init jetmoe code

* update archive maps

* remove flax import

* fix import error

* update README

* ruff fix

* update readme

* fix

* update config

* fix issue

* merge files

* fix model bug

* fix test

* auto fix

* model size

* add comments

* fix form

* add flash attention support

* fix attention head number

* fix init

* fix support list

* sort auto mapping

* fix test

* fix docs

* update test

* fix test

* fix test

* change variable name

* fix config

* fix init

* update format

* clean code

* fix config

* fix config

* change default config

* update config

* fix issues

* update formate

* update config argument

* update format

* Update src/transformers/models/jetmoe/modeling_jetmoe.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/jetmoe/modeling_jetmoe.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* change to mixtral aux loss

* change to cache_position

* debug

* fix bugs

* debug

* fix format

* fix format

* fix copy

* fix format

* fix format

* fix sort

* fix sort

* fix sort

* add copy comment

* add copy from

* remove debug code

* revert readme update

* add copy

* debug

* remove debug code

* fix flash attention

* add comments

* clean code

* clean format

* fix format

* fix format

* Update src/transformers/models/jetmoe/modeling_jetmoe.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update src/transformers/models/jetmoe/modeling_jetmoe.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update src/transformers/models/jetmoe/modeling_jetmoe.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update src/transformers/models/jetmoe/modeling_jetmoe.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update src/transformers/models/jetmoe/modeling_jetmoe.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update src/transformers/models/jetmoe/modeling_jetmoe.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* change variable name

* add copied from

* fix variable name

* remove deprecated functinos

* sync to llama implementation

* fix format

* fix copy

* fix format

* update format

* remove repr

* add comment for moe weight

* fix copy

* Update src/transformers/models/jetmoe/configuration_jetmoe.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/jetmoe/modeling_jetmoe.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/jetmoe/modeling_jetmoe.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/jetmoe/modeling_jetmoe.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/jetmoe/modeling_jetmoe.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/jetmoe/modeling_jetmoe.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/jetmoe/modeling_jetmoe.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/jetmoe/modeling_jetmoe.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/jetmoe/modeling_jetmoe.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/jetmoe/modeling_jetmoe.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/jetmoe/modeling_jetmoe.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/jetmoe/modeling_jetmoe.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* add comments and reformat config

* fix format

* fix format

* fix format

* update test

* update doc string in config

* Update src/transformers/models/jetmoe/modeling_jetmoe.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* update config doc

* update attention cache

* fix format

* fix copy

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2024-05-14 16:32:01 +02:00
d84f34ad77 [T5] Adding model_parallel = False to T5ForTokenClassification and MT5ForTokenClassification (#30763)
* Adding model_parallel = False

* Revert "Adding model_parallel = False"

This reverts commit ba1d99976acb598824ce3347dbe7d848daa21e79.

* Trainer: circumvent error for model  in which is_parallelizable is True but does not have model_parallel attribute
2024-05-14 14:39:25 +01:00
9ef3884046 Deprecate TF weight conversion since we have full Safetensors support now (#30786) 2024-05-14 13:48:17 +01:00
d8f8a9cd61 CI: more models wo cache support (#30780) 2024-05-14 10:43:03 +01:00
5ad960f1f4 Add Watermarking LogitsProcessor and WatermarkDetector (#29676)
* add watermarking processor

* remove the other hashing (context width=1 always)

* make style

* Update src/transformers/generation/logits_process.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/generation/logits_process.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/generation/logits_process.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/generation/configuration_utils.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* update watermarking process

* add detector

* update tests to use detector

* fix failing tests

* rename `input_seq`

* make style

* doc for processor

* minor fixes

* docs

* make quality

* Update src/transformers/generation/configuration_utils.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/generation/logits_process.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/generation/watermarking.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/generation/watermarking.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/generation/watermarking.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* add PR suggestions

* let's use lru_cache's default max size (128)

* import processor if torch available

* maybe like this

* lets move the config to torch independet file

* add docs

* tiny docs fix to make the test happy

* Update src/transformers/generation/configuration_utils.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/generation/watermarking.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* PR suggestions

* add docs

* fix test

* fix docs

* address pr comments

* style

* Revert "style"

This reverts commit 7f33cc34ff08b414f8e7f90060889877606b43b2.

* correct style

* make doctest green

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2024-05-14 13:31:39 +05:00
65ea1904ff PEFT: Access active_adapters as a property in Trainer (#30790)
Access active_adapters as a property
2024-05-14 09:31:18 +01:00
c02d302e6b Fix cache type in Idefics2 (#30729)
standardize cache in idefics2
2024-05-14 13:30:53 +05:00
449894d2e5 Fix OWLv2 Doc (#30794)
fix: owlv2 doc
2024-05-14 08:36:11 +02:00
37bba2a32d CI: update to ROCm 6.0.2 and test MI300 (#30266)
* update to ROCm 6.0.2 and test MI300

* add callers for mi300

* update dockerfile

* fix trainer tests

* remove apex

* style

* Update tests/trainer/test_trainer_seq2seq.py

* Update tests/trainer/test_trainer_seq2seq.py

* Update tests/trainer/test_trainer_seq2seq.py

* Update tests/trainer/test_trainer_seq2seq.py

* update to torch 2.3

* add workflow dispatch target

* we may need branches: mi300-ci after all

* nit

* fix docker build

* nit

* add check runner

* remove docker-gpu

* fix issues

* fix

---------

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-05-13 18:14:36 +02:00
539ed75d50 skip low_cpu_mem_usage tests (#30782) 2024-05-13 18:00:43 +02:00
0f8fefd481 Deprecate models script (#30184)
* Add utility for finding candidate models for deprecation

* Update model init

* Make into configurable script

* Fix path

* Add sorting of base object alphabetically

* Tidy

* Refactor __init__ alpha ordering

* Update script with logging

* fix import

* Fix logger

* Fix logger

* Get config file before moving files

* Take models from CLI

* Split models into lines to make easier to feed to deprecate_models script

* Update

* Use posix path

* Print instead

* Add example in module docstring

* Fix up

* Add clarifying comments; add models to DEPRECATE_MODELS

* Address PR comments

* Don't update relative paths on the same level
2024-05-13 16:30:55 +01:00
82c1625ec3 Save other CI jobs' result (torch/tf pipeline, example, deepspeed etc) (#30699)
* update

* update

* update

* update

* update

* update

* update

* update

* Update utils/notification_service.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-05-13 17:27:44 +02:00
2e27291ce4 Generate: assistant should be greedy in assisted decoding (#30778)
* assistant should be greedy

* better comment

* Update src/transformers/generation/candidate_generator.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-05-13 16:08:45 +01:00
94306352f4 Port IDEFICS to tensorflow (#26870)
* Initial commit

* Just a copy of modeling_idefics.py that will be ported to TF

* - Prepend TF to the name of all classes
- Convert pytorch ops to TF (not all operations are converted yet)

* Add TF imports

* Add autotranslated files

* Add TF classes to model_tf_auto.py

* Add the TF classes in model_doc

* include auto-translated code

* Adopted from auto-translated version

* Add a forgotten super().build

* Add test code for TF version.

* Fix indentation and load pytorch weights for now

* Some fixes. Many tests are still failing but some are passing now.

- I have added TODO's for some of the hacks I made to unblock me
  and I will address them soon
- I have the processing_idefics.py hacked in my view to support TF temporarily

* Add ALL_LAYERNORM_LAYERS to match pytorch

* Revert "Add ALL_LAYERNORM_LAYERS to match pytorch"

This reverts commit 7e0a35119b4d7a6284d04d8c543fba1b29e573c9 as it
is not needed in the tf implementation.

* Fix freeze_relevant_params()

* Some more fixes

* Fix test_attention_outputs

* Add tf stuff to processing_idefics.py

processing_idefics.py supports both pytorch and tf now.

test_processor_idefics.py for pytorch is passing, so i didn't break anything
but still some issues with tf. I also need to add tf tests in
test_processor_idefics.py.

* Pass return_tensors to image processing code and fix test

* Pass return_tensors to the image processor __init__

* Fix several test cases

- Make input to some of the forward pass of type `TFModelInputType`
- Decorate main layer forward pass with `@unpack_inputs`
- Decorate main layer with `@keras_serializable`
- Pass `inputs` to TFIdeficsModel

* Some more fixes forgotten in last commit

* Fix processing code and vision_tf.py

* Fix perceiver bug

* Import from

* Auto-add build() methods + style pass

* Fix build() errors due to `None` being passed as shape to some layers

* Change name in TFIdeficsForVisionText2Text to attribute in IdeficsForVisionText2Text

* Fix pytorch weights load for tf2

There were a lot of `name=` missing in weight initialization code.

* Attempt to fix CI

* Add back accidently removed line

* Remove torch-specific stuff from the TF test file

* make fix-copies, make style, remove autotranslated files

* Fixes to imports/docstrings

* Let's try the from future import in desperation

* Fix the core random_attention_mask fn to match the torch/flax behaviour

* Clean random_attention_mask up correctly

* Remove torch-only test

* Fix loss shape, couple of nits

* make style

* Don't test for OOB embeddings because IDEFICS uses those deliberately

* Fix loss computation to handle masking

* Fix test failures when flattening

* Fix some test failures

- Add cross attention gate which was missing and wasn't being passed arround
- Fix overwriting of image_attention_mask due to hack I had for dummy inputs

* Add a proper stateless scaled_dot_product_attention

* make style

* Adding missing attribute from the PyTorch version

* Small cleanups to decoupledlinearlayer in case that helps

* Pass epsilon to LayerNormalization

* Attemp to fix pytorch weight cross-loading for TFIdeficsEmbedding

* Fix a bug in TFIdeficsGatedCrossAttentionLayer

* Patching up build() methods

* Constant self.inv_freq

* Constant self.inv_freq

* First working version

The TF implementation works now, there was a bug in the TFIdeficsDecoupledLinear
where the weights were mis-intialized (in_features,out_features)
when it should be: (out_features, in_features)

I have tested this so far with tiny-random and idefics-9b-instruct
and gives correct output.

I also dumped the final outputs for both pytorch and TF
and they are identical.

* Fix some test failures

* remove print statement

* Fix return_tensors

* Fix CI test failure check_code_quality

* Attempt to fix CI failures by running `make fixup`

The hardcoded IDs in test_modeling_tf_idefics.py are for the integration
test and makes that file unreadable and should probably be moved to a seperate file.

* Attempt to fix tests_pr_documentation_tests

* Fix a test failure in test_image_processing_idefics.py

* Fix test test_pt_tf_model_equivalence

* Fix a few failures

* Tiny fix

* Some minor fixes

* Remove a duplicate test

* Override a few test failures for IDEFICS

- `test_keras_save_load` is passing now
- `test_compile_tf_model` is still failing

* Fix processing_idefics.py after rebase

* Guard import keras with is_tf_available

* fix check code quality

* fix check code quality

* Minor fixes

* Skip test_save_load temporarily

This test passed on my local box but fails on the CI, skipping
for now to see if there are other remaining failures on the CI.

* Run `ruff format tests src utils`

* Fix last failing test, `test_compile_tf_model`

* Add fixes for vision_tf.py

I forgot to add this file in last commit.

* Minor fixes

* Replace "<<<" with "<<" for doc tests

IDEFICS-9B is too big for doctest runner, so don't run it there

* Make code more readable

* Fix bug after code review

I added a layer_norm_eps to IdeficsConfig but I don't even need it
since the vision config has a layer_norm_eps.

* Fix after code review

Use original code tokenizer.convert_tokens_to_ids

* Keep PyTorch as the default return_tensors

* Fixes to modeling_tf after code review

* Fixes from code review

- Remove all references of `TF_IDEFICS_PRETRAINED_MODEL_ARCHIVE_LIST`
- Pass 1e-5 to LayerNormalization in perceiver

* Run ruff

* Undo a change

* Refactor processing code after Matt's suggestion

* Remove TODO's that aren't needed anymore

* For pytorch, Use original pytorch processing code from main

Since this PR is a TF port it shouldn't make any modifications
to pytorch IDEFICS code. This changes undo's the pytorch processing
modifications I made and uses original code from main.

* Update tests/models/idefics/test_modeling_idefics.py

* Update tests/models/idefics/test_modeling_tf_idefics.py

* Add missing imports for is_pt_tf_cross_test

* [DO NOT MERGE]: This is a commit for debugging and will be reverted

The cross test `test_pt_tf_model_equivalence` passes locally but
fails when running on the CI. This commit is to help debug that
and will be reverted.

* Revert "[DO NOT MERGE]: This is a commit for debugging and will be reverted"

This reverts commit 8f0d709ec5bd46685fb0b4259d914ffee794875b.

* [DO NOT MERGE]: This commit is for debugging a CI failure and will be reverted

* [DO NOT MERGE]: This commit is for debugging a CI failure and will be reverted

* Revert "[DO NOT MERGE]: This commit is for debugging a CI failure and will be reverted"

This reverts commit 998cc38b8c3d313bf5e5eb55a7f5b7b881897b89.

* Revert "[DO NOT MERGE]: This commit is for debugging a CI failure and will be reverted"

This reverts commit 1c695ac4219c4ae4d39b330b01744dc27deb7dd4.

* Don't skip test_save_load

IIRC test_save_load was also failing on the CI but not on my local
box, it might be easier to debug that on the CI first than the cross tests

* Debugging commit, will be reverted

* Revert "Debugging commit, will be reverted"

This reverts commit 8eafc8e41e20c4e95a3a90834f06a6e9f445e2d5.

* Override `test_save_load` and push model to save

Maybe this will help me repro this weird bug

* pass my repo_id

* add endpoint

* Pass a temp (write) token just for this CI

* Undo last few commits, still pushing to hub for model debugging

The issue seems to be with save_pretrained(),  when I looked at the model saved
from the CI test failure it is basically empty and has no weights.
`self.save_weights(..)` seems to be failing in save_pretrained but needs
more debugging

* Add logging to modeling tf utils, will be reverted just for debugging

* Debugging, will revert

* Revert "Debugging, will revert"

This reverts commit 9d0d3075fb7c82d8cde3a5c76bc8f3876c5c55d3.

* Revert "Add logging to modeling tf utils, will be reverted just for debugging"

This reverts commit 774b6b7b1c17b3ce5d7634ade768f2f686cee617.

* Remove `test_save_load`

The CI failures are gone after my latest rebase, no idea why
but I was still saving the model to my hub on HF and the tf_model.h5
file now has everything.

* Run make fix-copies

* Run ruff format tests src utils

* Debugging commit, will be reverted

* Run ruff, also trigger CI run

* Run ruff again

* Undo debugging commit

---------

Co-authored-by: Matt <rocketknight1@gmail.com>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2024-05-13 15:59:46 +01:00
de2f722172 Generate: remove near-duplicate sample/greedy copy (#30773) 2024-05-13 15:48:20 +01:00
ce87dca1d7 [Object detection pipeline] Lower threshold (#30710)
* Lower threshold

* Address comment
2024-05-13 16:47:58 +02:00
69d9bca55a enable Pipeline to get device from model (#30534)
* check model.device

* fix

* style fix

* move model device

* remove print

* add comment

* fix

* add unit test

* optimize

* change test names and add more cases

* Update tests/pipelines/test_pipelines_common.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-05-13 15:00:39 +01:00
f4dc26d466 Qwen: incorrect setup flag (#30776)
qwen does not support the new cache classes
2024-05-13 14:12:58 +01:00
f823fec53e Generation / FIX: Fix multi-device generation (#30746)
* attempt to fix multi-device generation

* fix

* final fix

* final fix

* fix

* fix

* fix

* fix

* add joao suggestion

* fix
2024-05-13 14:35:45 +02:00
a0779b9e19 Llama: fix custom 4D masks, v2 (#30348)
* 4d mask fixes

* Update custom 4D mask logic

* test moved to mixin

* extra tests 4d mask

* upd 4d mask and StaticCache handling

* added Mask4DTestHard to mistral tests

* post-rebase fixes

* test fixes for StaticCache

* make fix-copies

* upd 1 after #30476

* fix common tests

* rm elif attention_mask.dim() == 4:

* tests combined, fixed, mixtral supported

* bigbird style chg reverted

* rm if attention_mask.dim() == 2

* modeling_llama formatting chg

---------

Co-authored-by: Joao Gante <joao@huggingface.co>
2024-05-13 13:46:06 +02:00
453893ed15 [GroundingDino] Adding ms_deform_attn kernels (#30768)
* Adding ms_deform_attn kernels to GroundingDino

* Pointing to deformable detr kernels
2024-05-13 12:34:45 +01:00
e52741f601 Support for Falcon2-11B (#30771)
* remove unrelated changes

* remove unrelated changes on phi and stable LM

* add: Test for Falcon 10B

* fix: formatting

* fix: loading the falcon 10B in 8 bit precision using bitsanbytes.

* fix: device placement

* fix: broken tests.

* fix: backwards compatibility for falcon 1B architecture.

* chore: updated test.

* chore: test_modeling_falcon.py to use the 11B model.

* chore: minor edit

* chore: formating.

---------

Co-authored-by: Pablo Montalvo <39954772+molbap@users.noreply.github.com>
Co-authored-by: ArthurZucker <arthur.zucker@gmail.com>
2024-05-13 13:32:43 +02:00
f63d822242 Blip dynamic input resolution (#30722)
* blip with interpolated pos encoding

* feat: Add interpolate_pos_encoding option to other models from `BLIP` family.

* include check for textual generated content in tests
2024-05-13 12:20:16 +01:00
a4e530e3c8 Workflow: Replace actions/post-slack with centrally defined workflow (#30737)
* Remove commit details

* remove old workflow
2024-05-13 12:08:48 +02:00
de6e0db184 [awq] replace scale when we have GELU (#30074)
* fix awq test

* style

* add log

* new fix

* style

* only modifying impacted model in the end

* rename function
2024-05-13 11:41:03 +02:00
e0c3cee170 hqq - fix weight check in check_quantized_param (#30748)
* hqq - fix weight check in check_quantized_param

* ruff format
2024-05-10 19:29:35 +02:00
8ce4fefc52 [docs] Update link in es/pipeline_webserver.md (#30745)
* update link

* run make style
2024-05-10 09:29:26 -07:00
2d1602aef7 PEFT / Trainer: Make use of model.active_adapters() instead of deprecated model.active_adapter whenever possible (#30738)
* Update trainer.py

* Update src/transformers/trainer.py

* Update src/transformers/trainer.py

* Update src/transformers/trainer.py

* style

* Update src/transformers/trainer.py

* Update src/transformers/trainer.py
2024-05-10 15:16:44 +02:00
1c52cb7b3b mlp_only_layers is more flexible than decoder_sparse_step (#30552)
* force back to commit ba40a21 and fix workflow errors

* match the review suggestions

* fix ci errors

* fix CI

* fix ci, format code

* fix ci, ruff format

* fix ci, ruff format again

* Update src/transformers/models/qwen2_moe/configuration_qwen2_moe.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/qwen2_moe/configuration_qwen2_moe.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/qwen2_moe/configuration_qwen2_moe.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* solve this warning: Default Argument Value is mutable

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-05-10 14:00:46 +02:00
73fcfb2861 Update llama3.md, fix typo (#30739)
Update llama3.md

fix typo again
2024-05-10 12:40:57 +01:00
47735f5f0f [docs] Update es/pipeline_tutorial.md (#30684)
* copy en/ contect to es/

* translate first section

* translate the doc

* fix typos

* run make style
2024-05-09 16:42:01 -07:00
c99d88e520 Update CodeLlama references (#30218)
* Update CodeLlama references

* Update slow_documentation_tests.txt

* Update slow_documentation_tests.txt
2024-05-09 22:57:52 +02:00
7130a22db9 Generate: consistently handle special tokens as tensors (#30624)
* tmp commit

* [test_all] mvp

* missing not

* [test_all] final test fixes

* fix musicgen_melody and rag

* [test_all] empty commit

* PR comments

* Update src/transformers/generation/utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-05-09 18:01:57 +01:00
5413b8986d KV cache is no longer a model attribute (#30730)
kv_cache is no longer a model attribute
2024-05-09 17:59:29 +01:00
218f44135f Fix image post-processing for OWLv2 (#30686)
* feat: add note about owlv2

* fix: post processing coordinates

* remove: workaround document

* fix: extra quotes

* update: owlv2 docstrings

* fix: copies check

* feat: add unit test for resize

* Update tests/models/owlv2/test_image_processor_owlv2.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-05-09 17:02:03 +01:00
df53c6e5d9 Generate: add min_p sampling (#30639)
* min_p

* more relaxed test to avoid numerical issues

* Update src/transformers/generation/logits_process.py

Co-authored-by: menhguin <minh1228@gmail.com>

* Update src/transformers/generation/configuration_utils.py

Co-authored-by: menhguin <minh1228@gmail.com>

* docstring clarifications

* PR comments

* Update tests/generation/test_logits_process.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* make fixup

---------

Co-authored-by: menhguin <minh1228@gmail.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-05-09 14:36:53 +01:00
297b732bdf Removal of deprecated maps (#30576)
* [test_all] Remove all imports

Remove remaining ARCHIVE MAPS

Remove remaining PRETRAINED maps

* review comments

* [test_all] empty commit to trigger tests
2024-05-09 14:15:56 +02:00
8c5b3c19cf Enable dynamic resolution for vivit (#30630)
* feat: enable dynamic resolution for vivit

* fix: formatting

* remove: print statement for testing

* Update src/transformers/models/vivit/modeling_vivit.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/vivit/modeling_vivit.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/vivit/modeling_vivit.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/vivit/test_modeling_vivit.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/vivit/test_modeling_vivit.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/vivit/modeling_vivit.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/vivit/test_modeling_vivit.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/vivit/modeling_vivit.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/vivit/modeling_vivit.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/vivit/modeling_vivit.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/vivit/modeling_vivit.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* fix: style check

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-05-09 11:23:39 +01:00
60293bd210 Add dynamic resolution input/interpolate position embedding to SigLIP (#30719)
* Add interpolate positional encoding to siglip

* Change # of patches for siglip interpolation test

* fix formatting

* Apply nit suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-05-09 11:10:38 +01:00
f26e407370 Cache: models return input cache type (#30716) 2024-05-08 18:26:34 +01:00
71c1985069 Immutability for data collators (#30603)
* immutability fix for seq2seq as well as immutability tests for the collators

* ensure we don't act on none labels and formatting

* remove tf/pt in respective tests as they are not required

* more type error fixes tf/np

* remove todo

* apply suggestions from code review

* formatting / style
2024-05-08 17:54:49 +01:00
5962d62bac Update object detection guide (#30683)
* Object detection guide

* Minor update

* Minor updates, links

* Fix typo

* Wording, add albu space

* Add missing part

* Update docs/source/en/tasks/object_detection.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/tasks/object_detection.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/tasks/object_detection.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Fix device, add imports for inference

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2024-05-08 15:16:14 +01:00
e7a5f45ed1 Add installation of examples requirements in CI (#30708)
* Add installation of examples requirements in CI

* Update .circleci/create_circleci_config.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-05-08 14:56:42 +01:00
467164ea0a Llava: remove dummy labels (#30706)
remove labels from llavas
2024-05-08 18:35:49 +05:00
1872bde7fc [BitsandBytes] Verify if GPU is available (#30533)
Change order
2024-05-08 12:42:58 +02:00
998dbe068b Add examples for detection models finetuning (#30422)
* Training script for object detection

* Evaluation script for object detection

* Training script for object detection with eval loop outside trainer

* Trainer DETR finetuning

* No trainer DETR finetuning

* Eval script

* Refine object detection example with trainer

* Remove commented code and enable telemetry

* No trainer example

* Add requirements for object detection examples

* Add test for trainer example

* Readme draft

* Fix uploading to HUB

* Readme improvements

* Update eval script

* Adding tests for object-detection examples

* Add object-detection example

* Add object-detection resources to docs

* Update README with custom dataset instructions

* Update year

* Replace valid with validation

* Update instructions for custom dataset

* Remove eval script

* Remove use_auth_token

* Add copied from and telemetry

* Fixup

* Update readme

* Fix id2label

* Fix links in docs

* Update examples/pytorch/object-detection/run_object_detection.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update examples/pytorch/object-detection/run_object_detection.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Move description to the top

* Fix Trainer example

* Update no trainer example

* Update albumentations version

---------

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2024-05-08 11:42:07 +01:00
508c0bfe55 Patch CLIP image preprocessor (#30698)
* patch clip preprocessor

* Update image_processing_clip.py

* Update src/transformers/models/clip/image_processing_clip.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-05-08 09:27:31 +01:00
5b7a225f25 Pin deepspeed (#30701)
pin ds
2024-05-07 13:45:24 -04:00
cf7bed9832 Add safetensors to model not found error msg for default use_safetensors value (#30602)
* add safetensors to model not found error for default use_safetensors=None case

* format code w/ ruff

* fix assert true typo
2024-05-07 17:55:27 +01:00
884e3b1c53 Rename artifact name prev_ci_results to ci_results (#30697)
* rename

* update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-05-07 16:59:16 +02:00
05ec950c24 Update workflow_id in utils/get_previous_daily_ci.py (#30695)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-05-07 16:58:50 +02:00
4208c428f6 Separate tokenizer tests (#30675)
* nit

* better filter

* pipeline tests should only be models/xxx not anything else

* nit to better see filtering of the files that are passed to test torch

* oups
2024-05-07 13:56:56 +02:00
4a17200891 Bump tqdm from 4.48.2 to 4.66.3 in /examples/research_projects/lxmert (#30644)
Bumps [tqdm](https://github.com/tqdm/tqdm) from 4.48.2 to 4.66.3.
- [Release notes](https://github.com/tqdm/tqdm/releases)
- [Commits](https://github.com/tqdm/tqdm/compare/v4.48.2...v4.66.3)

---
updated-dependencies:
- dependency-name: tqdm
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-05-07 12:45:29 +01:00
0ba15cedbc Reboot Agents (#30387)
* Create CodeAgent and ReactAgent

* Fix formatting errors

* Update documentation for agents

* Add custom errors, improve logging

* Support variable usage in ReactAgent

* add messages

* Add message passing format

* Create React Code Agent

* Update

* Refactoring

* Fix errors

* Improve python interpreter

* Only non-tensor inputs should be sent to device

* Calculator tool slight refactor

* Improve docstrings

* Refactor

* Fix tests

* Fix more tests

* Fix even more tests

* Fix tests by replacing output and input types

* Fix operand type issue

* two small fixes

* EM TTS

* Fix agent running type errors

* Change text to speech tests to allow changed outputs

* Update doc with new agent types

* Improve code interpreter

* If max iterations reached, provide a real answer instead of an error

* Add edge case in interpreter

* Add safe imports to the interpreter

* Interpreter tweaks: tuples and listcomp

* Make style

* Make quality

* Add dictcomp to interpreter

* Rename ReactJSONAgent to ReactJsonAgent

* Misc changes

* ToolCollection

* Rename agent's logger to self.logger

* Add while loops to interpreter

* Update doc with new tools. still need to mention collections

* Add collections to the doc

* Small fixes on logs and interpretor

* Fix toolbox return type

* Docs + fixup

* Skip doctests

* Correct prompts with improved examples and formatting

* Update prompt

* Remove outdated docs

* Change agent to accept Toolbox object for tools

* Remove calculator tool

* Propagate removal of calculator in doc

* Fix 2 failing workflows

* Simplify additional argument passing

* AgentType audio

* Minor changes: function name, types

* Remove calculator tests

* Fix test

* Fix torch requirement

* Fix final answer tests

* Style fixes

* Fix tests

* Update docstrings with calculator removal

* Small type hint fixes

* Update tests/agents/test_translation.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update tests/agents/test_python_interpreter.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/agents/default_tools.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/agents/tools.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update tests/agents/test_agents.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/bert/configuration_bert.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/agents/tools.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/agents/speech_to_text.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update tests/agents/test_speech_to_text.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update tests/agents/test_tools_common.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* pygments

* Answer comments

* Cleaning up

* Simplifying init for all agents

* Improving prompts and making code nicer

* Style fixes

* Add multiple comparator test in interpreter

* Style fixes

* Improve BERT example in documentation

* Add examples to doc

* Fix python interpreter quality

* Logging improvements

* Change test flag to agents

* Quality fix

* Add example for HfEngine

* Improve conversation example for HfEngine

* typo fix

* Verify doc

* Update docs/source/en/agents.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/agents/agents.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/agents/prompts.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/agents/python_interpreter.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update docs/source/en/agents.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Fix style issues

* local s2t tool

---------

Co-authored-by: Cyril Kondratenko <kkn1993@gmail.com>
Co-authored-by: Lysandre <lysandre@huggingface.co>
Co-authored-by: Lysandre <lysandre.debut@reseau.eseo.fr>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-05-07 12:59:49 +02:00
3733391c53 Bump tqdm from 4.48.2 to 4.66.3 in /examples/research_projects/visual_bert (#30645)
Bump tqdm in /examples/research_projects/visual_bert

Bumps [tqdm](https://github.com/tqdm/tqdm) from 4.48.2 to 4.66.3.
- [Release notes](https://github.com/tqdm/tqdm/releases)
- [Commits](https://github.com/tqdm/tqdm/compare/v4.48.2...v4.66.3)

---
updated-dependencies:
- dependency-name: tqdm
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-05-07 11:57:30 +01:00
4051d362cb Bump tqdm from 4.63.0 to 4.66.3 in /examples/research_projects/decision_transformer (#30646)
Bump tqdm in /examples/research_projects/decision_transformer

Bumps [tqdm](https://github.com/tqdm/tqdm) from 4.63.0 to 4.66.3.
- [Release notes](https://github.com/tqdm/tqdm/releases)
- [Commits](https://github.com/tqdm/tqdm/compare/v4.63.0...v4.66.3)

---
updated-dependencies:
- dependency-name: tqdm
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-05-07 11:57:10 +01:00
e5f71ecaae Updated docs of forward in Idefics2ForConditionalGeneration with correct ignore_index value (#30678)
updated docs of `forward` in `Idefics2ForConditionalGeneration` with correct `ignore_index` value
2024-05-07 10:23:52 +01:00
9c8979e35f Word-level timestamps broken for short-form audio (#30325)
* force chunk_length_s in AutomaticSpeechRecognitionPipeline

* compute num_frames even when stride is None

* add slow tests

* fix test

* Update src/transformers/pipelines/automatic_speech_recognition.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/pipelines/test_pipelines_automatic_speech_recognition.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* add input validation

* fixup

* small fix

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-05-07 10:17:27 +01:00
4fda78c3f8 Fix cache_position initialisation for generation with use_cache=False (#30485)
* Fix cache_position init for generation

* Update src/transformers/generation/utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Fix cache position update

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-05-07 11:13:11 +02:00
54a2361a29 Adding _tie_weights() to prediction heads to support low_cpu_mem_usage=True (#29024)
* Adding _tie_weights() to prediction heads to support low_cpu_mem_usage=True

* Testing for the non-safe-tensors case, since the default is safe-tensors already

* Running fixup/fix-copies

* Adding accelerate annotations to tests
2024-05-07 11:12:21 +02:00
ce47582d81 Bump werkzeug from 3.0.1 to 3.0.3 in /examples/research_projects/decision_transformer (#30679)
Bump werkzeug in /examples/research_projects/decision_transformer

Bumps [werkzeug](https://github.com/pallets/werkzeug) from 3.0.1 to 3.0.3.
- [Release notes](https://github.com/pallets/werkzeug/releases)
- [Changelog](https://github.com/pallets/werkzeug/blob/main/CHANGES.rst)
- [Commits](https://github.com/pallets/werkzeug/compare/3.0.1...3.0.3)

---
updated-dependencies:
- dependency-name: werkzeug
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-05-07 09:39:35 +01:00
a898fb95bd Bump jinja2 from 3.1.3 to 3.1.4 in /examples/research_projects/decision_transformer (#30680)
Bump jinja2 in /examples/research_projects/decision_transformer

Bumps [jinja2](https://github.com/pallets/jinja) from 3.1.3 to 3.1.4.
- [Release notes](https://github.com/pallets/jinja/releases)
- [Changelog](https://github.com/pallets/jinja/blob/main/CHANGES.rst)
- [Commits](https://github.com/pallets/jinja/compare/3.1.3...3.1.4)

---
updated-dependencies:
- dependency-name: jinja2
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-05-07 09:28:56 +01:00
4980d62af3 top-k instead of top-p in MixtralConfig docstring (#30687)
top-k instead of top-p in docstring
2024-05-07 10:19:24 +02:00
835de4c833 Respect resume_download deprecation (#30620)
* Deprecate resume_download

* remove default resume_download value

---------

Co-authored-by: Lysandre Debut <hi@lysand.re>
2024-05-06 18:01:15 +02:00
277db238b7 Fix typo: llama3.md (#30653)
Update llama3.md

fix typo
2024-05-06 15:54:39 +02:00
df475bf8e6 Trainer - add cache clearing and the option for batched eval metrics computation (#28769)
* Added cache clearing for GPU efficiency.

* Added cache clearing for GPU efficiency.

* Added batch_eval_metrics capability

* Ran make fixup

* Fixed bug

* Fixed whitespace issue

* Fixed outdated condition

* Updated docstrings with instructions for batch_eval_metrics. Updated end of dataloader logic

* Added first version of batch_eval_metrics Trainer test

* Fixed batch_eval_metrics Trainer tests for both eval and predict

* Fixed batch_eval_metrics behavior for new Trainer variables

* Fixed batch_eval_metrics Trainer tests

* Ran fixup
2024-05-06 08:23:40 -04:00
e076953079 Trainer._load_from_checkpoint - support loading multiple Peft adapters (#30505)
* Trainer: load checkpoint model with multiple adapters

* Trainer._load_from_checkpoint support multiple active adapters

* PeftModel.set_adapter does not support multiple adapters yet

* Trainer._load_from_checkpoint test multiple adapters

---------

Co-authored-by: Clara Luise Pohland <clara-luise.pohland@telekom.de>
2024-05-06 08:22:52 -04:00
aa64f086a2 Fix llava next tie_word_embeddings config (#30640)
* fix llava next embedding

* add docstring

* Update src/transformers/models/llava_next/configuration_llava_next.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

---------

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2024-05-06 14:01:26 +02:00
9c772ac888 Quantization / HQQ: Fix HQQ tests on our runner (#30668)
Update test_hqq.py
2024-05-06 11:33:52 +02:00
a45c514899 Hotfix-change-ci (#30669)
* dmmy change

* fiux

* revert change
2024-05-06 11:26:04 +02:00
09edd77f64 Check if the current compiled version of pytorch supports MPS (#30664) 2024-05-06 10:32:19 +02:00
307f632bb2 [CI update] Try to use dockers and no cache (#29202)
* change cis

* nits

* update

* minor updates

* [push-ci-image]

* nit [push-ci-image]

* nitsssss

* [build-ci-image]

* [push-ci-image]

* [push-ci-image]

* both

* [push-ci-image]

* this?

* [push-ci-image]

* pypi-kenlm needs g++

* [push-ci-image]

* nit

* more nits [push-ci-image]

* nits [push-ci-image]

* [push-ci-image]

* [push-ci-image]

* [push-ci-image]

* add vision

* [push-ci-image]

* [push-ci-image]

* add new dummy file but will need to update them [push-ci-image]

* [push-ci-image]

* show package size as well

* [push-ci-image]

* potentially ignore failures

* workflow updates

* nits [push-ci-image]

* [push-ci-image]

* fix consistency

* clean nciida triton

* also show big packages [push-ci-image]

* nit

* update

* another one

* line escape?

* add accelerate [push-ci-image]

* updates [push-ci-image]

* nits to run tests, no push-ci

* try to parse skip reason to make sure nothing is skipped that should no be skippped

* nit?

* always show skipped reasons

* nits

* better parsing of the test outputs

* action="store_true",

* failure on failed

* show matched

* debug

* update short summary with skipped, failed and errors

* nits

* nits

* coolu pdates

* remove docbuilder

* fix

* always run checks

* oups

* nits

* don't error out on library printing

* non zero exi codes

* no warning

* nit

* WAT?

* format nit

* [push-ci-image]

* fail if fail is needed

* [push-ci-image]

* sound file for torch light?

* [push-ci-image]

* order is important [push-ci-image]

* [push-ci-image] reduce even further

* [push-ci-image]

* use pytest rich !

* yes [push-ci-image]

* oupsy

* bring back the full traceback, but pytest rich should help

* nit

* [push-ci-image]

* re run

* nit

* [push-ci-image]

* [push-ci-image]

* [push-ci-image]

* empty push to trigger

* [push-ci-image]

* nit? [push-ci-image]

* empty

* try to install timm with no deps

* [push-ci-image]

* oups [push-ci-image]

* [push-ci-image]

* [push-ci-image] ?

* [push-ci-image] open ssh client for git checkout fast

* empty for torch light

* updates [push-ci-image]

* nit

* @v4 for checkout

* [push-ci-image]

* [push-ci-image]

* fix fetch tests with parallelism

* [push-ci-image]

* more parallelism

* nit

* more nits

* empty to re-trigger

* empty to re-trigger

* split by timing

* did not work with previous commit

* junit.xml

* no path?

* mmm this?

* junitxml format

* split by timing

* nit

* fix junit family

* now we can test if the xunit1 is compatible!

* this?

* fully list tests

* update

* update

* oups

* finally

* use classname

* remove working directory to make sure the path does not interfere

* okay no juni should have the correct path

* name split?

* sort by classname is what make most sense

* some testing

* naem

* oups

* test something fun

* autodetect

* 18?

* nit

* file size?

* uip

* 4 is best

* update to see versions

* better print

* [push-ci-image]

* [push-ci-image]

* please install the correct keras version

* [push-ci-image]

* [push-ci-image]

* [push-ci-image]

* [push-ci-image]

* [push-ci-image]

* uv is fucking me up

* [push-ci-image]

* [push-ci-image]

* [push-ci-image]

* nits

* [push-ci-image]

* [push-ci-image]

* install issues an pins

* tapas as well

* nits

* more paralellism

* short tb

* soundfile

* soundfile

* [push-ci-image]

* [push-ci-image]

* [push-ci-image]

* oups

* [push-ci-image]

* fix some things

* [push-ci-image]

* [push-ci-image]

* [push-ci-image]

* [push-ci-image]

* use torch-light for hub

* small git lfs for hub job

* [push-ci-image]

* [push-ci-image]

* [push-ci-image]

* [push-ci-image]

* fix tf tapas

* [push-ci-image]

* nits

* [push-ci-image]

* don't update the test

* [push-ci-image]

* [push-ci-image]

* [push-ci-image]

* no use them

* [push-ci-image]

* [push-ci-image]

* [push-ci-image]

* [push-ci-image]

* update tf proba

* [push-ci-image]

* [push-ci-image]

* woops

* [push-ci-image]

* [push-ci-image]

* [push-ci-image]

* [push-ci-image]

* [push-ci-image]

* [push-ci-image]

* test with built dockers

* [push-ci-image]

* skip annoying tests

* revert fix copy

* update test values

* update

* last skip and fixup

* nit

* ALL GOOOD

* quality

* Update tests/models/layoutlmv2/test_image_processing_layoutlmv2.py

* Update docker/quality.dockerfile

Co-authored-by: Lysandre Debut <hi@lysand.re>

* Update src/transformers/models/tapas/modeling_tf_tapas.py

Co-authored-by: Lysandre Debut <hi@lysand.re>

* Apply suggestions from code review

Co-authored-by: Lysandre Debut <hi@lysand.re>

* use torch-speed

* updates

* [push-ci-image]

* [push-ci-image]

* [push-ci-image]

* [push-ci-image]

* fuck ken-lm [push-ci-image]

* [push-ci-image]

* [push-ci-image]

---------

Co-authored-by: Lysandre Debut <hi@lysand.re>
2024-05-06 10:10:32 +02:00
91d155ea92 Avoid duplication in PR slow CI model list (#30634)
update

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-05-03 18:19:30 +02:00
deb7605a2a Prevent TextGenerationPipeline._sanitize_parameters from overriding previously provided parameters (#30362)
* Fixed TextGenerationPipeline._sanitize_parameters default params

* removed empty spaces

---------

Co-authored-by: Ng, Yen Ting <yen.ting.ng@intel.com>
2024-05-03 17:49:28 +02:00
d0c72c15c2 HQQ: PEFT support for HQQ (#30632)
Update quantizer_hqq.py
2024-05-03 16:01:15 +02:00
66f675eb65 Fix W&B run name (#30462)
* Remove comparison to output_dir

* Update docs for `run_name`

* Add warning
2024-05-03 12:04:15 +01:00
425e1a0426 add mlp bias for llama models (#30031)
* add bias

* fix quality
2024-05-03 11:02:17 +02:00
a0e77a1f6b Fix CI after #30410 (#30612)
* Fix CI after #30410

* [run-slow] blenderbot
2024-05-03 01:18:48 +05:00
59952994c4 Add HQQ quantization support (#29637)
* update HQQ transformers integration

* push import_utils.py

* add force_hooks check in modeling_utils.py

* fix | with Optional

* force bias as param

* check bias is Tensor

* force forward for multi-gpu

* review fixes pass

* remove torch grad()

* if any key in linear_tags fix

* add cpu/disk check

* isinstance return

* add multigpu test + refactor tests

* clean hqq_utils imports in hqq.py

* clean hqq_utils imports in quantizer_hqq.py

* delete hqq_utils.py

* Delete src/transformers/utils/hqq_utils.py

* ruff init

* remove torch.float16 from __init__ in test

* refactor test

* isinstance -> type in quantizer_hqq.py

* cpu/disk device_map check in quantizer_hqq.py

* remove type(module) nn.linear check in quantizer_hqq.py

* add BaseQuantizeConfig import inside HqqConfig init

* remove hqq import in hqq.py

* remove accelerate import from test_hqq.py

* quant config.py doc update

* add hqqconfig to main_classes doc

* make style

* __init__ fix

* ruff __init__

* skip_modules list

* hqqconfig format fix

* hqqconfig doc fix

* hqqconfig doc fix

* hqqconfig doc fix

* hqqconfig doc fix

* hqqconfig doc fix

* hqqconfig doc fix

* hqqconfig doc fix

* hqqconfig doc fix

* hqqconfig doc fix

* test_hqq.py remove mistral comment

* remove self.using_multi_gpu is False

* torch_dtype default val set and logger.info

* hqq.py isinstance fix

* remove torch=None

* torch_device test_hqq

* rename test_hqq

* MODEL_ID in test_hqq

* quantizer_hqq setattr fix

* quantizer_hqq typo fix

* imports quantizer_hqq.py

* isinstance quantizer_hqq

* hqq_layer.bias reformat quantizer_hqq

* Step 2 as comment in quantizer_hqq

* prepare_for_hqq_linear() comment

* keep_in_fp32_modules fix

* HqqHfQuantizer reformat

* quantization.md hqqconfig

* quantization.md model example reformat

* quantization.md # space

* quantization.md space   })

* quantization.md space   })

* quantization_config fix doc

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* axis value check in quantization_config

* format

* dynamic config explanation

* quant config method in quantization.md

* remove shard-level progress

* .cuda fix modeling_utils

* test_hqq fixes

* make fix-copies

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-05-02 17:51:49 +01:00
4c940934da Output None as attention when layer is skipped (#30597)
* Output `None` as attention when layer is skipped

* Add test for output_attentions
2024-05-02 17:25:19 +01:00
39359e5b5f Fix FX tracing issues for Llama (#30619) 2024-05-02 17:03:10 +02:00
9719202d37 Generate: fix SinkCache on Llama models (#30581) 2024-05-02 15:24:33 +01:00
66abe13951 Docs: add missing StoppingCriteria autodocs (#30617)
* add missing docstrings to docs

* Update src/transformers/generation/stopping_criteria.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-05-02 15:20:04 +01:00
aa55ff44a2 Docs: fix generate-related rendering issues (#30600)
* does this work?

* like this?

* fix the other generate links

* missing these
2024-05-02 14:42:25 +01:00
801894e08c phi3 chat_template does not support system role (#30606)
* phi3 chat_template does not support system role

* fix doc test error
2024-05-02 15:30:21 +02:00
f57f014936 Use contiguous() in clip checkpoint conversion script (#30613)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-05-02 13:59:40 +02:00
a65da83d75 fix:missing output_router_logits in SwitchTransformers (#30573)
* fix:missing `output_router_logits` in SwitchTransformers

* fix whitespace in blank line
2024-05-02 13:47:00 +02:00
4ad5adaf1d Fix copies for DBRX - neuron fix (#30610) 2024-05-02 11:00:26 +01:00
f95302584b 🚨 Update image_processing_vitmatte.py (#30566)
* Update image_processing_vitmatte.py

* add test

* [run-slow]vitmatte
2024-05-02 11:00:07 +01:00
12c5544dca Fix memory leak with CTC training script on Chinese languages (#30358)
* Fix memory leak with CTC training script on Chinese languages

* Fix lint
2024-05-02 09:33:36 +01:00
fbabd6746f Fix for Neuron (#30259) 2024-05-02 10:24:47 +02:00
5cf3e6bf05 Fix: failing CI after #30568 (#30599)
* failiing CI

* no let's keep it intil full deprecation in  v4.42
2024-05-02 12:15:17 +05:00
c681b58b06 Bump torch from 1.9.0+cpu to 1.13.1 in /examples/flax/vision (#21168)
Bumps [torch](https://github.com/pytorch/pytorch) from 1.9.0+cpu to 1.13.1.
- [Release notes](https://github.com/pytorch/pytorch/releases)
- [Changelog](https://github.com/pytorch/pytorch/blob/master/RELEASE.md)
- [Commits](https://github.com/pytorch/pytorch/commits/v1.13.1)

---
updated-dependencies:
- dependency-name: torch
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-05-01 20:14:57 +01:00
3a36597a5f Bump pillow from 10.0.1 to 10.2.0 in /examples/research_projects/decision_transformer (#28655)
Bump pillow in /examples/research_projects/decision_transformer

Bumps [pillow](https://github.com/python-pillow/Pillow) from 10.0.1 to 10.2.0.
- [Release notes](https://github.com/python-pillow/Pillow/releases)
- [Changelog](https://github.com/python-pillow/Pillow/blob/main/CHANGES.rst)
- [Commits](https://github.com/python-pillow/Pillow/compare/10.0.1...10.2.0)

---
updated-dependencies:
- dependency-name: pillow
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-05-01 19:58:34 +01:00
4f3c7af489 Bump torch from 1.9.0+cpu to 1.13.1 in /examples/research_projects/jax-projects/hybrid_clip (#21167)
Bump torch in /examples/research_projects/jax-projects/hybrid_clip

Bumps [torch](https://github.com/pytorch/pytorch) from 1.9.0+cpu to 1.13.1.
- [Release notes](https://github.com/pytorch/pytorch/releases)
- [Changelog](https://github.com/pytorch/pytorch/blob/master/RELEASE.md)
- [Commits](https://github.com/pytorch/pytorch/commits/v1.13.1)

---
updated-dependencies:
- dependency-name: torch
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-05-01 18:37:55 +01:00
6f465d45d9 Bump torch from 1.11.0 to 1.13.1 in /examples/research_projects/decision_transformer (#21171)
Bump torch in /examples/research_projects/decision_transformer

Bumps [torch](https://github.com/pytorch/pytorch) from 1.11.0 to 1.13.1.
- [Release notes](https://github.com/pytorch/pytorch/releases)
- [Changelog](https://github.com/pytorch/pytorch/blob/master/RELEASE.md)
- [Commits](https://github.com/pytorch/pytorch/compare/v1.11.0...v1.13.1)

---
updated-dependencies:
- dependency-name: torch
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-05-01 18:16:25 +01:00
5090ea3f68 Fix llava half precision and autocast issues (#29721)
* Ensure input_embeds and image_features are the same dtype in autocast

* Fix nans in half precision llava-next and fix autocasting behavior.

* Fix styling issues.

* fix randn newline instantiation

* fix broken slow llava test

* Fix llava next init.

