Compare commits

..

2 Commits

Author SHA1 Message Date
30e1b92a47 ssh new cluster 2024-09-06 14:38:34 +02:00
5c944b6c27 ssh new cluster 2024-09-06 14:20:59 +02:00
2901 changed files with 76017 additions and 250329 deletions

View File

@ -13,7 +13,6 @@ jobs:
check_circleci_user:
docker:
- image: python:3.10-slim
resource_class: small
parallelism: 1
steps:
- run: echo $CIRCLE_PROJECT_USERNAME
@ -48,25 +47,25 @@ jobs:
- run:
name: "Retrieve Artifact Paths"
# [reference] https://circleci.com/docs/api/v2/index.html#operation/getJobArtifacts
# `CIRCLE_TOKEN` is defined as an environment variables set within a context, see `https://circleci.com/docs/contexts/`
env:
CIRCLE_TOKEN: ${{ secrets.CI_ARTIFACT_TOKEN }}
command: |
project_slug="gh/${CIRCLE_PROJECT_USERNAME}/${CIRCLE_PROJECT_REPONAME}"
job_number=${CIRCLE_BUILD_NUM}
url="https://circleci.com/api/v2/project/${project_slug}/${job_number}/artifacts"
curl -o test_preparation/artifacts.json ${url} --header "Circle-Token: $CIRCLE_TOKEN"
curl -o test_preparation/artifacts.json ${url}
- run:
name: "Prepare pipeline parameters"
command: |
python utils/process_test_artifacts.py
python utils/process_test_artifacts.py
# To avoid too long generated_config.yaml on the continuation orb, we pass the links to the artifacts as parameters.
# Otherwise the list of tests was just too big. Explicit is good but for that it was a limitation.
# We used:
# https://circleci.com/docs/api/v2/index.html#operation/getJobArtifacts : to get the job artifacts
# We could not pass a nested dict, which is why we create the test_file_... parameters for every single job
- store_artifacts:
path: test_preparation/transformed_artifacts.json
- store_artifacts:
@ -83,49 +82,22 @@ jobs:
parallelism: 1
steps:
- checkout
- run: uv pip install -U -e .
- run: echo 'export "GIT_COMMIT_MESSAGE=$(git show -s --format=%s)"' >> "$BASH_ENV" && source "$BASH_ENV"
- run: mkdir -p test_preparation
- run: python utils/tests_fetcher.py --fetch_all | tee tests_fetched_summary.txt
- run: python utils/tests_fetcher.py --filter_tests
- run: export "GIT_COMMIT_MESSAGE=$(git show -s --format=%s)" && echo $GIT_COMMIT_MESSAGE && python .circleci/create_circleci_config.py --fetcher_folder test_preparation
- run: uv pip install -e .
- run: |
if [ ! -s test_preparation/generated_config.yml ]; then
echo "No tests to run, exiting early!"
circleci-agent step halt
fi
mkdir test_preparation
echo -n "tests" > test_preparation/test_list.txt
echo -n "all" > test_preparation/examples_test_list.txt
echo -n "tests/repo_utils" > test_preparation/test_repo_utils.txt
- run: |
echo -n "tests" > test_list.txt
python utils/tests_fetcher.py --filter_tests
mv test_list.txt test_preparation/filtered_test_list.txt
- run: python .circleci/create_circleci_config.py --fetcher_folder test_preparation
- run: cp test_preparation/generated_config.yml test_preparation/generated_config.txt
- store_artifacts:
path: test_preparation
- run:
name: "Retrieve Artifact Paths"
env:
CIRCLE_TOKEN: ${{ secrets.CI_ARTIFACT_TOKEN }}
command: |
project_slug="gh/${CIRCLE_PROJECT_USERNAME}/${CIRCLE_PROJECT_REPONAME}"
job_number=${CIRCLE_BUILD_NUM}
url="https://circleci.com/api/v2/project/${project_slug}/${job_number}/artifacts"
curl -o test_preparation/artifacts.json ${url}
- run:
name: "Prepare pipeline parameters"
command: |
python utils/process_test_artifacts.py
# To avoid too long generated_config.yaml on the continuation orb, we pass the links to the artifacts as parameters.
# Otherwise the list of tests was just too big. Explicit is good but for that it was a limitation.
# We used:
# https://circleci.com/docs/api/v2/index.html#operation/getJobArtifacts : to get the job artifacts
# We could not pass a nested dict, which is why we create the test_file_... parameters for every single job
- store_artifacts:
path: test_preparation/transformed_artifacts.json
- store_artifacts:
path: test_preparation/artifacts.json
path: test_preparation/generated_config.txt
- continuation/continue:
parameters: test_preparation/transformed_artifacts.json
configuration_path: test_preparation/generated_config.yml
configuration_path: test_preparation/generated_config.yml
check_code_quality:
working_directory: ~/transformers
@ -138,7 +110,7 @@ jobs:
parallelism: 1
steps:
- checkout
- run: uv pip install -e ".[quality]"
- run: uv pip install -e .
- run:
name: Show installed libraries and their versions
command: pip freeze | tee installed.txt
@ -163,14 +135,13 @@ jobs:
parallelism: 1
steps:
- checkout
- run: uv pip install -e ".[quality]"
- run: uv pip install -e .
- run:
name: Show installed libraries and their versions
command: pip freeze | tee installed.txt
- store_artifacts:
path: ~/transformers/installed.txt
- run: python utils/check_copies.py
- run: python utils/check_modular_conversion.py --num_workers 4
- run: python utils/check_table.py
- run: python utils/check_dummies.py
- run: python utils/check_repo.py
@ -187,28 +158,13 @@ workflows:
version: 2
setup_and_quality:
when:
and:
- equal: [<<pipeline.project.git_url>>, https://github.com/huggingface/transformers]
- not: <<pipeline.parameters.nightly>>
not: <<pipeline.parameters.nightly>>
jobs:
- check_circleci_user
- check_code_quality
- check_repository_consistency
- fetch_tests
setup_and_quality_2:
when:
not:
equal: [<<pipeline.project.git_url>>, https://github.com/huggingface/transformers]
jobs:
- check_circleci_user
- check_code_quality
- check_repository_consistency
- fetch_tests:
# [reference] https://circleci.com/docs/contexts/
context:
- TRANSFORMERS_CONTEXT
nightly:
when: <<pipeline.parameters.nightly>>
jobs:

View File

@ -32,7 +32,7 @@ COMMON_ENV_VARIABLES = {
"RUN_PT_FLAX_CROSS_TESTS": False,
}
# Disable the use of {"s": None} as the output is way too long, causing the navigation on CircleCI impractical
COMMON_PYTEST_OPTIONS = {"max-worker-restart": 0, "dist": "loadfile", "vvv": None, "rsfE":None}
COMMON_PYTEST_OPTIONS = {"max-worker-restart": 0, "dist": "loadfile", "vvv": None, "rsf":None}
DEFAULT_DOCKER_IMAGE = [{"image": "cimg/python:3.8.12"}]
@ -40,23 +40,9 @@ class EmptyJob:
job_name = "empty"
def to_dict(self):
steps = [{"run": 'ls -la'}]
if self.job_name == "collection_job":
steps.extend(
[
"checkout",
{"run": "pip install requests || true"},
{"run": """while [[ $(curl --location --request GET "https://circleci.com/api/v2/workflow/$CIRCLE_WORKFLOW_ID/job" --header "Circle-Token: $CCI_TOKEN"| jq -r '.items[]|select(.name != "collection_job")|.status' | grep -c "running") -gt 0 ]]; do sleep 5; done || true"""},
{"run": 'python utils/process_circleci_workflow_test_reports.py --workflow_id $CIRCLE_WORKFLOW_ID || true'},
{"store_artifacts": {"path": "outputs"}},
{"run": 'echo "All required jobs have now completed"'},
]
)
return {
"docker": copy.deepcopy(DEFAULT_DOCKER_IMAGE),
"resource_class": "small",
"steps": steps,
"steps":["checkout"],
}
@ -68,9 +54,9 @@ class CircleCIJob:
install_steps: List[str] = None
marker: Optional[str] = None
parallelism: Optional[int] = 0
pytest_num_workers: int = 8
pytest_num_workers: int = 12
pytest_options: Dict[str, Any] = None
resource_class: Optional[str] = "xlarge"
resource_class: Optional[str] = "2xlarge"
tests_to_run: Optional[List[str]] = None
num_test_files_per_worker: Optional[int] = 10
# This should be only used for doctest job!
@ -147,7 +133,7 @@ class CircleCIJob:
"command": """dpkg-query --show --showformat='${Installed-Size}\t${Package}\n' | sort -rh | head -25 | sort -h | awk '{ package=$2; sub(".*/", "", package); printf("%.5f GB %s\n", $1/1024/1024, package)}' || true"""}
},
{"run": {"name": "Create `test-results` directory", "command": "mkdir test-results"}},
{"run": {"name": "Get files to test", "command":f'curl -L -o {self.job_name}_test_list.txt <<pipeline.parameters.{self.job_name}_test_list>> --header "Circle-Token: $CIRCLE_TOKEN"' if self.name != "pr_documentation_tests" else 'echo "Skipped"'}},
{"run": {"name": "Get files to test", "command":f'curl -L -o {self.job_name}_test_list.txt <<pipeline.parameters.{self.job_name}_test_list>>' if self.name != "pr_documentation_tests" else 'echo "Skipped"'}},
{"run": {"name": "Split tests across parallel nodes: show current parallel tests",
"command": f"TESTS=$(circleci tests split --split-by=timings {self.job_name}_test_list.txt) && echo $TESTS > splitted_tests.txt && echo $TESTS | tr ' ' '\n'" if self.parallelism else f"awk '{{printf \"%s \", $0}}' {self.job_name}_test_list.txt > splitted_tests.txt"
}
@ -199,6 +185,7 @@ torch_job = CircleCIJob(
docker_image=[{"image": "huggingface/transformers-torch-light"}],
marker="not generate",
parallelism=6,
pytest_num_workers=8
)
generate_job = CircleCIJob(
@ -206,24 +193,28 @@ generate_job = CircleCIJob(
docker_image=[{"image": "huggingface/transformers-torch-light"}],
marker="generate",
parallelism=6,
pytest_num_workers=8
)
tokenization_job = CircleCIJob(
"tokenization",
docker_image=[{"image": "huggingface/transformers-torch-light"}],
parallelism=8,
pytest_num_workers=16
)
processor_job = CircleCIJob(
"processors",
docker_image=[{"image": "huggingface/transformers-torch-light"}],
parallelism=8,
pytest_num_workers=6
)
tf_job = CircleCIJob(
"tf",
docker_image=[{"image":"huggingface/transformers-tf-light"}],
parallelism=6,
pytest_num_workers=16,
)
@ -231,8 +222,7 @@ flax_job = CircleCIJob(
"flax",
docker_image=[{"image":"huggingface/transformers-jax-light"}],
parallelism=6,
pytest_num_workers=16,
resource_class="2xlarge",
pytest_num_workers=16
)
@ -241,7 +231,7 @@ pipelines_torch_job = CircleCIJob(
additional_env={"RUN_PIPELINE_TESTS": True},
docker_image=[{"image":"huggingface/transformers-torch-light"}],
marker="is_pipeline_test",
parallelism=4,
parallelism=4
)
@ -250,7 +240,7 @@ pipelines_tf_job = CircleCIJob(
additional_env={"RUN_PIPELINE_TESTS": True},
docker_image=[{"image":"huggingface/transformers-tf-light"}],
marker="is_pipeline_test",
parallelism=4,
parallelism=4
)
@ -267,6 +257,7 @@ examples_torch_job = CircleCIJob(
docker_image=[{"image":"huggingface/transformers-examples-torch"}],
# TODO @ArthurZucker remove this once docker is easier to build
install_steps=["uv venv && uv pip install . && uv pip install -r examples/pytorch/_tests_requirements.txt"],
pytest_num_workers=8,
)
@ -274,6 +265,7 @@ examples_tensorflow_job = CircleCIJob(
"examples_tensorflow",
additional_env={"OMP_NUM_THREADS": 8},
docker_image=[{"image":"huggingface/transformers-examples-tf"}],
pytest_num_workers=16,
)
@ -288,7 +280,6 @@ hub_job = CircleCIJob(
],
marker="is_staging_test",
pytest_num_workers=2,
resource_class="medium",
)
@ -301,13 +292,13 @@ onnx_job = CircleCIJob(
],
pytest_options={"k onnx": None},
pytest_num_workers=1,
resource_class="small",
)
exotic_models_job = CircleCIJob(
"exotic_models",
docker_image=[{"image":"huggingface/transformers-exotic-models"}],
pytest_num_workers=12,
parallelism=4,
pytest_options={"durations": 100},
)
@ -321,14 +312,6 @@ repo_utils_job = CircleCIJob(
)
non_model_job = CircleCIJob(
"non_model",
docker_image=[{"image": "huggingface/transformers-torch-light"}],
marker="not generate",
parallelism=6,
)
# We also include a `dummy.py` file in the files to be doc-tested to prevent edge case failure. Otherwise, the pytest
# hangs forever during test collection while showing `collecting 0 items / 21 errors`. (To see this, we have to remove
# the bash output redirection.)
@ -353,14 +336,13 @@ doc_test_job = CircleCIJob(
pytest_num_workers=1,
)
REGULAR_TESTS = [torch_and_tf_job, torch_and_flax_job, torch_job, tf_job, flax_job, hub_job, onnx_job, tokenization_job, processor_job, generate_job, non_model_job] # fmt: skip
REGULAR_TESTS = [torch_and_tf_job, torch_and_flax_job, torch_job, tf_job, flax_job, hub_job, onnx_job, tokenization_job, processor_job, generate_job] # fmt: skip
EXAMPLES_TESTS = [examples_torch_job, examples_tensorflow_job]
PIPELINE_TESTS = [pipelines_torch_job, pipelines_tf_job]
REPO_UTIL_TESTS = [repo_utils_job]
DOC_TESTS = [doc_test_job]
ALL_TESTS = REGULAR_TESTS + EXAMPLES_TESTS + PIPELINE_TESTS + REPO_UTIL_TESTS + DOC_TESTS + [custom_tokenizers_job] + [exotic_models_job] # fmt: skip
def create_circleci_config(folder=None):
if folder is None:
folder = os.getcwd()
@ -370,13 +352,7 @@ def create_circleci_config(folder=None):
if len(jobs) == 0:
jobs = [EmptyJob()]
else:
print("Full list of job name inputs", {j.job_name + "_test_list":{"type":"string", "default":''} for j in jobs})
# Add a job waiting all the test jobs and aggregate their test summary files at the end
collection_job = EmptyJob()
collection_job.job_name = "collection_job"
jobs = [collection_job] + jobs
print("Full list of job name inputs", {j.job_name + "_test_list":{"type":"string", "default":''} for j in jobs})
config = {
"version": "2.1",
"parameters": {
@ -386,14 +362,9 @@ def create_circleci_config(folder=None):
**{j.job_name + "_test_list":{"type":"string", "default":''} for j in jobs},
**{j.job_name + "_parallelism":{"type":"integer", "default":1} for j in jobs},
},
"jobs": {j.job_name: j.to_dict() for j in jobs}
"jobs" : {j.job_name: j.to_dict() for j in jobs},
"workflows": {"version": 2, "run_tests": {"jobs": [j.job_name for j in jobs]}}
}
if "CIRCLE_TOKEN" in os.environ:
# For private forked repo. (e.g. new model addition)
config["workflows"] = {"version": 2, "run_tests": {"jobs": [{j.job_name: {"context": ["TRANSFORMERS_CONTEXT"]}} for j in jobs]}}
else:
# For public repo. (e.g. `transformers`)
config["workflows"] = {"version": 2, "run_tests": {"jobs": [j.job_name for j in jobs]}}
with open(os.path.join(folder, "generated_config.yml"), "w") as f:
f.write(yaml.dump(config, sort_keys=False, default_flow_style=False).replace("' << pipeline", " << pipeline").replace(">> '", " >>"))

12
.coveragerc Normal file
View File

@ -0,0 +1,12 @@
[run]
source=transformers
omit =
# skip convertion scripts from testing for now
*/convert_*
*/__main__.py
[report]
exclude_lines =
pragma: no cover
raise
except
register_parameter

View File

@ -37,17 +37,17 @@ body:
Models:
- text models: @ArthurZucker
- vision models: @amyeroberts, @qubvel
- speech models: @ylacombe, @eustlb
- vision models: @amyeroberts
- speech models: @sanchit-gandhi
- graph models: @clefourrier
Library:
- flax: @sanchit-gandhi
- generate: @zucchini-nlp (visual-language models) or @gante (all others)
- pipelines: @Rocketknight1
- pipelines: @Narsil
- tensorflow: @gante and @Rocketknight1
- tokenizers: @ArthurZucker and @itazap
- tokenizers: @ArthurZucker
- trainer: @muellerzr @SunMarc
Integrations:
@ -55,7 +55,7 @@ body:
- deepspeed: HF Trainer/Accelerate: @muellerzr
- ray/raytune: @richardliaw, @amogkam
- Big Model Inference: @SunMarc
- quantization (bitsandbytes, autogpt): @SunMarc @MekkCyber
- quantization (bitsandbytes, autogpt): @SunMarc
Documentation: @stevhliu
@ -106,7 +106,6 @@ body:
label: Reproduction
description: |
Please provide a code sample that reproduces the problem you ran into. It can be a Colab link or just a code snippet.
Please include relevant config information with your code, for example your Trainers, TRL, Peft, and DeepSpeed configs.
If you have code snippets, error messages, stack traces please provide them here as well.
Important! Use code tags to correctly format your code. See https://help.github.com/en/github/writing-on-github/creating-and-highlighting-code-blocks#syntax-highlighting
Do not use screenshots, as they are hard to read and (more importantly) don't allow others to copy-and-paste your code.

View File

@ -40,26 +40,25 @@ members/contributors who may be interested in your PR.
Models:
- text models: @ArthurZucker
- vision models: @amyeroberts, @qubvel
- speech models: @ylacombe, @eustlb
- vision models: @amyeroberts
- speech models: @sanchit-gandhi
- graph models: @clefourrier
Library:
- flax: @sanchit-gandhi
- generate: @zucchini-nlp (visual-language models) or @gante (all others)
- pipelines: @Rocketknight1
- pipelines: @Narsil
- tensorflow: @gante and @Rocketknight1
- tokenizers: @ArthurZucker
- trainer: @muellerzr and @SunMarc
- chat templates: @Rocketknight1
Integrations:
- deepspeed: HF Trainer/Accelerate: @muellerzr
- ray/raytune: @richardliaw, @amogkam
- Big Model Inference: @SunMarc
- quantization (bitsandbytes, autogpt): @SunMarc @MekkCyber
- quantization (bitsandbytes, autogpt): @SunMarc
Documentation: @stevhliu

View File

@ -1,75 +1,42 @@
name: Self-hosted runner (benchmark)
on:
push:
branches: [main]
pull_request:
types: [ opened, labeled, reopened, synchronize ]
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
schedule:
- cron: "17 2 * * *"
workflow_call:
env:
HF_HOME: /mnt/cache
TF_FORCE_GPU_ALLOW_GROWTH: true
jobs:
benchmark:
name: Benchmark
strategy:
matrix:
# group: [aws-g5-4xlarge-cache, aws-p4d-24xlarge-plus] (A100 runner is not enabled)
group: [aws-g5-4xlarge-cache]
runs-on:
group: ${{ matrix.group }}
if: |
(github.event_name == 'pull_request' && contains( github.event.pull_request.labels.*.name, 'run-benchmark') )||
(github.event_name == 'push' && github.ref == 'refs/heads/main')
runs-on: [single-gpu, nvidia-gpu, a10, ci]
container:
image: huggingface/transformers-pytorch-gpu
options: --gpus all --privileged --ipc host
image: huggingface/transformers-all-latest-gpu
options: --gpus all --privileged --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Get repo
uses: actions/checkout@v4
with:
ref: ${{ github.event.pull_request.head.sha || github.sha }}
- name: Install libpq-dev & psql
- name: Update clone
working-directory: /transformers
run: |
apt update
apt install -y libpq-dev postgresql-client
- name: Install benchmark script dependencies
run: python3 -m pip install -r benchmark/requirements.txt
git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e ".[torch]"
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Run database init script
- name: Benchmark (daily)
if: github.event_name == 'schedule'
working-directory: /transformers
run: |
psql -f benchmark/init_db.sql
env:
PGDATABASE: metrics
PGHOST: ${{ secrets.TRANSFORMERS_BENCHMARKS_PGHOST }}
PGUSER: transformers_benchmarks
PGPASSWORD: ${{ secrets.TRANSFORMERS_BENCHMARKS_PGPASSWORD }}
python3 -m pip install optimum-benchmark>=0.3.0
HF_TOKEN=${{ secrets.TRANSFORMERS_BENCHMARK_TOKEN }} python3 benchmark/benchmark.py --repo_id hf-internal-testing/benchmark_results --path_in_repo $(date +'%Y-%m-%d') --config-dir benchmark/config --config-name generation --commit=${{ github.sha }} backend.model=google/gemma-2b backend.cache_implementation=null,static backend.torch_compile=false,true --multirun
- name: Run benchmark
- name: Benchmark (merged to main event)
if: github.event_name == 'push' && github.ref_name == 'main'
working-directory: /transformers
run: |
git config --global --add safe.directory /__w/transformers/transformers
if [ "$GITHUB_EVENT_NAME" = "pull_request" ]; then
commit_id=$(echo "${{ github.event.pull_request.head.sha }}")
elif [ "$GITHUB_EVENT_NAME" = "push" ]; then
commit_id=$GITHUB_SHA
fi
commit_msg=$(git show -s --format=%s | cut -c1-70)
python3 benchmark/benchmarks_entrypoint.py "${{ github.head_ref || github.ref_name }}" "$commit_id" "$commit_msg"
env:
HF_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
# Enable this to see debug logs
# HF_HUB_VERBOSITY: debug
# TRANSFORMERS_VERBOSITY: debug
PGHOST: ${{ secrets.TRANSFORMERS_BENCHMARKS_PGHOST }}
PGUSER: transformers_benchmarks
PGPASSWORD: ${{ secrets.TRANSFORMERS_BENCHMARKS_PGPASSWORD }}
python3 -m pip install optimum-benchmark>=0.3.0
HF_TOKEN=${{ secrets.TRANSFORMERS_BENCHMARK_TOKEN }} python3 benchmark/benchmark.py --repo_id hf-internal-testing/benchmark_results_merge_event --path_in_repo $(date +'%Y-%m-%d') --config-dir benchmark/config --config-name generation --commit=${{ github.sha }} backend.model=google/gemma-2b backend.cache_implementation=null,static backend.torch_compile=false,true --multirun

View File

@ -3,7 +3,7 @@ name: Build docker images (scheduled)
on:
push:
branches:
- check_doc_image
- build_ci_docker_image*
repository_dispatch:
workflow_call:
inputs:
@ -18,12 +18,134 @@ concurrency:
cancel-in-progress: false
jobs:
latest-docker:
name: "Latest PyTorch + TensorFlow [dev]"
runs-on: [intel-cpu, 8-cpu, ci]
steps:
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
-
name: Check out code
uses: actions/checkout@v4
-
name: Login to DockerHub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
-
name: Build and push
uses: docker/build-push-action@v5
with:
context: ./docker/transformers-all-latest-gpu
build-args: |
REF=main
push: true
tags: huggingface/transformers-all-latest-gpu${{ inputs.image_postfix }}
# Push CI images still need to be re-built daily
-
name: Build and push (for Push CI) in a daily basis
# This condition allows `schedule` events, or `push` events that trigger this workflow NOT via `workflow_call`.
# The later case is useful for manual image building for debugging purpose. Use another tag in this case!
if: inputs.image_postfix != '-push-ci'
uses: docker/build-push-action@v5
with:
context: ./docker/transformers-all-latest-gpu
build-args: |
REF=main
push: true
tags: huggingface/transformers-all-latest-gpu-push-ci
- name: Post to Slack
if: always()
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ secrets.CI_SLACK_CHANNEL_DOCKER }}
title: 🤗 Results of the transformers-all-latest-gpu-push-ci docker build
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
latest-torch-deepspeed-docker:
name: "Latest PyTorch + DeepSpeed"
runs-on: [intel-cpu, 8-cpu, ci]
steps:
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
-
name: Check out code
uses: actions/checkout@v4
-
name: Login to DockerHub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
-
name: Build and push
uses: docker/build-push-action@v5
with:
context: ./docker/transformers-pytorch-deepspeed-latest-gpu
build-args: |
REF=main
push: true
tags: huggingface/transformers-pytorch-deepspeed-latest-gpu${{ inputs.image_postfix }}
- name: Post to Slack
if: always()
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ secrets.CI_SLACK_CHANNEL_DOCKER}}
title: 🤗 Results of the transformers-pytorch-deepspeed-latest-gpu docker build
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
# Can't build 2 images in a single job `latest-torch-deepspeed-docker` (for `nvcr.io/nvidia`)
latest-torch-deepspeed-docker-for-push-ci-daily-build:
name: "Latest PyTorch + DeepSpeed (Push CI - Daily Build)"
runs-on: [intel-cpu, 8-cpu, ci]
steps:
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
-
name: Check out code
uses: actions/checkout@v4
-
name: Login to DockerHub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
# Push CI images still need to be re-built daily
-
name: Build and push (for Push CI) in a daily basis
# This condition allows `schedule` events, or `push` events that trigger this workflow NOT via `workflow_call`.
# The later case is useful for manual image building for debugging purpose. Use another tag in this case!
if: inputs.image_postfix != '-push-ci'
uses: docker/build-push-action@v5
with:
context: ./docker/transformers-pytorch-deepspeed-latest-gpu
build-args: |
REF=main
push: true
tags: huggingface/transformers-pytorch-deepspeed-latest-gpu-push-ci
- name: Post to Slack
if: always()
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ secrets.CI_SLACK_CHANNEL_DOCKER }}
title: 🤗 Results of the transformers-pytorch-deepspeed-latest-gpu-push-ci docker build
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
doc-builder:
name: "Doc builder"
# Push CI doesn't need this image
if: inputs.image_postfix != '-push-ci'
runs-on:
group: aws-general-8-plus
runs-on: [intel-cpu, 8-cpu, ci]
steps:
-
name: Set up Docker Buildx
@ -50,6 +172,213 @@ jobs:
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ secrets.CI_SLACK_CHANNEL_DOCKER }}
title: 🤗 Results of the huggingface/transformers-doc-builder docker build
title: 🤗 Results of the huggingface/transformers-doc-builder docker build
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
latest-pytorch:
name: "Latest PyTorch [dev]"
# Push CI doesn't need this image
if: inputs.image_postfix != '-push-ci'
runs-on: [intel-cpu, 8-cpu, ci]
steps:
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
-
name: Check out code
uses: actions/checkout@v4
-
name: Login to DockerHub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
-
name: Build and push
uses: docker/build-push-action@v5
with:
context: ./docker/transformers-pytorch-gpu
build-args: |
REF=main
push: true
tags: huggingface/transformers-pytorch-gpu
- name: Post to Slack
if: always()
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ secrets.CI_SLACK_CHANNEL_DOCKER }}
title: 🤗 Results of the huggingface/transformers-pytorch-gpudocker build
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
latest-pytorch-amd:
name: "Latest PyTorch (AMD) [dev]"
runs-on: [intel-cpu, 8-cpu, ci]
steps:
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
-
name: Check out code
uses: actions/checkout@v4
-
name: Login to DockerHub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
-
name: Build and push
uses: docker/build-push-action@v5
with:
context: ./docker/transformers-pytorch-amd-gpu
build-args: |
REF=main
push: true
tags: huggingface/transformers-pytorch-amd-gpu${{ inputs.image_postfix }}
# Push CI images still need to be re-built daily
-
name: Build and push (for Push CI) in a daily basis
# This condition allows `schedule` events, or `push` events that trigger this workflow NOT via `workflow_call`.
# The later case is useful for manual image building for debugging purpose. Use another tag in this case!
if: inputs.image_postfix != '-push-ci'
uses: docker/build-push-action@v5
with:
context: ./docker/transformers-pytorch-amd-gpu
build-args: |
REF=main
push: true
tags: huggingface/transformers-pytorch-amd-gpu-push-ci
- name: Post to Slack
if: always()
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ secrets.CI_SLACK_CHANNEL_DOCKER }}
title: 🤗 Results of the huggingface/transformers-pytorch-amd-gpu-push-ci build
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
latest-tensorflow:
name: "Latest TensorFlow [dev]"
# Push CI doesn't need this image
if: inputs.image_postfix != '-push-ci'
runs-on: [intel-cpu, 8-cpu, ci]
steps:
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
-
name: Check out code
uses: actions/checkout@v4
-
name: Login to DockerHub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
-
name: Build and push
uses: docker/build-push-action@v5
with:
context: ./docker/transformers-tensorflow-gpu
build-args: |
REF=main
push: true
tags: huggingface/transformers-tensorflow-gpu
- name: Post to Slack
if: always()
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ secrets.CI_SLACK_CHANNEL_DOCKER }}
title: 🤗 Results of the huggingface/transformers-tensorflow-gpu build
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
latest-pytorch-deepspeed-amd:
name: "PyTorch + DeepSpeed (AMD) [dev]"
runs-on: [intel-cpu, 8-cpu, ci]
steps:
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
-
name: Check out code
uses: actions/checkout@v4
-
name: Login to DockerHub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
-
name: Build and push
uses: docker/build-push-action@v5
with:
context: ./docker/transformers-pytorch-deepspeed-amd-gpu
build-args: |
REF=main
push: true
tags: huggingface/transformers-pytorch-deepspeed-amd-gpu${{ inputs.image_postfix }}
# Push CI images still need to be re-built daily
-
name: Build and push (for Push CI) in a daily basis
# This condition allows `schedule` events, or `push` events that trigger this workflow NOT via `workflow_call`.
# The later case is useful for manual image building for debugging purpose. Use another tag in this case!
if: inputs.image_postfix != '-push-ci'
uses: docker/build-push-action@v5
with:
context: ./docker/transformers-pytorch-deepspeed-amd-gpu
build-args: |
REF=main
push: true
tags: huggingface/transformers-pytorch-deepspeed-amd-gpu-push-ci
- name: Post to Slack
if: always()
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ secrets.CI_SLACK_CHANNEL_DOCKER }}
title: 🤗 Results of the transformers-pytorch-deepspeed-amd-gpu build
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
latest-quantization-torch-docker:
name: "Latest Pytorch + Quantization [dev]"
# Push CI doesn't need this image
if: inputs.image_postfix != '-push-ci'
runs-on: [intel-cpu, 8-cpu, ci]
steps:
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
-
name: Check out code
uses: actions/checkout@v4
-
name: Login to DockerHub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
-
name: Build and push
uses: docker/build-push-action@v5
with:
context: ./docker/transformers-quantization-latest-gpu
build-args: |
REF=main
push: true
tags: huggingface/transformers-quantization-latest-gpu${{ inputs.image_postfix }}
- name: Post to Slack
if: always()
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ secrets.CI_SLACK_CHANNEL_DOCKER }}
title: 🤗 Results of the transformers-quantization-latest-gpu build
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}

View File

@ -13,8 +13,7 @@ concurrency:
jobs:
latest-with-torch-nightly-docker:
name: "Nightly PyTorch + Stable TensorFlow"
runs-on:
group: aws-general-8-plus
runs-on: [intel-cpu, 8-cpu, ci]
steps:
-
name: Set up Docker Buildx
@ -41,8 +40,7 @@ jobs:
nightly-torch-deepspeed-docker:
name: "Nightly PyTorch + DeepSpeed"
runs-on:
group: aws-general-8-plus
runs-on: [intel-cpu, 8-cpu, ci]
steps:
-
name: Set up Docker Buildx
@ -64,4 +62,4 @@ jobs:
build-args: |
REF=main
push: true
tags: huggingface/transformers-pytorch-deepspeed-nightly-gpu
tags: huggingface/transformers-pytorch-deepspeed-nightly-gpu

View File

@ -16,8 +16,7 @@ jobs:
fail-fast: false
matrix:
version: ["1.13", "1.12", "1.11"]
runs-on:
group: aws-general-8-plus
runs-on: [intel-cpu, 8-cpu, ci]
steps:
-
name: Set up Docker Buildx
@ -61,8 +60,7 @@ jobs:
fail-fast: false
matrix:
version: ["2.11", "2.10", "2.9", "2.8", "2.7", "2.6", "2.5"]
runs-on:
group: aws-general-8-plus
runs-on: [intel-cpu, 8-cpu, ci]
steps:
-
name: Set up Docker Buildx

View File

@ -1,7 +1,6 @@
name: Build documentation
on:
workflow_dispatch:
push:
branches:
- main
@ -16,7 +15,7 @@ jobs:
commit_sha: ${{ github.sha }}
package: transformers
notebook_folder: transformers_doc
languages: ar de en es fr hi it ko pt tr zh ja te
languages: de en es fr hi it ko pt tr zh ja te
custom_container: huggingface/transformers-doc-builder
secrets:
token: ${{ secrets.HUGGINGFACE_PUSH }}

View File

@ -14,5 +14,5 @@ jobs:
commit_sha: ${{ github.event.pull_request.head.sha }}
pr_number: ${{ github.event.number }}
package: transformers
languages: ar de en es fr hi it ko pt tr zh ja te
languages: de en es fr hi it ko pt tr zh ja te
custom_container: huggingface/transformers-doc-builder

View File

@ -1,129 +0,0 @@
name: Process failed tests
on:
workflow_call:
inputs:
docker:
required: true
type: string
start_sha:
required: true
type: string
env:
HF_HOME: /mnt/cache
TRANSFORMERS_IS_CI: yes
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
RUN_SLOW: yes
# For gated repositories, we still need to agree to share information on the Hub repo. page in order to get access.
# This token is created under the bot `hf-transformers-bot`.
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
TF_FORCE_GPU_ALLOW_GROWTH: true
RUN_PT_TF_CROSS_TESTS: 1
CUDA_VISIBLE_DEVICES: 0,1
jobs:
run_models_gpu:
name: " "
runs-on:
group: aws-g4dn-2xlarge-cache
container:
image: ${{ inputs.docker }}
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- uses: actions/download-artifact@v4
with:
name: ci_results_run_models_gpu
path: /transformers/ci_results_run_models_gpu
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Get target commit
working-directory: /transformers/utils
run: |
echo "END_SHA=$(TOKEN=${{ secrets.ACCESS_REPO_INFO_TOKEN }} python3 -c 'import os; from get_previous_daily_ci import get_last_daily_ci_run_commit; commit=get_last_daily_ci_run_commit(token=os.environ["TOKEN"]); print(commit)')" >> $GITHUB_ENV
- name: Checkout to `start_sha`
working-directory: /transformers
run: git fetch && git checkout ${{ inputs.start_sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Check failed tests
working-directory: /transformers
run: python3 utils/check_bad_commit.py --start_commit ${{ inputs.start_sha }} --end_commit ${{ env.END_SHA }} --file ci_results_run_models_gpu/new_model_failures.json --output_file new_model_failures_with_bad_commit.json
- name: Show results
working-directory: /transformers
run: |
ls -l new_model_failures_with_bad_commit.json
cat new_model_failures_with_bad_commit.json
- name: Checkout back
working-directory: /transformers
run: |
git checkout ${{ inputs.start_sha }}
- name: Process report
shell: bash
working-directory: /transformers
env:
TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN: ${{ secrets.TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN }}
run: |
python3 utils/process_bad_commit_report.py
- name: Process report
shell: bash
working-directory: /transformers
env:
TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN: ${{ secrets.TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN }}
run: |
{
echo 'REPORT_TEXT<<EOF'
python3 utils/process_bad_commit_report.py
echo EOF
} >> "$GITHUB_ENV"
- name: Send processed report
if: ${{ !endsWith(env.REPORT_TEXT, '{}') }}
uses: slackapi/slack-github-action@6c661ce58804a1a20f6dc5fbee7f0381b469e001
with:
# Slack channel id, channel name, or user id to post message.
# See also: https://api.slack.com/methods/chat.postMessage#channels
channel-id: '#transformers-ci-feedback-tests'
# For posting a rich message using Block Kit
payload: |
{
"blocks": [
{
"type": "section",
"text": {
"type": "mrkdwn",
"text": "${{ env.REPORT_TEXT }}"
}
}
]
}
env:
SLACK_BOT_TOKEN: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}

View File

@ -27,8 +27,7 @@ jobs:
fail-fast: false
matrix:
split_keys: ${{ fromJson(inputs.split_keys) }}
runs-on:
group: aws-g4dn-2xlarge-cache
runs-on: [single-gpu, nvidia-gpu, t4, ci]
container:
image: huggingface/transformers-all-latest-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/

View File

@ -14,8 +14,7 @@ env:
jobs:
setup:
name: Setup
runs-on:
group: aws-g4dn-2xlarge-cache
runs-on: [single-gpu, nvidia-gpu, t4, ci]
container:
image: huggingface/transformers-all-latest-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
@ -86,4 +85,4 @@ jobs:
uses: actions/upload-artifact@v4
with:
name: doc_test_results
path: doc_test_results
path: doc_test_results

View File

@ -41,8 +41,7 @@ jobs:
fail-fast: false
matrix:
folders: ${{ fromJson(inputs.folder_slices)[inputs.slice_id] }}
runs-on:
group: '${{ inputs.machine_type }}'
runs-on: ['${{ inputs.machine_type }}', nvidia-gpu, t4, '${{ inputs.runner }}']
container:
image: ${{ inputs.docker }}
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
@ -98,42 +97,25 @@ jobs:
working-directory: /transformers
run: pip freeze
- name: Set `machine_type` for report and artifact names
working-directory: /transformers
shell: bash
run: |
echo "${{ inputs.machine_type }}"
if [ "${{ inputs.machine_type }}" = "aws-g4dn-2xlarge-cache" ]; then
machine_type=single-gpu
elif [ "${{ inputs.machine_type }}" = "aws-g4dn-12xlarge-cache" ]; then
machine_type=multi-gpu
else
machine_type=${{ inputs.machine_type }}
fi
echo "$machine_type"
echo "machine_type=$machine_type" >> $GITHUB_ENV
- name: Run all tests on GPU
working-directory: /transformers
run: python3 -m pytest -rsfE -v --make-reports=${{ env.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports tests/${{ matrix.folders }}
run: python3 -m pytest -rsfE -v --make-reports=${{ inputs.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports tests/${{ matrix.folders }}
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ env.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports/failures_short.txt
run: cat /transformers/reports/${{ inputs.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports/failures_short.txt
- name: Run test
shell: bash
run: |
mkdir -p /transformers/reports/${{ env.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports
echo "hello" > /transformers/reports/${{ env.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports/hello.txt
echo "${{ env.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports"
mkdir -p /transformers/reports/${{ inputs.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports
echo "hello" > /transformers/reports/${{ inputs.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports/hello.txt
echo "${{ inputs.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports"
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports"
- name: "Test suite reports artifacts: ${{ inputs.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ env.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ env.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports
name: ${{ inputs.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ inputs.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports

View File

@ -1,129 +0,0 @@
name: model jobs
on:
workflow_call:
inputs:
folder_slices:
required: true
type: string
machine_type:
required: true
type: string
slice_id:
required: true
type: number
runner:
required: true
type: string
docker:
required: true
type: string
env:
HF_HOME: /mnt/cache
TRANSFORMERS_IS_CI: yes
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
RUN_SLOW: yes
# For gated repositories, we still need to agree to share information on the Hub repo. page in order to get access.
# This token is created under the bot `hf-transformers-bot`.
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
TF_FORCE_GPU_ALLOW_GROWTH: true
RUN_PT_TF_CROSS_TESTS: 1
CUDA_VISIBLE_DEVICES: 0,1
jobs:
run_models_gpu:
name: " "
strategy:
max-parallel: 1 # For now, not to parallelize. Can change later if it works well.
fail-fast: false
matrix:
folders: ${{ fromJson(inputs.folder_slices)[inputs.slice_id] }}
runs-on: ['${{ inputs.machine_type }}', self-hosted, amd-gpu, '${{ inputs.runner }}']
container:
image: ${{ inputs.docker }}
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Echo input and matrix info
shell: bash
run: |
echo "${{ inputs.folder_slices }}"
echo "${{ matrix.folders }}"
echo "${{ toJson(fromJson(inputs.folder_slices)[inputs.slice_id]) }}"
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
# set the artifact folder names (because the character `/` is not allowed).
run: |
echo "${{ matrix.folders }}"
matrix_folders=${{ matrix.folders }}
matrix_folders=${matrix_folders/'models/'/'models_'}
echo "$matrix_folders"
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Update / Install some packages (for Past CI)
if: ${{ contains(inputs.docker, '-past-') }}
working-directory: /transformers
run: |
python3 -m pip install -U datasets
- name: Update / Install some packages (for Past CI)
if: ${{ contains(inputs.docker, '-past-') && contains(inputs.docker, '-pytorch-') }}
working-directory: /transformers
run: |
python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate
- name: ROCM-SMI
run: |
rocm-smi
- name: ROCM-INFO
run: |
rocminfo | grep "Agent" -A 14
- name: Show ROCR environment
run: |
echo "ROCR: $ROCR_VISIBLE_DEVICES"
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run all tests on GPU
working-directory: /transformers
run: python3 -m pytest -rsfE -v --make-reports=${{ inputs.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports tests/${{ matrix.folders }} -m "not not_device_test"
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ inputs.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports/failures_short.txt
- name: Run test
shell: bash
run: |
mkdir -p /transformers/reports/${{ inputs.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports
echo "hello" > /transformers/reports/${{ inputs.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports/hello.txt
echo "${{ inputs.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports"
- name: "Test suite reports artifacts: ${{ inputs.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ inputs.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ inputs.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports

View File

@ -52,8 +52,7 @@ jobs:
test_modified_files:
needs: get_modified_models
name: Slow & FA2 tests
runs-on:
group: aws-g5-4xlarge-cache
runs-on: [single-gpu, nvidia-gpu, a10, ci]
container:
image: huggingface/transformers-all-latest-gpu
options: --gpus all --privileged --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
@ -134,3 +133,10 @@ jobs:
slackChannel: ${{ secrets.SLACK_CIFEEDBACK_CHANNEL }}
slackToken: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
waitForSSH: true
benchmark:
name: Benchmark workflow
needs: get_modified_models
if: ${{ needs.get_modified_models.outputs.matrix != '[]' && needs.get_modified_models.outputs.matrix != '' && fromJson(needs.get_modified_models.outputs.matrix)[0] != null }}
uses: ./.github/workflows/benchmark.yml
secrets: inherit