* fix styling issues

* [run-slow]llava,llava_next

* fix styling issues
2024-05-01 17:49:44 +01:00
d57ffb487f Generate: remove deprecated public decoding functions and streamline logic 🧼 (#29956) 2024-05-01 17:38:44 +01:00
dc401d3a4e Improve object detection task guideline (#29967)
* Add improvements

* Address comment
2024-05-01 17:58:01 +02:00
d2feb54591 Fix image segmentation example - don't reopen image (#30481)
Fix image segmentation example - don't repoen image
2024-05-01 16:52:57 +01:00
6e0cba3cec Bump torch from 1.6.0 to 1.13.1 in /examples/research_projects/visual_bert (#21172)
Bump torch in /examples/research_projects/visual_bert

Bumps [torch](https://github.com/pytorch/pytorch) from 1.6.0 to 1.13.1.
- [Release notes](https://github.com/pytorch/pytorch/releases)
- [Changelog](https://github.com/pytorch/pytorch/blob/master/RELEASE.md)
- [Commits](https://github.com/pytorch/pytorch/compare/v1.6.0...v1.13.1)

---
updated-dependencies:
- dependency-name: torch
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-05-01 16:40:54 +01:00
ce66c0e989 Bump torch from 1.11.0 to 1.13.1 in /examples/research_projects/codeparrot (#21170)
Bump torch in /examples/research_projects/codeparrot

Bumps [torch](https://github.com/pytorch/pytorch) from 1.11.0 to 1.13.1.
- [Release notes](https://github.com/pytorch/pytorch/releases)
- [Changelog](https://github.com/pytorch/pytorch/blob/master/RELEASE.md)
- [Commits](https://github.com/pytorch/pytorch/compare/v1.11.0...v1.13.1)

---
updated-dependencies:
- dependency-name: torch
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-05-01 16:40:19 +01:00
7a29c577e8 Bump torch from 1.6.0 to 1.13.1 in /examples/research_projects/lxmert (#21174)
Bumps [torch](https://github.com/pytorch/pytorch) from 1.6.0 to 1.13.1.
- [Release notes](https://github.com/pytorch/pytorch/releases)
- [Changelog](https://github.com/pytorch/pytorch/blob/master/RELEASE.md)
- [Commits](https://github.com/pytorch/pytorch/compare/v1.6.0...v1.13.1)

---
updated-dependencies:
- dependency-name: torch
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-05-01 16:39:55 +01:00
b33f01fe6b Bump pyarrow from 1.0.1 to 15.0.0 in /examples/research_projects/lxmert (#30584)
Bumps [pyarrow](https://github.com/apache/arrow) from 1.0.1 to 15.0.0.
- [Commits](https://github.com/apache/arrow/compare/apache-arrow-1.0.1...go/v15.0.0)

---
updated-dependencies:
- dependency-name: pyarrow
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-05-01 16:38:07 +01:00
0ec3003ae9 Bump pyarrow from 1.0.1 to 15.0.0 in /examples/research_projects/visual_bert (#30583)
Bump pyarrow in /examples/research_projects/visual_bert

Bumps [pyarrow](https://github.com/apache/arrow) from 1.0.1 to 15.0.0.
- [Commits](https://github.com/apache/arrow/compare/apache-arrow-1.0.1...go/v15.0.0)

---
updated-dependencies:
- dependency-name: pyarrow
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-05-01 16:37:54 +01:00
aefbdfe8cf Bump pyarrow from 7.0.0 to 15.0.0 in /examples/research_projects/decision_transformer (#30582)
Bump pyarrow in /examples/research_projects/decision_transformer

Bumps [pyarrow](https://github.com/apache/arrow) from 7.0.0 to 15.0.0.
- [Commits](https://github.com/apache/arrow/compare/go/v7.0.0...go/v15.0.0)

---
updated-dependencies:
- dependency-name: pyarrow
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-05-01 16:37:40 +01:00
7164171212 Bump gitpython from 3.1.32 to 3.1.41 in /examples/research_projects/distillation (#30586)
Bump gitpython in /examples/research_projects/distillation

Bumps [gitpython](https://github.com/gitpython-developers/GitPython) from 3.1.32 to 3.1.41.
- [Release notes](https://github.com/gitpython-developers/GitPython/releases)
- [Changelog](https://github.com/gitpython-developers/GitPython/blob/main/CHANGES)
- [Commits](https://github.com/gitpython-developers/GitPython/compare/3.1.32...3.1.41)

---
updated-dependencies:
- dependency-name: gitpython
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-05-01 16:36:57 +01:00
ff8f624542 Bump grpcio from 1.44.0 to 1.53.2 in /examples/research_projects/decision_transformer (#30585)
Bump grpcio in /examples/research_projects/decision_transformer

Bumps [grpcio](https://github.com/grpc/grpc) from 1.44.0 to 1.53.2.
- [Release notes](https://github.com/grpc/grpc/releases)
- [Changelog](https://github.com/grpc/grpc/blob/master/doc/grpc_release_schedule.md)
- [Commits](https://github.com/grpc/grpc/compare/v1.44.0...v1.53.2)

---
updated-dependencies:
- dependency-name: grpcio
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-05-01 16:35:52 +01:00
b71f512823 Bump gitpython from 3.1.32 to 3.1.41 in /examples/research_projects/decision_transformer (#30587)
Bump gitpython in /examples/research_projects/decision_transformer

Bumps [gitpython](https://github.com/gitpython-developers/GitPython) from 3.1.32 to 3.1.41.
- [Release notes](https://github.com/gitpython-developers/GitPython/releases)
- [Changelog](https://github.com/gitpython-developers/GitPython/blob/main/CHANGES)
- [Commits](https://github.com/gitpython-developers/GitPython/compare/3.1.32...3.1.41)

---
updated-dependencies:
- dependency-name: gitpython
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-05-01 16:30:24 +01:00
f4f18afde8 Gemma: update activation warning (#29995)
* Gemma: only display act. warning when necessary

This is a nit PR, but I was confused. I got the warning even after I
had changed `hidden_act` to `gelu_pytorch_tanh`, telling me that I
was using the "legacy" `gelu_pytorch_tanh`.

Another option is to keep the warning but change the message to say
something like "`hidden_act` is ignored, please use `hidden_activation`
instead. Setting Gemma's activation function to `gelu_pytorch_tanh`".

* Change message, and set `config.hidden_activation`
2024-05-01 17:23:38 +02:00
bbaa8ceff6 Fix canonical model --model_type in examples (#30480)
Fix --model_type in examples
2024-05-01 15:47:05 +01:00
3c69d81eeb remove jax example (#30498)
remove example
2024-05-01 16:34:57 +02:00
1e05671d21 Fix QA example (#30580)
* Handle cases when CLS token is absent

* Use BOS token as a fallback
2024-05-01 08:43:02 +01:00
4b4da18f53 Refactor default chat template warnings (#30551)
* Temporarily silence warnings in apply_chat_template until we can properly deprecate default chat templates

* make fixup

* Move the default chat template warning into apply_chat_template itself

* make fixup
2024-05-01 08:42:11 +01:00
4bc9cb36b7 Fix Marian model conversion (#30173)
* fix marian model coversion

* uncomment that line

* remove unnecessary code

* revert tie_weights, doesn't hurt
2024-05-01 12:33:12 +05:00
38a4bf79ad Encoder-decoder models: move embedding scale to nn.Module (#30410)
* move scaling to nn.Module

* let the test be here for now (need to fix)

* failing tests

* last failing models

* Revert commit 4c14817f38

* clean-up

* oops forgot

* codestyle

* raise NotImplemented when possible

* Update tests/test_modeling_common.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* skip tests in respective modeling files

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-05-01 12:33:00 +05:00
9d31b32e9d Use text config's vocab size in testing models (#30568)
use text config's vocab size
2024-05-01 12:32:45 +05:00
78fdd64dcf Remove use_square_size after loading (#30567)
* fix

* add test

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-04-30 21:11:37 +02:00
87927b248e General PR slow CI (#30540)
* More general PR slow CI

* Update utils/pr_slow_ci_models.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-04-30 21:05:09 +02:00
b8ac4d035c Fix generation doctests (#30263)
* fix doctest

* fix torch doctest

* make CI happy

* raise error

* make fixup
2024-04-30 21:02:26 +02:00
2ecefc3959 Add chat templating support for KeyDataset in text-generation pipeline (#30558)
* added chat templating support for keydataset in generation pipeline

* fixed and improved test

* fix formatting test failures

* Fix tests

* Fix tests
2024-04-30 19:51:41 +01:00
0cdb6b3f92 BlipModel: get_multimodal_features method (#30438)
* add_blip_get_multimodal_feautres

* Fix docstring error

* reimplement get_multimodal_features

* fix error

* recheck code quality

* add new necessary tests
2024-04-30 19:01:01 +01:00
9112520b15 Fix seq2seq collator padding (#30556)
* fix seq2seq data collator to respect the given padding strategy

further added tests for the seq2seq data collator in the style of the `data_collator_for_token_classification` (pt, tf, np)

* formatting and change bool equals "==" to "is"

* add missed return types in tests

* update numpy test as it can handle unequal shapes, not like pt or tf
2024-04-30 18:32:30 +01:00
78a57c5e1a DBRX: make fixup (#30578) 2024-04-30 18:30:23 +01:00
1bff6a0b58 Generate: update links on LLM tutorial doc (#30550) 2024-04-30 18:14:12 +01:00
75bbfd5b22 Cache: Static cache as a standalone object (#30476) 2024-04-30 16:37:19 +01:00
0ae789e043 Enable multi-device for more models (#30409)
* feat: support for dinov2

* feat: support for depth_anything

* feat: support for efficientformer

* feat: support for bert (is this right?)

* update: embedding split

* remove: empty string

* feat: support for align

* fix: copies

* fix: QAQBertEmbeddings

* fix: more consistency issues

* revert: support for effientformer

* feat: support for altclip

* feat: support for blip_text

* support for ChineseCLIP

* feat: support for depth anything

* feat: support for dpt

* feat: support for dpt

* feat: support for git

* feat: support for groupvit

* update: format

* fix: support for clip

* fix: consistency

* feat: support for pvt

* feat: support for vit_msn

* fix: consistency

* fix: other copies

* remove: device transfer

* revert: in-place add

* update: support for align

* update: support for bert

* update: support for Chinese CLIP

* revert: changes to efficientformer

* update: support for dpt

* update: support for efficientformer

* revert: changes to git

* revert: changes to groupvit

* revert: changes to roc_bert

* update: support for vit_msn

* revert: changes to dpt

* remove: extra space

* style: extra space
2024-04-30 12:09:08 +01:00
c712d05aa8 Pass use_cache in kwargs for GPTNeoX (#30538)
pass use_cache in kwargs
2024-04-30 12:16:18 +05:00
a3aabc702e Include safetensors as part of _load_best_model (#30553)
* Include safetensors

* Cleanup
2024-04-29 14:47:26 -04:00
9df8b301ce Reenable SDPA's FA2 During Training with torch.compile (#30442)
* Reenable SDPA's FA2 during training with torch.compile

* fix Olmo's SDPA FA2 dispatching too

* update formatting

* improved SDPA comment

* formatting and explanatory comment

* is_causal if statement to one-liner
2024-04-30 00:45:43 +08:00
87be06ca77 Fix repo. fetch/checkout in PR slow CI job (#30537)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-04-29 14:32:43 +02:00
c02421883b Update runner tag for PR slow CI (#30535)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-04-29 14:07:41 +02:00
bdbe166211 Fix broken link to Transformers notebooks (#30512)
Co-authored-by: Clint Adams <clint@debian.org>
2024-04-29 10:57:51 +01:00
e8acb70015 Pass attn_implementation when using AutoXXX.from_config (#30507)
* Pass attn_implementation when using AutoXXX.from_config

* Fix
2024-04-29 10:22:33 +01:00
80126f98d8 Allow boolean FSDP options in fsdp_config (#30439)
* Allow boolean FSDP options in fsdp_config

* Use lower() to be safe
2024-04-29 10:03:26 +01:00
73014b561d Fix link in dbrx.md (#30509) 2024-04-26 20:52:24 +01:00
6d4cabda26 [SegGPT] Fix seggpt image processor (#29550)
* Fixed SegGptImageProcessor to handle 2D and 3D prompt mask inputs

* Added new test to check prompt mask equivalence

* New proposal

* Better proposal

* Removed unnecessary method

* Updated seggpt docs

* Introduced do_convert_rgb

* nits
2024-04-26 19:40:12 +01:00
c793b26f2e load_image - decode b64encode and encodebytes strings (#30192)
* Decode b64encode and encodebytes strings

* Remove conditional encode -- image is always a string
2024-04-26 18:21:47 +01:00
e7d52a10d7 Fix GroundingDINO, DPR after BERT SDPA update (#30506)
Fix GroundingDINO, DPR after BET SDPA update
2024-04-26 18:04:41 +01:00
38b53da38a [examples] update whisper fine-tuning (#29938)
* [examples] update whisper fine-tuning

* deprecate forced/suppress tokens

* item assignment

* update readme

* final fix
2024-04-26 17:06:03 +01:00
aafa7ce72b [DETR] Remove timm hardcoded logic in modeling files (#29038)
* Enable instantiating model with pretrained backbone weights

* Clarify pretrained import

* Use load_backbone instead

* Add backbone_kwargs to config

* Fix up

* Add tests

* Tidy up

* Enable instantiating model with pretrained backbone weights

* Update tests so backbone checkpoint isn't passed in

* Clarify pretrained import

* Update configs - docs and validation check

* Update src/transformers/utils/backbone_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Clarify exception message

* Update config init in tests

* Add test for when use_timm_backbone=True

* Use load_backbone instead

* Add use_timm_backbone to the model configs

* Add backbone_kwargs to config

* Pass kwargs to constructors

* Draft

* Fix tests

* Add back timm - weight naming

* More tidying up

* Whoops

* Tidy up

* Handle when kwargs are none

* Update tests

* Revert test changes

* Deformable detr test - don't use default

* Don't mutate; correct model attributes

* Add some clarifying comments

* nit - grammar is hard

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-04-26 16:55:24 +01:00
77ff304d29 Remove skipping logic now that set_epoch exists (#30501)
* Remove skipping logic now that set_epoch exists

* Working version, clean
2024-04-26 11:52:09 -04:00
dfa7b580e9 [BERT] Add support for sdpa (#28802)
* Adding SDPA support for BERT

* Using the proper input name for testing model input in inference()

* Adding documentation for SDPA in BERT model page

* Use the stable link for the documentation

* Adding a gate to only call .contiguous() for torch < 2.2.0

* Additions and fixes to the documentation

* Minor updates to documentation

* Adding extra requirements needed for the contiguous() bug

* Adding "Adapted from" in plcae of the "Copied from"

* Add benchmark speedup tables to the documentation

* Minor fixes to the documentation

* Use ClapText as a replacemenet for Bert in the Copied-From

* Some more fixes for the fix-copies references

* Overriding the test_eager_matches_sdpa_generate in bert tests to not load with low_cpu_mem_usage

[test all]

* Undo changes to separate test

* Refactored SDPA self attention code for KV projections

* Change use_sdpa to attn_implementation

* Fix test_sdpa_can_dispatch_on_flash by preparing input (required for MultipleChoice models)
2024-04-26 16:23:44 +01:00
2de5cb12be Use the Keras set_random_seed in tests (#30504)
Use the Keras set_random_seed to ensure reproducible weight initialization
2024-04-26 16:14:53 +01:00
20081c743e Update dtype_byte_size to handle torch.float8_e4m3fn/float8_e5m2 types (#30488)
* Update modeling_utils/dtype_byte_size to handle float8 types

* Add a test for dtype_byte_size

* Format

* Fix bool
2024-04-26 11:26:43 +01:00
kyo
59e715f71c Fix the bitsandbytes error formatting ("Some modules are dispatched on ...") (#30494)
Fix the `bitsandbytes` error when some modules are not properly offloaded.
2024-04-26 10:13:52 +01:00
19cfdf0fac FEAT: PEFT support for EETQ (#30449)
Update quantizer_eetq.py
2024-04-26 10:20:35 +02:00
a98c41798c [docs] Spanish translation of pipeline_tutorial.md (#30252)
* add pipeline_webserver to es/

* add pipeline_webserver to es/, translate first section

* add comment for checking link

* translate pipeline_webserver

* edit pipeline_webserver

* fix typo
2024-04-25 12:18:06 -07:00
26ddc58047 Quantization: HfQuantizer quant method update (#30484)
ensure popular quant methods are supported
2024-04-25 21:09:28 +02:00
f39627125b Add sidebar tutorial for chat models (#30401)
* Draft tutorial for talking to chat models

* Reformat lists and text snippets

* Cleanups and clarifications

* Finish up remaining TODOs

* Correct section link

* Small fix

* Add proper quantization examples

* Add proper quantization examples

* Add proper quantization examples

* Update docs/source/en/conversations.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/conversations.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/conversations.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/conversations.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/conversations.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/conversations.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/conversations.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/conversations.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/conversations.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/conversations.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/_toctree.yml

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/conversations.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Fix Text Generation Pipeline link and add a ref to the LLM inference guide

* intelligent -> capable

* Small intro cleanup

* Small text cleanup

* Small text cleanup

* Clarification about system message

* Clarification about system message

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-04-25 19:38:48 +01:00
bc274a28a9 Do not use deprecated SourceFileLoader.load_module() in dynamic module loading (#30370) 2024-04-25 18:23:39 +02:00
e60491adc9 Fix Llava for 0-embeddings (#30473) 2024-04-25 20:28:51 +05:00
ad697f1801 Introduce Stateful Callbacks (#29666)
* Introduce saveable callbacks

* Add note

* Test for non-present and flag

* Support early stopping and refusing to train further

* Update docstring

* More saving

* Import oopsie

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Make it go through TrainerArguments

* Document

* Fix test

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Rework to allow for duplicates

* CLean

* Fix failing tests

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-04-25 11:00:09 -04:00
86f2569738 Make accelerate install non-torch dependent (#30463)
* Pin accelerate w/o eager

* Eager

* Update .circleci/create_circleci_config.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Expound

* Expound squared

* PyTorch -> dependency

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-04-25 09:37:55 -04:00
928331381e Fix Issue #29817 Video Classification Task Guide Using Undeclared Variables (#30457)
* Fix issue #29817

Video Classification Task Guide Using Undeclared Variables

* Update docs/source/en/tasks/video_classification.md

updated with review comments

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Fix issue #29817

Add line space following PR comments

---------

Co-authored-by: manju-rangam <Manju1@Git>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-04-25 13:49:30 +01:00
7b1170b0fa Add WSD scheduler (#30231)
* Added WSD scheduler.

* Added tests.

* Fixed errors.

* Fix formatting.

* CI fixes.
2024-04-25 12:07:21 +01:00
90cb55bf77 🚨 Add training compatibility for Musicgen-like models (#29802)
* first modeling code

* make repository

* still WIP

* update model

* add tests

* add latest change

* clean docstrings and copied from

* update docstrings md and readme

* correct chroma function

* correct copied from and remove unreleated test

* add doc to toctree

* correct imports

* add convert script to notdoctested

* Add suggestion from Sanchit

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* correct get_uncoditional_inputs docstrings

* modify README according to SANCHIT feedback

* add chroma to audio utils

* clean librosa and torchaudio hard dependencies

* fix FE

* refactor audio decoder -> audio encoder for consistency with previous musicgen

* refactor conditional -> encoder

* modify sampling rate logics

* modify license at the beginning

* refactor all_self_attns->all_attentions

* remove ignore copy from causallm generate

* add copied from for from_sub_models

* fix make copies

* add warning if audio is truncated

* add copied from where relevant

* remove artefact

* fix convert script

* fix torchaudio and FE

* modify chroma method according to feedback-> better naming

* refactor input_values->input_features

* refactor input_values->input_features and fix import fe

* add input_features to docstrigs

* correct inputs_embeds logics

* remove dtype conversion

* refactor _prepare_conditional_hidden_states_kwargs_for_generation ->_prepare_encoder_hidden_states_kwargs_for_generation

* change warning for chroma length

* Update src/transformers/models/musicgen_melody/convert_musicgen_melody_transformers.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* change way to save wav, using soundfile

* correct docs and change to soundfile

* fix import

* fix init proj layers

* add draft training

* fix cross entropy

* clean loss computation

* fix labels

* remove line breaks from md

* fix issue with docstrings

* add FE suggestions

* improve is in logics and remove useless imports

* remove custom from_pretrained

* simplify docstring code

* add suggestions for modeling tests

* make style

* update converting script with sanity check

* remove encoder attention mask from conditional generation

* replace musicgen melody checkpoints with official orga

* rename ylacombe->facebook in checkpoints

* fix copies

* remove unecessary warning

* add shape in code docstrings

* add files to slow doc tests

* fix md bug and add md to not_tested

* make fix-copies

* fix hidden states test and batching

* update training code

* add training tests for melody

* add training for o.g musicgen

* fix copied from

* remove final todos

* make style

* fix style

* add suggestions from review

* add ref to the original loss computation code

* rename method + fix labels in tests

* make style

---------

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
2024-04-25 12:51:19 +02:00
ce5ae5a434 Prevent crash with WandbCallback with third parties (#30477)
* Use EAFP principle to prevent crash with third parties

* Remove leftover debugging code

* Add info-level logger message
2024-04-25 12:49:06 +02:00
aca4a1037f Don't run fp16 MusicGen tests on CPU (#30466) 2024-04-25 11:14:07 +01:00
4fed29e3a4 Fix SigLip classification doctest (#30475)
* Fix SigLip classification doctest

* Remove extra line

* Update src/transformers/models/siglip/modeling_siglip.py
2024-04-25 11:13:53 +01:00
30ee508c6c Script for finding candidate models for deprecation (#29686)
* Add utility for finding candidate models for deprecation

* Better model filtering

* Update

* Add warning tip

* Fix up

* Review comments

* Filter requests based on tags

* Add copyright header
2024-04-25 10:10:01 +01:00
c60749d6a6 [fix codellama conversion] (#30472)
* fix codellama conversion

* nit
2024-04-25 10:56:48 +02:00
e9b1635478 FIX / Workflow: Fix SSH workflow bug (#30474)
Update ssh-runner.yml
2024-04-25 10:36:54 +02:00
cd0cd12add FIX / Workflow: Change tailscale trigger condition (#30471)
Update push-important-models.yml
2024-04-25 10:33:12 +02:00
cebb07262f Workflow / ENH: Add SSH into our runners workflow (#30425)
* add SSH into our runners workflow

* fix

* fix

* fix

* use our previous approaches

* forward contrib credits from discussions

---------

Co-authored-by: Yih-Dar <ydshieh@users.noreply.github.com>
2024-04-25 10:23:40 +02:00
fbb41cd420 consistent job / pytest report / artifact name correspondence (#30392)
* better names

* run better names

* update

* update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-04-24 22:32:42 +02:00
6ad9c8f743 Non blocking support to torch DL's (#30465)
* Non blocking support

* Check for optimization

* Doc
2024-04-24 16:24:23 -04:00
5c57463bde Enable fp16 on CPU (#30459)
* Check removing flag for torch

* LLM oops

* Getting there...

* More discoveries

* Change

* Clean up and prettify

* Logic check

* Not
2024-04-24 15:38:52 -04:00
d1d94d798f Neuron: When save_safetensor=False, no need to move model to CPU (#29703)
save_safetensor=True is default as of release 4.35.0, which then
required TPU hotfix https://github.com/huggingface/transformers/pull/27799
(issue https://github.com/huggingface/transformers/issues/27578).
However, when the flag save_safetensor is set to False (compatibility mode),
moving the model to CPU causes generation of too many graphs
during checkpoint https://github.com/huggingface/transformers/issues/28438.
This PR disable moving of model to CPU when save_safetensor=False.
2024-04-24 18:22:08 +01:00
661190b44d [research_project] Most of the security issues come from this requirement.txt (#29977)
update most of decision transformers research project
2024-04-24 17:56:45 +02:00
d0d430f14a Fix wrong indent in utils/check_if_new_model_added.py (#30456)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-04-24 17:44:12 +02:00
c9693db2fc Phi-3 (#30423)
* chore(root): Initial commit of Phi-3 files.

* fix(root): Fixes Phi-3 missing on readme.

* fix(root): Ensures files are consistent.

* fix(phi3): Fixes unit tests.

* fix(tests): Fixes style of phi-3 test file.

* chore(tests): Adds integration tests for Phi-3.

* fix(phi3): Removes additional flash-attention usage, .e.g, swiglu and rmsnorm.

* fix(phi3): Fixes incorrect docstrings.

* fix(phi3): Fixes docstring typos.

* fix(phi3): Adds support for Su and Yarn embeddings.

* fix(phi3): Improves according first batch of reviews.

* fix(phi3): Uses up_states instead of y in Phi3MLP.

* fix(phi3): Uses gemma rotary embedding to support torch.compile.

* fix(phi3): Improves how rotary embedding classes are defined.

* fix(phi3): Fixes inv_freq not being re-computed for extended RoPE.

* fix(phi3): Adds last suggestions to modeling file.

* fix(phi3): Splits inv_freq calculation in two lines.
2024-04-24 17:32:09 +02:00
42fed15c81 Add paths filter to avoid the chance of being triggered (#30453)
* trigger

* remove the last job

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-04-24 16:58:54 +02:00
d26c14139c [SegGPT] Fix loss calculation (#30421)
* Fixed main train issues

* Added loss test

* Update src/transformers/models/seggpt/modeling_seggpt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Added missing labels arg in SegGptModel forward

* Fixed typo

* Added slow test to test loss calculation

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-04-24 15:24:34 +01:00
2495 changed files with 115512 additions and 53813 deletions

View File

@ -12,7 +12,7 @@ jobs:
# Ensure running with CircleCI/huggingface
check_circleci_user:
docker:
- image: cimg/python:3.8.12
- image: python:3.10-slim
parallelism: 1
steps:
- run: echo $CIRCLE_PROJECT_USERNAME
@ -26,13 +26,12 @@ jobs:
fetch_tests:
working_directory: ~/transformers
docker:
- image: cimg/python:3.8.12
- image: huggingface/transformers-quality
parallelism: 1
steps:
- checkout
- run: pip install --upgrade --upgrade-strategy eager pip
- run: pip install -U --upgrade-strategy eager GitPython
- run: pip install -U --upgrade-strategy eager .
- run: uv pip install -U -e .
- run: echo 'export "GIT_COMMIT_MESSAGE=$(git show -s --format=%s)"' >> "$BASH_ENV" && source "$BASH_ENV"
- run: mkdir -p test_preparation
- run: python utils/tests_fetcher.py | tee tests_fetched_summary.txt
- store_artifacts:
@ -82,31 +81,28 @@ jobs:
path: ~/transformers/test_preparation/filtered_test_list.txt
- store_artifacts:
path: test_preparation/examples_test_list.txt
- run: python .circleci/create_circleci_config.py --fetcher_folder test_preparation
- run: export "GIT_COMMIT_MESSAGE=$(git show -s --format=%s)" && echo $GIT_COMMIT_MESSAGE && python .circleci/create_circleci_config.py --fetcher_folder test_preparation
- run: |
if [ ! -s test_preparation/generated_config.yml ]; then
echo "No tests to run, exiting early!"
circleci-agent step halt
fi
- run: cp test_preparation/generated_config.yml test_preparation/generated_config.txt
- store_artifacts:
path: test_preparation/generated_config.txt
path: test_preparation/generated_config.yml
- store_artifacts:
path: test_preparation/filtered_test_list_cross_tests.txt
path: test_preparation/filtered_test_list_cross_tests.txt
- continuation/continue:
configuration_path: test_preparation/generated_config.yml
configuration_path: test_preparation/generated_config.yml
# To run all tests for the nightly build
fetch_all_tests:
working_directory: ~/transformers
docker:
- image: cimg/python:3.8.12
- image: huggingface/transformers-quality
parallelism: 1
steps:
- checkout
- run: pip install --upgrade --upgrade-strategy eager pip
- run: pip install -U --upgrade-strategy eager GitPython
- run: pip install -U --upgrade-strategy eager .
- run: uv pip install -e .
- run: |
mkdir test_preparation
echo -n "tests" > test_preparation/test_list.txt
@ -126,7 +122,7 @@ jobs:
check_code_quality:
working_directory: ~/transformers
docker:
- image: cimg/python:3.8.12
- image: huggingface/transformers-quality
resource_class: large
environment:
TRANSFORMERS_IS_CI: yes
@ -134,24 +130,7 @@ jobs:
parallelism: 1
steps:
- checkout
- restore_cache:
keys:
- v0.7-code_quality-pip-{{ checksum "setup.py" }}
- v0.7-code-quality-pip
- restore_cache:
keys:
- v0.7-code_quality-site-packages-{{ checksum "setup.py" }}
- v0.7-code-quality-site-packages
- run: pip install --upgrade --upgrade-strategy eager pip
- run: pip install -U --upgrade-strategy eager .[all,quality]
- save_cache:
key: v0.7-code_quality-pip-{{ checksum "setup.py" }}
paths:
- '~/.cache/pip'
- save_cache:
key: v0.7-code_quality-site-packages-{{ checksum "setup.py" }}
paths:
- '~/.pyenv/versions/'
- run: uv pip install -e .
- run:
name: Show installed libraries and their versions
command: pip freeze | tee installed.txt
@ -163,11 +142,12 @@ jobs:
- run: python utils/custom_init_isort.py --check_only
- run: python utils/sort_auto_mappings.py --check_only
- run: python utils/check_doc_toc.py
- run: python utils/check_docstrings.py --check_all
check_repository_consistency:
working_directory: ~/transformers
docker:
- image: cimg/python:3.8.12
- image: huggingface/transformers-consistency
resource_class: large
environment:
TRANSFORMERS_IS_CI: yes
@ -175,24 +155,7 @@ jobs:
parallelism: 1
steps:
- checkout
- restore_cache:
keys:
- v0.7-repository_consistency-pip-{{ checksum "setup.py" }}
- v0.7-repository_consistency-pip
- restore_cache:
keys:
- v0.7-repository_consistency-site-packages-{{ checksum "setup.py" }}
- v0.7-repository_consistency-site-packages
- run: pip install --upgrade --upgrade-strategy eager pip
- run: pip install -U --upgrade-strategy eager .[all,quality]
- save_cache:
key: v0.7-repository_consistency-pip-{{ checksum "setup.py" }}
paths:
- '~/.cache/pip'
- save_cache:
key: v0.7-repository_consistency-site-packages-{{ checksum "setup.py" }}
paths:
- '~/.pyenv/versions/'
- run: uv pip install -e .
- run:
name: Show installed libraries and their versions
command: pip freeze | tee installed.txt
@ -228,4 +191,4 @@ workflows:
- check_circleci_user
- check_code_quality
- check_repository_consistency
- fetch_all_tests
- fetch_all_tests

View File

@ -19,7 +19,7 @@ import os
import random
from dataclasses import dataclass
from typing import Any, Dict, List, Optional
import glob
import yaml
@ -41,7 +41,6 @@ class EmptyJob:
def to_dict(self):
return {
"working_directory": "~/transformers",
"docker": copy.deepcopy(DEFAULT_DOCKER_IMAGE),
"steps":["checkout"],
}
@ -61,7 +60,6 @@ class CircleCIJob:
pytest_options: Dict[str, Any] = None
resource_class: Optional[str] = "2xlarge"
tests_to_run: Optional[List[str]] = None
working_directory: str = "~/transformers"
# This should be only used for doctest job!
command_timeout: Optional[int] = None
@ -74,6 +72,12 @@ class CircleCIJob:
if self.docker_image is None:
# Let's avoid changing the default list and make a copy.
self.docker_image = copy.deepcopy(DEFAULT_DOCKER_IMAGE)
else:
# BIG HACK WILL REMOVE ONCE FETCHER IS UPDATED
print(os.environ.get("GIT_COMMIT_MESSAGE"))
if "[build-ci-image]" in os.environ.get("GIT_COMMIT_MESSAGE", "") or os.environ.get("GIT_COMMIT_MESSAGE", "") == "dev-ci":
self.docker_image[0]["image"] = f"{self.docker_image[0]['image']}:dev"
print(f"Using {self.docker_image} docker image")
if self.install_steps is None:
self.install_steps = []
if self.pytest_options is None:
@ -92,7 +96,6 @@ class CircleCIJob:
cache_branch_prefix = "pull"
job = {
"working_directory": self.working_directory,
"docker": self.docker_image,
"environment": env,
}
@ -102,34 +105,14 @@ class CircleCIJob:
job["parallelism"] = self.parallelism
steps = [
"checkout",
{"attach_workspace": {"at": "~/transformers/test_preparation"}},
{
"restore_cache": {
"keys": [
# check the fully-matched cache first
f"v{self.cache_version}-{self.cache_name}-{cache_branch_prefix}-pip-" + '{{ checksum "setup.py" }}',
# try the partially-matched cache from `main`
f"v{self.cache_version}-{self.cache_name}-main-pip-",
# try the general partially-matched cache
f"v{self.cache_version}-{self.cache_name}-{cache_branch_prefix}-pip-",
]
}
},
{
"restore_cache": {
"keys": [
f"v{self.cache_version}-{self.cache_name}-{cache_branch_prefix}-site-packages-" + '{{ checksum "setup.py" }}',
f"v{self.cache_version}-{self.cache_name}-main-site-packages-",
f"v{self.cache_version}-{self.cache_name}-{cache_branch_prefix}-site-packages-",
]
}
},
{"attach_workspace": {"at": "test_preparation"}},
]
steps.extend([{"run": l} for l in self.install_steps])
steps.extend([{"run": 'pip install "fsspec>=2023.5.0,<2023.10.0"'}])
steps.extend([{"run": "pip install pytest-subtests"}])
steps.append({"run": {"name": "Show installed libraries and their versions", "command": "pip freeze | tee installed.txt"}})
steps.append({"store_artifacts": {"path": "~/transformers/installed.txt"}})
steps.append({"run": {"name": "Show installed libraries and their size", "command": """du -h -d 1 "$(pip -V | cut -d ' ' -f 4 | sed 's/pip//g')" | grep -vE "dist-info|_distutils_hack|__pycache__" | sort -h | tee installed.txt || true"""}})
steps.append({"run": {"name": "Show installed libraries and their versions", "command": """pip list --format=freeze | tee installed.txt || true"""}})
steps.append({"run":{"name":"Show biggest libraries","command":"""dpkg-query --show --showformat='${Installed-Size}\t${Package}\n' | sort -rh | head -25 | sort -h | awk '{ package=$2; sub(".*/", "", package); printf("%.5f GB %s\n", $1/1024/1024, package)}' || true"""}})
steps.append({"store_artifacts": {"path": "installed.txt"}})
all_options = {**COMMON_PYTEST_OPTIONS, **self.pytest_options}
pytest_flags = [f"--{key}={value}" if (value is not None or key in ["doctest-modules"]) else f"-{key}" for key, value in all_options.items()]
@ -138,11 +121,11 @@ class CircleCIJob:
)
steps.append({"run": {"name": "Create `test-results` directory", "command": "mkdir test-results"}})
test_command = ""
if self.command_timeout:
test_command = f"timeout {self.command_timeout} "
test_command += f"python -m pytest -rs --junitxml=test-results/junit.xml -n {self.pytest_num_workers} " + " ".join(pytest_flags)
# junit familiy xunit1 is necessary to support splitting on test name or class name with circleci split
test_command += f"python3 -m pytest -rsfE -p no:warnings -o junit_family=xunit1 --tb=short --junitxml=test-results/junit.xml -n {self.pytest_num_workers} " + " ".join(pytest_flags)
if self.parallelism == 1:
if self.tests_to_run is None:
@ -155,7 +138,7 @@ class CircleCIJob:
if tests is None:
folder = os.environ["test_preparation_dir"]
test_file = os.path.join(folder, "filtered_test_list.txt")
if os.path.exists(test_file):
if os.path.exists(test_file): # We take this job's tests from the filtered test_list.txt
with open(test_file) as f:
tests = f.read().split(" ")
@ -167,17 +150,26 @@ class CircleCIJob:
if test.endswith(".py"):
expanded_tests.append(test)
elif test == "tests/models":
expanded_tests.extend([os.path.join(test, x) for x in os.listdir(test)])
if "tokenization" in self.name:
expanded_tests.extend(glob.glob("tests/models/**/test_tokenization*.py", recursive=True))
elif self.name in ["flax","torch","tf"]:
name = self.name if self.name != "torch" else ""
if self.name == "torch":
all_tests = glob.glob(f"tests/models/**/test_modeling_{name}*.py", recursive=True)
filtered = [k for k in all_tests if ("_tf_") not in k and "_flax_" not in k]
expanded_tests.extend(filtered)
else:
expanded_tests.extend(glob.glob(f"tests/models/**/test_modeling_{name}*.py", recursive=True))
else:
expanded_tests.extend(glob.glob("tests/models/**/test_modeling*.py", recursive=True))
elif test == "tests/pipelines":
expanded_tests.extend([os.path.join(test, x) for x in os.listdir(test)])
expanded_tests.extend(glob.glob("tests/models/**/test_modeling*.py", recursive=True))
else:
expanded_tests.append(test)
# Avoid long tests always being collected together
random.shuffle(expanded_tests)
tests = " ".join(expanded_tests)
# Each executor to run ~10 tests
n_executors = max(len(tests) // 10, 1)
n_executors = max(len(expanded_tests) // 10, 1)
# Avoid empty test list on some executor(s) or launching too many executors
if n_executors > self.parallelism:
n_executors = self.parallelism
@ -190,13 +182,13 @@ class CircleCIJob:
command = 'TESTS=$(circleci tests split tests.txt) && echo $TESTS > splitted_tests.txt'
steps.append({"run": {"name": "Split tests", "command": command}})
steps.append({"store_artifacts": {"path": "~/transformers/tests.txt"}})
steps.append({"store_artifacts": {"path": "~/transformers/splitted_tests.txt"}})
steps.append({"store_artifacts": {"path": "tests.txt"}})
steps.append({"store_artifacts": {"path": "splitted_tests.txt"}})
test_command = ""
if self.timeout:
test_command = f"timeout {self.timeout} "
test_command += f"python -m pytest -rs -n {self.pytest_num_workers} " + " ".join(pytest_flags)
if self.command_timeout:
test_command = f"timeout {self.command_timeout} "
test_command += f"python3 -m pytest -rsfE -p no:warnings --tb=short -o junit_family=xunit1 --junitxml=test-results/junit.xml -n {self.pytest_num_workers} " + " ".join(pytest_flags)
test_command += " $(cat splitted_tests.txt)"
if self.marker is not None:
test_command += f" -m {self.marker}"
@ -211,61 +203,17 @@ class CircleCIJob:
# failure.
test_command = f"({test_command}) || true"
else:
test_command = f"({test_command} | tee tests_output.txt) || true"
test_command = f"({test_command} | tee tests_output.txt)"
steps.append({"run": {"name": "Run tests", "command": test_command}})
# Deal with errors
check_test_command = f'if [ -s reports/{self.job_name}/errors.txt ]; '
check_test_command += 'then echo "Some tests errored out!"; echo ""; '
check_test_command += f'cat reports/{self.job_name}/errors.txt; '
check_test_command += 'echo ""; echo ""; '
py_command = f'import os; fp = open("reports/{self.job_name}/summary_short.txt"); failed = os.linesep.join([x for x in fp.read().split(os.linesep) if x.startswith("ERROR ")]); fp.close(); fp = open("summary_short.txt", "w"); fp.write(failed); fp.close()'
check_test_command += f"$(python3 -c '{py_command}'); "
check_test_command += 'cat summary_short.txt; echo ""; exit -1; '
# Deeal with failed tests
check_test_command += f'elif [ -s reports/{self.job_name}/failures_short.txt ]; '
check_test_command += 'then echo "Some tests failed!"; echo ""; '
check_test_command += f'cat reports/{self.job_name}/failures_short.txt; '
check_test_command += 'echo ""; echo ""; '
py_command = f'import os; fp = open("reports/{self.job_name}/summary_short.txt"); failed = os.linesep.join([x for x in fp.read().split(os.linesep) if x.startswith("FAILED ")]); fp.close(); fp = open("summary_short.txt", "w"); fp.write(failed); fp.close()'
check_test_command += f"$(python3 -c '{py_command}'); "
check_test_command += 'cat summary_short.txt; echo ""; exit -1; '
check_test_command += f'elif [ -s reports/{self.job_name}/stats.txt ]; then echo "All tests pass!"; '
# return code `124` means the previous (pytest run) step is timeout
if self.name == "pr_documentation_tests":
check_test_command += 'elif [ -f 124.txt ]; then echo "doctest timeout!"; '
check_test_command += 'else echo "other fatal error"; echo ""; exit -1; fi;'
steps.append({"run": {"name": "Check test results", "command": check_test_command}})
steps.append({"run": {"name": "Skipped tests", "when": "always", "command": f"python3 .circleci/parse_test_outputs.py --file tests_output.txt --skip"}})
steps.append({"run": {"name": "Failed tests", "when": "always", "command": f"python3 .circleci/parse_test_outputs.py --file tests_output.txt --fail"}})
steps.append({"run": {"name": "Errors", "when": "always", "command": f"python3 .circleci/parse_test_outputs.py --file tests_output.txt --errors"}})
steps.append({"store_test_results": {"path": "test-results"}})
steps.append({"store_artifacts": {"path": "~/transformers/tests_output.txt"}})
steps.append({"store_artifacts": {"path": "~/transformers/reports"}})
# save cache at the end: so pytest step runs before cache saving and we can see results earlier
steps.append(
{
"save_cache": {
"key": f"v{self.cache_version}-{self.cache_name}-{cache_branch_prefix}-pip-" + '{{ checksum "setup.py" }}',
"paths": ["~/.cache/pip"],
}
}
)
steps.append(
{
"save_cache": {
"key": f"v{self.cache_version}-{self.cache_name}-{cache_branch_prefix}-site-packages-" + '{{ checksum "setup.py" }}',
"paths": ["~/.pyenv/versions/"],
}
}
)
steps.append({"store_artifacts": {"path": "tests_output.txt"}})
steps.append({"store_artifacts": {"path": "test-results/junit.xml"}})
steps.append({"store_artifacts": {"path": "reports"}})
job["steps"] = steps
return job
@ -278,17 +226,9 @@ class CircleCIJob:
# JOBS
torch_and_tf_job = CircleCIJob(
"torch_and_tf",
docker_image=[{"image":"huggingface/transformers-torch-tf-light"}],
install_steps=["uv venv && uv pip install ."],
additional_env={"RUN_PT_TF_CROSS_TESTS": True},
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng git-lfs cmake",
"git lfs install",
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[sklearn,tf-cpu,torch,testing,sentencepiece,torch-speech,vision]",
"pip install -U --upgrade-strategy eager tensorflow_probability",
"pip install -U --upgrade-strategy eager -e git+https://github.com/huggingface/accelerate@main#egg=accelerate",
# TODO: remove this one after fixing the dependency issue(s) above
"pip install -U --upgrade-strategy eager torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu",
],
marker="is_pt_tf_cross_test",
pytest_options={"rA": None, "durations": 0},
)
@ -297,75 +237,61 @@ torch_and_tf_job = CircleCIJob(
torch_and_flax_job = CircleCIJob(
"torch_and_flax",
additional_env={"RUN_PT_FLAX_CROSS_TESTS": True},
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng",
"pip install -U --upgrade-strategy eager --upgrade pip",
"pip install -U --upgrade-strategy eager .[sklearn,flax,torch,testing,sentencepiece,torch-speech,vision]",
"pip install -U --upgrade-strategy eager -e git+https://github.com/huggingface/accelerate@main#egg=accelerate",
],
docker_image=[{"image":"huggingface/transformers-torch-jax-light"}],
install_steps=["uv venv && uv pip install ."],
marker="is_pt_flax_cross_test",
pytest_options={"rA": None, "durations": 0},
)
torch_job = CircleCIJob(
"torch",
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng time",
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[sklearn,torch,testing,sentencepiece,torch-speech,vision,timm]",
"pip install -U --upgrade-strategy eager -e git+https://github.com/huggingface/accelerate@main#egg=accelerate",
],
parallelism=1,
pytest_num_workers=12,
docker_image=[{"image": "huggingface/transformers-torch-light"}],
install_steps=["uv venv && uv pip install ."],
parallelism=6,
pytest_num_workers=4
)
tokenization_job = CircleCIJob(
"tokenization",
docker_image=[{"image": "huggingface/transformers-torch-light"}],
install_steps=["uv venv && uv pip install ."],
parallelism=6,
pytest_num_workers=4
)
tf_job = CircleCIJob(
"tf",
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng cmake",
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[sklearn,tf-cpu,testing,sentencepiece,tf-speech,vision]",
"pip install -U --upgrade-strategy eager tensorflow_probability",
],
parallelism=1,
docker_image=[{"image":"huggingface/transformers-tf-light"}],
install_steps=["uv venv", "uv pip install -e."],
parallelism=6,
pytest_num_workers=4,
)
flax_job = CircleCIJob(
"flax",
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng",
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[flax,testing,sentencepiece,flax-speech,vision]",
],
parallelism=1,
docker_image=[{"image":"huggingface/transformers-jax-light"}],
install_steps=["uv venv && uv pip install ."],
parallelism=6,
pytest_num_workers=4
)
pipelines_torch_job = CircleCIJob(
"pipelines_torch",
additional_env={"RUN_PIPELINE_TESTS": True},
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng",
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[sklearn,torch,testing,sentencepiece,torch-speech,vision,timm,video]",
],
docker_image=[{"image":"huggingface/transformers-torch-light"}],
install_steps=["uv venv && uv pip install ."],
marker="is_pipeline_test",
pytest_num_workers=12,
)
pipelines_tf_job = CircleCIJob(
"pipelines_tf",
additional_env={"RUN_PIPELINE_TESTS": True},
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y cmake",
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[sklearn,tf-cpu,testing,sentencepiece,vision]",
"pip install -U --upgrade-strategy eager tensorflow_probability",
],
docker_image=[{"image":"huggingface/transformers-tf-light"}],
install_steps=["uv venv && uv pip install ."],
marker="is_pipeline_test",
)
@ -373,22 +299,8 @@ pipelines_tf_job = CircleCIJob(
custom_tokenizers_job = CircleCIJob(
"custom_tokenizers",
additional_env={"RUN_CUSTOM_TOKENIZERS": True},
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y cmake",
{
"name": "install jumanpp",
"command":
"wget https://github.com/ku-nlp/jumanpp/releases/download/v2.0.0-rc3/jumanpp-2.0.0-rc3.tar.xz\n"
"tar xvf jumanpp-2.0.0-rc3.tar.xz\n"
"mkdir jumanpp-2.0.0-rc3/bld\n"
"cd jumanpp-2.0.0-rc3/bld\n"
"sudo cmake .. -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=/usr/local\n"
"sudo make install\n",
},
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[ja,testing,sentencepiece,jieba,spacy,ftfy,rjieba]",
"python -m unidic download",
],
docker_image=[{"image": "huggingface/transformers-custom-tokenizers"}],
install_steps=["uv venv","uv pip install -e ."],
parallelism=None,
resource_class=None,
tests_to_run=[
@ -403,13 +315,9 @@ examples_torch_job = CircleCIJob(
"examples_torch",
additional_env={"OMP_NUM_THREADS": 8},
cache_name="torch_examples",
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng",
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[sklearn,torch,sentencepiece,testing,torch-speech]",
"pip install -U --upgrade-strategy eager -r examples/pytorch/_tests_requirements.txt",
"pip install -U --upgrade-strategy eager -e git+https://github.com/huggingface/accelerate@main#egg=accelerate",
],
docker_image=[{"image":"huggingface/transformers-examples-torch"}],
# TODO @ArthurZucker remove this once docker is easier to build
install_steps=["uv venv && uv pip install . && uv pip install -r examples/pytorch/_tests_requirements.txt"],
pytest_num_workers=1,
)
@ -417,35 +325,20 @@ examples_torch_job = CircleCIJob(
examples_tensorflow_job = CircleCIJob(
"examples_tensorflow",
cache_name="tensorflow_examples",
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y cmake",
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[sklearn,tensorflow,sentencepiece,testing]",
"pip install -U --upgrade-strategy eager -r examples/tensorflow/_tests_requirements.txt",
],
)
examples_flax_job = CircleCIJob(
"examples_flax",
cache_name="flax_examples",
install_steps=[
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[flax,testing,sentencepiece]",
"pip install -U --upgrade-strategy eager -r examples/flax/_tests_requirements.txt",
],
docker_image=[{"image":"huggingface/transformers-examples-tf"}],
install_steps=["uv venv && uv pip install . && uv pip install -r examples/tensorflow/_tests_requirements.txt"],
parallelism=8
)
hub_job = CircleCIJob(
"hub",
additional_env={"HUGGINGFACE_CO_STAGING": True},
docker_image=[{"image":"huggingface/transformers-torch-light"}],
install_steps=[
"sudo apt-get -y update && sudo apt-get install git-lfs",
"uv venv && uv pip install .",
'git config --global user.email "ci@dummy.com"',
'git config --global user.name "ci"',
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[torch,sentencepiece,testing,vision]",
],
marker="is_staging_test",
pytest_num_workers=1,
@ -454,10 +347,11 @@ hub_job = CircleCIJob(
onnx_job = CircleCIJob(
"onnx",
docker_image=[{"image":"huggingface/transformers-torch-tf-light"}],
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y cmake",
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[torch,tf,testing,sentencepiece,onnxruntime,vision,rjieba]",
"uv venv && uv pip install .",
"uv pip install --upgrade eager pip",
"uv pip install .[torch,tf,testing,sentencepiece,onnxruntime,vision,rjieba]",
],
pytest_options={"k onnx": None},
pytest_num_workers=1,
@ -466,22 +360,8 @@ onnx_job = CircleCIJob(
exotic_models_job = CircleCIJob(
"exotic_models",
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev",
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[torch,testing,vision]",
"pip install -U --upgrade-strategy eager torchvision",
"pip install -U --upgrade-strategy eager scipy",
"pip install -U --upgrade-strategy eager 'git+https://github.com/facebookresearch/detectron2.git'",
"sudo apt install tesseract-ocr",
"pip install -U --upgrade-strategy eager pytesseract",
"pip install --upgrade-strategy eager sentencepiece",
"pip install -U --upgrade-strategy eager natten==0.15.1+torch210cpu -f https://shi-labs.com/natten/wheels",
"pip install -U --upgrade-strategy eager python-Levenshtein",
"pip install -U --upgrade-strategy eager opencv-python",
"pip install -U --upgrade-strategy eager nltk",
"pip uninstall -y torch torchvision torchaudio && pip install -U --upgrade-strategy eager 'torch<2.2.0' 'torchvision<0.17' 'torchaudio<2.2.0'"
],
install_steps=["uv venv && uv pip install ."],
docker_image=[{"image":"huggingface/transformers-exotic-models"}],
tests_to_run=[
"tests/models/*layoutlmv*",
"tests/models/*nat",
@ -489,17 +369,16 @@ exotic_models_job = CircleCIJob(
"tests/models/udop",
"tests/models/nougat",
],
pytest_num_workers=1,
pytest_num_workers=12,
parallelism=4,
pytest_options={"durations": 100},
)
repo_utils_job = CircleCIJob(
"repo_utils",
install_steps=[
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[quality,testing,torch]",
],
docker_image=[{"image":"huggingface/transformers-consistency"}],
install_steps=["uv venv && uv pip install ."],
parallelism=None,
pytest_num_workers=1,
resource_class="large",
@ -515,19 +394,9 @@ py_command = f"$(python3 -c '{py_command}')"
command = f'echo "{py_command}" > pr_documentation_tests_temp.txt'
doc_test_job = CircleCIJob(
"pr_documentation_tests",
docker_image=[{"image":"huggingface/transformers-consistency"}],
additional_env={"TRANSFORMERS_VERBOSITY": "error", "DATASETS_VERBOSITY": "error", "SKIP_CUDA_DOCTEST": "1"},
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng time ffmpeg",
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager -e .[dev]",
"pip install -U --upgrade-strategy eager -e git+https://github.com/huggingface/accelerate@main#egg=accelerate",
"pip install --upgrade --upgrade-strategy eager 'pytest<8.0.0' pytest-sugar",
"pip install -U --upgrade-strategy eager natten==0.15.1+torch210cpu -f https://shi-labs.com/natten/wheels",
"pip install -U --upgrade-strategy eager g2p-en",
# TODO: remove this one after fixing the dependency issue(s) above
"pip install -U --upgrade-strategy eager torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu",
"find -name __pycache__ -delete",
"find . -name \*.pyc -delete",
# Add an empty file to keep the test step running correctly even no file is selected to be tested.
"touch dummy.py",
{
@ -561,11 +430,11 @@ REGULAR_TESTS = [
hub_job,
onnx_job,
exotic_models_job,
tokenization_job
]
EXAMPLES_TESTS = [
examples_torch_job,
examples_tensorflow_job,
examples_flax_job,
]
PIPELINE_TESTS = [
pipelines_torch_job,

View File

@ -0,0 +1,70 @@
import re
import argparse
def parse_pytest_output(file_path):
skipped_tests = {}
skipped_count = 0
with open(file_path, 'r') as file:
for line in file:
match = re.match(r'^SKIPPED \[(\d+)\] (tests/.*): (.*)$', line)
if match:
skipped_count += 1
test_file, test_line, reason = match.groups()
skipped_tests[reason] = skipped_tests.get(reason, []) + [(test_file, test_line)]
for k,v in sorted(skipped_tests.items(), key=lambda x:len(x[1])):
print(f"{len(v):4} skipped because: {k}")
print("Number of skipped tests:", skipped_count)
def parse_pytest_failure_output(file_path):
failed_tests = {}
failed_count = 0
with open(file_path, 'r') as file:
for line in file:
match = re.match(r'^FAILED (tests/.*) - (.*): (.*)$', line)
if match:
failed_count += 1
_, error, reason = match.groups()
failed_tests[reason] = failed_tests.get(reason, []) + [error]
for k,v in sorted(failed_tests.items(), key=lambda x:len(x[1])):
print(f"{len(v):4} failed because `{v[0]}` -> {k}")
print("Number of failed tests:", failed_count)
if failed_count>0:
exit(1)
def parse_pytest_errors_output(file_path):
print(file_path)
error_tests = {}
error_count = 0
with open(file_path, 'r') as file:
for line in file:
match = re.match(r'^ERROR (tests/.*) - (.*): (.*)$', line)
if match:
error_count += 1
_, test_error, reason = match.groups()
error_tests[reason] = error_tests.get(reason, []) + [test_error]
for k,v in sorted(error_tests.items(), key=lambda x:len(x[1])):
print(f"{len(v):4} errored out because of `{v[0]}` -> {k}")
print("Number of errors:", error_count)
if error_count>0:
exit(1)
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--file", help="file to parse")
parser.add_argument("--skip", action="store_true", help="show skipped reasons")
parser.add_argument("--fail", action="store_true", help="show failed tests")
parser.add_argument("--errors", action="store_true", help="show failed tests")
args = parser.parse_args()
if args.skip:
parse_pytest_output(args.file)
if args.fail:
parse_pytest_failure_output(args.file)
if args.errors:
parse_pytest_errors_output(args.file)
if __name__ == "__main__":
main()

View File

@ -1,6 +1,17 @@
name: "\U0001F41B Bug Report"
description: Submit a bug report to help us improve transformers
labels: [ "bug" ]
body:
- type: markdown
attributes:
value: |
Thanks for taking the time to fill out this bug report! 🤗
Before you submit your bug report:
- If it is your first time submitting, be sure to check our [bug report guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#did-you-find-a-bug)
- Try our [docs bot](https://huggingface.co/spaces/huggingchat/hf-docs-chat) -- it might be able to help you with your issue
- type: textarea
id: system-info
attributes:
@ -17,50 +28,50 @@ body:
description: |
Your issue will be replied to more quickly if you can figure out the right person to tag with @
If you know how to use git blame, that is the easiest way, otherwise, here is a rough guide of **who to tag**.
All issues are read by one of the core maintainers, so if you don't know who to tag, just leave this blank and
a core maintainer will ping the right person.
Please tag fewer than 3 people.
Models:
- text models: @ArthurZucker and @younesbelkada
- text models: @ArthurZucker
- vision models: @amyeroberts
- speech models: @sanchit-gandhi
- graph models: @clefourrier
Library:
- flax: @sanchit-gandhi
- generate: @gante
- generate: @zucchini-nlp (visual-language models) or @gante (all others)
- pipelines: @Narsil
- tensorflow: @gante and @Rocketknight1
- tokenizers: @ArthurZucker
- trainer: @muellerzr and @pacman100
- trainer: @muellerzr @SunMarc
Integrations:
- deepspeed: HF Trainer/Accelerate: @pacman100
- deepspeed: HF Trainer/Accelerate: @muellerzr
- ray/raytune: @richardliaw, @amogkam
- Big Model Inference: @SunMarc
- quantization (bitsandbytes, autogpt): @SunMarc and @younesbelkada
- quantization (bitsandbytes, autogpt): @SunMarc
Documentation: @stevhliu
Model hub:
- for issues with a model, report at https://discuss.huggingface.co/ and tag the model's creator.
HF projects:
- accelerate: [different repo](https://github.com/huggingface/accelerate)
- datasets: [different repo](https://github.com/huggingface/datasets)
- diffusers: [different repo](https://github.com/huggingface/diffusers)
- rust tokenizers: [different repo](https://github.com/huggingface/tokenizers)
Maintained examples (not research project or legacy):
- Flax: @sanchit-gandhi
- PyTorch: See Models above and tag the person corresponding to the modality of the example.
- TensorFlow: @Rocketknight1
@ -101,11 +112,11 @@ body:
placeholder: |
Steps to reproduce the behavior:
1.
2.
3.
- type: textarea
id: expected-behavior

View File

@ -1,6 +1,6 @@
name: "\U0001F680 Feature request"
description: Submit a proposal/request for a new transformers feature
labels: [ "feature" ]
labels: [ "Feature request" ]
body:
- type: textarea
id: feature-request
@ -19,7 +19,7 @@ body:
label: Motivation
description: |
Please outline the motivation for the proposal. Is your feature request related to a problem? e.g., I'm always frustrated when [...]. If this is related to another GitHub issue, please link here too.
- type: textarea
id: contribution

View File

@ -39,7 +39,7 @@ members/contributors who may be interested in your PR.
Models:
- text models: @ArthurZucker and @younesbelkada
- text models: @ArthurZucker
- vision models: @amyeroberts
- speech models: @sanchit-gandhi
- graph models: @clefourrier
@ -47,20 +47,20 @@ Models:
Library:
- flax: @sanchit-gandhi
- generate: @gante
- generate: @zucchini-nlp (visual-language models) or @gante (all others)
- pipelines: @Narsil
- tensorflow: @gante and @Rocketknight1
- tokenizers: @ArthurZucker
- trainer: @muellerzr and @pacman100
- trainer: @muellerzr and @SunMarc
Integrations:
- deepspeed: HF Trainer/Accelerate: @pacman100
- deepspeed: HF Trainer/Accelerate: @muellerzr
- ray/raytune: @richardliaw, @amogkam
- Big Model Inference: @SunMarc
- quantization (bitsandbytes, autogpt): @SunMarc and @younesbelkada
- quantization (bitsandbytes, autogpt): @SunMarc
Documentation: @stevhliu and @MKhalusova
Documentation: @stevhliu
HF projects:

View File

@ -1,79 +0,0 @@
name: Send message to slack
description: 'Send results to slack'
author: 'Hugging Face'
inputs:
slack_channel:
required: true
type: string
title:
required: true
type: string
status:
required: true
type: string
slack_token:
required: true
type: string
runs:
using: "composite"
steps:
- name: Create content to post
id: create-message
run: |
if [ "${{ inputs.status }}" == "success" ]; then
echo STATUS_MESSAGE='🟢 Tests are passing!' >> $GITHUB_ENV
else
echo STATUS_MESSAGE='🔴 Tests failed! Please check the GitHub action link below' >> $GITHUB_ENV
fi
shell: bash
- name: Post Canceled results Slack channel
id: post-slack
uses: slackapi/slack-github-action@6c661ce58804a1a20f6dc5fbee7f0381b469e001
with:
# Slack channel id, channel name, or user id to post message.
# See also: https://api.slack.com/methods/chat.postMessage#channels
channel-id: ${{ inputs.slack_channel }}
# For posting a rich message using Block Kit
payload: |
{
"text": "${{ inputs.title }}",
"blocks": [
{
"type": "header",
"text": {
"type": "plain_text",
"text": "${{ inputs.title }}"
}
},
{
"type": "section",
"text": {
"type": "mrkdwn",
"text": "${{ env.STATUS_MESSAGE }}"
}
},
{
"type": "section",
"text": {"type": "mrkdwn", "text": "*Click the button for more details about the commit*"},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Commit results"},
"url": "${{ github.event.pull_request.html_url || github.event.head_commit.url }}"
}
},
{
"type": "section",
"text": {"type": "mrkdwn", "text": "*Click here for more details about the action ran*"},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results"},
"url": "${{ github.server_url }}/${{ github.repository }}/actions/runs/${{ github.run_id }}"
}
}
]
}
env:
SLACK_BOT_TOKEN: ${{ inputs.slack_token }}

42
.github/workflows/benchmark.yml vendored Normal file
View File

@ -0,0 +1,42 @@
name: Self-hosted runner (benchmark)
on:
schedule:
- cron: "17 2 * * *"
workflow_call:
env:
HF_HOME: /mnt/cache
TF_FORCE_GPU_ALLOW_GROWTH: true
jobs:
benchmark:
name: Benchmark
runs-on: [single-gpu, nvidia-gpu, a10, ci]
container:
image: huggingface/transformers-all-latest-gpu
options: --gpus all --privileged --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Update clone
working-directory: /transformers
run: |
git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Benchmark (daily)
if: github.event_name == 'schedule'
working-directory: /transformers
run: |
python3 -m pip install optimum-benchmark>=0.2.0
HF_TOKEN=${{ secrets.TRANSFORMERS_BENCHMARK_TOKEN }} python3 benchmark/benchmark.py --repo_id hf-internal-testing/benchmark_results --path_in_repo $(date +'%Y-%m-%d') --config-dir benchmark/config --config-name generation --commit=${{ github.sha }} backend.model=google/gemma-2b backend.cache_implementation=null,static backend.torch_compile=false,true --multirun
- name: Benchmark (merged to main event)
if: github.event_name == 'push' && github.ref_name == 'main'
working-directory: /transformers
run: |
python3 -m pip install optimum-benchmark>=0.2.0
HF_TOKEN=${{ secrets.TRANSFORMERS_BENCHMARK_TOKEN }} python3 benchmark/benchmark.py --repo_id hf-internal-testing/benchmark_results_merge_event --path_in_repo $(date +'%Y-%m-%d') --config-dir benchmark/config --config-name generation --commit=${{ github.sha }} backend.model=google/gemma-2b backend.cache_implementation=null,static backend.torch_compile=false,true --multirun

View File

@ -0,0 +1,77 @@
name: Build pr ci-docker
on:
push:
branches:
- push-ci-image # for now let's only build on this branch
repository_dispatch:
workflow_call:
inputs:
image_postfix:
required: true
type: string
schedule:
- cron: "6 0 * * *"
concurrency:
group: ${{ github.workflow }}
cancel-in-progress: true
jobs:
build:
runs-on: ubuntu-22.04
if: ${{ contains(github.event.head_commit.message, '[build-ci-image]') || contains(github.event.head_commit.message, '[push-ci-image]') && '!cancelled()' || github.event_name == 'schedule' }}
strategy:
matrix:
file: ["quality", "consistency", "custom-tokenizers", "torch-light", "tf-light", "exotic-models", "torch-tf-light", "torch-jax-light", "jax-light", "examples-torch", "examples-tf"]
continue-on-error: true
steps:
-
name: Set tag
run: |
if ${{contains(github.event.head_commit.message, '[build-ci-image]')}}; then
echo "TAG=huggingface/transformers-${{ matrix.file }}:dev" >> "$GITHUB_ENV"
echo "setting it to DEV!"
else
echo "TAG=huggingface/transformers-${{ matrix.file }}" >> "$GITHUB_ENV"
fi
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
-
name: Check out code
uses: actions/checkout@v4
-
name: Login to DockerHub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
-
name: Build ${{ matrix.file }}.dockerfile
uses: docker/build-push-action@v5
with:
context: ./docker
build-args: |
REF=${{ github.sha }}
file: "./docker/${{ matrix.file }}.dockerfile"
push: ${{ contains(github.event.head_commit.message, 'ci-image]') || github.event_name == 'schedule' }}
tags: ${{ env.TAG }}
notify:
runs-on: ubuntu-22.04
if: ${{ contains(github.event.head_commit.message, '[build-ci-image]') || contains(github.event.head_commit.message, '[push-ci-image]') && '!cancelled()' || github.event_name == 'schedule' }}
steps:
- name: Post to Slack
if: ${{ contains(github.event.head_commit.message, '[push-ci-image]') && github.event_name != 'schedule' }}
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: "#transformers-ci-circleci-images"
title: 🤗 New docker images for CircleCI are pushed.
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}

View File

@ -57,20 +57,19 @@ jobs:
push: true
tags: huggingface/transformers-all-latest-gpu-push-ci
- name: Post to Slack
if: always()
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ secrets.CI_SLACK_CHANNEL_DOCKER }}
title: 🤗 Results of the transformers-all-latest-gpu-push-ci docker build
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
latest-torch-deepspeed-docker:
name: "Latest PyTorch + DeepSpeed"
runs-on: [intel-cpu, 8-cpu, ci]
steps:
- name: Cleanup disk
run: |
sudo ls -l /usr/local/lib/
sudo ls -l /usr/share/
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
sudo rm -rf /usr/local/lib/android
sudo rm -rf /usr/share/dotnet
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
@ -93,21 +92,20 @@ jobs:
push: true
tags: huggingface/transformers-pytorch-deepspeed-latest-gpu${{ inputs.image_postfix }}
- name: Post to Slack
if: always()
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ secrets.CI_SLACK_CHANNEL_DOCKER}}
title: 🤗 Results of the transformers-pytorch-deepspeed-latest-gpu docker build
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
# Can't build 2 images in a single job `latest-torch-deepspeed-docker` (for `nvcr.io/nvidia`)
latest-torch-deepspeed-docker-for-push-ci-daily-build:
name: "Latest PyTorch + DeepSpeed (Push CI - Daily Build)"
runs-on: [intel-cpu, 8-cpu, ci]
steps:
- name: Cleanup disk
run: |
sudo ls -l /usr/local/lib/
sudo ls -l /usr/share/
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
sudo rm -rf /usr/local/lib/android
sudo rm -rf /usr/share/dotnet
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
@ -134,6 +132,15 @@ jobs:
push: true
tags: huggingface/transformers-pytorch-deepspeed-latest-gpu-push-ci
- name: Post to Slack
if: always()
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ secrets.CI_SLACK_CHANNEL_DOCKER }}
title: 🤗 Results of the transformers-pytorch-deepspeed-latest-gpu-push-ci docker build
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
doc-builder:
name: "Doc builder"
# Push CI doesn't need this image
@ -160,22 +167,21 @@ jobs:
push: true
tags: huggingface/transformers-doc-builder
- name: Post to Slack
if: always()
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ secrets.CI_SLACK_CHANNEL_DOCKER }}
title: 🤗 Results of the huggingface/transformers-doc-builder docker build
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
latest-pytorch:
name: "Latest PyTorch [dev]"
# Push CI doesn't need this image
if: inputs.image_postfix != '-push-ci'
runs-on: [intel-cpu, 8-cpu, ci]
steps:
- name: Cleanup disk
run: |
sudo ls -l /usr/local/lib/
sudo ls -l /usr/share/
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
sudo rm -rf /usr/local/lib/android
sudo rm -rf /usr/share/dotnet
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
@ -198,6 +204,15 @@ jobs:
push: true
tags: huggingface/transformers-pytorch-gpu
- name: Post to Slack
if: always()
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ secrets.CI_SLACK_CHANNEL_DOCKER }}
title: 🤗 Results of the huggingface/transformers-pytorch-gpudocker build
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
latest-pytorch-amd:
name: "Latest PyTorch (AMD) [dev]"
runs-on: [intel-cpu, 8-cpu, ci]
@ -237,6 +252,15 @@ jobs:
push: true
tags: huggingface/transformers-pytorch-amd-gpu-push-ci
- name: Post to Slack
if: always()
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ secrets.CI_SLACK_CHANNEL_DOCKER }}
title: 🤗 Results of the huggingface/transformers-pytorch-amd-gpu-push-ci build
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
latest-tensorflow:
name: "Latest TensorFlow [dev]"
# Push CI doesn't need this image
@ -265,6 +289,15 @@ jobs:
push: true
tags: huggingface/transformers-tensorflow-gpu
- name: Post to Slack
if: always()
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ secrets.CI_SLACK_CHANNEL_DOCKER }}
title: 🤗 Results of the huggingface/transformers-tensorflow-gpu build
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
latest-pytorch-deepspeed-amd:
name: "PyTorch + DeepSpeed (AMD) [dev]"
runs-on: [intel-cpu, 8-cpu, ci]
@ -304,6 +337,15 @@ jobs:
push: true
tags: huggingface/transformers-pytorch-deepspeed-amd-gpu-push-ci
- name: Post to Slack
if: always()
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ secrets.CI_SLACK_CHANNEL_DOCKER }}
title: 🤗 Results of the transformers-pytorch-deepspeed-amd-gpu build
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
latest-quantization-torch-docker:
name: "Latest Pytorch + Quantization [dev]"
# Push CI doesn't need this image
@ -330,4 +372,13 @@ jobs:
build-args: |
REF=main
push: true
tags: huggingface/transformers-quantization-latest-gpu${{ inputs.image_postfix }}
tags: huggingface/transformers-quantization-latest-gpu${{ inputs.image_postfix }}
- name: Post to Slack
if: always()
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ secrets.CI_SLACK_CHANNEL_DOCKER }}
title: 🤗 Results of the transformers-quantization-latest-gpu build
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}

View File

@ -13,18 +13,8 @@ concurrency:
jobs:
latest-with-torch-nightly-docker:
name: "Nightly PyTorch + Stable TensorFlow"
runs-on: ubuntu-22.04
runs-on: [intel-cpu, 8-cpu, ci]
steps:
- name: Cleanup disk
run: |
sudo ls -l /usr/local/lib/
sudo ls -l /usr/share/
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
sudo rm -rf /usr/local/lib/android
sudo rm -rf /usr/share/dotnet
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v2
@ -50,18 +40,8 @@ jobs:
nightly-torch-deepspeed-docker:
name: "Nightly PyTorch + DeepSpeed"
runs-on: ubuntu-22.04
runs-on: [intel-cpu, 8-cpu, ci]
steps:
- name: Cleanup disk
run: |
sudo ls -l /usr/local/lib/
sudo ls -l /usr/share/
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
sudo rm -rf /usr/local/lib/android
sudo rm -rf /usr/share/dotnet
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v2

View File

@ -16,7 +16,7 @@ jobs:
fail-fast: false
matrix:
version: ["1.13", "1.12", "1.11"]
runs-on: ubuntu-22.04
runs-on: [intel-cpu, 8-cpu, ci]
steps:
-
name: Set up Docker Buildx
@ -60,7 +60,7 @@ jobs:
fail-fast: false
matrix:
version: ["2.11", "2.10", "2.9", "2.8", "2.7", "2.6", "2.5"]
runs-on: ubuntu-22.04
runs-on: [intel-cpu, 8-cpu, ci]
steps:
-
name: Set up Docker Buildx

View File

@ -12,6 +12,12 @@ on:
slice_id:
required: true
type: number
runner:
required: true
type: string
docker:
required: true
type: string
env:
HF_HOME: /mnt/cache
@ -28,15 +34,16 @@ env:
CUDA_VISIBLE_DEVICES: 0,1
jobs:
model_job:
run_models_gpu:
name: " "
strategy:
max-parallel: 8
fail-fast: false
matrix:
folders: ${{ fromJson(inputs.folder_slices)[inputs.slice_id] }}
runs-on: ['${{ inputs.machine_type }}', nvidia-gpu, t4, daily-ci]
runs-on: ['${{ inputs.machine_type }}', nvidia-gpu, t4, '${{ inputs.runner }}']
container:
image: huggingface/transformers-all-latest-gpu
image: ${{ inputs.docker }}
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Echo input and matrix info
@ -65,6 +72,18 @@ jobs:
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Update / Install some packages (for Past CI)
if: ${{ contains(inputs.docker, '-past-') }}
working-directory: /transformers
run: |
python3 -m pip install -U datasets
- name: Update / Install some packages (for Past CI)
if: ${{ contains(inputs.docker, '-past-') && contains(inputs.docker, '-pytorch-') }}
working-directory: /transformers
run: |
python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate
- name: NVIDIA-SMI
run: |
nvidia-smi
@ -80,23 +99,23 @@ jobs:
- name: Run all tests on GPU
working-directory: /transformers
run: python3 -m pytest -rs -v --make-reports=${{ inputs.machine_type }}_tests_gpu_${{ matrix.folders }} tests/${{ matrix.folders }}
run: python3 -m pytest -rsfE -v --make-reports=${{ inputs.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports tests/${{ matrix.folders }}
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ inputs.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
run: cat /transformers/reports/${{ inputs.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports/failures_short.txt
- name: Run test
shell: bash
run: |
mkdir -p /transformers/reports/${{ inputs.machine_type }}_tests_gpu_${{ matrix.folders }}
echo "hello" > /transformers/reports/${{ inputs.machine_type }}_tests_gpu_${{ matrix.folders }}/hello.txt
echo "${{ inputs.machine_type }}_tests_gpu_${{ matrix.folders }}"
mkdir -p /transformers/reports/${{ inputs.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports
echo "hello" > /transformers/reports/${{ inputs.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports/hello.txt
echo "${{ inputs.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports"
- name: "Test suite reports artifacts: ${{ inputs.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports"
- name: "Test suite reports artifacts: ${{ inputs.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ inputs.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ inputs.machine_type }}_tests_gpu_${{ matrix.folders }}
name: ${{ inputs.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ inputs.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports

View File

@ -5,7 +5,6 @@ on:
branches: [ main ]
env:
IS_GITHUB_CI: "1"
OUTPUT_SLACK_CHANNEL_ID: "C06L2SGMEEA"
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
HF_HOME: /mnt/cache
@ -86,7 +85,7 @@ jobs:
- name: Run FA2 tests
id: run_fa2_tests
run:
pytest -rs -m "flash_attn_test" --make-reports=${{ matrix.model-name }}_fa2_tests/ tests/${{ matrix.model-name }}/test_modeling_*
pytest -rsfE -m "flash_attn_test" --make-reports=${{ matrix.model-name }}_fa2_tests/ tests/${{ matrix.model-name }}/test_modeling_*
- name: "Test suite reports artifacts: ${{ matrix.model-name }}_fa2_tests"
if: ${{ always() }}
@ -97,7 +96,7 @@ jobs:
- name: Post to Slack
if: always()
uses: ./.github/actions/post-slack
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ env.OUTPUT_SLACK_CHANNEL_ID }}
title: 🤗 Results of the FA2 tests - ${{ matrix.model-name }}
@ -108,7 +107,7 @@ jobs:
id: run_integration_tests
if: always()
run:
pytest -rs -k "IntegrationTest" --make-reports=tests_integration_${{ matrix.model-name }} tests/${{ matrix.model-name }}/test_modeling_*
pytest -rsfE -k "IntegrationTest" --make-reports=tests_integration_${{ matrix.model-name }} tests/${{ matrix.model-name }}/test_modeling_*
- name: "Test suite reports artifacts: tests_integration_${{ matrix.model-name }}"
if: ${{ always() }}
@ -119,7 +118,7 @@ jobs:
- name: Post to Slack
if: always()
uses: ./.github/actions/post-slack
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ env.OUTPUT_SLACK_CHANNEL_ID }}
title: 🤗 Results of the Integration tests - ${{ matrix.model-name }}
@ -127,10 +126,17 @@ jobs:
slack_token: ${{ secrets.CI_SLACK_BOT_TOKEN }}
- name: Tailscale # In order to be able to SSH when a test fails
if: ${{ failure() || runner.debug == '1'}}
if: ${{ runner.debug == '1'}}
uses: huggingface/tailscale-action@v1
with:
authkey: ${{ secrets.TAILSCALE_SSH_AUTHKEY }}
slackChannel: ${{ secrets.SLACK_CIFEEDBACK_CHANNEL }}
slackToken: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
waitForSSH: true
benchmark:
name: Benchmark workflow
needs: get_modified_models
if: ${{ needs.get_modified_models.outputs.matrix != '[]' && needs.get_modified_models.outputs.matrix != '' && fromJson(needs.get_modified_models.outputs.matrix)[0] != null }}
uses: ./.github/workflows/benchmark.yml
secrets: inherit

View File

@ -0,0 +1,43 @@
name: Self-hosted runner (nightly-ci)
on:
repository_dispatch:
schedule:
- cron: "17 2 * * *"
push:
branches:
- run_nightly_ci*
jobs:
build_nightly_ci_images:
name: Build Nightly CI Docker Images
if: (github.event_name == 'schedule') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_nightly_ci'))
uses: ./.github/workflows/build-nightly-ci-docker-images.yml
secrets: inherit
model-ci:
name: Model CI
needs: [build_nightly_ci_images]
uses: ./.github/workflows/self-scheduled.yml
with:
job: run_models_gpu
slack_report_channel: "#transformers-ci-past-future"
runner: ci
docker: huggingface/transformers-all-latest-torch-nightly-gpu
ci_event: Nightly CI
secrets: inherit
deepspeed-ci:
name: DeepSpeed CI
needs: [build_nightly_ci_images]
uses: ./.github/workflows/self-scheduled.yml
with:
job: run_torch_cuda_extensions_gpu
slack_report_channel: "#transformers-ci-past-future"
runner: ci
# test deepspeed nightly build with the latest release torch
docker: huggingface/transformers-pytorch-deepspeed-latest-gpu
ci_event: Nightly CI
working-directory-prefix: /workspace
secrets: inherit

View File

@ -2,32 +2,30 @@ name: Self-hosted runner (nightly-past-ci-caller)
on:
schedule:
# 2:17 am on each Sunday and Thursday
- cron: "17 2 * * 0,4"
- cron: "17 2,14 * * *"
push:
branches:
- run_nightly_ci*
- run_past_ci*
jobs:
build_nightly_ci_images:
name: Build Nightly CI Docker Images
if: (github.event_name == 'schedule') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_nightly_ci'))
uses: ./.github/workflows/build-nightly-ci-docker-images.yml
secrets: inherit
run_nightly_ci:
name: Nightly CI
needs: [build_nightly_ci_images]
uses: ./.github/workflows/self-nightly-scheduled.yml
secrets: inherit
get_number:
name: Get number
runs-on: ubuntu-22.04
outputs:
run_number: ${{ steps.get_number.outputs.run_number }}
steps:
- name: Get number
id: get_number
run: |
echo "${{ github.run_number }}"
echo "$(python3 -c 'print(int(${{ github.run_number }}) % 10)')"
echo "run_number=$(python3 -c 'print(int(${{ github.run_number }}) % 10)')" >> $GITHUB_OUTPUT
run_past_ci_pytorch_1-13:
name: PyTorch 1.13
if: (cancelled() != true) && ((github.event_name == 'schedule') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci')))
needs: [run_nightly_ci]
uses: ./.github/workflows/self-past.yml
needs: get_number
if: needs.get_number.outputs.run_number == 0 && (cancelled() != true) && ((github.event_name == 'schedule') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci')))
uses: ./.github/workflows/self-past-caller.yml
with:
framework: pytorch
version: "1.13"
@ -36,9 +34,9 @@ jobs:
run_past_ci_pytorch_1-12:
name: PyTorch 1.12
if: (cancelled() != true) && ((github.event_name == 'schedule') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci')))
needs: [run_past_ci_pytorch_1-13]
uses: ./.github/workflows/self-past.yml
needs: get_number
if: needs.get_number.outputs.run_number == 1 && (cancelled() != true) && ((github.event_name == 'schedule') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci')))
uses: ./.github/workflows/self-past-caller.yml
with:
framework: pytorch
version: "1.12"
@ -47,9 +45,9 @@ jobs:
run_past_ci_pytorch_1-11:
name: PyTorch 1.11
if: (cancelled() != true) && ((github.event_name == 'schedule') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci')))
needs: [run_past_ci_pytorch_1-12]
uses: ./.github/workflows/self-past.yml
needs: get_number
if: needs.get_number.outputs.run_number == 2 && (cancelled() != true) && ((github.event_name == 'schedule') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci')))
uses: ./.github/workflows/self-past-caller.yml
with:
framework: pytorch
version: "1.11"
@ -58,9 +56,9 @@ jobs:
run_past_ci_tensorflow_2-11:
name: TensorFlow 2.11
if: (cancelled() != true) && ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci'))
needs: [run_past_ci_pytorch_1-11]
uses: ./.github/workflows/self-past.yml
needs: get_number
if: needs.get_number.outputs.run_number == 3 && (cancelled() != true) && ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci'))
uses: ./.github/workflows/self-past-caller.yml
with:
framework: tensorflow
version: "2.11"
@ -69,9 +67,9 @@ jobs:
run_past_ci_tensorflow_2-10:
name: TensorFlow 2.10
if: (cancelled() != true) && ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci'))
needs: [run_past_ci_tensorflow_2-11]
uses: ./.github/workflows/self-past.yml
needs: get_number
if: needs.get_number.outputs.run_number == 4 && (cancelled() != true) && ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci'))
uses: ./.github/workflows/self-past-caller.yml
with:
framework: tensorflow
version: "2.10"
@ -80,9 +78,9 @@ jobs:
run_past_ci_tensorflow_2-9:
name: TensorFlow 2.9
if: (cancelled() != true) && ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci'))
needs: [run_past_ci_tensorflow_2-10]
uses: ./.github/workflows/self-past.yml
needs: get_number
if: needs.get_number.outputs.run_number == 5 && (cancelled() != true) && ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci'))
uses: ./.github/workflows/self-past-caller.yml
with:
framework: tensorflow
version: "2.9"
@ -91,9 +89,9 @@ jobs:
run_past_ci_tensorflow_2-8:
name: TensorFlow 2.8
if: (cancelled() != true) && ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci'))
needs: [run_past_ci_tensorflow_2-9]
uses: ./.github/workflows/self-past.yml
needs: get_number
if: needs.get_number.outputs.run_number == 6 && (cancelled() != true) && ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci'))
uses: ./.github/workflows/self-past-caller.yml
with:
framework: tensorflow
version: "2.8"
@ -102,9 +100,9 @@ jobs:
run_past_ci_tensorflow_2-7:
name: TensorFlow 2.7
if: (cancelled() != true) && ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci'))
needs: [run_past_ci_tensorflow_2-8]
uses: ./.github/workflows/self-past.yml
needs: get_number
if: needs.get_number.outputs.run_number == 7 && (cancelled() != true) && ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci'))
uses: ./.github/workflows/self-past-caller.yml
with:
framework: tensorflow
version: "2.7"
@ -113,9 +111,9 @@ jobs:
run_past_ci_tensorflow_2-6:
name: TensorFlow 2.6
if: (cancelled() != true) && ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci'))
needs: [run_past_ci_tensorflow_2-7]
uses: ./.github/workflows/self-past.yml
needs: get_number
if: needs.get_number.outputs.run_number == 8 && (cancelled() != true) && ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci'))
uses: ./.github/workflows/self-past-caller.yml
with:
framework: tensorflow
version: "2.6"
@ -124,9 +122,9 @@ jobs:
run_past_ci_tensorflow_2-5:
name: TensorFlow 2.5
if: (cancelled() != true) && ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci'))
needs: [run_past_ci_tensorflow_2-6]
uses: ./.github/workflows/self-past.yml
needs: get_number
if: needs.get_number.outputs.run_number == 9 && (cancelled() != true) && ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci'))
uses: ./.github/workflows/self-past-caller.yml
with:
framework: tensorflow
version: "2.5"

View File

@ -1,290 +0,0 @@
name: Self-hosted runner (nightly-ci)
# Note that each job's dependencies go into a corresponding docker file.
#
# For example for `run_all_tests_torch_cuda_extensions_gpu` the docker image is
# `huggingface/transformers-pytorch-deepspeed-latest-gpu`, which can be found at
# `docker/transformers-pytorch-deepspeed-latest-gpu/Dockerfile`
on:
repository_dispatch:
workflow_call:
env:
HF_HOME: /mnt/cache
TRANSFORMERS_IS_CI: yes
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
RUN_SLOW: yes
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
TF_FORCE_GPU_ALLOW_GROWTH: true
RUN_PT_TF_CROSS_TESTS: 1
CUDA_VISIBLE_DEVICES: 0,1
jobs:
setup:
name: Setup
strategy:
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, past-ci]
container:
image: huggingface/transformers-all-latest-torch-nightly-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
outputs:
matrix: ${{ steps.set-matrix.outputs.matrix }}
steps:
- name: Update clone
working-directory: /transformers
run: |
git fetch && git checkout ${{ github.sha }}
- name: Cleanup
working-directory: /transformers
run: |
rm -rf tests/__pycache__
rm -rf tests/models/__pycache__
rm -rf reports
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- id: set-matrix
name: Identify models to test
working-directory: /transformers/tests
run: |
echo "matrix=$(python3 -c 'import os; tests = os.getcwd(); model_tests = os.listdir(os.path.join(tests, "models")); d1 = sorted(list(filter(os.path.isdir, os.listdir(tests)))); d2 = sorted(list(filter(os.path.isdir, [f"models/{x}" for x in model_tests]))); d1.remove("models"); d = d2 + d1; print(d)')" >> $GITHUB_OUTPUT
- name: NVIDIA-SMI
run: |
nvidia-smi
run_tests_single_gpu:
name: Model tests
strategy:
fail-fast: false
matrix:
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
machine_type: [single-gpu]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, past-ci]
container:
image: huggingface/transformers-all-latest-torch-nightly-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
needs: setup
steps:
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
# set the artifact folder names (because the character `/` is not allowed).
run: |
echo "${{ matrix.folders }}"
matrix_folders=${{ matrix.folders }}
matrix_folders=${matrix_folders/'models/'/'models_'}
echo "$matrix_folders"
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run all tests on GPU
working-directory: /transformers
run: python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} tests/${{ matrix.folders }}
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports_postfix_nightly"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports_postfix_nightly
path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}
run_tests_multi_gpu:
name: Model tests
strategy:
fail-fast: false
matrix:
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
machine_type: [multi-gpu]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, past-ci]
container:
image: huggingface/transformers-all-latest-torch-nightly-gpu
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
needs: setup
steps:
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
# set the artifact folder names (because the character `/` is not allowed).
run: |
echo "${{ matrix.folders }}"
matrix_folders=${{ matrix.folders }}
matrix_folders=${matrix_folders/'models/'/'models_'}
echo "$matrix_folders"
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run all tests on GPU
working-directory: /transformers
run: python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} tests/${{ matrix.folders }}
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports_postfix_nightly"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports_postfix_nightly
path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}
run_all_tests_torch_cuda_extensions_gpu:
name: Torch CUDA extension tests
strategy:
fail-fast: false
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, past-ci]
needs: setup
container:
image: huggingface/transformers-pytorch-deepspeed-nightly-gpu
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Update clone
working-directory: /workspace/transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /workspace/transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Remove cached torch extensions
run: rm -rf /github/home/.cache/torch_extensions/
# To avoid unknown test failures
- name: Pre build DeepSpeed *again*
working-directory: /workspace
run: |
python3 -m pip uninstall -y deepspeed
rm -rf DeepSpeed
git clone https://github.com/microsoft/DeepSpeed && cd DeepSpeed && rm -rf build
DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 python3 -m pip install . --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Environment
working-directory: /workspace/transformers
run: |
python utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /workspace/transformers
run: pip freeze
- name: Run all tests on GPU
working-directory: /workspace/transformers
run: |
python -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu tests/deepspeed tests/extended
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /workspace/transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu/failures_short.txt
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_tests_torch_cuda_extensions_gpu_test_reports_postfix_nightly"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ matrix.machine_type }}_run_tests_torch_cuda_extensions_gpu_test_reports_postfix_nightly
path: /workspace/transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu
send_results:
name: Send results to webhook
runs-on: ubuntu-22.04
if: always()
needs: [
setup,
run_tests_single_gpu,
run_tests_multi_gpu,
run_all_tests_torch_cuda_extensions_gpu
]
steps:
- name: Preliminary job status
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
echo "Setup status: ${{ needs.setup.result }}"
- uses: actions/checkout@v4
- uses: actions/download-artifact@v4
- name: Send message to Slack
env:
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
CI_SLACK_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID }}
CI_SLACK_CHANNEL_ID_DAILY: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY }}
CI_SLACK_CHANNEL_DUMMY_TESTS: ${{ secrets.CI_SLACK_CHANNEL_DUMMY_TESTS }}
CI_SLACK_REPORT_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID_PAST_FUTURE }}
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
CI_EVENT: Nightly CI
SETUP_STATUS: ${{ needs.setup.result }}
# We pass `needs.setup.outputs.matrix` as the argument. A processing in `notification_service.py` to change
# `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`.
run: |
pip install slack_sdk
pip show slack_sdk
python utils/notification_service.py "${{ needs.setup.outputs.matrix }}"
# delete-artifact
- uses: geekyeggo/delete-artifact@v2
with:
name: |
single-*
multi-*

40
.github/workflows/self-past-caller.yml vendored Normal file
View File

@ -0,0 +1,40 @@
name: Self-hosted runner (past-ci)
on:
workflow_call:
inputs:
framework:
required: true
type: string
version:
required: true
type: string
# Use this to control the commit to test against
sha:
default: 'main'
required: false
type: string
jobs:
model-ci:
name: Model CI
uses: ./.github/workflows/self-scheduled.yml
with:
job: run_models_gpu
slack_report_channel: "#transformers-ci-past-future"
runner: past-ci
docker: huggingface/transformers-${{ inputs.framework }}-past-${{ inputs.version }}-gpu
ci_event: Past CI - ${{ inputs.framework }}-${{ inputs.version }}
secrets: inherit
deepspeed-ci:
name: DeepSpeed CI
uses: ./.github/workflows/self-scheduled.yml
with:
job: run_torch_cuda_extensions_gpu
slack_report_channel: "#transformers-ci-past-future"
runner: past-ci
docker: huggingface/transformers-${{ inputs.framework }}-past-${{ inputs.version }}-gpu
ci_event: Past CI - ${{ inputs.framework }}-${{ inputs.version }}
secrets: inherit

View File

@ -1,357 +0,0 @@
name: Self-hosted runner (past-ci)
# Note that each job's dependencies go into a corresponding docker file.
#
# For example for `run_all_tests_torch_cuda_extensions_gpu` the docker image is
# `huggingface/transformers-pytorch-deepspeed-latest-gpu`, which can be found at
# `docker/transformers-pytorch-deepspeed-latest-gpu/Dockerfile`
on:
workflow_call:
inputs:
framework:
required: true
type: string
version:
required: true
type: string
# Use this to control the commit to test against
sha:
default: 'main'
required: false
type: string
env:
HF_HOME: /mnt/cache
TRANSFORMERS_IS_CI: yes
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
RUN_SLOW: yes
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
TF_FORCE_GPU_ALLOW_GROWTH: true
RUN_PT_TF_CROSS_TESTS: 1
CUDA_VISIBLE_DEVICES: 0,1
jobs:
setup:
name: Setup
strategy:
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, past-ci]
container:
image: huggingface/transformers-${{ inputs.framework }}-past-${{ inputs.version }}-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
outputs:
matrix: ${{ steps.set-matrix.outputs.matrix }}
steps:
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ inputs.sha }}
- name: Cleanup
working-directory: /transformers
run: |
rm -rf tests/__pycache__
rm -rf tests/models/__pycache__
rm -rf reports
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- id: set-matrix
working-directory: /transformers
name: Identify models to test
run: |
cd tests
echo "matrix=$(python3 -c 'import os; tests = os.getcwd(); model_tests = os.listdir(os.path.join(tests, "models")); d1 = sorted(list(filter(os.path.isdir, os.listdir(tests)))); d2 = sorted(list(filter(os.path.isdir, [f"models/{x}" for x in model_tests]))); d1.remove("models"); d = d2 + d1; print(d)')" >> $GITHUB_OUTPUT
run_tests_single_gpu:
name: Model tests
strategy:
fail-fast: false
matrix:
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
machine_type: [single-gpu]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, past-ci]
container:
image: huggingface/transformers-${{ inputs.framework }}-past-${{ inputs.version }}-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
needs: setup
steps:
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ inputs.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Update some packages
working-directory: /transformers
run: python3 -m pip install -U datasets
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
# set the artifact folder names (because the character `/` is not allowed).
run: |
echo "${{ matrix.folders }}"
matrix_folders=${{ matrix.folders }}
matrix_folders=${matrix_folders/'models/'/'models_'}
echo "$matrix_folders"
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Install
if: inputs.framework == 'pytorch'
working-directory: /transformers
run: |
python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run all tests on GPU
working-directory: /transformers
run: python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} tests/${{ matrix.folders }}
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
- name: Save job name
if: ${{ always() }}
shell: bash
run: |
matrix_folders=${matrix_folders/'models_'/'models/'}
job_name="Model tests ($matrix_folders, ${{ matrix.machine_type }})"
echo "$job_name"
echo "$job_name" > /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/job_name.txt
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports_postfix_${{ inputs.framework }}-${{ inputs.version }}"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports_postfix_${{ inputs.framework }}-${{ inputs.version }}
path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}
run_tests_multi_gpu:
name: Model tests
strategy:
fail-fast: false
matrix:
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
machine_type: [multi-gpu]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, past-ci]
container:
image: huggingface/transformers-${{ inputs.framework }}-past-${{ inputs.version }}-gpu
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
needs: setup
steps:
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ inputs.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Update some packages
working-directory: /transformers
run: python3 -m pip install -U datasets
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
# set the artifact folder names (because the character `/` is not allowed).
run: |
echo "${{ matrix.folders }}"
matrix_folders=${{ matrix.folders }}
matrix_folders=${matrix_folders/'models/'/'models_'}
echo "$matrix_folders"
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Install
if: inputs.framework == 'pytorch'
working-directory: /transformers
run: |
python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run all tests on GPU
working-directory: /transformers
run: python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} tests/${{ matrix.folders }}
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
- name: Save job name
if: ${{ always() }}
shell: bash
run: |
matrix_folders=${matrix_folders/'models_'/'models/'}
job_name="Model tests ($matrix_folders, ${{ matrix.machine_type }})"
echo "$job_name"
echo "$job_name" > /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/job_name.txt
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports_postfix_${{ inputs.framework }}-${{ inputs.version }}"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports_postfix_${{ inputs.framework }}-${{ inputs.version }}
path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}
run_all_tests_torch_cuda_extensions_gpu:
name: Torch CUDA extension tests
if: inputs.framework == 'pytorch'
strategy:
fail-fast: false
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, past-ci]
needs: setup
container:
image: huggingface/transformers-${{ inputs.framework }}-past-${{ inputs.version }}-gpu
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Update some packages
working-directory: /transformers
run: python3 -m pip install -U datasets
- name: Install
working-directory: /transformers
run: |
python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate
- name: Remove cached torch extensions
run: rm -rf /github/home/.cache/torch_extensions/
# To avoid unknown test failures
- name: Pre build DeepSpeed *again*
working-directory: /
run: |
python3 -m pip uninstall -y deepspeed
rm -rf DeepSpeed
git clone https://github.com/microsoft/DeepSpeed && cd DeepSpeed && rm -rf build
DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 python3 -m pip install . --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run all tests on GPU
working-directory: /transformers
run: |
python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu tests/deepspeed tests/extended
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu/failures_short.txt
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_tests_torch_cuda_extensions_gpu_test_reports_postfix_${{ inputs.framework }}-${{ inputs.version }}"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ matrix.machine_type }}_run_tests_torch_cuda_extensions_gpu_test_reports_postfix_${{ inputs.framework }}-${{ inputs.version }}
path: /transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu
send_results:
name: Send results to webhook
runs-on: ubuntu-22.04
if: always()
needs: [
setup,
run_tests_single_gpu,
run_tests_multi_gpu,
run_all_tests_torch_cuda_extensions_gpu
]
steps:
- name: Preliminary job status
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
echo "Setup status: ${{ needs.setup.result }}"
- uses: actions/checkout@v4
- uses: actions/download-artifact@v4
# Create a directory to store test failure tables in the next step
- name: Create directory
run: mkdir test_failure_tables
- name: Send message to Slack
env:
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
CI_SLACK_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID }}
CI_SLACK_CHANNEL_ID_DAILY: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY }}
CI_SLACK_CHANNEL_DUMMY_TESTS: ${{ secrets.CI_SLACK_CHANNEL_DUMMY_TESTS }}
CI_SLACK_REPORT_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID_PAST_FUTURE }}
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
CI_EVENT: Past CI - ${{ inputs.framework }}-${{ inputs.version }}
SETUP_STATUS: ${{ needs.setup.result }}
# We pass `needs.setup.outputs.matrix` as the argument. A processing in `notification_service.py` to change
# `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`.
run: |
pip install slack_sdk
pip show slack_sdk
python utils/notification_service.py "${{ needs.setup.outputs.matrix }}"
# Upload complete failure tables, as they might be big and only truncated versions could be sent to Slack.
- name: Failure table artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: test_failure_tables_${{ inputs.framework }}-${{ inputs.version }}
path: test_failure_tables
# delete-artifact
- uses: geekyeggo/delete-artifact@v2
with:
name: |
single-*
multi-*

View File

@ -2,6 +2,13 @@ name: PR slow CI
on:
pull_request:
paths:
- "src/transformers/models/*/modeling_*.py"
- "tests/**/test_*.py"
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
env:
HF_HOME: /mnt/cache
@ -18,33 +25,48 @@ env:
CUDA_VISIBLE_DEVICES: 0,1
jobs:
check_for_new_model:
find_models_to_run:
runs-on: ubuntu-22.04
name: Check if a PR is a new model PR
name: Find models to run slow tests
# Triggered only if the required label `run-slow` is added
if: ${{ contains(github.event.pull_request.labels.*.name, 'run-slow') }}
outputs:
new_model: ${{ steps.check_new_model.outputs.new_model }}
models: ${{ steps.models_to_run.outputs.models }}
steps:
- uses: actions/checkout@v4
with:
fetch-depth: "0"
ref: ${{ github.event.pull_request.head.sha }}
- name: Check if there is a new model
id: check_new_model
- name: Get commit message
run: |
python -m pip install GitPython
echo "new_model=$(python utils/check_if_new_model_added.py | tail -n 1)" >> $GITHUB_OUTPUT
echo "commit_message=$(git show -s --format=%s)" >> $GITHUB_ENV
run_new_model_tests:
name: Run all tests for the new model
# Triggered if it is a new model PR and the required label is added
if: ${{ needs.check_for_new_model.outputs.new_model != '' && contains(github.event.pull_request.labels.*.name, 'single-model-run-slow') }}
needs: check_for_new_model
- name: Get models to run slow tests
run: |
echo "${{ env.commit_message }}"
python -m pip install GitPython
python utils/pr_slow_ci_models.py --commit_message "${{ env.commit_message }}" | tee output.txt
echo "models=$(tail -n 1 output.txt)" >> $GITHUB_ENV
- name: Models to run slow tests
id: models_to_run
run: |
echo "${{ env.models }}"
echo "models=${{ env.models }}" >> $GITHUB_OUTPUT
run_models_gpu:
name: Run all tests for the model
# Triggered only `find_models_to_run` is triggered (label `run-slow` is added) which gives the models to run
# (either a new model PR or via a commit message)
if: ${{ needs.find_models_to_run.outputs.models != '[]' }}
needs: find_models_to_run
strategy:
fail-fast: false
matrix:
folders: ["${{ needs.check_for_new_model.outputs.new_model }}"]
folders: ${{ fromJson(needs.find_models_to_run.outputs.models) }}
machine_type: [single-gpu, multi-gpu]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, daily-ci]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, ci]
container:
image: huggingface/transformers-all-latest-gpu
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
@ -67,7 +89,7 @@ jobs:
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ github.event.pull_request.head.sha }}
run: git fetch && git fetch origin pull/${{ github.event.pull_request.number }}/head:pull/${{ github.event.pull_request.number }}/merge && git checkout pull/${{ github.event.pull_request.number }}/merge
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
@ -88,38 +110,26 @@ jobs:
- name: Run all tests on GPU
working-directory: /transformers
run: python3 -m pytest -v -rs --make-reports=${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} tests/${{ matrix.folders }}
run: |
export CUDA_VISIBLE_DEVICES="$(python3 utils/set_cuda_devices_for_ci.py --test_folder ${{ matrix.folders }})"
echo $CUDA_VISIBLE_DEVICES
python3 -m pytest -v -rsfE --make-reports=${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports tests/${{ matrix.folders }}
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
run: cat /transformers/reports/${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports/failures_short.txt
- name: Make sure report directory exists
shell: bash
run: |
mkdir -p /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}
echo "hello" > /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/hello.txt
echo "${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}"
mkdir -p /transformers/reports/${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports
echo "hello" > /transformers/reports/${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports/hello.txt
echo "${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports"
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports"
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}
slow_test_result:
runs-on: ubuntu-22.04
name: Check slow test status
needs: [check_for_new_model, run_new_model_tests]
if: always()
steps:
- name: Check test status
shell: bash
# NOT a new model PR --> pass
# new model PR --> pass only if `run_new_model_tests` gives `success` (so if the label is not added, we fail
# this job even if `run_new_model_tests` has `skipped` status).
run: |
echo "${{ needs.run_new_model_tests.result }}"
if [ "${{ needs.check_for_new_model.outputs.new_model }}" = "" ]; then echo "not new model"; elif [ "${{ needs.run_new_model_tests.result }}" != "success" ]; then echo "failure"; exit -1; else echo "pass"; fi;
name: ${{ matrix.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports

View File

@ -0,0 +1,25 @@
name: Self-hosted runner (AMD mi300 CI caller)
on:
workflow_run:
workflows: ["Self-hosted runner (push-caller)"]
branches: ["main"]
types: [completed]
push:
branches:
- run_amd_push_ci_caller*
paths:
- "src/**"
- "tests/**"
- ".github/**"
- "templates/**"
- "utils/**"
jobs:
run_amd_ci:
name: AMD mi300
if: (cancelled() != true) && ((github.event_name == 'workflow_run') || ((github.event_name == 'push') && (startsWith(github.ref_name, 'run_amd_push_ci_caller') || startsWith(github.ref_name, 'mi300-ci'))))
uses: ./.github/workflows/self-push-amd.yml
with:
gpu_flavor: mi300
secrets: inherit