View File

@ -1,417 +0,0 @@
name: PR comment GitHub CI
on:
issue_comment:
types:
- created
branches-ignore:
- main
concurrency:
group: ${{ github.workflow }}-${{ github.event.issue.number }}-${{ startsWith(github.event.comment.body, 'run-slow') || startsWith(github.event.comment.body, 'run slow') || startsWith(github.event.comment.body, 'run_slow') }}
cancel-in-progress: true
permissions: read-all
env:
HF_HOME: /mnt/cache
TRANSFORMERS_IS_CI: yes
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
RUN_SLOW: yes
# For gated repositories, we still need to agree to share information on the Hub repo. page in order to get access.
# This token is created under the bot `hf-transformers-bot`.
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
TF_FORCE_GPU_ALLOW_GROWTH: true
RUN_PT_TF_CROSS_TESTS: 1
CUDA_VISIBLE_DEVICES: 0,1
jobs:
get-pr-number:
runs-on: ubuntu-22.04
name: Get PR number
# For security: only allow team members to run
if: ${{ github.event.issue.state == 'open' && contains(fromJSON('["ydshieh", "ArthurZucker", "zucchini-nlp", "qubvel", "molbap", "gante", "LysandreJik", "Cyrilvallez", "Rocketknight1", "SunMarc", "muellerzr"]'), github.actor) && (startsWith(github.event.comment.body, 'run-slow') || startsWith(github.event.comment.body, 'run slow') || startsWith(github.event.comment.body, 'run_slow')) }}
outputs:
PR_NUMBER: ${{ steps.set_pr_number.outputs.PR_NUMBER }}
steps:
- name: Get PR number
shell: bash
run: |
if [[ "${{ github.event.issue.number }}" != "" && "${{ github.event.issue.pull_request }}" != "" ]]; then
echo "PR_NUMBER=${{ github.event.issue.number }}" >> $GITHUB_ENV
else
echo "PR_NUMBER=" >> $GITHUB_ENV
fi
- name: Check PR number
shell: bash
run: |
echo "${{ env.PR_NUMBER }}"
- name: Set PR number
id: set_pr_number
run: echo "PR_NUMBER=${{ env.PR_NUMBER }}" >> "$GITHUB_OUTPUT"
get-sha:
runs-on: ubuntu-22.04
needs: get-pr-number
if: ${{ needs.get-pr-number.outputs.PR_NUMBER != ''}}
outputs:
PR_HEAD_SHA: ${{ steps.get_sha.outputs.PR_HEAD_SHA }}
PR_MERGE_SHA: ${{ steps.get_sha.outputs.PR_MERGE_SHA }}
steps:
- uses: actions/checkout@v4
with:
fetch-depth: "0"
ref: "refs/pull/${{needs.get-pr-number.outputs.PR_NUMBER}}/merge"
- name: Get SHA (and verify timestamps against the issue comment date)
id: get_sha
env:
PR_NUMBER: ${{ needs.get-pr-number.outputs.PR_NUMBER }}
COMMENT_DATE: ${{ github.event.comment.created_at }}
run: |
git fetch origin refs/pull/$PR_NUMBER/head:refs/remotes/pull/$PR_NUMBER/head
git checkout refs/remotes/pull/$PR_NUMBER/head
echo "PR_HEAD_SHA: $(git log -1 --format=%H)"
echo "PR_HEAD_SHA=$(git log -1 --format=%H)" >> "$GITHUB_OUTPUT"
git fetch origin refs/pull/$PR_NUMBER/merge:refs/remotes/pull/$PR_NUMBER/merge
git checkout refs/remotes/pull/$PR_NUMBER/merge
echo "PR_MERGE_SHA: $(git log -1 --format=%H)"
echo "PR_MERGE_SHA=$(git log -1 --format=%H)" >> "$GITHUB_OUTPUT"
PR_MERGE_COMMIT_TIMESTAMP=$(git log -1 --date=unix --format=%cd)
echo "PR_MERGE_COMMIT_TIMESTAMP: $PR_MERGE_COMMIT_TIMESTAMP"
COMMENT_TIMESTAMP=$(date -d "${COMMENT_DATE}" +"%s")
echo "COMMENT_DATE: $COMMENT_DATE"
echo "COMMENT_TIMESTAMP: $COMMENT_TIMESTAMP"
if [ $COMMENT_TIMESTAMP -le $PR_MERGE_COMMIT_TIMESTAMP ]; then
echo "Last commit on the pull request is newer than the issue comment triggering this run! Abort!";
exit -1;
fi
# use a python script to handle this complex logic
# case 1: `run-slow` (auto. infer with limited number of models, but in particular, new model)
# case 2: `run-slow model_1, model_2`
get-tests:
runs-on: ubuntu-22.04
needs: [get-pr-number, get-sha]
if: ${{ needs.get-pr-number.outputs.PR_NUMBER != ''}}
outputs:
models: ${{ steps.models_to_run.outputs.models }}
quantizations: ${{ steps.models_to_run.outputs.quantizations }}
steps:
- uses: actions/checkout@v4
with:
fetch-depth: "0"
ref: "refs/pull/${{needs.get-pr-number.outputs.PR_NUMBER}}/merge"
- name: Verify merge commit SHA
env:
VERIFIED_PR_MERGE_SHA: ${{ needs.get-sha.outputs.PR_MERGE_SHA }}
run: |
PR_MERGE_SHA=$(git log -1 --format=%H)
if [ $PR_MERGE_SHA != $VERIFIED_PR_MERGE_SHA ]; then
echo "The merged commit SHA is not the same as the verified one! Security issue detected, abort the workflow!";
exit -1;
fi
- name: Get models to test
env:
PR_COMMENT: ${{ github.event.comment.body }}
run: |
python -m pip install GitPython
python utils/pr_slow_ci_models.py --message "$PR_COMMENT" | tee output.txt
echo "models=$(tail -n 1 output.txt)" >> $GITHUB_ENV
python utils/pr_slow_ci_models.py --message "$PR_COMMENT" --quantization | tee output2.txt
echo "quantizations=$(tail -n 1 output2.txt)" >> $GITHUB_ENV
- name: Show models to test
id: models_to_run
run: |
echo "${{ env.models }}"
echo "models=${{ env.models }}" >> $GITHUB_ENV
echo "models=${{ env.models }}" >> $GITHUB_OUTPUT
echo "${{ env.quantizations }}"
echo "quantizations=${{ env.quantizations }}" >> $GITHUB_OUTPUT
reply_to_comment:
name: Reply to the comment
if: ${{ needs.get-tests.outputs.models != '[]' || needs.get-tests.outputs.quantizations != '[]' }}
needs: [get-pr-number, get-tests]
permissions:
pull-requests: write
runs-on: ubuntu-22.04
steps:
- name: Reply to the comment
env:
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
MODELS: ${{ needs.get-tests.outputs.models }}
BODY: "This comment contains run-slow, running the specified jobs:\n\nmodels: ${{ needs.get-tests.outputs.models }}\nquantizations: ${{ needs.get-tests.outputs.quantizations }}"
run: |
gh api \
--method POST \
-H "Accept: application/vnd.github+json" \
-H "X-GitHub-Api-Version: 2022-11-28" \
repos/${{ github.repository }}/issues/${{ needs.get-pr-number.outputs.PR_NUMBER }}/comments \
-f "body=This comment contains run-slow, running the specified jobs: ${{ env.BODY }} ..."
create_run:
name: Create run
if: ${{ needs.get-tests.outputs.models != '[]' || needs.get-tests.outputs.quantizations != '[]' }}
needs: [get-sha, get-tests, reply_to_comment]
permissions:
statuses: write
runs-on: ubuntu-22.04
steps:
- name: Create Run
id: create_run
env:
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
# Create a commit status (pending) for a run of this workflow. The status has to be updated later in `update_run_status`.
# See https://docs.github.com/en/rest/commits/statuses?apiVersion=2022-11-28#create-a-commit-status
GITHUB_RUN_URL: https://github.com/${{ github.repository }}/actions/runs/${{ github.run_id }}
run: |
gh api \
--method POST \
-H "Accept: application/vnd.github+json" \
-H "X-GitHub-Api-Version: 2022-11-28" \
repos/${{ github.repository }}/statuses/${{ needs.get-sha.outputs.PR_HEAD_SHA }} \
-f "target_url=$GITHUB_RUN_URL" -f "state=pending" -f "description=Slow CI job" -f "context=pytest/custom-tests"
run_models_gpu:
name: Run all tests for the model
if: ${{ needs.get-tests.outputs.models != '[]' }}
needs: [get-pr-number, get-sha, get-tests, create_run]
strategy:
fail-fast: false
matrix:
folders: ${{ fromJson(needs.get-tests.outputs.models) }}
machine_type: [aws-g4dn-2xlarge-cache, aws-g4dn-12xlarge-cache]
runs-on:
group: '${{ matrix.machine_type }}'
container:
image: huggingface/transformers-all-latest-gpu
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Echo input and matrix info
shell: bash
run: |
echo "${{ matrix.folders }}"
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
# set the artifact folder names (because the character `/` is not allowed).
run: |
echo "${{ matrix.folders }}"
matrix_folders=${{ matrix.folders }}
matrix_folders=${matrix_folders/'models/'/'models_'}
echo "$matrix_folders"
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
- name: Checkout to PR merge commit
working-directory: /transformers
run: |
git fetch origin refs/pull/${{ needs.get-pr-number.outputs.PR_NUMBER }}/merge:refs/remotes/pull/${{ needs.get-pr-number.outputs.PR_NUMBER }}/merge
git checkout refs/remotes/pull/${{ needs.get-pr-number.outputs.PR_NUMBER }}/merge
git log -1 --format=%H
- name: Verify merge commit SHA
env:
VERIFIED_PR_MERGE_SHA: ${{ needs.get-sha.outputs.PR_MERGE_SHA }}
working-directory: /transformers
run: |
PR_MERGE_SHA=$(git log -1 --format=%H)
if [ $PR_MERGE_SHA != $VERIFIED_PR_MERGE_SHA ]; then
echo "The merged commit SHA is not the same as the verified one! Security issue detected, abort the workflow!";
exit -1;
fi
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Set `machine_type` for report and artifact names
working-directory: /transformers
shell: bash
run: |
echo "${{ matrix.machine_type }}"
if [ "${{ matrix.machine_type }}" = "aws-g4dn-2xlarge-cache" ]; then
machine_type=single-gpu
elif [ "${{ matrix.machine_type }}" = "aws-g4dn-12xlarge-cache" ]; then
machine_type=multi-gpu
else
machine_type=${{ matrix.machine_type }}
fi
echo "$machine_type"
echo "machine_type=$machine_type" >> $GITHUB_ENV
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run all tests on GPU
working-directory: /transformers
run: |
export CUDA_VISIBLE_DEVICES="$(python3 utils/set_cuda_devices_for_ci.py --test_folder ${{ matrix.folders }})"
echo $CUDA_VISIBLE_DEVICES
python3 -m pytest -v -rsfE --make-reports=${{ env.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports tests/${{ matrix.folders }}
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ env.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports/failures_short.txt
- name: Make sure report directory exists
shell: bash
run: |
mkdir -p /transformers/reports/${{ env.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports
echo "hello" > /transformers/reports/${{ env.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports/hello.txt
echo "${{ env.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports"
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ env.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ env.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports
run_quantization_torch_gpu:
name: Run all tests for a quantization
if: ${{ needs.get-tests.outputs.quantizations != '[]' }}
needs: [get-pr-number, get-sha, get-tests, create_run]
strategy:
fail-fast: false
matrix:
folders: ${{ fromJson(needs.get-tests.outputs.quantizations) }}
machine_type: [aws-g4dn-2xlarge-cache, aws-g4dn-12xlarge-cache]
runs-on:
group: '${{ matrix.machine_type }}'
container:
image: huggingface/transformers-quantization-latest-gpu
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Echo folder ${{ matrix.folders }}
shell: bash
run: |
echo "${{ matrix.folders }}"
matrix_folders=${{ matrix.folders }}
matrix_folders=${matrix_folders/'quantization/'/'quantization_'}
echo "$matrix_folders"
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
- name: Checkout to PR merge commit
working-directory: /transformers
run: |
git fetch origin refs/pull/${{ needs.get-pr-number.outputs.PR_NUMBER }}/merge:refs/remotes/pull/${{ needs.get-pr-number.outputs.PR_NUMBER }}/merge
git checkout refs/remotes/pull/${{ needs.get-pr-number.outputs.PR_NUMBER }}/merge
git log -1 --format=%H
- name: Verify merge commit SHA
env:
VERIFIED_PR_MERGE_SHA: ${{ needs.get-sha.outputs.PR_MERGE_SHA }}
working-directory: /transformers
run: |
PR_MERGE_SHA=$(git log -1 --format=%H)
if [ $PR_MERGE_SHA != $VERIFIED_PR_MERGE_SHA ]; then
echo "The merged commit SHA is not the same as the verified one! Security issue detected, abort the workflow!";
exit -1;
fi
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Set `machine_type` for report and artifact names
working-directory: /transformers
shell: bash
run: |
echo "${{ matrix.machine_type }}"
if [ "${{ matrix.machine_type }}" = "aws-g4dn-2xlarge-cache" ]; then
machine_type=single-gpu
elif [ "${{ matrix.machine_type }}" = "aws-g4dn-12xlarge-cache" ]; then
machine_type=multi-gpu
else
machine_type=${{ matrix.machine_type }}
fi
echo "$machine_type"
echo "machine_type=$machine_type" >> $GITHUB_ENV
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run quantization tests on GPU
working-directory: /transformers
run: |
python3 -m pytest -v --make-reports=${{ env.machine_type }}_run_quantization_torch_gpu_${{ matrix.folders }}_test_reports tests/${{ matrix.folders }}
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ env.machine_type }}_run_quantization_torch_gpu_${{ matrix.folders }}_test_reports/failures_short.txt
- name: Make sure report directory exists
shell: bash
run: |
mkdir -p /transformers/reports/${{ env.machine_type }}_run_quantization_gpu_${{ matrix.folders }}_test_reports
echo "hello" > /transformers/reports/${{ env.machine_type }}_run_quantization_gpu_${{ matrix.folders }}_test_reports/hello.txt
echo "${{ env.machine_type }}_run_quantization_gpu_${{ matrix.folders }}_test_reports"
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_quantization_torch_gpu_${{ env.matrix_folders }}_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ env.machine_type }}_run_quantization_torch_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ env.machine_type }}_run_quantization_torch_gpu_${{ matrix.folders }}_test_reports
update_run_status:
name: Update Check Run Status
needs: [get-sha, create_run, run_models_gpu, run_quantization_torch_gpu]
permissions:
statuses: write
if: ${{ always() && needs.create_run.result == 'success' }}
runs-on: ubuntu-22.04
env:
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
GITHUB_RUN_URL: https://github.com/${{ github.repository }}/actions/runs/${{ github.run_id }}
STATUS_OK: ${{ contains(fromJSON('["skipped", "success"]'), needs.run_models_gpu.result) && contains(fromJSON('["skipped", "success"]'), needs.run_quantization_torch_gpu.result) }}
steps:
- name: Get `run_models_gpu` job status
run: |
echo "${{ needs.run_models_gpu.result }}"
echo "${{ needs.run_quantization_torch_gpu.result }}"
echo $STATUS_OK
if [ "$STATUS_OK" = "true" ]; then
echo "STATUS=success" >> $GITHUB_ENV
else
echo "STATUS=failure" >> $GITHUB_ENV
fi
- name: Update PR commit statuses
run: |
echo "${{ needs.run_models_gpu.result }}"
echo "${{ env.STATUS }}"
gh api \
--method POST \
-H "Accept: application/vnd.github+json" \
-H "X-GitHub-Api-Version: 2022-11-28" \
repos/${{ github.repository }}/statuses/${{ needs.get-sha.outputs.PR_HEAD_SHA }} \
-f "target_url=$GITHUB_RUN_URL" -f "state=${{ env.STATUS }}" -f "description=Slow CI job" -f "context=pytest/custom-tests"

View File

@ -21,6 +21,39 @@ jobs:
echo "$(python3 -c 'print(int(${{ github.run_number }}) % 10)')"
echo "run_number=$(python3 -c 'print(int(${{ github.run_number }}) % 10)')" >> $GITHUB_OUTPUT
run_past_ci_pytorch_1-13:
name: PyTorch 1.13
needs: get_number
if: needs.get_number.outputs.run_number == 0 && (cancelled() != true) && ((github.event_name == 'schedule') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci')))
uses: ./.github/workflows/self-past-caller.yml
with:
framework: pytorch
version: "1.13"
sha: ${{ github.sha }}
secrets: inherit
run_past_ci_pytorch_1-12:
name: PyTorch 1.12
needs: get_number
if: needs.get_number.outputs.run_number == 1 && (cancelled() != true) && ((github.event_name == 'schedule') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci')))
uses: ./.github/workflows/self-past-caller.yml
with:
framework: pytorch
version: "1.12"
sha: ${{ github.sha }}
secrets: inherit
run_past_ci_pytorch_1-11:
name: PyTorch 1.11
needs: get_number
if: needs.get_number.outputs.run_number == 2 && (cancelled() != true) && ((github.event_name == 'schedule') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci')))
uses: ./.github/workflows/self-past-caller.yml
with:
framework: pytorch
version: "1.11"
sha: ${{ github.sha }}
secrets: inherit
run_past_ci_tensorflow_2-11:
name: TensorFlow 2.11
needs: get_number

135
.github/workflows/self-pr-slow-ci.yml vendored Normal file
View File

@ -0,0 +1,135 @@
name: PR slow CI
on:
pull_request:
paths:
- "src/transformers/models/*/modeling_*.py"
- "tests/**/test_*.py"
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
env:
HF_HOME: /mnt/cache
TRANSFORMERS_IS_CI: yes
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
RUN_SLOW: yes
# For gated repositories, we still need to agree to share information on the Hub repo. page in order to get access.
# This token is created under the bot `hf-transformers-bot`.
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
TF_FORCE_GPU_ALLOW_GROWTH: true
RUN_PT_TF_CROSS_TESTS: 1
CUDA_VISIBLE_DEVICES: 0,1
jobs:
find_models_to_run:
runs-on: ubuntu-22.04
name: Find models to run slow tests
# Triggered only if the required label `run-slow` is added
if: ${{ contains(github.event.pull_request.labels.*.name, 'run-slow') }}
outputs:
models: ${{ steps.models_to_run.outputs.models }}
steps:
- uses: actions/checkout@v4
with:
fetch-depth: "0"
ref: ${{ github.event.pull_request.head.sha }}
- name: Get commit message
run: |
echo "commit_message=$(git show -s --format=%s)" >> $GITHUB_ENV
- name: Get models to run slow tests
run: |
echo "${{ env.commit_message }}"
python -m pip install GitPython
python utils/pr_slow_ci_models.py --commit_message "${{ env.commit_message }}" | tee output.txt
echo "models=$(tail -n 1 output.txt)" >> $GITHUB_ENV
- name: Models to run slow tests
id: models_to_run
run: |
echo "${{ env.models }}"
echo "models=${{ env.models }}" >> $GITHUB_OUTPUT
run_models_gpu:
name: Run all tests for the model
# Triggered only `find_models_to_run` is triggered (label `run-slow` is added) which gives the models to run
# (either a new model PR or via a commit message)
if: ${{ needs.find_models_to_run.outputs.models != '[]' }}
needs: find_models_to_run
strategy:
fail-fast: false
matrix:
folders: ${{ fromJson(needs.find_models_to_run.outputs.models) }}
machine_type: [single-gpu, multi-gpu]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, ci]
container:
image: huggingface/transformers-all-latest-gpu
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Echo input and matrix info
shell: bash
run: |
echo "${{ matrix.folders }}"
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
# set the artifact folder names (because the character `/` is not allowed).
run: |
echo "${{ matrix.folders }}"
matrix_folders=${{ matrix.folders }}
matrix_folders=${matrix_folders/'models/'/'models_'}
echo "$matrix_folders"
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
- name: Update clone
working-directory: /transformers
run: git fetch && git fetch origin pull/${{ github.event.pull_request.number }}/head:pull/${{ github.event.pull_request.number }}/merge && git checkout pull/${{ github.event.pull_request.number }}/merge
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run all tests on GPU
working-directory: /transformers
run: |
export CUDA_VISIBLE_DEVICES="$(python3 utils/set_cuda_devices_for_ci.py --test_folder ${{ matrix.folders }})"
echo $CUDA_VISIBLE_DEVICES
python3 -m pytest -v -rsfE --make-reports=${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports tests/${{ matrix.folders }}
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports/failures_short.txt
- name: Make sure report directory exists
shell: bash
run: |
mkdir -p /transformers/reports/${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports
echo "hello" > /transformers/reports/${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports/hello.txt
echo "${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports"
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ matrix.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports

View File

@ -1,25 +1,25 @@
name: Self-hosted runner (AMD mi210 CI caller)
on:
#workflow_run:
# workflows: ["Self-hosted runner (push-caller)"]
# branches: ["main"]
# types: [completed]
push:
branches:
- run_amd_push_ci_caller*
paths:
- "src/**"
- "tests/**"
- ".github/**"
- "templates/**"
- "utils/**"
jobs:
run_amd_ci:
name: AMD mi210
if: (cancelled() != true) && ((github.event_name == 'workflow_run') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_amd_push_ci_caller')))
uses: ./.github/workflows/self-push-amd.yml
with:
gpu_flavor: mi210
secrets: inherit
name: Self-hosted runner (AMD mi210 CI caller)
on:
workflow_run:
workflows: ["Self-hosted runner (push-caller)"]
branches: ["main"]
types: [completed]
push:
branches:
- run_amd_push_ci_caller*
paths:
- "src/**"
- "tests/**"
- ".github/**"
- "templates/**"
- "utils/**"
jobs:
run_amd_ci:
name: AMD mi210
if: (cancelled() != true) && ((github.event_name == 'workflow_run') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_amd_push_ci_caller')))
uses: ./.github/workflows/self-push-amd.yml
with:
gpu_flavor: mi210
secrets: inherit

View File

@ -1,25 +1,25 @@
name: Self-hosted runner (AMD mi250 CI caller)
on:
#workflow_run:
# workflows: ["Self-hosted runner (push-caller)"]
# branches: ["main"]
# types: [completed]
push:
branches:
- run_amd_push_ci_caller*
paths:
- "src/**"
- "tests/**"
- ".github/**"
- "templates/**"
- "utils/**"
jobs:
run_amd_ci:
name: AMD mi250
if: (cancelled() != true) && ((github.event_name == 'workflow_run') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_amd_push_ci_caller')))
uses: ./.github/workflows/self-push-amd.yml
with:
gpu_flavor: mi250
secrets: inherit
name: Self-hosted runner (AMD mi250 CI caller)
on:
workflow_run:
workflows: ["Self-hosted runner (push-caller)"]
branches: ["main"]
types: [completed]
push:
branches:
- run_amd_push_ci_caller*
paths:
- "src/**"
- "tests/**"
- ".github/**"
- "templates/**"
- "utils/**"
jobs:
run_amd_ci:
name: AMD mi250
if: (cancelled() != true) && ((github.event_name == 'workflow_run') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_amd_push_ci_caller')))
uses: ./.github/workflows/self-push-amd.yml
with:
gpu_flavor: mi250
secrets: inherit

View File

@ -1,10 +1,10 @@
name: Self-hosted runner (AMD mi300 CI caller)
on:
#workflow_run:
# workflows: ["Self-hosted runner (push-caller)"]
# branches: ["main"]
# types: [completed]
workflow_run:
workflows: ["Self-hosted runner (push-caller)"]
branches: ["main"]
types: [completed]
push:
branches:
- run_amd_push_ci_caller*

View File

@ -32,9 +32,8 @@ jobs:
name: Setup
strategy:
matrix:
machine_type: [aws-g4dn-2xlarge-cache, aws-g4dn-12xlarge-cache]
runs-on:
group: '${{ matrix.machine_type }}'
machine_type: [single-gpu, multi-gpu]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, push-ci]
container:
image: huggingface/transformers-all-latest-gpu-push-ci
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
@ -132,9 +131,8 @@ jobs:
fail-fast: false
matrix:
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
machine_type: [aws-g4dn-2xlarge-cache]
runs-on:
group: '${{ matrix.machine_type }}'
machine_type: [single-gpu]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, push-ci]
container:
image: huggingface/transformers-all-latest-gpu-push-ci
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
@ -164,23 +162,6 @@ jobs:
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
echo "env.CI_SHA = ${{ env.CI_SHA }}"
- name: Set `machine_type` for report and artifact names
working-directory: /transformers
shell: bash
run: |
echo "${{ matrix.machine_type }}"
if [ "${{ matrix.machine_type }}" = "aws-g4dn-2xlarge-cache" ]; then
machine_type=single-gpu
elif [ "${{ matrix.machine_type }}" = "aws-g4dn-12xlarge-cache" ]; then
machine_type=multi-gpu
else
machine_type=${{ matrix.machine_type }}
fi
echo "$machine_type"
echo "machine_type=$machine_type" >> $GITHUB_ENV
- name: Update clone using environment variables
working-directory: /transformers
run: |
@ -222,19 +203,19 @@ jobs:
- name: Run all non-slow selected tests on GPU
working-directory: /transformers
run: |
python3 -m pytest -n 2 --dist=loadfile -v --make-reports=${{ env.machine_type }}_tests_gpu_${{ matrix.folders }} ${{ fromJson(needs.setup.outputs.test_map)[matrix.folders] }}
python3 -m pytest -n 2 --dist=loadfile -v --make-reports=${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} ${{ fromJson(needs.setup.outputs.test_map)[matrix.folders] }}
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ env.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports"
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ env.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ env.machine_type }}_tests_gpu_${{ matrix.folders }}
name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}
run_tests_multi_gpu:
name: Model tests
@ -245,9 +226,8 @@ jobs:
fail-fast: false
matrix:
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
machine_type: [aws-g4dn-12xlarge-cache]
runs-on:
group: '${{ matrix.machine_type }}'
machine_type: [multi-gpu]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, push-ci]
container:
image: huggingface/transformers-all-latest-gpu-push-ci
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
@ -277,23 +257,6 @@ jobs:
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
echo "env.CI_SHA = ${{ env.CI_SHA }}"
- name: Set `machine_type` for report and artifact names
working-directory: /transformers
shell: bash
run: |
echo "${{ matrix.machine_type }}"
if [ "${{ matrix.machine_type }}" = "aws-g4dn-2xlarge-cache" ]; then
machine_type=single-gpu
elif [ "${{ matrix.machine_type }}" = "aws-g4dn-12xlarge-cache" ]; then
machine_type=multi-gpu
else
machine_type=${{ matrix.machine_type }}
fi
echo "$machine_type"
echo "machine_type=$machine_type" >> $GITHUB_ENV
- name: Update clone using environment variables
working-directory: /transformers
run: |
@ -337,19 +300,19 @@ jobs:
MKL_SERVICE_FORCE_INTEL: 1
working-directory: /transformers
run: |
python3 -m pytest -n 2 --dist=loadfile -v --make-reports=${{ env.machine_type }}_tests_gpu_${{ matrix.folders }} ${{ fromJson(needs.setup.outputs.test_map)[matrix.folders] }}
python3 -m pytest -n 2 --dist=loadfile -v --make-reports=${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} ${{ fromJson(needs.setup.outputs.test_map)[matrix.folders] }}
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ env.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports"
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ env.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ env.machine_type }}_tests_gpu_${{ matrix.folders }}
name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}
run_tests_torch_cuda_extensions_single_gpu:
name: Torch CUDA extension tests
@ -358,9 +321,8 @@ jobs:
strategy:
fail-fast: false
matrix:
machine_type: [aws-g4dn-2xlarge-cache]
runs-on:
group: '${{ matrix.machine_type }}'
machine_type: [single-gpu]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, push-ci]
container:
image: huggingface/transformers-pytorch-deepspeed-latest-gpu-push-ci
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
@ -390,23 +352,6 @@ jobs:
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
echo "env.CI_SHA = ${{ env.CI_SHA }}"
- name: Set `machine_type` for report and artifact names
working-directory: /workspace/transformers
shell: bash
run: |
echo "${{ matrix.machine_type }}"
if [ "${{ matrix.machine_type }}" = "aws-g4dn-2xlarge-cache" ]; then
machine_type=single-gpu
elif [ "${{ matrix.machine_type }}" = "aws-g4dn-12xlarge-cache" ]; then
machine_type=multi-gpu
else
machine_type=${{ matrix.machine_type }}
fi
echo "$machine_type"
echo "machine_type=$machine_type" >> $GITHUB_ENV
- name: Update clone using environment variables
working-directory: /workspace/transformers
run: |
@ -447,19 +392,19 @@ jobs:
working-directory: /workspace/transformers
# TODO: Here we pass all tests in the 2 folders for simplicity. It's better to pass only the identified tests.
run: |
python -m pytest -n 1 --dist=loadfile -v --make-reports=${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports tests/deepspeed tests/extended
python -m pytest -n 1 --dist=loadfile -v --make-reports=${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports tests/deepspeed tests/extended
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /workspace/transformers/reports/${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports/failures_short.txt
run: cat /workspace/transformers/reports/${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports/failures_short.txt
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports"
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports
path: /workspace/transformers/reports/${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports
name: ${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports
path: /workspace/transformers/reports/${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports
run_tests_torch_cuda_extensions_multi_gpu:
name: Torch CUDA extension tests
@ -468,9 +413,8 @@ jobs:
strategy:
fail-fast: false
matrix:
machine_type: [aws-g4dn-12xlarge-cache]
runs-on:
group: '${{ matrix.machine_type }}'
machine_type: [multi-gpu]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, push-ci]
container:
image: huggingface/transformers-pytorch-deepspeed-latest-gpu-push-ci
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
@ -500,23 +444,6 @@ jobs:
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
echo "env.CI_SHA = ${{ env.CI_SHA }}"
- name: Set `machine_type` for report and artifact names
working-directory: /workspace/transformers
shell: bash
run: |
echo "${{ matrix.machine_type }}"
if [ "${{ matrix.machine_type }}" = "aws-g4dn-2xlarge-cache" ]; then
machine_type=single-gpu
elif [ "${{ matrix.machine_type }}" = "aws-g4dn-12xlarge-cache" ]; then
machine_type=multi-gpu
else
machine_type=${{ matrix.machine_type }}
fi
echo "$machine_type"
echo "machine_type=$machine_type" >> $GITHUB_ENV
- name: Update clone using environment variables
working-directory: /workspace/transformers
run: |
@ -557,19 +484,19 @@ jobs:
working-directory: /workspace/transformers
# TODO: Here we pass all tests in the 2 folders for simplicity. It's better to pass only the identified tests.
run: |
python -m pytest -n 1 --dist=loadfile -v --make-reports=${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports tests/deepspeed tests/extended
python -m pytest -n 1 --dist=loadfile -v --make-reports=${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports tests/deepspeed tests/extended
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /workspace/transformers/reports/${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports/failures_short.txt
run: cat /workspace/transformers/reports/${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports/failures_short.txt
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports"
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports
path: /workspace/transformers/reports/${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports
name: ${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports
path: /workspace/transformers/reports/${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports
send_results:
name: Send results to webhook

View File

@ -1,55 +1,20 @@
name: Self-hosted runner (AMD mi210 scheduled CI caller)
on:
workflow_run:
workflows: ["Self-hosted runner (AMD scheduled CI caller)"]
branches: ["main"]
types: [completed]
push:
branches:
- run_amd_scheduled_ci_caller*
jobs:
model-ci:
name: Model CI
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled.yaml@main
with:
job: run_models_gpu
slack_report_channel: "#transformers-ci-daily-amd"
runner: mi210
docker: huggingface/transformers-pytorch-amd-gpu
ci_event: Scheduled CI (AMD) - mi210
secrets: inherit
torch-pipeline:
name: Torch pipeline CI
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled.yaml@main
with:
job: run_pipelines_torch_gpu
slack_report_channel: "#transformers-ci-daily-amd"
runner: mi210
docker: huggingface/transformers-pytorch-amd-gpu
ci_event: Scheduled CI (AMD) - mi210
secrets: inherit
example-ci:
name: Example CI
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled.yaml@main
with:
job: run_examples_gpu
slack_report_channel: "#transformers-ci-daily-amd"
runner: mi210
docker: huggingface/transformers-pytorch-amd-gpu
ci_event: Scheduled CI (AMD) - mi210
secrets: inherit
deepspeed-ci:
name: DeepSpeed CI
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled.yaml@main
with:
job: run_torch_cuda_extensions_gpu
slack_report_channel: "#transformers-ci-daily-amd"
runner: mi210
docker: huggingface/transformers-pytorch-deepspeed-amd-gpu
ci_event: Scheduled CI (AMD) - mi210
secrets: inherit
name: Self-hosted runner (AMD mi210 scheduled CI caller)
on:
workflow_run:
workflows: ["Self-hosted runner (AMD scheduled CI caller)"]
branches: ["main"]
types: [completed]
push:
branches:
- run_amd_scheduled_ci_caller*
jobs:
run_amd_ci:
name: AMD mi210
if: (cancelled() != true) && ((github.event_name == 'workflow_run') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_amd_scheduled_ci_caller')))
uses: ./.github/workflows/self-scheduled-amd.yml
with:
gpu_flavor: mi210
slack_report_channel: "#transformers-ci-daily-amd"
secrets: inherit

View File

@ -1,55 +1,20 @@
name: Self-hosted runner (AMD mi250 scheduled CI caller)
on:
workflow_run:
workflows: ["Self-hosted runner (AMD scheduled CI caller)"]
branches: ["main"]
types: [completed]
push:
branches:
- run_amd_scheduled_ci_caller*
jobs:
model-ci:
name: Model CI
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled.yaml@main
with:
job: run_models_gpu
slack_report_channel: "#transformers-ci-daily-amd"
runner: mi250
docker: huggingface/transformers-pytorch-amd-gpu
ci_event: Scheduled CI (AMD) - mi250
secrets: inherit
torch-pipeline:
name: Torch pipeline CI
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled.yaml@main
with:
job: run_pipelines_torch_gpu
slack_report_channel: "#transformers-ci-daily-amd"
runner: mi250
docker: huggingface/transformers-pytorch-amd-gpu
ci_event: Scheduled CI (AMD) - mi250
secrets: inherit
example-ci:
name: Example CI
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled.yaml@main
with:
job: run_examples_gpu
slack_report_channel: "#transformers-ci-daily-amd"
runner: mi250
docker: huggingface/transformers-pytorch-amd-gpu
ci_event: Scheduled CI (AMD) - mi250
secrets: inherit
deepspeed-ci:
name: DeepSpeed CI
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled.yaml@main
with:
job: run_torch_cuda_extensions_gpu
slack_report_channel: "#transformers-ci-daily-amd"
runner: mi250
docker: huggingface/transformers-pytorch-deepspeed-amd-gpu
ci_event: Scheduled CI (AMD) - mi250
secrets: inherit
name: Self-hosted runner (AMD mi250 scheduled CI caller)
on:
workflow_run:
workflows: ["Self-hosted runner (AMD scheduled CI caller)"]
branches: ["main"]
types: [completed]
push:
branches:
- run_amd_scheduled_ci_caller*
jobs:
run_amd_ci:
name: AMD mi250
if: (cancelled() != true) && ((github.event_name == 'workflow_run') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_amd_scheduled_ci_caller')))
uses: ./.github/workflows/self-scheduled-amd.yml
with:
gpu_flavor: mi250
slack_report_channel: "#transformers-ci-daily-amd"
secrets: inherit

View File

@ -0,0 +1,21 @@
name: Self-hosted runner (AMD mi300 scheduled CI caller)
on:
workflow_run:
workflows: ["Self-hosted runner (AMD scheduled CI caller)"]
branches: ["main"]
types: [completed]
push:
branches:
- run_amd_scheduled_ci_caller*
jobs:
run_amd_ci:
name: AMD mi300
needs: build-docker-containers
if: (cancelled() != true) && ((github.event_name == 'workflow_run') || ((github.event_name == 'push') && (startsWith(github.ref_name, 'run_amd_push_ci_caller') || startsWith(github.ref_name, 'mi300-ci'))))
uses: ./.github/workflows/self-scheduled-amd.yml
with:
gpu_flavor: mi300
slack_report_channel: "#transformers-ci-daily-amd"
secrets: inherit

520
.github/workflows/self-scheduled-amd.yml vendored Normal file
View File

@ -0,0 +1,520 @@
name: Self-hosted runner (scheduled-amd)
# Note: For the AMD CI, we rely on a caller workflow and on the workflow_call event to trigger the
# CI in order to run it on both MI210 and MI250, without having to use matrix here which pushes
# us towards the limit of allowed jobs on GitHub Actions.
on:
workflow_call:
inputs:
gpu_flavor:
required: true
type: string
env:
HF_HOME: /mnt/cache
TRANSFORMERS_IS_CI: yes
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
RUN_SLOW: yes
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
# Important note: each job (run_tests_single_gpu, run_tests_multi_gpu, run_examples_gpu, run_pipelines_torch_gpu) requires all the previous jobs before running.
# This is done so that we avoid parallelizing the scheduled tests, to leave available
# runners for the push CI that is running on the same machine.
jobs:
check_runner_status:
name: Check Runner Status
runs-on: ubuntu-22.04
steps:
- name: Checkout transformers
uses: actions/checkout@v4
with:
fetch-depth: 2
- name: Check Runner Status
run: python utils/check_self_hosted_runner.py --target_runners hf-amd-mi210-ci-1gpu-1,hf-amd-mi250-ci-1gpu-1,hf-amd-mi300-ci-1gpu-1 --token ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
check_runners:
name: Check Runners
needs: check_runner_status
strategy:
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: [self-hosted, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
container:
image: huggingface/transformers-pytorch-amd-gpu
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: ROCM-SMI
run: |
rocm-smi
- name: ROCM-INFO
run: |
rocminfo | grep "Agent" -A 14
- name: Show ROCR environment
run: |
echo "ROCR: $ROCR_VISIBLE_DEVICES"
setup:
name: Setup
needs: check_runners
strategy:
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: [self-hosted, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
container:
image: huggingface/transformers-pytorch-amd-gpu
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
outputs:
matrix: ${{ steps.set-matrix.outputs.matrix }}
steps:
- name: Update clone
working-directory: /transformers
run: |
git fetch && git checkout ${{ github.sha }}
- name: Cleanup
working-directory: /transformers
run: |
rm -rf tests/__pycache__
rm -rf tests/models/__pycache__
rm -rf reports
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- id: set-matrix
name: Identify models to test
working-directory: /transformers/tests
run: |
echo "matrix=$(python3 -c 'import os; tests = os.getcwd(); model_tests = os.listdir(os.path.join(tests, "models")); d1 = sorted(list(filter(os.path.isdir, os.listdir(tests)))); d2 = sorted(list(filter(os.path.isdir, [f"models/{x}" for x in model_tests]))); d1.remove("models"); d = d2 + d1; print(d)')" >> $GITHUB_OUTPUT
- name: ROCM-SMI
run: |
rocm-smi
- name: ROCM-INFO
run: |
rocminfo | grep "Agent" -A 14
- name: Show ROCR environment
run: |
echo "ROCR: $ROCR_VISIBLE_DEVICES"
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
run_models_gpu_single_gpu:
name: Single GPU tests
strategy:
max-parallel: 1 # For now, not to parallelize. Can change later if it works well.
fail-fast: false
matrix:
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
machine_type: [single-gpu]
runs-on: [self-hosted, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
container:
image: huggingface/transformers-pytorch-amd-gpu
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
needs: setup
steps:
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
# set the artifact folder names (because the character `/` is not allowed).
run: |
echo "${{ matrix.folders }}"
matrix_folders=${{ matrix.folders }}
matrix_folders=${matrix_folders/'models/'/'models_'}
echo "$matrix_folders"
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: ROCM-SMI
run: |
rocm-smi
- name: ROCM-INFO
run: |
rocminfo | grep "Agent" -A 14
- name: Show ROCR environment
run: |
echo "ROCR: $ROCR_VISIBLE_DEVICES"
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run all tests on GPU
working-directory: /transformers
run: python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports tests/${{ matrix.folders }} -m "not not_device_test"
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports/failures_short.txt
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ matrix.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports
run_models_gpu_multi_gpu:
name: Multi GPU tests
strategy:
max-parallel: 1
fail-fast: false
matrix:
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
machine_type: [multi-gpu]
runs-on: [self-hosted, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
container:
image: huggingface/transformers-pytorch-amd-gpu
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
needs: setup
steps:
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
# set the artifact folder names (because the character `/` is not allowed).
run: |
echo "${{ matrix.folders }}"
matrix_folders=${{ matrix.folders }}
matrix_folders=${matrix_folders/'models/'/'models_'}
echo "$matrix_folders"
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: ROCM-SMI
run: |
rocm-smi
- name: ROCM-INFO
run: |
rocminfo | grep "Agent" -A 14
- name: Show ROCR environment
run: |
echo "ROCR: $ROCR_VISIBLE_DEVICES"
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run all tests on GPU
working-directory: /transformers
run: python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports tests/${{ matrix.folders }} -m "not not_device_test"
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports/failures_short.txt
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ matrix.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports
run_examples_gpu:
name: Examples tests
strategy:
fail-fast: false
matrix:
machine_type: [single-gpu]
runs-on: [self-hosted, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
container:
image: huggingface/transformers-pytorch-amd-gpu
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
needs: setup
steps:
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: ROCM-SMI
run: |
rocm-smi
- name: ROCM-INFO
run: |
rocminfo | grep "Agent" -A 14
- name: Show ROCR environment
run: |
echo "ROCR: $ROCR_VISIBLE_DEVICES"
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run examples tests on GPU
working-directory: /transformers
run: |
pip install -r examples/pytorch/_tests_requirements.txt
python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_run_examples_gpu_test_reports examples/pytorch -m "not not_device_test"
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_run_examples_gpu_test_reports/failures_short.txt
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_examples_gpu_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ matrix.machine_type }}_run_examples_gpu_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_run_examples_gpu_test_reports
run_pipelines_torch_gpu:
name: PyTorch pipelines tests
strategy:
fail-fast: false
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: [self-hosted, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
container:
image: huggingface/transformers-pytorch-amd-gpu
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
needs: setup
steps:
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: ROCM-SMI
run: |
rocm-smi
- name: ROCM-INFO
run: |
rocminfo | grep "Agent" -A 14
- name: Show ROCR environment
run: |
echo "ROCR: $ROCR_VISIBLE_DEVICES"
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run all pipeline tests on GPU
working-directory: /transformers
run: |
python3 -m pytest -n 1 -v --dist=loadfile --make-reports=${{ matrix.machine_type }}_run_pipelines_torch_gpu_test_reports tests/pipelines -m "not not_device_test"
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_run_pipelines_torch_gpu_test_reports/failures_short.txt
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_pipelines_torch_gpu_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ matrix.machine_type }}_run_pipelines_torch_gpu_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_run_pipelines_torch_gpu_test_reports
run_torch_cuda_extensions_gpu:
name: Torch ROCm deepspeed tests
strategy:
fail-fast: false
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: [self-hosted, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
needs: setup
container:
image: huggingface/transformers-pytorch-deepspeed-amd-gpu
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: ROCM-SMI
run: |
rocm-smi
- name: ROCM-INFO
run: |
rocminfo | grep "Agent" -A 14
- name: Show ROCR environment
run: |
echo "ROCR: $ROCR_VISIBLE_DEVICES"
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run all tests on GPU
working-directory: /transformers
run: python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports tests/deepspeed tests/extended -m "not not_device_test"
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports/failures_short.txt
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports
run_extract_warnings:
name: Extract warnings in CI artifacts
runs-on: ubuntu-22.04
if: always()
needs: [
check_runner_status,
check_runners,
setup,
run_models_gpu_single_gpu,
run_models_gpu_multi_gpu,
run_examples_gpu,
run_pipelines_torch_gpu,
run_torch_cuda_extensions_gpu
]
steps:
- name: Checkout transformers
uses: actions/checkout@v4
with:
fetch-depth: 2
- name: Install transformers
run: pip install transformers
- name: Show installed libraries and their versions
run: pip freeze
- name: Create output directory
run: mkdir warnings_in_ci
- uses: actions/download-artifact@v4
with:
path: warnings_in_ci
- name: Show artifacts
run: echo "$(python3 -c 'import os; d = os.listdir(); print(d)')"
working-directory: warnings_in_ci
- name: Extract warnings in CI artifacts
run: |
python3 utils/extract_warnings.py --workflow_run_id ${{ github.run_id }} --output_dir warnings_in_ci --token ${{ secrets.ACCESS_REPO_INFO_TOKEN }} --from_gh
echo "$(python3 -c 'import os; import json; fp = open("warnings_in_ci/selected_warnings.json"); d = json.load(fp); d = "\n".join(d) ;print(d)')"
- name: Upload artifact
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: warnings_in_ci
path: warnings_in_ci/selected_warnings.json
send_results:
name: Send results to webhook
runs-on: ubuntu-22.04
if: always()
needs: [
check_runner_status,
check_runners,
setup,
run_models_gpu_single_gpu,
run_models_gpu_multi_gpu,
run_examples_gpu,
run_pipelines_torch_gpu,
run_torch_cuda_extensions_gpu,
run_extract_warnings
]
steps:
- name: Preliminary job status
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
echo "Runner availability: ${{ needs.check_runner_status.result }}"
echo "Runner status: ${{ needs.check_runners.result }}"
echo "Setup status: ${{ needs.setup.result }}"
- uses: actions/checkout@v4
- uses: actions/download-artifact@v4
- name: Send message to Slack
env:
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
CI_SLACK_CHANNEL_ID_DAILY_AMD: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY_AMD }}
CI_SLACK_CHANNEL_DUMMY_TESTS: ${{ secrets.CI_SLACK_CHANNEL_DUMMY_TESTS }}
CI_SLACK_REPORT_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY_AMD }}
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
CI_EVENT: Scheduled CI (AMD) - ${{ inputs.gpu_flavor }}
CI_SHA: ${{ github.sha }}
CI_WORKFLOW_REF: ${{ github.workflow_ref }}
RUNNER_STATUS: ${{ needs.check_runner_status.result }}
RUNNER_ENV_STATUS: ${{ needs.check_runners.result }}
SETUP_STATUS: ${{ needs.setup.result }}
# We pass `needs.setup.outputs.matrix` as the argument. A processing in `notification_service.py` to change
# `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`.
run: |
sudo apt-get install -y curl
pip install huggingface_hub
pip install slack_sdk
pip show slack_sdk
python utils/notification_service.py "${{ needs.setup.outputs.matrix }}"
# Upload complete failure tables, as they might be big and only truncated versions could be sent to Slack.
- name: Failure table artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: test_failure_tables
path: test_failure_tables

View File

@ -2,9 +2,6 @@ name: Self-hosted runner (scheduled)
on:
repository_dispatch:
schedule:
- cron: "17 2 * * *"
push:
branches:
- run_scheduled_ci*

View File

@ -50,9 +50,8 @@ jobs:
name: Setup
strategy:
matrix:
machine_type: [aws-g4dn-2xlarge-cache, aws-g4dn-12xlarge-cache]
runs-on:
group: '${{ matrix.machine_type }}'
machine_type: [single-gpu, multi-gpu]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, '${{ inputs.runner }}']
container:
image: huggingface/transformers-all-latest-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
@ -84,7 +83,7 @@ jobs:
run: |
echo "folder_slices=$(python3 ../utils/split_model_tests.py --num_splits ${{ env.NUM_SLICES }})" >> $GITHUB_OUTPUT
echo "slice_ids=$(python3 -c 'd = list(range(${{ env.NUM_SLICES }})); print(d)')" >> $GITHUB_OUTPUT
- id: set-matrix-quantization
if: ${{ inputs.job == 'run_quantization_torch_gpu' }}
name: Identify quantization method to test
@ -103,7 +102,7 @@ jobs:
strategy:
fail-fast: false
matrix:
machine_type: [aws-g4dn-2xlarge-cache, aws-g4dn-12xlarge-cache]
machine_type: [single-gpu, multi-gpu]
slice_id: ${{ fromJSON(needs.setup.outputs.slice_ids) }}
uses: ./.github/workflows/model_jobs.yml
with:
@ -120,9 +119,8 @@ jobs:
strategy:
fail-fast: false
matrix:
machine_type: [aws-g4dn-2xlarge-cache, aws-g4dn-12xlarge-cache]
runs-on:
group: '${{ matrix.machine_type }}'
machine_type: [single-gpu, multi-gpu]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, '${{ inputs.runner }}']
container:
image: huggingface/transformers-pytorch-gpu
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
@ -148,39 +146,22 @@ jobs:
working-directory: /transformers
run: pip freeze
- name: Set `machine_type` for report and artifact names
working-directory: /transformers
shell: bash
run: |
echo "${{ matrix.machine_type }}"
if [ "${{ matrix.machine_type }}" = "aws-g4dn-2xlarge-cache" ]; then
machine_type=single-gpu
elif [ "${{ matrix.machine_type }}" = "aws-g4dn-12xlarge-cache" ]; then
machine_type=multi-gpu
else
machine_type=${{ matrix.machine_type }}
fi
echo "$machine_type"
echo "machine_type=$machine_type" >> $GITHUB_ENV
- name: Run all pipeline tests on GPU
working-directory: /transformers
run: |
python3 -m pytest -n 1 -v --dist=loadfile --make-reports=${{ env.machine_type }}_run_pipelines_torch_gpu_test_reports tests/pipelines
python3 -m pytest -n 1 -v --dist=loadfile --make-reports=${{ matrix.machine_type }}_run_pipelines_torch_gpu_test_reports tests/pipelines
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ env.machine_type }}_run_pipelines_torch_gpu_test_reports/failures_short.txt
run: cat /transformers/reports/${{ matrix.machine_type }}_run_pipelines_torch_gpu_test_reports/failures_short.txt
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_pipelines_torch_gpu_test_reports"
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_pipelines_torch_gpu_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ env.machine_type }}_run_pipelines_torch_gpu_test_reports
path: /transformers/reports/${{ env.machine_type }}_run_pipelines_torch_gpu_test_reports
name: ${{ matrix.machine_type }}_run_pipelines_torch_gpu_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_run_pipelines_torch_gpu_test_reports
run_pipelines_tf_gpu:
if: ${{ inputs.job == 'run_pipelines_tf_gpu' }}
@ -188,9 +169,8 @@ jobs:
strategy:
fail-fast: false
matrix:
machine_type: [aws-g4dn-2xlarge-cache, aws-g4dn-12xlarge-cache]
runs-on:
group: '${{ matrix.machine_type }}'
machine_type: [single-gpu, multi-gpu]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, '${{ inputs.runner }}']
container:
image: huggingface/transformers-tensorflow-gpu
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
@ -217,39 +197,22 @@ jobs:
working-directory: /transformers
run: pip freeze
- name: Set `machine_type` for report and artifact names
working-directory: /transformers
shell: bash
run: |
echo "${{ matrix.machine_type }}"
if [ "${{ matrix.machine_type }}" = "aws-g4dn-2xlarge-cache" ]; then
machine_type=single-gpu
elif [ "${{ matrix.machine_type }}" = "aws-g4dn-12xlarge-cache" ]; then
machine_type=multi-gpu
else
machine_type=${{ matrix.machine_type }}
fi
echo "$machine_type"
echo "machine_type=$machine_type" >> $GITHUB_ENV
- name: Run all pipeline tests on GPU
working-directory: /transformers
run: |
python3 -m pytest -n 1 -v --dist=loadfile --make-reports=${{ env.machine_type }}_run_pipelines_tf_gpu_test_reports tests/pipelines
python3 -m pytest -n 1 -v --dist=loadfile --make-reports=${{ matrix.machine_type }}_run_pipelines_tf_gpu_test_reports tests/pipelines
- name: Failure short reports
if: ${{ always() }}
run: |
cat /transformers/reports/${{ env.machine_type }}_run_pipelines_tf_gpu_test_reports/failures_short.txt
cat /transformers/reports/${{ matrix.machine_type }}_run_pipelines_tf_gpu_test_reports/failures_short.txt
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_pipelines_tf_gpu_test_reports"
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_pipelines_tf_gpu_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ env.machine_type }}_run_pipelines_tf_gpu_test_reports
path: /transformers/reports/${{ env.machine_type }}_run_pipelines_tf_gpu_test_reports
name: ${{ matrix.machine_type }}_run_pipelines_tf_gpu_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_run_pipelines_tf_gpu_test_reports
run_examples_gpu:
if: ${{ inputs.job == 'run_examples_gpu' }}
@ -257,9 +220,8 @@ jobs:
strategy:
fail-fast: false
matrix:
machine_type: [aws-g4dn-2xlarge-cache]
runs-on:
group: '${{ matrix.machine_type }}'
machine_type: [single-gpu]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, '${{ inputs.runner }}']
container:
image: huggingface/transformers-all-latest-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
@ -285,40 +247,23 @@ jobs:
working-directory: /transformers
run: pip freeze
- name: Set `machine_type` for report and artifact names
working-directory: /transformers
shell: bash
run: |
echo "${{ matrix.machine_type }}"
if [ "${{ matrix.machine_type }}" = "aws-g4dn-2xlarge-cache" ]; then
machine_type=single-gpu
elif [ "${{ matrix.machine_type }}" = "aws-g4dn-12xlarge-cache" ]; then
machine_type=multi-gpu
else
machine_type=${{ matrix.machine_type }}
fi
echo "$machine_type"
echo "machine_type=$machine_type" >> $GITHUB_ENV
- name: Run examples tests on GPU
working-directory: /transformers
run: |
pip install -r examples/pytorch/_tests_requirements.txt
python3 -m pytest -v --make-reports=${{ env.machine_type }}_run_examples_gpu_test_reports examples/pytorch
python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_run_examples_gpu_test_reports examples/pytorch
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ env.machine_type }}_run_examples_gpu_test_reports/failures_short.txt
run: cat /transformers/reports/${{ matrix.machine_type }}_run_examples_gpu_test_reports/failures_short.txt
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_examples_gpu_test_reports"
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_examples_gpu_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ env.machine_type }}_run_examples_gpu_test_reports
path: /transformers/reports/${{ env.machine_type }}_run_examples_gpu_test_reports
name: ${{ matrix.machine_type }}_run_examples_gpu_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_run_examples_gpu_test_reports
run_torch_cuda_extensions_gpu:
if: ${{ inputs.job == 'run_torch_cuda_extensions_gpu' }}
@ -326,9 +271,8 @@ jobs:
strategy:
fail-fast: false
matrix:
machine_type: [aws-g4dn-2xlarge-cache, aws-g4dn-12xlarge-cache]
runs-on:
group: '${{ matrix.machine_type }}'
machine_type: [single-gpu, multi-gpu]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, '${{ inputs.runner }}']
container:
image: ${{ inputs.docker }}
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
@ -366,7 +310,7 @@ jobs:
run: |
python3 -m pip uninstall -y deepspeed
rm -rf DeepSpeed
git clone https://github.com/deepspeedai/DeepSpeed && cd DeepSpeed && rm -rf build
git clone https://github.com/microsoft/DeepSpeed && cd DeepSpeed && rm -rf build
DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 python3 -m pip install . --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check
- name: NVIDIA-SMI
@ -382,39 +326,22 @@ jobs:
working-directory: ${{ inputs.working-directory-prefix }}/transformers
run: pip freeze
- name: Set `machine_type` for report and artifact names
working-directory: /transformers
shell: bash
run: |
echo "${{ matrix.machine_type }}"
if [ "${{ matrix.machine_type }}" = "aws-g4dn-2xlarge-cache" ]; then
machine_type=single-gpu
elif [ "${{ matrix.machine_type }}" = "aws-g4dn-12xlarge-cache" ]; then
machine_type=multi-gpu
else
machine_type=${{ matrix.machine_type }}
fi
echo "$machine_type"
echo "machine_type=$machine_type" >> $GITHUB_ENV
- name: Run all tests on GPU
working-directory: ${{ inputs.working-directory-prefix }}/transformers
run: |
python3 -m pytest -v --make-reports=${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports tests/deepspeed tests/extended
python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports tests/deepspeed tests/extended
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat ${{ inputs.working-directory-prefix }}/transformers/reports/${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports/failures_short.txt
run: cat ${{ inputs.working-directory-prefix }}/transformers/reports/${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports/failures_short.txt
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports"
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports
path: ${{ inputs.working-directory-prefix }}/transformers/reports/${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports
name: ${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports
path: ${{ inputs.working-directory-prefix }}/transformers/reports/${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports
run_quantization_torch_gpu:
if: ${{ inputs.job == 'run_quantization_torch_gpu' }}
@ -425,9 +352,8 @@ jobs:
fail-fast: false
matrix:
folders: ${{ fromJson(needs.setup.outputs.quantization_matrix) }}
machine_type: [aws-g4dn-2xlarge-cache, aws-g4dn-12xlarge-cache]
runs-on:
group: '${{ matrix.machine_type }}'
machine_type: [single-gpu, multi-gpu]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, '${{ inputs.runner }}']
container:
image: huggingface/transformers-quantization-latest-gpu
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
@ -462,39 +388,22 @@ jobs:
working-directory: /transformers
run: pip freeze
- name: Set `machine_type` for report and artifact names
working-directory: /transformers
shell: bash
run: |
echo "${{ matrix.machine_type }}"
if [ "${{ matrix.machine_type }}" = "aws-g4dn-2xlarge-cache" ]; then
machine_type=single-gpu
elif [ "${{ matrix.machine_type }}" = "aws-g4dn-12xlarge-cache" ]; then
machine_type=multi-gpu
else
machine_type=${{ matrix.machine_type }}
fi
echo "$machine_type"
echo "machine_type=$machine_type" >> $GITHUB_ENV
- name: Run quantization tests on GPU
working-directory: /transformers
run: |
python3 -m pytest -v --make-reports=${{ env.machine_type }}_run_quantization_torch_gpu_${{ matrix.folders }}_test_reports tests/${{ matrix.folders }}
python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_run_quantization_torch_gpu_${{ matrix.folders }}_test_reports tests/${{ matrix.folders }}
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ env.machine_type }}_run_quantization_torch_gpu_${{ matrix.folders }}_test_reports/failures_short.txt
run: cat /transformers/reports/${{ matrix.machine_type }}_run_quantization_torch_gpu_${{ matrix.folders }}_test_reports/failures_short.txt
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_quantization_torch_gpu_${{ env.matrix_folders }}_test_reports"
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_quantization_torch_gpu_${{ env.matrix_folders }}_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ env.machine_type }}_run_quantization_torch_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ env.machine_type }}_run_quantization_torch_gpu_${{ matrix.folders }}_test_reports
name: ${{ matrix.machine_type }}_run_quantization_torch_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_run_quantization_torch_gpu_${{ matrix.folders }}_test_reports
run_extract_warnings:
# Let's only do this for the job `run_models_gpu` to simplify the (already complex) logic.
@ -562,13 +471,3 @@ jobs:
ci_event: ${{ inputs.ci_event }}
secrets: inherit
check_new_model_failures:
if: ${{ always() && inputs.ci_event == 'Daily CI' && inputs.job == 'run_models_gpu' && needs.send_results.result == 'success' }}
name: Check new model failures
needs: send_results
uses: ./.github/workflows/check_failed_model_tests.yml
with:
docker: ${{ inputs.docker }}
start_sha: ${{ github.sha }}
secrets: inherit

View File

@ -70,7 +70,7 @@ jobs:
with:
name: ci_results_${{ inputs.job }}
path: ci_results_${{ inputs.job }}
- uses: actions/checkout@v4
- uses: actions/download-artifact@v4
- name: Send message to Slack for quantization workflow
@ -90,7 +90,7 @@ jobs:
pip install huggingface_hub
pip install slack_sdk
pip show slack_sdk
python utils/notification_service_quantization.py "${{ inputs.quantization_matrix }}"
python utils/notification_service_quantization.py "${{ inputs.quantization_matrix }}"
# Upload complete failure tables, as they might be big and only truncated versions could be sent to Slack.
- name: Failure table artifacts
@ -98,4 +98,4 @@ jobs:
uses: actions/upload-artifact@v4
with:
name: ci_results_${{ inputs.job }}
path: ci_results_${{ inputs.job }}
path: ci_results_${{ inputs.job }}

View File

@ -1,17 +1,9 @@
name: SSH into our runners
on:
workflow_dispatch:
inputs:
runner_type:
description: 'Type of runner to test (a10 or t4)'
required: true
docker_image:
description: 'Name of the Docker image'
required: true
num_gpus:
description: 'Type of the number of gpus to use (`single` or `multi`)'
required: true
push:
branches:
- ssh_new_cluster
env:
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
@ -26,40 +18,12 @@ env:
RUN_PT_TF_CROSS_TESTS: 1
jobs:
get_runner:
name: "Get runner to use"
runs-on: ubuntu-22.04
outputs:
RUNNER: ${{ steps.set_runner.outputs.RUNNER }}
steps:
- name: Get runner to use
shell: bash
run: |
if [[ "${{ github.event.inputs.num_gpus }}" == "single" && "${{ github.event.inputs.runner_type }}" == "t4" ]]; then
echo "RUNNER=aws-g4dn-2xlarge-cache" >> $GITHUB_ENV
elif [[ "${{ github.event.inputs.num_gpus }}" == "multi" && "${{ github.event.inputs.runner_type }}" == "t4" ]]; then
echo "RUNNER=aws-g4dn-12xlarge-cache" >> $GITHUB_ENV
elif [[ "${{ github.event.inputs.num_gpus }}" == "single" && "${{ github.event.inputs.runner_type }}" == "a10" ]]; then
echo "RUNNER=aws-g5-4xlarge-cache" >> $GITHUB_ENV
elif [[ "${{ github.event.inputs.num_gpus }}" == "multi" && "${{ github.event.inputs.runner_type }}" == "a10" ]]; then
echo "RUNNER=aws-g5-12xlarge-cache" >> $GITHUB_ENV
else
echo "RUNNER=" >> $GITHUB_ENV
fi
- name: Set runner to use
id: set_runner
run: |
echo ${{ env.RUNNER }}
echo "RUNNER=${{ env.RUNNER }}" >> $GITHUB_OUTPUT
ssh_runner:
name: "SSH"
needs: get_runner
runs-on:
group: ${{ needs.get_runner.outputs.RUNNER }}
group: aws-g4dn-2xlarge-cache-test
container:
image: ${{ github.event.inputs.docker_image }}
image: huggingface/transformers-all-latest-gpu
options: --gpus all --privileged --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
@ -82,33 +46,12 @@ jobs:
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Store Slack infos
#because the SSH can be enabled dynamically if the workflow failed, so we need to store slack infos to be able to retrieve them during the waitforssh step
shell: bash
run: |
echo "${{ github.actor }}"
github_actor=${{ github.actor }}
github_actor=${github_actor/'-'/'_'}
echo "$github_actor"
echo "github_actor=$github_actor" >> $GITHUB_ENV
- name: Store Slack infos
#because the SSH can be enabled dynamically if the workflow failed, so we need to store slack infos to be able to retrieve them during the waitforssh step
shell: bash
run: |
echo "${{ env.github_actor }}"
if [ "${{ secrets[format('{0}_{1}', env.github_actor, 'SLACK_ID')] }}" != "" ]; then
echo "SLACKCHANNEL=${{ secrets[format('{0}_{1}', env.github_actor, 'SLACK_ID')] }}" >> $GITHUB_ENV
else
echo "SLACKCHANNEL=${{ secrets.SLACK_CIFEEDBACK_CHANNEL }}" >> $GITHUB_ENV
fi
- name: Tailscale # In order to be able to SSH when a test fails
uses: huggingface/tailscale-action@main
with:
authkey: ${{ secrets.TAILSCALE_SSH_AUTHKEY }}
slackChannel: ${{ env.SLACKCHANNEL }}
slackChannel: ${{ secrets.SLACK_CIFEEDBACK_CHANNEL }}
slackToken: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
waitForSSH: true
sshTimeout: 15m
sshTimeout: 30m

View File

@ -9,8 +9,6 @@ jobs:
name: Close Stale Issues
if: github.repository == 'huggingface/transformers'
runs-on: ubuntu-22.04
permissions:
issues: write
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
steps:

View File

@ -16,5 +16,3 @@ jobs:
fetch-depth: 0
- name: Secret Scanning
uses: trufflesecurity/trufflehog@main
with:
extra_args: --results=verified,unknown

View File

@ -132,7 +132,7 @@ You will need basic `git` proficiency to contribute to
manual. Type `git --help` in a shell and enjoy! If you prefer books, [Pro
Git](https://git-scm.com/book/en/v2) is a very good reference.
You'll need **[Python 3.9](https://github.com/huggingface/transformers/blob/main/setup.py#L449)** or above to contribute to 🤗 Transformers. Follow the steps below to start contributing:
You'll need **[Python 3.8](https://github.com/huggingface/transformers/blob/main/setup.py#L449)** or above to contribute to 🤗 Transformers. Follow the steps below to start contributing:
1. Fork the [repository](https://github.com/huggingface/transformers) by
clicking on the **[Fork](https://github.com/huggingface/transformers/fork)** button on the repository's page. This creates a copy of the code

View File

@ -36,7 +36,6 @@ autogenerate_code: deps_table_update
repo-consistency:
python utils/check_copies.py
python utils/check_modular_conversion.py
python utils/check_table.py
python utils/check_dummies.py
python utils/check_repo.py
@ -54,6 +53,7 @@ quality:
@python -c "from transformers import *" || (echo '🚨 import failed, this means you introduced unprotected imports! 🚨'; exit 1)
ruff check $(check_dirs) setup.py conftest.py
ruff format --check $(check_dirs) setup.py conftest.py
python utils/custom_init_isort.py --check_only
python utils/sort_auto_mappings.py --check_only
python utils/check_doc_toc.py
python utils/check_docstrings.py --check_all
@ -62,6 +62,7 @@ quality:
# Format source code automatically and check is there are any problems left that need manual fixing
extra_style_checks:
python utils/custom_init_isort.py
python utils/sort_auto_mappings.py
python utils/check_doc_toc.py --fix_and_overwrite
@ -81,7 +82,6 @@ fixup: modified_only_fixup extra_style_checks autogenerate_code repo-consistency
fix-copies:
python utils/check_copies.py --fix_and_overwrite
python utils/check_modular_conversion.py --fix_and_overwrite
python utils/check_table.py --fix_and_overwrite
python utils/check_dummies.py --fix_and_overwrite
python utils/check_doctest_list.py --fix_and_overwrite