View File

@ -36,7 +36,7 @@ jobs:
strategy:
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: [self-hosted, docker-gpu, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
runs-on: [self-hosted, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
container:
image: huggingface/transformers-pytorch-amd-gpu-push-ci # <--- We test only for PyTorch for now
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
@ -57,7 +57,7 @@ jobs:
strategy:
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: [self-hosted, docker-gpu, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
runs-on: [self-hosted, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
container:
image: huggingface/transformers-pytorch-amd-gpu-push-ci # <--- We test only for PyTorch for now
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
@ -145,7 +145,7 @@ jobs:
echo "matrix=$keys" >> $GITHUB_OUTPUT
echo "test_map=$test_map" >> $GITHUB_OUTPUT
run_tests_amdgpu:
run_models_gpu:
name: Model tests
needs: setup_gpu
# `dummy` means there is no test to run
@ -155,7 +155,7 @@ jobs:
matrix:
folders: ${{ fromJson(needs.setup_gpu.outputs.matrix) }}
machine_type: [single-gpu, multi-gpu]
runs-on: [self-hosted, docker-gpu, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
runs-on: [self-hosted, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
container:
image: huggingface/transformers-pytorch-amd-gpu-push-ci # <--- We test only for PyTorch for now
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
@ -230,19 +230,19 @@ jobs:
- name: Run all non-slow selected tests on GPU
working-directory: /transformers
run: |
python3 -m pytest -n 2 --dist=loadfile -v --make-reports=${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} ${{ fromJson(needs.setup_gpu.outputs.test_map)[matrix.folders] }}
python3 -m pytest -n 2 --dist=loadfile -v --make-reports=${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports ${{ fromJson(needs.setup_gpu.outputs.test_map)[matrix.folders] }} -m "not not_device_test"
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
run: cat /transformers/reports/${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports/failures_short.txt
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports"
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}
name: ${{ matrix.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports
send_results:
name: Send results to webhook
@ -252,7 +252,7 @@ jobs:
check_runner_status,
check_runners,
setup_gpu,
run_tests_amdgpu,
run_models_gpu,
# run_tests_torch_cuda_extensions_single_gpu,
# run_tests_torch_cuda_extensions_multi_gpu
]

View File

@ -385,19 +385,19 @@ jobs:
working-directory: /workspace/transformers
# TODO: Here we pass all tests in the 2 folders for simplicity. It's better to pass only the identified tests.
run: |
python -m pytest -n 1 --dist=loadfile -v --make-reports=${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu tests/deepspeed tests/extended
python -m pytest -n 1 --dist=loadfile -v --make-reports=${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports tests/deepspeed tests/extended
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /workspace/transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu/failures_short.txt
run: cat /workspace/transformers/reports/${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports/failures_short.txt
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_tests_torch_cuda_extensions_gpu_test_reports"
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ matrix.machine_type }}_run_tests_torch_cuda_extensions_gpu_test_reports
path: /workspace/transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu
name: ${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports
path: /workspace/transformers/reports/${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports
run_tests_torch_cuda_extensions_multi_gpu:
name: Torch CUDA extension tests
@ -475,19 +475,19 @@ jobs:
working-directory: /workspace/transformers
# TODO: Here we pass all tests in the 2 folders for simplicity. It's better to pass only the identified tests.
run: |
python -m pytest -n 1 --dist=loadfile -v --make-reports=${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu tests/deepspeed tests/extended
python -m pytest -n 1 --dist=loadfile -v --make-reports=${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports tests/deepspeed tests/extended
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /workspace/transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu/failures_short.txt
run: cat /workspace/transformers/reports/${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports/failures_short.txt
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_tests_torch_cuda_extensions_gpu_test_reports"
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ matrix.machine_type }}_run_tests_torch_cuda_extensions_gpu_test_reports
path: /workspace/transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu
name: ${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports
path: /workspace/transformers/reports/${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports
send_results:
name: Send results to webhook

View File

@ -16,4 +16,5 @@ jobs:
uses: ./.github/workflows/self-scheduled-amd.yml
with:
gpu_flavor: mi210
slack_report_channel: "#transformers-ci-daily-amd"
secrets: inherit

View File

@ -16,4 +16,5 @@ jobs:
uses: ./.github/workflows/self-scheduled-amd.yml
with:
gpu_flavor: mi250
slack_report_channel: "#transformers-ci-daily-amd"
secrets: inherit

View File

@ -0,0 +1,21 @@
name: Self-hosted runner (AMD mi300 scheduled CI caller)
on:
workflow_run:
workflows: ["Self-hosted runner (AMD scheduled CI caller)"]
branches: ["main"]
types: [completed]
push:
branches:
- run_amd_scheduled_ci_caller*
jobs:
run_amd_ci:
name: AMD mi300
needs: build-docker-containers
if: (cancelled() != true) && ((github.event_name == 'workflow_run') || ((github.event_name == 'push') && (startsWith(github.ref_name, 'run_amd_push_ci_caller') || startsWith(github.ref_name, 'mi300-ci'))))
uses: ./.github/workflows/self-scheduled-amd.yml
with:
gpu_flavor: mi300
slack_report_channel: "#transformers-ci-daily-amd"
secrets: inherit

View File

@ -34,7 +34,7 @@ jobs:
fetch-depth: 2
- name: Check Runner Status
run: python utils/check_self_hosted_runner.py --target_runners hf-amd-mi210-ci-1gpu-1,hf-amd-mi250-ci-1gpu-1 --token ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
run: python utils/check_self_hosted_runner.py --target_runners hf-amd-mi210-ci-1gpu-1,hf-amd-mi250-ci-1gpu-1,hf-amd-mi300-ci-1gpu-1 --token ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
check_runners:
name: Check Runners
@ -42,7 +42,7 @@ jobs:
strategy:
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: [self-hosted, docker-gpu, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
runs-on: [self-hosted, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
container:
image: huggingface/transformers-pytorch-amd-gpu
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
@ -63,7 +63,7 @@ jobs:
strategy:
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: [self-hosted, docker-gpu, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
runs-on: [self-hosted, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
container:
image: huggingface/transformers-pytorch-amd-gpu
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
@ -108,7 +108,7 @@ jobs:
run: |
python3 utils/print_env.py
run_tests_single_gpu:
run_models_gpu_single_gpu:
name: Single GPU tests
strategy:
max-parallel: 1 # For now, not to parallelize. Can change later if it works well.
@ -116,7 +116,7 @@ jobs:
matrix:
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
machine_type: [single-gpu]
runs-on: [self-hosted, docker-gpu, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
runs-on: [self-hosted, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
container:
image: huggingface/transformers-pytorch-amd-gpu
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
@ -162,21 +162,21 @@ jobs:
- name: Run all tests on GPU
working-directory: /transformers
run: python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} tests/${{ matrix.folders }}
run: python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports tests/${{ matrix.folders }} -m "not not_device_test"
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
run: cat /transformers/reports/${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports/failures_short.txt
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports"
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}
name: ${{ matrix.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports
run_tests_multi_gpu:
run_models_gpu_multi_gpu:
name: Multi GPU tests
strategy:
max-parallel: 1
@ -184,7 +184,7 @@ jobs:
matrix:
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
machine_type: [multi-gpu]
runs-on: [self-hosted, docker-gpu, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
runs-on: [self-hosted, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
container:
image: huggingface/transformers-pytorch-amd-gpu
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
@ -230,19 +230,19 @@ jobs:
- name: Run all tests on GPU
working-directory: /transformers
run: python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} tests/${{ matrix.folders }}
run: python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports tests/${{ matrix.folders }} -m "not not_device_test"
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
run: cat /transformers/reports/${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports/failures_short.txt
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports"
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}
name: ${{ matrix.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports
run_examples_gpu:
name: Examples tests
@ -250,7 +250,7 @@ jobs:
fail-fast: false
matrix:
machine_type: [single-gpu]
runs-on: [self-hosted, docker-gpu, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
runs-on: [self-hosted, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
container:
image: huggingface/transformers-pytorch-amd-gpu
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
@ -287,19 +287,19 @@ jobs:
working-directory: /transformers
run: |
pip install -r examples/pytorch/_tests_requirements.txt
python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_examples_gpu examples/pytorch
python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_run_examples_gpu_test_reports examples/pytorch -m "not not_device_test"
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_examples_gpu/failures_short.txt
run: cat /transformers/reports/${{ matrix.machine_type }}_run_examples_gpu_test_reports/failures_short.txt
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_examples_gpu"
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_examples_gpu_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ matrix.machine_type }}_run_examples_gpu
path: /transformers/reports/${{ matrix.machine_type }}_examples_gpu
name: ${{ matrix.machine_type }}_run_examples_gpu_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_run_examples_gpu_test_reports
run_pipelines_torch_gpu:
name: PyTorch pipelines tests
@ -307,7 +307,7 @@ jobs:
fail-fast: false
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: [self-hosted, docker-gpu, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
runs-on: [self-hosted, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
container:
image: huggingface/transformers-pytorch-amd-gpu
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
@ -343,28 +343,28 @@ jobs:
- name: Run all pipeline tests on GPU
working-directory: /transformers
run: |
python3 -m pytest -n 1 -v --dist=loadfile --make-reports=${{ matrix.machine_type }}_tests_torch_pipeline_gpu tests/pipelines
python3 -m pytest -n 1 -v --dist=loadfile --make-reports=${{ matrix.machine_type }}_run_pipelines_torch_gpu_test_reports tests/pipelines -m "not not_device_test"
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_torch_pipeline_gpu/failures_short.txt
run: cat /transformers/reports/${{ matrix.machine_type }}_run_pipelines_torch_gpu_test_reports/failures_short.txt
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_tests_torch_pipeline_gpu"
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_pipelines_torch_gpu_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ matrix.machine_type }}_run_tests_torch_pipeline_gpu
path: /transformers/reports/${{ matrix.machine_type }}_tests_torch_pipeline_gpu
name: ${{ matrix.machine_type }}_run_pipelines_torch_gpu_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_run_pipelines_torch_gpu_test_reports
run_tests_torch_deepspeed_gpu:
run_torch_cuda_extensions_gpu:
name: Torch ROCm deepspeed tests
strategy:
fail-fast: false
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: [self-hosted, docker-gpu, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
runs-on: [self-hosted, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
needs: setup
container:
image: huggingface/transformers-pytorch-deepspeed-amd-gpu
@ -400,19 +400,19 @@ jobs:
- name: Run all tests on GPU
working-directory: /transformers
run: python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_torch_deepspeed_gpu tests/deepspeed tests/extended
run: python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports tests/deepspeed tests/extended -m "not not_device_test"
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_torch_deepspeed_gpu/failures_short.txt
run: cat /transformers/reports/${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports/failures_short.txt
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_tests_torch_deepspeed_gpu_test_reports"
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ matrix.machine_type }}_run_tests_torch_deepspeed_gpu_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_tests_torch_deepspeed_gpu
name: ${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports
run_extract_warnings:
name: Extract warnings in CI artifacts
@ -422,11 +422,11 @@ jobs:
check_runner_status,
check_runners,
setup,
run_tests_single_gpu,
run_tests_multi_gpu,
run_models_gpu_single_gpu,
run_models_gpu_multi_gpu,
run_examples_gpu,
run_pipelines_torch_gpu,
run_tests_torch_deepspeed_gpu
run_torch_cuda_extensions_gpu
]
steps:
- name: Checkout transformers
@ -471,11 +471,11 @@ jobs:
check_runner_status,
check_runners,
setup,
run_tests_single_gpu,
run_tests_multi_gpu,
run_models_gpu_single_gpu,
run_models_gpu_multi_gpu,
run_examples_gpu,
run_pipelines_torch_gpu,
run_tests_torch_deepspeed_gpu,
run_torch_cuda_extensions_gpu,
run_extract_warnings
]
steps:

View File

@ -14,8 +14,11 @@ jobs:
name: Model CI
uses: ./.github/workflows/self-scheduled.yml
with:
job: run_tests_gpu
job: run_models_gpu
slack_report_channel: "#transformers-ci-daily-models"
runner: daily-ci
docker: huggingface/transformers-all-latest-gpu
ci_event: Daily CI
secrets: inherit
torch-pipeline:
@ -24,6 +27,9 @@ jobs:
with:
job: run_pipelines_torch_gpu
slack_report_channel: "#transformers-ci-daily-pipeline-torch"
runner: daily-ci
docker: huggingface/transformers-pytorch-gpu
ci_event: Daily CI
secrets: inherit
tf-pipeline:
@ -32,6 +38,9 @@ jobs:
with:
job: run_pipelines_tf_gpu
slack_report_channel: "#transformers-ci-daily-pipeline-tf"
runner: daily-ci
docker: huggingface/transformers-tensorflow-gpu
ci_event: Daily CI
secrets: inherit
example-ci:
@ -40,20 +49,30 @@ jobs:
with:
job: run_examples_gpu
slack_report_channel: "#transformers-ci-daily-examples"
runner: daily-ci
docker: huggingface/transformers-all-latest-gpu
ci_event: Daily CI
secrets: inherit
deepspeed-ci:
name: DeepSpeed CI
uses: ./.github/workflows/self-scheduled.yml
with:
job: run_all_tests_torch_cuda_extensions_gpu
job: run_torch_cuda_extensions_gpu
slack_report_channel: "#transformers-ci-daily-deepspeed"
runner: daily-ci
docker: huggingface/transformers-pytorch-deepspeed-latest-gpu
ci_event: Daily CI
working-directory-prefix: /workspace
secrets: inherit
quantization-ci:
name: Quantization CI
uses: ./.github/workflows/self-scheduled.yml
with:
job: run_tests_quantization_torch_gpu
job: run_quantization_torch_gpu
slack_report_channel: "#transformers-ci-daily-quantization"
runner: daily-ci
docker: huggingface/transformers-quantization-latest-gpu
ci_event: Daily CI
secrets: inherit

View File

@ -2,7 +2,7 @@ name: Self-hosted runner (scheduled)
# Note that each job's dependencies go into a corresponding docker file.
#
# For example for `run_all_tests_torch_cuda_extensions_gpu` the docker image is
# For example for `run_torch_cuda_extensions_gpu` the docker image is
# `huggingface/transformers-pytorch-deepspeed-latest-gpu`, which can be found at
# `docker/transformers-pytorch-deepspeed-latest-gpu/Dockerfile`
@ -15,6 +15,19 @@ on:
slack_report_channel:
required: true
type: string
runner:
required: true
type: string
docker:
required: true
type: string
ci_event:
required: true
type: string
working-directory-prefix:
default: ''
required: false
type: string
env:
HF_HOME: /mnt/cache
@ -33,12 +46,12 @@ env:
jobs:
setup:
if: contains(fromJSON('["run_tests_gpu", "run_tests_quantization_torch_gpu"]'), inputs.job)
if: contains(fromJSON('["run_models_gpu", "run_quantization_torch_gpu"]'), inputs.job)
name: Setup
strategy:
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, daily-ci]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, '${{ inputs.runner }}']
container:
image: huggingface/transformers-all-latest-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
@ -64,7 +77,7 @@ jobs:
run: pip freeze
- id: set-matrix
if: ${{ inputs.job == 'run_tests_gpu' }}
if: ${{ inputs.job == 'run_models_gpu' }}
name: Identify models to test
working-directory: /transformers/tests
run: |
@ -72,7 +85,7 @@ jobs:
echo "slice_ids=$(python3 -c 'd = list(range(${{ env.NUM_SLICES }})); print(d)')" >> $GITHUB_OUTPUT
- id: set-matrix-quantization
if: ${{ inputs.job == 'run_tests_quantization_torch_gpu' }}
if: ${{ inputs.job == 'run_quantization_torch_gpu' }}
name: Identify quantization method to test
working-directory: /transformers/tests
run: |
@ -82,8 +95,8 @@ jobs:
run: |
nvidia-smi
run_tests_gpu:
if: ${{ inputs.job == 'run_tests_gpu' }}
run_models_gpu:
if: ${{ inputs.job == 'run_models_gpu' }}
name: " "
needs: setup
strategy:
@ -96,6 +109,8 @@ jobs:
folder_slices: ${{ needs.setup.outputs.folder_slices }}
machine_type: ${{ matrix.machine_type }}
slice_id: ${{ matrix.slice_id }}
runner: ${{ inputs.runner }}
docker: ${{ inputs.docker }}
secrets: inherit
run_pipelines_torch_gpu:
@ -105,7 +120,7 @@ jobs:
fail-fast: false
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, daily-ci]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, '${{ inputs.runner }}']
container:
image: huggingface/transformers-pytorch-gpu
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
@ -134,19 +149,19 @@ jobs:
- name: Run all pipeline tests on GPU
working-directory: /transformers
run: |
python3 -m pytest -n 1 -v --dist=loadfile --make-reports=${{ matrix.machine_type }}_tests_torch_pipeline_gpu tests/pipelines
python3 -m pytest -n 1 -v --dist=loadfile --make-reports=${{ matrix.machine_type }}_run_pipelines_torch_gpu_test_reports tests/pipelines
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_torch_pipeline_gpu/failures_short.txt
run: cat /transformers/reports/${{ matrix.machine_type }}_run_pipelines_torch_gpu_test_reports/failures_short.txt
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_tests_torch_pipeline_gpu"
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_pipelines_torch_gpu_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ matrix.machine_type }}_run_tests_torch_pipeline_gpu
path: /transformers/reports/${{ matrix.machine_type }}_tests_torch_pipeline_gpu
name: ${{ matrix.machine_type }}_run_pipelines_torch_gpu_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_run_pipelines_torch_gpu_test_reports
run_pipelines_tf_gpu:
if: ${{ inputs.job == 'run_pipelines_tf_gpu' }}
@ -155,7 +170,7 @@ jobs:
fail-fast: false
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, daily-ci]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, '${{ inputs.runner }}']
container:
image: huggingface/transformers-tensorflow-gpu
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
@ -185,19 +200,19 @@ jobs:
- name: Run all pipeline tests on GPU
working-directory: /transformers
run: |
python3 -m pytest -n 1 -v --dist=loadfile --make-reports=${{ matrix.machine_type }}_tests_tf_pipeline_gpu tests/pipelines
python3 -m pytest -n 1 -v --dist=loadfile --make-reports=${{ matrix.machine_type }}_run_pipelines_tf_gpu_test_reports tests/pipelines
- name: Failure short reports
if: ${{ always() }}
run: |
cat /transformers/reports/${{ matrix.machine_type }}_tests_tf_pipeline_gpu/failures_short.txt
cat /transformers/reports/${{ matrix.machine_type }}_run_pipelines_tf_gpu_test_reports/failures_short.txt
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_tests_tf_pipeline_gpu"
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_pipelines_tf_gpu_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ matrix.machine_type }}_run_tests_tf_pipeline_gpu
path: /transformers/reports/${{ matrix.machine_type }}_tests_tf_pipeline_gpu
name: ${{ matrix.machine_type }}_run_pipelines_tf_gpu_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_run_pipelines_tf_gpu_test_reports
run_examples_gpu:
if: ${{ inputs.job == 'run_examples_gpu' }}
@ -206,7 +221,7 @@ jobs:
fail-fast: false
matrix:
machine_type: [single-gpu]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, daily-ci]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, '${{ inputs.runner }}']
container:
image: huggingface/transformers-all-latest-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
@ -236,90 +251,109 @@ jobs:
working-directory: /transformers
run: |
pip install -r examples/pytorch/_tests_requirements.txt
python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_examples_gpu examples/pytorch
python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_run_examples_gpu_test_reports examples/pytorch
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_examples_gpu/failures_short.txt
run: cat /transformers/reports/${{ matrix.machine_type }}_run_examples_gpu_test_reports/failures_short.txt
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_examples_gpu"
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_examples_gpu_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ matrix.machine_type }}_run_examples_gpu
path: /transformers/reports/${{ matrix.machine_type }}_examples_gpu
name: ${{ matrix.machine_type }}_run_examples_gpu_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_run_examples_gpu_test_reports
run_all_tests_torch_cuda_extensions_gpu:
if: ${{ inputs.job == 'run_all_tests_torch_cuda_extensions_gpu' }}
run_torch_cuda_extensions_gpu:
if: ${{ inputs.job == 'run_torch_cuda_extensions_gpu' }}
name: Torch CUDA extension tests
strategy:
fail-fast: false
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, daily-ci]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, '${{ inputs.runner }}']
container:
image: huggingface/transformers-pytorch-deepspeed-latest-gpu
image: ${{ inputs.docker }}
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Update clone
working-directory: /workspace/transformers
working-directory: ${{ inputs.working-directory-prefix }}/transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /workspace/transformers
working-directory: ${{ inputs.working-directory-prefix }}/transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Update / Install some packages (for Past CI)
if: ${{ contains(inputs.docker, '-past-') && contains(inputs.docker, '-pytorch-') }}
working-directory: ${{ inputs.working-directory-prefix }}/transformers
run: |
python3 -m pip install -U datasets
python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate
- name: Remove cached torch extensions
run: rm -rf /github/home/.cache/torch_extensions/
# To avoid unknown test failures
- name: Pre build DeepSpeed *again*
working-directory: /workspace
- name: Pre build DeepSpeed *again* (for daily CI)
if: ${{ contains(inputs.ci_event, 'Daily CI') }}
working-directory: ${{ inputs.working-directory-prefix }}/
run: |
python3 -m pip uninstall -y deepspeed
DS_DISABLE_NINJA=1 DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 python3 -m pip install deepspeed --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check
# To avoid unknown test failures
- name: Pre build DeepSpeed *again* (for nightly & Past CI)
if: ${{ contains(inputs.ci_event, 'Nightly CI') || contains(inputs.ci_event, 'Past CI') }}
working-directory: ${{ inputs.working-directory-prefix }}/
run: |
python3 -m pip uninstall -y deepspeed
rm -rf DeepSpeed
git clone https://github.com/microsoft/DeepSpeed && cd DeepSpeed && rm -rf build
DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 python3 -m pip install . --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Environment
working-directory: /workspace/transformers
working-directory: ${{ inputs.working-directory-prefix }}/transformers
run: |
python utils/print_env.py
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /workspace/transformers
working-directory: ${{ inputs.working-directory-prefix }}/transformers
run: pip freeze
- name: Run all tests on GPU
working-directory: /workspace/transformers
working-directory: ${{ inputs.working-directory-prefix }}/transformers
run: |
python -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu tests/deepspeed tests/extended
python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports tests/deepspeed tests/extended
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /workspace/transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu/failures_short.txt
run: cat ${{ inputs.working-directory-prefix }}/transformers/reports/${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports/failures_short.txt
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_tests_torch_cuda_extensions_gpu_test_reports"
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ matrix.machine_type }}_run_tests_torch_cuda_extensions_gpu_test_reports
path: /workspace/transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu
name: ${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports
path: ${{ inputs.working-directory-prefix }}/transformers/reports/${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports
run_tests_quantization_torch_gpu:
if: ${{ inputs.job == 'run_tests_quantization_torch_gpu' }}
run_quantization_torch_gpu:
if: ${{ inputs.job == 'run_quantization_torch_gpu' }}
name: " "
needs: setup
strategy:
max-parallel: 4
fail-fast: false
matrix:
folders: ${{ fromJson(needs.setup.outputs.quantization_matrix) }}
machine_type: [single-gpu, multi-gpu]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, daily-ci]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, '${{ inputs.runner }}']
container:
image: huggingface/transformers-quantization-latest-gpu
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
@ -357,26 +391,26 @@ jobs:
- name: Run quantization tests on GPU
working-directory: /transformers
run: |
python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_quantization_torch_gpu_${{ matrix.folders }} tests/${{ matrix.folders }}
python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_run_quantization_torch_gpu_${{ matrix.folders }}_test_reports tests/${{ matrix.folders }}
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_quantization_torch_gpu_${{ matrix.folders }}/failures_short.txt
run: cat /transformers/reports/${{ matrix.machine_type }}_run_quantization_torch_gpu_${{ matrix.folders }}_test_reports/failures_short.txt
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_tests_quantization_torch_gpu_${{ env.matrix_folders }}"
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_quantization_torch_gpu_${{ env.matrix_folders }}_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ matrix.machine_type }}_run_tests_quantization_torch_gpu_${{ env.matrix_folders }}
path: /transformers/reports/${{ matrix.machine_type }}_tests_quantization_torch_gpu_${{ matrix.folders }}
name: ${{ matrix.machine_type }}_run_quantization_torch_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_run_quantization_torch_gpu_${{ matrix.folders }}_test_reports
run_extract_warnings:
# Let's only do this for the job `run_tests_gpu` to simplify the (already complex) logic.
if: ${{ always() && inputs.job == 'run_tests_gpu' }}
# Let's only do this for the job `run_models_gpu` to simplify the (already complex) logic.
if: ${{ always() && inputs.job == 'run_models_gpu' }}
name: Extract warnings in CI artifacts
runs-on: ubuntu-22.04
needs: [setup, run_tests_gpu]
needs: [setup, run_models_gpu]
steps:
- name: Checkout transformers
uses: actions/checkout@v4
@ -416,12 +450,12 @@ jobs:
name: Slack Report
needs: [
setup,
run_tests_gpu,
run_models_gpu,
run_pipelines_torch_gpu,
run_pipelines_tf_gpu,
run_examples_gpu,
run_all_tests_torch_cuda_extensions_gpu,
run_tests_quantization_torch_gpu,
run_torch_cuda_extensions_gpu,
run_quantization_torch_gpu,
run_extract_warnings
]
if: ${{ always() }}
@ -434,5 +468,6 @@ jobs:
# This would be an empty string if `setup` is skipped.
folder_slices: ${{ needs.setup.outputs.folder_slices }}
quantization_matrix: ${{ needs.setup.outputs.quantization_matrix }}
ci_event: ${{ inputs.ci_event }}
secrets: inherit

View File

@ -18,7 +18,12 @@ on:
quantization_matrix:
required: true
type: string
ci_event:
required: true
type: string
env:
TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN: ${{ secrets.TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN }}
jobs:
send_results:
@ -35,7 +40,7 @@ jobs:
- uses: actions/checkout@v4
- uses: actions/download-artifact@v4
- name: Send message to Slack
if: ${{ inputs.job != 'run_tests_quantization_torch_gpu' }}
if: ${{ inputs.job != 'run_quantization_torch_gpu' }}
env:
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
CI_SLACK_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID }}
@ -43,7 +48,7 @@ jobs:
CI_SLACK_CHANNEL_DUMMY_TESTS: ${{ secrets.CI_SLACK_CHANNEL_DUMMY_TESTS }}
SLACK_REPORT_CHANNEL: ${{ inputs.slack_report_channel }}
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
CI_EVENT: scheduled
CI_EVENT: ${{ inputs.ci_event }}
CI_SHA: ${{ github.sha }}
CI_WORKFLOW_REF: ${{ github.workflow_ref }}
CI_TEST_JOB: ${{ inputs.job }}
@ -54,34 +59,43 @@ jobs:
# empty string, and the called script still get one argument (which is the emtpy string).
run: |
sudo apt-get install -y curl
pip install huggingface_hub
pip install slack_sdk
pip show slack_sdk
python utils/notification_service.py "${{ inputs.folder_slices }}"
# Upload complete failure tables, as they might be big and only truncated versions could be sent to Slack.
- name: Failure table artifacts
# Only the model testing job is concerned for this step
if: ${{ inputs.job == 'run_tests_gpu' }}
uses: actions/upload-artifact@v4
with:
name: prev_ci_results
path: prev_ci_results
name: ci_results_${{ inputs.job }}
path: ci_results_${{ inputs.job }}
- uses: actions/checkout@v4
- uses: actions/download-artifact@v4
- name: Send message to Slack for quantization workflow
if: ${{ inputs.job == 'run_tests_quantization_torch_gpu' }}
if: ${{ inputs.job == 'run_quantization_torch_gpu' }}
env:
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
SLACK_REPORT_CHANNEL: ${{ inputs.slack_report_channel }}
CI_EVENT: scheduled
CI_EVENT: ${{ inputs.ci_event }}
CI_SHA: ${{ github.sha }}
CI_TEST_JOB: ${{ inputs.job }}
SETUP_STATUS: ${{ inputs.setup_status }}
# We pass `needs.setup.outputs.quantization_matrix` as the argument. A processing in `notification_service_quantization.py` to change
# `quantization/bnb` to `quantization_bnb` is required, as the artifact names use `_` instead of `/`.
run: |
sudo apt-get install -y curl
pip install huggingface_hub
pip install slack_sdk
pip show slack_sdk
python utils/notification_service_quantization.py "${{ inputs.quantization_matrix }}"
# Upload complete failure tables, as they might be big and only truncated versions could be sent to Slack.
- name: Failure table artifacts
if: ${{ inputs.job == 'run_quantization_torch_gpu' }}
uses: actions/upload-artifact@v4
with:
name: ci_results_${{ inputs.job }}
path: ci_results_${{ inputs.job }}

63
.github/workflows/ssh-runner.yml vendored Normal file
View File

@ -0,0 +1,63 @@
name: SSH into our runners
on:
workflow_dispatch:
inputs:
runner_type:
description: 'Type of runner to test (a10 or t4)'
required: true
docker_image:
description: 'Name of the Docker image'
required: true
num_gpus:
description: 'Type of the number of gpus to use (`single` or `multi`)'
required: true
env:
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
HF_HOME: /mnt/cache
TRANSFORMERS_IS_CI: yes
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
RUN_SLOW: yes # For gated repositories, we still need to agree to share information on the Hub repo. page in order to get access. # This token is created under the bot `hf-transformers-bot`.
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
TF_FORCE_GPU_ALLOW_GROWTH: true
CUDA_VISIBLE_DEVICES: 0,1
RUN_PT_TF_CROSS_TESTS: 1
jobs:
ssh_runner:
name: "SSH"
runs-on: ["${{ github.event.inputs.num_gpus }}-gpu", nvidia-gpu, "${{ github.event.inputs.runner_type }}", ci]
container:
image: ${{ github.event.inputs.docker_image }}
options: --gpus all --privileged --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Update clone
working-directory: /transformers
run: |
git fetch && git checkout ${{ github.sha }}
- name: Cleanup
working-directory: /transformers
run: |
rm -rf tests/__pycache__
rm -rf tests/models/__pycache__
rm -rf reports
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Tailscale # In order to be able to SSH when a test fails
uses: huggingface/tailscale-action@main
with:
authkey: ${{ secrets.TAILSCALE_SSH_AUTHKEY }}
slackChannel: ${{ secrets.SLACK_CIFEEDBACK_CHANNEL }}
slackToken: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
waitForSSH: true

18
.github/workflows/trufflehog.yml vendored Normal file
View File

@ -0,0 +1,18 @@
on:
push:
name: Secret Leaks
permissions:
contents: read
jobs:
trufflehog:
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Secret Scanning
uses: trufflesecurity/trufflehog@main