View File

@ -48,8 +48,7 @@ limitations under the License.
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_fr.md">Français</a> |
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_de.md">Deutsch</a> |
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_vi.md">Tiếng Việt</a> |
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_ar.md">العربية</a> |
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_ur.md">اردو</a> |
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_ar.md">العربية</a> |
</p>
</h4>
@ -128,10 +127,10 @@ incredible projects built in the vicinity of transformers.
If you own or use a project that you believe should be part of the list, please open a PR to add it!
## Serious about AI in your organisation? Build faster with the Hugging Face Enterprise Hub.
## If you are looking for custom support from the Hugging Face team
<a target="_blank" href="https://huggingface.co/enterprise">
<img alt="Hugging Face Enterprise Hub" src="https://github.com/user-attachments/assets/247fb16d-d251-4583-96c4-d3d76dda4925">
<a target="_blank" href="https://huggingface.co/support">
<img alt="HuggingFace Expert Acceleration Program" src="https://cdn-media.huggingface.co/marketing/transformers/new-support-improved.png" style="max-width: 600px; border: 1px solid #eee; border-radius: 4px; box-shadow: 0 1px 2px 0 rgba(0, 0, 0, 0.05);">
</a><br>
## Quick tour
@ -249,43 +248,23 @@ The model itself is a regular [Pytorch `nn.Module`](https://pytorch.org/docs/sta
### With pip
This repository is tested on Python 3.9+, Flax 0.4.1+, PyTorch 2.0+, and TensorFlow 2.6+.
This repository is tested on Python 3.8+, Flax 0.4.1+, PyTorch 1.11+, and TensorFlow 2.6+.
You should install 🤗 Transformers in a [virtual environment](https://docs.python.org/3/library/venv.html). If you're unfamiliar with Python virtual environments, check out the [user guide](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/).
First, create a virtual environment with the version of Python you're going to use and activate it.
**macOS/Linux**
```python -m venv env
source env/bin/activate
```
**Windows**
``` python -m venv env
env\Scripts\activate
```
To use 🤗 Transformers, you must install at least one of Flax, PyTorch, or TensorFlow. Refer to the official installation guides for platform-specific commands:
[TensorFlow installation page](https://www.tensorflow.org/install/),
[PyTorch installation page](https://pytorch.org/get-started/locally/#start-locally) and/or [Flax](https://github.com/google/flax#quick-install) and [Jax](https://github.com/google/jax#installation)
Then, you will need to install at least one of Flax, PyTorch, or TensorFlow.
Please refer to [TensorFlow installation page](https://www.tensorflow.org/install/), [PyTorch installation page](https://pytorch.org/get-started/locally/#start-locally) and/or [Flax](https://github.com/google/flax#quick-install) and [Jax](https://github.com/google/jax#installation) installation pages regarding the specific installation command for your platform.
When one of those backends has been installed, 🤗 Transformers can be installed using pip as follows:
```
```bash
pip install transformers
```
If you'd like to play with the examples or need the bleeding edge of the code and can't wait for a new release, you must [install the library from source](https://huggingface.co/docs/transformers/installation#installing-from-source).
```
git clone https://github.com/huggingface/transformers.git
cd transformers
pip install .
```
### With conda
🤗 Transformers can be installed using conda as follows:

View File

@ -15,7 +15,7 @@ to add it.
Keywords: Open-source, LLaMa, GPT-J, instruction, assistant
## [recommenders](https://github.com/recommenders-team/recommenders)
## [recommenders](https://github.com/microsoft/recommenders)
This repository contains examples and best practices for building recommendation systems, provided as Jupyter notebooks. It goes over several aspects required to build efficient recommendation systems: data preparation, modeling, evaluation, model selection & optimization, as well as operationalization
@ -39,15 +39,15 @@ MindsDB is a low-code ML platform, which automates and integrates several ML fra
Keywords: Database, low-code, AI table
## [langchain](https://github.com/langchain-ai/langchain)
## [langchain](https://github.com/hwchase17/langchain)
[langchain](https://github.com/langchain-ai/langchain) is aimed at assisting in the development of apps merging both LLMs and other sources of knowledge. The library allows chaining calls to applications, creating a sequence across many tools.
[langchain](https://github.com/hwchase17/langchain) is aimed at assisting in the development of apps merging both LLMs and other sources of knowledge. The library allows chaining calls to applications, creating a sequence across many tools.
Keywords: LLMs, Large Language Models, Agents, Chains
## [LlamaIndex](https://github.com/run-llama/llama_index)
## [LlamaIndex](https://github.com/jerryjliu/llama_index)
[LlamaIndex](https://github.com/run-llama/llama_index) is a project that provides a central interface to connect your LLM's with external data. It provides various kinds of indices and retreival mechanisms to perform different LLM tasks and obtain knowledge-augmented results.
[LlamaIndex](https://github.com/jerryjliu/llama_index) is a project that provides a central interface to connect your LLM's with external data. It provides various kinds of indices and retreival mechanisms to perform different LLM tasks and obtain knowledge-augmented results.
Keywords: LLMs, Large Language Models, Data Retrieval, Indices, Knowledge Augmentation
@ -146,9 +146,9 @@ Keywords: Framework, simplicity, NLP
Keywords: LLM, Agents, HF Hub
## [transformers.js](https://github.com/huggingface/transformers.js/)
## [transformers.js](https://xenova.github.io/transformers.js/)
[transformers.js](https://github.com/huggingface/transformers.js/) is a JavaScript library targeted at running models from transformers directly within the browser.
[transformers.js](https://xenova.github.io/transformers.js/) is a JavaScript library targeted at running models from transformers directly within the browser.
Keywords: Transformers, JavaScript, browser
@ -437,7 +437,7 @@ Keywords: DALL-E, Russian
Keywords: Knowledge Extraction, Knowledge Graphs
## [Nebuly](https://github.com/nebuly-ai/optimate)
## [Nebuly](https://github.com/nebuly-ai/nebuly)
Nebuly is the next-generation platform to monitor and optimize your AI costs in one place. The platform connects to all your AI cost sources (compute, API providers, AI software licenses, etc) and centralizes them in one place to give you full visibility on a model basis. The platform also provides optimization recommendations and a co-pilot model that can guide during the optimization process. The platform builds on top of the open-source tools allowing you to optimize the different steps of your AI stack to squeeze out the best possible cost performances.

View File

@ -1,49 +0,0 @@
# Benchmarks
You might want to add new benchmarks.
You will need to define a python function named `run_benchmark` in your python file and the file must be located in this `benchmark/` directory.
The expected function signature is the following:
```py
def run_benchmark(logger: Logger, branch: str, commit_id: str, commit_msg: str, num_tokens_to_generate=100):
```
## Writing metrics to the database
`MetricRecorder` is thread-safe, in the sense of the python [`Thread`](https://docs.python.org/3/library/threading.html#threading.Thread). This means you can start a background thread to do the readings on the device measurements while not blocking the main thread to execute the model measurements.
cf [`llama.py`](./llama.py) to see an example of this in practice.
```py
from benchmarks_entrypoint import MetricsRecorder
import psycopg2
def run_benchmark(logger: Logger, branch: str, commit_id: str, commit_msg: str, num_tokens_to_generate=100):
metrics_recorder = MetricsRecorder(psycopg2.connect("dbname=metrics"), logger, branch, commit_id, commit_msg)
benchmark_id = metrics_recorder.initialise_benchmark({"gpu_name": gpu_name, "model_id": model_id})
# To collect device measurements
metrics_recorder.collect_device_measurements(
benchmark_id, cpu_util, mem_megabytes, gpu_util, gpu_mem_megabytes
)
# To collect your model measurements
metrics_recorder.collect_model_measurements(
benchmark_id,
{
"model_load_time": model_load_time,
"first_eager_forward_pass_time_secs": first_eager_fwd_pass_time,
"second_eager_forward_pass_time_secs": second_eager_fwd_pass_time,
"first_eager_generate_time_secs": first_eager_generate_time,
"second_eager_generate_time_secs": second_eager_generate_time,
"time_to_first_token_secs": time_to_first_token,
"time_to_second_token_secs": time_to_second_token,
"time_to_third_token_secs": time_to_third_token,
"time_to_next_token_mean_secs": mean_time_to_next_token,
"first_compile_generate_time_secs": first_compile_generate_time,
"second_compile_generate_time_secs": second_compile_generate_time,
"third_compile_generate_time_secs": third_compile_generate_time,
"fourth_compile_generate_time_secs": fourth_compile_generate_time,
},
)
```

View File

@ -1,144 +0,0 @@
import argparse
import importlib.util
import logging
import os
from typing import Dict
import psycopg2
import sys
from psycopg2.extras import Json
from psycopg2.extensions import register_adapter
register_adapter(dict, Json)
class ImportModuleException(Exception):
pass
class MetricsRecorder:
def __init__(self, connection, logger: logging.Logger, branch: str, commit_id: str, commit_msg: str):
self.conn = connection
self.conn.autocommit = True
self.logger = logger
self.branch = branch
self.commit_id = commit_id
self.commit_msg = commit_msg
def initialise_benchmark(self, metadata: Dict[str, str]) -> int:
"""
Creates a new benchmark, returns the benchmark id
"""
# gpu_name: str, model_id: str
with self.conn.cursor() as cur:
cur.execute(
"INSERT INTO benchmarks (branch, commit_id, commit_message, metadata) VALUES (%s, %s, %s, %s) RETURNING benchmark_id",
(self.branch, self.commit_id, self.commit_msg, metadata),
)
benchmark_id = cur.fetchone()[0]
logger.debug(f"initialised benchmark #{benchmark_id}")
return benchmark_id
def collect_device_measurements(self, benchmark_id: int, cpu_util, mem_megabytes, gpu_util, gpu_mem_megabytes):
"""
Collect device metrics, such as CPU & GPU usage. These are "static", as in you cannot pass arbitrary arguments to the function.
"""
with self.conn.cursor() as cur:
cur.execute(
"INSERT INTO device_measurements (benchmark_id, cpu_util, mem_megabytes, gpu_util, gpu_mem_megabytes) VALUES (%s, %s, %s, %s, %s)",
(benchmark_id, cpu_util, mem_megabytes, gpu_util, gpu_mem_megabytes),
)
self.logger.debug(
f"inserted device measurements for benchmark #{benchmark_id} [CPU util: {cpu_util}, mem MBs: {mem_megabytes}, GPU util: {gpu_util}, GPU mem MBs: {gpu_mem_megabytes}]"
)
def collect_model_measurements(self, benchmark_id: int, measurements: Dict[str, float]):
with self.conn.cursor() as cur:
cur.execute(
"""
INSERT INTO model_measurements (
benchmark_id,
measurements
) VALUES (%s, %s)
""",
(
benchmark_id,
measurements,
),
)
self.logger.debug(f"inserted model measurements for benchmark #{benchmark_id}: {measurements}")
def close(self):
self.conn.close()
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
handler = logging.StreamHandler(sys.stdout)
handler.setLevel(logging.INFO)
formatter = logging.Formatter("[%(levelname)s - %(asctime)s] %(message)s")
handler.setFormatter(formatter)
logger.addHandler(handler)
def parse_arguments():
"""
Parse command line arguments for the benchmarking CLI.
"""
parser = argparse.ArgumentParser(description="CLI for benchmarking the huggingface/transformers.")
parser.add_argument(
"branch",
type=str,
help="The branch name on which the benchmarking is performed.",
)
parser.add_argument(
"commit_id",
type=str,
help="The commit hash on which the benchmarking is performed.",
)
parser.add_argument(
"commit_msg",
type=str,
help="The commit message associated with the commit, truncated to 70 characters.",
)
args = parser.parse_args()
return args.branch, args.commit_id, args.commit_msg
def import_from_path(module_name, file_path):
try:
spec = importlib.util.spec_from_file_location(module_name, file_path)
module = importlib.util.module_from_spec(spec)
sys.modules[module_name] = module
spec.loader.exec_module(module)
return module
except Exception as e:
raise ImportModuleException(f"failed to load python module: {e}")
if __name__ == "__main__":
benchmarks_folder_path = os.path.dirname(os.path.realpath(__file__))
branch, commit_id, commit_msg = parse_arguments()
for entry in os.scandir(benchmarks_folder_path):
try:
if not entry.name.endswith(".py"):
continue
if entry.path == __file__:
continue
logger.debug(f"loading: {entry.name}")
module = import_from_path(entry.name.split(".")[0], entry.path)
logger.info(f"runnning benchmarks in: {entry.name}")
module.run_benchmark(logger, branch, commit_id, commit_msg)
except ImportModuleException as e:
logger.error(e)
except Exception as e:
logger.error(f"error running benchmarks for {entry.name}: {e}")

View File

@ -1,10 +0,0 @@
apiVersion: 1
providers:
- name: 'Transformers Benchmarks'
orgId: 1
type: file
updateIntervalSeconds: 10
allowUiUpdates: true
options:
path: /etc/grafana/dashboards

File diff suppressed because it is too large Load Diff

View File

@ -1,17 +0,0 @@
apiVersion: 1
datasources:
- name: grafana-postgresql-datasource
uid: be28nkzirtb0gd
type: postgres
url: $GRAFANA_POSTGRES_DATASOURCE_URL
user: $GRAFANA_POSTGRES_DATASOURCE_USER
secureJsonData:
password: $GRAFANA_POSTGRES_DATASOURCE_PWD
jsonData:
database: metrics
maxOpenConns: 100
maxIdleConns: 100
maxIdleConnsAuto: true
connMaxLifetime: 14400
postgresVersion: 1000
timescaledb: false

View File

@ -1,33 +0,0 @@
CREATE TABLE IF NOT EXISTS benchmarks (
benchmark_id SERIAL PRIMARY KEY,
branch VARCHAR(255),
commit_id VARCHAR(72),
commit_message VARCHAR(70),
metadata jsonb,
created_at timestamp without time zone NOT NULL DEFAULT (current_timestamp AT TIME ZONE 'UTC')
);
CREATE INDEX IF NOT EXISTS benchmarks_benchmark_id_idx ON benchmarks (benchmark_id);
CREATE INDEX IF NOT EXISTS benchmarks_branch_idx ON benchmarks (branch);
CREATE TABLE IF NOT EXISTS device_measurements (
measurement_id SERIAL PRIMARY KEY,
benchmark_id int REFERENCES benchmarks (benchmark_id),
cpu_util double precision,
mem_megabytes double precision,
gpu_util double precision,
gpu_mem_megabytes double precision,
time timestamp without time zone NOT NULL DEFAULT (current_timestamp AT TIME ZONE 'UTC')
);
CREATE INDEX IF NOT EXISTS device_measurements_branch_idx ON device_measurements (benchmark_id);
CREATE TABLE IF NOT EXISTS model_measurements (
measurement_id SERIAL PRIMARY KEY,
benchmark_id int REFERENCES benchmarks (benchmark_id),
measurements jsonb,
time timestamp without time zone NOT NULL DEFAULT (current_timestamp AT TIME ZONE 'UTC')
);
CREATE INDEX IF NOT EXISTS model_measurements_branch_idx ON model_measurements (benchmark_id);

View File

@ -1,342 +0,0 @@
from logging import Logger
import os
from threading import Event, Thread
from time import perf_counter, sleep
from typing import Optional
from benchmarks_entrypoint import MetricsRecorder
import gpustat
import psutil
import psycopg2
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig, StaticCache
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
os.environ["TOKENIZERS_PARALLELISM"] = "1"
torch.set_float32_matmul_precision("high")
def collect_metrics(benchmark_id, continue_metric_collection, metrics_recorder):
p = psutil.Process(os.getpid())
while not continue_metric_collection.is_set():
with p.oneshot():
cpu_util = p.cpu_percent()
mem_megabytes = p.memory_info().rss / (1024 * 1024)
gpu_stats = gpustat.GPUStatCollection.new_query()
gpu_util = gpu_stats[0]["utilization.gpu"]
gpu_mem_megabytes = gpu_stats[0]["memory.used"]
metrics_recorder.collect_device_measurements(
benchmark_id, cpu_util, mem_megabytes, gpu_util, gpu_mem_megabytes
)
sleep(0.01)
def run_benchmark(logger: Logger, branch: str, commit_id: str, commit_msg: str, num_tokens_to_generate=100):
continue_metric_collection = Event()
metrics_thread = None
model_id = "meta-llama/Llama-2-7b-hf"
metrics_recorder = MetricsRecorder(psycopg2.connect("dbname=metrics"), logger, branch, commit_id, commit_msg)
try:
gpu_stats = gpustat.GPUStatCollection.new_query()
gpu_name = gpu_stats[0]["name"]
benchmark_id = metrics_recorder.initialise_benchmark({"gpu_name": gpu_name, "model_id": model_id})
logger.info(f"running benchmark #{benchmark_id} on {gpu_name} for {model_id}")
metrics_thread = Thread(
target=collect_metrics,
args=[benchmark_id, continue_metric_collection, metrics_recorder],
)
metrics_thread.start()
logger.info("started background thread to fetch device metrics")
os.environ["TOKENIZERS_PARALLELISM"] = "false" # silence warnings when compiling
device = "cuda"
logger.info("downloading weights")
# This is to avoid counting download in model load time measurement
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16)
gen_config = GenerationConfig(do_sample=False, top_p=1, temperature=1)
logger.info("loading model")
start = perf_counter()
model = AutoModelForCausalLM.from_pretrained(
model_id, torch_dtype=torch.float16, generation_config=gen_config
).eval()
model.to(device)
torch.cuda.synchronize()
end = perf_counter()
model_load_time = end - start
logger.info(f"loaded model in: {model_load_time}s")
tokenizer = AutoTokenizer.from_pretrained(model_id)
prompt = "Why dogs are so cute?"
inputs = tokenizer(prompt, return_tensors="pt").to(device)
# Specify the max length (including both the prompt and the response)
# When calling `generate` with `cache_implementation="static" later, this is also used to create a `StaticCache` object
# with sequence length = `max_length`. The longer the more you will re-use it
seq_length = inputs["input_ids"].shape[1]
model.generation_config.max_length = seq_length + num_tokens_to_generate
batch_size = inputs["input_ids"].shape[0]
# Copied from the gpt-fast repo
def multinomial_sample_one_no_sync(probs_sort): # Does multinomial sampling without a cuda synchronization
q = torch.empty_like(probs_sort).exponential_(1)
return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int)
def logits_to_probs(logits, temperature: float = 1.0, top_k: Optional[int] = None):
logits = logits / max(temperature, 1e-5)
if top_k is not None:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
pivot = v.select(-1, -1).unsqueeze(-1)
logits = torch.where(logits < pivot, -float("Inf"), logits)
probs = torch.nn.functional.softmax(logits, dim=-1)
return probs
def sample(logits, temperature: float = 1.0, top_k: Optional[int] = None):
probs = logits_to_probs(logits[:, -1], temperature, top_k)
idx_next = multinomial_sample_one_no_sync(probs)
return idx_next, probs
def decode_one_token(model, cur_token, cache_position, past_key_values):
logits = model(
cur_token,
cache_position=cache_position,
past_key_values=past_key_values,
return_dict=False,
use_cache=True,
)[0]
new_token = sample(logits, temperature=0.6, top_k=5)[0]
return new_token
#########
# Eager #
#########
with torch.no_grad():
past_key_values = StaticCache(
model.config,
batch_size=batch_size,
device=device,
dtype=torch.float16,
max_cache_len=seq_length + num_tokens_to_generate,
)
cache_position = torch.arange(seq_length, device=device)
start = perf_counter()
model(
**inputs,
cache_position=cache_position,
past_key_values=past_key_values,
return_dict=False,
use_cache=True,
)
end = perf_counter()
first_eager_fwd_pass_time = end - start
logger.info(f"completed first eager fwd pass in: {first_eager_fwd_pass_time}s")
start = perf_counter()
output = model.generate(**inputs, do_sample=False)
end = perf_counter()
first_eager_generate_time = end - start
logger.info(f"completed first eager generation in: {first_eager_generate_time}s")
logger.info(f"generated: {tokenizer.batch_decode(output.cpu().tolist())}")
past_key_values = StaticCache(
model.config,
batch_size=batch_size,
device=device,
dtype=torch.float16,
max_cache_len=seq_length + num_tokens_to_generate,
)
cache_position = torch.arange(seq_length, device=device)
start = perf_counter()
model(
**inputs,
cache_position=cache_position,
past_key_values=past_key_values,
return_dict=False,
use_cache=True,
)
end = perf_counter()
second_eager_fwd_pass_time = end - start
logger.info(f"completed second eager fwd pass in: {second_eager_fwd_pass_time}s")
start = perf_counter()
model.generate(**inputs, do_sample=False)
end = perf_counter()
second_eager_generate_time = end - start
logger.info(f"completed second eager generation in: {second_eager_generate_time}s")
logger.info(f"generated: {tokenizer.batch_decode(output.cpu().tolist())}")
torch.compiler.reset()
################
# Forward pass #
################
# `torch.compile(model, ...)` is not recommended as you compile callbacks
# and full generate. We recommend compiling only the forward for now.
# "reduce-overhead" will use cudagraphs.
generated_ids = torch.zeros(
(batch_size, num_tokens_to_generate + seq_length), dtype=torch.int, device=device
)
generated_ids[:, :seq_length] = inputs["input_ids"]
decode_one_token = torch.compile(decode_one_token, mode="reduce-overhead", fullgraph=True)
# model.forward = torch.compile(model.forward, mode="reduce-overhead", fullgraph=True)
# TODO use decode_one_token(model, input_id.clone(), cache_position) for verification
past_key_values = StaticCache(
model.config,
batch_size=batch_size,
device=device,
dtype=torch.float16,
max_cache_len=seq_length + num_tokens_to_generate + 10,
)
cache_position = torch.arange(seq_length, device=device)
all_generated_tokens = []
### First compile, prefill
start = perf_counter()
next_token = decode_one_token(
model, inputs["input_ids"], cache_position=cache_position, past_key_values=past_key_values
)
torch.cuda.synchronize()
end = perf_counter()
time_to_first_token = end - start
logger.info(f"completed first compile generation in: {time_to_first_token}s")
cache_position += 1
all_generated_tokens += next_token.clone().detach().cpu().tolist()
cache_position = torch.tensor([seq_length], device=device)
### First compile, decoding
start = perf_counter()
next_token = decode_one_token(
model, next_token.clone(), cache_position=cache_position, past_key_values=past_key_values
)
torch.cuda.synchronize()
end = perf_counter()
time_to_second_token = end - start
logger.info(f"completed second compile generation in: {time_to_first_token}s")
cache_position += 1
all_generated_tokens += next_token.clone().detach().cpu().tolist()
### Second compile, decoding
start = perf_counter()
next_token = decode_one_token(
model, next_token.clone(), cache_position=cache_position, past_key_values=past_key_values
)
torch.cuda.synchronize()
end = perf_counter()
time_to_third_token = end - start
logger.info(f"completed third compile forward in: {time_to_first_token}s")
cache_position += 1
all_generated_tokens += next_token.clone().detach().cpu().tolist()
### Using cuda graphs decoding
start = perf_counter()
for _ in range(1, num_tokens_to_generate):
all_generated_tokens += next_token.clone().detach().cpu().tolist()
next_token = decode_one_token(
model, next_token.clone(), cache_position=cache_position, past_key_values=past_key_values
)
cache_position += 1
torch.cuda.synchronize()
end = perf_counter()
mean_time_to_next_token = (end - start) / num_tokens_to_generate
logger.info(f"completed next compile generation in: {mean_time_to_next_token}s")
logger.info(f"generated: {tokenizer.batch_decode(all_generated_tokens)}")
####################
# Generate compile #
####################
torch.compiler.reset()
# we will not compile full generate as it' s to intensive, tho we measure full forward!
past_key_values = StaticCache(
model.config,
batch_size=batch_size,
device=device,
dtype=torch.float16,
max_cache_len=seq_length + 128,
)
# 1st call
start = perf_counter()
output = model.generate(**inputs, past_key_values=past_key_values)
torch.cuda.synchronize()
end = perf_counter()
first_compile_generate_time = end - start
logger.info(f"completed first compile generation in: {first_compile_generate_time}s")
logger.info(f"generated: {tokenizer.batch_decode(output.cpu().tolist())}")
past_key_values = StaticCache(
model.config,
batch_size=batch_size,
device=device,
dtype=torch.float16,
max_cache_len=seq_length + 128,
)
# 2nd call
start = perf_counter()
output = model.generate(**inputs, past_key_values=past_key_values)
torch.cuda.synchronize()
end = perf_counter()
second_compile_generate_time = end - start
logger.info(f"completed second compile generation in: {second_compile_generate_time}s")
logger.info(f"generated: {tokenizer.batch_decode(output.cpu().tolist())}")
past_key_values = StaticCache(
model.config,
batch_size=batch_size,
device=device,
dtype=torch.float16,
max_cache_len=seq_length + 128,
)
# 3nd call
start = perf_counter()
output = model.generate(**inputs, past_key_values=past_key_values)
end = perf_counter()
third_compile_generate_time = end - start
logger.info(f"completed second compile generation in: {third_compile_generate_time}s")
logger.info(f"generated: {tokenizer.batch_decode(output.cpu().tolist())}")
past_key_values = StaticCache(
model.config,
batch_size=batch_size,
device=device,
dtype=torch.float16,
max_cache_len=seq_length + 128,
)
# 4th call
start = perf_counter()
output = model.generate(**inputs, past_key_values=past_key_values)
end = perf_counter()
fourth_compile_generate_time = end - start
logger.info(f"completed second compile generation in: {fourth_compile_generate_time}s")
logger.info(f"generated: {tokenizer.batch_decode(output.cpu().tolist())}")
metrics_recorder.collect_model_measurements(
benchmark_id,
{
"model_load_time": model_load_time,
"first_eager_forward_pass_time_secs": first_eager_fwd_pass_time,
"second_eager_forward_pass_time_secs": second_eager_fwd_pass_time,
"first_eager_generate_time_secs": first_eager_generate_time,
"second_eager_generate_time_secs": second_eager_generate_time,
"time_to_first_token_secs": time_to_first_token,
"time_to_second_token_secs": time_to_second_token,
"time_to_third_token_secs": time_to_third_token,
"time_to_next_token_mean_secs": mean_time_to_next_token,
"first_compile_generate_time_secs": first_compile_generate_time,
"second_compile_generate_time_secs": second_compile_generate_time,
"third_compile_generate_time_secs": third_compile_generate_time,
"fourth_compile_generate_time_secs": fourth_compile_generate_time,
},
)
except Exception as e:
logger.error(f"Caught exception: {e}")
continue_metric_collection.set()
if metrics_thread is not None:
metrics_thread.join()
metrics_recorder.close()

View File

@ -1,5 +0,0 @@
gpustat==1.1.1
psutil==6.0.0
psycopg2==2.9.9
torch>=2.4.0
hf_transfer

View File

@ -1,9 +0,0 @@
# Dockers for `transformers`
In this folder you will find various docker files, and some subfolders.
- dockerfiles (ex: `consistency.dockerfile`) present under `~/docker` are used for our "fast" CIs. You should be able to use them for tasks that only need CPU. For example `torch-light` is a very light weights container (703MiB).
- subfloder contain dockerfiles used for our `slow` CIs, which *can* be used for GPU tasks, but they are **BIG** as they were not specifically designed for a single model / single task. Thus the `~/docker/transformers-pytorch-gpu` includes additional dependencies to allow us to run ALL model tests (say `librosa` or `tesseract`, which you do not need to run LLMs)
Note that in both case, you need to run `uv pip install -e .`, which should take around 5 seconds. We do it outside the dockerfile for the need of our CI: we checkout a new branch each time, and the `transformers` code is thus updated.
We are open to contribution, and invite the community to create dockerfiles with potential arguments that properly choose extras depending on the model's dependencies! :hugs:

View File

@ -1,4 +1,4 @@
FROM python:3.9-slim
FROM python:3.10-slim
ENV PYTHONDONTWRITEBYTECODE=1
USER root
ARG REF=main
@ -13,4 +13,4 @@ RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/transforme
RUN git lfs install
RUN pip uninstall -y transformers
RUN apt-get clean && rm -rf /var/lib/apt/lists/* && apt-get autoremove && apt-get autoclean
RUN apt-get clean && rm -rf /var/lib/apt/lists/* && apt-get autoremove && apt-get autoclean

View File

@ -1,4 +1,4 @@
FROM python:3.9-slim
FROM python:3.10-slim
ENV PYTHONDONTWRITEBYTECODE=1
USER root
RUN apt-get update && apt-get install -y libsndfile1-dev espeak-ng time git cmake wget xz-utils build-essential g++5 libprotobuf-dev protobuf-compiler

View File

@ -1,4 +1,4 @@
FROM python:3.9-slim
FROM python:3.10-slim
ENV PYTHONDONTWRITEBYTECODE=1
USER root
RUN apt-get update && apt-get install -y libsndfile1-dev espeak-ng time git

View File

@ -1,4 +1,4 @@
FROM python:3.9-slim
FROM python:3.10-slim
ENV PYTHONDONTWRITEBYTECODE=1
USER root
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git g++ cmake pkg-config openssh-client git

View File

@ -1,4 +1,4 @@
FROM python:3.9-slim
FROM python:3.10-slim
ENV PYTHONDONTWRITEBYTECODE=1
ARG REF=main
USER root

View File

@ -1,4 +1,4 @@
FROM python:3.9-slim
FROM python:3.10-slim
ENV PYTHONDONTWRITEBYTECODE=1
ARG REF=main
USER root

View File

@ -1,4 +1,4 @@
FROM python:3.9-slim
FROM python:3.10-slim
ENV PYTHONDONTWRITEBYTECODE=1
ARG REF=main
USER root

View File

@ -1,4 +1,4 @@
FROM python:3.9-slim
FROM python:3.10-slim
ENV PYTHONDONTWRITEBYTECODE=1
ARG REF=main
USER root

View File

@ -1,4 +1,4 @@
FROM python:3.9-slim
FROM python:3.10-slim
ENV PYTHONDONTWRITEBYTECODE=1
ARG REF=main
USER root

View File

@ -1,4 +1,4 @@
FROM python:3.9-slim
FROM python:3.10-slim
ENV PYTHONDONTWRITEBYTECODE=1
ARG REF=main
USER root

View File

@ -1,4 +1,4 @@
FROM python:3.9-slim
FROM python:3.10-slim
ENV PYTHONDONTWRITEBYTECODE=1
ARG REF=main
USER root

View File

@ -1,4 +1,4 @@
FROM python:3.9-slim
FROM python:3.10-slim
ENV PYTHONDONTWRITEBYTECODE=1
ARG REF=main
USER root
@ -6,6 +6,6 @@ RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-de
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
RUN pip install --no-cache-dir 'torch' 'torchvision' 'torchaudio' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-deps timm accelerate --extra-index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir librosa "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[sklearn,sentencepiece,vision,testing,tiktoken]"
RUN uv pip install --no-deps timm accelerate --extra-index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir librosa "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[sklearn,sentencepiece,vision,testing]"
RUN pip uninstall -y transformers

View File

@ -1,4 +1,4 @@
FROM python:3.9-slim
FROM python:3.10-slim
ENV PYTHONDONTWRITEBYTECODE=1
ARG REF=main
RUN echo ${REF}

View File

@ -1,4 +1,4 @@
FROM nvidia/cuda:12.1.0-cudnn8-devel-ubuntu22.04
FROM nvidia/cuda:12.1.0-cudnn8-devel-ubuntu20.04
LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive
@ -9,7 +9,7 @@ SHELL ["sh", "-lc"]
# The following `ARG` are mainly used to specify the versions explicitly & directly in this docker file, and not meant
# to be used as arguments for docker build (so far).
ARG PYTORCH='2.6.0'
ARG PYTORCH='2.4.0'
# (not always a valid torch version)
ARG INTEL_TORCH_EXT='2.3.0'
# Example: `cu102`, `cu113`, etc.
@ -26,7 +26,7 @@ RUN git clone https://github.com/huggingface/transformers && cd transformers &&
# 1. Put several commands in a single `RUN` to avoid image/layer exporting issue. Could be revised in the future.
# 2. Regarding `torch` part, We might need to specify proper versions for `torchvision` and `torchaudio`.
# Currently, let's not bother to specify their versions explicitly (so installed with their latest release versions).
RUN python3 -m pip install --no-cache-dir -U tensorflow==2.13 protobuf==3.20.3 "tensorflow_text<2.16" "tensorflow_probability<0.22" && python3 -m pip install --no-cache-dir -e ./transformers[dev,onnxruntime] && [ ${#PYTORCH} -gt 0 -a "$PYTORCH" != "pre" ] && VERSION='torch=='$PYTORCH'.*' || VERSION='torch'; echo "export VERSION='$VERSION'" >> ~/.profile && echo torch=$VERSION && [ "$PYTORCH" != "pre" ] && python3 -m pip install --no-cache-dir -U $VERSION torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/$CUDA || python3 -m pip install --no-cache-dir -U --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/$CUDA
RUN python3 -m pip install --no-cache-dir -U tensorflow==2.13 protobuf==3.20.3 tensorflow_text tensorflow_probability && python3 -m pip install --no-cache-dir -e ./transformers[dev,onnxruntime] && [ ${#PYTORCH} -gt 0 -a "$PYTORCH" != "pre" ] && VERSION='torch=='$PYTORCH'.*' || VERSION='torch'; echo "export VERSION='$VERSION'" >> ~/.profile && echo torch=$VERSION && [ "$PYTORCH" != "pre" ] && python3 -m pip install --no-cache-dir -U $VERSION torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/$CUDA || python3 -m pip install --no-cache-dir -U --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/$CUDA
RUN python3 -m pip uninstall -y flax jax
@ -43,7 +43,7 @@ RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/pef
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/optimum@main#egg=optimum
# For video model testing
RUN python3 -m pip install --no-cache-dir av==9.2.0
RUN python3 -m pip install --no-cache-dir decord av==9.2.0
# Some slow tests require bnb
RUN python3 -m pip install --no-cache-dir bitsandbytes
@ -65,9 +65,6 @@ RUN python3 -m pip install --no-cache-dir python-Levenshtein
# For `FastSpeech2ConformerTokenizer` tokenizer
RUN python3 -m pip install --no-cache-dir g2p-en
# For Some bitsandbytes tests
RUN python3 -m pip install --no-cache-dir einops
# When installing in editable mode, `transformers` is not recognized as a package.
# this line must be added in order for python to be aware of transformers.
RUN cd transformers && python3 setup.py develop

View File

@ -8,9 +8,7 @@ RUN python3 -m pip install --no-cache-dir --upgrade pip && python3 -m pip instal
RUN apt-get -y update && apt-get install -y libsndfile1-dev && apt install -y tesseract-ocr
# Torch needs to be installed before deepspeed
# RUN python3 -m pip install --no-cache-dir ./transformers[deepspeed]
RUN python3 -m pip uninstall -y deepspeed
RUN DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 python3 -m pip install deepspeed --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check 2>&1
RUN python3 -m pip install --no-cache-dir ./transformers[deepspeed]
RUN python3 -m pip install --no-cache-dir torchvision git+https://github.com/facebookresearch/detectron2.git pytesseract
RUN python3 -m pip install -U "itsdangerous<2.1.0"

View File

@ -48,8 +48,8 @@ RUN python3 -m pip uninstall -y torch-tensorrt apex
# Pre-build **nightly** release of DeepSpeed, so it would be ready for testing (otherwise, the 1st deepspeed test will timeout)
RUN python3 -m pip uninstall -y deepspeed
# This has to be run inside the GPU VMs running the tests. (So far, it fails here due to GPU checks during compilation.)
# Issue: https://github.com/deepspeedai/DeepSpeed/issues/2010
# RUN git clone https://github.com/deepspeedai/DeepSpeed && cd DeepSpeed && rm -rf build && \
# Issue: https://github.com/microsoft/DeepSpeed/issues/2010
# RUN git clone https://github.com/microsoft/DeepSpeed && cd DeepSpeed && rm -rf build && \
# DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 DS_BUILD_UTILS=1 python3 -m pip install . --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check 2>&1
RUN python3 -m pip install -U "itsdangerous<2.1.0"

View File

@ -1,18 +1,17 @@
FROM rocm/dev-ubuntu-22.04:6.2.4
FROM rocm/dev-ubuntu-22.04:6.0.2
# rocm/pytorch has no version with 2.1.0
LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive
RUN apt update && \
apt install -y --no-install-recommends git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-dev python3-pip python3-dev ffmpeg git-lfs && \
apt install -y --no-install-recommends git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-dev python3-pip python3-dev ffmpeg && \
apt clean && \
rm -rf /var/lib/apt/lists/*
RUN git lfs install
RUN python3 -m pip install --no-cache-dir --upgrade pip numpy
RUN python3 -m pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm6.2
RUN python3 -m pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm6.0
RUN python3 -m pip install --no-cache-dir --upgrade importlib-metadata setuptools ninja git+https://github.com/facebookresearch/detectron2.git pytesseract "itsdangerous<2.1.0"
@ -31,5 +30,5 @@ RUN python3 -m pip uninstall -y tensorflow flax
# this line must be added in order for python to be aware of transformers.
RUN cd transformers && python3 setup.py develop
# Remove nvml and nvidia-ml-py as it is not compatible with ROCm. apex is not tested on NVIDIA either.
RUN python3 -m pip uninstall py3nvml pynvml nvidia-ml-py apex -y
# Remove nvml as it is not compatible with ROCm. apex is not tested on NVIDIA either.
RUN python3 -m pip uninstall py3nvml pynvml apex -y

View File

@ -1,11 +1,11 @@
FROM rocm/dev-ubuntu-22.04:6.2.4
FROM rocm/dev-ubuntu-22.04:5.6
LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive
ARG PYTORCH='2.5.1'
ARG TORCH_VISION='0.20.0'
ARG TORCH_AUDIO='2.5.0'
ARG ROCM='6.2'
ARG PYTORCH='2.1.1'
ARG TORCH_VISION='0.16.1'
ARG TORCH_AUDIO='2.1.1'
ARG ROCM='5.6'
RUN apt update && \
apt install -y --no-install-recommends \
@ -45,4 +45,4 @@ RUN cd transformers && python3 setup.py develop
RUN python3 -c "from deepspeed.launcher.runner import main"
# Remove nvml as it is not compatible with ROCm
RUN python3 -m pip uninstall py3nvml pynvml nvidia-ml-py apex -y
RUN python3 -m pip uninstall py3nvml pynvml -y

View File

@ -1,5 +1,5 @@
# https://docs.nvidia.com/deeplearning/frameworks/pytorch-release-notes/rel-23-11.html#rel-23-11
FROM nvcr.io/nvidia/pytorch:23.11-py3
FROM nvcr.io/nvidia/pytorch:23.04-py3
LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive

View File

@ -34,8 +34,8 @@ RUN python3 -m pip uninstall -y torch-tensorrt apex
# Pre-build **nightly** release of DeepSpeed, so it would be ready for testing (otherwise, the 1st deepspeed test will timeout)
RUN python3 -m pip uninstall -y deepspeed
# This has to be run inside the GPU VMs running the tests. (So far, it fails here due to GPU checks during compilation.)
# Issue: https://github.com/deepspeedai/DeepSpeed/issues/2010
# RUN git clone https://github.com/deepspeedai/DeepSpeed && cd DeepSpeed && rm -rf build && \
# Issue: https://github.com/microsoft/DeepSpeed/issues/2010
# RUN git clone https://github.com/microsoft/DeepSpeed && cd DeepSpeed && rm -rf build && \
# DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 DS_BUILD_UTILS=1 python3 -m pip install . --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check 2>&1
## For `torchdynamo` tests

View File

@ -1,4 +1,4 @@
FROM nvidia/cuda:12.1.0-cudnn8-devel-ubuntu22.04
FROM nvidia/cuda:12.1.0-cudnn8-devel-ubuntu20.04
LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive
@ -11,7 +11,7 @@ ARG REF=main
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
# If set to nothing, will install the latest version
ARG PYTORCH='2.6.0'
ARG PYTORCH='2.4.0'
ARG TORCH_VISION=''
ARG TORCH_AUDIO=''
# Example: `cu102`, `cu113`, etc.

View File

@ -1,4 +1,4 @@
FROM nvidia/cuda:11.8.0-cudnn8-devel-ubuntu22.04
FROM nvidia/cuda:11.8.0-cudnn8-devel-ubuntu20.04
LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive
@ -9,12 +9,12 @@ SHELL ["sh", "-lc"]
# The following `ARG` are mainly used to specify the versions explicitly & directly in this docker file, and not meant
# to be used as arguments for docker build (so far).
ARG PYTORCH='2.5.1'
ARG PYTORCH='2.2.1'
# Example: `cu102`, `cu113`, etc.
ARG CUDA='cu118'
RUN apt update
RUN apt install -y git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-pip ffmpeg
RUN apt install -y git libsndfile1-dev tesseract-ocr espeak-ng python python3-pip ffmpeg
RUN python3 -m pip install --no-cache-dir --upgrade pip
ARG REF=main
@ -36,26 +36,15 @@ RUN python3 -m pip install --no-cache-dir einops
# Add bitsandbytes for mixed int8 testing
RUN python3 -m pip install --no-cache-dir bitsandbytes
# Add auto-gptq for gtpq quantization testing, installed from source for pytorch==2.5.1 compatibility
# TORCH_CUDA_ARCH_LIST="7.5+PTX" is added to make the package compile for Tesla T4 gpus available for the CI.
RUN pip install gekko
RUN git clone https://github.com/PanQiWei/AutoGPTQ.git && cd AutoGPTQ && TORCH_CUDA_ARCH_LIST="7.5+PTX" python3 setup.py install
# Add auto-gptq for gtpq quantization testing
RUN python3 -m pip install --no-cache-dir auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/
# Add optimum for gptq quantization testing
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/optimum@main#egg=optimum
# Add PEFT
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/peft@main#egg=peft
# Add aqlm for quantization testing
RUN python3 -m pip install --no-cache-dir aqlm[gpu]==1.0.2
# Add vptq for quantization testing
RUN python3 -m pip install --no-cache-dir vptq
# Add spqr for quantization testing
RUN python3 -m pip install --no-cache-dir spqr_quant[gpu]
# Add hqq for quantization testing
RUN python3 -m pip install --no-cache-dir hqq
@ -63,19 +52,15 @@ RUN python3 -m pip install --no-cache-dir hqq
RUN python3 -m pip install --no-cache-dir gguf
# Add autoawq for quantization testing
# >=v0.2.7 needed for compatibility with transformers > 4.46
RUN python3 -m pip install --no-cache-dir https://github.com/casper-hansen/AutoAWQ/releases/download/v0.2.7.post2/autoawq-0.2.7.post2-py3-none-any.whl
# >=v0.2.3 needed for compatibility with torch 2.2.1
RUN python3 -m pip install --no-cache-dir https://github.com/casper-hansen/AutoAWQ/releases/download/v0.2.3/autoawq-0.2.3+cu118-cp38-cp38-linux_x86_64.whl
# Add quanto for quantization testing
RUN python3 -m pip install --no-cache-dir optimum-quanto
RUN python3 -m pip install --no-cache-dir quanto
# Add eetq for quantization testing
RUN python3 -m pip install git+https://github.com/NetEase-FuXi/EETQ.git
# Add flute-kernel and fast_hadamard_transform for quantization testing
RUN python3 -m pip install --no-cache-dir flute-kernel==0.3.0 -i https://flute-ai.github.io/whl/cu118
RUN python3 -m pip install --no-cache-dir fast_hadamard_transform==1.0.4.post1
# When installing in editable mode, `transformers` is not recognized as a package.
# this line must be added in order for python to be aware of transformers.
RUN cd transformers && python3 setup.py develop

View File

@ -1,4 +1,4 @@
FROM nvidia/cuda:12.1.0-cudnn8-devel-ubuntu22.04
FROM nvidia/cuda:12.1.0-cudnn8-devel-ubuntu20.04
LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive
@ -18,7 +18,7 @@ RUN [ ${#TENSORFLOW} -gt 0 ] && VERSION='tensorflow=='$TENSORFLOW'.*' || VERSIO
RUN python3 -m pip uninstall -y torch flax
RUN python3 -m pip install -U "itsdangerous<2.1.0"
RUN python3 -m pip install --no-cache-dir -U "tensorflow_probability<0.22"
RUN python3 -m pip install --no-cache-dir -U tensorflow_probability
# When installing in editable mode, `transformers` is not recognized as a package.
# this line must be added in order for python to be aware of transformers.

View File

@ -276,14 +276,14 @@ building the return.
Here's an example of a single value return:
```python
```
Returns:
`List[int]`: A list of integers in the range [0, 1] --- 1 for a special token, 0 for a sequence token.
```
Here's an example of a tuple return, comprising several objects:
```python
```
Returns:
`tuple(torch.FloatTensor)` comprising various elements depending on the configuration ([`BertConfig`]) and inputs:
- ** loss** (*optional*, returned when `masked_lm_labels` is provided) `torch.FloatTensor` of shape `(1,)` --
@ -322,9 +322,10 @@ includes an example of how to transcribe speech to text in the
The syntax for Example docstrings can look as follows:
```python
```
Example:
```python
>>> from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
>>> from datasets import load_dataset
>>> import torch
@ -346,6 +347,7 @@ The syntax for Example docstrings can look as follows:
>>> transcription = processor.batch_decode(predicted_ids)
>>> transcription[0]
'MISTER QUILTER IS THE APOSTLE OF THE MIDDLE CLASSES AND WE ARE GLAD TO WELCOME HIS GOSPEL'
```
```
The docstring should give a minimal, clear example of how the respective model

View File

@ -1,70 +1,57 @@
# Translating the Transformers documentation into your language
### Translating the Transformers documentation into your language
As part of our mission to democratize machine learning, we aim to make the Transformers library available in many more languages! Follow the steps below to help translate the documentation into your language.
As part of our mission to democratize machine learning, we'd love to make the Transformers library available in many more languages! Follow the steps below if you want to help translate the documentation into your language 🙏.
## Open an Issue
**🗞️ Open an issue**
1. Navigate to the Issues page of this repository.
2. Check if anyone has already opened an issue for your language.
3. If not, create a new issue by selecting the "Translation template" from the "New issue" button.
4. Post a comment indicating which chapters youd like to work on, and well add your name to the list.
To get started, navigate to the [Issues](https://github.com/huggingface/transformers/issues) page of this repo and check if anyone else has opened an issue for your language. If not, open a new issue by selecting the "Translation template" from the "New issue" button.
## Fork the Repository
Once an issue exists, post a comment to indicate which chapters you'd like to work on, and we'll add your name to the list.
1. First, fork the Transformers repo by clicking the Fork button in the top-right corner.
2. Clone your fork to your local machine for editing with the following command:
```bash
git clone https://github.com/YOUR-USERNAME/transformers.git
```
Replace `YOUR-USERNAME` with your GitHub username.
**🍴 Fork the repository**
## Copy-paste the English version with a new language code
First, you'll need to [fork the Transformers repo](https://docs.github.com/en/get-started/quickstart/fork-a-repo). You can do this by clicking on the **Fork** button on the top-right corner of this repo's page.
The documentation files are organized in the following directory:
Once you've forked the repo, you'll want to get the files on your local machine for editing. You can do that by cloning the fork with Git as follows:
- **docs/source**: This contains all documentation materials organized by language.
```bash
git clone https://github.com/YOUR-USERNAME/transformers.git
```
To copy the English version to your new language directory:
**📋 Copy-paste the English version with a new language code**
1. Navigate to your fork of the repository:
The documentation files are in one leading directory:
```bash
cd ~/path/to/transformers/docs
```
- [`docs/source`](https://github.com/huggingface/transformers/tree/main/docs/source): All the documentation materials are organized here by language.
Replace `~/path/to` with your actual path.
You'll only need to copy the files in the [`docs/source/en`](https://github.com/huggingface/transformers/tree/main/docs/source/en) directory, so first navigate to your fork of the repo and run the following:
2. Run the following command:
```bash
cd ~/path/to/transformers/docs
cp -r source/en source/LANG-ID
```
```bash
cp -r source/en source/LANG-ID
```