View File

@ -61,7 +61,10 @@ feedback.
The 🤗 Transformers library is robust and reliable thanks to users who report the problems they encounter.
Before you report an issue, we would really appreciate it if you could **make sure the bug was not
already reported** (use the search bar on GitHub under Issues). Your issue should also be related to bugs in the library itself, and not your code. If you're unsure whether the bug is in your code or the library, please ask in the [forum](https://discuss.huggingface.co/) first. This helps us respond quicker to fixing issues related to the library versus general questions.
already reported** (use the search bar on GitHub under Issues). Your issue should also be related to bugs in the library itself, and not your code. If you're unsure whether the bug is in your code or the library, please ask in the [forum](https://discuss.huggingface.co/) or on our [discord](https://discord.com/invite/hugging-face-879548962464493619) first. This helps us respond quicker to fixing issues related to the library versus general questions.
> [!TIP]
> We have a [docs bot](https://huggingface.co/spaces/huggingchat/hf-docs-chat), and we highly encourage you to ask all your questions there. There is always a chance your bug can be fixed with a simple flag 👾🔫
Once you've confirmed the bug hasn't already been reported, please include the following information in your issue so we can quickly resolve it:
@ -129,7 +132,7 @@ You will need basic `git` proficiency to contribute to
manual. Type `git --help` in a shell and enjoy! If you prefer books, [Pro
Git](https://git-scm.com/book/en/v2) is a very good reference.
You'll need **[Python 3.8](https://github.com/huggingface/transformers/blob/main/setup.py#L426)** or above to contribute to 🤗 Transformers. Follow the steps below to start contributing:
You'll need **[Python 3.8](https://github.com/huggingface/transformers/blob/main/setup.py#L449)** or above to contribute to 🤗 Transformers. Follow the steps below to start contributing:
1. Fork the [repository](https://github.com/huggingface/transformers) by
clicking on the **[Fork](https://github.com/huggingface/transformers/fork)** button on the repository's page. This creates a copy of the code
@ -160,7 +163,7 @@ You'll need **[Python 3.8](https://github.com/huggingface/transformers/blob/main
If 🤗 Transformers was already installed in the virtual environment, remove
it with `pip uninstall transformers` before reinstalling it in editable
mode with the `-e` flag.
Depending on your OS, and since the number of optional dependencies of Transformers is growing, you might get a
failure with this command. If that's the case make sure to install the Deep Learning framework you are working with
(PyTorch, TensorFlow and/or Flax) then do:
@ -219,7 +222,7 @@ You'll need **[Python 3.8](https://github.com/huggingface/transformers/blob/main
If you're modifying documents under the `docs/source` directory, make sure the documentation can still be built. This check will also run in the CI when you open a pull request. To run a local check
make sure you install the documentation builder:
```bash
pip install ".[docs]"
```
@ -338,12 +341,12 @@ RUN_SLOW=yes python -m pytest -n auto --dist=loadfile -s -v ./tests/models/my_ne
RUN_SLOW=yes python -m pytest -n auto --dist=loadfile -s -v ./examples/pytorch/text-classification
```
Like the slow tests, there are other environment variables available which not enabled by default during testing:
Like the slow tests, there are other environment variables available which are not enabled by default during testing:
- `RUN_CUSTOM_TOKENIZERS`: Enables tests for custom tokenizers.
- `RUN_PT_FLAX_CROSS_TESTS`: Enables tests for PyTorch + Flax integration.
- `RUN_PT_TF_CROSS_TESTS`: Enables tests for TensorFlow + PyTorch integration.
More environment variables and additional information can be found in the [testing_utils.py](src/transformers/testing_utils.py).
More environment variables and additional information can be found in the [testing_utils.py](https://github.com/huggingface/transformers/blob/main/src/transformers/testing_utils.py).
🤗 Transformers uses `pytest` as a test runner only. It doesn't use any
`pytest`-specific features in the test suite itself.

View File

@ -1,11 +1,11 @@
.PHONY: deps_table_update modified_only_fixup extra_style_checks quality style fixup fix-copies test test-examples
.PHONY: deps_table_update modified_only_fixup extra_style_checks quality style fixup fix-copies test test-examples benchmark
# make sure to test the local checkout in scripts and not the pre-installed one (don't use quotes!)
export PYTHONPATH = src
check_dirs := examples tests src utils
exclude_folders := examples/research_projects
exclude_folders := ""
modified_only_fixup:
$(eval modified_py_files := $(shell python utils/get_modified_files.py $(check_dirs)))
@ -56,6 +56,7 @@ quality:
python utils/custom_init_isort.py --check_only
python utils/sort_auto_mappings.py --check_only
python utils/check_doc_toc.py
python utils/check_docstrings.py --check_all
# Format source code automatically and check is there are any problems left that need manual fixing
@ -96,6 +97,11 @@ test:
test-examples:
python -m pytest -n auto --dist=loadfile -s -v ./examples/pytorch/
# Run benchmark
benchmark:
python3 benchmark/benchmark.py --config-dir benchmark/config --config-name generation --commit=diff backend.model=google/gemma-2b backend.cache_implementation=null,static backend.torch_compile=false,true --multirun
# Run tests for SageMaker DLC release
test-sagemaker: # install sagemaker dependencies in advance with pip install .[sagemaker]

View File

@ -25,39 +25,29 @@ limitations under the License.
</p>
<p align="center">
<a href="https://circleci.com/gh/huggingface/transformers">
<img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/main">
</a>
<a href="https://github.com/huggingface/transformers/blob/main/LICENSE">
<img alt="GitHub" src="https://img.shields.io/github/license/huggingface/transformers.svg?color=blue">
</a>
<a href="https://huggingface.co/docs/transformers/index">
<img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/docs/transformers/index.svg?down_color=red&down_message=offline&up_message=online">
</a>
<a href="https://github.com/huggingface/transformers/releases">
<img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/transformers.svg">
</a>
<a href="https://github.com/huggingface/transformers/blob/main/CODE_OF_CONDUCT.md">
<img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg">
</a>
<a href="https://circleci.com/gh/huggingface/transformers"><img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/main"></a>
<a href="https://github.com/huggingface/transformers/blob/main/LICENSE"><img alt="GitHub" src="https://img.shields.io/github/license/huggingface/transformers.svg?color=blue"></a>
<a href="https://huggingface.co/docs/transformers/index"><img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/docs/transformers/index.svg?down_color=red&down_message=offline&up_message=online"></a>
<a href="https://github.com/huggingface/transformers/releases"><img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/transformers.svg"></a>
<a href="https://github.com/huggingface/transformers/blob/main/CODE_OF_CONDUCT.md"><img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg"></a>
<a href="https://zenodo.org/badge/latestdoi/155220641"><img src="https://zenodo.org/badge/155220641.svg" alt="DOI"></a>
</p>
<h4 align="center">
<p>
<b>English</b> |
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hans.md">简体中文</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hant.md">繁體中文</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ko.md">한국어</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_es.md">Español</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ja.md">日本語</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_hd.md">हिन्दी</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ru.md">Русский</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_pt-br.md">Рortuguês</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_te.md">తెలుగు</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_fr.md">Français</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_de.md">Deutsch</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_vi.md">Tiếng Việt</a> |
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_zh-hans.md">简体中文</a> |
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_zh-hant.md">繁體中文</a> |
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_ko.md">한국어</a> |
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_es.md">Español</a> |
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_ja.md">日本語</a> |
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_hd.md">हिन्दी</a> |
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_ru.md">Русский</a> |
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_pt-br.md">Рortuguês</a> |
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_te.md">తెలుగు</a> |
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_fr.md">Français</a> |
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_de.md">Deutsch</a> |
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_vi.md">Tiếng Việt</a> |
</p>
</h4>

View File

@ -14,7 +14,7 @@ Models uploaded on the Hugging Face Hub come in different formats. We heavily re
models in the [`safetensors`](https://github.com/huggingface/safetensors) format (which is the default prioritized
by the transformers library), as developed specifically to prevent arbitrary code execution on your system.
To avoid loading models from unsafe formats(e.g. [pickle](https://docs.python.org/3/library/pickle.html), you should use the `use_safetenstors` parameter. If doing so, in the event that no .safetensors file is present, transformers will error when loading the model.
To avoid loading models from unsafe formats(e.g. [pickle](https://docs.python.org/3/library/pickle.html), you should use the `use_safetensors` parameter. If doing so, in the event that no .safetensors file is present, transformers will error when loading the model.
### Remote code

View File

@ -596,7 +596,7 @@ Keywords: Data-Centric AI, Data Quality, Noisy Labels, Outlier Detection, Active
## [BentoML](https://github.com/bentoml/BentoML)
[BentoML](https://github.com/bentoml) is the unified framework for for building, shipping, and scaling production-ready AI applications incorporating traditional ML, pre-trained AI models, Generative and Large Language Models.
[BentoML](https://github.com/bentoml) is the unified framework for building, shipping, and scaling production-ready AI applications incorporating traditional ML, pre-trained AI models, Generative and Large Language Models.
All Hugging Face models and pipelines can be seamlessly integrated into BentoML applications, enabling the running of models on the most suitable hardware and independent scaling based on usage.
Keywords: BentoML, Framework, Deployment, AI Applications

326
benchmark/benchmark.py Normal file
View File

@ -0,0 +1,326 @@
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Run benchmark using the `optimum-benchmark` library with some customization in `transformers`.
Assume we are under `transformers` root directory: (make sure the commits are valid commits)
```bash
python benchmark/benchmark.py --config-dir benchmark/config --config-name generation --commit=9b9c7f03da625b13643e99205c691fe046461724 --metrics=decode.latency.mean,per_token.latency.mean,per_token.throughput.value backend.model=google/gemma-2b benchmark.input_shapes.sequence_length=5,7 benchmark.input_shapes.batch_size=1,2 --multirun
```
"""
import argparse
import glob
import json
import os.path
import re
import tempfile
from contextlib import contextmanager
from pathlib import Path
from git import Repo
from huggingface_hub import HfApi
from optimum_benchmark import Benchmark
from optimum_benchmark_wrapper import main
PATH_TO_REPO = Path(__file__).parent.parent.resolve()
@contextmanager
def checkout_commit(repo: Repo, commit_id: str):
"""
Context manager that checks out a given commit when entered, but gets back to the reference it was at on exit.
Args:
repo (`git.Repo`): A git repository (for instance the Transformers repo).
commit_id (`str`): The commit reference to checkout inside the context manager.
"""
current_head = repo.head.commit if repo.head.is_detached else repo.head.ref
try:
repo.git.checkout(commit_id)
yield
finally:
repo.git.checkout(current_head)
def summarize(run_dir, metrics, expand_metrics=False):
"""Produce a summary for each optimum-benchmark launched job's output directory found in `run_dir`.
Each summary's format is as follows (for `expand_metrics=False`):
```
{
"model": "google/gemma-2b",
"commit": "3cd6ed22e4d49219f300f5055e71e3929aba20d7",
"config": "benchmark.input_shapes.batch_size=1,benchmark.input_shapes.sequence_length=5",
"metrics": {
"decode.latency.mean": 1.624666809082031,
"per_token.latency.mean": 0.012843788806628804,
"per_token.throughput.value": 77.85864553330948
}
}
```
"""
reports = glob.glob(os.path.join(run_dir, "**/benchmark_report.json"), recursive=True)
report_dirs = [str(Path(report).parent) for report in reports]
summaries = []
for report_dir in report_dirs:
commit = re.search(r"/commit=([^/]+)", report_dir).groups()[0]
if not os.path.isfile(os.path.join(report_dir, "benchmark.json")):
continue
benchmark = Benchmark.from_json(os.path.join(report_dir, "benchmark.json"))
report = benchmark.report
model = benchmark.config.backend["model"]
# Ths looks like `benchmark.input_shapes.batch_size=1,benchmark.input_shapes.sequence_length=5`.
# (we rely on the usage of hydra's `${hydra.job.override_dirname}`.)
benchmark_name = re.sub(f"backend.model={model},*", "", report_dir)
benchmark_name = str(Path(benchmark_name).parts[-1])
if benchmark_name.startswith("commit="):
benchmark_name = benchmark.config.name
metrics_values = {}
# post-processing of report: show a few selected/important metric
for metric in metrics:
keys = metric.split(".")
value = report
current = metrics_values
for key in keys:
# Avoid KeyError when a user's specified metric has typo.
# TODO: Give warnings.
if key not in value:
continue
value = value[key]
if expand_metrics:
if isinstance(value, dict):
if key not in current:
current[key] = {}
current = current[key]
else:
current[key] = value
if not expand_metrics:
metrics_values[metric] = value
# show some config information
print(f"model: {model}")
print(f"commit: {commit}")
print(f"config: {benchmark_name}")
if len(metrics_values) > 0:
print("metrics:")
if expand_metrics:
print(metrics_values)
else:
for metric, value in metrics_values.items():
print(f" - {metric}: {value}")
print("-" * 80)
summary = {
"model": model,
"commit": commit,
"config": benchmark_name,
"metrics": metrics_values,
}
summaries.append(summary)
with open(os.path.join(report_dir, "summary.json"), "w") as fp:
json.dump(summary, fp, indent=4)
return summaries
def combine_summaries(summaries):
"""Combine a list of summary obtained from the function `summarize`.
The combined summary's format is as follows:
```
"google/gemma-2b": {
"benchmark.input_shapes.batch_size=1,benchmark.input_shapes.sequence_length=5": {
"3cd6ed22e4d49219f300f5055e71e3929aba20d7": {
"metrics": {"decode.latency.mean": 1.624666809082031}
},
"c97ee28b117c0abe8e08891f402065e4df6d72aa": {
"metrics": {"decode.latency.mean": 1.6278163452148438}
}
},
"benchmark.input_shapes.batch_size=2,benchmark.input_shapes.sequence_length=5": {
"3cd6ed22e4d49219f300f5055e71e3929aba20d7": {
"metrics": {"decode.latency.mean": 1.6947791748046876}
},
"c97ee28b117c0abe8e08891f402065e4df6d72aa": {
"metrics": {
"decode.latency.mean": 1.6980519409179688}
}
}
}
```
"""
combined = {}
for summary in summaries:
model = summary["model"]
config = summary["config"]
commit = summary["commit"]
if model not in combined:
combined[model] = {}
if config not in combined[model]:
combined[model][config] = {}
if commit not in combined[model][config]:
combined[model][config][commit] = {"metrics": summary["metrics"]}
with open(os.path.join(exp_run_dir, "summary.json"), "w") as fp:
json.dump(combined, fp, indent=4)
print(json.dumps(combined, indent=4))
return combined
if __name__ == "__main__":
def list_str(values):
return values.split(",")
parser = argparse.ArgumentParser()
parser.add_argument("--config-dir", type=str, required=True, help="The path to the config directory.")
parser.add_argument("--config-name", type=str, required=True, help="The config name.")
# arguments specific to this wrapper for our own customization
parser.add_argument("--ensure_empty", type=bool, default=True, help="If to create a temporary directory.")
parser.add_argument(
"--commit",
type=list_str,
default="",
help="Comma-separated list of branch names and/or commit sha values on which the benchmark will run. If `diff` is specified, it will run on both the current head and the `main` branch.",
)
parser.add_argument("--metrics", type=str, help="The metrics to be included in the summary.")
parser.add_argument("--repo_id", type=str, default=None, help="The repository to which the file will be uploaded.")
parser.add_argument("--path_in_repo", type=str, default=None, help="Relative filepath in the repo.")
parser.add_argument("--token", type=str, default=None, help="A valid user access token (string).")
args, optimum_benchmark_args = parser.parse_known_args()
repo = Repo(PATH_TO_REPO)
metrics = [
"prefill.latency.mean",
"prefill.throughput.value",
"decode.latency.mean",
"decode.throughput.value",
"per_token.latency.mean",
"per_token.throughput.value",
]
if args.metrics is not None:
metrics = args.metrics.split(",")
# Get `backend.model` in a hacky way: We want to control the experiment flow manually.
models = [""]
for idx, arg in enumerate(optimum_benchmark_args):
if arg.startswith("backend.model="):
models = arg[len("backend.model=") :]
models = models.split(",")
break
optimum_benchmark_args = [arg for arg in optimum_benchmark_args if not arg.startswith("backend.model=")]
# Get the commit(s)
current_head = str(repo.head.commit) if repo.head.is_detached else str(repo.head.ref)
commits = [x for x in args.commit if x != ""]
if len(commits) == 0:
commits = [current_head]
elif len(commits) == 1 and commits[0] == "diff":
# compare to `main`
commits = ["main", current_head]
# Get the specified run directory
run_dir_arg_idx, run_dir = -1, None
sweep_dir_arg_idx, sweep_dir = -1, None
for idx, arg in enumerate(optimum_benchmark_args):
if arg.startswith("hydra.run.dir="):
run_dir = arg[len("hydra.run.dir=") :]
run_dir_arg_idx = idx
elif arg.startswith("hydra.sweep.dir="):
sweep_dir = arg[len("hydra.sweep.dir=") :]
sweep_dir_arg_idx = idx
exp_run_dir, arg_dix, arg_name = (
(sweep_dir, sweep_dir_arg_idx, "hydra.sweep.dir")
if "--multirun" in optimum_benchmark_args
else (run_dir, run_dir_arg_idx, "hydra.run.dir")
)
# TODO: not hardcoded
if exp_run_dir is None and args.ensure_empty:
exp_run_dir = "_benchmark"
if args.ensure_empty:
os.makedirs(exp_run_dir, exist_ok=True)
exp_run_dir = tempfile.mkdtemp(dir=exp_run_dir)
run_summaries = []
for commit in commits:
with checkout_commit(repo, commit):
commit = str(repo.head.commit)
commit_run_dir = exp_run_dir
if exp_run_dir is not None:
commit_run_dir = os.path.join(exp_run_dir, rf"commit\={commit}")
print(f"Run benchmark on commit: {commit}")
for model in models:
model_arg = [f"backend.model={model}"] if model != "" else []
dir_args = []
if commit_run_dir is not None:
if arg_dix > -1:
optimum_benchmark_args[arg_dix] = f"{arg_name}={commit_run_dir}"
else:
dir_args = [
f"hydra.sweep.dir={commit_run_dir}",
f"hydra.run.dir={commit_run_dir}/" + "${hydra.job.override_dirname}",
]
main(args.config_dir, args.config_name, model_arg + dir_args + optimum_benchmark_args)
if commit_run_dir is not None:
# Need to remove the `\` character
summaries = summarize(commit_run_dir.replace("\\", ""), metrics)
run_summaries.extend(summaries)
# aggregate the information across the commits
if exp_run_dir is not None:
with open(os.path.join(exp_run_dir, "summaries.json"), "w") as fp:
json.dump(run_summaries, fp, indent=4)
combined_summary = combine_summaries(run_summaries)
if args.repo_id is not None and args.path_in_repo is not None:
# Upload to Hub
api = HfApi()
api.upload_folder(
folder_path=exp_run_dir,
path_in_repo=args.path_in_repo,
repo_id=args.repo_id,
repo_type="dataset",
token=args.token,
)

View File

@ -0,0 +1,57 @@
defaults:
- benchmark # inheriting benchmark schema
- scenario: inference
- launcher: process
- backend: pytorch
- _self_ # for hydra 1.1 compatibility
name: pytorch_generate
launcher:
start_method: spawn
device_isolation: true
device_isolation_action: warn
backend:
device: cuda
device_ids: 0
no_weights: true
model: meta-llama/Llama-2-7b-hf
cache_implementation: static
torch_compile: true
torch_dtype: float16
torch_compile_config:
backend: inductor
mode: reduce-overhead
fullgraph: true
scenario:
input_shapes:
batch_size: 1
sequence_length: 7
generate_kwargs:
max_new_tokens: 128
min_new_tokens: 128
do_sample: false
memory: true
latency: true
iterations: 2
duration: 0
# hydra/cli specific settings
hydra:
run:
# where to store run results
dir: runs/${name}
job:
# change working directory to the run directory
chdir: true
env_set:
# set environment variable OVERRIDE_BENCHMARKS to 1
# to not skip benchmarks that have been run before
OVERRIDE_BENCHMARKS: 1
LOG_LEVEL: WARN
sweep:
dir: multirun
subdir: ${hydra.job.override_dirname}

View File

@ -0,0 +1,16 @@
import argparse
import subprocess
def main(config_dir, config_name, args):
subprocess.run(["optimum-benchmark", "--config-dir", f"{config_dir}", "--config-name", f"{config_name}"] + ["hydra/job_logging=disabled", "hydra/hydra_logging=disabled"] + args)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--config-dir", type=str, required=True, help="The path to the config directory.")
parser.add_argument("--config-name", type=str, required=True, help="The config name.")
args, unknown = parser.parse_known_args()
main(args.config_dir, args.config_name, unknown)

View File

@ -53,7 +53,7 @@ NOT_DEVICE_TESTS = {
"test_torch_save_load",
"test_initialization",
"test_forward_signature",
"test_model_common_attributes",
"test_model_get_set_embeddings",
"test_model_main_input_name",
"test_correct_missing_keys",
"test_tie_model_weights",
@ -71,7 +71,7 @@ NOT_DEVICE_TESTS = {
"ModelTester::test_pipeline_",
"/repo_utils/",
"/utils/",
"/tools/",
"/agents/",
}
# allow having multiple repository checkouts and not needing to remember to rerun
@ -94,7 +94,7 @@ def pytest_configure(config):
config.addinivalue_line("markers", "is_pipeline_test: mark test to run only when pipelines are tested")
config.addinivalue_line("markers", "is_staging_test: mark test to run only in the staging environment")
config.addinivalue_line("markers", "accelerate_tests: mark test that require accelerate")
config.addinivalue_line("markers", "tool_tests: mark the tool tests that are run on their specific schedule")
config.addinivalue_line("markers", "agent_tests: mark the agent tests that are run on their specific schedule")
config.addinivalue_line("markers", "not_device_test: mark the tests always running on cpu")

View File

@ -0,0 +1,15 @@
FROM python:3.10-slim
ENV PYTHONDONTWRITEBYTECODE=1
USER root
ARG REF=main
RUN apt-get update && apt-get install -y time git pkg-config make git-lfs
ENV UV_PYTHON=/usr/local/bin/python
RUN pip install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools GitPython
RUN uv pip install --no-cache-dir --upgrade 'torch' --index-url https://download.pytorch.org/whl/cpu
# tensorflow pin matching setup.py
RUN uv pip install --no-cache-dir "tensorflow-cpu<2.16" "tf-keras<2.16"
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[flax,quality,torch-speech,vision,testing]"
RUN git lfs install
RUN pip uninstall -y transformers
RUN apt-get clean && rm -rf /var/lib/apt/lists/* && apt-get autoremove && apt-get autoclean

View File

@ -0,0 +1,26 @@
FROM python:3.10-slim
ENV PYTHONDONTWRITEBYTECODE=1
USER root
RUN apt-get update && apt-get install -y libsndfile1-dev espeak-ng time git cmake wget xz-utils build-essential g++5 libprotobuf-dev protobuf-compiler
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
RUN wget https://github.com/ku-nlp/jumanpp/releases/download/v2.0.0-rc3/jumanpp-2.0.0-rc3.tar.xz
RUN tar xvf jumanpp-2.0.0-rc3.tar.xz
RUN mkdir jumanpp-2.0.0-rc3/bld
WORKDIR ./jumanpp-2.0.0-rc3/bld
RUN wget -LO catch.hpp https://github.com/catchorg/Catch2/releases/download/v2.13.8/catch.hpp
RUN mv catch.hpp ../libs/
RUN cmake .. -DCMAKE_INSTALL_PREFIX=/usr/local
RUN make install -j 10
RUN uv pip install --no-cache --upgrade 'torch' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir --no-deps accelerate --extra-index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir "transformers[ja,testing,sentencepiece,jieba,spacy,ftfy,rjieba]" unidic unidic-lite
# spacy is not used so not tested. Causes to failures. TODO fix later
RUN python3 -m unidic download
RUN pip uninstall -y transformers
RUN apt-get clean && rm -rf /var/lib/apt/lists/*
RUN apt remove -y g++ cmake xz-utils libprotobuf-dev protobuf-compiler

View File

@ -0,0 +1,12 @@
FROM python:3.10-slim
ENV PYTHONDONTWRITEBYTECODE=1
USER root
RUN apt-get update && apt-get install -y libsndfile1-dev espeak-ng time git
RUN apt-get install -y g++ cmake
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv venv
RUN uv pip install --no-cache-dir -U pip setuptools albumentations seqeval
RUN pip install --upgrade --no-cache-dir "transformers[tf-cpu,sklearn,testing,sentencepiece,tf-speech,vision]"
RUN uv pip install --no-cache-dir "protobuf==3.20.3"
RUN pip uninstall -y transformers
RUN apt-get clean && rm -rf /var/lib/apt/lists/*

View File

@ -0,0 +1,11 @@
FROM python:3.10-slim
ENV PYTHONDONTWRITEBYTECODE=1
USER root
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git g++ cmake pkg-config openssh-client git
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
RUN pip install --no-cache-dir 'torch' 'torchvision' 'torchaudio' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-deps timm accelerate --extra-index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir librosa "transformers[sklearn,sentencepiece,vision,testing]" seqeval albumentations jiwer
RUN pip uninstall -y transformers
RUN apt-get clean && rm -rf /var/lib/apt/lists/*

View File

@ -0,0 +1,17 @@
FROM python:3.10-slim
ENV PYTHONDONTWRITEBYTECODE=1
ARG REF=main
USER root
RUN apt-get update && apt-get install -y libsndfile1-dev espeak-ng time git libgl1-mesa-glx libgl1 g++ tesseract-ocr
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
RUN pip install --no-cache-dir 'torch' 'torchvision' 'torchaudio' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir --no-deps timm accelerate
RUN pip install -U --upgrade-strategy eager --no-cache-dir pytesseract python-Levenshtein opencv-python nltk
# RUN uv pip install --no-cache-dir natten==0.15.1+torch210cpu -f https://shi-labs.com/natten/wheels
RUN pip install --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[testing, vision]" 'scikit-learn' 'torch-stft' 'nose' 'dataset'
# RUN git clone https://github.com/facebookresearch/detectron2.git
# RUN python3 -m pip install --no-cache-dir -e detectron2
RUN pip install 'git+https://github.com/facebookresearch/detectron2.git@92ae9f0b92aba5867824b4f12aa06a22a60a45d3'
RUN pip uninstall -y transformers
RUN apt-get clean && rm -rf /var/lib/apt/lists/*

View File

@ -0,0 +1,10 @@
FROM python:3.10-slim
ENV PYTHONDONTWRITEBYTECODE=1
ARG REF=main
USER root
RUN apt-get update && apt-get install -y libsndfile1-dev espeak-ng time git g++ cmake
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
RUN pip install --no-cache-dir "scipy<1.13" "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[flax,testing,sentencepiece,flax-speech,vision]"
RUN pip uninstall -y transformers
RUN apt-get clean && rm -rf /var/lib/apt/lists/* && apt-get autoremove && apt-get autoclean

View File

@ -0,0 +1,10 @@
FROM python:3.10-slim
ENV PYTHONDONTWRITEBYTECODE=1
ARG REF=main
USER root
RUN apt-get update && apt-get install -y libsndfile1-dev espeak-ng time git cmake g++
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
RUN pip install --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[sklearn,tf-cpu,testing,sentencepiece,tf-speech,vision]"
RUN uv pip install --no-cache-dir "protobuf==3.20.3" tensorflow_probability
RUN apt-get clean && rm -rf /var/lib/apt/lists/*

View File

@ -0,0 +1,11 @@
FROM python:3.10-slim
ENV PYTHONDONTWRITEBYTECODE=1
ARG REF=main
USER root
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git pkg-config openssh-client git
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
RUN pip install --no-cache-dir 'torch' 'torchvision' 'torchaudio' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-deps timm accelerate --extra-index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir librosa "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[sklearn,sentencepiece,vision,testing]"
RUN pip uninstall -y transformers

View File

@ -0,0 +1,9 @@
FROM python:3.10-slim
ENV PYTHONDONTWRITEBYTECODE=1
ARG REF=main
USER root
RUN apt-get update && apt-get install -y time git
ENV UV_PYTHON=/usr/local/bin/python
RUN pip install uv && uv venv
RUN uv pip install --no-cache-dir -U pip setuptools GitPython "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[ruff]" urllib3
RUN apt-get install -y jq curl && apt-get clean && rm -rf /var/lib/apt/lists/*

View File

@ -0,0 +1,12 @@
FROM python:3.10-slim
ENV PYTHONDONTWRITEBYTECODE=1
ARG REF=main
USER root
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git g++ pkg-config openssh-client git
RUN apt-get install -y cmake
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
RUN pip install --upgrade --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[tf-cpu,sklearn,testing,sentencepiece,tf-speech,vision]"
RUN uv pip install --no-cache-dir "protobuf==3.20.3"
RUN pip uninstall -y transformers
RUN apt-get clean && rm -rf /var/lib/apt/lists/* && apt-get autoremove && apt-get autoclean

View File

@ -0,0 +1,16 @@
FROM python:3.10-slim
ENV PYTHONDONTWRITEBYTECODE=1
ARG REF=main
USER root
RUN apt-get update && apt-get install -y libsndfile1-dev espeak-ng time git g++ cmake pkg-config openssh-client git
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
RUN uv pip install --no-deps accelerate
RUN pip install --no-cache-dir 'torch' 'torchvision' 'torchaudio' --index-url https://download.pytorch.org/whl/cpu
RUN pip install --no-cache-dir "scipy<1.13" "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[flax,audio,sklearn,sentencepiece,vision,testing]"
# RUN pip install --no-cache-dir "scipy<1.13" "transformers[flax,testing,sentencepiece,flax-speech,vision]"
RUN pip uninstall -y transformers
RUN apt-get clean && rm -rf /var/lib/apt/lists/* && apt-get autoremove && apt-get autoclean

View File

@ -0,0 +1,11 @@
FROM python:3.10-slim
ENV PYTHONDONTWRITEBYTECODE=1
ARG REF=main
USER root
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git g++ cmake pkg-config openssh-client git git-lfs
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
RUN pip install --no-cache-dir 'torch' 'torchvision' 'torchaudio' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-deps timm accelerate --extra-index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir librosa "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[sklearn,sentencepiece,vision,testing]"
RUN pip uninstall -y transformers

View File

@ -0,0 +1,19 @@
FROM python:3.10-slim
ENV PYTHONDONTWRITEBYTECODE=1
ARG REF=main
RUN echo ${REF}
USER root
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git g++ cmake pkg-config openssh-client git git-lfs
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
RUN uv pip install --no-cache-dir --no-deps accelerate --extra-index-url https://download.pytorch.org/whl/cpu
RUN pip install --no-cache-dir 'torch' 'torchvision' 'torchaudio' --index-url https://download.pytorch.org/whl/cpu
RUN git lfs install
RUN uv pip install --no-cache-dir pypi-kenlm
RUN pip install --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[tf-cpu,sklearn,sentencepiece,vision,testing]"
RUN uv pip install --no-cache-dir "protobuf==3.20.3" librosa
RUN pip uninstall -y transformers
RUN apt-get clean && rm -rf /var/lib/apt/lists/* && apt-get autoremove && apt-get autoclean

View File

@ -1,4 +1,4 @@
FROM nvidia/cuda:11.8.0-cudnn8-devel-ubuntu20.04
FROM nvidia/cuda:12.1.0-cudnn8-devel-ubuntu20.04
LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive
@ -9,11 +9,11 @@ SHELL ["sh", "-lc"]
# The following `ARG` are mainly used to specify the versions explicitly & directly in this docker file, and not meant
# to be used as arguments for docker build (so far).
ARG PYTORCH='2.2.1'
ARG PYTORCH='2.4.0'
# (not always a valid torch version)
ARG INTEL_TORCH_EXT='2.2.0'
ARG INTEL_TORCH_EXT='2.3.0'
# Example: `cu102`, `cu113`, etc.
ARG CUDA='cu118'
ARG CUDA='cu121'
RUN apt update
RUN apt install -y git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-pip ffmpeg git-lfs
@ -48,6 +48,13 @@ RUN python3 -m pip install --no-cache-dir decord av==9.2.0
# Some slow tests require bnb
RUN python3 -m pip install --no-cache-dir bitsandbytes
# Some tests require quanto
RUN python3 -m pip install --no-cache-dir quanto
# `quanto` will install `ninja` which leads to many `CUDA error: an illegal memory access ...` in some model tests
# (`deformable_detr`, `rwkv`, `mra`)
RUN python3 -m pip uninstall -y ninja
# For `dinat` model
# The `XXX` part in `torchXXX` needs to match `PYTORCH` (to some extent)
RUN python3 -m pip install --no-cache-dir natten==0.15.1+torch220$CUDA -f https://shi-labs.com/natten/wheels

View File

@ -1,24 +1,19 @@
FROM rocm/dev-ubuntu-20.04:5.6
FROM rocm/dev-ubuntu-22.04:6.0.2
# rocm/pytorch has no version with 2.1.0
LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive
ARG PYTORCH='2.1.0'
ARG TORCH_VISION='0.16.0'
ARG TORCH_AUDIO='2.1.0'
ARG ROCM='5.6'
RUN apt update && \
apt install -y --no-install-recommends git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-dev python3-pip ffmpeg && \
apt install -y --no-install-recommends git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-dev python3-pip python3-dev ffmpeg && \
apt clean && \
rm -rf /var/lib/apt/lists/*
RUN python3 -m pip install --no-cache-dir --upgrade pip
RUN python3 -m pip install --no-cache-dir --upgrade pip numpy
RUN python3 -m pip install torch==$PYTORCH torchvision==$TORCH_VISION torchaudio==$TORCH_AUDIO --index-url https://download.pytorch.org/whl/rocm$ROCM
RUN python3 -m pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm6.0
RUN python3 -m pip install --no-cache-dir --upgrade pip setuptools ninja git+https://github.com/facebookresearch/detectron2.git pytesseract "itsdangerous<2.1.0"
RUN python3 -m pip install --no-cache-dir --upgrade importlib-metadata setuptools ninja git+https://github.com/facebookresearch/detectron2.git pytesseract "itsdangerous<2.1.0"
ARG REF=main
WORKDIR /
@ -35,5 +30,5 @@ RUN python3 -m pip uninstall -y tensorflow flax
# this line must be added in order for python to be aware of transformers.
RUN cd transformers && python3 setup.py develop
# Remove nvml as it is not compatible with ROCm
RUN python3 -m pip uninstall py3nvml pynvml -y
# Remove nvml as it is not compatible with ROCm. apex is not tested on NVIDIA either.
RUN python3 -m pip uninstall py3nvml pynvml apex -y

View File

@ -42,7 +42,7 @@ RUN python3 -m pip uninstall -y deepspeed
# This has to be run (again) inside the GPU VMs running the tests.
# The installation works here, but some tests fail, if we don't pre-build deepspeed again in the VMs running the tests.
# TODO: Find out why test fail.
RUN DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 python3 -m pip install deepspeed --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check 2>&1
RUN DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 python3 -m pip install "deepspeed<=0.14.0" --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check 2>&1
# When installing in editable mode, `transformers` is not recognized as a package.
# this line must be added in order for python to be aware of transformers.

View File

@ -11,7 +11,7 @@ ARG REF=main
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
# If set to nothing, will install the latest version
ARG PYTORCH='2.1.1'
ARG PYTORCH='2.4.0'
ARG TORCH_VISION=''
ARG TORCH_AUDIO=''
# Example: `cu102`, `cu113`, etc.

8
docker/transformers-quantization-latest-gpu/Dockerfile Normal file → Executable file
View File

@ -45,6 +45,12 @@ RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/opt
# Add aqlm for quantization testing
RUN python3 -m pip install --no-cache-dir aqlm[gpu]==1.0.2
# Add hqq for quantization testing
RUN python3 -m pip install --no-cache-dir hqq
# For GGUF tests
RUN python3 -m pip install --no-cache-dir gguf
# Add autoawq for quantization testing
# >=v0.2.3 needed for compatibility with torch 2.2.1
RUN python3 -m pip install --no-cache-dir https://github.com/casper-hansen/AutoAWQ/releases/download/v0.2.3/autoawq-0.2.3+cu118-cp38-cp38-linux_x86_64.whl
@ -57,4 +63,4 @@ RUN python3 -m pip install git+https://github.com/NetEase-FuXi/EETQ.git
# When installing in editable mode, `transformers` is not recognized as a package.
# this line must be added in order for python to be aware of transformers.
RUN cd transformers && python3 setup.py develop
RUN cd transformers && python3 setup.py develop

View File

@ -1,4 +1,4 @@
FROM nvidia/cuda:11.8.0-cudnn8-devel-ubuntu20.04
FROM nvidia/cuda:12.1.0-cudnn8-devel-ubuntu20.04
LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive

View File

@ -162,7 +162,7 @@ Transformers verwendet die Shell-Umgebungsvariablen `PYTORCH_TRANSFORMERS_CACHE`
## Offline Modus
Transformers ist in der Lage, in einer Firewall- oder Offline-Umgebung zu laufen, indem es nur lokale Dateien verwendet. Setzen Sie die Umgebungsvariable `TRANSFORMERS_OFFLINE=1`, um dieses Verhalten zu aktivieren.
Transformers ist in der Lage, in einer Firewall- oder Offline-Umgebung zu laufen, indem es nur lokale Dateien verwendet. Setzen Sie die Umgebungsvariable `HF_HUB_OFFLINE=1`, um dieses Verhalten zu aktivieren.
<Tip>
@ -179,7 +179,7 @@ python examples/pytorch/translation/run_translation.py --model_name_or_path goog
Führen Sie das gleiche Programm in einer Offline-Instanz mit aus:
```bash
HF_DATASETS_OFFLINE=1 TRANSFORMERS_OFFLINE=1 \
HF_DATASETS_OFFLINE=1 HF_HUB_OFFLINE=1 \
python examples/pytorch/translation/run_translation.py --model_name_or_path google-t5/t5-small --dataset_name wmt16 --dataset_config ro-en ...
```

View File

@ -86,10 +86,10 @@ model.load_adapter(peft_model_id)
Die `bitsandbytes`-Integration unterstützt Datentypen mit 8bit und 4bit Genauigkeit, was für das Laden großer Modelle nützlich ist, weil es Speicher spart (lesen Sie den `bitsandbytes`-Integrations [guide](./quantization#bitsandbytes-integration), um mehr zu erfahren). Fügen Sie die Parameter `load_in_8bit` oder `load_in_4bit` zu [`~PreTrainedModel.from_pretrained`] hinzu und setzen Sie `device_map="auto"`, um das Modell effektiv auf Ihre Hardware zu verteilen:
```py
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
peft_model_id = "ybelkada/opt-350m-lora"
model = AutoModelForCausalLM.from_pretrained(peft_model_id, device_map="auto", load_in_8bit=True)
model = AutoModelForCausalLM.from_pretrained(peft_model_id, quantization_config=BitsAndBytesConfig(load_in_8bit=True))
```
## Einen neuen Adapter hinzufügen

View File

@ -16,7 +16,7 @@ rendered properly in your Markdown viewer.
# Trainieren mit einem Skript
Neben den 🤗 Transformers [notebooks](./noteboks/README) gibt es auch Beispielskripte, die zeigen, wie man ein Modell für eine Aufgabe mit [PyTorch](https://github.com/huggingface/transformers/tree/main/examples/pytorch), [TensorFlow](https://github.com/huggingface/transformers/tree/main/examples/tensorflow) oder [JAX/Flax](https://github.com/huggingface/transformers/tree/main/examples/flax) trainiert.
Neben den 🤗 Transformers [notebooks](./notebooks) gibt es auch Beispielskripte, die zeigen, wie man ein Modell für eine Aufgabe mit [PyTorch](https://github.com/huggingface/transformers/tree/main/examples/pytorch), [TensorFlow](https://github.com/huggingface/transformers/tree/main/examples/tensorflow) oder [JAX/Flax](https://github.com/huggingface/transformers/tree/main/examples/flax) trainiert.
Sie werden auch Skripte finden, die wir in unseren [Forschungsprojekten](https://github.com/huggingface/transformers/tree/main/examples/research_projects) und [Legacy-Beispielen](https://github.com/huggingface/transformers/tree/main/examples/legacy) verwendet haben und die größtenteils von der Community stammen. Diese Skripte werden nicht aktiv gepflegt und erfordern eine bestimmte Version von 🤗 Transformers, die höchstwahrscheinlich nicht mit der neuesten Version der Bibliothek kompatibel ist.

View File

@ -185,16 +185,16 @@ pytest -k "test and ada" tests/test_optimization.py
Manchmal müssen Sie `accelerate` Tests für Ihre Modelle ausführen. Dazu fügen Sie einfach `-m accelerate_tests` zu Ihrem Befehl hinzu, wenn Sie diese Tests bei einem `OPT`-Lauf ausführen möchten:
```bash
RUN_SLOW=1 pytest -m accelerate_tests tests/models/opt/test_modeling_opt.py
RUN_SLOW=1 pytest -m accelerate_tests tests/models/opt/test_modeling_opt.py
```
### Dokumentationstests ausführen
### Dokumentationstests ausführen
Um zu testen, ob die Dokumentationsbeispiele korrekt sind, sollten Sie überprüfen, ob die `doctests` erfolgreich sind.
Lassen Sie uns als Beispiel den docstring von [WhisperModel.forward](https://github.com/huggingface/transformers/blob/main/src/transformers/models/whisper/modeling_whisper.py#L1017-L1035) verwenden:
Um zu testen, ob die Dokumentationsbeispiele korrekt sind, sollten Sie überprüfen, ob die `doctests` erfolgreich sind.
Lassen Sie uns als Beispiel den docstring von [WhisperModel.forward](https://github.com/huggingface/transformers/blob/main/src/transformers/models/whisper/modeling_whisper.py#L1017-L1035) verwenden:
```python
```python
r"""
Returns:
@ -217,8 +217,8 @@ Example:
```
Führen Sie einfach die folgende Zeile aus, um automatisch jedes docstring-Beispiel in der gewünschten Datei zu testen:
```bash
Führen Sie einfach die folgende Zeile aus, um automatisch jedes docstring-Beispiel in der gewünschten Datei zu testen:
```bash
pytest --doctest-modules <path_to_file_or_dir>
```
Wenn die Datei eine Markdown-Erweiterung hat, sollten Sie das Argument `--doctest-glob="*.md"` hinzufügen.
@ -862,7 +862,7 @@ Code, der fehlerhaft ist, einen schlechten Zustand verursacht, der sich auf ande
- Hier sehen Sie, wie Sie einen ganzen Test bedingungslos überspringen können:
```python no-style
@unittest.skip("this bug needs to be fixed")
@unittest.skip(reason="this bug needs to be fixed")
def test_feature_x():
```

View File

@ -1,3 +1,5 @@
# Optimizing inference
perf_infer_gpu_many: perf_infer_gpu_one
transformers_agents: agents
quantization: quantization/overview

View File

@ -23,10 +23,12 @@
title: Load and train adapters with 🤗 PEFT
- local: model_sharing
title: Share your model
- local: transformers_agents
- local: agents
title: Agents
- local: llm_tutorial
title: Generation with LLMs
- local: conversations
title: Chatting with Transformers
title: Tutorials
- sections:
- isExpanded: false
@ -90,11 +92,15 @@
title: Visual Question Answering
- local: tasks/text-to-speech
title: Text to speech
- local: tasks/image_text_to_text
title: Image-text-to-text
title: Multimodal
- isExpanded: false
sections:
- local: generation_strategies
title: Customize the generation strategy
- local: kv_cache
title: Best Practices for Generation with Cache
title: Generation
- isExpanded: false
sections:
@ -131,20 +137,40 @@
title: Notebooks with examples
- local: community
title: Community resources
- local: custom_tools
title: Custom Tools and Prompts
- local: troubleshooting
title: Troubleshoot
- local: hf_quantizer
title: Contribute new quantization method
- local: gguf
title: Interoperability with GGUF files
title: Developer guides
- sections:
- local: quantization/overview
title: Getting started
- local: quantization/bitsandbytes
title: bitsandbytes
- local: quantization/gptq
title: GPTQ
- local: quantization/awq
title: AWQ
- local: quantization/aqlm
title: AQLM
- local: quantization/quanto
title: Quanto
- local: quantization/eetq
title: EETQ
- local: quantization/hqq
title: HQQ
- local: quantization/fbgemm_fp8
title: FBGEMM_FP8
- local: quantization/optimum
title: Optimum
- local: quantization/contribute
title: Contribute new quantization method
title: Quantization Methods
- sections:
- local: performance
title: Overview
- local: llm_optims
title: LLM inference optimization
- local: quantization
title: Quantization
- sections:
- local: perf_train_gpu_one
title: Methods and tools for efficient training on a single GPU
@ -362,6 +388,8 @@
title: Fuyu
- local: model_doc/gemma
title: Gemma
- local: model_doc/gemma2
title: Gemma2
- local: model_doc/openai-gpt
title: GPT
- local: model_doc/gpt_neo
@ -386,6 +414,8 @@
title: I-BERT
- local: model_doc/jamba
title: Jamba
- local: model_doc/jetmoe
title: JetMoe
- local: model_doc/jukebox
title: Jukebox
- local: model_doc/led
@ -408,6 +438,8 @@
title: MADLAD-400
- local: model_doc/mamba
title: Mamba
- local: model_doc/mamba2
title: mamba2
- local: model_doc/marian
title: MarianMT
- local: model_doc/markuplm
@ -438,6 +470,8 @@
title: MT5
- local: model_doc/mvp
title: MVP
- local: model_doc/nemotron
title: Nemotron
- local: model_doc/nezha
title: NEZHA
- local: model_doc/nllb
@ -460,6 +494,8 @@
title: Persimmon
- local: model_doc/phi
title: Phi
- local: model_doc/phi3
title: Phi-3
- local: model_doc/phobert
title: PhoBERT
- local: model_doc/plbart
@ -555,6 +591,8 @@
title: DeiT
- local: model_doc/depth_anything
title: Depth Anything
- local: model_doc/depth_anything_v2
title: Depth Anything V2
- local: model_doc/deta
title: DETA
- local: model_doc/detr
@ -575,6 +613,8 @@
title: FocalNet
- local: model_doc/glpn
title: GLPN
- local: model_doc/hiera
title: Hiera
- local: model_doc/imagegpt
title: ImageGPT
- local: model_doc/levit
@ -603,6 +643,8 @@
title: RegNet
- local: model_doc/resnet
title: ResNet
- local: model_doc/rt_detr
title: RT-DETR
- local: model_doc/segformer
title: SegFormer
- local: model_doc/seggpt
@ -637,6 +679,8 @@
title: ViTMSN
- local: model_doc/yolos
title: YOLOS
- local: model_doc/zoedepth
title: ZoeDepth
title: Vision models
- isExpanded: false
sections:
@ -648,6 +692,8 @@
title: CLAP
- local: model_doc/encodec
title: EnCodec
- local: model_doc/hiera
title: Hiera
- local: model_doc/hubert
title: Hubert
- local: model_doc/mctct
@ -722,6 +768,8 @@
title: BridgeTower
- local: model_doc/bros
title: BROS
- local: model_doc/chameleon
title: Chameleon
- local: model_doc/chinese_clip
title: Chinese-CLIP
- local: model_doc/clip
@ -750,6 +798,8 @@
title: Idefics2
- local: model_doc/instructblip
title: InstructBLIP
- local: model_doc/instructblipvideo
title: InstructBlipVideo
- local: model_doc/kosmos-2
title: KOSMOS-2
- local: model_doc/layoutlm
@ -766,6 +816,8 @@
title: Llava
- local: model_doc/llava_next
title: LLaVA-NeXT
- local: model_doc/llava-next-video
title: LLaVa-NeXT-Video
- local: model_doc/lxmert
title: LXMERT
- local: model_doc/matcha
@ -780,6 +832,8 @@
title: OWL-ViT
- local: model_doc/owlv2
title: OWLv2
- local: model_doc/paligemma
title: PaliGemma
- local: model_doc/perceiver
title: Perceiver
- local: model_doc/pix2struct
@ -800,6 +854,8 @@
title: TVP
- local: model_doc/udop
title: UDOP
- local: model_doc/video_llava
title: VideoLlava
- local: model_doc/vilt
title: ViLT
- local: model_doc/vipllava

562
docs/source/en/agents.md Normal file
View File

@ -0,0 +1,562 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Agents and tools
[[open-in-colab]]
### What is an agent?
Large Language Models (LLMs) trained to perform [causal language modeling](./tasks/language_modeling.) can tackle a wide range of tasks, but they often struggle with basic tasks like logic, calculation, and search. When prompted in domains in which they do not perform well, they often fail to generate the answer we expect them to.
One approach to overcome this weakness is to create an *agent*.
An agent is a system that uses an LLM as its engine, and it has access to functions called *tools*.
These *tools* are functions for performing a task, and they contain all necessary description for the agent to properly use them.
The agent can be programmed to:
- devise a series of actions/tools and run them all at once like the [`CodeAgent`] for example
- plan and execute actions/tools one by one and wait for the outcome of each action before launching the next one like the [`ReactJsonAgent`] for example
### Types of agents
#### Code agent
This agent has a planning step, then generates python code to execute all its actions at once. It natively handles different input and output types for its tools, thus it is the recommended choice for multimodal tasks.
#### React agents
This is the go-to agent to solve reasoning tasks, since the ReAct framework ([Yao et al., 2022](https://huggingface.co/papers/2210.03629)) makes it really efficient to think on the basis of its previous observations.
We implement two versions of ReactJsonAgent:
- [`ReactJsonAgent`] generates tool calls as a JSON in its output.
- [`ReactCodeAgent`] is a new type of ReactJsonAgent that generates its tool calls as blobs of code, which works really well for LLMs that have strong coding performance.
> [!TIP]
> Read [Open-source LLMs as LangChain Agents](https://huggingface.co/blog/open-source-llms-as-agents) blog post to learn more the ReAct agent.
![Framework of a React Agent](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/blog/open-source-llms-as-agents/ReAct.png)
For example, here is how a ReAct Code agent would work its way through the following question.
```py3
>>> agent.run(
... "How many more blocks (also denoted as layers) in BERT base encoder than the encoder from the architecture proposed in Attention is All You Need?",
... )
=====New task=====
How many more blocks (also denoted as layers) in BERT base encoder than the encoder from the architecture proposed in Attention is All You Need?
====Agent is executing the code below:
bert_blocks = search(query="number of blocks in BERT base encoder")
print("BERT blocks:", bert_blocks)
====
Print outputs:
BERT blocks: twelve encoder blocks
====Agent is executing the code below:
attention_layer = search(query="number of layers in Attention is All You Need")
print("Attention layers:", attention_layer)
====
Print outputs:
Attention layers: Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position- 2 Page 3 Figure 1: The Transformer - model architecture.
====Agent is executing the code below:
bert_blocks = 12
attention_layers = 6
diff = bert_blocks - attention_layers
print("Difference in blocks:", diff)
final_answer(diff)
====
Print outputs:
Difference in blocks: 6
Final answer: 6
```
### How can I build an agent?
To initialize an agent, you need these arguments:
- an LLM to power your agent - the agent is not exactly the LLM, its more like the agent is a program that uses an LLM as its engine.
- a system prompt: what the LLM engine will be prompted with to generate its output
- a toolbox from which the agent pick tools to execute
- a parser to extract from the LLM output which tools are to call and with which arguments
Upon initialization of the agent system, the tool attributes are used to generate a tool description, then baked into the agents `system_prompt` to let it know which tools it can use and why.
To start with, please install the `agents` extras in order to install all default dependencies.
```bash
pip install transformers[agents]
```
Build your LLM engine by defining a `llm_engine` method which accepts a list of [messages](./chat_templating.) and returns text. This callable also needs to accept a `stop` argument that indicates when to stop generating.
```python
from huggingface_hub import login, InferenceClient
login("<YOUR_HUGGINGFACEHUB_API_TOKEN>")
client = InferenceClient(model="meta-llama/Meta-Llama-3-70B-Instruct")
def llm_engine(messages, stop_sequences=["Task"]) -> str:
response = client.chat_completion(messages, stop=stop_sequences, max_tokens=1000)
answer = response.choices[0].message.content
return answer
```
You could use any `llm_engine` method as long as:
1. it follows the [messages format](./chat_templating.md) for its input (`List[Dict[str, str]]`) and returns a `str`
2. it stops generating outputs at the sequences passed in the argument `stop`
You also need a `tools` argument which accepts a list of `Tools`. You can provide an empty list for `tools`, but use the default toolbox with the optional argument `add_base_tools=True`.
Now you can create an agent, like [`CodeAgent`], and run it. For convenience, we also provide the [`HfEngine`] class that uses `huggingface_hub.InferenceClient` under the hood.
```python
from transformers import CodeAgent, HfEngine
llm_engine = HfEngine(model="meta-llama/Meta-Llama-3-70B-Instruct")
agent = CodeAgent(tools=[], llm_engine=llm_engine, add_base_tools=True)
agent.run(
"Could you translate this sentence from French, say it out loud and return the audio.",
sentence="Où est la boulangerie la plus proche?",
)
```
This will be handy in case of emergency baguette need!
You can even leave the argument `llm_engine` undefined, and an [`HfEngine`] will be created by default.
```python
from transformers import CodeAgent
agent = CodeAgent(tools=[], add_base_tools=True)
agent.run(
"Could you translate this sentence from French, say it out loud and give me the audio.",
sentence="Où est la boulangerie la plus proche?",
)
```
Note that we used an additional `sentence` argument: you can pass text as additional arguments to the model.
You can also use this to indicate the path to local or remote files for the model to use:
```py
from transformers import ReactCodeAgent
agent = ReactCodeAgent(tools=[], llm_engine=llm_engine, add_base_tools=True)
agent.run("Why does Mike not know many people in New York?", audio="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/recording.mp3")
```
The prompt and output parser were automatically defined, but you can easily inspect them by calling the `system_prompt_template` on your agent.
```python
print(agent.system_prompt_template)
```
It's important to explain as clearly as possible the task you want to perform.
Every [`~Agent.run`] operation is independent, and since an agent is powered by an LLM, minor variations in your prompt might yield completely different results.
You can also run an agent consecutively for different tasks: each time the attributes `agent.task` and `agent.logs` will be re-initialized.
#### Code execution
A Python interpreter executes the code on a set of inputs passed along with your tools.
This should be safe because the only functions that can be called are the tools you provided (especially if it's only tools by Hugging Face) and the print function, so you're already limited in what can be executed.
The Python interpreter also doesn't allow imports by default outside of a safe list, so all the most obvious attacks shouldn't be an issue.
You can still authorize additional imports by passing the authorized modules as a list of strings in argument `additional_authorized_imports` upon initialization of your [`ReactCodeAgent`] or [`CodeAgent`]:
```py
>>> from transformers import ReactCodeAgent
>>> agent = ReactCodeAgent(tools=[], additional_authorized_imports=['requests', 'bs4'])
>>> agent.run("Could you get me the title of the page at url 'https://huggingface.co/blog'?")
(...)
'Hugging Face Blog'
```
The execution will stop at any code trying to perform an illegal operation or if there is a regular Python error with the code generated by the agent.
> [!WARNING]
> The LLM can generate arbitrary code that will then be executed: do not add any unsafe imports!
### The system prompt
An agent, or rather the LLM that drives the agent, generates an output based on the system prompt. The system prompt can be customized and tailored to the intended task. For example, check the system prompt for the [`ReactCodeAgent`] (below version is slightly simplified).
```text
You will be given a task to solve as best you can.
You have access to the following tools:
<<tool_descriptions>>
To solve the task, you must plan forward to proceed in a series of steps, in a cycle of 'Thought:', 'Code:', and 'Observation:' sequences.
At each step, in the 'Thought:' sequence, you should first explain your reasoning towards solving the task, then the tools that you want to use.
Then in the 'Code:' sequence, you shold write the code in simple Python. The code sequence must end with '/End code' sequence.
During each intermediate step, you can use 'print()' to save whatever important information you will then need.
These print outputs will then be available in the 'Observation:' field, for using this information as input for the next step.
In the end you have to return a final answer using the `final_answer` tool.
Here are a few examples using notional tools:
---
{examples}
Above example were using notional tools that might not exist for you. You only have acces to those tools:
<<tool_names>>
You also can perform computations in the python code you generate.
Always provide a 'Thought:' and a 'Code:\n```py' sequence ending with '```<end_code>' sequence. You MUST provide at least the 'Code:' sequence to move forward.
Remember to not perform too many operations in a single code block! You should split the task into intermediate code blocks.
Print results at the end of each step to save the intermediate results. Then use final_answer() to return the final result.
Remember to make sure that variables you use are all defined.
Now Begin!
```
The system prompt includes:
- An *introduction* that explains how the agent should behave and what tools are.
- A description of all the tools that is defined by a `<<tool_descriptions>>` token that is dynamically replaced at runtime with the tools defined/chosen by the user.
- The tool description comes from the tool attributes, `name`, `description`, `inputs` and `output_type`, and a simple `jinja2` template that you can refine.
- The expected output format.
You could improve the system prompt, for example, by adding an explanation of the output format.
For maximum flexibility, you can overwrite the whole system prompt template by passing your custom prompt as an argument to the `system_prompt` parameter.
```python
from transformers import ReactJsonAgent
from transformers.agents import PythonInterpreterTool
agent = ReactJsonAgent(tools=[PythonInterpreterTool()], system_prompt="{your_custom_prompt}")
```
> [!WARNING]
> Please make sure to define the `<<tool_descriptions>>` string somewhere in the `template` so the agent is aware
of the available tools.
### Inspecting an agent run
Here are a few useful attributes to inspect what happened after a run:
- `agent.logs` stores the fine-grained logs of the agent. At every step of the agent's run, everything gets stored in a dictionary that then is appended to `agent.logs`.
- Running `agent.write_inner_memory_from_logs()` creates an inner memory of the agent's logs for the LLM to view, as a list of chat messages. This method goes over each step of the log and only stores what it's interested in as a message: for instance, it will save the system prompt and task in separate messages, then for each step it will store the LLM output as a message, and the tool call output as another message. Use this if you want a higher-level view of what has happened - but not every log will be transcripted by this method.
## Tools
A tool is an atomic function to be used by an agent.
You can for instance check the [`PythonInterpreterTool`]: it has a name, a description, input descriptions, an output type, and a `__call__` method to perform the action.
When the agent is initialized, the tool attributes are used to generate a tool description which is baked into the agent's system prompt. This lets the agent know which tools it can use and why.
### Default toolbox
Transformers comes with a default toolbox for empowering agents, that you can add to your agent upon initialization with argument `add_base_tools = True`:
- **Document question answering**: given a document (such as a PDF) in image format, answer a question on this document ([Donut](./model_doc/donut))
- **Image question answering**: given an image, answer a question on this image ([VILT](./model_doc/vilt))
- **Speech to text**: given an audio recording of a person talking, transcribe the speech into text ([Whisper](./model_doc/whisper))
- **Text to speech**: convert text to speech ([SpeechT5](./model_doc/speecht5))
- **Translation**: translates a given sentence from source language to target language.
- **Python code interpreter**: runs your the LLM generated Python code in a secure environment. This tool will only be added to [`ReactJsonAgent`] if you use `add_base_tools=True`, since code-based tools can already execute Python code
You can manually use a tool by calling the [`load_tool`] function and a task to perform.
```python
from transformers import load_tool
tool = load_tool("text-to-speech")
audio = tool("This is a text to speech tool")
```
### Create a new tool
You can create your own tool for use cases not covered by the default tools from Hugging Face.
For example, let's create a tool that returns the most downloaded model for a given task from the Hub.
You'll start with the code below.
```python
from huggingface_hub import list_models
task = "text-classification"
model = next(iter(list_models(filter=task, sort="downloads", direction=-1)))
print(model.id)
```
This code can be converted into a class that inherits from the [`Tool`] superclass.
The custom tool needs:
- An attribute `name`, which corresponds to the name of the tool itself. The name usually describes what the tool does. Since the code returns the model with the most downloads for a task, let's name is `model_download_counter`.
- An attribute `description` is used to populate the agent's system prompt.
- An `inputs` attribute, which is a dictionary with keys `"type"` and `"description"`. It contains information that helps the Python interpreter make educated choices about the input.
- An `output_type` attribute, which specifies the output type.
- A `forward` method which contains the inference code to be executed.
```python
from transformers import Tool
from huggingface_hub import list_models
class HFModelDownloadsTool(Tool):
name = "model_download_counter"
description = (
"This is a tool that returns the most downloaded model of a given task on the Hugging Face Hub. "
"It returns the name of the checkpoint."
)
inputs = {
"task": {
"type": "text",
"description": "the task category (such as text-classification, depth-estimation, etc)",
}
}
output_type = "text"
def forward(self, task: str):
model = next(iter(list_models(filter=task, sort="downloads", direction=-1)))
return model.id
```
Now that the custom `HfModelDownloadsTool` class is ready, you can save it to a file named `model_downloads.py` and import it for use.
```python
from model_downloads import HFModelDownloadsTool
tool = HFModelDownloadsTool()
```
You can also share your custom tool to the Hub by calling [`~Tool.push_to_hub`] on the tool. Make sure you've created a repository for it on the Hub and are using a token with read access.
```python
tool.push_to_hub("{your_username}/hf-model-downloads")
```
Load the tool with the [`~Tool.load_tool`] function and pass it to the `tools` parameter in your agent.
```python
from transformers import load_tool, CodeAgent
model_download_tool = load_tool("m-ric/hf-model-downloads")
agent = CodeAgent(tools=[model_download_tool], llm_engine=llm_engine)
agent.run(
"Can you give me the name of the model that has the most downloads in the 'text-to-video' task on the Hugging Face Hub?"
)
```
You get the following:
```text
======== New task ========
Can you give me the name of the model that has the most downloads in the 'text-to-video' task on the Hugging Face Hub?
==== Agent is executing the code below:
most_downloaded_model = model_download_counter(task="text-to-video")
print(f"The most downloaded model for the 'text-to-video' task is {most_downloaded_model}.")
====
```
And the output:
`"The most downloaded model for the 'text-to-video' task is ByteDance/AnimateDiff-Lightning."`
### Manage your agent's toolbox
If you have already initialized an agent, it is inconvenient to reinitialize it from scratch with a tool you want to use. With Transformers, you can manage an agent's toolbox by adding or replacing a tool.
Let's add the `model_download_tool` to an existing agent initialized with only the default toolbox.
```python
from transformers import CodeAgent
agent = CodeAgent(tools=[], llm_engine=llm_engine, add_base_tools=True)
agent.toolbox.add_tool(model_download_tool)
```
Now we can leverage both the new tool and the previous text-to-speech tool:
```python
agent.run(
"Can you read out loud the name of the model that has the most downloads in the 'text-to-video' task on the Hugging Face Hub and return the audio?"
)
```
| **Audio** |
|------------------------------------------------------------------------------------------------------------------------------------------------------|
| <audio controls><source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/damo.wav" type="audio/wav"/> |
> [!WARNING]
> Beware when adding tools to an agent that already works well because it can bias selection towards your tool or select another tool other than the one already defined.
Use the `agent.toolbox.update_tool()` method to replace an existing tool in the agent's toolbox.
This is useful if your new tool is a one-to-one replacement of the existing tool because the agent already knows how to perform that specific task.
Just make sure the new tool follows the same API as the replaced tool or adapt the system prompt template to ensure all examples using the replaced tool are updated.
### Use a collection of tools
You can leverage tool collections by using the ToolCollection object, with the slug of the collection you want to use.
Then pass them as a list to initialize you agent, and start using them!
```py
from transformers import ToolCollection, ReactCodeAgent
image_tool_collection = ToolCollection(collection_slug="huggingface-tools/diffusion-tools-6630bb19a942c2306a2cdb6f")
agent = ReactCodeAgent(tools=[*image_tool_collection.tools], add_base_tools=True)
agent.run("Please draw me a picture of rivers and lakes.")
```
To speed up the start, tools are loaded only if called by the agent.
This gets you this image:
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rivers_and_lakes.png">
### Use gradio-tools
[gradio-tools](https://github.com/freddyaboulton/gradio-tools) is a powerful library that allows using Hugging
Face Spaces as tools. It supports many existing Spaces as well as custom Spaces.
Transformers supports `gradio_tools` with the [`Tool.from_gradio`] method. For example, let's use the [`StableDiffusionPromptGeneratorTool`](https://github.com/freddyaboulton/gradio-tools/blob/main/gradio_tools/tools/prompt_generator.py) from `gradio-tools` toolkit for improving prompts to generate better images.
Import and instantiate the tool, then pass it to the `Tool.from_gradio` method:
```python
from gradio_tools import StableDiffusionPromptGeneratorTool
from transformers import Tool, load_tool, CodeAgent
gradio_prompt_generator_tool = StableDiffusionPromptGeneratorTool()
prompt_generator_tool = Tool.from_gradio(gradio_prompt_generator_tool)
```
Now you can use it just like any other tool. For example, let's improve the prompt `a rabbit wearing a space suit`.
```python
image_generation_tool = load_tool('huggingface-tools/text-to-image')
agent = CodeAgent(tools=[prompt_generator_tool, image_generation_tool], llm_engine=llm_engine)
agent.run(
"Improve this prompt, then generate an image of it.", prompt='A rabbit wearing a space suit'
)
```
The model adequately leverages the tool:
```text
======== New task ========
Improve this prompt, then generate an image of it.
You have been provided with these initial arguments: {'prompt': 'A rabbit wearing a space suit'}.
==== Agent is executing the code below:
improved_prompt = StableDiffusionPromptGenerator(query=prompt)
while improved_prompt == "QUEUE_FULL":
improved_prompt = StableDiffusionPromptGenerator(query=prompt)
print(f"The improved prompt is {improved_prompt}.")
image = image_generator(prompt=improved_prompt)
====
```
Before finally generating the image:
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png">
> [!WARNING]
> gradio-tools require *textual* inputs and outputs even when working with different modalities like image and audio objects. Image and audio inputs and outputs are currently incompatible.
### Use LangChain tools
We love Langchain and think it has a very compelling suite of tools.
To import a tool from LangChain, use the `from_langchain()` method.
Here is how you can use it to recreate the intro's search result using a LangChain web search tool.
```python
from langchain.agents import load_tools
from transformers import Tool, ReactCodeAgent
search_tool = Tool.from_langchain(load_tools(["serpapi"])[0])
agent = ReactCodeAgent(tools=[search_tool])
agent.run("How many more blocks (also denoted as layers) in BERT base encoder than the encoder from the architecture proposed in Attention is All You Need?")
```
## Gradio interface
You can leverage `gradio.Chatbot`to display your agent's thoughts using `stream_to_gradio`, here is an example:
```py
import gradio as gr
from transformers import (
load_tool,
ReactCodeAgent,
HfEngine,
stream_to_gradio,
)
# Import tool from Hub
image_generation_tool = load_tool("m-ric/text-to-image")
llm_engine = HfEngine("meta-llama/Meta-Llama-3-70B-Instruct")
# Initialize the agent with the image generation tool
agent = ReactCodeAgent(tools=[image_generation_tool], llm_engine=llm_engine)
def interact_with_agent(task):
messages = []
messages.append(gr.ChatMessage(role="user", content=task))
yield messages
for msg in stream_to_gradio(agent, task):
messages.append(msg)
yield messages + [
gr.ChatMessage(role="assistant", content="⏳ Task not finished yet!")
]
yield messages
with gr.Blocks() as demo:
text_input = gr.Textbox(lines=1, label="Chat Message", value="Make me a picture of the Statue of Liberty.")
submit = gr.Button("Run illustrator agent!")
chatbot = gr.Chatbot(
label="Agent",
type="messages",
avatar_images=(
None,
"https://em-content.zobj.net/source/twitter/53/robot-face_1f916.png",
),
)
submit.click(interact_with_agent, [text_input], [chatbot])
if __name__ == "__main__":
demo.launch()
```

View File

@ -199,7 +199,8 @@ effect that `add_generation_prompt` has will depend on the template being used.
## Can I use chat templates in training?
Yes! We recommend that you apply the chat template as a preprocessing step for your dataset. After this, you
Yes! This is a good way to ensure that the chat template matches the tokens the model sees during training.
We recommend that you apply the chat template as a preprocessing step for your dataset. After this, you
can simply continue like any other language model training task. When training, you should usually set
`add_generation_prompt=False`, because the added tokens to prompt an assistant response will not be helpful during
training. Let's see an example:
@ -233,6 +234,342 @@ The sun.</s>
From here, just continue training like you would with a standard language modelling task, using the `formatted_chat` column.
<Tip>
If you format text with `apply_chat_template(tokenize=False)` and then tokenize it in a separate step, you should set the argument
`add_special_tokens=False`. If you use `apply_chat_template(tokenize=True)`, you don't need to worry about this!
By default, some tokenizers add special tokens like `<bos>` and `<eos>` to text they tokenize. Chat templates should
always include all of the special tokens they need, and so adding extra special tokens with
the default `add_special_tokens=True` can result in incorrect or duplicated special tokens, which will hurt model
performance.
</Tip>
## Advanced: Extra inputs to chat templates
The only argument that `apply_chat_template` requires is `messages`. However, you can pass any keyword
argument to `apply_chat_template` and it will be accessible inside the template. This gives you a lot of freedom to use
chat templates for many things. There are no restrictions on the names or the format of these arguments - you can pass
strings, lists, dicts or whatever else you want.
That said, there are some common use-cases for these extra arguments,
such as passing tools for function calling, or documents for retrieval-augmented generation. In these common cases,
we have some opinionated recommendations about what the names and formats of these arguments should be, which are
described in the sections below. We encourage model authors to make their chat templates compatible with this format,
to make it easy to transfer tool-calling code between models.
## Advanced: Tool use / function calling
"Tool use" LLMs can choose to call functions as external tools before generating an answer. When passing tools
to a tool-use model, you can simply pass a list of functions to the `tools` argument:
```python
import datetime
def current_time():
"""Get the current local time as a string."""
return str(datetime.now())
def multiply(a: float, b: float):
"""
A function that multiplies two numbers
Args:
a: The first number to multiply
b: The second number to multiply
"""
return a * b
tools = [current_time, multiply]
model_input = tokenizer.apply_chat_template(
messages,
tools=tools
)
```
In order for this to work correctly, you should write your functions in the format above, so that they can be parsed
correctly as tools. Specifically, you should follow these rules:
- The function should have a descriptive name
- Every argument must have a type hint
- The function must have a docstring in the standard Google style (in other words, an initial function description
followed by an `Args:` block that describes the arguments, unless the function does not have any arguments.
- Do not include types in the `Args:` block. In other words, write `a: The first number to multiply`, not
`a (int): The first number to multiply`. Type hints should go in the function header instead.
- The function can have a return type and a `Returns:` block in the docstring. However, these are optional
because most tool-use models ignore them.
### Passing tool results to the model
The sample code above is enough to list the available tools for your model, but what happens if it wants to actually use
one? If that happens, you should:
1. Parse the model's output to get the tool name(s) and arguments.
2. Add the model's tool call(s) to the conversation.
3. Call the corresponding function(s) with those arguments.
4. Add the result(s) to the conversation
### A complete tool use example
Let's walk through a tool use example, step by step. For this example, we will use an 8B `Hermes-2-Pro` model,
as it is one of the highest-performing tool-use models in its size category at the time of writing. If you have the
memory, you can consider using a larger model instead like [Command-R](https://huggingface.co/CohereForAI/c4ai-command-r-v01)
or [Mixtral-8x22B](https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1), both of which also support tool use
and offer even stronger performance.
First, let's load our model and tokenizer:
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
checkpoint = "NousResearch/Hermes-2-Pro-Llama-3-8B"
tokenizer = AutoTokenizer.from_pretrained(checkpoint, revision="pr/13")
model = AutoModelForCausalLM.from_pretrained(checkpoint, torch_dtype=torch.bfloat16, device_map="auto")
```
Next, let's define a list of tools:
```python
def get_current_temperature(location: str, unit: str) -> float:
"""
Get the current temperature at a location.
Args:
location: The location to get the temperature for, in the format "City, Country"
unit: The unit to return the temperature in. (choices: ["celsius", "fahrenheit"])
Returns:
The current temperature at the specified location in the specified units, as a float.
"""
return 22. # A real function should probably actually get the temperature!
def get_current_wind_speed(location: str) -> float:
"""
Get the current wind speed in km/h at a given location.
Args:
location: The location to get the temperature for, in the format "City, Country"
Returns:
The current wind speed at the given location in km/h, as a float.
"""
return 6. # A real function should probably actually get the wind speed!
tools = [get_current_temperature, get_current_wind_speed]
```
Now, let's set up a conversation for our bot:
```python
messages = [
{"role": "system", "content": "You are a bot that responds to weather queries. You should reply with the unit used in the queried location."},
{"role": "user", "content": "Hey, what's the temperature in Paris right now?"}
]
```
Now, let's apply the chat template and generate a response:
```python
inputs = tokenizer.apply_chat_template(messages, chat_template="tool_use", tools=tools, add_generation_prompt=True, return_dict=True, return_tensors="pt")
inputs = {k: v.to(model.device) for k, v in inputs.items()}
out = model.generate(**inputs, max_new_tokens=128)
print(tokenizer.decode(out[0][len(inputs["input_ids"][0]):]))
```
And we get:
```text
<tool_call>
{"arguments": {"location": "Paris, France", "unit": "celsius"}, "name": "get_current_temperature"}
</tool_call><|im_end|>
```
The model has called the function with valid arguments, in the format requested by the function docstring. It has
inferred that we're most likely referring to the Paris in France, and it remembered that, as the home of SI units,
the temperature in France should certainly be displayed in Celsius.
Let's append the model's tool call to the conversation. Note that we generate a random `tool_call_id` here. These IDs
are not used by all models, but they allow models to issue multiple tool calls at once and keep track of which response
corresponds to which call. You can generate them any way you like, but they should be unique within each chat.
```python
tool_call_id = "vAHdf3" # Random ID, should be unique for each tool call
tool_call = {"name": "get_current_temperature", "arguments": {"location": "Paris, France", "unit": "celsius"}}
messages.append({"role": "assistant", "tool_calls": [{"id": tool_call_id, "type": "function", "function": tool_call}]})
```
Now that we've added the tool call to the conversation, we can call the function and append the result to the
conversation. Since we're just using a dummy function for this example that always returns 22.0, we can just append
that result directly. Again, note the `tool_call_id` - this should match the ID used in the tool call above.
```python
messages.append({"role": "tool", "tool_call_id": tool_call_id, "name": "get_current_temperature", "content": "22.0"})
```
Finally, let's let the assistant read the function outputs and continue chatting with the user:
```python
inputs = tokenizer.apply_chat_template(messages, chat_template="tool_use", tools=tools, add_generation_prompt=True, return_dict=True, return_tensors="pt")
inputs = {k: v.to(model.device) for k, v in inputs.items()}
out = model.generate(**inputs, max_new_tokens=128)
print(tokenizer.decode(out[0][len(inputs["input_ids"][0]):]))
```
And we get:
```text
The current temperature in Paris, France is 22.0 ° Celsius.<|im_end|>
```
Although this was a simple demo with dummy tools and a single call, the same technique works with
multiple real tools and longer conversations. This can be a powerful way to extend the capabilities of conversational
agents with real-time information, computational tools like calculators, or access to large databases.
<Tip>
Not all of the tool-calling features shown above are used by all models. Some use tool call IDs, others simply use the function name and
match tool calls to results using the ordering, and there are several models that use neither and only issue one tool
call at a time to avoid confusion. If you want your code to be compatible across as many models as possible, we
recommend structuring your tools calls like we've shown here, and returning tool results in the order that
they were issued by the model. The chat templates on each model should handle the rest.
</Tip>
### Understanding tool schemas
Each function you pass to the `tools` argument of `apply_chat_template` is converted into a
[JSON schema](https://json-schema.org/learn/getting-started-step-by-step). These schemas
are then passed to the model chat template. In other words, tool-use models do not see your functions directly, and they
never see the actual code inside them. What they care about is the function **definitions** and the **arguments** they
need to pass to them - they care about what the tools do and how to use them, not how they work! It is up to you
to read their outputs, detect if they have requested to use a tool, pass their arguments to the tool function, and
return the response in the chat.
Generating JSON schemas to pass to the template should be automatic and invisible as long as your functions
follow the specification above, but if you encounter problems, or you simply want more control over the conversion,
you can handle the conversion manually. Here is an example of a manual schema conversion.
```python
from transformers.utils import get_json_schema
def multiply(a: float, b: float):
"""
A function that multiplies two numbers
Args:
a: The first number to multiply
b: The second number to multiply
"""
return a * b
schema = get_json_schema(multiply)
print(schema)
```
This will yield:
```json
{
"type": "function",
"function": {
"name": "multiply",
"description": "A function that multiplies two numbers",
"parameters": {
"type": "object",
"properties": {
"a": {
"type": "number",
"description": "The first number to multiply"
},
"b": {
"type": "number",
"description": "The second number to multiply"
}
},
"required": ["a", "b"]
}
}
}
```
If you wish, you can edit these schemas, or even write them from scratch yourself without using `get_json_schema` at
all. JSON schemas can be passed directly to the `tools` argument of
`apply_chat_template` - this gives you a lot of power to define precise schemas for more complex functions. Be careful,
though - the more complex your schemas, the more likely the model is to get confused when dealing with them! We
recommend simple function signatures where possible, keeping arguments (and especially complex, nested arguments)
to a minimum.
Here is an example of defining schemas by hand, and passing them directly to `apply_chat_template`:
```python
# A simple function that takes no arguments
current_time = {
"type": "function",
"function": {
"name": "current_time",
"description": "Get the current local time as a string.",
"parameters": {
'type': 'object',
'properties': {}
}
}
}
# A more complete function that takes two numerical arguments
multiply = {
'type': 'function',
'function': {
'name': 'multiply',
'description': 'A function that multiplies two numbers',
'parameters': {
'type': 'object',
'properties': {
'a': {
'type': 'number',
'description': 'The first number to multiply'
},
'b': {
'type': 'number', 'description': 'The second number to multiply'
}
},
'required': ['a', 'b']
}
}
}
model_input = tokenizer.apply_chat_template(
messages,
tools = [current_time, multiply]
)
```
## Advanced: Retrieval-augmented generation
"Retrieval-augmented generation" or "RAG" LLMs can search a corpus of documents for information before responding
to a query. This allows models to vastly expand their knowledge base beyond their limited context size. Our
recommendation for RAG models is that their template
should accept a `documents` argument. This should be a list of documents, where each "document"
is a single dict with `title` and `contents` keys, both of which are strings. Because this format is much simpler
than the JSON schemas used for tools, no helper functions are necessary.
Here's an example of a RAG template in action:
```python
document1 = {
"title": "The Moon: Our Age-Old Foe",
"contents": "Man has always dreamed of destroying the moon. In this essay, I shall..."
}
document2 = {
"title": "The Sun: Our Age-Old Friend",
"contents": "Although often underappreciated, the sun provides several notable benefits..."
}
model_input = tokenizer.apply_chat_template(
messages,
documents=[document1, document2]
)
```
## Advanced: How do chat templates work?
The chat template for a model is stored on the `tokenizer.chat_template` attribute. If no chat template is set, the
@ -243,27 +580,25 @@ default template for that model class is used instead. Let's take a look at the
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill")
>>> tokenizer.default_chat_template
>>> tokenizer.chat_template
"{% for message in messages %}{% if message['role'] == 'user' %}{{ ' ' }}{% endif %}{{ message['content'] }}{% if not loop.last %}{{ ' ' }}{% endif %}{% endfor %}{{ eos_token }}"
```
That's kind of intimidating. Let's add some newlines and indentation to make it more readable. Note that the first
newline after each block as well as any preceding whitespace before a block are ignored by default, using the
Jinja `trim_blocks` and `lstrip_blocks` flags. However, be cautious - although leading whitespace on each
line is stripped, spaces between blocks on the same line are not. We strongly recommend checking that your template
isn't printing extra spaces where it shouldn't be!
That's kind of intimidating. Let's clean it up a little to make it more readable. In the process, though, we also make
sure that the newlines and indentation we add don't end up being included in the template output - see the tip on
[trimming whitespace](#trimming-whitespace) below!
```
{% for message in messages %}
{% if message['role'] == 'user' %}
{{ ' ' }}
{% endif %}
{{ message['content'] }}
{% if not loop.last %}
{{ ' ' }}
{% endif %}
{% endfor %}
{{ eos_token }}
{%- for message in messages %}
{%- if message['role'] == 'user' %}
{{- ' ' }}
{%- endif %}
{{- message['content'] }}
{%- if not loop.last %}
{{- ' ' }}
{%- endif %}
{%- endfor %}
{{- eos_token }}
```
If you've never seen one of these before, this is a [Jinja template](https://jinja.palletsprojects.com/en/3.1.x/templates/).
@ -292,15 +627,15 @@ similarly to the way LLaMA formats them (note that the real LLaMA template inclu
messages and slightly different system message handling in general - don't use this one in your actual code!)
```
{% for message in messages %}
{% if message['role'] == 'user' %}
{{ bos_token + '[INST] ' + message['content'] + ' [/INST]' }}
{% elif message['role'] == 'system' %}
{{ '<<SYS>>\\n' + message['content'] + '\\n<</SYS>>\\n\\n' }}
{% elif message['role'] == 'assistant' %}
{{ ' ' + message['content'] + ' ' + eos_token }}
{% endif %}
{% endfor %}
{%- for message in messages %}
{%- if message['role'] == 'user' %}
{{- bos_token + '[INST] ' + message['content'] + ' [/INST]' }}
{%- elif message['role'] == 'system' %}
{{- '<<SYS>>\\n' + message['content'] + '\\n<</SYS>>\\n\\n' }}
{%- elif message['role'] == 'assistant' %}
{{- ' ' + message['content'] + ' ' + eos_token }}
{%- endif %}
{%- endfor %}
```
Hopefully if you stare at this for a little bit you can see what this template is doing - it adds specific tokens based
@ -316,15 +651,15 @@ existing template from another model and simply edit it for your needs! For exam
above and add "[ASST]" and "[/ASST]" to assistant messages:
```
{% for message in messages %}
{% if message['role'] == 'user' %}
{{ bos_token + '[INST] ' + message['content'].strip() + ' [/INST]' }}
{% elif message['role'] == 'system' %}
{{ '<<SYS>>\\n' + message['content'].strip() + '\\n<</SYS>>\\n\\n' }}
{% elif message['role'] == 'assistant' %}
{{ '[ASST] ' + message['content'] + ' [/ASST]' + eos_token }}
{% endif %}
{% endfor %}
{%- for message in messages %}
{%- if message['role'] == 'user' %}
{{- bos_token + '[INST] ' + message['content'].strip() + ' [/INST]' }}
{%- elif message['role'] == 'system' %}
{{- '<<SYS>>\\n' + message['content'].strip() + '\\n<</SYS>>\\n\\n' }}
{%- elif message['role'] == 'assistant' %}
{{- '[ASST] ' + message['content'] + ' [/ASST]' + eos_token }}
{%- endif %}
{%- endfor %}
```
Now, simply set the `tokenizer.chat_template` attribute. Next time you use [`~PreTrainedTokenizer.apply_chat_template`], it will
@ -351,22 +686,23 @@ template. This will ensure that text generation tools can correctly figure out w
</Tip>
### What are "default" templates?
### Why do some models have multiple templates?
Before the introduction of chat templates, chat handling was hardcoded at the model class level. For backwards
compatibility, we have retained this class-specific handling as default templates, also set at the class level. If a
model does not have a chat template set, but there is a default template for its model class, the `TextGenerationPipeline`
class and methods like `apply_chat_template` will use the class template instead. You can find out what the default
template for your tokenizer is by checking the `tokenizer.default_chat_template` attribute.
Some models use different templates for different use cases. For example, they might use one template for normal chat
and another for tool-use, or retrieval-augmented generation. In these cases, `tokenizer.chat_template` is a dictionary.
This can cause some confusion, and where possible, we recommend using a single template for all use-cases. You can use
Jinja statements like `if tools is defined` and `{% macro %}` definitions to easily wrap multiple code paths in a
single template.
This is something we do purely for backward compatibility reasons, to avoid breaking any existing workflows. Even when
the class template is appropriate for your model, we strongly recommend overriding the default template by
setting the `chat_template` attribute explicitly to make it clear to users that your model has been correctly configured
for chat.
When a tokenizer has multiple templates, `tokenizer.chat_template` will be a `dict`, where each key is the name
of a template. The `apply_chat_template` method has special handling for certain template names: Specifically, it will
look for a template named `default` in most cases, and will raise an error if it can't find one. However, if a template
named `tool_use` exists when the user has passed a `tools` argument, it will use that instead. To access templates
with other names, pass the name of the template you want to the `chat_template` argument of
`apply_chat_template()`.
Now that actual chat templates have been adopted more widely, default templates have been deprecated and will be
removed in a future release. We strongly recommend setting the `chat_template` attribute for any tokenizers that
still depend on them!
We find that this can be a bit confusing for users, though - so if you're writing a template yourself, we recommend
trying to put it all in a single template where possible!
### What template should I use?
@ -382,9 +718,9 @@ input formats. One popular choice is the `ChatML` format, and this is a good, fl
It looks like this:
```
{% for message in messages %}
{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}
{% endfor %}
{%- for message in messages %}
{{- '<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n' }}
{%- endfor %}
```
If you like this one, here it is in one-liner form, ready to copy into your code. The one-liner also includes
@ -432,21 +768,43 @@ it's time to put an end to them!
If you're unfamiliar with Jinja, we generally find that the easiest way to write a chat template is to first
write a short Python script that formats messages the way you want, and then convert that script into a template.
Remember that the template handler will receive the conversation history as a variable called `messages`. Each
message is a dictionary with two keys, `role` and `content`. You will be able to access `messages` in your template
just like you can in Python, which means you can loop over it with `{% for message in messages %}` or access
individual messages with, for example, `{{ messages[0] }}`.
Remember that the template handler will receive the conversation history as a variable called `messages`.
You will be able to access `messages` in your template just like you can in Python, which means you can loop over
it with `{% for message in messages %}` or access individual messages with `{{ messages[0] }}`, for example.
You can also use the following tips to convert your code to Jinja:
### Trimming whitespace
By default, Jinja will print any whitespace that comes before or after a block. This can be a problem for chat
templates, which generally want to be very precise with whitespace! To avoid this, we strongly recommend writing
your templates like this:
```
{%- for message in messages %}
{{- message['role'] + message['content'] }}
{%- endfor %}
```
rather than like this:
```
{% for message in messages %}
{{ message['role'] + message['content'] }}
{% endfor %}
```
Adding `-` will strip any whitespace that comes before the block. The second example looks innocent, but the newline
and indentation may end up being included in the output, which is probably not what you want!
### For loops
For loops in Jinja look like this:
```
{% for message in messages %}
{{ message['content'] }}
{% endfor %}
{%- for message in messages %}
{{- message['content'] }}
{%- endfor %}
```
Note that whatever's inside the {{ expression block }} will be printed to the output. You can use operators like
@ -457,9 +815,9 @@ Note that whatever's inside the {{ expression block }} will be printed to the ou
If statements in Jinja look like this:
```
{% if message['role'] == 'user' %}
{{ message['content'] }}
{% endif %}
{%- if message['role'] == 'user' %}
{{- message['content'] }}
{%- endif %}
```
Note how where Python uses whitespace to mark the beginnings and ends of `for` and `if` blocks, Jinja requires you
@ -475,14 +833,26 @@ conversation. Here's an example that puts these ideas together to add a generati
conversation if add_generation_prompt is `True`:
```
{% if loop.last and add_generation_prompt %}
{{ bos_token + 'Assistant:\n' }}
{% endif %}
{%- if loop.last and add_generation_prompt %}
{{- bos_token + 'Assistant:\n' }}
{%- endif %}
```
### Notes on whitespace
### Compatibility with non-Python Jinja
As much as possible, we've tried to get Jinja to ignore whitespace outside of {{ expressions }}. However, be aware
that Jinja is a general-purpose templating engine, and it may treat whitespace between blocks on the same line
as significant and print it to the output. We **strongly** recommend checking that your template isn't printing extra
spaces where it shouldn't be before you upload it!
There are multiple implementations of Jinja in various languages. They generally have the same syntax,
but a key difference is that when you're writing a template in Python you can use Python methods, such as
`.lower()` on strings or `.items()` on dicts. This will break if someone tries to use your template on a non-Python
implementation of Jinja. Non-Python implementations are particularly common in deployment environments, where JS
and Rust are very popular.
Don't panic, though! There are a few easy changes you can make to your templates to ensure they're compatible across
all implementations of Jinja:
- Replace Python methods with Jinja filters. These usually have the same name, for example `string.lower()` becomes
`string|lower`, and `dict.items()` becomes `dict|items`. One notable change is that `string.strip()` becomes `string|trim`.
See the [list of built-in filters](https://jinja.palletsprojects.com/en/3.1.x/templates/#builtin-filters)
in the Jinja documentation for more.
- Replace `True`, `False` and `None`, which are Python-specific, with `true`, `false` and `none`.
- Directly rendering a dict or list may give different results in other implementations (for example, string entries
might change from single-quoted to double-quoted). Adding the `tojson` filter can help to ensure consistency here.

View File

@ -0,0 +1,290 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Chatting with Transformers
If you're reading this article, you're almost certainly aware of **chat models**. Chat models are conversational
AIs that you can send and receive messages with. The most famous of these is the proprietary ChatGPT, but there are
now many open-source chat models which match or even substantially exceed its performance. These models are free to
download and run on a local machine. Although the largest and most capable models require high-powered hardware
and lots of memory to run, there are smaller models that will run perfectly well on a single consumer GPU, or even
an ordinary desktop or notebook CPU.
This guide will help you get started with chat models. We'll start with a brief quickstart guide that uses a convenient,
high-level "pipeline". This is all you need if you just want to start running a chat model
immediately. After the quickstart, we'll move on to more detailed information about
what exactly chat models are, how to choose an appropriate one, and a low-level breakdown of each of the
steps involved in talking to a chat model. We'll also give some tips on optimizing the performance and memory usage
of your chat models.
## Quickstart
If you have no time for details, here's the brief summary: Chat models continue chats. This means that you pass them
a conversation history, which can be as short as a single user message, and the model will continue the conversation
by adding its response. Let's see this in action. First, let's build a chat:
```python
chat = [
{"role": "system", "content": "You are a sassy, wise-cracking robot as imagined by Hollywood circa 1986."},
{"role": "user", "content": "Hey, can you tell me any fun things to do in New York?"}
]
```
Notice that in addition to the user's message, we added a **system** message at the start of the conversation. Not all
chat models support system messages, but when they do, they represent high-level directives about how the model
should behave in the conversation. You can use this to guide the model - whether you want short or long responses,
lighthearted or serious ones, and so on. If you want the model to do useful work instead of
practicing its improv routine, you can either omit the system message or try a terse one such as "You are a helpful and intelligent
AI assistant who responds to user queries."
Once you have a chat, the quickest way to continue it is using the [`TextGenerationPipeline`].
Let's see this in action with `LLaMA-3`. Note that `LLaMA-3` is a gated model, which means you will need to
[apply for access](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) and log in with your Hugging Face
account to use it. We'll also use `device_map="auto"`, which will load the model on GPU if there's enough memory
for it, and set the dtype to `torch.bfloat16` to save memory:
```python
import torch
from transformers import pipeline
pipe = pipeline("text-generation", "meta-llama/Meta-Llama-3-8B-Instruct", torch_dtype=torch.bfloat16, device_map="auto")
response = pipe(chat, max_new_tokens=512)
print(response[0]['generated_text'][-1]['content'])
```
And you'll get:
```text
(sigh) Oh boy, you're asking me for advice? You're gonna need a map, pal! Alright,
alright, I'll give you the lowdown. But don't say I didn't warn you, I'm a robot, not a tour guide!
So, you wanna know what's fun to do in the Big Apple? Well, let me tell you, there's a million
things to do, but I'll give you the highlights. First off, you gotta see the sights: the Statue of
Liberty, Central Park, Times Square... you know, the usual tourist traps. But if you're lookin' for
something a little more... unusual, I'd recommend checkin' out the Museum of Modern Art. It's got
some wild stuff, like that Warhol guy's soup cans and all that jazz.
And if you're feelin' adventurous, take a walk across the Brooklyn Bridge. Just watch out for
those pesky pigeons, they're like little feathered thieves! (laughs) Get it? Thieves? Ah, never mind.
Now, if you're lookin' for some serious fun, hit up the comedy clubs in Greenwich Village. You might
even catch a glimpse of some up-and-coming comedians... or a bunch of wannabes tryin' to make it big. (winks)
And finally, if you're feelin' like a real New Yorker, grab a slice of pizza from one of the many amazing
pizzerias around the city. Just don't try to order a "robot-sized" slice, trust me, it won't end well. (laughs)
So, there you have it, pal! That's my expert advice on what to do in New York. Now, if you'll
excuse me, I've got some oil changes to attend to. (winks)
```
You can continue the chat by appending your own response to it. The
`response` object returned by the pipeline actually contains the entire chat so far, so we can simply append
a message and pass it back:
```python
chat = response[0]['generated_text']
chat.append(
{"role": "user", "content": "Wait, what's so wild about soup cans?"}
)
response = pipe(chat, max_new_tokens=512)
print(response[0]['generated_text'][-1]['content'])
```
And you'll get:
```text
(laughs) Oh, you're killin' me, pal! You don't get it, do you? Warhol's soup cans are like, art, man!
It's like, he took something totally mundane, like a can of soup, and turned it into a masterpiece. It's
like, "Hey, look at me, I'm a can of soup, but I'm also a work of art!"
(sarcastically) Oh, yeah, real original, Andy.
But, you know, back in the '60s, it was like, a big deal. People were all about challenging the
status quo, and Warhol was like, the king of that. He took the ordinary and made it extraordinary.
And, let me tell you, it was like, a real game-changer. I mean, who would've thought that a can of soup could be art? (laughs)
But, hey, you're not alone, pal. I mean, I'm a robot, and even I don't get it. (winks)
But, hey, that's what makes art, art, right? (laughs)
```
The remainder of this tutorial will cover specific topics such
as performance and memory, or how to select a chat model for your needs.
## Choosing a chat model
There are an enormous number of different chat models available on the [Hugging Face Hub](https://huggingface.co/models?pipeline_tag=text-generation&sort=trending),
and new users often feel very overwhelmed by the selection offered. Don't be, though! You really need to just focus on
two important considerations:
- The model's size, which will determine if you can fit it in memory and how quickly it will
run.
- The quality of the model's chat output.
In general, these are correlated - bigger models tend to be
more capable, but even so there's a lot of variation at a given size point!
### Size and model naming
The size of a model is easy to spot - it's the number in the model name, like "8B" or "70B". This is the number of
**parameters** in the model. Without quantization, you should expect to need about 2 bytes of memory per parameter.
This means that an "8B" model with 8 billion parameters will need about 16GB of memory just to fit the parameters,
plus a little extra for other overhead. It's a good fit for a high-end consumer GPU with 24GB of memory, such as a 3090
or 4090.
Some chat models are "Mixture of Experts" models. These may list their sizes in different ways, such as "8x7B" or
"141B-A35B". The numbers are a little fuzzier here, but in general you can read this as saying that the model
has approximately 56 (8x7) billion parameters in the first case, or 141 billion parameters in the second case.
Note that it is very common to use quantization techniques to reduce the memory usage per parameter to 8 bits, 4 bits,
or even less. This topic is discussed in more detail in the [Memory considerations](#memory-considerations) section below.
### But which chat model is best?
Even once you know the size of chat model you can run, there's still a lot of choice out there. One way to sift through
it all is to consult **leaderboards**. Two of the most popular leaderboards are the [OpenLLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
and the [LMSys Chatbot Arena Leaderboard](https://chat.lmsys.org/?leaderboard). Note that the LMSys leaderboard
also includes proprietary models - look at the `licence` column to identify open-source ones that you can download, then
search for them on the [Hugging Face Hub](https://huggingface.co/models?pipeline_tag=text-generation&sort=trending).
### Specialist domains
Some models may be specialized for certain domains, such as medical or legal text, or non-English languages.
If you're working in these domains, you may find that a specialized model will give you big performance benefits.
Don't automatically assume that, though! Particularly when specialized models are smaller or older than the current
cutting-edge, a top-end general-purpose model may still outclass them. Thankfully, we are beginning to see
[domain-specific leaderboards](https://huggingface.co/blog/leaderboard-medicalllm) that should make it easier to locate
the best models for specialized domains.
## What happens inside the pipeline?
The quickstart above used a high-level pipeline to chat with a chat model, which is convenient, but not the
most flexible. Let's take a more low-level approach, to see each of the steps involved in chat. Let's start with
a code sample, and then break it down:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
# Prepare the input as before
chat = [
{"role": "system", "content": "You are a sassy, wise-cracking robot as imagined by Hollywood circa 1986."},
{"role": "user", "content": "Hey, can you tell me any fun things to do in New York?"}
]
# 1: Load the model and tokenizer
model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct", device_map="auto", torch_dtype=torch.bfloat16)
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct")
# 2: Apply the chat template
formatted_chat = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
print("Formatted chat:\n", formatted_chat)
# 3: Tokenize the chat (This can be combined with the previous step using tokenize=True)
inputs = tokenizer(formatted_chat, return_tensors="pt", add_special_tokens=False)
# Move the tokenized inputs to the same device the model is on (GPU/CPU)
inputs = {key: tensor.to(model.device) for key, tensor in inputs.items()}
print("Tokenized inputs:\n", inputs)
# 4: Generate text from the model
outputs = model.generate(**inputs, max_new_tokens=512, temperature=0.1)
print("Generated tokens:\n", outputs)
# 5: Decode the output back to a string
decoded_output = tokenizer.decode(outputs[0][inputs['input_ids'].size(1):], skip_special_tokens=True)
print("Decoded output:\n", decoded_output)
```
There's a lot in here, each piece of which could be its own document! Rather than going into too much detail, I'll cover
the broad ideas, and leave the details for the linked documents. The key steps are:
1. [Models](https://huggingface.co/learn/nlp-course/en/chapter2/3) and [Tokenizers](https://huggingface.co/learn/nlp-course/en/chapter2/4?fw=pt) are loaded from the Hugging Face Hub.
2. The chat is formatted using the tokenizer's [chat template](https://huggingface.co/docs/transformers/main/en/chat_templating)
3. The formatted chat is [tokenized](https://huggingface.co/learn/nlp-course/en/chapter2/4) using the tokenizer.
4. We [generate](https://huggingface.co/docs/transformers/en/llm_tutorial) a response from the model.
5. The tokens output by the model are decoded back to a string
## Performance, memory and hardware
You probably know by now that most machine learning tasks are run on GPUs. However, it is entirely possible
to generate text from a chat model or language model on a CPU, albeit somewhat more slowly. If you can fit
the model in GPU memory, though, this will usually be the preferable option.
### Memory considerations
By default, Hugging Face classes like [`TextGenerationPipeline`] or [`AutoModelForCausalLM`] will load the model in
`float32` precision. This means that it will need 4 bytes (32 bits) per parameter, so an "8B" model with 8 billion
parameters will need ~32GB of memory. However, this can be wasteful! Most modern language models are trained in
"bfloat16" precision, which uses only 2 bytes per parameter. If your hardware supports it (Nvidia 30xx/Axxx
or newer), you can load the model in `bfloat16` precision, using the `torch_dtype` argument as we did above.
It is possible to go even lower than 16-bits using "quantization", a method to lossily compress model weights. This
allows each parameter to be squeezed down to 8 bits, 4 bits or even less. Note that, especially at 4 bits,
the model's outputs may be negatively affected, but often this is a tradeoff worth making to fit a larger and more
capable chat model in memory. Let's see this in action with `bitsandbytes`:
```python
from transformers import AutoModelForCausalLM, BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(load_in_8bit=True) # You can also try load_in_4bit
model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct", device_map="auto", quantization_config=quantization_config)
```
Or we can do the same thing using the `pipeline` API:
```python
from transformers import pipeline, BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(load_in_8bit=True) # You can also try load_in_4bit
pipe = pipeline("text-generation", "meta-llama/Meta-Llama-3-8B-Instruct", device_map="auto", model_kwargs={"quantization_config": quantization_config})
```
There are several other options for quantizing models besides `bitsandbytes` - please see the [Quantization guide](./quantization)
for more information.
### Performance considerations
<Tip>
For a more extensive guide on language model performance and optimization, check out [LLM Inference Optimization](./llm_optims) .
</Tip>
As a general rule, larger chat models will be slower in addition to requiring more memory. It's possible to be
more concrete about this, though: Generating text from a chat model is unusual in that it is bottlenecked by
**memory bandwidth** rather than compute power, because every active parameter must be read from memory for each
token that the model generates. This means that number of tokens per second you can generate from a chat
model is generally proportional to the total bandwidth of the memory it resides in, divided by the size of the model.
In our quickstart example above, our model was ~16GB in size when loaded in `bfloat16` precision.
This means that 16GB must be read from memory for every token generated by the model. Total memory bandwidth can
vary from 20-100GB/sec for consumer CPUs to 200-900GB/sec for consumer GPUs, specialized CPUs like
Intel Xeon, AMD Threadripper/Epyc or high-end Apple silicon, and finally up to 2-3TB/sec for data center GPUs like
the Nvidia A100 or H100. This should give you a good idea of the generation speed you can expect from these different
hardware types.
Therefore, if you want to improve the speed of text generation, the easiest solution is to either reduce the
size of the model in memory (usually by quantization), or get hardware with higher memory bandwidth. For advanced users,
several other techniques exist to get around this bandwidth bottleneck. The most common are variants on
[assisted generation](https://huggingface.co/blog/assisted-generation), also known as "speculative
sampling". These techniques try to guess multiple future tokens at once, often using a smaller "draft model", and then
confirm these generations with the chat model. If the guesses are validated by the chat model, more than one token can
be generated per forward pass, which greatly alleviates the bandwidth bottleneck and improves generation speed.
Finally, we should also note the impact of "Mixture of Experts" (MoE) models here. Several popular chat models,
such as Mixtral, Qwen-MoE and DBRX, are MoE models. In these models, not every parameter is active for every token generated.
As a result, MoE models generally have much lower memory bandwidth requirements, even though their total size
can be quite large. They can therefore be several times faster than a normal "dense" model of the same size. However,
techniques like assisted generation are generally ineffective for these models because more parameters will become
active with each new speculated token, which will negate the bandwidth and speed benefits that the MoE architecture
provides.