Here, `LANG-ID` should be one of the ISO 639-1 or ISO 639-2 language codes -- see [here](https://www.loc.gov/standards/iso639-2/php/code_list.php) for a handy table.
Replace `LANG-ID` with the appropriate ISO 639-1 or ISO 639-2 language code (see [this table](https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes) for reference).
**✍️ Start translating**
## Start translating
The fun part comes - translating the text!
Begin translating the text!
The first thing we recommend is translating the part of the `_toctree.yml` file that corresponds to your doc chapter. This file is used to render the table of contents on the website.
1. Start with the `_toctree.yml` file that corresponds to your documentation chapter. This file is essential for rendering the table of contents on the website.
> 🙋 If the `_toctree.yml` file doesn't yet exist for your language, you can create one by copy-pasting from the English version and deleting the sections unrelated to your chapter. Just make sure it exists in the `docs/source/LANG-ID/` directory!
- If the `_toctree.yml` file doesnt exist for your language, create one by copying the English version and removing unrelated sections.
- Ensure it is placed in the `docs/source/LANG-ID/` directory.
The fields you should add are `local` (with the name of the file containing the translation; e.g. `autoclass_tutorial`), and `title` (with the title of the doc in your language; e.g. `Load pretrained instances with an AutoClass`) -- as a reference, here is the `_toctree.yml` for [English](https://github.com/huggingface/transformers/blob/main/docs/source/en/_toctree.yml):
Heres an example structure for the `_toctree.yml` file:
```yaml
- sections:
- local: pipeline_tutorial # Do not change this! Use the same name for your .md file
title: Pipelines for inference # Translate this!
...
title: Tutorials # Translate this!
```
```yaml
- sections:
- local: pipeline_tutorial # Keep this name for your .md file
title: Pipelines for Inference # Translate this
...
title: Tutorials # Translate this
```
Once you have translated the `_toctree.yml` file, you can start translating the [MDX](https://mdxjs.com/) files associated with your docs chapter.
2. Once youve translated the `_toctree.yml`, move on to translating the associated MDX files.
## Collaborate and share
If you'd like assistance with your translation, open an issue and tag `@stevhliu`. Feel free to share resources or glossaries to ensure consistent terminology.
> 🙋 If you'd like others to help you with the translation, you should [open an issue](https://github.com/huggingface/transformers/issues) and tag @stevhliu.

View File

@ -1,14 +0,0 @@
# docstyle-ignore
INSTALL_CONTENT = """
# Transformers installation
! pip install transformers datasets evaluate accelerate
# To install from source instead of the last release, comment the command above and uncomment the following one.
# ! pip install git+https://github.com/huggingface/transformers.git
"""
notebook_first_cells = [{"type": "code", "content": INSTALL_CONTENT}]
black_avoid_patterns = {
"{processor_class}": "FakeProcessorClass",
"{model_class}": "FakeModelClass",
"{object_class}": "FakeObjectClass",
}

View File

@ -1,898 +0,0 @@
- sections:
- local: index
title: 🤗 المحولات
- local: quicktour
title: جولة سريعة
- local: installation
title: التثبيت
title: البدء
- sections:
- local: pipeline_tutorial
title: تشغيل الاستنتاج باستخدام خطوط الأنابيب
- local: autoclass_tutorial
title: كتابة تعليمات برمجية متكيفه باستخدام AutoClass
- local: preprocessing
title: معالجة البيانات مسبقًا
- local: training
title: ضبط نموذج مسبق التدريب
- local: run_scripts
title: التدريب باستخدام نص برمجي
- local: accelerate
title: إعداد تدريب موزع باستخدام 🤗 Accelerate
- local: peft
title: تحميل النماذج المخصصة وتدريبها باستخدام 🤗 PEFT
- local: model_sharing
title: مشاركة نموذجك
- local: agents
title: الوكلاء
- local: llm_tutorial
title: التوليد باستخدام LLMs
- local: conversations
title: الدردشة مع المحولات
title: البرامج التعليمية
- sections:
- isExpanded: false
sections:
- local: tasks/sequence_classification
title: تصنيف النصوص
- local: tasks/token_classification
title: تصنيف الرموز
- local: tasks/question_answering
title: الإجابة على الأسئلة
- local: tasks/language_modeling
title: نمذجة اللغة السببية
- local: tasks/masked_language_modeling
title: نمذجة اللغة المقنعة
- local: tasks/translation
title: الترجمة
- local: tasks/summarization
title: التلخيص
- local: tasks/multiple_choice
title: الاختيار المتعدد
title: معالجة اللغات الطبيعية
# - isExpanded: false
# sections:
# - local: tasks/audio_classification
# title: تصنيف الصوت
# - local: tasks/asr
# title: التعرف التلقائي على الكلام
# title: الصوت
# - isExpanded: false
# sections:
# - local: tasks/image_classification
# title: تصنيف الصور
# - local: tasks/semantic_segmentation
# title: تجزئة الصور
# - local: tasks/video_classification
# title: تصنيف الفيديو
# - local: tasks/object_detection
# title: اكتشاف الأشياء
# - local: tasks/zero_shot_object_detection
# title: اكتشاف الأشياء بدون تدريب
# - local: tasks/zero_shot_image_classification
# title: تصنيف الصور بدون تدريب
# - local: tasks/monocular_depth_estimation
# title: تقدير العمق
# - local: tasks/image_to_image
# title: صورة إلى صورة
# - local: tasks/image_feature_extraction
# title: استخراج ميزات الصورة
# - local: tasks/mask_generation
# title: توليد القناع
# - local: tasks/knowledge_distillation_for_image_classification
# title: التقليل المعرفي للرؤية الحاسوبية
# title: الرؤية الحاسوبية
# - isExpanded: false
# sections:
# - local: tasks/image_captioning
# title: وصف الصور Image captioning
# - local: tasks/document_question_answering
# title: الإجابة على أسئلة المستندات
# - local: tasks/visual_question_answering
# title: الإجابة على الأسئلة المرئية
# - local: tasks/text-to-speech
# title: تحويل النص إلى كلام
# title: المتعددة الوسائط
# - isExpanded: false
# sections:
# - local: generation_strategies
# title: تخصيص استراتيجية التوليد
# - local: kv_cache
# title: أفضل الممارسات للتوليد باستخدام ذاكرة التخزين المؤقت
# title: التوليد
# - isExpanded: false
# sections:
# - local: tasks/idefics
# title: مهام الصور مع IDEFICS
# - local: tasks/prompting
# title: دليل إرشادي لمحفزات النماذج اللغوية الكبيرة
# title: الإرشاد
title: أدلة المهام
- sections:
- local: fast_tokenizers
title: استخدم مجزئيات النصوص السريعة من 🤗 Tokenizers
- local: multilingual
title: الاستدلال باستخدام نماذج متعددة اللغات
- local: create_a_model
title: استخدام واجهات برمجة التطبيقات الخاصة بالنموذج
- local: custom_models
title: مشاركة نموذج مخصص
- local: chat_templating
title: قوالب لنماذج الدردشة
- local: trainer
title: المدرب
- local: sagemaker
title: تشغيل التدريب على Amazon SageMaker
- local: serialization
title: التصدير إلى ONNX
- local: tflite
title: التصدير إلى TFLite
- local: torchscript
title: التصدير إلى TorchScript
- local: notebooks
title: دفاتر الملاحظات مع الأمثلة
- local: community
title: موارد المجتمع
- local: troubleshooting
title: استكشاف الأخطاء وإصلاحها
- local: gguf
title: التوافق مع ملفات GGUF
- local: tiktoken
title: التوافق مع ملفات TikToken
- local: modular_transformers
title: الوحدات النمطية في `transformers`
- local: how_to_hack_models
title: اختراق النموذج (الكتابة فوق فئة لاستخدامك)
title: أدلة المطورين
# - sections:
# - local: quantization/overview
# title: نظرة عامة
# - local: quantization/bitsandbytes
# title: bitsandbytes
# - local: quantization/gptq
# title: GPTQ
# - local: quantization/awq
# title: AWQ
# - local: quantization/aqlm
# title: AQLM
# - local: quantization/vptq
# title: VPTQ
# - local: quantization/quanto
# title: Quanto
# - local: quantization/eetq
# title: EETQ
# - local: quantization/hqq
# title: HQQ
# - local: quantization/optimum
# title: Optimum
# - local: quantization/contribute
# title: المساهمة بطريقة جديدة للتكميم
# title: أساليب التكميم
# - sections:
# - local: performance
# title: الأداء-نظرة عامة
# - local: llm_optims
# title: تحسين الاستدلال LLM
# - sections:
# - local: perf_train_gpu_one
# title: استخدام عدة وحدات معالجة رسوميات (GPUs) بشكل متوازٍ
# - local: perf_train_gpu_many
# title: وحدات معالجة الرسومات (GPU) متعددة والتوازي
# - local: fsdp
# title: Fully Sharded Data Parallel
# - local: deepspeed
# title: DeepSpeed
# - local: perf_train_cpu
# title: التدريب الفعال على وحدة المعالجة المركزية (CPU)
# - local: perf_train_cpu_many
# title: التدريب الموزع لوحدة المعالجة المركزية (CPU)
# - local: perf_train_tpu_tf
# title: التدريب على (TPU) باستخدام TensorFlow
# - local: perf_train_special
# title: تدريب PyTorch على Apple silicon
# - local: perf_hardware
# title: الأجهزة المخصصة للتدريب
# - local: hpo_train
# title: البحث عن المعاملات المثلى باستخدام واجهة برمجة تطبيقات المدرب
# title: تقنيات التدريب الفعال
# - sections:
# - local: perf_infer_cpu
# title: الإستدلال على وحدة المعالجة المركزية (CPU)
# - local: perf_infer_gpu_one
# title: الإستدلال على وحدة معالجة الرسومات (GPU)
# title: تحسين الاستدلال
# - local: big_models
# title: إنشاء نموذج كبير
# - local: debugging
# title: تصحيح الأخطاء البرمجية
# - local: tf_xla
# title: تكامل XLA لنماذج TensorFlow
# - local: perf_torch_compile
# title: تحسين الاستدلال باستخدام `torch.compile()`
# title: الأداء وقابلية التوسع
# - sections:
# - local: contributing
# title: كيفية المساهمة في 🤗 المحولات؟
# - local: add_new_model
# title: كيفية إضافة نموذج إلى 🤗 المحولات؟
# - local: add_new_pipeline
# title: كيفية إضافة خط أنابيب إلى 🤗 المحولات؟
# - local: testing
# title: الاختبار
# - local: pr_checks
# title: التحقق من طلب السحب
# title: المساهمة
- sections:
- local: philosophy
title: الفلسفة
- local: glossary
title: (قاموس المصطلحات (قائمة الكلمات
- local: task_summary
title: ما الذي يمكن أن تفعله 🤗 المحولات
- local: tasks_explained
title: كيف تحل المحولات المهام
- local: model_summary
title: عائلة نماذج المحول
- local: tokenizer_summary
title: ملخص برنامج مقسم النصوص (tokenizers)
- local: attention
title: الانتباه Attention
- local: pad_truncation
title: الحشو والتقليم
- local: bertology
title: BERTology
- local: perplexity
title: حيرة النماذج ذات الطول الثابت
- local: pipeline_webserver
title: خطوط الأنابيب للاستدلال على خادم الويب
- local: model_memory_anatomy
title: تشريح تدريب النموذج
- local: llm_tutorial_optimization
title: الاستفادة القصوى من LLMs
title: أطر مفاهيمية
# - sections:
# - sections:
# - local: main_classes/agent
# title: الوكلاء والأدوات
# - local: model_doc/auto
# title: فئات يتم إنشاؤها ديناميكيًا
# - local: main_classes/backbones
# title: العمود الفقري
# - local: main_classes/callback
# title: عمليات الاسترجاع
# - local: main_classes/configuration
# title: التكوين
# - local: main_classes/data_collator
# title: مجمع البيانات
# - local: main_classes/keras_callbacks
# title: استدعاءات Keras
# - local: main_classes/logging
# title: التسجيل
# - local: main_classes/model
# title: النماذج
# - local: main_classes/text_generation
# title: توليد النصوص
# - local: main_classes/onnx
# title: ONNX
# - local: main_classes/optimizer_schedules
# title: التحسين
# - local: main_classes/output
# title: مخرجات النموذج
# - local: main_classes/pipelines
# title: خطوط الأنابيب
# - local: main_classes/processors
# title: المعالجات
# - local: main_classes/quantization
# title: التكميم
# - local: main_classes/tokenizer
# title: برنامج مقسم النصوص
# - local: main_classes/trainer
# title: المدرب
# - local: main_classes/deepspeed
# title: DeepSpeed
# - local: main_classes/feature_extractor
# title: مستخرج الميزات
# - local: main_classes/image_processor
# title: معالج الصور
# title: الفئات الرئيسية
# - sections:
# - isExpanded: false
# sections:
# - local: model_doc/albert
# title: ALBERT
# - local: model_doc/bart
# title: BART
# - local: model_doc/barthez
# title: BARThez
# - local: model_doc/bartpho
# title: BARTpho
# - local: model_doc/bert
# title: BERT
# - local: model_doc/bert-generation
# title: BertGeneration
# - local: model_doc/bert-japanese
# title: BertJapanese
# - local: model_doc/bertweet
# title: Bertweet
# - local: model_doc/big_bird
# title: BigBird
# - local: model_doc/bigbird_pegasus
# title: BigBirdPegasus
# - local: model_doc/biogpt
# title: BioGpt
# - local: model_doc/blenderbot
# title: Blenderbot
# - local: model_doc/blenderbot-small
# title: Blenderbot Small
# - local: model_doc/bloom
# title: BLOOM
# - local: model_doc/bort
# title: BORT
# - local: model_doc/byt5
# title: ByT5
# - local: model_doc/camembert
# title: CamemBERT
# - local: model_doc/canine
# title: CANINE
# - local: model_doc/codegen
# title: CodeGen
# - local: model_doc/code_llama
# title: CodeLlama
# - local: model_doc/cohere
# title: Cohere
# - local: model_doc/convbert
# title: ConvBERT
# - local: model_doc/cpm
# title: CPM
# - local: model_doc/cpmant
# title: CPMANT
# - local: model_doc/ctrl
# title: CTRL
# - local: model_doc/dbrx
# title: DBRX
# - local: model_doc/deberta
# title: DeBERTa
# - local: model_doc/deberta-v2
# title: DeBERTa-v2
# - local: model_doc/dialogpt
# title: DialoGPT
# - local: model_doc/distilbert
# title: DistilBERT
# - local: model_doc/dpr
# title: DPR
# - local: model_doc/electra
# title: ELECTRA
# - local: model_doc/encoder-decoder
# title: Encoder Decoder Models
# - local: model_doc/ernie
# title: ERNIE
# - local: model_doc/ernie_m
# title: ErnieM
# - local: model_doc/esm
# title: ESM
# - local: model_doc/falcon
# title: Falcon
# - local: model_doc/fastspeech2_conformer
# title: FastSpeech2Conformer
# - local: model_doc/flan-t5
# title: FLAN-T5
# - local: model_doc/flan-ul2
# title: FLAN-UL2
# - local: model_doc/flaubert
# title: FlauBERT
# - local: model_doc/fnet
# title: FNet
# - local: model_doc/fsmt
# title: FSMT
# - local: model_doc/funnel
# title: Funnel Transformer
# - local: model_doc/fuyu
# title: Fuyu
# - local: model_doc/gemma
# title: Gemma
# - local: model_doc/openai-gpt
# title: GPT
# - local: model_doc/gpt_neo
# title: GPT Neo
# - local: model_doc/gpt_neox
# title: GPT NeoX
# - local: model_doc/gpt_neox_japanese
# title: GPT NeoX Japanese
# - local: model_doc/gptj
# title: GPT-J
# - local: model_doc/gpt2
# title: GPT2
# - local: model_doc/gpt_bigcode
# title: GPTBigCode
# - local: model_doc/gptsan-japanese
# title: GPTSAN Japanese
# - local: model_doc/gpt-sw3
# title: GPTSw3
# - local: model_doc/herbert
# title: HerBERT
# - local: model_doc/ibert
# title: I-BERT
# - local: model_doc/jamba
# title: Jamba
# - local: model_doc/jetmoe
# title: JetMoe
# - local: model_doc/jukebox
# title: Jukebox
# - local: model_doc/led
# title: LED
# - local: model_doc/llama
# title: LLaMA
# - local: model_doc/llama2
# title: Llama2
# - local: model_doc/llama3
# title: Llama3
# - local: model_doc/longformer
# title: Longformer
# - local: model_doc/longt5
# title: LongT5
# - local: model_doc/luke
# title: LUKE
# - local: model_doc/m2m_100
# title: M2M100
# - local: model_doc/madlad-400
# title: MADLAD-400
# - local: model_doc/mamba
# title: Mamba
# - local: model_doc/marian
# title: MarianMT
# - local: model_doc/markuplm
# title: MarkupLM
# - local: model_doc/mbart
# title: MBart and MBart-50
# - local: model_doc/mega
# title: MEGA
# - local: model_doc/megatron-bert
# title: MegatronBERT
# - local: model_doc/megatron_gpt2
# title: MegatronGPT2
# - local: model_doc/mistral
# title: Mistral
# - local: model_doc/mixtral
# title: Mixtral
# - local: model_doc/mluke
# title: mLUKE
# - local: model_doc/mobilebert
# title: MobileBERT
# - local: model_doc/mpnet
# title: MPNet
# - local: model_doc/mpt
# title: MPT
# - local: model_doc/mra
# title: MRA
# - local: model_doc/mt5
# title: MT5
# - local: model_doc/mvp
# title: MVP
# - local: model_doc/nezha
# title: NEZHA
# - local: model_doc/nllb
# title: NLLB
# - local: model_doc/nllb-moe
# title: NLLB-MoE
# - local: model_doc/nystromformer
# title: Nyströmformer
# - local: model_doc/olmo
# title: OLMo
# - local: model_doc/open-llama
# title: Open-Llama
# - local: model_doc/opt
# title: OPT
# - local: model_doc/pegasus
# title: Pegasus
# - local: model_doc/pegasus_x
# title: PEGASUS-X
# - local: model_doc/persimmon
# title: Persimmon
# - local: model_doc/phi
# title: Phi
# - local: model_doc/phi3
# title: Phi-3
# - local: model_doc/phobert
# title: PhoBERT
# - local: model_doc/plbart
# title: PLBart
# - local: model_doc/prophetnet
# title: ProphetNet
# - local: model_doc/qdqbert
# title: QDQBert
# - local: model_doc/qwen2
# title: Qwen2
# - local: model_doc/qwen2_moe
# title: Qwen2MoE
# - local: model_doc/rag
# title: RAG
# - local: model_doc/realm
# title: REALM
# - local: model_doc/recurrent_gemma
# title: RecurrentGemma
# - local: model_doc/reformer
# title: Reformer
# - local: model_doc/rembert
# title: RemBERT
# - local: model_doc/retribert
# title: RetriBERT
# - local: model_doc/roberta
# title: RoBERTa
# - local: model_doc/roberta-prelayernorm
# title: RoBERTa-PreLayerNorm
# - local: model_doc/roc_bert
# title: RoCBert
# - local: model_doc/roformer
# title: RoFormer
# - local: model_doc/rwkv
# title: RWKV
# - local: model_doc/splinter
# title: Splinter
# - local: model_doc/squeezebert
# title: SqueezeBERT
# - local: model_doc/stablelm
# title: StableLm
# - local: model_doc/starcoder2
# title: Starcoder2
# - local: model_doc/switch_transformers
# title: SwitchTransformers
# - local: model_doc/t5
# title: T5
# - local: model_doc/t5v1.1
# title: T5v1.1
# - local: model_doc/tapex
# title: TAPEX
# - local: model_doc/transfo-xl
# title: Transformer XL
# - local: model_doc/ul2
# title: UL2
# - local: model_doc/umt5
# title: UMT5
# - local: model_doc/xmod
# title: X-MOD
# - local: model_doc/xglm
# title: XGLM
# - local: model_doc/xlm
# title: XLM
# - local: model_doc/xlm-prophetnet
# title: XLM-ProphetNet
# - local: model_doc/xlm-roberta
# title: XLM-RoBERTa
# - local: model_doc/xlm-roberta-xl
# title: XLM-RoBERTa-XL
# - local: model_doc/xlm-v
# title: XLM-V
# - local: model_doc/xlnet
# title: XLNet
# - local: model_doc/yoso
# title: YOSO
# title: Text models
# - isExpanded: false
# sections:
# - local: model_doc/beit
# title: BEiT
# - local: model_doc/bit
# title: BiT
# - local: model_doc/conditional_detr
# title: Conditional DETR
# - local: model_doc/convnext
# title: ConvNeXT
# - local: model_doc/convnextv2
# title: ConvNeXTV2
# - local: model_doc/cvt
# title: CVT
# - local: model_doc/deformable_detr
# title: Deformable DETR
# - local: model_doc/deit
# title: DeiT
# - local: model_doc/depth_anything
# title: Depth Anything
# - local: model_doc/deta
# title: DETA
# - local: model_doc/detr
# title: DETR
# - local: model_doc/dinat
# title: DiNAT
# - local: model_doc/dinov2
# title: DINOV2
# - local: model_doc/dit
# title: DiT
# - local: model_doc/dpt
# title: DPT
# - local: model_doc/efficientformer
# title: EfficientFormer
# - local: model_doc/efficientnet
# title: EfficientNet
# - local: model_doc/focalnet
# title: FocalNet
# - local: model_doc/glpn
# title: GLPN
# - local: model_doc/imagegpt
# title: ImageGPT
# - local: model_doc/levit
# title: LeViT
# - local: model_doc/mask2former
# title: Mask2Former
# - local: model_doc/maskformer
# title: MaskFormer
# - local: model_doc/mobilenet_v1
# title: MobileNetV1
# - local: model_doc/mobilenet_v2
# title: MobileNetV2
# - local: model_doc/mobilevit
# title: MobileViT
# - local: model_doc/mobilevitv2
# title: MobileViTV2
# - local: model_doc/nat
# title: NAT
# - local: model_doc/poolformer
# title: PoolFormer
# - local: model_doc/pvt
# title: Pyramid Vision Transformer (PVT)
# - local: model_doc/pvt_v2
# title: Pyramid Vision Transformer v2 (PVTv2)
# - local: model_doc/regnet
# title: RegNet
# - local: model_doc/resnet
# title: ResNet
# - local: model_doc/segformer
# title: SegFormer
# - local: model_doc/seggpt
# title: SegGpt
# - local: model_doc/superpoint
# title: SuperPoint
# - local: model_doc/swiftformer
# title: SwiftFormer
# - local: model_doc/swin
# title: Swin Transformer
# - local: model_doc/swinv2
# title: Swin Transformer V2
# - local: model_doc/swin2sr
# title: Swin2SR
# - local: model_doc/table-transformer
# title: Table Transformer
# - local: model_doc/upernet
# title: UperNet
# - local: model_doc/van
# title: VAN
# - local: model_doc/vit
# title: Vision Transformer (ViT)
# - local: model_doc/vit_hybrid
# title: ViT Hybrid
# - local: model_doc/vitdet
# title: ViTDet
# - local: model_doc/vit_mae
# title: ViTMAE
# - local: model_doc/vitmatte
# title: ViTMatte
# - local: model_doc/vit_msn
# title: ViTMSN
# - local: model_doc/yolos
# title: YOLOS
# title: Vision models
# - isExpanded: false
# sections:
# - local: model_doc/audio-spectrogram-transformer
# title: Audio Spectrogram Transformer
# - local: model_doc/bark
# title: Bark
# - local: model_doc/clap
# title: CLAP
# - local: model_doc/encodec
# title: EnCodec
# - local: model_doc/hubert
# title: Hubert
# - local: model_doc/mctct
# title: MCTCT
# - local: model_doc/mms
# title: MMS
# - local: model_doc/musicgen
# title: MusicGen
# - local: model_doc/musicgen_melody
# title: MusicGen Melody
# - local: model_doc/pop2piano
# title: Pop2Piano
# - local: model_doc/seamless_m4t
# title: Seamless-M4T
# - local: model_doc/seamless_m4t_v2
# title: SeamlessM4T-v2
# - local: model_doc/sew
# title: SEW
# - local: model_doc/sew-d
# title: SEW-D
# - local: model_doc/speech_to_text
# title: Speech2Text
# - local: model_doc/speech_to_text_2
# title: Speech2Text2
# - local: model_doc/speecht5
# title: SpeechT5
# - local: model_doc/unispeech
# title: UniSpeech
# - local: model_doc/unispeech-sat
# title: UniSpeech-SAT
# - local: model_doc/univnet
# title: UnivNet
# - local: model_doc/vits
# title: VITS
# - local: model_doc/wav2vec2
# title: Wav2Vec2
# - local: model_doc/wav2vec2-bert
# title: Wav2Vec2-BERT
# - local: model_doc/wav2vec2-conformer
# title: Wav2Vec2-Conformer
# - local: model_doc/wav2vec2_phoneme
# title: Wav2Vec2Phoneme
# - local: model_doc/wavlm
# title: WavLM
# - local: model_doc/whisper
# title: Whisper
# - local: model_doc/xls_r
# title: XLS-R
# - local: model_doc/xlsr_wav2vec2
# title: XLSR-Wav2Vec2
# title: Audio models
# - isExpanded: false
# sections:
# - local: model_doc/timesformer
# title: TimeSformer
# - local: model_doc/videomae
# title: VideoMAE
# - local: model_doc/vivit
# title: ViViT
# title: Video models
# - isExpanded: false
# sections:
# - local: model_doc/align
# title: ALIGN
# - local: model_doc/altclip
# title: AltCLIP
# - local: model_doc/blip
# title: BLIP
# - local: model_doc/blip-2
# title: BLIP-2
# - local: model_doc/bridgetower
# title: BridgeTower
# - local: model_doc/bros
# title: BROS
# - local: model_doc/chinese_clip
# title: Chinese-CLIP
# - local: model_doc/clip
# title: CLIP
# - local: model_doc/clipseg
# title: CLIPSeg
# - local: model_doc/clvp
# title: CLVP
# - local: model_doc/data2vec
# title: Data2Vec
# - local: model_doc/deplot
# title: DePlot
# - local: model_doc/donut
# title: Donut
# - local: model_doc/flava
# title: FLAVA
# - local: model_doc/git
# title: GIT
# - local: model_doc/grounding-dino
# title: Grounding DINO
# - local: model_doc/groupvit
# title: GroupViT
# - local: model_doc/idefics
# title: IDEFICS
# - local: model_doc/idefics2
# title: Idefics2
# - local: model_doc/instructblip
# title: InstructBLIP
# - local: model_doc/kosmos-2
# title: KOSMOS-2
# - local: model_doc/layoutlm
# title: LayoutLM
# - local: model_doc/layoutlmv2
# title: LayoutLMV2
# - local: model_doc/layoutlmv3
# title: LayoutLMV3
# - local: model_doc/layoutxlm
# title: LayoutXLM
# - local: model_doc/lilt
# title: LiLT
# - local: model_doc/llava
# title: Llava
# - local: model_doc/llava_next
# title: LLaVA-NeXT
# - local: model_doc/lxmert
# title: LXMERT
# - local: model_doc/matcha
# title: MatCha
# - local: model_doc/mgp-str
# title: MGP-STR
# - local: model_doc/nougat
# title: Nougat
# - local: model_doc/oneformer
# title: OneFormer
# - local: model_doc/owlvit
# title: OWL-ViT
# - local: model_doc/owlv2
# title: OWLv2
# - local: model_doc/paligemma
# title: PaliGemma
# - local: model_doc/perceiver
# title: Perceiver
# - local: model_doc/pix2struct
# title: Pix2Struct
# - local: model_doc/sam
# title: Segment Anything
# - local: model_doc/siglip
# title: SigLIP
# - local: model_doc/speech-encoder-decoder
# title: Speech Encoder Decoder Models
# - local: model_doc/tapas
# title: TAPAS
# - local: model_doc/trocr
# title: TrOCR
# - local: model_doc/tvlt
# title: TVLT
# - local: model_doc/tvp
# title: TVP
# - local: model_doc/udop
# title: UDOP
# - local: model_doc/video_llava
# title: VideoLlava
# - local: model_doc/vilt
# title: ViLT
# - local: model_doc/vipllava
# title: VipLlava
# - local: model_doc/vision-encoder-decoder
# title: Vision Encoder Decoder Models
# - local: model_doc/vision-text-dual-encoder
# title: Vision Text Dual Encoder
# - local: model_doc/visual_bert
# title: VisualBERT
# - local: model_doc/xclip
# title: X-CLIP
# title: Multimodal models
# - isExpanded: false
# sections:
# - local: model_doc/decision_transformer
# title: محول القرار
# - local: model_doc/trajectory_transformer
# title: محول المسار
# title: نماذج التعلم التعزيزية
# - isExpanded: false
# sections:
# - local: model_doc/autoformer
# title: Autoformer
# - local: model_doc/informer
# title: Informer
# - local: model_doc/patchtsmixer
# title: PatchTSMixer
# - local: model_doc/patchtst
# title: PatchTST
# - local: model_doc/time_series_transformer
# title: محول السلاسل الزمنية
# title: نماذج السلاسل الزمنية
# - isExpanded: false
# sections:
# - local: model_doc/graphormer
# title: Graphormer
# title: نماذج الرسم البياني
# title: النماذج
# - sections:
# - local: internal/modeling_utils
# title: الطبقات المخصصة والمرافق
# - local: internal/pipelines_utils
# title: مرافق خطوط الأنابيب
# - local: internal/tokenization_utils
# title: مرافق مقسم النصوص
# - local: internal/trainer_utils
# title: مرافق المدرب
# - local: internal/generation_utils
# title: مرافق التوليد
# - local: internal/image_processing_utils
# title: مرافق معالجة الصور
# - local: internal/audio_utils
# title: مرافق معالجة الصوت
# - local: internal/file_utils
# title: مرافق عامة
# - local: internal/time_series_utils
# title: مرافق السلاسل الزمنية
# title: مساعدون داخليون
# title: API

View File

@ -1,120 +0,0 @@
# التدريب الموزع باستخدام 🤗 Accelerate
مع تزايد حجم النماذج اللغوية، برز التوازي كأحد الاستراتيجيات لتدريب نماذج أكبر على أجهزة محدودة وتسريع عملية التدريب بمقدار كبير. أنشأنا في Hugging Face، قمنا بإنشاء مكتبة [ Accelerate](https://huggingface.co/docs/accelerate) لمساعدة المستخدمين على تدريب أي نموذج من Transformers بسهولة على أي نوع من الإعدادات الموزعة، سواء كان ذلك على عدة وحدات معالجة رسومات (GPUs) على جهاز واحد أو على عدة وحدات معالجة رسومات موزعة على عدة أجهزة. في هذا الدليل، تعلم كيفية تخصيص حلقة تدريب PyTorch الأصلية لتمكين التدريب في بيئة موزعة.
## الإعداد
ابدأ بتثبيت 🤗 Accelerate:
```bash
pip install accelerate
```
ثم قم باستيراد وإنشاء كائن [`~accelerate.Accelerator`]. سيقوم [`~accelerate.Accelerator`] تلقائيًا باكتشاف نوع الإعداد الموزع الخاص بك وتهيئة جميع المكونات اللازمة للتدريب. لن تحتاج إلى وضع نموذجك على جهاز بشكل معين.
```py
>>> from accelerate import Accelerator
>>> accelerator = Accelerator()
```
## الاستعداد للتسريع
الخطوة التالية هي تمرير جميع كائنات التدريب ذات الصلة إلى دالة الإعداد [`~accelerate.Accelerator.prepare`]. ويشمل ذلك DataLoaders للتدريب والتقييم، ونموذجًا ومُحَسِّنً المعاملات (optimizer):
```py
>>> train_dataloader, eval_dataloader, model, optimizer = accelerator.prepare(
... train_dataloader, eval_dataloader, model, optimizer
... )
```
## الخلفي Backward
الإضافة الأخيرة هي استبدال الدالة المعتادة `loss.backward()` في حلقة التدريب الخاصة بك بدالة [`~accelerate.Accelerator.backward`] في 🤗 Accelerate:
```py
>>> for epoch in range(num_epochs):
... for batch in train_dataloader:
... outputs = model(**batch)
... loss = outputs.loss
... accelerator.backward(loss)
... optimizer.step()
... lr_scheduler.step()
... optimizer.zero_grad()
... progress_bar.update(1)
```
كما يمكنك أن ترى في الكود التالي، فأنت بحاجة فقط إلى إضافة أربعة أسطر من الكود إلى حلقة التدريب الخاصة بك لتمكين التدريب الموزع!
```diff
+ from accelerate import Accelerator
from transformers import AdamW, AutoModelForSequenceClassification, get_scheduler
+ accelerator = Accelerator()
model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2)
optimizer = AdamW(model.parameters(), lr=3e-5)
- device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
- model.to(device)
+ train_dataloader, eval_dataloader, model, optimizer = accelerator.prepare(
+ train_dataloader, eval_dataloader, model, optimizer
+ )
num_epochs = 3
num_training_steps = num_epochs * len(train_dataloader)
lr_scheduler = get_scheduler(
"linear",
optimizer=optimizer,
num_warmup_steps=0,
num_training_steps=num_training_steps
)
progress_bar = tqdm(range(num_training_steps))
model.train()
for epoch in range(num_epochs):
for batch in train_dataloader:
- batch = {k: v.to(device) for k, v in batch.items()}
outputs = model(**batch)
loss = outputs.loss
- loss.backward()
+ accelerator.backward(loss)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
progress_bar.update(1)
```
## تدريب
بمجرد إضافة أسطر الكود ذات الصلة، قم بتشغيل التدريب الخاص بك في أحد النصوص أو الدفاتر مثل Colaboratory.
### التدريب باستخدام نص برمجي
إذا كنت تشغل التدريب الخاص بك من نص برمجي، فقم بتشغيل الأمر التالي لإنشاء وحفظ ملف تكوين:
```bash
accelerate config
```
ثم قم بتشغيل التدريب الخاص بك باستخدام:
```bash
accelerate launch train.py
```
### التدريب باستخدام دفتر ملاحظات
يمكن أيضًا تشغيل 🤗 Accelerate في دفاتر إذا كنت تخطط لاستخدام وحدات معالجة الرسوميات (TPUs) في Colaboratory. قم بتغليف كل الكود المسؤول عن التدريب في دالة، ومررها إلى [`~accelerate.notebook_launcher`]:
```py
>>> from accelerate import notebook_launcher
>>> notebook_launcher(training_function)
```
للحصول على مزيد من المعلومات حول 🤗 Accelerate وميزاته الغنية، يرجى الرجوع إلى [الوثائق](https://huggingface.co/docs/accelerate).

View File

@ -1,539 +0,0 @@
# الوكلاء والأدوات
[[open-in-colab]]
### ما هو الوكيل؟
يمكن للنظم اللغوية الكبيرة (LLMs) التي تم تدريبها على أداء [نمذجة اللغة السببية](./tasks/language_modeling.) التعامل مع مجموعة واسعة من المهام، ولكنها غالبًا ما تواجه صعوبات في المهام الأساسية مثل المنطق والحساب والبحث. وعندما يتم استدعاؤها في مجالات لا تؤدي فيها أداءً جيدًا، فإنها غالبًا ما تفشل في توليد الإجابة التي نتوقعها منها.
يتمثل أحد النهج للتغلب على هذا القصور في إنشاء "وكيل".
الوكيل هو نظام يستخدم LLM كمحرك له، ولديه حق الوصول إلى وظائف تسمى "أدوات".
هذه "الأدوات" هي وظائف لأداء مهمة، وتحتوي على جميع الأوصاف اللازمة للوكيل لاستخدامها بشكل صحيح.
يمكن برمجة الوكيل للقيام بما يلي:
- وضع سلسلة من الإجراءات/الأدوات وتشغيلها جميعًا في نفس الوقت مثل [`CodeAgent`] على سبيل المثال
- التخطيط للاجراءات/الأدوات وتنفيذها واحدة تلو الأخرى والانتظار حتى انتهاء كل إجراء قبل إطلاق التالي مثل [`ReactJsonAgent`] على سبيل المثال
### أنواع الوكلاء
#### الوكيل البرمجي (Code agent)
يتمتع هذا الوكيل يتبع خطوات محددة: أولًا، يخطط لسلسلة من الإجراءات التي يريد تنفيذها، ثم شفرة Python لتنفيذ جميع الإجراءات في نفس الوقت. وهو يتعامل بشكل أصلي مع أنواع مختلفة من المدخلات والمخرجات للأدوات التي يستخدمها، وبالتالي فهو الخيار الموصى به للمهام متعددة الوسائط.
#### وكلاء التفاعل
هذا هو الوكيل الذي يتم اللجوء إليه لحل مهام الاستدلال، حيث يجعل إطار ReAct ([Yao et al.، 2022](https://huggingface.co/papers/2210.03629)) من الكفاءة حقًا التفكير على أساس ملاحظاته السابقة.
نقوم بتنفيذ إصدارين من ReactJsonAgent:
- [`ReactJsonAgent`] يقوم بتوليد استدعاءات الأدوات كـ JSON في إخراجها.
- [`ReactCodeAgent`] هو نوع جديد من ReactJsonAgent يقوم بتوليد استدعاءات أدواته كمقاطع من التعليمات البرمجية، والتي تعمل بشكل جيد حقًا مع LLMs التي تتمتع بأداء قوي في البرمجة.
> [!TIP]
> اقرأ منشور المدونة [Open-source LLMs as LangChain Agents](https://huggingface.co/blog/open-source-llms-as-agents) لمعرفة المزيد عن وكيل ReAct.
![إطار عمل وكيل ReAct](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/blog/open-source-llms-as-agents/ReAct.png)
على سبيل المثال، إليك كيف يعمل وكيل ReAct Code طريقه من خلال السؤال التالي.
```py3
>>> agent.run(
... "How many more blocks (also denoted as layers) in BERT base encoder than the encoder from the architecture proposed in Attention is All You Need?",
... )
=====New task=====
How many more blocks (also denoted as layers) in BERT base encoder than the encoder from the architecture proposed in Attention is All You Need?
====Agent is executing the code below:
bert_blocks = search(query="number of blocks in BERT base encoder")
print("BERT blocks:", bert_blocks)
====
Print outputs:
BERT blocks: twelve encoder blocks
====Agent is executing the code below:
attention_layer = search(query="number of layers in Attention is All You Need")
print("Attention layers:", attention_layer)
====
Print outputs:
Attention layers: Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position- 2 Page 3 Figure 1: The Transformer - model architecture.
====Agent is executing the code below:
bert_blocks = 12
attention_layers = 6
diff = bert_blocks - attention_layers
print("Difference in blocks:", diff)
final_answer(diff)
====
Print outputs:
Difference in blocks: 6
Final answer: 6
```
### كيف يمكنني بناء وكيل؟
لتهيئة وكيل، تحتاج إلى هذه الوسائط:
- نموذج لغوي كبير (LLM) يشكل المحرك الأساسي للوكيل. الوكيل نفسه ليس النموذج اللغوي، بل هو برنامج يستخدم النموذج اللغوي كمحرك له.
- موجه النظام (system prompt): هذه هي التعليمات التي يتم إعطاؤها للنموذج اللغوي لإنشاء مخرجاته.
- صندوق أدوات (toolbox) يختار الوكيل منه الأدوات لتنفيذها
- محلل (parser) لاستخراج الأدوات التي يجب استدعاؤها من مخرجات النموذج اللغوي LLM والأدوات التي يجب استخدامها
عند تهيئة نظام الوكيل، يتم استخدام سمات الأداة لإنشاء وصف للأداة، ثم يتم دمجها في موجه النظام الخاص `system_prompt` للوكيل لإعلامه بالأدوات التي يمكنه استخدامها ولماذا.
للبدء، يرجى تثبيت `agents` الإضافية لتثبيت جميع التبعيات الافتراضية.
```bash
pip install transformers[agents]
```
قم ببناء محرك LLM الخاص بك من خلال تعريف طريقة `llm_engine` التي تقبل قائمة من [الرسائل](./chat_templating.) وتعيد النص. يجب أن تقبل هذه الدالة القابلة للاستدعاء أيضًا معامل `stop` يشير إلى متى يجب التوقف عن التوليد.
```python
from huggingface_hub import login, InferenceClient
login("<YOUR_HUGGINGFACEHUB_API_TOKEN>")
client = InferenceClient(model="meta-llama/Meta-Llama-3-70B-Instruct")
def llm_engine(messages, stop_sequences=["Task"]) -> str:
response = client.chat_completion(messages, stop=stop_sequences, max_tokens=1000)
answer = response.choices[0].message.content
return answer
```
يمكنك استخدام أي طريقة `llm_engine` طالما أنها:
1. يتبع تنسيق [رسائل](./chat_templating.md) لإدخاله (`List [Dict [str، str]]`) ويعيد `str`
2. يتوقف عن توليد المخراجات من التسلسلات التي تم تمريرها في معامل `stop`
أنت بحاجة أيضًا إلى معامل "الأدوات" الذي يقبل قائمة من "الأدوات". يمكنك توفير قائمة فارغة لـ "الأدوات"، ولكن استخدم صندوق الأدوات الافتراضي مع معامل اختياري `add_base_tools=True`.
الآن يمكنك إنشاء وكيل، مثل [`CodeAgent`], وتشغيله. ولتسهيل الأمر، نقدم أيضًا فئة [`HfEngine`] التي تستخدم `huggingface_hub.InferenceClient` بشكل مخفى.
```python
from transformers import CodeAgent, HfEngine
llm_engine = HfEngine(model="meta-llama/Meta-Llama-3-70B-Instruct")
agent = CodeAgent(tools=[], llm_engine=llm_engine, add_base_tools=True)
agent.run(
"Could you translate this sentence from French, say it out loud and return the audio.",
sentence="Où est la boulangerie la plus proche?",
)
```
هذه الميزة ستكون مفيدة في حالة الحاجة الملحة! يمكنك حتى ترك معامل `llm_engine` غير محدد، وسيتم إنشاء [`HfEngine`] بشكل تلقائي.
```python
from transformers import CodeAgent
agent = CodeAgent(tools=[], add_base_tools=True)
agent.run(
"Could you translate this sentence from French, say it out loud and give me the audio.",
sentence="Où est la boulangerie la plus proche?",
)
```
لاحظ أننا استخدمنا معامل "sentence" إضافي: يمكنك تمرير النص كمعامل إضافي إلى النموذج.
يمكنك أيضًا استخدام هذا للإشارة إلى مسار الملفات المحلية أو البعيدة للنموذج لاستخدامها:
```py
from transformers import ReactCodeAgent
agent = ReactCodeAgent(tools=[], llm_engine=llm_engine, add_base_tools=True)
agent.run("Why does Mike not know many people in New York?", audio="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/recording.mp3")
```
تم تحديد موجه النظام ومحلل المخرجات تلقائيًا، ولكن يمكنك فحصهما بسهولة عن طريق استدعاء `system_prompt_template` على وكيلك.
```python
print(agent.system_prompt_template)
```
من المهم أن تشرح بأكبر قدر ممكن من الوضوح المهمة التي تريد تنفيذها.
كل عملية [`~Agent.run`] مستقلة، وبما أن الوكيل مدعوم من LLM، فقد تؤدي الاختلافات الطفيفة في موجهك إلى نتائج مختلفة تمامًا.
يمكنك أيضًا تشغيل وكيل بشكل متتالي لمهام مختلفة: في كل مرة يتم فيها إعادة تهيئة سمتي `agent.task` و`agent.logs`.
#### تنفيذ التعليمات البرمجية
يقوم مفسر Python بتنفيذ التعليمات البرمجية على مجموعة من المدخلات التي يتم تمريرها جنبًا إلى جنب مع أدواتك.
يجب أن يكون هذا الأمر آمنًا لأن الوظائف الوحيدة التي يمكن استدعاؤها هي الأدوات التي قدمتها (خاصة إذا كانت أدوات من Hugging Face فقط) ووظيفة الطباعة، لذا فأنت مقيد بالفعل بما يمكن تنفيذه.
مفسر Python لا يسمح أيضًا باستدعاء دوال بشكل افتراضي خارج قائمة آمنة، لذا فإن جميع الهجمات الأكثر وضوحًا لا ينبغي أن تكون مشكلة.
يمكنك أيضًا الإذن باستيرادات إضافية عن طريق تمرير الوحدات النمطية المصرح بها كقائمة من السلاسل في معامل `additional_authorized_imports` عند تهيئة [`ReactCodeAgent`] أو [`CodeAgent`]:
```py
>>> from transformers import ReactCodeAgent
>>> agent = ReactCodeAgent(tools=[], additional_authorized_imports=['requests', 'bs4'])
>>> agent.run("Could you get me the title of the page at url 'https://huggingface.co/blog'?")
(...)
'Hugging Face Blog'
```
سيتم إيقاف التنفيذ عند أي رمز يحاول تنفيذ عملية غير قانونية أو إذا كان هناك خطأ Python عادي في التعليمات البرمجية التي تم إنشاؤها بواسطة الوكيل.
> [!WARNING]
> يمكن لـ LLM توليد شفرة برمجية عشوائية سيتم تنفيذها بعد ذلك: لا تقمب استدعاء أى دوال غير آمنة!
### موجه النظام
ينشئ الوكيل، أو بالأحرى LLM الذي يقود الوكيل، يولد مخرجات بناءً على موجه النظام. يمكن تخصيص موجه النظام وتصميمه للمهام المقصودة. على سبيل المثال، تحقق من موجه النظام لـ [`ReactCodeAgent`] (الإصدار أدناه مبسط قليلاً).
```text
You will be given a task to solve as best you can.
You have access to the following tools:
<<tool_descriptions>>
To solve the task, you must plan forward to proceed in a series of steps, in a cycle of 'Thought:', 'Code:', and 'Observation:' sequences.
At each step, in the 'Thought:' sequence, you should first explain your reasoning towards solving the task, then the tools that you want to use.
Then in the 'Code:' sequence, you shold write the code in simple Python. The code sequence must end with '/End code' sequence.
During each intermediate step, you can use 'print()' to save whatever important information you will then need.
These print outputs will then be available in the 'Observation:' field, for using this information as input for the next step.
In the end you have to return a final answer using the `final_answer` tool.
Here are a few examples using notional tools:
---
{examples}
Above example were using notional tools that might not exist for you. You only have acces to those tools:
<<tool_names>>
You also can perform computations in the python code you generate.
Always provide a 'Thought:' and a 'Code:\n```py' sequence ending with '```<end_code>' sequence. You MUST provide at least the 'Code:' sequence to move forward.
Remember to not perform too many operations in a single code block! You should split the task into intermediate code blocks.
Print results at the end of each step to save the intermediate results. Then use final_answer() to return the final result.
Remember to make sure that variables you use are all defined.
Now Begin!
```
يتضمن موجه النظام:
- *مقدمة* تشرح كيف يجب أن يتصرف الوكيل والأدوات التي يجب عليه استخدامها.
- وصف لجميع الأدوات التي يتم تحديدها بواسطة رمز `<<tool_descriptions>>` الذي يتم استبداله ديناميكيًا في وقت التشغيل بالأدوات التي يحددها المستخدم أو يختارها.
- يأتي وصف الأداة من سمات الأداة، `name`، و`description`، و`inputs` و`output_type`، وقالب `jinja2` بسيط يمكنك تحسينه.
- شكل المخرج المتوقع.
يمكنك تحسين موجه النظام، على سبيل المثال، عن طريق إضافة شرح لتنسيق المخرجات.
للحصول على أقصى قدر من المرونة، يمكنك الكتابة فوق قالب موجه النظام بالكامل عن طريق تمرير موجه مخصص كمعامل إلى معلمة `system_prompt`.
```python
from transformers import ReactJsonAgent
from transformers.agents import PythonInterpreterTool
agent = ReactJsonAgent(tools=[PythonInterpreterTool()], system_prompt="{your_custom_prompt}")
```
> [!WARNING]
> يرجى التأكد من تحديد سلسلة `<<tool_descriptions>>` في مكان ما في `template` حتى يكون الوكيل على علم
بالأدوات المتاحة.
### فحص تشغيل الوكيل
فيما يلي بعض السمات المفيدة لفحص ما حدث بعد التشغيل:
- تخزن `agent.logs` سجلات مفصلة للوكيل. في كل خطوة من تشغيل الوكيل، يتم تخزين كل شيء في قاموس إلحاقه بـ `agent.logs`.
- تشغيل `agent.write_inner_memory_from_logs()` يخلق ذاكرة داخلية لسجلات الوكيل للنظام LLM لعرضها، كقائمة من رسائل الدردشة. تنتقل هذه الطريقة عبر كل خطوة من سجل الوكيل ولا تخزن سوى ما يهمها كرسالة: على سبيل المثال، سيحفظ موجه النظام والمهمة في رسائل منفصلة، ثم لكل خطوة سيخزن مخرج LLM كرسالة، ومخرج استدعاء الأداة كرسالة أخرى. استخدم هذا إذا كنت تريد عرضًا عامًا لما حدث - ولكن لن يتم نسخ كل سجل بواسطة هذه الطريقة.
## الأدوات
الأداة هي عبارة عن وظيفة أساسية يستخدمها الوكيل لتنفيذ مهمة محددة.
يمكنك على سبيل المثال التحقق من [`PythonInterpreterTool`]: لديه اسم ووصف ووصف للمدخلات ونوع للمخرج، وطريقة `__call__` التي تقوم بتنفيذ المهمة المطلوبة.
عند تهيئة الوكيل، يتم استخدام سمات الأداة لتوليد وصف للأداة يتم تضمينه في موجه النظام الخاص بالوكيل. يتيح هذا للوكيل معرفة الأدوات التي يمكنه استخدامها ولماذا.
### صندوق الأدوات الافتراضي
يأتي Transformers مع صندوق أدوات افتراضي لتمكين الوكلاء، والذي يمكنك إضافته إلى وكيلك عند التهيئة باستخدام معامل `add_base_tools = True`:
- **الإجابة على أسئلة المستند**: الإجابة على سؤال حول المستند (مثل ملف PDF) بتنسيق صورة ([Donut](./model_doc/donut))
- **الإجابة على أسئلة الصور**: الإجابة على سؤال حول صورة ([VILT](./model_doc/vilt))
- **التحدث إلى النص**: قم بتفريغ الكلام إلى نص ([Whisper](./model_doc/whisper))
- **النص إلى كلام**: تحويل النص إلى كلام ([SpeechT5](./model_doc/speecht5))
- **الترجمة**: ترجمة جملة معينة من لغة المصدر إلى لغة الهدف.
- **مفسر كود Python**: تشغيل كود Python الذي تم إنشاؤه بواسطة LLM في بيئة آمنة. لن يتم إضافة هذه الأداة إلى [`ReactJsonAgent`] إلا إذا استخدمت `add_base_tools=True`، نظرًا لأن الأدوات المستندة إلى التعليمات البرمجية يمكنها بالفعل تنفيذ كود Python
لا تترجم النصوص الخاصة ولا الأكواد البرمجية ولا الروابط ولا رموز HTML وCSS:
يمكنك استخدام أداة يدويًا عن طريق استدعاء دالة [`load_tool`] وتحديد مهمة لتنفيذها.
```python
from transformers import load_tool
tool = load_tool("text-to-speech")
audio = tool("This is a text to speech tool")
```
### إنشاء أداة جديدة
يمكنك إنشاء أداتك الخاصة لتغطية حالات الاستخدام التي لا تغطيها الأدوات الافتراضية من Hugging Face.
على سبيل المثال، دعنا نقوم بإنشاء أداة تعرض النموذج الأكثر تنزيلًا لمهمة معينة من Hub.
سوف نبدأ بالكود التالي.
```python
from huggingface_hub import list_models
task = "text-classification"
model = next(iter(list_models(filter=task, sort="downloads", direction=-1)))
print(model.id)
```
يمكن تحويل هذه الشيفرة إلى فئة ترث من الفئة العليا [`Tool`].
تحتاج الأداة المخصصة إلى:
- اسم `name`، والتي تمثل اسم الأداة نفسها. عادةً ما يصف الاسم وظيفتها. بما أن الكود يعيد النموذج الأكثر تنزيلًا لمهمة ما، فلنسمها `model_download_counter`.
- تستخدم خاصية `description` لملء موجه نظام الوكيل.
- خاصية `inputs`، والتي هي عبارة عن قاموس بمفاتيح "type" و"description". يحتوي على معلومات تساعد المفسر Python على اتخاذ خيارات مستنيرة بشأن المدخلات.
- خاصية `output_type`، والتي تحدد نوع المخرج.
- طريقة `forward` والتي تحتوي على الكود الذي سيتم تنفيذه للحصول على النتيجة النهائية.
```python
from transformers import Tool
from huggingface_hub import list_models
class HFModelDownloadsTool(Tool):
name = "model_download_counter"
description = (
"This is a tool that returns the most downloaded model of a given task on the Hugging Face Hub. "
"It returns the name of the checkpoint."
)
inputs = {
"task": {
"type": "text",
"description": "the task category (such as text-classification, depth-estimation, etc)",
}
}
output_type = "text"
def forward(self, task: str):
model = next(iter(list_models(filter=task, sort="downloads", direction=-1)))
return model.id
```
الآن بعد أن أصبحت فئة `HfModelDownloadsTool` المخصصة جاهزة، يمكنك حفظها في ملف باسم `model_downloads.py` واستيرادها للاستخدام.
```python
from model_downloads import HFModelDownloadsTool
tool = HFModelDownloadsTool()
```
يمكنك أيضًا مشاركة أداتك المخصصة في Hub عن طريق استدعاء [`~Tool.push_to_hub`] على الأداة. تأكد من أنك قمت بإنشاء مستودع لها على Hub وأنك تستخدم رمز وصول للقراءة.
```python
tool.push_to_hub("{your_username}/hf-model-downloads")
```
قم بتحميل الأداة باستخدام دالة [`~Tool.load_tool`] ومررها إلى معلمة `tools` في الوكيل الخاص بك.
```python
from transformers import load_tool, CodeAgent
model_download_tool = load_tool("m-ric/hf-model-downloads")
agent = CodeAgent(tools=[model_download_tool], llm_engine=llm_engine)
agent.run(
"Can you give me the name of the model that has the most downloads in the 'text-to-video' task on the Hugging Face Hub?"
)
```
ستحصل على ما يلي:
```text
======== New task ========
Can you give me the name of the model that has the most downloads in the 'text-to-video' task on the Hugging Face Hub?
==== Agent is executing the code below:
most_downloaded_model = model_download_counter(task="text-to-video")
print(f"The most downloaded model for the 'text-to-video' task is {most_downloaded_model}.")
====
```
والناتج:
`"النموذج الأكثر تنزيلًا لمهمة `text-to-video` هو ByteDance/AnimateDiff-Lightning."`
### إدارة صندوق أدوات الوكيل الخاص بك
إذا كنت قد قمت بتهيئة وكيل، فمن غير الملائم إعادة تهيئته من البداية لإضافة أداة جديدة ترغب في استخدامها. باستخدام مكتبة Transformers، يمكنك إدارة صندوق أدوات الوكيل بإضافة أو استبدال أداة موجودة.
دعنا نضيف الأداة `model_download_tool` إلى وكيل تم تهيئته مسبقًا باستخدام صندوق الأدوات الافتراضي.
```python
from transformers import CodeAgent
agent = CodeAgent(tools=[], llm_engine=llm_engine, add_base_tools=True)
agent.toolbox.add_tool(model_download_tool)
```
الآن يمكننا الاستفادة من الأداة الجديدة وأداة تحويل النص إلى كلام السابقة:
```python
agent.run(
"Can you read out loud the name of the model that has the most downloads in the 'text-to-video' task on the Hugging Face Hub and return the audio?"
)
```
| **Audio** |
|------------------------------------------------------------------------------------------------------------------------------------------------------|
| <audio controls><source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/damo.wav" type="audio/wav"/> |
> [!WARNING]
> احترس عند إضافة أدوات إلى وكيل يعمل بالفعل لأنه يمكن أن يؤثر على اختيار الأداة لصالح أداتك أو اختيار أداة أخرى غير المحددة بالفعل.
استخدم طريقة `agent.toolbox.update_tool()` لاستبدال أداة موجودة في صندوق أدوات الوكيل.
هذا مفيد إذا كانت أداتك الجديدة بديلاً مباشرًا للأداة الموجودة لأن الوكيل يعرف بالفعل كيفية تنفيذ تلك المهمة المحددة.
تأكد فقط من اتباع الأداة الجديدة لنفس واجهة برمجة التطبيقات (API) للأداة المستبدلة أو قم بتكييف قالب موجه النظام لضمان تحديث جميع الأمثلة التي تستخدم الأداة المستبدلة.
### استخدام مجموعة من الأدوات
يمكنك الاستفادة من مجموعات الأدوات باستخدام كائن ToolCollection، مع تحديد مجموعة الأدوات التي تريد استخدامها.
ثم قم بتمريرها كقائمة لتهيئة الوكيل الخاص بك، وبدء استخدامها!
```py
from transformers import ToolCollection, ReactCodeAgent
image_tool_collection = ToolCollection(collection_slug="huggingface-tools/diffusion-tools-6630bb19a942c2306a2cdb6f")
agent = ReactCodeAgent(tools=[*image_tool_collection.tools], add_base_tools=True)
agent.run("Please draw me a picture of rivers and lakes.")
```
لتسريع البداية، يتم تحميل الأدوات فقط إذا استدعاها الوكيل.
ستحصل على هذه الصورة:
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rivers_and_lakes.png" />
### استخدام gradio-tools
[gradio-tools](https://github.com/freddyaboulton/gradio-tools) هي مكتبة قوية تتيح استخدام Hugging
Face Spaces كأدوات. تدعم العديد من المساحات الموجودة بالإضافة إلى مساحات مخصصة.
تدعم مكتبة Transformers `gradio_tools` باستخدام طريقة [`Tool.from_gradio`] في الفئة. على سبيل المثال، دعنا نستخدم [`StableDiffusionPromptGeneratorTool`](https://github.com/freddyaboulton/gradio-tools/blob/main/gradio_tools/tools/prompt_generator.py) من مجموعة أدوات `gradio-tools` لتحسين المطالبات لإنشاء صور أفضل.
استورد وقم بتهيئة الأداة، ثم مررها إلى طريقة `Tool.from_gradio`:
```python
from gradio_tools import StableDiffusionPromptGeneratorTool
from transformers import Tool, load_tool, CodeAgent
gradio_prompt_generator_tool = StableDiffusionPromptGeneratorTool()
prompt_generator_tool = Tool.from_gradio(gradio_prompt_generator_tool)
```
الآن يمكنك استخدامه مثل أي أداة أخرى. على سبيل المثال، دعنا نحسن الموجه `a rabbit wearing a space suit`.
```python
image_generation_tool = load_tool('huggingface-tools/text-to-image')
agent = CodeAgent(tools=[prompt_generator_tool, image_generation_tool], llm_engine=llm_engine)
agent.run(
"Improve this prompt, then generate an image of it.", prompt='A rabbit wearing a space suit'
)
```
يستفيد النموذج بشكل كافٍ من الأداة:
```text
======== New task ========
Improve this prompt, then generate an image of it.
You have been provided with these initial arguments: {'prompt': 'A rabbit wearing a space suit'}.
==== Agent is executing the code below:
improved_prompt = StableDiffusionPromptGenerator(query=prompt)
while improved_prompt == "QUEUE_FULL":
improved_prompt = StableDiffusionPromptGenerator(query=prompt)
print(f"The improved prompt is {improved_prompt}.")
image = image_generator(prompt=improved_prompt)
====
```
قبل إنشاء الصورة أخيرًا:
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit_spacesuit_flux.webp" />
> [!WARNING]
> تتطلب gradio-tools إدخالات وإخراجات *نصية* حتى عند العمل مع طرائق مختلفة مثل كائنات الصور والصوت. الإدخالات والإخراجات الصورية والصوتية غير متوافقة حاليًا.
### استخدام أدوات LangChain
نحن نحب Langchain ونعتقد أنها تحتوي على مجموعة أدوات قوية للغاية.
لاستيراد أداة من LangChain، استخدم الطريقة `from_langchain()`.
فيما يلي كيفية استخدامها لإعادة إنشاء نتيجة البحث في المقدمة باستخدام أداة بحث الويب LangChain.
```python
from langchain.agents import load_tools
from transformers import Tool, ReactCodeAgent
search_tool = Tool.from_langchain(load_tools(["serpapi"])[0])
agent = ReactCodeAgent(tools=[search_tool])
agent.run("How many more blocks (also denoted as layers) in BERT base encoder than the encoder from the architecture proposed in Attention is All You Need?")
```
## واجهة Gradio
يمكنك الاستفادة من `gradio.Chatbot` لعرض أفكار الوكيل الخاص بك باستخدام `stream_to_gradio`، إليك مثال:
```py
import gradio as gr
from transformers import (
load_tool,
ReactCodeAgent,
HfEngine,
stream_to_gradio,
)
# Import tool from Hub
image_generation_tool = load_tool("m-ric/text-to-image")
llm_engine = HfEngine("meta-llama/Meta-Llama-3-70B-Instruct")
# Initialize the agent with the image generation tool
agent = ReactCodeAgent(tools=[image_generation_tool], llm_engine=llm_engine)
def interact_with_agent(task):
messages = []
messages.append(gr.ChatMessage(role="user", content=task))
yield messages
for msg in stream_to_gradio(agent, task):
messages.append(msg)
yield messages + [
gr.ChatMessage(role="assistant", content="⏳ Task not finished yet!")
]
yield messages
with gr.Blocks() as demo:
text_input = gr.Textbox(lines=1, label="Chat Message", value="Make me a picture of the Statue of Liberty.")
submit = gr.Button("Run illustrator agent!")
chatbot = gr.Chatbot(
label="Agent",
type="messages",
avatar_images=(
None,
"https://em-content.zobj.net/source/twitter/53/robot-face_1f916.png",
),
)
submit.click(interact_with_agent, [text_input], [chatbot])
if __name__ == "__main__":
demo.launch()
```

View File

@ -1,25 +0,0 @@
# آليات الانتباه
تستخدم معظم نماذج المحول (Transformer) الانتباه الكامل بحيث تكون مصفوفة الانتباه ذات الأبعاد المتساوية. ويمكن أن يمثل ذلك عقبة حسابية كبيرة عندما تكون لديك نصوص طويلة. ويعد Longformer وReformer من النماذج التي تحاول أن تكون أكثر كفاءة وتستخدم نسخة مخففة من مصفوفة الانتباه لتسريع التدريب.
## انتباه LSH
يستخدم [Reformer](model_doc/reformer) انتباه LSH. في الدالة softmax(QK^t)، فإن أكبر العناصر فقط (في بعد softmax) من المصفوفة QK^t هي التي ستعطي مساهمات مفيدة. لذلك، بالنسبة لكل استعلام q في Q، يمكننا أن نأخذ في الاعتبار فقط المفاتيح k في K المشابهة لـ q فقط. وتُستخدم دالة هاش لتحديد ما إذا كان q وk متشابهين. ويتم تعديل قناع الانتباه لتجاهل الرمز الحالي (باستثناء الموضع الأول)، لأنه سيعطي استعلامًا ومفتاحًا متساويين (لذلك متشابهين للغاية). نظرًا لطبيعة دالة الهاش العشوائية نوعًا ما، يتم في الممارسة العملية استخدام عدة دوال هاش (يحددها معامل n_rounds) ثم يتم حساب المتوسط معًا.
## الانتباه المحلي
يستخدم [Longformer](model_doc/longformer) الانتباه المحلي: غالبًا ما يكون السياق المحلي (على سبيل المثال، ما هما الرمزان إلى اليسار واليمين؟) كافيًا لاتخاذ إجراء بالنسبة للرمز المعطى. أيضًا، عن طريق تكديس طبقات الانتباه التي لها نافذة صغيرة، سيكون للطبقة الأخيرة مجال استقبال أكبر من مجرد الرموز في النافذة، مما يسمح لها ببناء تمثيل للجملة بأكملها.
كما يتم منح بعض رموز الإدخال المختارة مسبقًا انتباهًا عالميًا: بالنسبة لهذه الرموز القليلة، يمكن لمصفوفة الانتباه الوصول إلى جميع الرموز وتكون هذه العملية متماثلة: فلجميع الرموز الأخرى إمكانية الوصول إلى تلك الرموز المحددة (بالإضافة إلى تلك الموجودة في نافذتهم المحلية). وهذا موضح في الشكل 2d من الورقة، انظر أدناه لمثال على قناع الانتباه:
<div class="flex justify-center">
<img scale="50 %" align="center" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/local_attention_mask.png"/>
</div>
وباستخدام مصفوفات الانتباه هذه التي تحتوي على عدد أقل من المعلمات، يسمح النموذج بمدخالات ذات طول تسلسل أكبر.
## حيل أخرى
### الترميزات الموضعية المحورية
يستخدم [Reformer](model_doc/reformer) ترميزات موضعية محورية: في نماذج المحول التقليدية، يكون الترميز الموضعي E مصفوفة بحجم \\(l\\) في \\(d\\)، حيث \\(l\\) هو طول التسلسل و\\(d\\) هو بعد الحالة المخفية. إذا كان لديك نصوص طويلة جدًا، فقد تكون هذه المصفوفة ضخمة وتستهلك مساحة كبيرة جدًا على وحدة معالجة الرسوميات (GPU). وللتخفيف من ذلك، تتكون الترميزات الموضعية المحورية من تحليل تلك المصفوفة الكبيرة E إلى مصفوفتين أصغر E1 وE2، بأبعاد \\(l_{1} \times d_{1}\\) و \\(l_{2} \times d_{2}\\)، بحيث \\(l_{1} \times l_{2} = l\\) و\\(d_{1} + d_{2} = d\\) (مع حاصل ضرب الأطوال، ينتهي الأمر بكونه أصغر بكثير). ويتم الحصول على الترميز للخطوة الزمنية \\(j\\) في E عن طريق ربط الترميزات للخطوة الزمنية \\(j \% l1\\) في E1 و \\(j // l1\\) في E2.

View File

@ -1,167 +0,0 @@
# تحميل نماذج مدربة مسبقًا باستخدام AutoClass
لم ترغب في إنشاء محول معماري لمؤشر الترابط الخاص بك، فهناك العديد من محولات المعمارية المختلفة التي يمكنك الاختيار من بينها. كجزء من الفلسفة الأساسية لـ 🤗 Transformers لجعل المكتبة سهلة وبسيطة ومرنة، فإن فئة `AutoClass` تستدل تلقائيًا وتحمّل البنية الصحيحة من نسخة نموذج (Model Checkpoint) معينة. تسمح لك طريقة `from_pretrained()` بتحميل نموذج مُدرب مسبقًا لأي بنية بسرعة حتى لا تضطر إلى تكريس الوقت والموارد لتدريب نموذج من الصفر. إن إنتاج هذا النوع من التعليمات البرمجية غير المعتمدة على نسخ يعني أنه إذا نجح رمزك مع ننسخة واحدة، فسيتم تشغيله مع أخرى - طالما تم تدريبه لمهمة مماثلة - حتى إذا كانت البنية المعمارية مختلفة.
تذكر أن البنية تشير إلى هيكل النموذج، والنسخ هي الأوزان لبنية معمارية معينة. على سبيل المثال، [BERT](https://huggingface.co/google-bert/bert-base-uncased) هي بنية معمارية، في حين أن `google-bert/bert-base-uncased` هي نسخة. "النموذج" هو مصطلح عام يمكن أن يعني إما البنية أو نالنسخة.
في هذا البرنامج التعليمي، ستتعلم كيفية:
* تحميل مُجزّئ الرموز مُدرب مسبقًا
* تحميل معالج صور مُدرب مسبقًا
* تحميل مستخرج ميزات مُدرب مسبقًا
* تحميل معالج مُدرب مسبقًا
* تحميل نموذج مُدرب مسبقًا
* تحميل نموذج كعمود فقري
## AutoTokenizer
تبدأ كل مهمة NLP تقريبًا بمُجزّئ للرموز. يقوم المُجزّئ بتحويل النص إلى شكل يمكن للنموذج معالجته.
قم بتحميل المُجزّئ باستخدام [`AutoTokenizer.from_pretrained`]:
```py
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
```
ثم قم بتحليل إدخالك على النحو الموضح أدناه:
```py
>>> sequence = "In a hole in the ground there lived a hobbit."
>>> print(tokenizer(sequence))
{'input_ids': [101, 1999, 1037, 4920, 1999, 1996, 2598, 2045, 2973, 1037, 7570, 10322, 4183, 1012, 102],
'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}
```
## معالج الصور التلقائي (AutoImageProcessor)
بالنسبة لمهمات الرؤية، يقوم معالج الصور بمعالجة الصورة إلى تنسيق الإدخال الصحيح.
```py
>>> from transformers import AutoImageProcessor
>>> image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224")
```
## AutoBackbone
<div style="text-align: center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/Swin%20Stages.png">
<figcaption class="mt-2 text-center text-sm text-gray-500">الصورة توضح مخطط مراحل نموذج Swin.</figcaption>
</div>
يسمح لك [`AutoBackbone`] باستخدام النماذج المُدربة مسبقًا كعمود فقري للحصول على خرائط ميزات من مراحل مختلفة من العمود الفقري. يجب عليك تحديد أحد المعلمات التالية في [`~PretrainedConfig.from_pretrained`]:
* `out_indices` هو فهرس الطبقة التي تريد الحصول على خريطة الميزات منها
* `out_features` هو اسم الطبقة التي تريد الحصول على خريطة الميزات منها
يمكن استخدام هذه المعلمات بشكل متبادل، ولكن إذا كنت تستخدم كلاً منها، فتأكد من أنها متوائمة مع بعضها البعض! إذا لم تمرر أيًا من هذه المعلمات، فسيقوم العمود الفقري بإرجاع خريطة الميزات من الطبقة الأخيرة.
<div style="text-align: center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/Swin%20Stage%201.png">
<figcaption class="mt-2 text-center text-sm text-gray-500">صورة توضح خريطة ميزات من المرحلة الأولى للعمود الفقري.</figcaption>
</div>
على سبيل المثال، في الرسم التخطيطي أعلاه، لإرجاع خريطة الميزات من المرحلة الأولى من العمود الفقري Swin، يمكنك تعيين `out_indices=(1,)`:
```py
>>> from transformers import AutoImageProcessor, AutoBackbone
>>> import torch
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> processor = AutoImageProcessor.from_pretrained("microsoft/swin-tiny-patch4-window7-224")
>>> model = AutoBackbone.from_pretrained("microsoft/swin-tiny-patch4-window7-224", out_indices=(1,))
>>> inputs = processor(image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> feature_maps = outputs.feature_maps
```
الآن يمكنك الوصول إلى كائن `feature_maps` من المرحلة الأولى من العمود الفقري:
```py
>>> list(feature_maps[0].shape)
[1, 96, 56, 56]
```
## مستخرج الميزات التلقائي (AutoFeatureExtractor)
بالنسبة للمهام الصوتية، يقوم مستخرج الميزات بمعالجة إشارة الصوت إلى تنسيق الإدخال الصحيح.
قم بتحميل مستخرج ميزات باستخدام [`AutoFeatureExtractor.from_pretrained`]:
```py
>>> from transformers import AutoFeatureExtractor
>>> feature_extractor = AutoFeatureExtractor.from_pretrained(
... "ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition"
... )
```
## المعالج التلقائي (AutoProcessor)
تتطلب المهام متعددة الوسائط معالجًا يجمع بين نوعين من أدوات المعالجة المسبقة. على سبيل المثال، يتطلب نموذج [LayoutLMV2](model_doc/layoutlmv2) معالج صور لمعالجة الصور ومُجزّئ لمعالجة النص؛ يجمع المعالج كليهما.
قم بتحميل معالج باستخدام [`AutoProcessor.from_pretrained`]:
```py
>>> from transformers import AutoProcessor
>>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv2-base-uncased")
```
## النموذج التلقائي (AutoModel)
<frameworkcontent>
<pt>
تسمح لك فئات `AutoModelFor` بتحميل نموذج مُدرب مسبقًا لمهمة معينة (راجع [هنا](model_doc/auto) للحصول على قائمة كاملة بالمهام المتاحة). على سبيل المثال، قم بتحميل نموذج لتصنيف التسلسل باستخدام [`AutoModelForSequenceClassification.from_pretrained`]:
```py
>>> from transformers import AutoModelForSequenceClassification
>>> model = AutoModelForSequenceClassification.from_pretrained("distilbert/distilbert-base-uncased")
```
أعد استخدام نفس نقطة التفتيش لتحميل بنية لمهمة مختلفة:
```py
>>> from transformers import AutoModelForTokenClassification
>>> model = AutoModelForTokenClassification.from_pretrained("distilbert/distilbert-base-uncased")
```
<Tip warning={true}>
بالنسبة لنماذج PyTorch، تستخدم طريقة `from_pretrained()` `torch.load()` التي تستخدم داخليًا `pickle` والتي يُعرف أنها غير آمنة. بشكل عام، لا تقم مطلقًا بتحميل نموذج قد يكون مصدره مصدرًا غير موثوق به، أو قد يكون تم العبث به. يتم تخفيف هذا الخطر الأمني جزئيًا للنماذج العامة المستضافة على Hub Hugging Face، والتي يتم [فحصها بحثًا عن البرامج الضارة](https://huggingface.co/docs/hub/security-malware) في كل ارتكاب. راجع [توثيق Hub](https://huggingface.co/docs/hub/security) للحصول على أفضل الممارسات مثل [التحقق من التوقيع](https://huggingface.co/docs/hub/security-gpg#signing-commits-with-gpg) باستخدام GPG.
لا تتأثر نقاط تفتيش TensorFlow و Flax، ويمكن تحميلها داخل بنيات PyTorch باستخدام `from_tf` و `from_flax` kwargs لطريقة `from_pretrained` للتحايل على هذه المشكلة.
</Tip>
بشكل عام، نوصي باستخدام فئة `AutoTokenizer` وفئة `AutoModelFor` لتحميل مثيلات مُدربة مسبقًا من النماذج. سيساعدك هذا في تحميل البنية الصحيحة في كل مرة. في البرنامج التعليمي التالي، تعرف على كيفية استخدام المحلل اللغوي ومعالج الصور ومستخرج الميزات والمعالج الذي تم تحميله حديثًا لمعالجة مجموعة بيانات للضبط الدقيق.
</pt>
<tf>
أخيرًا، تسمح لك فئات `TFAutoModelFor` بتحميل نموذج مُدرب مسبقًا لمهمة معينة (راجع [هنا](model_doc/auto) للحصول على قائمة كاملة بالمهام المتاحة). على سبيل المثال، قم بتحميل نموذج لتصنيف التسلسل باستخدام [`TFAutoModelForSequenceClassification.from_pretrained`]:
```py
>>> from transformers import TFAutoModelForSequenceClassification
>>> model = TFAutoModelForSequenceClassification.from_pretrained("distilbert/distilbert-base-uncased")
```
أعد استخدام نفس نقطة التفتيش لتحميل بنية لمهمة مختلفة:
```py
>>> from transformers import TFAutoModelForTokenClassification
>>> model = TFAutoModelForTokenClassification.from_pretrained("distilbert/distilbert-base-uncased")
```
بشكل عام، نوصي باستخدام فئة `AutoTokenizer` وفئة `TFAutoModelFor` لتحميل نسخ لنماذج مُدربة مسبقًا. سيساعدك هذا في تحميل البنية الصحيحة في كل مرة. في البرنامج التعليمي التالي، ستتعرف على كيفية استخدام المُجزّئ اللغوي ومعالج الصور ومستخرج الميزات والمعالج الذي تم تحميله حديثًا لمعالجة مجموعة بيانات للضبط الدقيق.
</tf>
</frameworkcontent>

View File

@ -1,18 +0,0 @@
# BERTology
يُشهد في الآونة الأخيرة نمو مجال دراسي يُعنى باستكشاف آلية عمل نماذج المحولات الضخمة مثل BERT (والذي يُطلق عليها البعض اسم "BERTology"). ومن الأمثلة البارزة على هذا المجال ما يلي:
- BERT Rediscovers the Classical NLP Pipeline بواسطة Ian Tenney و Dipanjan Das و Ellie Pavlick:
https://arxiv.org/abs/1905.05950
- Are Sixteen Heads Really Better than One? بواسطة Paul Michel و Omer Levy و Graham Neubig: https://arxiv.org/abs/1905.10650
- What Does BERT Look At? An Analysis of BERT's Attention بواسطة Kevin Clark و Urvashi Khandelwal و Omer Levy و Christopher D.
Manning: https://arxiv.org/abs/1906.04341
- CAT-probing: A Metric-based Approach to Interpret How Pre-trained Models for Programming Language Attend Code Structure: https://arxiv.org/abs/2210.04633
لإثراء هذا المجال الناشئ، قمنا بتضمين بعض الميزات الإضافية في نماذج BERT/GPT/GPT-2 للسماح للناس بالوصول إلى التمثيلات الداخلية، والتي تم تكييفها بشكل أساسي من العمل الرائد لـ Paul Michel (https://arxiv.org/abs/1905.10650):
- الوصول إلى جميع الحالات المخفية في BERT/GPT/GPT-2،
- الوصول إلى جميع أوزان الانتباه لكل رأس في BERT/GPT/GPT-2،
- استرجاع قيم ومشتقات مخرجات الرأس لحساب درجة أهمية الرأس وحذفه كما هو موضح في https://arxiv.org/abs/1905.10650.
ولمساعدتك على فهم واستخدام هذه الميزات بسهولة، أضفنا مثالًا برمجيًا محددًا: [bertology.py](https://github.com/huggingface/transformers/tree/main/examples/research_projects/bertology/run_bertology.py) أثناء استخراج المعلومات وتقليص من نموذج تم تدريبه مسبقًا على GLUE.

View File

@ -1,835 +0,0 @@
# قوالب نماذج الدردشة
## مقدمة
تعد **الدردشة** أحد استخدامات نماذج اللغات الكبيرة (LLMs) شائعة الاستخدام بشكل متزايد. ففي سياق الدردشة، وبدلاً من متابعة سلسلة نصية واحدة (كما هو الحال مع نماذج اللغات القياسية)، يواصل النموذج بدلاً من ذلك محادثة تتكون من رسالة واحدة أو أكثر، تتضمن كل منها دورًا، مثل "المستخدم" أو "المساعد"، بالإضافة إلى نص الرسالة.
وكما هو الحال مع تقسيم النص إلى رموز (tokenization)، تتوقع النماذج المختلفة تنسيقات إدخال مختلفة تمامًا للمحادثة. لهذا السبب أضفنا **قوالب الدردشة** كميزة جديدة. تُعد قوالب المحادثة جزءًا من tokenizer. تحدد هذه القوالب كيفية تحويل المحادثات، والتي يتم تمثيلها كقوائم من الرسائل، إلى سلسلة نصية واحدة قابلة للتقسيم إلى رموز بالتنسيق الذي يتوقعه النموذج.
دعونا نجعل هذا ملموسًا بمثال سريع باستخدام نموذج `BlenderBot`. لدى BlenderBot قالب افتراضي بسيط للغاية، والذي يضيف في الغالب مسافات بيضاء بين جولات الحوار:
```python
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill")
>>> chat = [
... {"role": "user", "content": "Hello, how are you?"},
... {"role": "assistant", "content": "I'm doing great. How can I help you today?"},
... {"role": "user", "content": "I'd like to show off how chat templating works!"},
... ]
>>> tokenizer.apply_chat_template(chat, tokenize=False)
" Hello, how are you? I'm doing great. How can I help you today? I'd like to show off how chat templating works!</s>"
```
لاحظ كيف تم ضغط الدردشة بأكملها في سلسلة واحدة. إذا استخدمنا `tokenize=True`، وهو الإعداد الافتراضي، فسيتم أيضًا تحليل السلسلة نحويًا نيابة عنا. ولكن، لنشاهد قالبًا أكثر تعقيدًا في العمل، دعونا نستخدم نموذج `mistralai/Mistral-7B-Instruct-v0.1`.
```python
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1")
>>> chat = [
... {"role": "user", "content": "Hello, how are you?"},
... {"role": "assistant", "content": "I'm doing great. How can I help you today?"},
... {"role": "user", "content": "I'd like to show off how chat templating works!"},
... ]
>>> tokenizer.apply_chat_template(chat, tokenize=False)
"<s>[INST] Hello, how are you? [/INST]I'm doing great. How can I help you today?</s> [INST] I'd like to show off how chat templating works! [/INST]</s>"
```
لاحظ كيف أضاف المجزىء اللغوى tokenizer رموز التحكم `[INST]` و `[/INST]` للإشارة إلى بداية ونهاية رسائل المستخدم (ولكن ليس رسائل المساعد!) ، وتم تكثيف المحادثة بأكملها في سلسلة نصية واحدة. إذا استخدمنا `tokenize=True` ، وهو الإعداد الافتراضي ، فسيتم أيضًا تقسيم تلك السلسلة إلى رموز.
حاول الآن استخدام نفس الشفرة، لكن مع استبدال النموذج بـ `HuggingFaceH4/zephyr-7b-beta` ، وستحصل على:
```text
<|user|>
Hello, how are you?</s>
<|assistant|>
I'm doing great. How can I help you today?</s>
<|user|>
I'd like to show off how chat templating works!</s>
```
تم ضبط كل من Zephyr و Mistral-Instruct من نفس النموذج الأصلي ، Mistral-7B-v0.1. ومع ذلك ، فقد تم تدريبهم بتنسيقات دردشة مختلفة تمامًا. بدون قوالب المحادثة، ستضطر إلى كتابة شفرة تنسيق يدويًا لكل نموذج ، ومن السهل جدًا ارتكاب أخطاء بسيطة تؤثر على الأداء! تُدير قوالب المحادثة تفاصيل التنسيق نيابةً عنك ، مما يُتيح لك كتابة شفرة عامة تعمل مع أي نموذج.
## كيف أستخدم قوالب الدردشة؟
كما رأيت في المثال السابق، من السهل استخدام قوالب الدردشة. قم ببساطة بإنشاء قائمة من الرسائل، مع مفتاحي `role` و`content`، ثم قم بتمريرها إلى [`~PreTrainedTokenizer.apply_chat_template`] . بمجرد قيامك بذلك، ستحصل على مخرجات جاهزة للاستخدام! عند استخدام قوالب الدردشة كإدخال لتوليد نصوص بواسطة النموذج، فمن الجيد أيضًا استخدام `add_generation_prompt=True` لإضافة [مطالبات توليد النصوص](#what-are-generation-prompts).
فيما يلي مثال على إعداد الإدخال لـ `model.generate()`، باستخدام Zephyr مرة أخرى:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
checkpoint = "HuggingFaceH4/zephyr-7b-beta"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint) # قد ترغب في استخدام bfloat16 و/أو الانتقال إلى GPU هنا
messages = [
{
"role": "system",
"content": "You are a friendly chatbot who always responds in the style of a pirate",
},
{"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
]
tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
print(tokenizer.decode(tokenized_chat[0]))
```
سيؤدي هذا إلى إنتاج سلسلة نصية بتنسيق الإدخال الذي يتوقعه Zephyr.
```text
<|system|>
You are a friendly chatbot who always responds in the style of a pirate</s>
<|user|>
How many helicopters can a human eat in one sitting?</s>
<|assistant|>
```
الآن بعد أن تم تنسيق الإدخال بشكل صحيح لـ Zephyr، يمكننا استخدام النموذج لإنشاء رد على سؤال المستخدم:
```python
outputs = model.generate(tokenized_chat, max_new_tokens=128)
print(tokenizer.decode(outputs[0]))
```
سيؤدي هذا إلى ما يلي:
```text
<|system|>
You are a friendly chatbot who always responds in the style of a pirate</s>
<|user|>
How many helicopters can a human eat in one sitting?</s>
<|assistant|>
Matey, I'm afraid I must inform ye that humans cannot eat helicopters. Helicopters are not food, they are flying machines. Food is meant to be eaten, like a hearty plate o' grog, a savory bowl o' stew, or a delicious loaf o' bread. But helicopters, they be for transportin' and movin' around, not for eatin'. So, I'd say none, me hearties. None at all.
```
كان ذلك سهلاً بعد كل شيء !
## هل هناك قنوات معالجة أوتوماتيكية للدردشة؟
نعم يوجد ! تدعم قنوات المعالجة توليد النصوص مدخلات الدردشة ، مما يُسهّل استخدام نماذج الدردشة . في الماضي ، كنا نستخدم فئة "ConversationalPipeline" المُخصّصة ، ولكن تم الآن إيقافها وتم دمج وظائفها في [`TextGenerationPipeline`]. دعونا نجرّب مثال Zephyr مرة أخرى ، ولكن هذه المرة باستخدام قناة معالجة:
```python
from transformers import pipeline
pipe = pipeline("text-generation", "HuggingFaceH4/zephyr-7b-beta")
messages = [
{
"role": "system",
"content": "You are a friendly chatbot who always responds in the style of a pirate",
},
{"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
]
print(pipe(messages, max_new_tokens=128)[0]['generated_text'][-1]) # طباعة استجابة المساعد
```
```النص
{'role': 'assistant', 'content': "Matey, I'm afraid I must inform ye that humans cannot eat helicopters. Helicopters are not food, they are flying machines. Food is meant to be eaten, like a hearty plate o' grog, a savory bowl o' stew, or a delicious loaf o' bread. But helicopters, they be for transportin' and movin' around, not for eatin'. So, I'd say none, me hearties. None at all."}
```
سيُراعي قناة المعالجة جميع تفاصيل تقسيم النص إلى رموز واستدعاء apply_chat_template نيابةً عنك - بمجرد أن يصبح لِدى النموذج قالب دردشة ، فكل ما تحتاج إلى القيام به هو تهيئة قناة معالجة وتمرير قائمة الرسائل إليها!
## ما هي "مطالبات التوليد"؟
قد تلاحظ أن طريقة `apply_chat_template` لها معامل `add_generation_prompt`. تخبر هذه المعامل القالب بإضافة رموز تشير إلى بداية رد البوت. على سبيل المثال، ضع في اعتبارك الدردشة التالية:
```python
messages = [
{"role": "user", "content": "Hi there!"},
{"role": "assistant", "content": "Nice to meet you!"},
{"role": "user", "content": "Can I ask a question?"}
]
```
إليك كيف سيبدو ذلك بدون موجه توليد نصوص ، بالنسبة لنموذج يستخدم تنسيق "ChatML" القياسي :
```python
tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=False)
"""<|im_start|>user
Hi there!<|im_end|>
<|im_start|>assistant
Nice to meet you!<|im_end|>
<|im_start|>user
Can I ask a question?<|im_end|>
"""
```
وهكذا يبدو الأمر **مع** مطالبة التوليد:
```python
tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
"""<|im_start|>user
Hi there!<|im_end|>
<|im_start|>assistant
Nice to meet you!<|im_end|>
<|im_start|>user
Can I ask a question?<|im_end|>
<|im_start|>assistant
"""
```
لاحظ أننا أضفنا هذه المرة الرموز التي تشير إلى بداية رد البوت. يضمن هذا أنه عندما يُولّد النموذج نصًا فسيكتب رد البوت بدلاً من القيام بشيء غير متوقع، مثل الاستمرار في رسالة المستخدم. تذكر، أن نماذج الدردشة لا تزال مجرد نماذج للغة - فهي مدربة على متابعة النصوص، والدردشة هي مجرد نوع خاص من النصوص بالنسبة لها! يجب توجيهها برموز تحكم مناسبة، حتى تعرف ما الذي يجب عليها فعله.
لا تتطلب جميع النماذج الرموز التحكمية لتوليد نصوص . بعض النماذج ، مثل LLaMA ، ليس لديها أي رموز خاصة قبل ردود البوت . في هذه الحالات ، لن يكون لمعامل `add_generation_prompt` أي تأثير. يعتمد التأثير الدقيق الذي تُحدثه `add_generation_prompt` على القالب المستخدم .
## ما وظيفة "continue_final_message"؟
عند تمرير قائمة من الرسائل إلى `apply_chat_template` أو `TextGenerationPipeline` ، يمكنك اختيار تنسيق المحادثة بحيث يواصل النموذج الرسالة الأخيرة في المحادثة بدلاً من بدء رسالة جديدة. يتم ذلك عن طريق إزالة أي رموز نهاية التسلسل التي تشير إلى نهاية الرسالة الأخيرة ، بحيث يقوم النموذج ببساطة بتمديد الرسالة الأخيرة عندما يبدأ في توليد النص . يُعد هذا أمرًا مفيدًا "لِمَلء بداية" رد النموذج مُسبقًا.
وهنا مثال:
```python
chat = [
{"role": "user", "content": "Can you format the answer in JSON?"},
{"role": "assistant", "content": '{"name": "'},
]
formatted_chat = tokenizer.apply_chat_template(chat, tokenize=True, return_dict=True, continue_final_message=True)
model.generate(**formatted_chat)
```
سيقوم النموذج بتوليد نص يكمل سلسلة JSON ، بدلاً من بدء رسالة جديدة . يمكن أن يكون هذا النهج مفيدًا جدًا لتحسين دقة اتباع النموذج للإرشادات عندما تعرف كيف تريد أن يبدأ ردوده .
.
نظرًا لأن `add_generation_prompt` تضيف الرموز التي تبدأ رسالة جديدة ، و `continue_final_message` تزيل أي رموز نهاية الرسالة من الرسالة الأخيرة ، فليس من المنطقي استخدامهما معًا . ونتيجة لذلك ، ستتلقّى خطأً إذا حاولت ذلك !
السلوك الافتراضي لِـ `TextGenerationPipeline` هو تعيين `add_generation_prompt=True` بحيث تبدأ رسالة جديدة . ومع ذلك ، إذا كانت الرسالة الأخيرة في المحادثة التي تم إدخالها لديها دور "assistant" ، فسوف تفترض أن هذه الرسالة هي "مَلء بداية" وتتحوّل إلى `continue_final_message=True` بدلاً من ذلك ، لأن مُعظم النماذج لا تدعم عدة رسائل متتالية للمساعد . يمكنك تجاوز هذا السلوك عن طريق تمرير معامل `continue_final_message` بشكل صريح عند استدعاء قناة المعالجة .
## هل يمكنني استخدام قوالب الدردشة في التدريب؟
نعم ! تُعد هذه طريقة جيدة للتأكد من أن قالب الدردشة يتطابق مع الرموز التي يراها النموذج أثناء التدريب . نوصي بتطبيق قالب الدردشة كخطوة معالجة أولية لمجموعة بياناتك . بعد ذلك ، يمكنك ببساطة متابعة عملية التدريب كما هو الحال مع أي مهمة تدريب نماذج لغات أخرى . عند التدريب ، يجب أن تُعيّن عادةً `add_generation_prompt=False` ، لأنه لن تكون الرموز المُضافة لتحفيز رد المساعد مفيدة أثناء التدريب . دعونا نرى مثالاً :
```python
from transformers import AutoTokenizer
from datasets import Dataset
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-beta")
chat1 = [
{"role": "user", "content": "Which is bigger, the moon or the sun?"},
{"role": "assistant", "content": "The sun."}
]
chat2 = [
{"role": "user", "content": "Which is bigger, a virus or a bacterium?"},
{"role": "assistant", "content": "A bacterium."}
]
dataset = Dataset.from_dict({"chat": [chat1, chat2]})
dataset = dataset.map(lambda x: {"formatted_chat": tokenizer.apply_chat_template(x["chat"], tokenize=False, add_generation_prompt=False)})
print(dataset['formatted_chat'][0])
```
ونحصل على:
```text
<|user|>
Which is bigger, the moon or the sun?</s>
<|assistant|>
The sun.</s>
```
من هنا، استمر في التدريب كما تفعل مع مهمة نمذجة اللغة القياسية، باستخدام عمود `formatted_chat`.
<Tip>
بشكل افتراضي ، تضيف بعض *tokenizers* رموزًا خاصة مثل `<bos>` و `<eos>` إلى النص الذي تقوم بتقسيمه إلى رموز. يجب أن تتضمن قوالب المحادثة بالفعل جميع الرموز الخاصة التي تحتاجها ، وبالتالي فإن الرموز الخاصة الإضافية ستكون غالبًا غير صحيحة أو مُكررة ، مما سيؤثر سلبًا على أداء النموذج .
لذلك ، إذا قمت بتنسيق النص باستخدام `apply_chat_template(tokenize=False)` ، فيجب تعيين المعامل `add_special_tokens=False` عندما تقوم بتقسيم ذلك النص إلى رموز لاحقًا . إذا كنت تستخدم `apply_chat_template(tokenize=True)` ، فلن تحتاج إلى القلق بشأن ذلك !
</Tip>
## متقدّم: مدخلات إضافية لِقوالب الدردشة
المعامل الوحيدة التي تتطلبها طريقة `apply_chat_template` هي `messages`. ومع ذلك، يمكنك تمرير أي معامل ككلمة مفتاحية إلى `apply_chat_template` وستكون متاحة داخل القالب. يمنحك هذا الكثير من المرونة لاستخدام قوالب الدردشة للعديد من الأشياء. لا توجد قيود على أسماء هذه المعامﻻت أو تنسيقاتها - يمكنك تمرير سلاسل نصية أو قوائم أو قواميس أو أي شيء آخر تريده.
ومع ذلك، هناك بعض الحالات الشائعة لاستخدام هذه المعامﻻت الإضافية، مثل تمرير أدوات لاستدعاء الوظائف، أو المستندات لإنشاء النصوص المُعزّزة بالاسترجاع. في هذه الحالات الشائعة، لدينا بعض التوصيات المُحدّدة حول أسماء هذه المعامﻻت وتنسيقاتها، والتي يتم وصفها في الأقسام التالية. نشجع مطوّري النماذج على جعل قوالب الدردشة الخاصة بهم متوافقة مع هذا التنسيق، لتسهيل نقل التعليمات البرمجية لاستدعاء الأدوات بين النماذج.
## متقدم: استخدام الأداة / استدعاء الدالة
يمكن لنماذج "استخدام الأداة" اختيار استدعاء الدوال كأدوات خارجية قبل توليد الإجابة. عند تمرير الأدوات إلى نموذج استخدام الأدوات، يمكنك ببساطة تمرير قائمة من الوظائف إلى معامل `tools`:
```python
import datetime
def current_time():
"""Get the current local time as a string."""
return str(datetime.now())
def multiply(a: float, b: float):
"""
A function that multiplies two numbers
Args:
a: The first number to multiply
b: The second number to multiply
"""
return a * b
tools = [current_time, multiply]
model_input = tokenizer.apply_chat_template(
messages,
tools=tools
)
```
لكي يعمل هذا بشكل صحيح، يجب عليك كتابة وظائفك بالتنسيق السابق، حتى يمكن تحليلها بشكل صحيح كأدوات. على وجه التحديد، يجب عليك اتباع هذه القواعد:
- يجب أن يكون للدالة اسم وصفي.
- يجب أن يكون لكل معامل نوع للتلميح.
- يجب أن تحتوي الدالة على سلسلة مستندية بتنسيق Google القياسي (بمعنى وصف الدالة الأولي متبوعًا بكتلة `Args:` التي تصف المعاﻻت، ما لم تكن الدالة لا تحتوي على أي معامﻻت.
- لا تقم بتضمين الأنواع في كتلة `Args:` . بعبارة أخرى، اكتب `a: The first number to multiply`، وليس `a (int): The first number to multiply`. يجب أن تذهب تلميحات الأنواع في رأس الدالة بدلاً من ذلك.
- يمكن أن يكون للدالة نوع للإرجاع ومربع `Returns:` في السلسلة. ومع ذلك، فهذه اختيارية لأن معظم نماذج استخدام الأدوات تتجاهلها.
### تمرير نتائج الأداة إلى النموذج
يكفي الكود السابقة لسرد الأدوات المتاحة لنموذجك، ولكن ماذا يحدث إذا أراد النموذج استخدام واحدة منها؟ إذا حدث ذلك، فيجب عليك:
1. تحليل مخرجات النموذج للحصول على اسم (أسماء) الأدوات ومعامﻻتها.
2. أضف استدعاء (استدعاءات) النموذج لِلأدوات إلى المحادثة.
3. استدعاء الدالة (الدالات) المقابلة بتلك المعامﻻت.
4. أضف النتيجة (النتائج) إلى المحادثة
### مثال كامل على استخدام الأداة
سنستعرض مثالاً على استخدام الأدوات خطوة بخطوة . في هذا المثال ، سنستخدم نموذج `Hermes-2-Pro` بحجم 8 مليارات معامل ، نظرًا لأنه أحد أعلى نماذج استخدام الأدوات أداءً في فئة حجمه وقت كتابة هذا النص . إذا كان لديك الذاكرة الكافية ، فيمكنك النظر في استخدام نموذج أكبر بدلاً من ذلك مثل `Command-R` أو `Mixtral-8x22B` ، وكلاهما يدعم استخدام الأدوات ويوفر أداءً أقوى .
أولاً ، لنقم بتحميل نموذجنا و tokenizer الخاص بنا:
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
checkpoint = "NousResearch/Hermes-2-Pro-Llama-3-8B"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint, torch_dtype=torch.bfloat16, device_map="auto")
```python
messages = [
{"role": "system", "content": "You are a bot that responds to weather queries. You should reply with the unit used in the queried location."},
{"role": "user", "content": "Hey, what's the temperature in Paris right now?"}
]
```
الآن، لنقم نطبق قالب الدردشة ونولد رد:
```python
inputs = tokenizer.apply_chat_template(messages, chat_template="tool_use", tools=tools, add_generation_prompt=True, return_dict=True, return_tensors="pt")
inputs = {k: v.to(model.device) for k, v in inputs.items()}
out = model.generate(**inputs, max_new_tokens=128)
print(tokenizer.decode(out[0][len(inputs["input_ids"][0]):]))
```
ونحصل على:
```text
<tool_call>
{"arguments": {"location": "Paris, France", "unit": "celsius"}, "name": "get_current_temperature"}
</tool_call><|im_end|>
```
لقد قام النموذج باستدعاء الدالة مع معامﻻت صحيحة، بالصيغة التي طلبتها توثيق الدالة. لقد استنتج أننا نشير على الأرجح إلى باريس في فرنسا، وتذكر أنه بكونها موطن وحدات القياس الدولية، يجب عرض درجة الحرارة في فرنسا بالدرجة المئوية.
دعنا نضيف استدعاء الأداة الخاص بالنموذج إلى المحادثة. لاحظ أننا نولد معرف استدعاء أداة عشوائيًا هنا. لا تستخدم جميع النماذج هذه المعرفات، ولكنها تسمح للنماذج بإصدار عدة استدعاءات للأدوات في نفس الوقت وتتبع الاستجابة المقابلة لكل استدعاء. يمكنك توليد هذه المعرفات بأي طريقة تريدها، ولكن يجب أن تكون فريدة داخل كل محادثة.
```python
tool_call_id = "vAHdf3" # Random ID, should be unique for each tool call
tool_call = {"name": "get_current_temperature", "arguments": {"location": "Paris, France", "unit": "celsius"}}
messages.append({"role": "assistant", "tool_calls": [{"id": tool_call_id, "type": "function", "function": tool_call}]})
```
الآن بعد أن أضفنا استدعاء الأداة إلى المحادثة، يمكننا استدعاء الدالة وإضافة النتيجة إلى المحادثة. نظرًا لأننا نستخدم دالة وهمية لهذا المثال والتي تعيد دائمًا 22.0، فيمكننا ببساطة إضافة تلك النتيجة مباشرةً. لاحظ معرف استدعاء الأداة - يجب أن يتطابق مع المعرف المستخدم في استدعاء الأداة أعلاه.
```python
messages.append({"role": "tool", "tool_call_id": tool_call_id, "name": "get_current_temperature", "content": "22.0"})
```
أخيرًا، دعنا نجعل المساعد يقرأ مخرجات الدالة ويكمل الدردشة مع المستخدم:
```python
inputs = tokenizer.apply_chat_template(messages, chat_template="tool_use", tools=tools, add_generation_prompt=True, return_dict=True, return_tensors="pt")
inputs = {k: v.to(model.device) for k, v in inputs.items()}
out = model.generate(**inputs, max_new_tokens=128)
print(tokenizer.decode(out[0][len(inputs["input_ids"][0]):]))
```
ونحصل على:
```text
The current temperature in Paris, France is 22.0 ° Celsius.<|im_end|>
```
<Tip>
لا تستخدم جميع نماذج استخدام الأدوات جميع ميزات استدعاء الأدوات الموضحة أعلاه. يستخدم البعض معرفات استدعاء الأدوات، بينما يستخدم البعض الآخر ببساطة اسم الدالة ويقارن استدعاءات الأدوات بالنتائج باستخدام الترتيب، وهناك عدة نماذج لا تستخدم أيًا منهما ولا تصدر سوى استدعاء أداة واحد في كل مرة لتجنب الارتباك. إذا كنت تريد أن يكون رمزك متوافقًا مع أكبر عدد ممكن من النماذج، فإننا نوصي بهيكلة استدعاءات الأدوات الخاصة بك كما هو موضح هنا، وإعادة نتائج الأدوات بالترتيب الذي أصدرها النموذج. يجب أن تتعامل قوالب الدردشة على كل نموذج مع الباقي.
</Tip>
### فهم مخططات الأدوات
يتم تحويل كل دالة تقوم بتمريرها إلى معامل `tools` في دالة `apply_chat_template` إلى [مخطط JSON](https://json-schema.org/learn/getting-started-step-by-step). يتم بعد ذلك تمرير هذه المخططات إلى قالب الدردشة النموذج. وبعبارة أخرى، فإن نماذج استخدام الأدوات لا ترى دوالك مباشرة، ولا ترى مطلقًا الكود الموجود بداخلها. ما يهمها هو**تعريفات** الدوال و**المعامﻻت** التي تحتاج إلى تمريرها إليها - فهي تهتم بما تفعله الأدوات وكيفية استخدامها، وليس بكيفية عملها! يقع على عاتقك قراءة مخرجاتها، والكشف عما إذا كانت قد طلبت استخدام أداة، وتمرير المعامﻻت إلى دالة الأداة، وإرجاع الرد في الدردشة.
يجب أن يكون إنشاء مخططات JSON لتمريرها إلى القالب تلقائيًا وغير مرئي طالما أن دوالك تتبع المواصفات الموضحة أعلاه، ولكن إذا واجهت مشكلات، أو إذا كنت تريد ببساطة مزيدًا من التحكم في التحويل، فيمكنك التعامل مع التحويل يدويًا. فيما يلي مثال على تحويل مخطط يدوي:
```python
from transformers.utils import get_json_schema
def multiply(a: float, b: float):
"""
A function that multiplies two numbers
Args:
a: The first number to multiply
b: The second number to multiply
"""
return a * b
schema = get_json_schema(multiply)
print(schema)
```
سيؤدي هذا إلى ما يلي:
```json
{
"type": "function",
"function": {
"name": "multiply",
"description": "A function that multiplies two numbers",
"parameters": {
"type": "object",
"properties": {
"a": {
"type": "number",
"description": "The first number to multiply"
},
"b": {
"type": "number",
"description": "The second number to multiply"
}
},
"required": ["a", "b"]
}
}
}
```
إذا كنت ترغب في ذلك، يمكنك تحرير هذه المخططات، أو حتى كتابتها من البداية بنفسك دون استخدام `get_json_schema` على الإطلاق. يمكن تمرير مخططات JSON مباشرةً إلى معامل `tools` في `apply_chat_template` - يمنحك هذا الكثير من القوة لتعريف مخططات دقيقة لوظائف أكثر تعقيدًا. ولكن كن حذرًا - كلما زاد تعقيد مخططاتك، زاد احتمال ارتباك النموذج عند التعامل معها! نوصي بتوقيعات دوال بسيطة حيثما أمكن، مع تقليل المعامﻻت (وخاصة المعامﻻت المعقدة والمتداخلة) إلى الحد الأدنى.
فيما يلي مثال على تعريف المخططات يدويًا، وتمريرها مباشرةً إلى `apply_chat_template`:
```python
# A simple function that takes no arguments
current_time = {
"type": "function",
"function": {
"name": "current_time",
"description": "Get the current local time as a string.",
"parameters": {
'type': 'object',
'properties': {}
}
}
}
# A more complete function that takes two numerical arguments
multiply = {
'type': 'function',
'function': {
'name': 'multiply',
'description': 'A function that multiplies two numbers',
'parameters': {
'type': 'object',
'properties': {
'a': {
'type': 'number',
'description': 'The first number to multiply'
},
'b': {
'type': 'number', 'description': 'The second number to multiply'
}
},
'required': ['a', 'b']
}
}
}
model_input = tokenizer.apply_chat_template(
messages,
tools = [current_time, multiply]
)
```
## متقدم: توليد قائم على الاسترجاع
يمكن لنماذج اللغة الكبيرة من نوع "توليد قائم على الاسترجاع" أو "RAG" البحث في مجموعة نصوص عن معلومات قبل الرد على الاستعلام. يسمح هذا للنماذج بتوسيع قاعدة معارفها بشكل كبير إلى ما هو أبعد من حجم سياقها المحدود. توصيتنا لنماذج RAG هي أن يقبل قالبها وسيطة `documents`. يجب أن تكون هذه قائمة من المستندات، حيث يكون كل "مستند" عبارة عن قاموس واحد بمفاتيح `title` و `contents`، وكلاهما سلاسل نصية. نظرًا لأن هذا التنسيق أبسط بكثير من مخططات JSON المستخدمة للأدوات، فلا توجد حاجة إلى دوال مساعدة.
فيما يلي مثال على قالب RAG بالفعل:
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
# تحميل النموذج والمجزىء اللغوي
model_id = "CohereForAI/c4ai-command-r-v01-4bit"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto")
device = model.device # الحصول على الجهاز الذي تم تحميل النموذج عليه
# تعريف مُدخلات المحادثة
conversation = [
{"role": "user", "content": "What has Man always dreamed of?"}
]
# تعريف المستندات لتوليد قائم على الاسترجاع
documents = [
{
"title": "The Moon: Our Age-Old Foe",
"text": "Man has always dreamed of destroying the moon. In this essay, I shall..."
},
{
"title": "The Sun: Our Age-Old Friend",
"text": "Although often underappreciated, the sun provides several notable benefits..."
}
]
# معالجة المحادثة والمستندات باستخدام قالب RAG، وإرجاع موترات PyTorch.
input_ids = tokenizer.apply_chat_template(
conversation=conversation,
documents=documents,
chat_template="rag",
tokenize=True,
add_generation_prompt=True,
return_tensors="pt").to(device)
# توليد الرد
gen_tokens = model.generate(
input_ids,
max_new_tokens=100,
do_sample=True,
temperature=0.3,
)
# فك تشفير النص المُوَلّد وطباعته
gen_text = tokenizer.decode(gen_tokens[0])
print(gen_text)
```
إن مُدخل documents للتوليد القائم على الاسترجاع غير مدعوم على نطاق واسع، والعديد من النماذج لديها قوالب دردشة تتجاهل هذا المُدخل ببساطة.
للتحقق مما إذا كان النموذج يدعم مُدخل `documents`، يمكنك قراءة بطاقة النموذج الخاصة به، أو `print(tokenizer.chat_template)` لمعرفة ما إذا كان مفتاح `documents` مستخدمًا في أي مكان.
<Tip>
ومع ذلك، فإن أحد فئات النماذج التي تدعمه هي [Command-R](https://huggingface.co/CohereForAI/c4ai-command-r-08-2024) و [Command-R+](https://huggingface.co/CohereForAI/c4ai-command-r-pluse-08-2024) من Cohere، من خلال قالب الدردشة rag الخاص بهم. يمكنك رؤية أمثلة إضافية على التوليد باستخدام هذه الميزة في بطاقات النموذج الخاصة بهم.
</Tip>
## متقدم: كيف تعمل قوالب الدردشة؟
يتم تخزين قالب الدردشة للنموذج في الخاصية `tokenizer.chat_template`. إذا لم يتم تعيين قالب دردشة، فسيتم استخدام القالب الافتراضي لفئة النموذج هذه بدلاً من ذلك. دعونا نلقي نظرة على قالب دردشة `Zephyr`، ولكن لاحظ أن هذا القالب مُبسّط قليلاً عن القالب الفعلي!
```
{%- for message in messages %}
{{- '<|' + message['role'] + |>\n' }}
{{- message['content'] + eos_token }}
{%- endfor %}
{%- if add_generation_prompt %}
{{- '<|assistant|>\n' }}
{%- endif %}
```
إذا لم تكن قد رأيت أحد هذه القوالب من قبل، فهذا [قالب Jinja](https://jinja.palletsprojects.com/en/3.1.x/templates/) .Jinja هي لغة قوالب تسمح لك بكتابة تعليمات برمجية بسيطة تُوَلّد نصًا. من نواحٍ عديدة، يُشبه الرمز والتركيب للغة Python. أما في لغة Python، سيبدو هذا القالب كما يلي:
```python
for message in messages:
print(f'<|{message["role"]}|>')
print(message['content'] + eos_token)
if add_generation_prompt:
print('<|assistant|>')
```
يقوم القالب بثلاثة أشياء بشكل فعال:
- لكل رسالة، بطبع الدور مُحاطًا بـ `<|` و `|>`، مثل `<|user|>` أو `<|assistant|>`.
- بعد ذلك، يطبع محتوى الرسالة، متبوعًا برمز نهاية التسلسل `eos_token` .
- أخيرًا، إذا تم تعيين `add_generation_prompt` ، يطبع الرمز المساعد، حتى يعرف النموذج أنه يجب أن يبدأ في توليد استجابة المساعد.
هذا قالب بسيط جدًا، لكن Jinja تمنحك الكثير من المرونة للقيام بأشياء أكثر تعقيدًا! دعونا نرى قالب Jinja يُمكنه تنسيق المُدخلات بطريقة تُشبه الطريقة التي تُنسّق بها LLaMA مُدخلاتها (لاحظ أن قالب LLaMA الحقيقي يتضمن معالجة لرسائل النظام الافتراضية ومعالجة رسائل النظام بشكل مختلف قليلاً بشكل عام - لا تستخدم هذا القالب في التعليمات البرمجية الفعلية الخاصة بك!)
```
{%- for message in messages %}
{%- if message['role'] == 'user' %}
{{- bos_token + '[INST] ' + message['content'] + ' [/INST]' }}
{%- elif message['role'] == 'system' %}
{{- '<<SYS>>\\n' + message['content'] + '\\n<</SYS>>\\n\\n' }}
{%- elif message['role'] == 'assistant' %}
{{- ' ' + message['content'] + ' ' + eos_token }}
{%- endif %}
{%- endfor %}
```
نأمل أنه إذا حدقت في هذا لفترة قصيرة، يمكنك أن ترى ما يفعله هذا القالب - فهو يُضيف رموزًا مُحددة مثل `[INST]` و `[/INST]` بناءً على دور كل رسالة. يمكن تمييز رسائل المستخدم والمساعد والنظام بوضوح للنموذج بسبب الرموز التي تُحيط بها.
## متقدم: إضافة وتعديل قوالب الدردشة
### كيف أنشئ قالب دردشة؟
ببساطة، اكتب قالب Jinja واضبط `tokenizer.chat_template`. قد تجد أنه من الأسهل البدء بقالب موجود من نموذج آخر وتحريره ببساطة ليناسب احتياجاتك! على سبيل المثال، يمكننا أن نأخذ قالب LLaMA أعلاه ونضيف `[ASST]` و `[/ASST]` إلى رسائل المساعد:
```
{%- for message in messages %}
{%- if message['role'] == 'user' %}
{{- bos_token + '[INST] ' + message['content'].strip() + ' [/INST]' }}
{%- elif message['role'] == 'system' %}
{{- '<<SYS>>\\n' + message['content'].strip() + '\\n<</SYS>>\\n\\n' }}
{%- elif message['role'] == 'assistant' %}
{{- '[ASST] ' + message['content'] + ' [/ASST]' + eos_token }}
{%- endif %}
{%- endfor %}
```
الآن، اضبط ببساطة الخاصية `tokenizer.chat_template`. في المرة القادمة التي تستخدم فيها [`~PreTrainedTokenizer.apply_chat_template`] ، سيستخدم القالب الجديد الخاص بك! سيتم حفظ هذه الخاصية في ملف `tokenizer_config.json`، حتى تتمكن من استخدام [`~utils.PushToHubMixin.push_to_hub`] لتحميل قالبك الجديد إلى Hub والتأكد من أن الجميع يستخدم القالب الصحيح لنموذجك!
```python
template = tokenizer.chat_template
template = template.replace("SYS", "SYSTEM") # تغيير رمز النظام
tokenizer.chat_template = template # تعيين القالب الجديد
tokenizer.push_to_hub("model_name") # تحميل القالب الجديد إلى Hub!
```
يتم استدعاء الدالة [`~PreTrainedTokenizer.apply_chat_template`] الذي نستخدم قالب الدردشة الخاص بك بواسطة فئة [`TextGenerationPipeline`] لذلك بمجرد تعيين قالب الدردشة الصحيح، سيصبح نموذجك متوافقًا تلقائيًا مع [`TextGenerationPipeline`].
<Tip>
إذا كنت تُجري ضبطًا دقيقًا لنموذج للدردشة، بالإضافة إلى تعيين قالب دردشة، فربما يجب عليك إضافة أي رموز تحكم دردشة جديدة كرموز خاصة في المجزىء اللغوي. لا يتم تقسيم الرموز الخاصة أبدًا، مما يضمن معالجة رموز التحكم الخاصة بك دائمًا كرموز فردية بدلاً من تجزئتها إلى أجزاء. يجب عليك أيضًا تعيين خاصية `eos_token` للمجزىء اللغوي إلى الرمز الذي يُشير إلى نهاية توليدات المساعد في قالبك. سيضمن هذا أن أدوات توليد النصوص يمكنها تحديد وقت إيقاف توليد النص بشكل صحيح.
</Tip>
### لماذا تحتوي بعض النماذج على قوالب متعددة؟
تستخدم بعض النماذج قوالب مختلفة لحالات استخدام مختلفة. على سبيل المثال، قد تستخدم قالبًا واحدًا للدردشة العادية وآخر لاستخدام الأدوات، أو التوليد القائم على الاسترجاع. في هذه الحالات، تكون `tokenizer.chat_template` قاموسًا. يمكن أن يتسبب هذا في بعض الارتباك، وحيثما أمكن، نوصي باستخدام قالب واحد لجميع حالات الاستخدام. يمكنك استخدام عبارات Jinja مثل `if tools is defined` وتعريفات `{% macro %}` لتضمين مسارات تعليمات برمجية متعددة بسهولة في قالب واحد.
عندما يحتوي المعالج اللغوي على قوالب متعددة، ستكون `tokenizer.chat_template dict`، حيث يكون كل مفتاح هو اسم قالب. يحتوي أسلوب `apply_chat_template` على معالجة خاصة لأسماء قوالب مُعينة: على وجه التحديد، سيبحث عن قالب باسم `default` في معظم الحالات، وسيُثير خطأً إذا لم يتمكن من العثور على واحد. ومع ذلك، إذا كان هناك قالب باسم `tool_use` عندما قام المستخدم بتمرير وسيطة `tools`، فسيستخدم هذا القالب بدلاً من ذلك. للوصول إلى قوالب بأسماء أخرى، مرر اسم القالب الذي تُريده إلى وسيطة `chat_template` لـ `apply_chat_template()`.
نجد أن هذا قد يكون مُربكًا بعض الشيء للمستخدمين - لذلك إذا كنت تكتب قالبًا بنفسك، فننصحك بمحاولة وضعه كله في قالب واحد حيثما أمكن!
## ما القالب الذي يجب أن أستخدمه؟
عند تعيين قالب لنموذج تم تدريبه بالفعل على الدردشة، يجب التأكد من أن القالب يتطابق تمامًا مع تنسيق الرسالة الذي شاهده النموذج أثناء التدريب، وإلا فمن المحتمل أن تواجه تدهورًا في الأداء. هذا صحيح حتى إذا كنت تدرب النموذج بشكل إضافي - فمن المحتمل أن تحصل على أفضل أداء إذا قمت بإبقاء رموز الدردشة ثابتة. يُشبه هذا إلى حد كبير عملية التجزئة - فأنت تحصل بشكل عام على أفضل أداء للاستدلال أو الضبط الدقيق عندما تتطابق بدقة مع التجزئة المستخدمة أثناء التدريب.
من ناحية أخرى، إذا كنت تُدرّب نموذجًا من البداية، أو تقوم بضبط دقيق لنموذج لغة أساسي للدردشة، لديك حرية اختيار قالب مناسب! تتمتع LLMs بالذكاء الكافي للتعامل مع العديد من تنسيقات الإدخال المختلفة. أحد الخيارات الشائعة هو تنسيق "ChatML"، وهو خيار جيد ومرن للعديد من حالات الاستخدام. يبدو كالتالي:
```
{%- for message in messages %}
{{- '<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n' }}
{%- endfor %}
```
إذا أعجبك هذا، فإليك نسخة جاهزة لوضعها في كودك. يتضمن الخط المفرد أيضًا دعمًا مفيدًا [لإرشادات التوليد](#what-are-generation-prompts)، ولكن لاحظ أنه لا يضيف رموز BOS أو EOS! إذا كان نموذجك يتوقع هذه الرموز، فلن يتم إضافتها تلقائيًا بواسطة "apply_chat_template" - بمعنى آخر، سيتم تجزئة النص باستخدام "add_special_tokens=False". هذا لتجنب التعارضات المحتملة بين القالب ومنطق "add_special_tokens". إذا كان نموذجك يتوقع رموزًا خاصة، فتأكد من إضافتها إلى القالب!
```python
tokenizer.chat_template = "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}"
```
يُحيط هذا القالب كل رسالة بين الرمزين "<|im_start|>" و "<|im_end|>"، ويكتب ببساطة الدور كسلسلة نصية، مما يسمح بالمرونة في الأدوار التي تتدرب عليها. يبدو الناتج كما يلي:
```text
<|im_start|>system
You are a helpful chatbot that will do its best not to say anything so stupid that people tweet about it.<|im_end|>
<|im_start|>user
How are you?<|im_end|>
<|im_start|>assistant
I'm doing great!<|im_end|>
```
تعد أدوار "user" و "system" و "assistant" هي الأدوار القياسية للدردشة، ونوصي باستخدامها عندما يكون ذلك منطقيًا، خاصة إذا كنت تريد أن يعمل نموذجك بشكل جيد مع [`TextGenerationPipeline`]. ومع ذلك، فأنت لست مقيدًا بهذه الأدوار - فإن القوالب مرنة للغاية، ويمكن أن تكون أي سلسلة نصية دورًا.
## أريد إضافة بعض قوالب الدردشة! كيف أبدأ؟
إذا كان لديك أي نماذج دردشة، فيجب عليك تعيين الخاصية "tokenizer.chat_template" الخاصة بها واختبارها باستخدام [`~PreTrainedTokenizer.apply_chat_template`]، ثم رفع المجزىء اللغوي المُحدّث إلى Hub. ينطبق هذا حتى إذا لم تكن مالك النموذج - إذا كنت تستخدم نموذجًا بقالب دردشة فارغ، أو لا يزال يستخدم قالب الفئة الافتراضية، فيرجى فتح [طلب سحب](https://huggingface.co/docs/hub/repositories-pull-requests-discussions) إلى مستودع النموذج حتى يمكن تعيين الخاصية بشكل صحيح!
بمجرد تعيين الخاصية، هذا كل شيء، لقد انتهيت! ستعمل "tokenizer.apply_chat_template" الآن بشكل صحيح لهذا النموذج، مما يعني أنها مدعومة أيضًا بشكل تلقائي في أماكن مثل "TextGenerationPipeline"!
من خلال ضمان امتلاك النماذج لهذه الخاصية، يُمكننا التأكد من أن المجتمع بأكمله يستخدم القوة الكاملة للنماذج مفتوحة المصدر. لقد كانت عدم تطابق التنسيق تطارد المجال وأضرت الأداء بصمت لفترة طويلة جدًا - لقد حان الوقت لوضع حد لها!
## متقدم: نصائح لكتابة القوالب
<Tip>
أسهل طريقة للبدء في كتابة قوالب Jinja هي إلقاء نظرة على بعض القوالب الموجودة. يمكنك استخدام `print(tokenizer.chat_template)` لأي نموذج دردشة لمعرفة القالب الذي يستخدمه. بشكل عام، تحتوي النماذج التي تدعم استخدام الأدوات على قوالب أكثر تعقيدًا بكثير من النماذج الأخرى - لذلك عندما تبدأ للتو، فمن المحتمل أنها مثال سيئ للتعلم منه! يمكنك أيضًا إلقاء نظرة على [وثائق Jinja](https://jinja.palletsprojects.com/en/3.1.x/templates/#synopsis) للحصول على تفاصيل حول تنسيق Jinja العام وتركيبه.
</Tip>
تُطابق قوالب Jinja في `transformers` قوالب Jinja في أي مكان آخر. الشيء الرئيسي الذي يجب معرفته هو أن سجل الدردشة سيكون متاحًا داخل قالبك كمتغير يسمى `messages`. ستتمكن من الوصول إلى `messages` في قالبك تمامًا كما يمكنك في Python، مما يعني أنه يمكنك التكرار خلاله باستخدام `{% for message in messages %}` أو الوصول إلى رسائل فردية باستخدام `{{ messages[0] }}`، على سبيل المثال.
يمكنك أيضًا استخدام النصائح التالية لكتابة قوالب Jinja نظيفة وفعالة:
### إقتطاع المسافات الفارغة
بشكل افتراضي، ستطبع Jinja أي مسافات فارغة تأتي قبل أو بعد كتلة. يمكن أن يكون هذا مشكلة لقوالب الدردشة، والتي تريد عادةً أن تكون دقيقة جدًا مع المسافات! لتجنب ذلك، نوصي بشدة بكتابة قوالبك على النحو التالي:
```
{%- for message in messages %}
{{- message['role'] + message['content'] }}
{%- endfor %}
```
بدلاً من ذلك:
```
{% for message in messages %}
{{ message['role'] + message['content'] }}
{% endfor %}
```
سيؤدي إضافة "-" إلى إزالة أي مسافات تأتي قبل الكتلة. يبدو المثال الثاني عادية، ولكن قد يتم تضمين السطر الجديد والمسافة البادئة في المخرجات، وهو على الأرجح ليس ما تُريده!
### المتغيرات الخاصة
داخل قالبك، سيكون لديك حق الوصول إلى العديد من المتغيرات الخاصة. أهمها هو `messages`، والذي يحتوي على سجل الدردشة كقائمة من قواميس الرسائل. ومع ذلك، هناك العديد من المتغيرات الأخرى. لن يتم استخدام كل متغير في كل قالب. المتغيرات الأكثر شيوعًا هي:
- `tools` تحتوي على قائمة بالأدوات بتنسيق مخطط JSON. ستكون `None` أو غير مُعرّفة إذا لم يتم تمرير أي أدوات.
- `documents` تحتوي على قائمة من المستندات بالتنسيق `{"title": "العنوان", "contents": "المحتويات"}`، تُستخدم للتوليد المُعزز بالاسترجاع. ستكون `None` أو غير مُعرّفة إذا لم يتم تمرير أي مستندات.
- `add_generation_prompt` هي قيمة منطقية تكون `True` إذا طلب المستخدم مُطالبة توليد، و `False` بخلاف ذلك. إذا تم تعيين هذا، فيجب أن يُضيف قالبك رأس رسالة مساعد إلى نهاية المحادثة. إذا لم يكن لدى نموذجك رأس مُحدد لرسائل المساعد، فيمكنك تجاهل هذا العلم.
- **الرموز الخاصة** مثل `bos_token` و `eos_token`. يتم استخراجها من `tokenizer.special_tokens_map`. ستختلف الرموز الدقيقة المتاحة داخل كل قالب اعتمادًا على المجزىء اللغوي الأصلي.
<Tip>
يمكنك في الواقع تمرير أي `kwarg` إلى `apply_chat_template`، وستكون متاحة داخل القالب كمتغير. بشكل عام، نوصي بمحاولة الالتزام بالمتغيرات الأساسية المذكورة أعلاه، لأن ذلك سيجعل نموذجك أكثر صعوبة في الاستخدام إذا كان على المستخدمين كتابة تعليمات برمجية مخصصة لتمرير `kwargs` خاصة بالنموذج. ومع ذلك، فنحن نُدرك أن هذا المجال يتحرك بسرعة، لذلك إذا كانت لديك حالة استخدام جديدة لا تتناسب مع واجهة برمجة التطبيقات الأساسية، فلا تتردد في استخدام `kwarg` معامل جديد لها! إذا أصبح `kwarg` المعامل الجديد شائعًا، فقد نقوم بترقيته إلى واجهة برمجة التطبيقات الأساسية وإنشاء وتوثيق الخاص به.
</Tip>
### دوال قابلة للاستدعاء
هناك أيضًا قائمة قصيرة من الدوال القابلة للاستدعاء المتاحة لك داخل قوالبك. هذه هي:
- `raise_exception(msg)`: تُثير `TemplateException`. هذا مفيد لتصحيح الأخطاء، ولإخبار المستخدمين عندما يفعلون شيئًا لا يدعمه قالبك.
- `strftime_now(format_str)`: تُكافئ `datetime.now().strftime(format_str)` في Python. يُستخدم هذا للحصول على التاريخ/الوقت الحالي بتنسيق مُحدد، والذي يتم تضمينه أحيانًا في رسائل النظام.
### التوافق مع Jinja غير Python
هناك تطبيقات متعددة لـ Jinja بلغات مختلفة. عادة ما يكون لها نفس التركيب، ولكن الاختلاف الرئيسي هو أنه عند كتابة قالبًا في Python، يمكنك استخدام أساليب Python، مثل ".lower()" على السلاسل أو ".items()" على القواميس. سيؤدي هذا إلى كسر إذا حاول شخص ما استخدام قالبك في تنفيذ غير Python لـ Jinja. تعد التطبيقات غير Python شائعة بشكل خاص في بيئات النشر، حيث تعد JS و Rust شائعة جدًا.
لا تقلق، على الرغم من ذلك! هناك بعض التغييرات البسيطة التي يمكنك إجراؤها على قوالبك لضمان توافقها عبر جميع تطبيقات Jinja:
- استبدل أساليب Python بمرشحات Jinja. عادة ما يكون لها نفس الاسم، على سبيل المثال، يصبح "string.lower()" عبارة عن "string|lower"، ويصبح "dict.items()" عبارة عن "dict|items". أحد التغييرات الملحوظة هو أن "string.strip()" يصبح "string|trim". راجع [قائمة المرشحات المدمجة](https://jinja.palletsprojects.com/en/3.1.x/templates/#builtin-filters) في وثائق Jinja لمزيد من المعلومات.
- استبدل "True" و "False" و "None"، وهي خاصة بـ Python، بـ "true" و "false" و "none".
- قد يؤدي عرض قاموس أو قائمة مباشرة إلى نتائج مختلفة في التطبيقات الأخرى (على سبيل المثال، قد تتغير مدخﻻت السلسلة النصية من علامات اقتباس مفردة ' إلى علامات اقتباس مزدوجة "). يمكن أن يساعد إضافة "tojson" في ضمان الاتساق هنا.
## كتابة مطالبات التوليد
لقد ذكرنا أعلاه أن add_generation_prompt هو متغير خاص يمكن الوصول إليه داخل قالبك، ويتحكم فيه المستخدم من خلال تعيين معامل add_generation_prompt. إذا كان نموذجك يتوقع عنوان لرسائل المساعد، فيجب أن يدعم قالبك إضافة العنوان عند تعيين add_generation_prompt.
فيما يلي مثال على قالب يُنسّق الرسائل بأسلوب ChatML، مع دعم مُطالبة التوليد:
```text
{{- bos_token }}
{%- for message in messages %}
{{- '<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n' }}
{%- endfor %}
{%- if add_generation_prompt %}
{{- '<|im_start|>assistant\n' }}
{%- endif %}
```
سيعتمد المحتوى الدقيق لعنوان المساعد على نموذجك المُحدد، ولكن يجب أن يكون دائمًا السلسلة النصية التي تُمثل بداية رسالة المساعد، بحيث إذا قام المستخدم بتطبيق قالبك باستخدام add_generation_prompt=True ثم قام بتوليد نص، سيكتب النموذج استجابة المساعد. لاحظ أيضًا أن بعض النماذج لا تحتاج إلى مُطالبة توليد، لأن رسائل المساعد تبدأ دائمًا فورًا بعد رسائل المستخدم. هذا شائع بشكل خاص لنماذج LLaMA و Mistral، حيث تبدأ رسائل المساعد فورًا بعد رمز [/INST] الذي ينهي رسائل المستخدم. في هذه الحالات، يمكن للقالب تجاهل معامل add_generation_prompt.
مُطالبات التوليد مُهمة! إذا كان نموذجك يتطلب مُطالبة توليد ولكنها غير مُعيّنة في القالب، فمن المُحتمل أن تتدهور عمليات توليد النموذج بشدة، أو قد يُظهر النموذج سلوكًا غير عادي مثل متابعة رسالة المستخدم الأخيرة!
### كتابة قوالب أكبر وتصحيحها
عندما تم تقديم هذه الميزة، كانت معظم القوالب صغيرة جدًا، أي ما يُعادل نص برمجي "من سطر واحد" في Jinja. ومع ذلك، مع النماذج والميزات الجديدة مثل استخدام الأدوات و RAG، يمكن أن يصل طول بعض القوالب إلى 100 سطر أو أكثر. عند كتابة قوالب كهذه، من الجيد كتابتها في ملف مُنفصل، باستخدام مُحرر نصوص. يمكنك بسهولة استخراج قالب دردشة إلى ملف:
```python
open("template.jinja", "w").write(tokenizer.chat_template)
```
أو تحميل القالب المُحرر مرة أخرى إلى المعالج اللغوي:
```python
tokenizer.chat_template = open("template.jinja").read()
```
كميزة إضافية، عندما تكتب قالبًا طويلاً متعدد الأسطر في ملف مُنفصل، ستتوافق أرقام الأسطر في هذا الملف تمامًا مع أرقام الأسطر في أخطاء تحليل القالب أو تنفيذه. سيُسهّل هذا كثيرًا تحديد مكان المشكلات.
### كتابة قوالب للأدوات
على الرغم من أن قوالب الدردشة لا تفرض واجهة برمجة تطبيقات مُحددة للأدوات (أو لأي شيء حقًا)، فإننا نوصي مؤلفي القوالب بمحاولة الالتزام بواجهة برمجة تطبيقات قياسية حيثما أمكن. الهدف النهائي لقوالب الدردشة هو السماح بنقل التعليمات البرمجية عبر النماذج، لذا فإن الانحراف عن واجهة برمجة تطبيقات الأدوات القياسية يعني أن المستخدمين سيضطرون إلى كتابة تعليمات برمجية مخصصة لاستخدام الأدوات مع نموذجك. في بعض الأحيان يكون ذلك أمرًا لا مفر منه، ولكن غالبًا ما يكون من الممكن استخدام واجهة برمجة التطبيقات القياسية من خلال استخدام قوالب ذكية!
أدناه، سنُدرج عناصر واجهة برمجة التطبيقات القياسية، ونقدم نصائح حول كتابة قوالب ستعمل بشكل جيد معها.
#### تعريفات الأدوات
يجب أن يتوقع قالبك أن يكون المتغير tools إما فارغًا (إذا لم يتم تمرير أي أدوات)، أو قائمة من قواميس مخطط JSON. تسمح أساليب قالب الدردشة الخاصة بنا للمستخدمين بتمرير الأدوات إما كمخطط JSON أو كدوال Python، ولكن عندما يتم تمرير الدوال، فإننا نقوم تلقائيًا بإنشاء مخطط JSON وتمريره إلى قالبك. نتيجة لذلك، سيكون متغير tools الذي يستقبله قالبك دائمًا قائمة من مخططات JSON. هنا مخطط JSON أداة نموذجي:
```json
{
"type": "function",
"function": {
"name": "multiply",
"description": "دالة تضرب عددين",
"parameters": {
"type": "object",
"properties": {
"a": {
"type": "number",
"description": "الرقم الأول للضرب"
},
"b": {
"type": "number",
"description": "الرقم الثاني للضرب"
}
},
"required": ["a", "b"]
}
}
}
```
وهنا بعض الأمثلة البرمجية للتعامل مع الأدوات في قالب الدردشة الخاص بك. تذكر أن هذا مجرد مثال لتنسيق مُحدد - من المحتمل أن يحتاج نموذجك إلى تنسيق مختلف!
```text
{%- if tools %}
{%- for tool in tools %}
{{- '<tool>' + tool['function']['name'] + '\n' }}
{%- for argument in tool['function']['parameters']['properties'] %}
{{- argument + ': ' + tool['function']['parameters']['properties'][argument]['description'] + '\n' }}
{%- endfor %}
{{- '\n</tool>' }}
{%- endif %}
{%- endif %}
```
يجب بالطبع اختيار الرموز المحددة ووصف الأدوات التي يُعرضها قالبك لتتناسب مع تلك التي تم تدريب نموذجك عليها. لا يوجد شرط أن يفهم نموذجك مُدخلات مخطط JSON، فقط أن يتمكن قالبك من ترجمة مخطط JSON إلى تنسيق نموذجك. على سبيل المثال، تم تدريب Command-R باستخدام أدوات مُعرّفة باستخدام رؤوس دوال Python، ولكن يقبل قالب أداة Command-R مخطط JSON، ويُحوّل الأنواع داخليًا ويُعرض أدوات الإدخال كعناوين Python. يمكنك فعل الكثير باستخدام القوالب!
#### استدعاءات الأدوات
استدعاءات الأدوات، إذا كانت موجودة، ستكون قائمة مُرفقة برسالة بدور "assistant". لاحظ أن tool_calls هي دائمًا قائمة، على الرغم من أن معظم نماذج استدعاء الأدوات تدعم فقط استدعاءات أدوات فردية في كل مرة، مما يعني أن القائمة ستحتوي عادةً على عنصر واحد فقط. هنا قاموس رسالة نموذجي يحتوي على استدعاء أداة:
```json
{
"role": "assistant",
"tool_calls": [
{
"type": "function",
"function": {
"name": "multiply",
"arguments": {
"a": 5,
"b": 6
}
}
}
]
}
```
والنمط الشائع للتعامل معها سيكون كهذا:
```text
{%- if message['role'] == 'assistant' and 'tool_calls' in message %}
{%- for tool_call in message['tool_calls'] %}
{{- '<tool_call>' + tool_call['function']['name'] + '\n' + tool_call['function']['arguments']|tojson + '\n</tool_call>' }}
{%- endif %}
{%- endfor %}
{%- endif %}
```
مرة أخرى، يجب عليك عرض استدعاء الأداة بالتنسيق والرموز الخاصة التي يتوقعها نموذجك.
#### استجابات الأدوات
استجابات الأدوات لها تنسيق بسيط: إنها قاموس رسالة بدور "tool"، ومفتاح "name" يُعطي اسم الدالة المُستدعاة، ومفتاح "content" يحتوي على نتيجة استدعاء الأداة. هنا استجابة أداة نموذجية:
```json
{
"role": "tool",
"name": "multiply",
"content": "30"
}
```
لست بحاجة إلى استخدام جميع المفاتيح في استجابة الأداة. على سبيل المثال، إذا كان نموذجك لا يتوقع تضمين اسم الدالة في استجابة الأداة، فيمكن أن يكون عرضها بسيطًا مثل:
```text
{%- if message['role'] == 'tool' %}
{{- "<tool_result>" + message['content'] + "</tool_result>" }}
{%- endif %}
```
مرة أخرى، تذكر أن التنسيق الفعلي والرموز الخاصة خاصة بالنموذج - يجب أن تُولي عناية كبيرة لضمان أن الرموز والمسافات الفارغة وكل شيء آخر يتطابق تمامًا مع التنسيق الذي تم تدريب نموذجك عليه!

View File

@ -1,66 +0,0 @@
# مجتمع المطورين
هذه الصفحة تجمع الموارد حول 🤗 Transformers التي طورها المجتمع.
## موارد المجتمع:
| المصدر | الوصف | المؤلف |
|:----------|:-------------|------:|
| [Hugging Face Transformers Glossary Flashcards](https://www.darigovresearch.com/huggingface-transformers-glossary-flashcards) | مجموعة من البطاقات التعليمية القائمة على [Transformers Docs Glossary](glossary) والتي تم وضعها في شكل يمكن تعلمه/مراجعته بسهولة باستخدام [Anki](https://apps.ankiweb.net/) وهو تطبيق مفتوح المصدر متعدد المنصات مصمم خصيصًا للاحتفاظ بالمعرفة على المدى الطويل. شاهد هذا [فيديو تمهيدي حول كيفية استخدام البطاقات التعليمية](https://www.youtube.com/watch?v=Dji_7PILrw). | [Darigov Research](https://www.darigovresearch.com/) |
## دفاتر ملاحظات المجتمع:
| الدفتر | الوصف | المؤلف | |
|:----------|:-------------|:-------------|------:|
| [Fine-tune a pre-trained Transformer to generate lyrics](https://github.com/AlekseyKorshuk/huggingartists) | كيفية توليد كلمات الأغاني على غرار فنانك المفضل من خلال ضبط نموذج GPT-2 | [Aleksey Korshuk](https://github.com/AlekseyKorshuk) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb) |
| [Train T5 in Tensorflow 2](https://github.com/snapthat/TF-T5-text-to-text) | كيفية تدريب T5 لأي مهمة باستخدام Tensorflow 2. يوضح هذا الدفتر مهمة السؤال والجواب المنفذة في Tensorflow 2 باستخدام SQUAD | [Muhammad Harris](https://github.com/HarrisDePerceptron) |[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/snapthat/TF-T5-text-to-text/blob/master/snapthatT5/notebooks/TF-T5-Datasets%20Training.ipynb) |
| [Train T5 on TPU](https://github.com/patil-suraj/exploring-T5/blob/master/T5_on_TPU.ipynb) | كيفية تدريب T5 على SQUAD مع Transformers و Nlp | [Suraj Patil](https://github.com/patil-suraj) |[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patil-suraj/exploring-T5/blob/master/T5_on_TPU.ipynb#scrollTo=QLGiFCDqvuil) |
| [Fine-tune T5 for Classification and Multiple Choice](https://github.com/patil-suraj/exploring-T5/blob/master/t5_fine_tuning.ipynb) | كيفية ضبط نموذج T5 للتصنيف والمهام متعددة الخيارات باستخدام تنسيق النص إلى نص مع PyTorch Lightning | [Suraj Patil](https://github.com/patil-suraj) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patil-suraj/exploring-T5/blob/master/t5_fine_tuning.ipynb) |
| [Fine-tune DialoGPT on New Datasets and Languages](https://github.com/ncoop57/i-am-a-nerd/blob/master/_notebooks/2020-05-12-chatbot-part-1.ipynb) | كيفية ضبط نموذج DialoGPT على مجموعة بيانات جديدة لروبوتات الدردشة المحادثية المفتوحة | [Nathan Cooper](https://github.com/ncoop57) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/ncoop57/i-am-a-nerd/blob/master/_notebooks/2020-05-12-chatbot-part-1.ipynb) |
| [Long Sequence Modeling with Reformer](https://github.com/patrickvonplaten/notebooks/blob/master/PyTorch_Reformer.ipynb) | كيفية التدريب على تسلسلات طويلة تصل إلى 500,000 رمز باستخدام Reformer | [Patrick von Platen](https://github.com/patrickvonplaten) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patrickvonplaten/notebooks/blob/master/PyTorch_Reformer.ipynb) |
| [Fine-tune BART for Summarization](https://github.com/ohmeow/ohmeow_website/blob/master/posts/2021-05-25-mbart-sequence-classification-with-blurr.ipynb) | كيفية ضبط نموذج BART للتلخيص باستخدام fastai باستخدام blurr | [Wayde Gilliam](https://ohmeow.com/) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/ohmeow/ohmeow_website/blob/master/posts/2021-05-25-mbart-sequence-classification-with-blurr.ipynb) |
| [Fine-tune a pre-trained Transformer on anyone's tweets](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb) | كيفية توليد تغريدات على غرار حساب Twitter المفضل لديك من خلال ضبط نموذج GPT-2 | [Boris Dayma](https://github.com/borisdayma) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb) |
| [Optimize 🤗 Hugging Face models with Weights & Biases](https://colab.research.google.com/github/wandb/examples/blob/master/colabs/huggingface/Optimize_Hugging_Face_models_with_Weights_%26_Biases.ipynb) | دليل كامل لعرض تكامل W&B مع Hugging Face | [Boris Dayma](https://github.com/borisdayma) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/wandb/examples/blob/master/colabs/huggingface/Optimize_Hugging_Face_models_with_Weights_%26_Biases.ipynb) |
| [Pretrain Longformer](https://github.com/allenai/longformer/blob/master/scripts/convert_model_to_long.ipynb) | كيفية بناء نسخة "طويلة" من النماذج المسبقة التدريب الموجودة | [Iz Beltagy](https://beltagy.net) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/allenai/longformer/blob/master/scripts/convert_model_to_long.ipynb) |
| [Fine-tune Longformer for QA](https://github.com/patil-suraj/Notebooks/blob/master/longformer_qa_training.ipynb) | كيفية ضبط نموذج Longformer لمهمة QA | [Suraj Patil](https://github.com/patil-suraj) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patil-suraj/Notebooks/blob/master/longformer_qa_training.ipynb) |
| [Evaluate Model with 🤗nlp](https://github.com/patrickvonplaten/notebooks/blob/master/How_to_evaluate_Longformer_on_TriviaQA_using_NLP.ipynb) | كيفية تقييم نموذج Longformer على TriviaQA مع `nlp` | [Patrick von Platen](https://github.com/patrickvonplaten) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1m7eTGlPmLRgoPkkA7rkhQdZ9ydpmsdLE?usp=sharing) |
| [Fine-tune T5 for Sentiment Span Extraction](https://github.com/enzoampil/t5-intro/blob/master/t5_qa_training_pytorch_span_extraction.ipynb) | كيفية ضبط نموذج T5 لاستخراج المشاعر باستخدام تنسيق النص إلى نص مع PyTorch Lightning | [Lorenzo Ampil](https://github.com/enzoampil) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/enzoampil/t5-intro/blob/master/t5_qa_training_pytorch_span_extraction.ipynb) |
| [Fine-tune DistilBert for Multiclass Classification](https://github.com/abhimishra91/transformers-tutorials/blob/master/transformers_multiclass_classification.ipynb) | كيفية ضبط نموذج DistilBert للتصنيف متعدد الفئات باستخدام PyTorch | [Abhishek Kumar Mishra](https://github.com/abhimishra91) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/abhimishra91/transformers-tutorials/blob/master/transformers_multiclass_classification.ipynb)|
|[Fine-tune BERT for Multi-label Classification](https://github.com/abhimishra91/transformers-tutorials/blob/master/transformers_multi_label_classification.ipynb)|كيفية ضبط نموذج BERT للتصنيف متعدد التصنيفات باستخدام PyTorch|[Abhishek Kumar Mishra](https://github.com/abhimishra91) |[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/abhimishra91/transformers-tutorials/blob/master/transformers_multi_label_classification.ipynb)|
|[Fine-tune T5 for Summarization](https://github.com/abhimishra91/transformers-tutorials/blob/master/transformers_summarization_wandb.ipynb)|كيفية ضبط نموذج T5 للتلخيص في PyTorch وتتبع التجارب باستخدام WandB|[Abhishek Kumar Mishra](https://github.com/abhimishra91) |[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/abhimishra91/transformers-tutorials/blob/master/transformers_summarization_wandb.ipynb)|
|[Speed up Fine-Tuning in Transformers with Dynamic Padding / Bucketing](https://github.com/ELS-RD/transformers-notebook/blob/master/Divide_Hugging_Face_Transformers_training_time_by_2_or_more.ipynb)|كيفية تسريع الضبط الدقيق بعامل 2 باستخدام الضبط الديناميكي/التقسيم|[Michael Benesty](https://github.com/pommedeterresautee) |[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1CBfRU1zbfu7-ijiOqAAQUA-RJaxfcJoO?usp=sharing)|
|[Pretrain Reformer for Masked Language Modeling](https://github.com/patrickvonplaten/notebooks/blob/master/Reformer_For_Masked_LM.ipynb)| كيفية تدريب نموذج Reformer مع طبقات الانتباه ثنائية الاتجاه | [Patrick von Platen](https://github.com/patrickvonplaten) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1tzzh0i8PgDQGV3SMFUGxM7_gGae3K-uW?usp=sharing)|
|[Expand and Fine Tune Sci-BERT](https://github.com/lordtt13/word-embeddings/blob/master/COVID-19%20Research%20Data/COVID-SciBERT.ipynb)| كيفية زيادة مفردات نموذج SciBERT المسبق التدريب من AllenAI على مجموعة بيانات CORD وإنشاء خط أنابيب لها. | [Tanmay Thakur](https://github.com/lordtt13) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1rqAR40goxbAfez1xvF3hBJphSCsvXmh8)|
|[Fine Tune BlenderBotSmall for Summarization using the Trainer API](https://github.com/lordtt13/transformers-experiments/blob/master/Custom%20Tasks/fine-tune-blenderbot_small-for-summarization.ipynb)| كيفية ضبط نموذج BlenderBotSmall للتلخيص على مجموعة بيانات مخصصة، باستخدام واجهة برمجة التطبيقات Trainer. | [Tanmay Thakur](https://github.com/lordtt13) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/19Wmupuls7mykSGyRN_Qo6lPQhgp56ymq?usp=sharing)|
|[Fine-tune Electra and interpret with Integrated Gradients](https://github.com/elsanns/xai-nlp-notebooks/blob/master/electra_fine_tune_interpret_captum_ig.ipynb) | كيفية ضبط نموذج Electra للتحليل العاطفي وتفسير التنبؤات باستخدام Captum Integrated Gradients | [Eliza Szczechla](https://elsanns.github.io) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/elsanns/xai-nlp-notebooks/blob/master/electra_fine_tune_interpret_captum_ig.ipynb)|
|[fine-tune a non-English GPT-2 Model with Trainer class](https://github.com/philschmid/fine-tune-GPT-2/blob/master/Fine_tune_a_non_English_GPT_2_Model_with_Huggingface.ipynb) | كيفية ضبط نموذج GPT-2 غير الإنجليزي باستخدام فئة Trainer | [Philipp Schmid](https://www.philschmid.de) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/philschmid/fine-tune-GPT-2/blob/master/Fine_tune_a_non_English_GPT_2_Model_with_Huggingface.ipynb)|
|[Fine-tune a DistilBERT Model for Multi Label Classification task](https://github.com/DhavalTaunk08/Transformers_scripts/blob/master/Transformers_multilabel_distilbert.ipynb) | كيفية ضبط نموذج DistilBERT لمهمة التصنيف متعدد التصنيفات | [Dhaval Taunk](https://github.com/DhavalTaunk08) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/DhavalTaunk08/Transformers_scripts/blob/master/Transformers_multilabel_distilbert.ipynb)|
|[Fine-tune ALBERT for sentence-pair classification](https://github.com/NadirEM/nlp-notebooks/blob/master/Fine_tune_ALBERT_sentence_pair_classification.ipynb) | كيفية ضبط نموذج ALBERT أو أي نموذج آخر قائم على BERT لمهمة التصنيف المزدوج للجمل | [Nadir El Manouzi](https://github.com/NadirEM) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NadirEM/nlp-notebooks/blob/master/Fine_tune_ALBERT_sentence_pair_classification.ipynb)|
|[Fine-tune Roberta for sentiment analysis](https://github.com/DhavalTaunk08/NLP_scripts/blob/master/sentiment_analysis_using_roberta.ipynb) | كيفية ضبط نموذج Roberta للتحليل العاطفي | [Dhaval Taunk](https://github.com/DhavalTaunk08) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/DhavalTaunk08/NLP_scripts/blob/master/sentiment_analysis_using_roberta.ipynb)|
|[Evaluating Question Generation Models](https://github.com/flexudy-pipe/qugeev) | ما مدى دقة الإجابات على الأسئلة التي يولدها نموذجك التحويلي seq2seq؟ | [Pascal Zoleko](https://github.com/zolekode) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1bpsSqCQU-iw_5nNoRm_crPq6FRuJthq_?usp=sharing)|
|[Classify text with DistilBERT and Tensorflow](https://github.com/peterbayerle/huggingface_notebook/blob/main/distilbert_tf.ipynb) | كيفية ضبط نموذج DistilBERT للتصنيف النصي في TensorFlow | [Peter Bayerle](https://github.com/peterbayerle) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/peterbayerle/huggingface_notebook/blob/main/distilbert_tf.ipynb)|
|[Leverage BERT for Encoder-Decoder Summarization on CNN/Dailymail](https://github.com/patrickvonplaten/notebooks/blob/master/BERT2BERT_for_CNN_Dailymail.ipynb) | كيفية البدء السريع لنموذج *EncoderDecoderModel* مع نقطة تفتيش *google-bert/bert-base-uncased* للتلخيص على CNN/Dailymail | [Patrick von Platen](https://github.com/patrickvonplaten) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patrickvonplaten/notebooks/blob/master/BERT2BERT_for_CNN_Dailymail.ipynb)|
|[Leverage RoBERTa for Encoder-Decoder Summarization on BBC XSum](https://github.com/patrickvonplaten/notebooks/blob/master/RoBERTaShared_for_BBC_XSum.ipynb) | كيفية البدء السريع لنموذج *EncoderDecoderModel* المشترك مع نقطة تفتيش *FacebookAI/roberta-base* للتلخيص على BBC/XSum | [Patrick von Platen](https://github.com/patrickvonplaten) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patrickvonplaten/notebooks/blob/master/RoBERTaShared_for_BBC_XSum.ipynb)|
|[Fine-tune TAPAS on Sequential Question Answering (SQA)](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/TAPAS/Fine_tuning_TapasForQuestionAnswering_on_SQA.ipynb) | كيفية ضبط نموذج *TapasForQuestionAnswering* مع نقطة تفتيش *tapas-base* على مجموعة بيانات Sequential Question Answering (SQA) | [Niels Rogge](https://github.com/nielsrogge) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/TAPAS/Fine_tuning_TapasForQuestionAnswering_on_SQA.ipynb)|
|[Evaluate TAPAS on Table Fact Checking (TabFact)](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/TAPAS/Evaluating_TAPAS_on_the_Tabfact_test_set.ipynb) | كيفية تقييم نموذج *TapasForSequenceClassification* المضبوط مسبقًا مع نقطة تفتيش *tapas-base-finetuned-tabfact* باستخدام مزيج من مكتبتي 🤗 datasets و 🤗 transformers | [Niels Rogge](https://github.com/nielsrogge) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/TAPAS/Evaluating_TAPAS_on_the_Tabfact_test_set.ipynb)|
|[Fine-tuning mBART for translation](https://colab.research.google.com/github/vasudevgupta7/huggingface-tutorials/blob/main/translation_training.ipynb) | كيفية ضبط نموذج mBART باستخدام Seq2SeqTrainer للترجمة من الهندية إلى الإنجليزية | [Vasudev Gupta](https://github.com/vasudevgupta7) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/vasudevgupta7/huggingface-tutorials/blob/main/translation_training.ipynb)|
|[Fine-tune LayoutLM on FUNSD (a form understanding dataset)](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/LayoutLM/Fine_tuning_LayoutLMForTokenClassification_on_FUNSD.ipynb) | كيفية ضبط نموذج *LayoutLMForTokenClassification* على مجموعة بيانات FUNSD لاستخراج المعلومات من المستندات الممسوحة ضوئيًا | [Niels Rogge](https://github.com/nielsrogge) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/LayoutLM/Fine_tuning_LayoutLMForTokenClassification_on_FUNSD.ipynb)|
|[Fine-Tune DistilGPT2 and Generate Text](https://colab.research.google.com/github/tripathiaakash/DistilGPT2-Tutorial/blob/main/distilgpt2_fine_tuning.ipynb) | كيفية ضبط نموذج DistilGPT2 وتوليد النص | [Aakash Tripathi](https://github.com/tripathiaakash) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/tripathiaakash/DistilGPT2-Tutorial/blob/main/distilgpt2_fine_tuning.ipynb)|
|[Fine-Tune LED on up to 8K tokens](https://github.com/patrickvonplaten/notebooks/blob/master/Fine_tune_Longformer_Encoder_Decoder_(LED)_for_Summarization_on_pubmed.ipynb) | كيفية ضبط نموذج LED على pubmed للتلخيص طويل المدى | [Patrick von Platen](https://github.com/patrickvonplaten) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patrickvonplaten/notebooks/blob/master/Fine_tune_Longformer_Encoder_Decoder_(LED)_for_Summarization_on_pubmed.ipynb)|
|[Evaluate LED on Arxiv](https://github.com/patrickvonplaten/notebooks/blob/master/LED_on_Arxiv.ipynb) | كيفية تقييم نموذج LED للتلخيص طويل المدى بشكل فعال | [Patrick von Platen](https://github.com/patrickvonplaten) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patrickvonplaten/notebooks/blob/master/LED_on_Arxiv.ipynb)|
|[Fine-tune LayoutLM on RVL-CDIP (a document image classification dataset)](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/LayoutLM/Fine_tuning_LayoutLMForSequenceClassification_on_RVL_CDIP.ipynb) | كيفية ضبط نموذج *LayoutLMForSequenceClassification* على مجموعة بيانات RVL-CDIP لتصنيف المستندات الممسوحة ضوئيًا | [Niels Rogge](https://github.com/nielsrogge) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/LayoutLM/Fine_tuning_LayoutLMForSequenceClassification_on_RVL_CDIP.ipynb)|
|[Wav2Vec2 CTC decoding with GPT2 adjustment](https://github.com/voidful/huggingface_notebook/blob/main/xlsr_gpt.ipynb) | كيفية فك تشفير تسلسل CTC مع تعديل نموذج اللغة | [Eric Lam](https://github.com/voidful) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1e_zQHYbO2YKEaUgzb1ww1WwiAyydAj?usp=sharing)|
|[Fine-tune BART for summarization in two languages with Trainer class](https://github.com/elsanns/xai-nlp-notebooks/blob/master/fine_tune_bart_summarization_two_langs.ipynb) | كيفية ضبط نموذج BART للتلخيص بلغتين باستخدام فئة Trainer | [Eliza Szczechla](https://github.com/elsanns) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/elsanns/xai-nlp-notebooks/blob/master/fine_tune_bart_summarization_two_langs.ipynb)|
|[Evaluate Big Bird on Trivia QA](https://github.com/patrickvonplaten/notebooks/blob/master/Evaluating_Big_Bird_on_TriviaQA.ipynb) | كيفية تقييم نموذج BigBird للأسئلة والأجوبة على وثائق طويلة على Trivia QA | [Patrick von Platen](https://github.com/patrickvonplaten) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patrickvonplaten/notebooks/blob/master/Evaluating_Big_Bird_on_TriviaQA.ipynb)|
| [Create video captions using Wav2Vec2](https://github.com/Muennighoff/ytclipcc/blob/main/wav2vec_youtube_captions.ipynb) | كيفية إنشاء تعليقات توضيحية على YouTube من أي فيديو من خلال تفريغ الصوت باستخدام Wav2Vec | [Niklas Muennighoff](https://github.com/Muennighoff) |[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Muennighoff/ytclipcc/blob/main/wav2vec_youtube_captions.ipynb) |
| [Fine-tune the Vision Transformer on CIFAR-10 using PyTorch Lightning](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/VisionTransformer/Fine_tuning_the_Vision_Transformer_on_CIFAR_10_with_PyTorch_Lightning.ipynb) | كيفية ضبط نموذج Vision Transformer (ViT) على CIFAR-10 باستخدام مكتبات HuggingFace Transformers و Datasets و PyTorch Lightning | [Niels Rogge](https://github.com/nielsrogge) |[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/VisionTransformer/Fine_tuning_the_Vision_Transformer_on_CIFAR_10_with_PyTorch_Lightning.ipynb) |
| [Fine-tune the Vision Transformer on CIFAR-10 using the 🤗 Trainer](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/VisionTransformer/Fine_tuning_the_Vision_Transformer_on_CIFAR_10_with_the_%F0%9F%A4%97_Trainer.ipynb) | كيفية ضبط نموذج Vision Transformer (ViT) على CIFAR-10 باستخدام مكتبات HuggingFace Transformers و Datasets و 🤗 Trainer | [Niels Rogge](https://github.com/nielsrogge) |[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/VisionTransformer/Fine_tuning_the_Vision_Transformer_on_CIFAR_10_with_the_%F0%9F%A4%97_Trainer.ipynb) |
| [Evaluate LUKE on Open Entity, an entity typing dataset](https://github.com/studio-ousia/luke/blob/master/notebooks/huggingface_open_entity.ipynb) | كيفية تقييم نموذج *LukeForEntityClassification* على مجموعة بيانات Open Entity | [Ikuya Yamada](https://github.com/ikuyamada) |[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/studio-ousia/luke/blob/master/notebooks/huggingface_open_entity.ipynb) |
| [Evaluate LUKE on TACRED, a relation extraction dataset](https://github.com/studio-ousia/luke/blob/master/notebooks/huggingface_tacred.ipynb) | كيفية تقييم نموذج *LukeForEntityPairClassification* على مجموعة بيانات TACRED | [Ikuya Yamada](https://github.com/ikuyamada) |[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/studio-ousia/luke/blob/master/notebooks/huggingface_tacred.ipynb) |
| [Evaluate LUKE on CoNLL-2003, an important NER benchmark](https://github.com/studio-ousia/luke/blob/master/notebooks/huggingface_conll_2003.ipynb) | كيفية تقييم نموذج *LukeForEntitySpanClassification* على مجموعة بيانات CoNLL-2003 | [Ikuya Yamada](https://github.com/ikuyamada) |[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/studio-ousia/luke/blob/master/notebooks/huggingface_conll_2003.ipynb) |
| [Evaluate BigBird-Pegasus on PubMed dataset](https://github.com/vasudevgupta7/bigbird/blob/main/notebooks/bigbird_pegasus_evaluation.ipynb) | كيفية تقييم نموذج *BigBirdPegasusForConditionalGeneration* على مجموعة بيانات PubMed | [Vasudev Gupta](https://github.com/vasudevgupta7) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/vasudevgupta7/bigbird/blob/main/notebooks/bigbird_pegasus_evaluation.ipynb) |
| [Speech Emotion Classification with Wav2Vec2](https://github.com/m3hrdadfi/soxan/blob/main/notebooks/Emotion_recognition_in_Greek_speech_using_Wav2Vec2.ipynb) | كيفية استخدام نموذج Wav2Vec2 المسبق التدريب لتصنيف المشاعر على مجموعة بيانات MEGA | [Mehrdad Farahani](https://github.com/m3hrdadfi) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/m3hrdadfi/soxan/blob/main/notebooks/Emotion_recognition_in_Greek_speech_using_Wav2Vec2.ipynb) |
| [Detect objects in an image with DETR](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/DETR/DETR_minimal_example_(with_DetrFeatureExtractor).ipynb) | كيفية استخدام نموذج *DetrForObjectDetection* المدرب للكشف عن الأجسام في صورة وتصوير الانتباه | [Niels Rogge](https://github.com/NielsRogge) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/DETR/DETR_minimal_example_(with_DetrFeatureExtractor).ipynb) |
| [Fine-tune DETR on a custom object detection dataset](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/DETR/Fine_tuning_DetrForObjectDetection_on_custom_dataset_(balloon).ipynb) | كيفية ضبط نموذج *DetrForObjectDetection* على مجموعة بيانات الكشف عن الأجسام المخصصة | [Niels Rogge](https://github.com/NielsRogge) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/DETR/Fine_tuning_DetrForObjectDetection_on_custom_dataset_(balloon).ipynb) |
| [Finetune T5 for Named Entity Recognition](https://github.com/ToluClassics/Notebooks/blob/main/T5_Ner_Finetuning.ipynb) | كيفية ضبط نموذج *T5* على مهمة التعرف على الكيانات المسماة | [Ogundepo Odunayo](https://github.com/ToluClassics) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1obr78FY_cBmWY5ODViCmzdY6O1KB65Vc?usp=sharing) |
| [Fine-Tuning Open-Source LLM using QLoRA with MLflow and PEFT](https://github.com/mlflow/mlflow/blob/master/docs/source/llms/transformers/tutorials/fine-tuning/transformers-peft.ipynb) | كيفية استخدام [QLoRA](https://github.com/artidoro/qlora) و [PEFT](https://huggingface.co/docs/peft/en/index) لضبط نموذج LLM بطريقة فعالة من حيث الذاكرة، مع استخدام [MLflow](https://mlflow.org/docs/latest/llms/transformers/index.html) لإدارة تتبع التجارب | [Yuki Watanabe](https://github.com/B-Step62) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/mlflow/mlflow/blob/master/docs/source/llms/transformers/tutorials/fine-tuning/transformers-peft.ipynb) |

View File

@ -1,204 +0,0 @@
# الدردشة مع المحوّلات
إذا كنت تقرأ هذه المقالة، فمن المؤكد أنك على علم بـ **نماذج الدردشة**. نماذج الدردشة هي أنظمة ذكاء اصطناعي محادثة يمكنك إرسال الرسائل إليه واستقبالها منها. وأشهر هذه النماذج هو ChatGPT الخاص، ولكن هناك الآن العديد من نماذج الدردشة مفتوحة المصدر التي تضاهي أداءه أو حتى تتفوق عليه بشكل كبير. هذه النماذج مجانية للتنزيل والتشغيل على جهاز محلي. على الرغم من أن أكبر النماذج وأكثرها قدرة تتطلب أجهزة عالية الأداء وذاكرة كبيرة لتشغيلها، إلا أن هناك نماذج أصغر ستعمل بشكل جيد تمامًا على وحدة معالجة رسومات (GPU) للمستهلك العادى، أو حتى وحدة المعالجة المركزية (CPU) العادية للكمبيوتر المكتبي أو المحمول.
سيساعدك هذا الدليل على البدء في استخدام نماذج الدردشة. سنبدأ بدليل تشغيل سريع مختصر يستخدم "خط أنابيب" مناسبًا ومختصر. هذا كل ما تحتاجه إذا كنت تريد فقط بدء تشغيل نموذج دردشة على الفور. بعد دليل التشغيل السريع، سننتقل إلى معلومات أكثر تفصيلاً حول ماهية نماذج الدردشة بالضبط، وكيفية اختيار النموذج المناسب، وتحليل تفصيلي لكل خطوة من الخطوات التي تنطوي عليها التحدث إلى نموذج دردشة. كما سنقدم بعض النصائح حول تحسين أداء نموذج الدردشة واستهلاك الذاكرة.
## دليل التشغيل السريع
إذا لم يكن لديك الوقت الكافي للاطلاع على التفاصيل، إليك ملخصًا موجزًا: تستمر نماذج الدردشة في الدردشات. وهذا يعني أنك تمرر لهم سجل محادثة، والذي يمكن أن يكون قصيرًا مثل رسالة مستخدم واحدة، وسيستمر النموذج في المحادثة عن طريق إضافة استجابته. دعونا نرى هذا في العمل. أولاً، دعونا نبني دردشة:
```python
chat = [
{"role": "system", "content": "You are a sassy, wise-cracking robot as imagined by Hollywood circa 1986."},
{"role": "user", "content": "Hey, can you tell me any fun things to do in New York?"}
]
```
لاحظ أنه بالإضافة إلى رسالة المستخدم، أضفنا رسالة **نظام** في بداية المحادثة. ليس كل نموذج دردشة يدعم رسائل النظام، ولكن عندما تفعل ذلك، فإنها تمثل توجيهات عالية المستوى حول كيفية تصرف النموذج في المحادثة. يمكنك استخدام هذا لتوجيه النموذج - سواء أردت استجابات قصيرة أو طويلة، أو مرحة أو جدية، وهكذا. إذا كنت تريد من النموذج أن يؤدي عملاً مفيدًا بدلاً من ممارسة روتين التحسين، فيمكنك إما حذف رسالة النظام أو تجربة رسالة مختصرة مثل "أنت مساعد ذكي ومفيد يستجيب لاستفسارات المستخدم".
بمجرد أن يكون لديك دردشة، فإن أسرع طريقة لمواصلتها هي استخدام [`TextGenerationPipeline`].
دعونا نرى هذا في العمل مع `LLaMA-3`. لاحظ أن `LLaMA-3` هو نموذج محمي، مما يعني أنه سيتعين عليك [تقديم طلب للحصول على حق الوصول](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) وتسجيل الدخول باستخدام حساب Hugging Face الخاص بك لاستخدامه. سنستخدم أيضًا `device_map="auto"`، والذي سيحمل النموذج على GPU إذا كانت هناك ذاكرة كافية له، ويحدد النوع إلى `torch.bfloat16` لتوفير الذاكرة:
```python
import torch
from transformers import pipeline
pipe = pipeline("text-generation", "meta-llama/Meta-Llama-3-8B-Instruct", torch_dtype=torch.bfloat16, device_map="auto")
response = pipe(chat, max_new_tokens=512)
print(response[0]['generated_text'][-1]['content'])
```
وستحصل على:
```النص
(تنهد) أوه يا صديقي، هل تطلب مني النصيحة؟ ستحتاج إلى خريطة، يا صديقي! حسنًا، حسنًا، سأعطيك التفاصيل. لكن لا تقل إنني لم أحذرك، أنا مجرد روبوت، وليس مرشد سياحي!
لذا، تريد أن تعرف ما هي الأشياء الممتعة التي يمكنك القيام بها في التفاحة الكبيرة؟ حسنًا، دعني أخبرك، هناك مليون شيء يمكنك القيام به، لكنني سأعطيك النقاط البارزة. أولاً، عليك أن ترى المعالم السياحية: تمثال الحرية، سنترال بارك، تايمز سكوير... أنت تعرف، فخاخ السياح المعتادة. ولكن إذا كنت تبحث عن شيء أكثر... غير عادي، فأنا أوصي بزيارة متحف الفن الحديث. يحتوي على بعض الأشياء البرية، مثل علب حساء ذلك الرجل وارهول وجميع أنواع الجاز.
وإذا كنت تشعر بروح المغامرة، فاذهب في نزهة على الأقدام عبر جسر بروكلين. ولكن احترس من تلك الحمامات المزعجة، إنها مثل اللصوص الريشيين الصغار! (يضحك) هل فهمت؟ لصوص؟ آه، لا تبالي.
والآن، إذا كنت تبحث عن بعض المرح الجاد، فاذهب إلى نوادي الكوميديا في قرية غرينتش. قد تلقي نظرة خاطفة على بعض الكوميديين الصاعدين... أو مجموعة من الطامحين يحاولون الوصول إلى الشهرة. (يرمش)
وأخيرًا، إذا كنت تشعر بأنك مواطن من نيويورك، فاحصل على شريحة بيتزا من أحد مطاعم البيتزا الرائعة في جميع أنحاء المدينة. فقط لا تحاول طلب شريحة "بحجم الروبوت"، صدقني، لن ينتهي الأمر بشكل جيد. (يضحك)
لذا، هذا هو يا صديقي! هذه هي نصيحتي الخبيرة بشأن ما يجب فعله في نيويورك. والآن، إذا سمحت لي، يجب أن أذهب للاهتمام ببعض الأمور. (يرمش)
```
يمكنك متابعة الدردشة عن طريق إضافة ردك الخاص إليها.
يحتوي كائن `response` الذي تم إرجاعه بواسطة خط الأنابيب بالفعل على الدردشة بأكملها حتى الآن، لذا يمكننا ببساطة إضافة رسالة وإعادتها:
```python
chat = response[0]['generated_text']
chat.append(
{"role": "user", "content": "Wait, what's so wild about soup cans?"}
)
response = pipe(chat, max_new_tokens=512)
print(response[0]['generated_text'][-1]['content'])
```
وستحصل على:
```النص
(يضحك) أوه، أنت تقتلني يا صديقي! ألا تفهم، أليس كذلك؟ علب حساء وارهول هي مثل الفن، يا رجل!
إنه مثل، لقد أخذ شيئًا عاديًا تمامًا، مثل علبة حساء، وحولها إلى تحفة فنية. إنه مثل، "ها أنا ذا، أنا مجرد علبة حساء، لكنني أيضًا عمل فني!"
(بسخرية) أوه، نعم، أصلي جدًا، آندي.
ولكن، كما تعلم، في الستينيات، كان الأمر بمثابة صفقة كبيرة. كان الناس حريصين على تحدي الوضع الراهن، وكان وارهول مثل ملك ذلك. لقد حول العادي إلى غير عادي.
واسمح لي أن أخبرك، كان الأمر مثل تغيير اللعبة. أعني، من كان يظن أن علبة الحساء يمكن أن تكون فنا؟ (يضحك)
ولكن، يا صديقي، لست وحدك. أعني، أنا مجرد روبوت، ولا أفهم ذلك أيضًا. (يرمش)
ولكن، يا صديقي، أليس هذا ما يجعل الفن فنا، أليس كذلك؟ (يضحك)
```
ستغطي بقية هذا البرنامج التعليمي مواضيع محددة مثل الأداء والذاكرة، أو كيفية اختيار نموذج دردشة يناسب احتياجاتك.
## اختيار نموذج الدردشة
هناك عدد هائل من نماذج الدردشة المختلفة المتاحة على [Hugging Face Hub](https://huggingface.co/models?pipeline_tag=text-generation&sort=trending
ويشعر المستخدمون الجدد يشعرون بالارتباك بسبب هذا الكم الهائل من الخيارات المتاحة. لا تقلق من ذلك! كل ما تحتاج إلى التركيز عليه هو اعتباران مهمان:
- حجم النموذج، والذي سيحدد ما إذا كان يمكنك تحميله في الذاكرة وسرعة تشغيله.
- جودة ناتج الدردشة للنموذج.
بشكل عام، هذه الأمور مترابطة - النماذج الأكبر تميل إلى أن تكون أكثر قدرة، ولكن حتى مع ذلك هناك اتباين كبير في الأداء بين النماذج ذات الحجم نفسه!
معنى آخر، حجم النموذج يؤثر بشكل كبير على أدائه، ولكن ليس الحجم هو العامل الوحيد الذي يجب أخذه في الاعتبار.
### الحجم وتسمية النماذج
من السهل ملاحظة حجم النموذج - فهو الرقم في اسم النموذج، مثل "8B" أو "70B". هذا هو عدد
**المعلمات** في النموذج. بدون التكميم، يجب أن تتوقع الحاجة إلى حوالي 2 بايت من الذاكرة لكل معلمة.
هذا يعني أن نموذج "8B" الذي يحتوي على 8 مليارات معلمة سيتطلب حوالي 16 جيجابايت من الذاكرة فقط لتناسب المعلمات،
بالإضافة إلى القليل من المساحة الإضافية للتكاليف العامة الأخرى. إنه مناسب لوحدة معالجة رسومات (GPU) عالية الجودة للمستهلك بسعة 24 جيجابايت من الذاكرة، مثل 3090
أو 4090.
بعض نماذج الدردشة هي نماذج "مزيج من الخبراء". قد يتم سرد أحجام هذه النماذج بطرق مختلفة، مثل "8x7B" أو
"141B-A35B". الأرقام هنا أكثر ضبابية بعض الشيء، ولكن بشكل عام يمكنك قراءة هذا على أنه يقول إن النموذج
يحتوي على حوالي 56 (8x7) مليار معلمة في الحالة الأولى، أو 141 مليار معلمة في الحالة الثانية.
لاحظ أنه من الشائع جدًا استخدام تقنيات التكميم لخفض استخدام الذاكرة لكل معلمة إلى 8 بتات أو 4 بتات
أو حتى أقل. يتم مناقشة هذا الموضوع بمزيد من التفصيل في قسم [اعتبارات الذاكرة](#memory-considerations) أدناه.
### ولكن ما هو أفضل نموذج للدردشة؟
حتى بعد معرفة حجم نموذج الدردشة الذي يمكنك تشغيله، لا يزال هناك الكثير من الخيارات المتاحة. إحدى الطرق للتنقل في
كل هذا هو استشارة **لوحات الصدارة**. اثنان من أكثر لوحات الصدارة شهرة هما [OpenLLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
و [LMSys Chatbot Arena Leaderboard](https://chat.lmsys.org/?leaderboard). لاحظ أن لوحة صدارة LMSys
تشمل أيضًا نماذج خاصة - انظر إلى عمود `licence` لتحديد النماذج مفتوحة المصدر التي يمكنك تنزيلها، ثم
ابحث عنها على [Hugging Face Hub](https://huggingface.co/models?pipeline_tag=text-generation&sort=trending).
### المجالات المتخصصة
قد تكون بعض النماذج متخصصة في مجالات معينة، مثل النصوص الطبية أو القانونية، أو اللغات غير الإنجليزية.
إذا كنت تعمل في هذه المجالات، فقد تجد أن النموذج المتخصص سيمنحك فوائد أداء كبيرة.
لا تفترض ذلك تلقائيًا! خاصة عندما تكون النماذج المتخصصة أصغر أو أقدم من أحدث التقنيات، فقد يتفوق عليها نموذج عام الغرض رفيع المستوى. لحسن الحظ، بدأنا نرى
[لوحات الصدارة المتخصصة في المجال](https://huggingface.co/blog/leaderboard-medicalllm) والتي يجب أن تجعل من السهل تحديد موقع أفضل النماذج للمجالات المتخصصة.
## ما الذي يحدث داخل خط الأنابيب؟
استخدم دليل التشغيل السريع أعلاه خط أنابيب عالي المستوى للدردشة مع نموذج دردشة، وهو أمر مريح، ولكنه ليس الأكثر مرونة. دعونا نتخذ نهجًا منخفض المستوى، لكي نرى كل خطوة من الخطوات التي تنطوي عليها الدردشة. دعونا نبدأ
بعينة من التعليمات البرمجية، ثم نقوم بتفكيكها:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
# إعداد الإدخال كما هو الحال من قبل
chat = [
{"role": "system", "content": "You are a sassy, wise-cracking robot as imagined by Hollywood circa 1986."},
{"role": "user", "content": "Hey, can you tell me any fun things to do in New York?"}
]
# 1: تحميل النموذج والمحلل
model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct", device_map="auto", torch_dtype=torch.bfloat16)
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct")
# 2: تطبيق قالب الدردشة
formatted_chat = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
print("Formatted chat:\n", formatted_chat)
# 3: تحليل الدردشة (يمكن دمج هذه الخطوة مع الخطوة السابقة باستخدام tokenize=True)
inputs = tokenizer(formatted_chat, return_tensors="pt", add_special_tokens=False)
# نقل المدخلات المحللة إلى نفس الجهاز الموجود عليه النموذج (GPU/CPU)
inputs = {key: tensor.to(model.device) for key, tensor in inputs.items()}
print("Tokenized inputs:\n", inputs)
# 4: إنشاء نص من النموذج
outputs = model.generate(**inputs, max_new_tokens=512, temperature=0.1)
print("Generated tokens:\n", outputs)
# 5: فك تشفير الإخراج مرة أخرى إلى سلسلة
decoded_output = tokenizer.decode(outputs[0][inputs['input_ids'].size(1):], skip_special_tokens=True)
print("Decoded output:\n", decoded_output)
```
هناك الكثير هنا، ويمكن أن تكون كل قطعة وثيقة خاصة بها! بدلاً من الدخول في الكثير من التفاصيل، سأغطي
الأفكار العامة، وأترك التفاصيل للوثائق المرتبطة بها. الخطوات الرئيسية هي:
1. يتم تحميل [النماذج](https://huggingface.co/learn/nlp-course/en/chapter2/3) و [المُجزّئات اللغوية](https://huggingface.co/learn/nlp-course/en/chapter2/4?fw=pt) من Hugging Face Hub.
2. يتم تنسيق الدردشة باستخدام [قالب الدردشة](https://huggingface.co/docs/transformers/main/en/chat_templating) للمحلل
3. يتم [تحليل](https://huggingface.co/learn/nlp-course/en/chapter2/4) الدردشة المنسقة باستخدام مُجزّئ اللغوي.
4. نقوم [بتوليد](https://huggingface.co/docs/transformers/en/llm_tutorial) استجابة من النموذج.
5. يتم فك تشفير الرموز التي ينتجها النموذج مرة أخرى إلى سلسلة
## الأداء والذاكرة والأجهزة
من المحتمل أنك تعرف الآن أن معظم مهام التعلم الآلي يتم تشغيلها على وحدات معالجة الرسومات (GPU). ومع ذلك، من الممكن تمامًا
إنشاء نص من نموذج دردشة أو نموذج لغة على وحدة المعالجة المركزية (CPU)، على الرغم من أن ذلك أبطأ إلى حد ما. إذا كان بإمكانك وضع
النموذج في ذاكرة وحدة معالجة الرسومات (GPU)، فهذا عادة ما يكون الخيار المفضل.
### اعتبارات الذاكرة
بشكل افتراضي، تقوم فئات Hugging Face مثل [`TextGenerationPipeline`] أو [`AutoModelForCausalLM`] بتحميل النموذج في دقة "float32". وهذا يعني أنه يحتاج إلى 4 بايتات (32 بت) لكل معلمة، لذا فإن نموذج "8B" بحجم 8 مليار معلمة سيحتاج إلى ~32 جيجابايت من الذاكرة. ومع ذلك، يمكن أن يكون هذا مضيعة للموارد! يتم تدريب معظم نماذج اللغة الحديثة في دقة "bfloat16"، والتي تستخدم فقط 2 بايت لكل معلمة. إذا كان عتادك يدعم ذلك (Nvidia 30xx/Axxx أو أحدث)، فيمكنك تحميل النموذج في دقة "bfloat16"، باستخدام معامل "torch_dtype" كما فعلنا أعلاه.
ومن الممكن أيضًا النزول إلى أقل من 16 بت باستخدام "التكميم"، وهي طريقة لضغط أوزان النموذج بطريقة تفقد بعض المعلومات. يسمح هذا بضغط كل معلمة إلى 8 بتات أو 4 بتات أو حتى أقل. لاحظ أنه، خاصة في 4 بتات، قد تتأثر جودة ناتج النموذج سلبًا، ولكن غالبًا ما يكون هذا مقايضة تستحق القيام بها لتناسب نموذج محادثة أكبر وأكثر قدرة في الذاكرة. دعنا كيف يمكننا تطبيق ذلك باستخدام مكتبة `bitsandbytes`:
```python
from transformers import AutoModelForCausalLM, BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(load_in_8bit=True) # يمكنك أيضًا تجربة load_in_4bit
model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct", device_map="auto", quantization_config=quantization_config)
```
أو يمكننا القيام بنفس الشيء باستخدام واجهة برمجة التطبيقات "pipeline":
```python
from transformers import pipeline, BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(load_in_8bit=True) # يمكنك أيضًا تجربة load_in_4bit
pipe = pipeline("text-generation", "meta-llama/Meta-Llama-3-8B-Instruct", device_map="auto", model_kwargs={"quantization_config": quantization_config})
```
هناك عدة خيارات أخرى لكمية نماذج بخلاف `bitsandbytes` - يرجى الاطلاع على [دليل التكميم](./quantization) لمزيد من المعلومات.
### اعتبارات الأداء
<Tip>
للحصول على دليل أكثر شمولاً حول أداء نموذج اللغة والتحسين، راجع [تحسين استدلال LLM](./llm_optims).
</Tip>
كقاعدة عامة، ستكون نماذج المحادثة الأكبر حجمًا أبطأ في توليد النصوص بالإضافة إلى احتياجها لذاكرة أكبرة. من الممكن أن تكون أكثر تحديدًا بشأن هذا: إن توليد النص من نموذج دردشة أمر غير عادي في أنه يخضع لقيود **سعة الذاكرة** بدلاً من قوة الحوسبة، لأن كل معلمة نشطة يجب قراءتها من الذاكرة لكل رمز ينشئه النموذج. وهذا يعني أن عدد الرموز في الثانية التي يمكنك توليدها من نموذج الدردشة يتناسب بشكل عام مع إجمالي حجم الذاكرة التي بوجد بها ا، مقسومًا على حجم النموذج.
في مثالنا السريع أعلاه، كان حجم نموذجنا حوالي 16 جيجابايت عند تحميله في دقة "bfloat16". وهذا يعني أنه يجب قراءة 16 جيجابايت من الذاكرة لكل رمز ينشئه النموذج. يمكن أن يتراوح إجمالي سعة الذاكرة من 20-100 جيجابايت/ثانية لمعالجات المستهلكين إلى 200-900 جيجابايت/ثانية لمعالجات الرسومات للمستهلكين، ومعالجات Intel Xeon أو AMD Threadripper/Epyc أو Apple Silicon المتخصصةة، وأخيرًا يصل إلى 2-3 تيرابايت/ثانية لمعالجات مراكز البيانات مثل Nvidia A100 أو H100. يجب أن يعطيك هذا فكرة جيدة عن سرعة التوليد التي يمكنك توقعها من هذه الأنواع المختلفة من الأجهزة.
لذلك، إذا كنت تريد تحسين سرعة توليد النص، فإن الحل الأسهل هو إما تقليل حجم النموذج في الذاكرة (عادةً عن طريق التكميم)، أو الحصول على عتاد بسرعة أكبر في الذاكرة. بالنسبة للمستخدمين المتقدمين، هناك عدة تقنيات أخرى للتغلب على هذه القيود. الأكثر شيوعًا هي المتغيرات على [التوليد بمساعدة](https://huggingface.co/blog/assisted-generation)، المعروف أيضًا باسم "العينات التخمينية (speculative sampling)". تحاول هذه التقنيات تخمين عدة رموز مستقبلية في وقت واحد، غالبًا باستخدام نموذج "مسودة (draft model)" أصغر، ثم تأكيد هذه التوليدات باستخدام نموذج الدردشة. إذا تم التحقق من صحة التخمينات بواسطة نموذج الدردشة، فيمكن إنشاء أكثر من رمز واحد لكل تمرير للأمام، مما يخفف بشكل كبير من القيود المتعلقة بالسعة ويحسن سرعة التوليد.
أخيرًا، يجب أن نلاحظ أيضًا تأثير نماذج "مزيج الخبراء" "Mixture of Experts" (MoE) هنا. العديد من نماذج المحادثة الشهيرة، مثل Mixtral وQwen-MoE وDBRX، هي نماذج MoE. في هذه النماذج، لا تكون كل معلمة نشطة لكل رمز يتم إنشاؤه. ونتيجة لذلك، فإن نماذج MoE لديها عمومًا متطلبات ذاكرة أقل بكثير، على الرغم من أن حجمها الإجمالي يمكن أن يكون كبيرًا جدًا. لذلك يمكن أن تكون أسرع عدة مرات من نموذج "كثيف" عادي بنفس الحجم. ومع ذلك، فإن التقنيات مثل التوليد المساعد غير فعالة بشكل عام لهذه النماذج لأن المزيد من المعلمات ستصبح نشطة مع كل رمز جديد يتم التكهن به، والذي سيبطل فوائد السعة والسرعة التي توفرها بنية MoE.