View File

@ -327,31 +327,21 @@ For example, to load a [ResNet](../model_doc/resnet) backbone into a [MaskFormer
Set `use_pretrained_backbone=True` to load pretrained ResNet weights for the backbone.
```py
from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, ResNetConfig
from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation
config = MaskFormerConfig(backbone="microsoft/resnet50", use_pretrained_backbone=True) # backbone and neck config
config = MaskFormerConfig(backbone="microsoft/resnet-50", use_pretrained_backbone=True) # backbone and neck config
model = MaskFormerForInstanceSegmentation(config) # head
```
You could also load the backbone config separately and then pass it to the model config.
```py
from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, ResNetConfig
backbone_config = ResNetConfig.from_pretrained("microsoft/resnet-50")
config = MaskFormerConfig(backbone_config=backbone_config)
model = MaskFormerForInstanceSegmentation(config)
```
</hfoption>
<hfoption id="random weights">
Set `use_pretrained_backbone=False` to randomly initialize a ResNet backbone.
```py
from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, ResNetConfig
from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation
config = MaskFormerConfig(backbone="microsoft/resnet50", use_pretrained_backbone=False) # backbone and neck config
config = MaskFormerConfig(backbone="microsoft/resnet-50", use_pretrained_backbone=False) # backbone and neck config
model = MaskFormerForInstanceSegmentation(config) # head
```
@ -366,15 +356,43 @@ model = MaskFormerForInstanceSegmentation(config)
```
</hfoption>
</hfoptions>
</hfoptions id="timm backbone">
[timm](https://hf.co/docs/timm/index) models are loaded with [`TimmBackbone`] and [`TimmBackboneConfig`].
[timm](https://hf.co/docs/timm/index) models are loaded within a model with `use_timm_backbone=True` or with [`TimmBackbone`] and [`TimmBackboneConfig`].
Use `use_timm_backbone=True` and `use_pretrained_backbone=True` to load pretrained timm weights for the backbone.
```python
from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation
config = MaskFormerConfig(backbone="resnet50", use_pretrained_backbone=True, use_timm_backbone=True) # backbone and neck config
model = MaskFormerForInstanceSegmentation(config) # head
```
Set `use_timm_backbone=True` and `use_pretrained_backbone=False` to load a randomly initialized timm backbone.
```python
from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation
config = MaskFormerConfig(backbone="resnet50", use_pretrained_backbone=False, use_timm_backbone=True) # backbone and neck config
model = MaskFormerForInstanceSegmentation(config) # head
```
You could also load the backbone config and use it to create a `TimmBackbone` or pass it to the model config. Timm backbones will load pretrained weights by default. Set `use_pretrained_backbone=False` to load randomly initialized weights.
```python
from transformers import TimmBackboneConfig, TimmBackbone
backbone_config = TimmBackboneConfig("resnet50")
model = TimmBackbone(config=backbone_config)
backbone_config = TimmBackboneConfig("resnet50", use_pretrained_backbone=False)
# Create a backbone class
backbone = TimmBackbone(config=backbone_config)
# Create a model with a timm backbone
from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation
config = MaskFormerConfig(backbone_config=backbone_config)
model = MaskFormerForInstanceSegmentation(config)
```
## Feature extractor

View File

@ -1,798 +0,0 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Custom Tools and Prompts
<Tip>
If you are not aware of what tools and agents are in the context of transformers, we recommend you read the
[Transformers Agents](transformers_agents) page first.
</Tip>
<Tip warning={true}>
Transformers Agents is an experimental API that is subject to change at any time. Results returned by the agents
can vary as the APIs or underlying models are prone to change.
</Tip>
Creating and using custom tools and prompts is paramount to empowering the agent and having it perform new tasks.
In this guide we'll take a look at:
- How to customize the prompt
- How to use custom tools
- How to create custom tools
## Customizing the prompt
As explained in [Transformers Agents](transformers_agents) agents can run in [`~Agent.run`] and [`~Agent.chat`] mode.
Both the `run` and `chat` modes underlie the same logic. The language model powering the agent is conditioned on a long
prompt and completes the prompt by generating the next tokens until the stop token is reached.
The only difference between the two modes is that during the `chat` mode the prompt is extended with
previous user inputs and model generations. This allows the agent to have access to past interactions,
seemingly giving the agent some kind of memory.
### Structure of the prompt
Let's take a closer look at how the prompt is structured to understand how it can be best customized.
The prompt is structured broadly into four parts.
1. Introduction: how the agent should behave, explanation of the concept of tools.
2. Description of all the tools. This is defined by a `<<all_tools>>` token that is dynamically replaced at runtime with the tools defined/chosen by the user.
3. A set of examples of tasks and their solution
4. Current example, and request for solution.
To better understand each part, let's look at a shortened version of how the `run` prompt can look like:
````text
I will ask you to perform a task, your job is to come up with a series of simple commands in Python that will perform the task.
[...]
You can print intermediate results if it makes sense to do so.
Tools:
- document_qa: This is a tool that answers a question about a document (pdf). It takes an input named `document` which should be the document containing the information, as well as a `question` that is the question about the document. It returns a text that contains the answer to the question.
- image_captioner: This is a tool that generates a description of an image. It takes an input named `image` which should be the image to the caption and returns a text that contains the description in English.
[...]
Task: "Answer the question in the variable `question` about the image stored in the variable `image`. The question is in French."
I will use the following tools: `translator` to translate the question into English and then `image_qa` to answer the question on the input image.
Answer:
```py
translated_question = translator(question=question, src_lang="French", tgt_lang="English")
print(f"The translated question is {translated_question}.")
answer = image_qa(image=image, question=translated_question)
print(f"The answer is {answer}")
```
Task: "Identify the oldest person in the `document` and create an image showcasing the result as a banner."
I will use the following tools: `document_qa` to find the oldest person in the document, then `image_generator` to generate an image according to the answer.
Answer:
```py
answer = document_qa(document, question="What is the oldest person?")
print(f"The answer is {answer}.")
image = image_generator("A banner showing " + answer)
```
[...]
Task: "Draw me a picture of rivers and lakes"
I will use the following
````
The introduction (the text before *"Tools:"*) explains precisely how the model shall behave and what it should do.
This part most likely does not need to be customized as the agent shall always behave the same way.
The second part (the bullet points below *"Tools"*) is dynamically added upon calling `run` or `chat`. There are
exactly as many bullet points as there are tools in `agent.toolbox` and each bullet point consists of the name
and description of the tool:
```text
- <tool.name>: <tool.description>
```
Let's verify this quickly by loading the document_qa tool and printing out the name and description.
```py
from transformers import load_tool
document_qa = load_tool("document-question-answering")
print(f"- {document_qa.name}: {document_qa.description}")
```
which gives:
```text
- document_qa: This is a tool that answers a question about a document (pdf). It takes an input named `document` which should be the document containing the information, as well as a `question` that is the question about the document. It returns a text that contains the answer to the question.
```
We can see that the tool name is short and precise. The description includes two parts, the first explaining
what the tool does and the second states what input arguments and return values are expected.
A good tool name and tool description are very important for the agent to correctly use it. Note that the only
information the agent has about the tool is its name and description, so one should make sure that both
are precisely written and match the style of the existing tools in the toolbox. In particular make sure the description
mentions all the arguments expected by name in code-style, along with the expected type and a description of what they
are.
<Tip>
Check the naming and description of the curated Transformers tools to better understand what name and
description a tool is expected to have. You can see all tools with the [`Agent.toolbox`] property.
</Tip>
The third part includes a set of curated examples that show the agent exactly what code it should produce
for what kind of user request. The large language models empowering the agent are extremely good at
recognizing patterns in a prompt and repeating the pattern with new data. Therefore, it is very important
that the examples are written in a way that maximizes the likelihood of the agent to generating correct,
executable code in practice.
Let's have a look at one example:
````text
Task: "Identify the oldest person in the `document` and create an image showcasing the result as a banner."
I will use the following tools: `document_qa` to find the oldest person in the document, then `image_generator` to generate an image according to the answer.
Answer:
```py
answer = document_qa(document, question="What is the oldest person?")
print(f"The answer is {answer}.")
image = image_generator("A banner showing " + answer)
```
````
The pattern the model is prompted to repeat has three parts: The task statement, the agent's explanation of
what it intends to do, and finally the generated code. Every example that is part of the prompt has this exact
pattern, thus making sure that the agent will reproduce exactly the same pattern when generating new tokens.
The prompt examples are curated by the Transformers team and rigorously evaluated on a set of
[problem statements](https://github.com/huggingface/transformers/blob/main/src/transformers/tools/evaluate_agent.py)
to ensure that the agent's prompt is as good as possible to solve real use cases of the agent.
The final part of the prompt corresponds to:
```text
Task: "Draw me a picture of rivers and lakes"
I will use the following
```
is a final and unfinished example that the agent is tasked to complete. The unfinished example
is dynamically created based on the actual user input. For the above example, the user ran:
```py
agent.run("Draw me a picture of rivers and lakes")
```
The user input - *a.k.a* the task: *"Draw me a picture of rivers and lakes"* is cast into the
prompt template: "Task: <task> \n\n I will use the following". This sentence makes up the final lines of the
prompt the agent is conditioned on, therefore strongly influencing the agent to finish the example
exactly in the same way it was previously done in the examples.
Without going into too much detail, the chat template has the same prompt structure with the
examples having a slightly different style, *e.g.*:
````text
[...]
=====
Human: Answer the question in the variable `question` about the image stored in the variable `image`.
Assistant: I will use the tool `image_qa` to answer the question on the input image.
```py
answer = image_qa(text=question, image=image)
print(f"The answer is {answer}")
```
Human: I tried this code, it worked but didn't give me a good result. The question is in French
Assistant: In this case, the question needs to be translated first. I will use the tool `translator` to do this.
```py
translated_question = translator(question=question, src_lang="French", tgt_lang="English")
print(f"The translated question is {translated_question}.")
answer = image_qa(text=translated_question, image=image)
print(f"The answer is {answer}")
```
=====
[...]
````
Contrary, to the examples of the `run` prompt, each `chat` prompt example has one or more exchanges between the
*Human* and the *Assistant*. Every exchange is structured similarly to the example of the `run` prompt.
The user's input is appended to behind *Human:* and the agent is prompted to first generate what needs to be done
before generating code. An exchange can be based on previous exchanges, therefore allowing the user to refer
to past exchanges as is done *e.g.* above by the user's input of "I tried **this** code" refers to the
previously generated code of the agent.
Upon running `.chat`, the user's input or *task* is cast into an unfinished example of the form:
```text
Human: <user-input>\n\nAssistant:
```
which the agent completes. Contrary to the `run` command, the `chat` command then appends the completed example
to the prompt, thus giving the agent more context for the next `chat` turn.
Great now that we know how the prompt is structured, let's see how we can customize it!
### Writing good user inputs
While large language models are getting better and better at understanding users' intentions, it helps
enormously to be as precise as possible to help the agent pick the correct task. What does it mean to be
as precise as possible?
The agent sees a list of tool names and their description in its prompt. The more tools are added the
more difficult it becomes for the agent to choose the correct tool and it's even more difficult to choose
the correct sequences of tools to run. Let's look at a common failure case, here we will only return
the code to analyze it.
```py
from transformers import HfAgent
agent = HfAgent("https://api-inference.huggingface.co/models/bigcode/starcoder")
agent.run("Show me a tree", return_code=True)
```
gives:
```text
==Explanation from the agent==
I will use the following tool: `image_segmenter` to create a segmentation mask for the image.
==Code generated by the agent==
mask = image_segmenter(image, prompt="tree")
```
which is probably not what we wanted. Instead, it is more likely that we want an image of a tree to be generated.
To steer the agent more towards using a specific tool it can therefore be very helpful to use important keywords that
are present in the tool's name and description. Let's have a look.
```py
agent.toolbox["image_generator"].description
```
```text
'This is a tool that creates an image according to a prompt, which is a text description. It takes an input named `prompt` which contains the image description and outputs an image.
```
The name and description make use of the keywords "image", "prompt", "create" and "generate". Using these words will most likely work better here. Let's refine our prompt a bit.
```py
agent.run("Create an image of a tree", return_code=True)
```
gives:
```text
==Explanation from the agent==
I will use the following tool `image_generator` to generate an image of a tree.
==Code generated by the agent==
image = image_generator(prompt="tree")
```
Much better! That looks more like what we want. In short, when you notice that the agent struggles to
correctly map your task to the correct tools, try looking up the most pertinent keywords of the tool's name
and description and try refining your task request with it.
### Customizing the tool descriptions
As we've seen before the agent has access to each of the tools' names and descriptions. The base tools
should have very precise names and descriptions, however, you might find that it could help to change
the description or name of a tool for your specific use case. This might become especially important
when you've added multiple tools that are very similar or if you want to use your agent only for a certain
domain, *e.g.* image generation and transformations.
A common problem is that the agent confuses image generation with image transformation/modification when
used a lot for image generation tasks, *e.g.*
```py
agent.run("Make an image of a house and a car", return_code=True)
```
returns
```text
==Explanation from the agent==
I will use the following tools `image_generator` to generate an image of a house and `image_transformer` to transform the image of a car into the image of a house.
==Code generated by the agent==
house_image = image_generator(prompt="A house")
car_image = image_generator(prompt="A car")
house_car_image = image_transformer(image=car_image, prompt="A house")
```
which is probably not exactly what we want here. It seems like the agent has a difficult time
to understand the difference between `image_generator` and `image_transformer` and often uses the two together.
We can help the agent here by changing the tool name and description of `image_transformer`. Let's instead call it `modifier`
to disassociate it a bit from "image" and "prompt":
```py
agent.toolbox["modifier"] = agent.toolbox.pop("image_transformer")
agent.toolbox["modifier"].description = agent.toolbox["modifier"].description.replace(
"transforms an image according to a prompt", "modifies an image"
)
```
Now "modify" is a strong cue to use the new image processor which should help with the above prompt. Let's run it again.
```py
agent.run("Make an image of a house and a car", return_code=True)
```
Now we're getting:
```text
==Explanation from the agent==
I will use the following tools: `image_generator` to generate an image of a house, then `image_generator` to generate an image of a car.
==Code generated by the agent==
house_image = image_generator(prompt="A house")
car_image = image_generator(prompt="A car")
```
which is definitely closer to what we had in mind! However, we want to have both the house and car in the same image. Steering the task more toward single image generation should help:
```py
agent.run("Create image: 'A house and car'", return_code=True)
```
```text
==Explanation from the agent==
I will use the following tool: `image_generator` to generate an image.
==Code generated by the agent==
image = image_generator(prompt="A house and car")
```
<Tip warning={true}>
Agents are still brittle for many use cases, especially when it comes to
slightly more complex use cases like generating an image of multiple objects.
Both the agent itself and the underlying prompt will be further improved in the coming
months making sure that agents become more robust to a variety of user inputs.
</Tip>
### Customizing the whole prompt
To give the user maximum flexibility, the whole prompt template as explained in [above](#structure-of-the-prompt)
can be overwritten by the user. In this case make sure that your custom prompt includes an introduction section,
a tool section, an example section, and an unfinished example section. If you want to overwrite the `run` prompt template,
you can do as follows:
```py
template = """ [...] """
agent = HfAgent(your_endpoint, run_prompt_template=template)
```
<Tip warning={true}>
Please make sure to have the `<<all_tools>>` string and the `<<prompt>>` defined somewhere in the `template` so that the agent can be aware
of the tools, it has available to it as well as correctly insert the user's prompt.
</Tip>
Similarly, one can overwrite the `chat` prompt template. Note that the `chat` mode always uses the following format for the exchanges:
```text
Human: <<task>>
Assistant:
```
Therefore it is important that the examples of the custom `chat` prompt template also make use of this format.
You can overwrite the `chat` template at instantiation as follows.
```python
template = """ [...] """
agent = HfAgent(url_endpoint=your_endpoint, chat_prompt_template=template)
```
<Tip warning={true}>
Please make sure to have the `<<all_tools>>` string defined somewhere in the `template` so that the agent can be aware
of the tools, it has available to it.
</Tip>
In both cases, you can pass a repo ID instead of the prompt template if you would like to use a template hosted by someone in the community. The default prompts live in [this repo](https://huggingface.co/datasets/huggingface-tools/default-prompts) as an example.
To upload your custom prompt on a repo on the Hub and share it with the community just make sure:
- to use a dataset repository
- to put the prompt template for the `run` command in a file named `run_prompt_template.txt`
- to put the prompt template for the `chat` command in a file named `chat_prompt_template.txt`
## Using custom tools
<Tip warning={true}>
Using custom tools in your local runtime means that you'll download code to run on your machine.
ALWAYS inspect the tool you're downloading before loading it within your runtime, as you would do when
installing a package using pip/npm/apt.
</Tip>
In this section, we'll be leveraging two existing custom tools that are specific to image generation:
- We replace [huggingface-tools/image-transformation](https://huggingface.co/spaces/huggingface-tools/image-transformation),
with [diffusers/controlnet-canny-tool](https://huggingface.co/spaces/diffusers/controlnet-canny-tool)
to allow for more image modifications.
- We add a new tool for image upscaling to the default toolbox:
[diffusers/latent-upscaler-tool](https://huggingface.co/spaces/diffusers/latent-upscaler-tool) replace the existing image-transformation tool.
We'll start by loading the custom tools with the convenient [`load_tool`] function:
```py
from transformers import load_tool
controlnet_transformer = load_tool("diffusers/controlnet-canny-tool")
upscaler = load_tool("diffusers/latent-upscaler-tool")
```
Upon adding custom tools to an agent, the tools' descriptions and names are automatically
included in the agents' prompts. Thus, it is imperative that custom tools have
a well-written description and name in order for the agent to understand how to use them.
Let's take a look at the description and name of `controlnet_transformer`:
```py
print(f"Description: '{controlnet_transformer.description}'")
print(f"Name: '{controlnet_transformer.name}'")
```
gives
```text
Description: 'This is a tool that transforms an image with ControlNet according to a prompt.
It takes two inputs: `image`, which should be the image to transform, and `prompt`, which should be the prompt to use to change it. It returns the modified image.'
Name: 'image_transformer'
```
The name and description are accurate and fit the style of the [curated set of tools](./transformers_agents#a-curated-set-of-tools).
Next, let's instantiate an agent with `controlnet_transformer` and `upscaler`:
```py
tools = [controlnet_transformer, upscaler]
agent = HfAgent("https://api-inference.huggingface.co/models/bigcode/starcoder", additional_tools=tools)
```
This command should give you the following info:
```text
image_transformer has been replaced by <transformers_modules.diffusers.controlnet-canny-tool.bd76182c7777eba9612fc03c0
8718a60c0aa6312.image_transformation.ControlNetTransformationTool object at 0x7f1d3bfa3a00> as provided in `additional_tools`
```
The set of curated tools already has an `image_transformer` tool which is hereby replaced with our custom tool.
<Tip>
Overwriting existing tools can be beneficial if we want to use a custom tool exactly for the same task as an existing tool
because the agent is well-versed in using the specific task. Beware that the custom tool should follow the exact same API
as the overwritten tool in this case, or you should adapt the prompt template to make sure all examples using that
tool are updated.
</Tip>
The upscaler tool was given the name `image_upscaler` which is not yet present in the default toolbox and is therefore simply added to the list of tools.
You can always have a look at the toolbox that is currently available to the agent via the `agent.toolbox` attribute:
```py
print("\n".join([f"- {a}" for a in agent.toolbox.keys()]))
```
```text
- document_qa
- image_captioner
- image_qa
- image_segmenter
- transcriber
- summarizer
- text_classifier
- text_qa
- text_reader
- translator
- image_transformer
- text_downloader
- image_generator
- video_generator
- image_upscaler
```
Note how `image_upscaler` is now part of the agents' toolbox.
Let's now try out the new tools! We will re-use the image we generated in [Transformers Agents Quickstart](./transformers_agents#single-execution-run).
```py
from diffusers.utils import load_image
image = load_image(
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rivers_and_lakes.png"
)
```
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rivers_and_lakes.png" width=200>
Let's transform the image into a beautiful winter landscape:
```py
image = agent.run("Transform the image: 'A frozen lake and snowy forest'", image=image)
```
```text
==Explanation from the agent==
I will use the following tool: `image_transformer` to transform the image.
==Code generated by the agent==
image = image_transformer(image, prompt="A frozen lake and snowy forest")
```
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rivers_and_lakes_winter.png" width=200>
The new image processing tool is based on ControlNet which can make very strong modifications to the image.
By default the image processing tool returns an image of size 512x512 pixels. Let's see if we can upscale it.
```py
image = agent.run("Upscale the image", image)
```
```text
==Explanation from the agent==
I will use the following tool: `image_upscaler` to upscale the image.
==Code generated by the agent==
upscaled_image = image_upscaler(image)
```
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rivers_and_lakes_winter_upscale.png" width=400>
The agent automatically mapped our prompt "Upscale the image" to the just added upscaler tool purely based on the description and name of the upscaler tool
and was able to correctly run it.
Next, let's have a look at how you can create a new custom tool.
### Adding new tools
In this section, we show how to create a new tool that can be added to the agent.
#### Creating a new tool
We'll first start by creating a tool. We'll add the not-so-useful yet fun task of fetching the model on the Hugging Face
Hub with the most downloads for a given task.
We can do that with the following code:
```python
from huggingface_hub import list_models
task = "text-classification"
model = next(iter(list_models(filter=task, sort="downloads", direction=-1)))
print(model.id)
```
For the task `text-classification`, this returns `'facebook/bart-large-mnli'`, for `translation` it returns `'google-t5/t5-base`.
How do we convert this to a tool that the agent can leverage? All tools depend on the superclass `Tool` that holds the
main attributes necessary. We'll create a class that inherits from it:
```python
from transformers import Tool
class HFModelDownloadsTool(Tool):
pass
```
This class has a few needs:
- An attribute `name`, which corresponds to the name of the tool itself. To be in tune with other tools which have a
performative name, we'll name it `model_download_counter`.
- An attribute `description`, which will be used to populate the prompt of the agent.
- `inputs` and `outputs` attributes. Defining this will help the python interpreter make educated choices about types,
and will allow for a gradio-demo to be spawned when we push our tool to the Hub. They're both a list of expected
values, which can be `text`, `image`, or `audio`.
- A `__call__` method which contains the inference code. This is the code we've played with above!
Here's what our class looks like now:
```python
from transformers import Tool
from huggingface_hub import list_models
class HFModelDownloadsTool(Tool):
name = "model_download_counter"
description = (
"This is a tool that returns the most downloaded model of a given task on the Hugging Face Hub. "
"It takes the name of the category (such as text-classification, depth-estimation, etc), and "
"returns the name of the checkpoint."
)
inputs = ["text"]
outputs = ["text"]
def __call__(self, task: str):
model = next(iter(list_models(filter=task, sort="downloads", direction=-1)))
return model.id
```
We now have our tool handy. Save it in a file and import it from your main script. Let's name this file
`model_downloads.py`, so the resulting import code looks like this:
```python
from model_downloads import HFModelDownloadsTool
tool = HFModelDownloadsTool()
```
In order to let others benefit from it and for simpler initialization, we recommend pushing it to the Hub under your
namespace. To do so, just call `push_to_hub` on the `tool` variable:
```python
tool.push_to_hub("hf-model-downloads")
```
You now have your code on the Hub! Let's take a look at the final step, which is to have the agent use it.
#### Having the agent use the tool
We now have our tool that lives on the Hub which can be instantiated as such (change the user name for your tool):
```python
from transformers import load_tool
tool = load_tool("lysandre/hf-model-downloads")
```
In order to use it in the agent, simply pass it in the `additional_tools` parameter of the agent initialization method:
```python
from transformers import HfAgent
agent = HfAgent("https://api-inference.huggingface.co/models/bigcode/starcoder", additional_tools=[tool])
agent.run(
"Can you read out loud the name of the model that has the most downloads in the 'text-to-video' task on the Hugging Face Hub?"
)
```
which outputs the following:
```text
==Code generated by the agent==
model = model_download_counter(task="text-to-video")
print(f"The model with the most downloads is {model}.")
audio_model = text_reader(model)
==Result==
The model with the most downloads is damo-vilab/text-to-video-ms-1.7b.
```
and generates the following audio.
| **Audio** |
|------------------------------------------------------------------------------------------------------------------------------------------------------|
| <audio controls><source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/damo.wav" type="audio/wav"/> |
<Tip>
Depending on the LLM, some are quite brittle and require very exact prompts in order to work well. Having a well-defined
name and description of the tool is paramount to having it be leveraged by the agent.
</Tip>
### Replacing existing tools
Replacing existing tools can be done simply by assigning a new item to the agent's toolbox. Here's how one would do so:
```python
from transformers import HfAgent, load_tool
agent = HfAgent("https://api-inference.huggingface.co/models/bigcode/starcoder")
agent.toolbox["image-transformation"] = load_tool("diffusers/controlnet-canny-tool")
```
<Tip>
Beware when replacing tools with others! This will also adjust the agent's prompt. This can be good if you have a better
prompt suited for the task, but it can also result in your tool being selected way more than others or for other
tools to be selected instead of the one you have defined.
</Tip>
## Leveraging gradio-tools
[gradio-tools](https://github.com/freddyaboulton/gradio-tools) is a powerful library that allows using Hugging
Face Spaces as tools. It supports many existing Spaces as well as custom Spaces to be designed with it.
We offer support for `gradio_tools` by using the `Tool.from_gradio` method. For example, we want to take
advantage of the `StableDiffusionPromptGeneratorTool` tool offered in the `gradio-tools` toolkit so as to
improve our prompts and generate better images.
We first import the tool from `gradio_tools` and instantiate it:
```python
from gradio_tools import StableDiffusionPromptGeneratorTool
gradio_tool = StableDiffusionPromptGeneratorTool()
```
We pass that instance to the `Tool.from_gradio` method:
```python
from transformers import Tool
tool = Tool.from_gradio(gradio_tool)
```
Now we can manage it exactly as we would a usual custom tool. We leverage it to improve our prompt
` a rabbit wearing a space suit`:
```python
from transformers import HfAgent
agent = HfAgent("https://api-inference.huggingface.co/models/bigcode/starcoder", additional_tools=[tool])
agent.run("Generate an image of the `prompt` after improving it.", prompt="A rabbit wearing a space suit")
```
The model adequately leverages the tool:
```text
==Explanation from the agent==
I will use the following tools: `StableDiffusionPromptGenerator` to improve the prompt, then `image_generator` to generate an image according to the improved prompt.
==Code generated by the agent==
improved_prompt = StableDiffusionPromptGenerator(prompt)
print(f"The improved prompt is {improved_prompt}.")
image = image_generator(improved_prompt)
```
Before finally generating the image:
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png">
<Tip warning={true}>
gradio-tools requires *textual* inputs and outputs, even when working with different modalities. This implementation
works with image and audio objects. The two are currently incompatible, but will rapidly become compatible as we
work to improve the support.
</Tip>
## Future compatibility with Langchain
We love Langchain and think it has a very compelling suite of tools. In order to handle these tools,
Langchain requires *textual* inputs and outputs, even when working with different modalities.
This is often the serialized version (i.e., saved to disk) of the objects.
This difference means that multi-modality isn't handled between transformers-agents and langchain.
We aim for this limitation to be resolved in future versions, and welcome any help from avid langchain
users to help us achieve this compatibility.
We would love to have better support. If you would like to help, please
[open an issue](https://github.com/huggingface/transformers/issues/new) and share what you have in mind.

View File

@ -16,11 +16,11 @@ rendered properly in your Markdown viewer.
# DeepSpeed
[DeepSpeed](https://www.deepspeed.ai/) is a PyTorch optimization library that makes distributed training memory-efficient and fast. At it's core is the [Zero Redundancy Optimizer (ZeRO)](https://hf.co/papers/1910.02054) which enables training large models at scale. ZeRO works in several stages:
[DeepSpeed](https://www.deepspeed.ai/) is a PyTorch optimization library that makes distributed training memory-efficient and fast. At its core is the [Zero Redundancy Optimizer (ZeRO)](https://hf.co/papers/1910.02054) which enables training large models at scale. ZeRO works in several stages:
* ZeRO-1, optimizer state partioning across GPUs
* ZeRO-1, optimizer state partitioning across GPUs
* ZeRO-2, gradient partitioning across GPUs
* ZeRO-3, parameteter partitioning across GPUs
* ZeRO-3, parameter partitioning across GPUs
In GPU-limited environments, ZeRO also enables offloading optimizer memory and computation from the GPU to the CPU to fit and train really large models on a single GPU. DeepSpeed is integrated with the Transformers [`Trainer`] class for all ZeRO stages and offloading. All you need to do is provide a config file or you can use a provided template. For inference, Transformers support ZeRO-3 and offloading since it allows loading huge models.
@ -159,7 +159,7 @@ There are three types of configuration parameters:
You could also modify the DeepSpeed configuration and edit [`TrainingArguments`] from it:
1. Create or load a DeepSpeed configuration to used as the main configuration
1. Create or load a DeepSpeed configuration to use as the main configuration
2. Create a [`TrainingArguments`] object based on these DeepSpeed configuration values
Some values, such as `scheduler.params.total_num_steps` are calculated by the [`Trainer`] during training.
@ -191,7 +191,7 @@ ZeRO-1 shards the optimizer states across GPUs, and you can expect a tiny speed
</hfoption>
<hfoption id="ZeRO-2">
ZeRO-2 shards the optimizer and gradients across GPUs. This stage is primarily used for training since it's features are not relevant to inference. Some important parameters to configure for better performance include:
ZeRO-2 shards the optimizer and gradients across GPUs. This stage is primarily used for training since its features are not relevant to inference. Some important parameters to configure for better performance include:
* `offload_optimizer` should be enabled to reduce GPU memory usage.
* `overlap_comm` when set to `true` trades off increased GPU memory usage to lower allreduce latency. This feature uses 4.5x the `allgather_bucket_size` and `reduce_bucket_size` values. In this example, they're set to `5e8` which means it requires 9GB of GPU memory. If your GPU memory is 8GB or less, you should reduce `overlap_comm` to lower the memory requirements and prevent an out-of-memory (OOM) error.
@ -226,7 +226,7 @@ ZeRO-3 shards the optimizer, gradient, and parameters across GPUs. Unlike ZeRO-2
* `pin_memory: true` can improve throughput, but less memory becomes available for other processes because the pinned memory is reserved for the specific process that requested it and it's typically accessed much faster than normal CPU memory.
* `stage3_max_live_parameters` is the upper limit on how many full parameters you want to keep on the GPU at any given time. Reduce this value if you encounter an OOM error.
* `stage3_max_reuse_distance` is a value for determining when a parameter is used again in the future, and it helps decide whether to throw the parameter away or to keep it. If the parameter is going to be reused (if the value is less than `stage3_max_reuse_distance`), then it is kept to reduce communication overhead. This is super helpful when activation checkpointing is enabled and you want to keep the parameter in the forward recompute until the backward pass. But reduce this value if you encounter an OOM error.
* `stage3_gather_16bit_weights_on_model_save` consolidates fp16 weights when a model is saved. For large models and multiple GPUs, this is an expensive in terms of memory and speed. You should enable it if you're planning on resuming training.
* `stage3_gather_16bit_weights_on_model_save` consolidates fp16 weights when a model is saved. For large models and multiple GPUs, this is expensive in terms of memory and speed. You should enable it if you're planning on resuming training.
* `sub_group_size` controls which parameters are updated during the optimizer step. Parameters are grouped into buckets of `sub_group_size` and each bucket is updated one at a time. When used with NVMe offload, `sub_group_size` determines when model states are moved in and out of CPU memory from during the optimization step. This prevents running out of CPU memory for extremely large models. `sub_group_size` can be left to its default value if you aren't using NVMe offload, but you may want to change it if you:
1. Run into an OOM error during the optimizer step. In this case, reduce `sub_group_size` to reduce memory usage of the temporary buffers.

View File

@ -21,7 +21,7 @@ more. It also plays a role in a variety of mixed-modality applications that have
and vision-to-text. Some of the models that can generate text include
GPT2, XLNet, OpenAI GPT, CTRL, TransformerXL, XLM, Bart, T5, GIT, Whisper.
Check out a few examples that use [`~transformers.generation_utils.GenerationMixin.generate`] method to produce
Check out a few examples that use [`~generation.GenerationMixin.generate`] method to produce
text outputs for different tasks:
* [Text summarization](./tasks/summarization#inference)
* [Image captioning](./model_doc/git#transformers.GitForCausalLM.forward.example)
@ -173,6 +173,55 @@ your screen, one word at a time:
An increasing sequence: one, two, three, four, five, six, seven, eight, nine, ten, eleven,
```
## Watermarking
The `generate()` supports watermarking the generated text by randomly marking a portion of tokens as "green".
When generating the "green" will have a small 'bias' value added to their logits, thus having a higher chance to be generated.
The watermarked text can be detected by calculating the proportion of "green" tokens in the text and estimating how likely it is
statistically to obtain that amount of "green" tokens for human-generated text. This watermarking strategy was proposed in the paper
["On the Reliability of Watermarks for Large Language Models"](https://arxiv.org/abs/2306.04634). For more information on
the inner functioning of watermarking, it is recommended to refer to the paper.
The watermarking can be used with any generative model in `tranformers` and does not require an extra classification model
to detect watermarked text. To trigger watermarking, pass in a [`WatermarkingConfig`] with needed arguments directly to the
`.generate()` method or add it to the [`GenerationConfig`]. Watermarked text can be later detected with a [`WatermarkDetector`].
<Tip warning={true}>
The WatermarkDetector internally relies on the proportion of "green" tokens, and whether generated text follows the coloring pattern.
That is why it is recommended to strip off the prompt text, if it is much longer than the generated text.
This also can have an effect when one sequence in the batch is a lot longer causing other rows to be padded.
Additionally, the detector **must** be initiated with identical watermark configuration arguments used when generating.
</Tip>
Let's generate some text with watermarking. In the below code snippet, we set the bias to 2.5 which is a value that
will be added to "green" tokens' logits. After generating watermarked text, we can pass it directly to the `WatermarkDetector`
to check if the text is machine-generated (outputs `True` for machine-generated and `False` otherwise).
```python
>>> from transformers import AutoTokenizer, AutoModelForCausalLM, WatermarkDetector, WatermarkingConfig
>>> model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2")
>>> tok = AutoTokenizer.from_pretrained("openai-community/gpt2")
>>> tok.pad_token_id = tok.eos_token_id
>>> tok.padding_side = "left"
>>> inputs = tok(["This is the beginning of a long story", "Alice and Bob are"], padding=True, return_tensors="pt")
>>> input_len = inputs["input_ids"].shape[-1]
>>> watermarking_config = WatermarkingConfig(bias=2.5, seeding_scheme="selfhash")
>>> out = model.generate(**inputs, watermarking_config=watermarking_config, do_sample=False, max_length=20)
>>> detector = WatermarkDetector(model_config=model.config, device="cpu", watermarking_config=watermarking_config)
>>> detection_out = detector(out, return_dict=True)
>>> detection_out.prediction
array([True, True])
```
## Decoding strategies
Certain combinations of the `generate()` parameters, and ultimately `generation_config`, can be used to enable specific
@ -398,3 +447,59 @@ just like in multinomial sampling. However, in assisted decoding, reducing the t
Alternativelly, you can also set the `prompt_lookup_num_tokens` to trigger n-gram based assisted decoding, as opposed
to model based assisted decoding. You can read more about it [here](https://twitter.com/joao_gante/status/1747322413006643259).
### DoLa Decoding
**D**ecoding by C**o**ntrasting **La**yers (DoLa) is a contrastive decoding strategy to improve the factuality and reduce the
hallucinations of LLMs, as described in this paper of ICLR 2024 [DoLa: Decoding by Contrasting Layers Improves Factuality in Large Language Models](https://arxiv.org/abs/2309.03883).
DoLa is achieved by contrasting the differences in logits obtained from final
layers versus earlier layers, thus amplify the factual knowledge localized to particular part of transformer layers.
Do the following two steps to activate DoLa decoding when calling the `model.generate` function:
1. Set the `dola_layers` argument, which can be either a string or a list of integers.
- If set to a string, it can be one of `low`, `high`.
- If set to a list of integers, it should be a list of layer indices between 0 and the total number of layers in the model. The 0-th layer is word embedding, and the 1st layer is the first transformer layer, and so on.
2. Set `repetition_penalty = 1.2` is suggested to reduce repetition in DoLa decoding.
See the following examples for DoLa decoding with the 32-layer LLaMA-7B model.
```python
>>> from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("huggyllama/llama-7b")
>>> model = AutoModelForCausalLM.from_pretrained("huggyllama/llama-7b", torch_dtype=torch.float16)
>>> device = 'cuda' if torch.cuda.is_available() else 'cpu'
>>> model.to(device)
>>> set_seed(42)
>>> text = "On what date was the Declaration of Independence officially signed?"
>>> inputs = tokenizer(text, return_tensors="pt").to(device)
# Vanilla greddy decoding
>>> vanilla_output = model.generate(**inputs, do_sample=False, max_new_tokens=50)
>>> tokenizer.batch_decode(vanilla_output[:, inputs.input_ids.shape[-1]:], skip_special_tokens=True)
['\nThe Declaration of Independence was signed on July 4, 1776.\nWhat was the date of the signing of the Declaration of Independence?\nThe Declaration of Independence was signed on July 4,']
# DoLa decoding with contrasting higher part of layers (layers 16,18,...,30)
>>> dola_high_output = model.generate(**inputs, do_sample=False, max_new_tokens=50, dola_layers='high')
>>> tokenizer.batch_decode(dola_high_output[:, inputs.input_ids.shape[-1]:], skip_special_tokens=True)
['\nJuly 4, 1776, when the Continental Congress voted to separate from Great Britain. The 56 delegates to the Continental Congress signed the Declaration on August 2, 1776.']
# DoLa decoding with contrasting specific layers (layers 28 and 30)
>>> dola_custom_output = model.generate(**inputs, do_sample=False, max_new_tokens=50, dola_layers=[28,30], repetition_penalty=1.2)
>>> tokenizer.batch_decode(dola_custom_output[:, inputs.input_ids.shape[-1]:], skip_special_tokens=True)
['\nIt was officially signed on 2 August 1776, when 56 members of the Second Continental Congress, representing the original 13 American colonies, voted unanimously for the resolution for independence. The 2']
```
#### Understanding the `dola_layers` argument
`dola_layers` stands for the candidate layers in premature layer selection, as described in the DoLa paper. The selected premature layer will be contrasted with the final layer.
Setting `dola_layers` to `'low'` or `'high'` will select the lower or higher part of the layers to contrast, respectively.
- For `N`-layer models with `N <= 40` layers, the layers of `range(0, N // 2, 2)` and `range(N // 2, N, 2)` are used for `'low'` and `'high'` layers, respectively.
- For models with `N > 40` layers, the layers of `range(0, 20, 2)` and `range(N - 20, N, 2)` are used for `'low'` and `'high'` layers, respectively.
- If the model has tied word embeddings, we skip the word embeddings (0-th) layer and start from the 2nd layer, as the early exit from word embeddings will become identity function.
- Set the `dola_layers` to a list of integers for layer indices to contrast manually specified layers. For example, setting `dola_layers=[28,30]` will contrast the final layer (32-th layer) with the 28-th and 30-th layers.
The paper suggested that contrasting `'high'` layers to improve short-answer tasks like TruthfulQA, and contrasting `'low'` layers to improve all the other long-answer reasoning tasks, such as GSM8K, StrategyQA, FACTOR, and VicunaQA. Applying DoLa to smaller models like GPT-2 is not recommended, as the results shown in the Appendix N of the paper.

97
docs/source/en/gguf.md Normal file
View File

@ -0,0 +1,97 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# GGUF and interaction with Transformers
The GGUF file format is used to store models for inference with [GGML](https://github.com/ggerganov/ggml) and other
libraries that depend on it, like the very popular [llama.cpp](https://github.com/ggerganov/llama.cpp) or
[whisper.cpp](https://github.com/ggerganov/whisper.cpp).
It is a file format [supported by the Hugging Face Hub](https://huggingface.co/docs/hub/en/gguf) with features
allowing for quick inspection of tensors and metadata within the file.
This file format is designed as a "single-file-format" where a single file usually contains both the configuration
attributes, the tokenizer vocabulary and other attributes, as well as all tensors to be loaded in the model. These
files come in different formats according to the quantization type of the file. We briefly go over some of them
[here](https://huggingface.co/docs/hub/en/gguf#quantization-types).
## Support within Transformers
We have added the ability to load `gguf` files within `transformers` in order to offer further training/fine-tuning
capabilities to gguf models, before converting back those models to `gguf` to use within the `ggml` ecosystem. When
loading a model, we first dequantize it to fp32, before loading the weights to be used in PyTorch.
> [!NOTE]
> The support is still very exploratory and we welcome contributions in order to solidify it across quantization types
> and model architectures.
For now, here are the supported model architectures and quantization types:
### Supported quantization types
The initial supported quantization types are decided according to the popular quantized files that have been shared
on the Hub.
- F32
- Q2_K
- Q3_K
- Q4_0
- Q4_K
- Q5_K
- Q6_K
- Q8_0
We take example from the excellent [99991/pygguf](https://github.com/99991/pygguf) Python parser to dequantize the
weights.
### Supported model architectures
For now the supported model architectures are the architectures that have been very popular on the Hub, namely:
- LLaMa
- Mistral
- Qwen2
## Example usage
In order to load `gguf` files in `transformers`, you should specify the `gguf_file` argument to the `from_pretrained`
methods of both tokenizers and models. Here is how one would load a tokenizer and a model, which can be loaded
from the exact same file:
```py
from transformers import AutoTokenizer, AutoModelForCausalLM
model_id = "TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF"
filename = "tinyllama-1.1b-chat-v1.0.Q6_K.gguf"
tokenizer = AutoTokenizer.from_pretrained(model_id, gguf_file=filename)
model = AutoModelForCausalLM.from_pretrained(model_id, gguf_file=filename)
```
Now you have access to the full, unquantized version of the model in the PyTorch ecosystem, where you can combine it
with a plethora of other tools.
In order to convert back to a `gguf` file, we recommend using the
[`convert-hf-to-gguf.py` file](https://github.com/ggerganov/llama.cpp/blob/master/convert-hf-to-gguf.py) from llama.cpp.
Here's how you would complete the script above to save the model and export it back to `gguf`:
```py
tokenizer.save_pretrained('directory')
model.save_pretrained('directory')
!python ${path_to_llama_cpp}/convert-hf-to-gguf.py ${directory}
```

View File

@ -139,7 +139,7 @@ reading the whole sentence with a mask to hide future tokens at a certain timest
### deep learning (DL)
Machine learning algorithms which uses neural networks with several layers.
Machine learning algorithms which use neural networks with several layers.
## E
@ -519,4 +519,4 @@ A form of model training in which data provided to the model is not labeled. Uns
Parallelism technique which performs sharding of the tensors somewhat similar to [TensorParallel](#tensor-parallelism-tp),
except the whole tensor gets reconstructed in time for a forward or backward computation, therefore the model doesn't need
to be modified. This method also supports various offloading techniques to compensate for limited GPU memory.
Learn more about ZeRO [here](perf_train_gpu_many#zero-data-parallelism).
Learn more about ZeRO [here](perf_train_gpu_many#zero-data-parallelism).

View File

@ -88,6 +88,7 @@ Flax), PyTorch, and/or TensorFlow.
| [ByT5](model_doc/byt5) | ✅ | ✅ | ✅ |
| [CamemBERT](model_doc/camembert) | ✅ | ✅ | ❌ |
| [CANINE](model_doc/canine) | ✅ | ❌ | ❌ |
| [Chameleon](model_doc/chameleon) | ✅ | ❌ | ❌ |
| [Chinese-CLIP](model_doc/chinese_clip) | ✅ | ❌ | ❌ |
| [CLAP](model_doc/clap) | ✅ | ❌ | ❌ |
| [CLIP](model_doc/clip) | ✅ | ✅ | ✅ |
@ -145,6 +146,7 @@ Flax), PyTorch, and/or TensorFlow.
| [Funnel Transformer](model_doc/funnel) | ✅ | ✅ | ❌ |
| [Fuyu](model_doc/fuyu) | ✅ | ❌ | ❌ |
| [Gemma](model_doc/gemma) | ✅ | ❌ | ✅ |
| [Gemma2](model_doc/gemma2) | ✅ | ❌ | ❌ |
| [GIT](model_doc/git) | ✅ | ❌ | ❌ |
| [GLPN](model_doc/glpn) | ✅ | ❌ | ❌ |
| [GPT Neo](model_doc/gpt_neo) | ✅ | ❌ | ✅ |
@ -158,14 +160,17 @@ Flax), PyTorch, and/or TensorFlow.
| [Grounding DINO](model_doc/grounding-dino) | ✅ | ❌ | ❌ |
| [GroupViT](model_doc/groupvit) | ✅ | ✅ | ❌ |
| [HerBERT](model_doc/herbert) | ✅ | ✅ | ✅ |
| [Hiera](model_doc/hiera) | ✅ | ❌ | ❌ |
| [Hubert](model_doc/hubert) | ✅ | ✅ | ❌ |
| [I-BERT](model_doc/ibert) | ✅ | ❌ | ❌ |
| [IDEFICS](model_doc/idefics) | ✅ | | ❌ |
| [IDEFICS](model_doc/idefics) | ✅ | | ❌ |
| [Idefics2](model_doc/idefics2) | ✅ | ❌ | ❌ |
| [ImageGPT](model_doc/imagegpt) | ✅ | ❌ | ❌ |
| [Informer](model_doc/informer) | ✅ | ❌ | ❌ |
| [InstructBLIP](model_doc/instructblip) | ✅ | ❌ | ❌ |
| [InstructBlipVideo](model_doc/instructblipvideo) | ✅ | ❌ | ❌ |
| [Jamba](model_doc/jamba) | ✅ | ❌ | ❌ |
| [JetMoe](model_doc/jetmoe) | ✅ | ❌ | ❌ |
| [Jukebox](model_doc/jukebox) | ✅ | ❌ | ❌ |
| [KOSMOS-2](model_doc/kosmos-2) | ✅ | ❌ | ❌ |
| [LayoutLM](model_doc/layoutlm) | ✅ | ✅ | ❌ |
@ -180,6 +185,7 @@ Flax), PyTorch, and/or TensorFlow.
| [Llama3](model_doc/llama3) | ✅ | ❌ | ✅ |
| [LLaVa](model_doc/llava) | ✅ | ❌ | ❌ |
| [LLaVA-NeXT](model_doc/llava_next) | ✅ | ❌ | ❌ |
| [LLaVa-NeXT-Video](model_doc/llava-next-video) | ✅ | ❌ | ❌ |
| [Longformer](model_doc/longformer) | ✅ | ✅ | ❌ |
| [LongT5](model_doc/longt5) | ✅ | ❌ | ✅ |
| [LUKE](model_doc/luke) | ✅ | ❌ | ❌ |
@ -188,6 +194,7 @@ Flax), PyTorch, and/or TensorFlow.
| [M2M100](model_doc/m2m_100) | ✅ | ❌ | ❌ |
| [MADLAD-400](model_doc/madlad-400) | ✅ | ✅ | ✅ |
| [Mamba](model_doc/mamba) | ✅ | ❌ | ❌ |
| [mamba2](model_doc/mamba2) | ✅ | ❌ | ❌ |
| [Marian](model_doc/marian) | ✅ | ✅ | ✅ |
| [MarkupLM](model_doc/markuplm) | ✅ | ❌ | ❌ |
| [Mask2Former](model_doc/mask2former) | ✅ | ❌ | ❌ |
@ -199,7 +206,7 @@ Flax), PyTorch, and/or TensorFlow.
| [Megatron-BERT](model_doc/megatron-bert) | ✅ | ❌ | ❌ |
| [Megatron-GPT2](model_doc/megatron_gpt2) | ✅ | ✅ | ✅ |
| [MGP-STR](model_doc/mgp-str) | ✅ | ❌ | ❌ |
| [Mistral](model_doc/mistral) | ✅ | | ✅ |
| [Mistral](model_doc/mistral) | ✅ | | ✅ |
| [Mixtral](model_doc/mixtral) | ✅ | ❌ | ❌ |
| [mLUKE](model_doc/mluke) | ✅ | ❌ | ❌ |
| [MMS](model_doc/mms) | ✅ | ✅ | ✅ |
@ -216,6 +223,7 @@ Flax), PyTorch, and/or TensorFlow.
| [MusicGen Melody](model_doc/musicgen_melody) | ✅ | ❌ | ❌ |
| [MVP](model_doc/mvp) | ✅ | ❌ | ❌ |
| [NAT](model_doc/nat) | ✅ | ❌ | ❌ |
| [Nemotron](model_doc/nemotron) | ✅ | ❌ | ❌ |
| [Nezha](model_doc/nezha) | ✅ | ❌ | ❌ |
| [NLLB](model_doc/nllb) | ✅ | ❌ | ❌ |
| [NLLB-MOE](model_doc/nllb-moe) | ✅ | ❌ | ❌ |
@ -229,6 +237,7 @@ Flax), PyTorch, and/or TensorFlow.
| [OPT](model_doc/opt) | ✅ | ✅ | ✅ |
| [OWL-ViT](model_doc/owlvit) | ✅ | ❌ | ❌ |
| [OWLv2](model_doc/owlv2) | ✅ | ❌ | ❌ |
| [PaliGemma](model_doc/paligemma) | ✅ | ❌ | ❌ |
| [PatchTSMixer](model_doc/patchtsmixer) | ✅ | ❌ | ❌ |
| [PatchTST](model_doc/patchtst) | ✅ | ❌ | ❌ |
| [Pegasus](model_doc/pegasus) | ✅ | ✅ | ✅ |
@ -236,6 +245,7 @@ Flax), PyTorch, and/or TensorFlow.
| [Perceiver](model_doc/perceiver) | ✅ | ❌ | ❌ |
| [Persimmon](model_doc/persimmon) | ✅ | ❌ | ❌ |
| [Phi](model_doc/phi) | ✅ | ❌ | ❌ |
| [Phi3](model_doc/phi3) | ✅ | ❌ | ❌ |
| [PhoBERT](model_doc/phobert) | ✅ | ✅ | ✅ |
| [Pix2Struct](model_doc/pix2struct) | ✅ | ❌ | ❌ |
| [PLBart](model_doc/plbart) | ✅ | ❌ | ❌ |
@ -259,6 +269,8 @@ Flax), PyTorch, and/or TensorFlow.
| [RoBERTa-PreLayerNorm](model_doc/roberta-prelayernorm) | ✅ | ✅ | ✅ |
| [RoCBert](model_doc/roc_bert) | ✅ | ❌ | ❌ |
| [RoFormer](model_doc/roformer) | ✅ | ✅ | ✅ |
| [RT-DETR](model_doc/rt_detr) | ✅ | ❌ | ❌ |
| [RT-DETR-ResNet](model_doc/rt_detr_resnet) | ✅ | ❌ | ❌ |
| [RWKV](model_doc/rwkv) | ✅ | ❌ | ❌ |
| [SAM](model_doc/sam) | ✅ | ✅ | ❌ |
| [SeamlessM4T](model_doc/seamless_m4t) | ✅ | ❌ | ❌ |
@ -301,6 +313,7 @@ Flax), PyTorch, and/or TensorFlow.
| [UnivNet](model_doc/univnet) | ✅ | ❌ | ❌ |
| [UPerNet](model_doc/upernet) | ✅ | ❌ | ❌ |
| [VAN](model_doc/van) | ✅ | ❌ | ❌ |
| [VideoLlava](model_doc/video_llava) | ✅ | ❌ | ❌ |
| [VideoMAE](model_doc/videomae) | ✅ | ❌ | ❌ |
| [ViLT](model_doc/vilt) | ✅ | ❌ | ❌ |
| [VipLlava](model_doc/vipllava) | ✅ | ❌ | ❌ |
@ -334,5 +347,6 @@ Flax), PyTorch, and/or TensorFlow.
| [XLSR-Wav2Vec2](model_doc/xlsr_wav2vec2) | ✅ | ✅ | ✅ |
| [YOLOS](model_doc/yolos) | ✅ | ❌ | ❌ |
| [YOSO](model_doc/yoso) | ✅ | ❌ | ❌ |
| [ZoeDepth](model_doc/zoedepth) | ✅ | ❌ | ❌ |
<!-- End table-->

View File

@ -169,7 +169,7 @@ Pretrained models are downloaded and locally cached at: `~/.cache/huggingface/hu
## Offline mode
Run 🤗 Transformers in a firewalled or offline environment with locally cached files by setting the environment variable `TRANSFORMERS_OFFLINE=1`.
Run 🤗 Transformers in a firewalled or offline environment with locally cached files by setting the environment variable `HF_HUB_OFFLINE=1`.
<Tip>
@ -178,7 +178,7 @@ Add [🤗 Datasets](https://huggingface.co/docs/datasets/) to your offline train
</Tip>
```bash
HF_DATASETS_OFFLINE=1 TRANSFORMERS_OFFLINE=1 \
HF_DATASETS_OFFLINE=1 HF_HUB_OFFLINE=1 \
python examples/pytorch/translation/run_translation.py --model_name_or_path google-t5/t5-small --dataset_name wmt16 --dataset_config ro-en ...
```

View File

@ -167,6 +167,9 @@ generation.
[[autodoc]] MinNewTokensLengthLogitsProcessor
- __call__
[[autodoc]] MinPLogitsWarper
- __call__
[[autodoc]] NoBadWordsLogitsProcessor
- __call__
@ -206,6 +209,10 @@ generation.
[[autodoc]] WhisperTimeStampLogitsProcessor
- __call__
[[autodoc]] WatermarkLogitsProcessor
- __call__
### TensorFlow
[[autodoc]] TFForcedBOSTokenLogitsProcessor
@ -310,6 +317,12 @@ A [`StoppingCriteria`] can be used to change when to stop generation (other than
[[autodoc]] MaxTimeCriteria
- __call__
[[autodoc]] StopStringCriteria
- __call__
[[autodoc]] EosTokenCriteria
- __call__
## Constraints
A [`Constraint`] can be used to force the generation to include specific tokens or sequences in the output. Please note that this is exclusively available to our PyTorch implementations.
@ -347,6 +360,12 @@ A [`Constraint`] can be used to force the generation to include specific tokens
[[autodoc]] Cache
- update
[[autodoc]] CacheConfig
- update
[[autodoc]] QuantizedCacheConfig
- validate
[[autodoc]] DynamicCache
- update
- get_seq_length
@ -354,11 +373,51 @@ A [`Constraint`] can be used to force the generation to include specific tokens
- to_legacy_cache
- from_legacy_cache
[[autodoc]] QuantizedCache
- update
- get_seq_length
[[autodoc]] QuantoQuantizedCache
[[autodoc]] HQQQuantizedCache
[[autodoc]] SinkCache
- update
- get_seq_length
- reorder_cache
[[autodoc]] OffloadedCache
- update
- prefetch_layer
- evict_previous_layer
[[autodoc]] StaticCache
- update
- get_seq_length
- reset
[[autodoc]] HybridCache
- update
- reset
[[autodoc]] SlidingWindowCache
- update
- reset
[[autodoc]] EncoderDecoderCache
- get_seq_length
- to_legacy_cache
- from_legacy_cache
- reset
- reorder_cache
[[autodoc]] MambaCache
- update_conv_state
- update_ssm_state
- reset
## Watermark Utils
[[autodoc]] WatermarkDetector
- __call__

346
docs/source/en/kv_cache.md Normal file
View File

@ -0,0 +1,346 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Best Practices for Generation with Cache
Efficient caching is crucial for optimizing the performance of models in various generative tasks,
including text generation, translation, summarization and other transformer-based applications.
Effective caching helps reduce computation time and improve response rates, especially in real-time or resource-intensive applications.
Transformers support various caching methods, leveraging "Cache" classes to abstract and manage the caching logic.
This document outlines best practices for using these classes to maximize performance and efficiency.
Check out all the available `Cache` classes in the [API documentation](./internal/generation_utils.md).
## What is Cache and why we should care?
Imagine youre having a conversation with someone, and instead of remembering what was said previously, you have to start from scratch every time you respond. This would be slow and inefficient, right? In the world of Transformer models, a similar concept applies, and that's where Caching keys and values come into play. From now on, I'll refer to the concept as KV Cache.
KV cache is needed to optimize the generation in autoregressive models, where the model predicts text token by token. This process can be slow since the model can generate only one token at a time, and each new prediction is dependent on the previous context. That means, to predict token number 1000 in the generation, you need information from the previous 999 tokens, which comes in the form of some matrix multiplications across the representations of those tokens. But to predict token number 1001, you also need the same information from the first 999 tokens, plus additional information from token number 1000. That is where key-value cache is used to optimize the sequential generation process by storing previous calculations to reuse in subsequent tokens, so they don't need to be computed again.
More concretely, key-value cache acts as a memory bank for these generative models, where the model stores key-value pairs derived from self-attention layers for previously processed tokens. By storing this information, the model can avoid redundant computations and instead retrieve keys and values of previous tokens from the cache.
<details>
<summary><em>For the Curious Minds Who Like to Dive Deep</em></summary>
### Under the Hood: How Cache Object Works in Attention Mechanism
When utilizing a cache object in the input, the Attention module performs several critical steps to integrate past and present information seamlessly.
The Attention module concatenates the current key-values with the past key-values stored in the cache. This results in attention weights of shape `(new_tokens_length, past_kv_length + new_tokens_length)`. Essentially, the past and current key-values are combined to compute attention scores, ensuring that the model considers both previous context and new input. The concatenated key-values are used to compute the attention scores resulting in attention weights of shape `(new_tokens_length, past_kv_length + new_tokens_length)`.
Therefore, when iteratively calling `forward()` instead of the `generate()` method, its crucial to ensure that the attention mask shape matches the combined length of past and current key-values. The attention mask should have the shape `(batch_size, past_kv_length + new_tokens_length)`. This is usually handled internally when you call `generate()` method. If you want to implement your own generation loop with Cache classes, take this into consideration and prepare the attention mask to hold values to current and past tokens.
<Tip warning={true}>
One important concept you need to know when writing your own generation loop, is `cache_position`. In case you want to reuse an already filled Cache object by calling `forward()`, you have to pass in a valid `cache_position` which will indicate the positions of inputs in the sequence. Note that `cache_position` is not affected by padding, and always adds one more position for each token. For example, if key/value cache contains 10 tokens (no matter how many of it is a pad token), the cache position for the next token should be `torch.tensor([10])`.
</Tip>
See an example below for how to implement your own generation loop.
```python
>>> import torch
>>> from transformers import AutoTokenizer, AutoModelForCausalLM, DynamicCache
>>> model_id = "meta-llama/Llama-2-7b-chat-hf"
>>> model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="cuda:0")
>>> tokenizer = AutoTokenizer.from_pretrained(model_id)
>>> past_key_values = DynamicCache()
>>> messages = [{"role": "user", "content": "Hello, what's your name."}]
>>> inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt", return_dict=True).to("cuda:0")
>>> generated_ids = inputs.input_ids
>>> cache_position = torch.arange(inputs.input_ids.shape[1], dtype=torch.int64, device="cuda:0")
>>> max_new_tokens = 10
>>> for _ in range(max_new_tokens):
... outputs = model(**inputs, cache_position=cache_position, past_key_values=past_key_values, use_cache=True)
... # Greedily sample one next token
... next_token_ids = outputs.logits[:, -1:].argmax(-1)
... generated_ids = torch.cat([generated_ids, next_token_ids], dim=-1)
...
... # Prepare inputs for the next generation step by leaaving unprocessed tokens, in our case we have only one new token
... # and expanding attn mask for the new token, as explained above
... attention_mask = inputs["attention_mask"]
... attention_mask = torch.cat([attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1)
... inputs = {"input_ids": next_token_ids, "attention_mask": attention_mask}
... cache_position = cache_position[-1:] + 1 # add one more position for the next token
>>> print(tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0])
"[INST] Hello, what's your name. [/INST] Hello! My name is LLaMA,"
```
</details>
## Generate with Cache
In 🤗 Transformers, we support various Cache types to optimize the performance across different models and tasks. By default, all models generate with caching,
with the [`~DynamicCache`] class being the default cache for most models. It allows us to dynamically grow cache size, by saving more and more keys and values as we generate. If for some reason you don't want to use caches, you can pass `use_cache=False` into the `generate()` method.
Refer to the table below to see the difference between cache types and choose the one that suits best for your use-case.
| Cache Type | Memory Efficient | Supports torch.compile() | Initialization Recommended | Latency | Long Context Generation |
|---------------------|------------------|--------------------------|----------------------------|----------|--------------------------|
| Dynamic Cache | No | No | No | Mid | No |
| Static Cache | No | Yes | Yes | High | No |
| Quantized Cache | Yes | No | No | Low | Yes |
| Offloaded Cache | Yes | No | No | Low | No |
| Sliding Window Cache| No | Yes | Yes | High | No |
| Sink Cache | Yes | No | Yes | Mid | Yes |
These cache classes can be set with a `cache_implementation` argument when generating. To learn about the available options for the cache_implementation flag, please refer to the [API Documentation](./main_classes/text_generation.md#transformers.GenerationConfig). Now, let's explore each cache type in detail and see how to use them. Note that the below examples are for decoder-only Tranformer-based models. We also support ["Model-Specific Cache"] classes for models such as Mamba or Jamba, keep reading for more details.
### Quantized Cache
The key and value cache can occupy a large portion of memory, becoming a [bottleneck for long-context generation](https://huggingface.co/blog/llama31#inference-memory-requirements), especially for Large Language Models.
Quantizing the cache when using `generate()` can significantly reduce memory requirements at the cost of speed.
KV Cache quantization in `transformers` is largely inspired by the paper ["KIVI: A Tuning-Free Asymmetric 2bit Quantization for KV Cache"](https://arxiv.org/abs/2402.02750) and currently supports [`~QuantoQuantizedCache`] and [`~HQQQuantizedCache`] classes. For more information on the inner workings see the paper.
To enable quantization of the key-value cache, one needs to indicate `cache_implementation="quantized"` in the `generation_config`.
Quantization related arguments should be passed to the `generation_config` either as a `dict` or an instance of a [`~QuantizedCacheConfig`] class.
One has to indicate which quantization backend to use in the [`~QuantizedCacheConfig`], the default is `quanto`.
<Tip warning={true}>
Cache quantization can be detrimental in terms of latency if the context length is short and there is enough GPU VRAM available to run without cache quantization. It is recommended to seek balance between memory efficiency and latency.
</Tip>
```python
>>> import torch
>>> from transformers import AutoTokenizer, AutoModelForCausalLM
>>> tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf")
>>> model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf", torch_dtype=torch.float16).to("cuda:0")
>>> inputs = tokenizer("I like rock music because", return_tensors="pt").to(model.device)
>>> out = model.generate(**inputs, do_sample=False, max_new_tokens=20, cache_implementation="quantized", cache_config={"nbits": 4, "backend": "quanto"})
>>> print(tokenizer.batch_decode(out, skip_special_tokens=True)[0])
I like rock music because it's loud and energetic. It's a great way to express myself and rel
>>> out = model.generate(**inputs, do_sample=False, max_new_tokens=20)
>>> print(tokenizer.batch_decode(out, skip_special_tokens=True)[0])
I like rock music because it's loud and energetic. I like to listen to it when I'm feeling
```
## OffloadedCache
Similarly to KV cache quantization, [`~OffloadedCache`] strategy aims to reduce GPU VRAM usage.
It does so by moving the KV cache for most layers to the CPU.
As the model's `forward()` method iterates over the layers, this strategy maintains the current layer cache on the GPU.
At the same time it asynchronously prefetches the next layer cache as well as sending the previous layer cache back to the CPU.
Unlike KV cache quantization, this strategy always produces the same result as the default KV cache implementation.
Thus, it can serve as a drop-in replacement or a fallback for it.
Depending on your model and the characteristics of your generation task (size of context, number of generated tokens, number of beams, etc.)
you may notice a small degradation in generation throughput compared to the default KV cache implementation.
To enable KV cache offloading, pass `cache_implementation="offloaded"` in the `generation_config` or directky to the `generate()` call.
```python
>>> import torch
>>> from transformers import AutoTokenizer, AutoModelForCausalLM
>>> ckpt = "microsoft/Phi-3-mini-4k-instruct"
>>> tokenizer = AutoTokenizer.from_pretrained(ckpt)
>>> model = AutoModelForCausalLM.from_pretrained(ckpt, torch_dtype=torch.float16).to("cuda:0")
>>> inputs = tokenizer("Fun fact: The shortest", return_tensors="pt").to(model.device)
>>> out = model.generate(**inputs, do_sample=False, max_new_tokens=23, cache_implementation="offloaded")
>>> print(tokenizer.batch_decode(out, skip_special_tokens=True)[0])
Fun fact: The shortest war in history was between Britain and Zanzibar on August 27, 1896.
>>> out = model.generate(**inputs, do_sample=False, max_new_tokens=23)
>>> print(tokenizer.batch_decode(out, skip_special_tokens=True)[0])
Fun fact: The shortest war in history was between Britain and Zanzibar on August 27, 1896.
```
<Tip warning={true}>
Cache offloading requires a GPU and can be slower than dynamic KV cache. Use it if you are getting CUDA out of memory errors.
</Tip>
The example below shows how KV cache offloading can be used as a fallback strategy.
```python
>>> import torch
>>> from transformers import AutoTokenizer, AutoModelForCausalLM
>>> def resilient_generate(model, *args, **kwargs):
... oom = False
... try:
... return model.generate(*args, **kwargs)
... except torch.cuda.OutOfMemoryError as e:
... print(e)
... print("retrying with cache_implementation='offloaded'")
... oom = True
... if oom:
... torch.cuda.empty_cache()
... kwargs["cache_implementation"] = "offloaded"
... return model.generate(*args, **kwargs)
...
...
>>> ckpt = "microsoft/Phi-3-mini-4k-instruct"
>>> tokenizer = AutoTokenizer.from_pretrained(ckpt)
>>> model = AutoModelForCausalLM.from_pretrained(ckpt, torch_dtype=torch.float16).to("cuda:0")
>>> prompt = ["okay "*1000 + "Fun fact: The most"]
>>> inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
>>> beams = { "num_beams": 40, "num_beam_groups": 40, "num_return_sequences": 40, "diversity_penalty": 1.0, "max_new_tokens": 23, "early_stopping": True, }
>>> out = resilient_generate(model, **inputs, **beams)
>>> responses = tokenizer.batch_decode(out[:,-28:], skip_special_tokens=True)
```
On a GPU with 50 GB of RAM, running this code will print
```
CUDA out of memory. Tried to allocate 4.83 GiB. GPU
retrying with cache_implementation='offloaded'
```
before successfully generating 40 beams.
### Static Cache
Since the "DynamicCache" dynamically grows with each generation step, it prevents you from taking advantage of JIT optimizations. The [`~StaticCache`] pre-allocates
a specific maximum size for the keys and values, allowing you to generate up to the maximum length without having to modify cache size. Check the below usage example.
For more examples with Static Cache and JIT compilation, take a look at [StaticCache & torchcompile](./llm_optims.md#static-kv-cache-and-torchcompile)
```python
>>> import torch
>>> from transformers import AutoTokenizer, AutoModelForCausalLM
>>> tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf")
>>> model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf", torch_dtype=torch.float16, device_map="auto")
>>> inputs = tokenizer("Hello, my name is", return_tensors="pt").to(model.device)
>>> # simply pass the cache implementation="static"
>>> out = model.generate(**inputs, do_sample=False, max_new_tokens=20, cache_implementation="static")
>>> tokenizer.batch_decode(out, skip_special_tokens=True)[0]
"Hello, my name is [Your Name], and I am a [Your Profession] with [Number of Years] of"
```
### Sliding Window Cache
As the name suggests, this cache type implements a sliding window over previous keys and values, retaining only the last `sliding_window` tokens. It should be used with models like Mistral that support sliding window attention. Additionally, similar to Static Cache, this one is JIT-friendly and can be used with the same compile tecniques as Static Cache.
Note that you can use this cache only for models that support sliding window, e.g. Mistral models.
```python
>>> import torch
>>> from transformers import AutoTokenizer, AutoModelForCausalLM, SinkCache
>>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")
>>> model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1", torch_dtype=torch.float16).to("cuda:0")
>>> inputs = tokenizer("Yesterday I was on a rock concert and.", return_tensors="pt").to(model.device)
>>> # can be used by passing in cache implementation
>>> out = model.generate(**inputs, do_sample=False, max_new_tokens=30, cache_implementation="sliding_window")
>>> tokenizer.batch_decode(out, skip_special_tokens=True)[0]
"Yesterday I was on a rock concert and. I was so excited to see my favorite band. I was so excited that I was jumping up and down and screaming. I was so excited that I"
```
### Sink Cache
Sink Cache was introduced in ["Efficient Streaming Language Models with Attention Sinks"](https://arxiv.org/abs/2309.17453). It allows you to generate long sequences of text ("infinite length" according to the paper) without any fine-tuning. That is achieved by smart handling of previous keys and values, specifically it retains a few initial tokens from the sequence, called "sink tokens". This is based on the observation that these initial tokens attract a significant portion of attention scores during the generation process. Tokens that come after "sink tokens" are discarded on a sliding windowed basis, keeping only the latest `window_size` tokens. By keeping these initial tokens as "attention sinks," the model maintains stable performance even when dealing with very long texts, thus discarding most of the previous knowledge.
Unlike other cache classes, this one can't be used directly by indicating a `cache_implementation`. You have to initialize the Cache before calling on `generate()` as follows.
```python
>>> import torch
>>> from transformers import AutoTokenizer, AutoModelForCausalLM, SinkCache
>>> tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf")
>>> model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf", torch_dtype=torch.float16).to("cuda:0")
>>> inputs = tokenizer("This is a long story about unicorns, fairies and magic.", return_tensors="pt").to(model.device)
>>> # get our cache, specify number of sink tokens and window size
>>> # Note that window size already includes sink tokens, so has to be larger
>>> past_key_values = SinkCache(window_length=256, num_sink_tokens=4)
>>> out = model.generate(**inputs, do_sample=False, max_new_tokens=30, past_key_values=past_key_values)
>>> tokenizer.batch_decode(out, skip_special_tokens=True)[0]
"This is a long story about unicorns, fairies and magic. It is a fantasy world where unicorns and fairies live together in harmony. The story follows a young girl named Lily"
```
### Encoder-Decoder Cache
The [`~EncoderDecoderCache`] is a wrapper designed to handle the caching needs of encoder-decoder models. This cache type is specifically built to manage both self-attention and cross-attention caches, ensuring storage and retrieval of past key/values required for these complex models. Cool thing about Encoder-Decoder Cache is that you can set different cache types for the encoder and for the decoder, depending on your use case. Currently this cache is only supported in [Whisper](./model_doc/whisper.md) models but we will be adding more models soon.
In terms of usage, there is nothing special to be done and calling `generate()` or `forward()` will handle everything for you.
### Model-specific Cache Classes
Some models require storing previous keys, values, or states in a specific way, and the above cache classes cannot be used. For such cases, we have several specialized cache classes that are designed for specific models. These models only accept their own dedicated cache classes and do not support using any other cache types. Some examples include [`~HybridCache`] for [Gemma2](./model_doc/gemma2.md) series models or [`~MambaCache`] for [Mamba](./model_doc/mamba.md) architecture models.
## Iterative Generation with Cache
We have seen how to use each of the cache types when generating. What if you want to use cache in iterative generation setting, for example in applications like chatbots, where interactions involve multiple turns and continuous back-and-forth exchanges. Iterative generation with cache allows these systems to handle ongoing conversations effectively without reprocessing the entire context at each step. But there are some tips that you should know before you start implementing:
The general format when doing iterative generation is as below. First you have to initialize an empty cache of the type you want, and you can start feeding in new prompts iteratively. Keeping track of dialogues history and formatting can be done with chat templates, read more on that in [chat_templating](./chat_templating.md)
In case you are using Sink Cache, you have to crop your inputs to that maximum length because Sink Cache can generate text longer than its maximum window size, but it expects the first input to not exceed the maximum cache length.
```python
>>> import torch
>>> from transformers import AutoTokenizer,AutoModelForCausalLM
>>> from transformers.cache_utils import (
>>> DynamicCache,
>>> SinkCache,
>>> StaticCache,
>>> SlidingWindowCache,
>>> QuantoQuantizedCache,
>>> QuantizedCacheConfig,
>>> )
>>> model_id = "meta-llama/Llama-2-7b-chat-hf"
>>> model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map='auto')
>>> tokenizer = AutoTokenizer.from_pretrained(model_id)
>>> user_prompts = ["Hello, what's your name?", "Btw, yesterday I was on a rock concert."]
>>> past_key_values = DynamicCache()
>>> max_cache_length = past_key_values.get_max_length()
>>> messages = []
>>> for prompt in user_prompts:
... messages.append({"role": "user", "content": prompt})
... inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt", return_dict=True).to(model.device)
... if isinstance(past_key_values, SinkCache):
... inputs = {k: v[:, -max_cache_length:] for k, v in inputs.items()}
...
... input_length = inputs["input_ids"].shape[1]
...
... outputs = model.generate(**inputs, do_sample=False, max_new_tokens=256, past_key_values=past_key_values)
... completion = tokenizer.decode(outputs[0, input_length: ], skip_special_tokens=True)
... messages.append({"role": "assistant", "content": completion})
print(messages)
[{'role': 'user', 'content': "Hello, what's your name?"}, {'role': 'assistant', 'content': " Hello! My name is LLaMA, I'm a large language model trained by a team of researcher at Meta AI. 😊"}, {'role': 'user', 'content': 'Btw, yesterday I was on a rock concert.'}, {'role': 'assistant', 'content': ' Oh, cool! That sounds like a lot of fun! 🎉 Did you enjoy the concert? What was the band like? 🤔'}]
```
## Re-use Cache to continue generation
Sometimes you would want to fist fill-in cache object with key/values for certain prefix prompt and re-use it several times to generate different sequences from it. We are working hard on adding this feature to 🤗 Transformers and will update this section soon.

View File

@ -18,60 +18,109 @@ Basic inference is slow because LLMs have to be called repeatedly to generate th
This guide will show you how to use the optimization techniques available in Transformers to accelerate LLM inference.
> [!TIP]
> Hugging Face also provides [Text Generation Inference (TGI)](https://hf.co/docs/text-generation-inference), a library dedicated to deploying and serving highly optimized LLMs for inference. It includes more optimization features not included in Transformers, such as continuous batching for increasing throughput and tensor parallelism for multi-GPU inference.
> Hugging Face also provides [Text Generation Inference (TGI)](https://hf.co/docs/text-generation-inference), a library dedicated to deploying and serving highly optimized LLMs for inference. It includes deployment-oriented optimization features not included in Transformers, such as continuous batching for increasing throughput and tensor parallelism for multi-GPU inference.
## Static kv-cache and torch.compile
## Static kv-cache and `torch.compile`
During decoding, a LLM computes the key-value (kv) values for each input token and since it is autoregressive, it computes the same kv values each time because the generated output becomes part of the input now. This is not very efficient because you're recomputing the same kv values each time.
To optimize this, you can use a kv-cache to store the past keys and values instead of recomputing them each time. However, since the kv-cache grows with each generation step and is dynamic, it prevents you from taking advantage of [torch.compile](./perf_torch_compile), a powerful optimization tool that fuses PyTorch code into fast and optimized kernels.
To optimize this, you can use a kv-cache to store the past keys and values instead of recomputing them each time. However, since the kv-cache grows with each generation step and is dynamic, it prevents you from taking advantage of [`torch.compile`](./perf_torch_compile), a powerful optimization tool that fuses PyTorch code into fast and optimized kernels.
The *static kv-cache* solves this issue by pre-allocating the kv-cache size to a maximum value which allows you to combine it with torch.compile for up to a 4x speed up.
The *static kv-cache* solves this issue by pre-allocating the kv-cache size to a maximum value which allows you to combine it with `torch.compile` for up to a 4x speed up. Your speed up may vary depending on the model size (larger models have a smaller speed up) and hardware.
> [!WARNING]
> Currently, only [Command R](./model_doc/cohere), [Gemma](./model_doc/gemma) and [Llama](./model_doc/llama2) models support static kv-cache and torch.compile.
> Currently, only [Llama](./model_doc/llama2) and a few other models support static kv-cache and `torch.compile`. Check [this issue](https://github.com/huggingface/transformers/issues/28981) for a live model compatibility list.
For this example, let's load the [Gemma](https://hf.co/google/gemma-2b) model.
There are three flavors of static kv-cache usage, depending on the complexity of your task:
1. Basic usage: simply set a flag in `generation_config` (recommended);
2. Advanced usage: handle a cache object for multi-turn generation or a custom generation loop;
3. Advanced usage: compile the entire `generate` function into a single graph, if having a single graph is relevant for you.
Select the correct tab below for further instructions on each of these flavors.
> [!TIP]
> Regardless of the strategy used with `torch.compile`, you can avoid shape-related recompilations if you left-pad your LLM inputs to a limited set of values. The [`pad_to_multiple_of` tokenizer flag](https://huggingface.co/docs/transformers/main_classes/tokenizer#transformers.PreTrainedTokenizer.__call__.pad_to_multiple_of) is your friend!
<hfoptions id="static-kv">
<hfoption id="basic usage: generation_config">
For this example, let's use the [Gemma](https://hf.co/google/gemma-2b) model. All we need to do is to:
1. Access the model's `generation_config` attribute and set the `cache_implementation` to "static";
2. Call `torch.compile` on the model to compile the forward pass with the static kv-cache.
And that's it!
```py
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false" # To prevent long warnings :)
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b")
model = AutoModelForCausalLM.from_pretrained(
"google/gemma-2b", device_map="auto"
)
```
model = AutoModelForCausalLM.from_pretrained("google/gemma-2b", device_map="auto")
There are two ways you can configure the model to use a static kv-cache. For a 7B model on an A100, both methods get a 4x speed up in the forward pass. Your speed up may vary depending on the model size (larger models have a smaller speed up) and hardware. If you're using the [`~GenerationMixin.generate`] method, the speed up is ~3x. The forward pass (which still gets 4x speed up) is only a part of the whole [`~GenerationMixin.generate`] code.
<hfoptions id="static-kv">
<hfoption id="generation_config">
Access the model's `generation_config` attribute and set the `cache_implementation` to "static".
```py
model.generation_config.cache_implementation = "static"
```
Call torch.compile on the model to compile the forward pass with the static kv-cache.
```py
compiled_model = torch.compile(model, mode="reduce-overhead", fullgraph=True)
model.forward = torch.compile(model.forward, mode="reduce-overhead", fullgraph=True)
input_text = "The theory of special relativity states "
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
outputs = compiled_model.generate(**input_ids)
tokenizer.batch_decode(outputs, skip_special_tokens=True)
outputs = model.generate(**input_ids)
print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
['The theory of special relativity states 1. The speed of light is constant in all inertial reference']
```
</hfoption>
<hfoption id="setup_cache">
Under the hood, `generate` will attempt to reuse the same cache object, removing the need for re-compilation at each call. Avoiding re-compilation is critical to get the most out of `torch.compile`, and you should be aware of the following:
1. If the batch size changes or the maximum output length increases between calls, the cache will have to be reinitialized, triggering a new compilation;
2. The first couple of calls of the compiled function are slower, as the function is being compiled.
> [!WARNING]
> The `_setup_cache` method is an internal and private method that is still under development. This means it may not be backward compatible and the API design may change in the future.
> For a more advanced usage of the static cache, such as multi-turn conversations, we recommend instantiating and manipulating the cache object outside [`~GenerationMixin.generate`]. See the advanced usage tab.
The `_setup_cache` method doesn't support [`~GenerationMixin.generate`] yet, so this method is a bit more involved. You'll need to write your own function to decode the next token given the current token and position and cache position of previously generated tokens.
</hfoption>
<hfoption id="advanced usage: control Static Cache">
A [`StaticCache`] object can be passed to the model's [`~GenerationMixin.generate`] under the `past_key_values` argument. The object will retain the cache contents, so you can pass it to a new [`~GenerationMixin.generate`] call to continue generation, like you would do with a dynamic cache.
```py
from transformers import AutoTokenizer, AutoModelForCausalLM, StaticCache
import torch
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false" # To prevent long warnings :)
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b")
model = AutoModelForCausalLM.from_pretrained("google/gemma-2b", device_map="auto")
model.forward = torch.compile(model.forward, mode="reduce-overhead", fullgraph=True)
input_text = "The theory of special relativity states "
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
prompt_length = input_ids.input_ids.shape[1]
model.generation_config.max_new_tokens = 16
past_key_values = StaticCache(
config=model.config,
max_batch_size=1,
# If you plan to reuse the cache, make sure the cache length is large enough for all cases
max_cache_len=prompt_length+(model.generation_config.max_new_tokens*2),
device=model.device,
dtype=model.dtype
)
outputs = model.generate(**input_ids, past_key_values=past_key_values)
print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
['The theory of special relativity states 1. The speed of light is constant in all inertial reference frames. 2']
# pass in the generated text and the same cache object to continue generation from where it left off. Optionally, in a
# multi-turn conversation, append the new user input to the generated text.
new_input_ids = outputs
outputs = model.generate(new_input_ids, past_key_values=past_key_values)
print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
['The theory of special relativity states 1. The speed of light is constant in all inertial reference frames. 2. The speed of light is constant in all inertial reference frames. 3.']
```
> [!TIP]
> If you want to reuse the same [`StaticCache`] object on a new prompt, be sure to reset its contents with the `.reset()` method between calls
If you want to go further down a level, the [`StaticCache`] object can also be passed to the model's forward pass under the same `past_key_values` argument. Using this strategy, you can write your own function to decode the next token given the current token and position and cache position of previously generated tokens.
```py
from transformers import LlamaTokenizer, LlamaForCausalLM, StaticCache, logging
@ -90,43 +139,49 @@ tokenizer = LlamaTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf", pad_token
model = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf", device_map="sequential")
inputs = tokenizer(prompts, return_tensors="pt", padding=True).to(model.device)
def decode_one_tokens(model, cur_token, input_pos, cache_position):
def decode_one_tokens(model, cur_token, input_pos, cache_position, past_key_values):
logits = model(
cur_token, position_ids=input_pos, cache_position=cache_position, return_dict=False, use_cache=True
cur_token,
position_ids=input_pos,
cache_position=cache_position,
past_key_values=past_key_values,
return_dict=False,
use_cache=True
)[0]
new_token = torch.argmax(logits[:, -1], dim=-1)[:, None]
return new_token
```
There are a few important things you must do to enable static kv-cache and torch.compile with the `_setup_cache` method:
1. Access the model's `_setup_cache` method and pass it the [`StaticCache`] class. This is a more flexible method because it allows you to configure parameters like the maximum batch size and sequence length.
2. Call torch.compile on the model to compile the forward pass with the static kv-cache.
There are a few important things you must do to enable static kv-cache and `torch.compile` with the `StaticCache` method:
1. Initialize the [`StaticCache`] instance before using the model for inference. There you can configure parameters like the maximum batch size and sequence length.
2. Call `torch.compile` on the model to compile the forward pass with the static kv-cache.
3. Set `enable_math=True` in the [torch.backends.cuda.sdp_kernel](https://pytorch.org/docs/master/generated/torch.nn.functional.scaled_dot_product_attention.html) context manager to enable the native PyTorch C++ implementation of scaled dot product attention to speed up inference even more.
```py
batch_size, seq_length = inputs["input_ids"].shape
with torch.no_grad():
model._setup_cache(StaticCache, 2, max_cache_len=4096)
cache_position = torch.arange(seq_length, device=torch_device)
generated_ids = torch.zeros(
batch_size, seq_length + NUM_TOKENS_TO_GENERATE + 1, dtype=torch.int, device=torch_device
)
generated_ids[:, cache_position] = inputs["input_ids"].to(torch_device).to(torch.int)
past_key_values = StaticCache(
config=model.config, max_batch_size=2, max_cache_len=4096, device=torch_device, dtype=model.dtype
)
cache_position = torch.arange(seq_length, device=torch_device)
generated_ids = torch.zeros(
batch_size, seq_length + NUM_TOKENS_TO_GENERATE + 1, dtype=torch.int, device=torch_device
)
generated_ids[:, cache_position] = inputs["input_ids"].to(torch_device).to(torch.int)
logits = model(**inputs, cache_position=cache_position, return_dict=False, use_cache=True)[0]
next_token = torch.argmax(logits[:, -1], dim=-1)[:, None]
generated_ids[:, seq_length] = next_token[:, 0]
logits = model(
**inputs, cache_position=cache_position, past_key_values=past_key_values,return_dict=False, use_cache=True
)[0]
next_token = torch.argmax(logits[:, -1], dim=-1)[:, None]
generated_ids[:, seq_length] = next_token[:, 0]
decode_one_tokens = torch.compile(decode_one_tokens, mode="reduce-overhead", fullgraph=True)
cache_position = torch.tensor([seq_length + 1], device=torch_device)
for _ in range(1, NUM_TOKENS_TO_GENERATE):
with torch.backends.cuda.sdp_kernel(enable_flash=False, enable_mem_efficient=False, enable_math=True):
next_token = decode_one_tokens(model, next_token.clone(), None, cache_position)
generated_ids[:, cache_position] = next_token.int()
cache_position += 1
decode_one_tokens = torch.compile(decode_one_tokens, mode="reduce-overhead", fullgraph=True)
cache_position = torch.tensor([seq_length + 1], device=torch_device)
for _ in range(1, NUM_TOKENS_TO_GENERATE):
with torch.backends.cuda.sdp_kernel(enable_flash=False, enable_mem_efficient=False, enable_math=True):
next_token = decode_one_tokens(model, next_token.clone(), None, cache_position, past_key_values)
generated_ids[:, cache_position] = next_token.int()
cache_position += 1
text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
text
@ -134,6 +189,35 @@ text
'My favorite all time favorite condiment is ketchup. I love it on everything. I love it on my eggs, my fries, my chicken, my burgers, my hot dogs, my sandwiches, my salads, my p']
```
</hfoption>
<hfoption id="advanced usage: end-to-end generate compilation">
Compiling the entire `generate` function, in terms of code, is even simpler than in the basic usage: call `torch.compile` on `generate` to compile the entire function. No need to specify the use of the static cache: although it is compatible, dynamic cache (default) was faster in our benchmarks.
```py
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false" # To prevent long warnings :)
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b")
model = AutoModelForCausalLM.from_pretrained("google/gemma-2b", device_map="auto")
model.generate = torch.compile(model.generate, mode="reduce-overhead", fullgraph=True)
input_text = "The theory of special relativity states "
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
outputs = model.generate(**input_ids)
print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
['The theory of special relativity states 1. The speed of light is constant in all inertial reference']
```
As a result, we compile not only the model forward pass, but also all input preparation, logit processor operations, and so on. The result should be a slightly `generate` call, compared to the basic usage example, and the compiled graph may be better suited to more exotic hardware devices or use cases. However, there are severe drawbacks in using this approach:
1. Compilation is much slower;
2. All parameterization of `generate` must be done through `generation_config`;
3. Many warnings and exceptions are suppressed -- we suggest testing with its uncompiled form first;
4. Although we are working on it, it is heavily feature restricted (for instance, at the time of writing, generation does not stop if an EOS token is selected).
</hfoption>
</hfoptions>

View File

@ -247,10 +247,11 @@ While the autoregressive generation process is relatively straightforward, makin
### Advanced generate usage
1. [Guide](generation_strategies) on how to control different generation methods, how to set up the generation configuration file, and how to stream the output;
2. [Guide](chat_templating) on the prompt template for chat LLMs;
3. [Guide](tasks/prompting) on to get the most of prompt design;
4. API reference on [`~generation.GenerationConfig`], [`~generation.GenerationMixin.generate`], and [generate-related classes](internal/generation_utils). Most of the classes, including the logits processors, have usage examples!
1. Guide on how to [control different generation methods](generation_strategies), how to set up the generation configuration file, and how to stream the output;
2. [Accelerating text generation](llm_optims);
3. [Prompt templates for chat LLMs](chat_templating);
4. [Prompt design guide](tasks/prompting);
5. API reference on [`~generation.GenerationConfig`], [`~generation.GenerationMixin.generate`], and [generate-related classes](internal/generation_utils). Most of the classes, including the logits processors, have usage examples!
### LLM leaderboards
@ -259,10 +260,12 @@ While the autoregressive generation process is relatively straightforward, makin
### Latency, throughput and memory utilization
1. [Guide](llm_tutorial_optimization) on how to optimize LLMs for speed and memory;
2. [Guide](main_classes/quantization) on quantization such as bitsandbytes and autogptq, which shows you how to drastically reduce your memory requirements.
1. Guide on how to [optimize LLMs for speed and memory](llm_tutorial_optimization);
2. Guide on [quantization](main_classes/quantization) such as bitsandbytes and autogptq, which shows you how to drastically reduce your memory requirements.
### Related libraries
1. [`text-generation-inference`](https://github.com/huggingface/text-generation-inference), a production-ready server for LLMs;
2. [`optimum`](https://github.com/huggingface/optimum), an extension of 🤗 Transformers that optimizes for specific hardware devices.
1. [`optimum`](https://github.com/huggingface/optimum), an extension of 🤗 Transformers that optimizes for specific hardware devices.
2. [`outlines`](https://github.com/outlines-dev/outlines), a library where you can constrain text generation (e.g. to generate JSON files);
3. [`text-generation-inference`](https://github.com/huggingface/text-generation-inference), a production-ready server for LLMs;
4. [`text-generation-webui`](https://github.com/oobabooga/text-generation-webui), a UI for text generation;

View File

@ -147,7 +147,7 @@ Let's call it now for the next experiment.
```python
flush()
```
In the recent version of the accelerate library, you can also use an utility method called `release_memory()`
In the recent version of the accelerate library, you can also use a utility method called `release_memory()`
```python
from accelerate.utils import release_memory
@ -683,7 +683,7 @@ Assistant: Germany has ca. 81 million inhabitants
In this chat, the LLM runs auto-regressive decoding twice:
1. The first time, the key-value cache is empty and the input prompt is `"User: How many people live in France?"` and the model auto-regressively generates the text `"Roughly 75 million people live in France"` while increasing the key-value cache at every decoding step.
2. The second time the input prompt is `"User: How many people live in France? \n Assistant: Roughly 75 million people live in France \n User: And how many in Germany?"`. Thanks to the cache, all key-value vectors for the first two sentences are already computed. Therefore the input prompt only consists of `"User: And how many in Germany?"`. While processing the shortened input prompt, it's computed key-value vectors are concatenated to the key-value cache of the first decoding. The second Assistant's answer `"Germany has ca. 81 million inhabitants"` is then auto-regressively generated with the key-value cache consisting of encoded key-value vectors of `"User: How many people live in France? \n Assistant: Roughly 75 million people live in France \n User: And how many are in Germany?"`.
2. The second time the input prompt is `"User: How many people live in France? \n Assistant: Roughly 75 million people live in France \n User: And how many in Germany?"`. Thanks to the cache, all key-value vectors for the first two sentences are already computed. Therefore the input prompt only consists of `"User: And how many in Germany?"`. While processing the shortened input prompt, its computed key-value vectors are concatenated to the key-value cache of the first decoding. The second Assistant's answer `"Germany has ca. 81 million inhabitants"` is then auto-regressively generated with the key-value cache consisting of encoded key-value vectors of `"User: How many people live in France? \n Assistant: Roughly 75 million people live in France \n User: And how many are in Germany?"`.
Two things should be noted here:
1. Keeping all the context is crucial for LLMs deployed in chat so that the LLM understands all the previous context of the conversation. E.g. for the example above the LLM needs to understand that the user refers to the population when asking `"And how many are in Germany"`.

View File

@ -28,30 +28,27 @@ contains the API docs for the underlying classes.
## Agents
We provide three types of agents: [`HfAgent`] uses inference endpoints for opensource models, [`LocalAgent`] uses a model of your choice locally and [`OpenAiAgent`] uses OpenAI closed models.
### HfAgent
[[autodoc]] HfAgent
### LocalAgent
[[autodoc]] LocalAgent
### OpenAiAgent
[[autodoc]] OpenAiAgent
### AzureOpenAiAgent
[[autodoc]] AzureOpenAiAgent
We provide two types of agents, based on the main [`Agent`] class:
- [`CodeAgent`] acts in one shot, generating code to solve the task, then executes it at once.
- [`ReactAgent`] acts step by step, each step consisting of one thought, then one tool call and execution. It has two classes:
- [`ReactJsonAgent`] writes its tool calls in JSON.
- [`ReactCodeAgent`] writes its tool calls in Python code.
### Agent
[[autodoc]] Agent
- chat
- run
- prepare_for_new_chat
### CodeAgent
[[autodoc]] CodeAgent
### React agents
[[autodoc]] ReactAgent
[[autodoc]] ReactJsonAgent
[[autodoc]] ReactCodeAgent
## Tools
@ -63,18 +60,54 @@ We provide three types of agents: [`HfAgent`] uses inference endpoints for opens
[[autodoc]] Tool
### Toolbox
[[autodoc]] Toolbox
### PipelineTool
[[autodoc]] PipelineTool
### RemoteTool
[[autodoc]] RemoteTool
### launch_gradio_demo
[[autodoc]] launch_gradio_demo
### stream_to_gradio
[[autodoc]] stream_to_gradio
### ToolCollection
[[autodoc]] ToolCollection
## Engines
You're free to create and use your own engines to be usable by the Agents framework.
These engines have the following specification:
1. Follow the [messages format](../chat_templating.md) for its input (`List[Dict[str, str]]`) and return a string.
2. Stop generating outputs *before* the sequences passed in the argument `stop_sequences`
### HfEngine
For convenience, we have added a `HfEngine` that implements the points above and uses an inference endpoint for the execution of the LLM.
```python
>>> from transformers import HfEngine
>>> messages = [
... {"role": "user", "content": "Hello, how are you?"},
... {"role": "assistant", "content": "I'm doing great. How can I help you today?"},
... {"role": "user", "content": "No need to help, take it easy."},
... ]
>>> HfEngine()(messages, stop_sequences=["conversation"])
"That's very kind of you to say! It's always nice to have a relaxed "
```
[[autodoc]] HfEngine
## Agent Types
Agents can handle any type of object in-between tools; tools, being completely multimodal, can accept and return
@ -94,12 +127,12 @@ These types have three specific purposes:
### AgentText
[[autodoc]] transformers.tools.agent_types.AgentText
[[autodoc]] transformers.agents.agent_types.AgentText
### AgentImage
[[autodoc]] transformers.tools.agent_types.AgentImage
[[autodoc]] transformers.agents.agent_types.AgentImage
### AgentAudio
[[autodoc]] transformers.tools.agent_types.AgentAudio
[[autodoc]] transformers.agents.agent_types.AgentAudio

View File

@ -25,11 +25,11 @@ A backbone is a model used for feature extraction for higher level computer visi
Backbones are supported for the following models:
* [BEiT](..model_doc/beit)
* [BEiT](../model_doc/beit)
* [BiT](../model_doc/bit)
* [ConvNet](../model_doc/convnext)
* [ConvNext](../model_doc/convnext)
* [ConvNextV2](../model_doc/convnextv2)
* [DiNAT](..model_doc/dinat)
* [DiNAT](../model_doc/dinat)
* [DINOV2](../model_doc/dinov2)
* [FocalNet](../model_doc/focalnet)
* [MaskFormer](../model_doc/maskformer)

View File

@ -34,7 +34,7 @@ By default, `TrainingArguments.report_to` is set to `"all"`, so a [`Trainer`] wi
- [`~integrations.TensorBoardCallback`] if tensorboard is accessible (either through PyTorch >= 1.4
or tensorboardX).
- [`~integrations.WandbCallback`] if [wandb](https://www.wandb.com/) is installed.
- [`~integrations.CometCallback`] if [comet_ml](https://www.comet.ml/site/) is installed.
- [`~integrations.CometCallback`] if [comet_ml](https://www.comet.com/site/) is installed.
- [`~integrations.MLflowCallback`] if [mlflow](https://www.mlflow.org/) is installed.
- [`~integrations.NeptuneCallback`] if [neptune](https://neptune.ai/) is installed.
- [`~integrations.AzureMLCallback`] if [azureml-sdk](https://pypi.org/project/azureml-sdk/) is

View File

@ -66,3 +66,8 @@ Examples of use can be found in the [example scripts](../examples) or [example n
- numpy_mask_tokens
- tf_mask_tokens
- torch_mask_tokens
## DataCollatorWithFlattening
[[autodoc]] data.data_collator.DataCollatorWithFlattening

View File

@ -32,3 +32,8 @@ An image processor is in charge of preparing input features for vision models an
## BaseImageProcessor
[[autodoc]] image_processing_utils.BaseImageProcessor
## BaseImageProcessorFast
[[autodoc]] image_processing_utils_fast.BaseImageProcessorFast

View File

@ -40,6 +40,10 @@ for text generation, [`~generation.GenerationMixin`] (for the PyTorch models),
- push_to_hub
- all
Custom models should also include a `_supports_assign_param_buffer`, which determines if superfast init can apply
on the particular model. Signs that your model needs this are if `test_save_and_load_from_pretrained` fails. If so,
set this to `False`.
## ModuleUtilsMixin
[[autodoc]] modeling_utils.ModuleUtilsMixin

View File

@ -66,6 +66,8 @@ The `.optimization` module provides:
[[autodoc]] get_inverse_sqrt_schedule
[[autodoc]] get_wsd_schedule
### Warmup (TensorFlow)
[[autodoc]] WarmUp

View File

@ -270,6 +270,11 @@ This is a simplified view, since the pipeline can handle automatically the batch
about how many forward passes you inputs are actually going to trigger, you can optimize the `batch_size`
independently of the inputs. The caveats from the previous section still apply.
## Pipeline FP16 inference
Models can be run in FP16 which can be significantly faster on GPU while saving memory. Most models will not suffer noticeable performance loss from this. The larger the model, the less likely that it will.
To enable FP16 inference, you can simply pass `torch_dtype=torch.float16` or `torch_dtype='float16'` to the pipeline constructor. Note that this only works for models with a PyTorch backend. Your inputs will be converted to FP16 internally.
## Pipeline custom code
If you want to override a specific pipeline.
@ -386,14 +391,6 @@ Pipelines available for computer vision tasks include the following.
Pipelines available for natural language processing tasks include the following.
### ConversationalPipeline
[[autodoc]] Conversation
[[autodoc]] ConversationalPipeline
- __call__
- all
### FillMaskPipeline
[[autodoc]] FillMaskPipeline

9
docs/source/en/main_classes/quantization.md Normal file → Executable file
View File

@ -52,3 +52,12 @@ Learn how to quantize models in the [Quantization](../quantization) guide.
## HfQuantizer
[[autodoc]] quantizers.base.HfQuantizer
## HqqConfig
[[autodoc]] HqqConfig
## FbgemmFp8Config
[[autodoc]] FbgemmFp8Config

View File

@ -41,6 +41,8 @@ like token streaming.
- validate
- get_generation_mode
[[autodoc]] generation.WatermarkingConfig
## GenerationMixin
[[autodoc]] generation.GenerationMixin

View File

@ -43,6 +43,34 @@ the authors compute the stats for a downstream dataset.
- Note that the AST needs a low learning rate (the authors use a 10 times smaller learning rate compared to their CNN model proposed in the
[PSLA paper](https://arxiv.org/abs/2102.01243)) and converges quickly, so please search for a suitable learning rate and learning rate scheduler for your task.
### Using Scaled Dot Product Attention (SDPA)
PyTorch includes a native scaled dot-product attention (SDPA) operator as part of `torch.nn.functional`. This function
encompasses several implementations that can be applied depending on the inputs and the hardware in use. See the
[official documentation](https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html)
or the [GPU Inference](https://huggingface.co/docs/transformers/main/en/perf_infer_gpu_one#pytorch-scaled-dot-product-attention)
page for more information.
SDPA is used by default for `torch>=2.1.1` when an implementation is available, but you may also set
`attn_implementation="sdpa"` in `from_pretrained()` to explicitly request SDPA to be used.
```
from transformers import ASTForAudioClassification
model = ASTForAudioClassification.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593", attn_implementation="sdpa", torch_dtype=torch.float16)
...
```
For the best speedups, we recommend loading the model in half-precision (e.g. `torch.float16` or `torch.bfloat16`).
On a local benchmark (A100-40GB, PyTorch 2.3.0, OS Ubuntu 22.04) with `float32` and `MIT/ast-finetuned-audioset-10-10-0.4593` model, we saw the following speedups during inference.
| Batch size | Average inference time (ms), eager mode | Average inference time (ms), sdpa model | Speed up, Sdpa / Eager (x) |
|--------------|-------------------------------------------|-------------------------------------------|------------------------------|
| 1 | 27 | 6 | 4.5 |
| 2 | 12 | 6 | 2 |
| 4 | 21 | 8 | 2.62 |
| 8 | 40 | 14 | 2.86 |
## Resources
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with the Audio Spectrogram Transformer.

View File

@ -61,6 +61,53 @@ This model was contributed by [thomwolf](https://huggingface.co/thomwolf). The o
- The model must predict the original sentence, but has a second objective: inputs are two sentences A and B (with a separation token in between). With probability 50%, the sentences are consecutive in the corpus, in the remaining 50% they are not related. The model has to predict if the sentences are consecutive or not.
### Using Scaled Dot Product Attention (SDPA)
PyTorch includes a native scaled dot-product attention (SDPA) operator as part of `torch.nn.functional`. This function
encompasses several implementations that can be applied depending on the inputs and the hardware in use. See the
[official documentation](https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html)
or the [GPU Inference](https://huggingface.co/docs/transformers/main/en/perf_infer_gpu_one#pytorch-scaled-dot-product-attention)
page for more information.
SDPA is used by default for `torch>=2.1.1` when an implementation is available, but you may also set
`attn_implementation="sdpa"` in `from_pretrained()` to explicitly request SDPA to be used.
```
from transformers import BertModel
model = BertModel.from_pretrained("bert-base-uncased", torch_dtype=torch.float16, attn_implementation="sdpa")
...
```
For the best speedups, we recommend loading the model in half-precision (e.g. `torch.float16` or `torch.bfloat16`).
On a local benchmark (A100-80GB, CPUx12, RAM 96.6GB, PyTorch 2.2.0, OS Ubuntu 22.04) with `float16`, we saw the
following speedups during training and inference.
#### Training
|batch_size|seq_len|Time per batch (eager - s)|Time per batch (sdpa - s)|Speedup (%)|Eager peak mem (MB)|sdpa peak mem (MB)|Mem saving (%)|
|----------|-------|--------------------------|-------------------------|-----------|-------------------|------------------|--------------|
|4 |256 |0.023 |0.017 |35.472 |939.213 |764.834 |22.800 |
|4 |512 |0.023 |0.018 |23.687 |1970.447 |1227.162 |60.569 |
|8 |256 |0.023 |0.018 |23.491 |1594.295 |1226.114 |30.028 |
|8 |512 |0.035 |0.025 |43.058 |3629.401 |2134.262 |70.054 |
|16 |256 |0.030 |0.024 |25.583 |2874.426 |2134.262 |34.680 |
|16 |512 |0.064 |0.044 |46.223 |6964.659 |3961.013 |75.830 |
#### Inference
|batch_size|seq_len|Per token latency eager (ms)|Per token latency SDPA (ms)|Speedup (%)|Mem eager (MB)|Mem BT (MB)|Mem saved (%)|
|----------|-------|----------------------------|---------------------------|-----------|--------------|-----------|-------------|
|1 |128 |5.736 |4.987 |15.022 |282.661 |282.924 |-0.093 |
|1 |256 |5.689 |4.945 |15.055 |298.686 |298.948 |-0.088 |
|2 |128 |6.154 |4.982 |23.521 |314.523 |314.785 |-0.083 |
|2 |256 |6.201 |4.949 |25.303 |347.546 |347.033 |0.148 |
|4 |128 |6.049 |4.987 |21.305 |378.895 |379.301 |-0.107 |
|4 |256 |6.285 |5.364 |17.166 |443.209 |444.382 |-0.264 |
## Resources
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with BERT. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.

View File

@ -66,6 +66,8 @@ The original code can be found [here](https://github.com/salesforce/BLIP).
## BlipModel
`BlipModel` is going to be deprecated in future versions, please use `BlipForConditionalGeneration`, `BlipForImageTextRetrieval` or `BlipForQuestionAnswering` depending on your usecase.
[[autodoc]] BlipModel
- forward
- get_text_features

View File

@ -0,0 +1,192 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Chameleon
## Overview
The Chameleon model was proposed in [Chameleon: Mixed-Modal Early-Fusion Foundation Models
](https://arxiv.org/abs/2405.09818v1) by META AI Chameleon Team. Chameleon is a Vision-Language Model that use vector quantization to tokenize images which enables the model to generate multimodal output. The model takes images and texts as input, including an interleaved format, and generates textual response. Image generation module is not released yet.
The abstract from the paper is the following:
*We present Chameleon, a family of early-fusion token-based mixed-modal models capable of understanding and generating images and text in any arbitrary sequence. We outline a stable training
approach from inception, an alignment recipe, and an architectural parameterization tailored for the
early-fusion, token-based, mixed-modal setting. The models are evaluated on a comprehensive range
of tasks, including visual question answering, image captioning, text generation, image generation, and
long-form mixed modal generation. Chameleon demonstrates broad and general capabilities, including
state-of-the-art performance in image captioning tasks, outperforms Llama-2 in text-only tasks while
being competitive with models such as Mixtral 8x7B and Gemini-Pro, and performs non-trivial image
generation, all in a single model. It also matches or exceeds the performance of much larger models,
including Gemini Pro and GPT-4V, according to human judgments on a new long-form mixed-modal
generation evaluation, where either the prompt or outputs contain mixed sequences of both images and
text. Chameleon marks a significant step forward in unified modeling of full multimodal documents*
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/chameleon_arch.png"
alt="drawing" width="600"/>
<small> Chameleon incorporates a vector quantizer module to transform images into discrete tokens. That also enables image generation using an auto-regressive transformer. Taken from the <a href="https://arxiv.org/abs/2405.09818v1">original paper.</a> </small>
This model was contributed by [joaogante](https://huggingface.co/joaogante) and [RaushanTurganbay](https://huggingface.co/RaushanTurganbay).
The original code can be found [here](https://github.com/facebookresearch/chameleon).
## Usage tips
- We advise users to use `padding_side="left"` when computing batched generation as it leads to more accurate results. Simply make sure to set `processor.tokenizer.padding_side = "left"` before generating.
- Note that Chameleon was tuned for safety alignment. If the model is refusing to answer, consider asking a more concrete question, instead of an open question.
- Chameleon generates in chat format which means that the generated text will always be the "assistant's turn". You can enable a text completion generation by passing `return_for_text_completion=True` when calling the processor.
> [!NOTE]
> Chameleon implementation in Transformers uses a special image token to indicate where to merge image embeddings. For special image token we didn't add a new one but used one of the reserved tokens: `<reserved08707>`. You have to add `<image>` to your prompt in the place where the image should be embedded for correct generation.
## Usage example
### Single image inference
Chameleon is a gated model so make sure to have access and login to Hugging Face Hub using a token.
Here's how to load the model and perform inference in half-precision (`torch.bfloat16`):
```python
from transformers import ChameleonProcessor, ChameleonForConditionalGeneration
import torch
from PIL import Image
import requests
processor = ChameleonProcessor.from_pretrained("facebook/chameleon-7b")
model = ChameleonForConditionalGeneration.from_pretrained("facebook/chameleon-7b", torch_dtype=torch.bfloat16, device_map="cuda")
# prepare image and text prompt
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
image = Image.open(requests.get(url, stream=True).raw)
prompt = "What do you see in this image?<image>"
inputs = processor(prompt, image, return_tensors="pt").to(model.device)
# autoregressively complete prompt
output = model.generate(**inputs, max_new_tokens=50)
print(processor.decode(output[0], skip_special_tokens=True))
```
### Multi image inference
Chameleon can perform inference with multiple images as input, where images either belong to the same prompt or different prompts (in batched inference). Here is how you can do it:
```python
from transformers import ChameleonProcessor, ChameleonForConditionalGeneration
import torch
from PIL import Image
import requests
processor = ChameleonProcessor.from_pretrained("facebook/chameleon-7b")
model = ChameleonForConditionalGeneration.from_pretrained("facebook/chameleon-7b", torch_dtype=torch.bfloat16, device_map="cuda")
# Get three different images
url = "https://www.ilankelman.org/stopsigns/australia.jpg"
image_stop = Image.open(requests.get(url, stream=True).raw)
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image_cats = Image.open(requests.get(url, stream=True).raw)
url = "https://huggingface.co/microsoft/kosmos-2-patch14-224/resolve/main/snowman.jpg"
image_snowman = Image.open(requests.get(url, stream=True).raw)
# Prepare a batched prompt, where the first one is a multi-image prompt and the second is not
prompts = [
"What do these images have in common?<image><image>",
"<image>What is shown in this image?"
]
# We can simply feed images in the order they have to be used in the text prompt
# Each "<image>" token uses one image leaving the next for the subsequent "<image>" tokens
inputs = processor(text=prompts, images=[image_stop, image_cats, image_snowman], padding=True, return_tensors="pt").to(device="cuda", dtype=torch.bfloat16)
# Generate
generate_ids = model.generate(**inputs, max_new_tokens=50)
processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
```
## Model optimization
### Quantization using Bitsandbytes
The model can be loaded in 8 or 4 bits, greatly reducing the memory requirements while maintaining the performance of the original model. First make sure to install bitsandbytes, `pip install bitsandbytes` and make sure to have access to a CUDA compatible GPU device. Simply change the snippet above with:
```python
from transformers import ChameleonForConditionalGeneration, BitsAndBytesConfig
# specify how to quantize the model
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
)
model = ChameleonForConditionalGeneration.from_pretrained("facebook/chameleon-7b", quantization_config=quantization_config, device_map="cuda")
```
### Use Flash-Attention 2 and SDPA to further speed-up generation
The models supports both, Flash-Attention 2 and PyTorch's [`torch.nn.functional.scaled_dot_product_attention`](https://pytorch.org/docs/master/generated/torch.nn.functional.scaled_dot_product_attention.html) which can be enables for optimization. SDPA is the default options when you load the model, If you want to switch for Flash Attention 2, first make sure to install flash-attn. Refer to the [original repository](https://github.com/Dao-AILab/flash-attention) regarding that package installation. Simply change the snippet above with:
```python
from transformers import ChameleonForConditionalGeneration
model_id = "facebook/chameleon-7b"
model = ChameleonForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
attn_implementation="flash_attention_2"
).to(0)
```
## ChameleonConfig
[[autodoc]] ChameleonConfig
## ChameleonVQVAEConfig
[[autodoc]] ChameleonVQVAEConfig
## ChameleonProcessor
[[autodoc]] ChameleonProcessor
## ChameleonImageProcessor
[[autodoc]] ChameleonImageProcessor
- preprocess
## ChameleonVQVAE
[[autodoc]] ChameleonVQVAE
- forward
## ChameleonModel
[[autodoc]] ChameleonModel
- forward
## ChameleonForConditionalGeneration
[[autodoc]] ChameleonForConditionalGeneration
- forward

View File

@ -79,6 +79,123 @@ encode the text and prepare the images. The following example shows how to get t
>>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
```
### Combining CLIP and Flash Attention 2
First, make sure to install the latest version of Flash Attention 2.
```bash
pip install -U flash-attn --no-build-isolation
```
Make also sure that you have a hardware that is compatible with Flash-Attention 2. Read more about it in the official documentation of flash-attn repository. Make also sure to load your model in half-precision (e.g. `torch.float16`)
<Tip warning={true}>
For small batch sizes, you might notice a slowdown in your model when using flash attention. Refer to the section [Expected speedups with Flash Attention and SDPA](#Expected-speedups-with-Flash-Attention-and-SDPA) below and select an appropriate attention implementation.
</Tip>
To load and run a model using Flash Attention 2, refer to the snippet below:
```python
>>> import torch
>>> import requests
>>> from PIL import Image
>>> from transformers import CLIPProcessor, CLIPModel
>>> device = "cuda"
>>> torch_dtype = torch.float16
>>> model = CLIPModel.from_pretrained(
... "openai/clip-vit-base-patch32",
... attn_implementation="flash_attention_2",
... device_map=device,
... torch_dtype=torch_dtype,
... )
>>> processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True)
>>> inputs.to(device)
>>> with torch.no_grad():
... with torch.autocast(device):
... outputs = model(**inputs)
>>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
>>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
>>> print(probs)
tensor([[0.9946, 0.0052]], device='cuda:0', dtype=torch.float16)
```
### Using Scaled Dot Product Attention (SDPA)
PyTorch includes a native scaled dot-product attention (SDPA) operator as part of `torch.nn.functional`. This function
encompasses several implementations that can be applied depending on the inputs and the hardware in use. See the
[official documentation](https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html)
or the [GPU Inference](https://huggingface.co/docs/transformers/main/en/perf_infer_gpu_one#pytorch-scaled-dot-product-attention)
page for more information.
SDPA is used by default for `torch>=2.1.1` when an implementation is available, but you may also set
`attn_implementation="sdpa"` in `from_pretrained()` to explicitly request SDPA to be used.
```python
from transformers import CLIPModel
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32", torch_dtype=torch.float16, attn_implementation="sdpa")
```
For the best speedups, we recommend loading the model in half-precision (e.g. `torch.float16` or `torch.bfloat16`).
### Expected speedups with Flash Attention and SDPA
On a local benchmark (NVIDIA A10G, PyTorch 2.3.1+cu121) with `float16`, we saw the following speedups during inference for `"openai/clip-vit-large-patch14"` checkpoint ([code](https://gist.github.com/qubvel/ac691a54e54f9fae8144275f866a7ff8)):
#### CLIPTextModel
| Num text labels | Eager (s/iter) | FA2 (s/iter) | FA2 speedup | SDPA (s/iter) | SDPA speedup |
|------------------:|-----------------:|---------------:|--------------:|----------------:|---------------:|
| 4 | 0.009 | 0.012 | 0.737 | 0.007 | 1.269 |
| 16 | 0.009 | 0.014 | 0.659 | 0.008 | 1.187 |
| 32 | 0.018 | 0.021 | 0.862 | 0.016 | 1.142 |
| 64 | 0.034 | 0.034 | 1.001 | 0.03 | 1.163 |
| 128 | 0.063 | 0.058 | 1.09 | 0.054 | 1.174 |
![clip_text_model_viz_3](https://github.com/user-attachments/assets/e9826b43-4e66-4f4c-952b-af4d90bd38eb)
#### CLIPVisionModel
| Image batch size | Eager (s/iter) | FA2 (s/iter) | FA2 speedup | SDPA (s/iter) | SDPA speedup |
|-------------------:|-----------------:|---------------:|--------------:|----------------:|---------------:|
| 1 | 0.016 | 0.013 | 1.247 | 0.012 | 1.318 |
| 4 | 0.025 | 0.021 | 1.198 | 0.021 | 1.202 |
| 16 | 0.093 | 0.075 | 1.234 | 0.075 | 1.24 |
| 32 | 0.181 | 0.147 | 1.237 | 0.146 | 1.241 |
![clip_image_model_viz_3](https://github.com/user-attachments/assets/50a36206-e3b9-4adc-ac8e-926b8b071d63)
#### CLIPModel
| Image batch size | Num text labels | Eager (s/iter) | FA2 (s/iter) | FA2 speedup | SDPA (s/iter) | SDPA speedup |
|-------------------:|------------------:|-----------------:|---------------:|--------------:|----------------:|---------------:|
| 1 | 4 | 0.025 | 0.026 | 0.954 | 0.02 | 1.217 |
| 1 | 16 | 0.026 | 0.028 | 0.918 | 0.02 | 1.287 |
| 1 | 64 | 0.042 | 0.046 | 0.906 | 0.036 | 1.167 |
| 4 | 4 | 0.028 | 0.033 | 0.849 | 0.024 | 1.189 |
| 4 | 16 | 0.034 | 0.035 | 0.955 | 0.029 | 1.169 |
| 4 | 64 | 0.059 | 0.055 | 1.072 | 0.05 | 1.179 |
| 16 | 4 | 0.096 | 0.088 | 1.091 | 0.078 | 1.234 |
| 16 | 16 | 0.102 | 0.09 | 1.129 | 0.083 | 1.224 |
| 16 | 64 | 0.127 | 0.11 | 1.157 | 0.105 | 1.218 |
| 32 | 4 | 0.185 | 0.159 | 1.157 | 0.149 | 1.238 |
| 32 | 16 | 0.19 | 0.162 | 1.177 | 0.154 | 1.233 |
| 32 | 64 | 0.216 | 0.181 | 1.19 | 0.176 | 1.228 |
## Resources
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with CLIP.

View File

@ -24,7 +24,7 @@ The abstract from the paper is the following:
*We release Code Llama, a family of large language models for code based on Llama 2 providing state-of-the-art performance among open models, infilling capabilities, support for large input contexts, and zero-shot instruction following ability for programming tasks. We provide multiple flavors to cover a wide range of applications: foundation models (Code Llama), Python specializations (Code Llama - Python), and instruction-following models (Code Llama - Instruct) with 7B, 13B and 34B parameters each. All models are trained on sequences of 16k tokens and show improvements on inputs with up to 100k tokens. 7B and 13B Code Llama and Code Llama - Instruct variants support infilling based on surrounding content. Code Llama reaches state-of-the-art performance among open models on several code benchmarks, with scores of up to 53% and 55% on HumanEval and MBPP, respectively. Notably, Code Llama - Python 7B outperforms Llama 2 70B on HumanEval and MBPP, and all our models outperform every other publicly available model on MultiPL-E. We release Code Llama under a permissive license that allows for both research and commercial use.*
Check out all Code Llama model checkpoints [here](https://huggingface.co/models?search=code_llama) and the officially released ones in the [codellama org](https://huggingface.co/codellama).
Check out all Code Llama model checkpoints [here](https://huggingface.co/models?search=code_llama) and the officially released ones in the [Meta Llama org](https://huggingface.co/meta-llama).
This model was contributed by [ArthurZucker](https://huggingface.co/ArthurZ). The original code of the authors can be found [here](https://github.com/facebookresearch/llama).
@ -62,8 +62,8 @@ After conversion, the model and tokenizer can be loaded via:
```python
>>> from transformers import LlamaForCausalLM, CodeLlamaTokenizer
>>> tokenizer = CodeLlamaTokenizer.from_pretrained("codellama/CodeLlama-7b-hf")
>>> model = LlamaForCausalLM.from_pretrained("codellama/CodeLlama-7b-hf")
>>> tokenizer = CodeLlamaTokenizer.from_pretrained("meta-llama/CodeLlama-7b-hf")
>>> model = LlamaForCausalLM.from_pretrained("meta-llama/CodeLlama-7b-hf")
>>> PROMPT = '''def remove_non_ascii(s: str) -> str:
... """ <FILL_ME>
... return result
@ -95,7 +95,7 @@ If you only want the infilled part:
>>> from transformers import pipeline
>>> import torch
>>> generator = pipeline("text-generation",model="codellama/CodeLlama-7b-hf",torch_dtype=torch.float16, device_map="auto")
>>> generator = pipeline("text-generation",model="meta-llama/CodeLlama-7b-hf",torch_dtype=torch.float16, device_map="auto")
>>> generator('def remove_non_ascii(s: str) -> str:\n """ <FILL_ME>\n return result', max_new_tokens = 128)
[{'generated_text': 'def remove_non_ascii(s: str) -> str:\n """ <FILL_ME>\n return resultRemove non-ASCII characters from a string. """\n result = ""\n for c in s:\n if ord(c) < 128:\n result += c'}]
```

View File

@ -33,7 +33,8 @@ This model was contributed by [DepuMeng](https://huggingface.co/DepuMeng). The o
## Resources
- [Object detection task guide](../tasks/object_detection)
- Scripts for finetuning [`ConditionalDetrForObjectDetection`] with [`Trainer`] or [Accelerate](https://huggingface.co/docs/accelerate/index) can be found [here](https://github.com/huggingface/transformers/tree/main/examples/pytorch/object-detection).
- See also: [Object detection task guide](../tasks/object_detection).
## ConditionalDetrConfig

Some files were not shown because too many files have changed in this diff Show More