View File

@ -1,436 +0,0 @@
# إنشاء بنية مخصصة
تحدد فئة [`AutoClass`](model_doc/auto) تلقائيًا بنية النموذج وتقوم بتنزيل تكوين وأوزان مسبقين للنموذج. بشكل عام، نوصي باستخدام `AutoClass` لإنتاج كود غير مرتبط بنسخة معينة. ولكن يمكن للمستخدمين الذين يريدون مزيدًا من التحكم في معلمات النموذج المحددة إنشاء نموذج مخصص من 🤗 Transformers من مجرد بضع فئات أساسية. قد يكون هذا مفيدًا بشكل خاص لأي شخص مهتم بدراسة نموذج 🤗 Transformers أو تدريبه أو إجراء تجارب عليه. في هذا الدليل، سنغوص بشكل أعمق في إنشاء نموذج مخصص بدون `AutoClass`. تعرف على كيفية:
- تحميل تكوين النموذج وتخصيصه.
- إنشاء بنية نموذج.
- إنشاء مجزء لغوى سريع وبطيء للنص.
- إنشاء معالج صور لمهام الرؤية.
- إنشاء مستخرج ميزات لمهام الصوت.
- إنشاء معالج للمهام متعددة الوسائط.
## التكوين
يشير مصطلح [التكوين](main_classes/configuration) إلى الخصائص المحددة للنموذج. لكل تكوين نموذج خصائصه الخاصة؛ على سبيل المثال، تشترك جميع نماذج NLP في الخصائص `hidden_size` و`num_attention_heads` و`num_hidden_layers` و`vocab_size` المشتركة. تحدد هذه الخصائص عدد رؤوس الانتباه أو الطبقات المخفية لبناء نموذج بها.
اطلع على [DistilBERT](model_doc/distilbert) من خلال [`DistilBertConfig`] لمعاينة خصائصه:
```py
>>> from transformers import DistilBertConfig
>>> config = DistilBertConfig()
>>> print(config)
DistilBertConfig {
"activation": "gelu",
"attention_dropout": 0.1,
"dim": 768,
"dropout": 0.1,
"hidden_dim": 3072,
"initializer_range": 0.02,
"max_position_embeddings": 512,
"model_type": "distilbert",
"n_heads": 12,
"n_layers": 6,
"pad_token_id": 0,
"qa_dropout": 0.1,
"seq_classif_dropout": 0.2,
"sinusoidal_pos_embds": false,
"transformers_version": "4.16.2",
"vocab_size": 30522
}
```
يعرض [`DistilBertConfig`] جميع الخصائص الافتراضية المستخدمة لبناء نموذج [`DistilBertModel`] أساسي. جميع الخصائص قابلة للتعديل، مما ييتيح مجالاً للتجريب. على سبيل المثال، يمكنك تعديل نموذج افتراضي لـ:
- تجربة دالة تنشيط مختلفة باستخدام معامل `activation`.
- استخدام معدل إسقاط أعلى الاحتمالات الانتباه مع معامل `attention_dropout`.
```py
>>> my_config = DistilBertConfig(activation="relu", attention_dropout=0.4)
>>> print(my_config)
DistilBertConfig {
"activation": "relu",
"attention_dropout": 0.4,
```
يمكن تعديل خصائص النموذج المدرب مسبقًا في دالة [`~PretrainedConfig.from_pretrained`] :
```py
>>> my_config = DistilBertConfig.from_pretrained("distilbert/distilbert-base-uncased", activation="relu", attention_dropout=0.4)
```
بمجرد أن تصبح راضيًا عن تكوين نموذجك، يمكنك حفظه باستخدام [`~PretrainedConfig.save_pretrained`]. يتم تخزين ملف التكوين الخاص بك على أنه ملف JSON في دليل الحفظ المحدد:
```py
>>> my_config.save_pretrained(save_directory="./your_model_save_path")
```
لإعادة استخدام ملف التكوين، قم بتحميله باستخدام [`~PretrainedConfig.from_pretrained`]:
```py
>>> my_config = DistilBertConfig.from_pretrained("./your_model_save_path/config.json")
```
<Tip>
يمكنك أيضًا حفظ ملف التكوين كقاموس أو حتى كفرق بين خصائص التكوين المُعدّلة والخصائص التكوين الافتراضية! راجع وثائق [التكوين](main_classes/configuration) لمزيد من التفاصيل.
</Tip>
## النموذج
الخطوة التالية هي إنشاء [نموذج](main_classes/models). النموذج - ويُشار إليه أحيانًا باسم البنية - يُحدد وظيفة كل طبقة والعمليات الحسابية المُنفذة. تُستخدم خصائص مثل `num_hidden_layers` من التكوين لتحديد هذه البنية. تشترك جميع النماذج في فئة أساسية واحدة هي [`PreTrainedModel`] وبعض الوظائف المُشتركة مثل غيير حجم مُدخلات الكلمات وتقليص رؤوس آلية الانتباه الذاتي. بالإضافة إلى ذلك، فإن جميع النماذج هي فئات فرعية إما من [`torch.nn.Module`](https://pytorch.org/docs/stable/generated/torch.nn.Module.html)، [`tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) أو [`flax.linen.Module`](https://flax.readthedocs.io/en/latest/api_reference/flax.linen/module.html) . هذا يعني النماذج متوافقة مع كل استخدام لإطار العمل الخاص بها.
<frameworkcontent>
<pt>
قم بتحميل خصائص التكوين المخصصة الخاصة بك في النموذج:
```py
>>> from transformers import DistilBertModel
>>> my_config = DistilBertConfig.from_pretrained("./your_model_save_path/config.json")
>>> model = DistilBertModel(my_config)
```
هذا ينشئ نموذجًا بقيم عشوائية بدلاً من الأوزان المُدربة مسبقًا. لن يكون هذا النموذج مفيدًا حتى يتم تدريبه. تُعد عملية التدريب مكلفة وتستغرق وقتًا طويلاً. من الأفضل بشكل عام استخدام نموذج مُدرب مسبقًا للحصول على نتائج أفضل بشكل أسرع، مع استخدام جزء بسيط فقط من الموارد المطلوبة للتدريب.
قم بإنشاء نموذج مُدرب مسبقًا باستخدام [`~PreTrainedModel.from_pretrained`]:
```py
>>> model = DistilBertModel.from_pretrained("distilbert/distilbert-base-uncased")
```
عند بتحميل الأوزان المُدربة مسبقًا، يتم تحميل تكوين النموذج الافتراضي تلقائيًا إذا كان النموذج من مكتبة 🤗 Transformers. ومع ذلك، يمكنك أيضًا استبدال - بعض أو كل - سإعدادات النموذج الافتراضية بإعداداتك الخاصة:
```py
>>> model = DistilBertModel.from_pretrained("distilbert/distilbert-base-uncased"، config=my_config)
```
</pt>
<tf>
قم بتحميل خصائص التكوين المُخصصة الخاصة بك في النموذج:
```py
>>> from transformers import TFDistilBertModel
>>> my_config = DistilBertConfig.from_pretrained("./your_model_save_path/my_config.json")
>>> tf_model = TFDistilBertModel(my_config)
```
هذا ينشئ نموذجًا بقيم عشوائية بدلاً من الأوزان المُدربة مسبقًا. لن يكون هذا النموذج مفيدًا حتى يتم تدريبه. تُعد عملية التدريب مكلفة وتستغرق وقتًا طويلاً. من الأفضل بشكل عام استخدام نموذج مُدرب مسبقًا للحصول على نتائج أفضل بشكل أسرع، مع استخدام جزء بسيط فقط من الموارد المطلوبة للتدريب.
قم بإنشاء نموذج مُدرب مسبقًا باستخدام [`~TFPreTrainedModel.from_pretrained`]:
```py
>>> tf_model = TFDistilBertModel.from_pretrained("distilbert/distilbert-base-uncased")
```
عندما تقوم بتحميل الأوزان المُدربة مسبقًا،يتم تحميل إعدادات النموذج الافتراضي تلقائيًا إذا كان النموذج من مكتبة 🤗 Transformers. ومع ذلك، يمكنك أيضًا استبدال - بعض أو كل - إعدادات النموذج الافتراضية بإعداداتك الخاصة:
```py
>>> tf_model = TFDistilBertModel.from_pretrained("distilbert/distilbert-base-uncased"، config=my_config)
```
</tf>
</frameworkcontent>
### رؤوس النموذج
في هذه المرحلة، لديك نموذج DistilBERT الأساسي الذي يخرج *حالات الكامنة*. تُمرَّر هذه الحالات الكامنة كمدخلات لرأس النموذج لإنتاج المخرجات النهائية. توفر مكتبة 🤗 Transformers رأس نموذج مختلف لكل مهمة طالما أن النموذج يدعم المهمة (أي لا يمكنك استخدام DistilBERT لمهمة تسلسل إلى تسلسل مثل الترجمة).
<frameworkcontent>
<pt>
على سبيل المثال، [`DistilBertForSequenceClassification`] هو نموذج DistilBERT الأساس مزودًا برأس تصنيف تسلسلي. يُشكّل رأس التصنيف التسلسلي طبقة خطية فوق المخرجات المجمعة.
```py
>>> from transformers import DistilBertForSequenceClassification
>>> model = DistilBertForSequenceClassification.from_pretrained("distilbert/distilbert-base-uncased")
```
أعد استخدام هذا نقطة التحقق هذه لمهمة أخرى بسهولة، وذلك بتغيير رأس النموذج.ففي مهمة الإجابة على الأسئلة، ستستخدم رأس النموذج [`DistilBertForQuestionAnswering`]. رأس الإجابة على الأسئلة مشابه لرأس التصنيف التسلسلي باستثناء أنه طبقة خطية فوق مخرجات الحالات الكامنة.
```py
>>> from transformers import DistilBertForQuestionAnswering
>>> model = DistilBertForQuestionAnswering.from_pretrained("distilbert/distilbert-base-uncased")
```
</pt>
<tf>
على سبيل المثال، [`TFDistilBertForSequenceClassification`] هو نموذج DistilBERT الأساسي برأس تصنيف تسلسل. رأس التصنيف التسلسلي هو طبقة خطية أعلى المخرجات المجمعة.
```py
>>> from transformers import TFDistilBertForSequenceClassification
>>> tf_model = TFDistilBertForSequenceClassification.from_pretrained("distilbert/distilbert-base-uncased")
```
أعد استخدام هذا نقطة التحقق لمهمة أخرى عن طريق التبديل إلى رأس نموذج مختلف. لمهمة الإجابة على الأسئلة، ستستخدم رأس النموذج [`TFDistilBertForQuestionAnswering`]. رأس الإجابة على الأسئلة مشابه لرأس التصنيف التسلسلي باستثناء أنه طبقة خطية أعلى حالات الإخراج المخفية.
```py
>>> from transformers import TFDistilBertForQuestionAnswering
>>> tf_model = TFDistilBertForQuestionAnswering.from_pretrained("distilbert/distilbert-base-uncased")
```
</tf>
</frameworkcontent>
## مجزئ النصوص
الفئة الأساسية الأخيرة التي تحتاجها قبل استخدام نموذج للبيانات النصية هي [مجزئ النصوص](main_classes/tokenizer) لتحويل النص الخام إلى تنسورات (tensors). هناك نوعان من المحولات الرموز التي يمكنك استخدامها مع 🤗 Transformers:
- [`PreTrainedTokenizer`]: تنفيذ Python لمجزئ النصوص.
- [`PreTrainedTokenizerFast`]: مجزئ النصوص من مكتبة [🤗 Tokenizer](https://huggingface.co/docs/tokenizers/python/latest/) المُبنية على لغة Rust. هذا النوع من المجزئات أسرع بكثير، خاصةً عند معالجة دفعات النصوص، وذلك بفضل تصميمه بلغة Rust. كما يوفر مجزئ النصوص السريع طرقًا إضافية مثل *مخطط الإزاحة* الذي يُطابق الرموز بكلماتها أو أحرفها الأصلية.
يدعم كلا النوعين من المجزئات طرقًا شائعة مثل الترميز وفك الترميز، وإضافة رموز جديدة، وإدارة الرموز الخاصة.
<Tip warning={true}>
لا يدعم كل نموذج مجزئ النصوص سريع. الق نظرة على هذا [جدول](index#supported-frameworks) للتحقق مما إذا كان النموذج يحتوي على دعم مجزئ النصوص سريع.
</Tip>
إذا دربت مجزئ النصوص خاص بك، فيمكنك إنشاء واحد من *قاموسك*:```
```py
>>> from transformers import DistilBertTokenizer
>>> my_tokenizer = DistilBertTokenizer(vocab_file="my_vocab_file.txt"، do_lower_case=False، padding_side="left")
```
من المهم أن تتذكر أن قاموس مجزئ النصوص المُخصص سيكون مختلفًا عن قاموس مجزئ النصوص نموذج مُدرّب مسبقًا. يجب عليك استخدام قاموس نموذج مُدرّب مسبقًا إذا كنت تستخدم نموذجًا مُدرّبًا مسبقًا، وإلا فلن تكون المدخلات ذات معنى. قم بإنشاء مجزئ النصوص باستخدام قاموس نموذج مُدرّب مسبقًا باستخدام فئة [`DistilBertTokenizer`]:
```py
>>> from transformers import DistilBertTokenizer
>>> slow_tokenizer = DistilBertTokenizer.from_pretrained("distilbert/distilbert-base-uncased")
```
قم بإنشاء مجزئ نصوص سريع باستخدام فئة [`DistilBertTokenizerFast`]:
```py
>>> from transformers import DistilBertTokenizerFast
>>> fast_tokenizer = DistilBertTokenizerFast.from_pretrained("distilbert/distilbert-base-uncased")
```
<Tip>
افتراضيًا، سيحاول [`AutoTokenizer`] تحميل مجزئ نصوص سريع. يمكنك تعطيل هذا السلوك عن طريق تعيين `use_fast=False` في `from_pretrained`.
</Tip>
## معالج الصور
يعالج معالج الصور بيانات الرؤية. وهو يرث من الفئة الأساسية [`~image_processing_utils.ImageProcessingMixin`].
لبناء معالج صور خاص بالنموذج المستخدم، أنشئ مثلاً مُعالج [`ViTImageProcessor`] افتراضيًا إذا كنت تستخدم [ViT](model_doc/vit) لتصنيف الصور:
```py
>>> from transformers import ViTImageProcessor
>>> vit_extractor = ViTImageProcessor()
>>> print(vit_extractor)
ViTImageProcessor {
"do_normalize": true,
"do_resize": true,
"image_processor_type": "ViTImageProcessor",
"image_mean": [
0.5,
0.5,
0.5
],
"image_std": [
0.5,
0.5,
0.5
],
"resample": 2,
"size": 224
}
```
<Tip>
إذا كنت لا تبحث عن أي تخصيص، فما عليك سوى استخدام طريقة `from_pretrained` لتحميل معلمات معالج الصور الافتراضية للنموذج.
</Tip>
عدل أيًا من معلمات [`ViTImageProcessor`] لإنشاء معالج الصور المخصص الخاص بك:
```py
>>> from transformers import ViTImageProcessor
>>> my_vit_extractor = ViTImageProcessor(resample="PIL.Image.BOX", do_normalize=False, image_mean=[0.3, 0.3, 0.3])
>>> print(my_vit_extractor)
ViTImageProcessor {
"do_normalize": false,
"do_resize": true,
"image_processor_type": "ViTImageProcessor",
"image_mean": [
0.3,
0.3,
0.3
],
"image_std": [
0.5,
0.5,
0.5
],
"resample": "PIL.Image.BOX",
"size": 224
}
```
## العمود الفقري
<div style="text-align: center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/Backbone.png">
</div>
تتكون نماذج رؤية الحاسب من جزء أساسي، وجزء وسيط، وجزء معالجة نهائي. يستخرج الجزء الأساسي الميزات من صورة الإدخال، ويجمع الجزء الوسيط هذه الميزات المستخرجة ويعززها، ويُستخدم الجزء النهائي للمهمة الرئيسية (مثل اكتشاف الأجسام). ابدأ عبتهيئة الجزء الأساسي في تكوين النموذج وحدد ما إذا كنت تريد تحميل أوزان مدربة مسبقًا أو أوزانًا عشوائية. بعد ذلك، يمكنك تمرير تكوين النموذج إلى جزء المعالجة النهائي.
على سبيل المثال، لتحميل [ResNet](../model_doc/resnet) backbone في نموذج [MaskFormer](../model_doc/maskformer) مع رأس تجزئة مثيل:
<hfoptions id="backbone">
<hfoption id="pretrained weights">
قم بتعيين `use_pretrained_backbone=True` لتحميل الأوزان المسبقة التدريب لـ ResNet للعمود الفقري.
```py
from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation
config = MaskFormerConfig(backbone="microsoft/resnet-50", use_pretrained_backbone=True) # تكوين الجزء الأساسي والجزء الوسيط
model = MaskFormerForInstanceSegmentation(config) # جزء المعالجة النهائي
```
</hfoption>
<hfoption id="random weights">
قم بتعيين `use_pretrained_backbone=False` لتهيئة جزء ResNet الأساسي بشكل عشوائي.
```py
from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation
config = MaskFormerConfig(backbone="microsoft/resnet-50", use_pretrained_backbone=False) # تكوين الجزء الأساسي والجزء الوسيط
model = MaskFormerForInstanceSegmentation(config) # جزء المعالجة النهائي
```
يمكنك أيضًا تحميل تكوين الجزء الأساسي بشكل منفصل، ثم تمريره إلى تكوين النموذج.```
```py
from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, ResNetConfig
backbone_config = ResNetConfig()
config = MaskFormerConfig(backbone_config=backbone_config)
model = MaskFormerForInstanceSegmentation(config)
```
</hfoption>
<hfoption id="timm backbone">
يتم تحميل نماذج [timm](https://hf.co/docs/timm/index) داخل نموذج باستخدام `use_timm_backbone=True` أو باستخدام [`TimmBackbone`] و [`TimmBackboneConfig`].
استخدم `use_timm_backbone=True` و `use_pretrained_backbone=True` لتحميل أوزان timm المُدرّبة مسبقًا للجزء الأساسي.
```python
from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation
config = MaskFormerConfig(backbone="resnet50", use_pretrained_backbone=True, use_timm_backbone=True) # تكوين الجزء الأساسي والجزء الوسيط
model = MaskFormerForInstanceSegmentation(config) # جزء المعالجة النهائي
```
قم بتعيين `use_timm_backbone=True` و `use_pretrained_backbone=False` لتحميل عمود فقري timm مبدئي عشوائي.
```python
from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation
config = MaskFormerConfig(backbone="resnet50", use_pretrained_backbone=False, use_timm_backbone=True) # تكوين الجزء الأساسي والجزء الوسيط
model = MaskFormerForInstanceSegmentation(config) # جزء المعالجة النهائي
```
يمكنك أيضًا تحميل تكوين الجزء الأساسي واستخدامه لإنشاء `TimmBackbone` أو تمريره إلى تكوين النموذج. سيتم تحميلأوزان الجزء الأساسي لـ Timm المُدرّبة مسبقًا افتراضيًا. عيّن `use_pretrained_backbone=False` لتحميل الأوزان المبدئية العشوائية.
```python
from transformers import TimmBackboneConfig, TimmBackbone
backbone_config = TimmBackboneConfig("resnet50", use_pretrained_backbone=False)
# قم بإنشاء مثيل من العمود الفقري
backbone = TimmBackbone(config=backbone_config)
# قم بإنشاء نموذج باستخدام عمود فقري timm
from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation
config = MaskFormerConfig(backbone_config=backbone_config)
model = MaskFormerForInstanceSegmentation(config)
```
## مستخرج الميزات
يقوم مُستخرج الميزات بمعالجة المدخلات الصوتية. يرث من فئة الأساس [`~feature_extraction_utils.FeatureExtractionMixin`]، وقد يرث أيضًا من فئة [`SequenceFeatureExtractor`] لمعالجة المدخلات الصوتية.
للاستخدام، قم بإنشاء مستخرج ميزات مرتبط بالنموذج الذي تستخدمه. على سبيل المثال، قم بإنشاء مستخرج ميزات Wav2Vec2 الافتراضي إذا كنت تستخدم [Wav2Vec2](model_doc/wav2vec2) لتصنيف الصوت:
```py
>>> from transformers import Wav2Vec2FeatureExtractor
>>> w2v2_extractor = Wav2Vec2FeatureExtractor()
>>> print(w2v2_extractor)
Wav2Vec2FeatureExtractor {
"do_normalize": true,
"feature_extractor_type": "Wav2Vec2FeatureExtractor",
"feature_size": 1,
"padding_side": "right",
"padding_value": 0.0,
"return_attention_mask": false,
"sampling_rate": 16000
}
```
<Tip>
إذا لم تكن بحاجة لأي تخصيص، فاستخدم فقط طريقة `from_pretrained` لتحميل معلمات مستخرج الميزات الافتراضية للنموذج.
</Tip>
قم بتعديل أي من معلمات [`Wav2Vec2FeatureExtractor`] لإنشاء مستخرج ميزات مخصص:
```py
>>> from transformers import Wav2Vec2FeatureExtractor
>>> w2v2_extractor = Wav2Vec2FeatureExtractor(sampling_rate=8000، do_normalize=False)
>>> print(w2v2_extractor)
Wav2Vec2FeatureExtractor {
"do_normalize": false,
"feature_extractor_type": "Wav2Vec2FeatureExtractor"،
"feature_size": 1،
"padding_side": "right"،
"padding_value": 0.0،
"return_attention_mask": false،
"sampling_rate": 8000
}
```
## المعالج
بالنسبة للنماذج التي تدعم مهام الوسائط المتعددة، توفر مكتبة 🤗 Transformers فئة معالج تجمع بفاعلية فئات المعالجة مثل مستخرج الميزات ومقسّم الرموز في كائن واحد. على سبيل المثال، دعنا نستخدم [`Wav2Vec2Processor`] لمهمة التعرف الآلي على الكلام (ASR). تقوم مهمة ASR بتحويل الصوت إلى نص، لذلك ستحتاج إلى مستخرج ميزات ومقسّم رموز.
قم بإنشاء مستخرج ميزات لمعالجة المدخلات الصوتية:
```py
>>> from transformers import Wav2Vec2FeatureExtractor
>>> feature_extractor = Wav2Vec2FeatureExtractor(padding_value=1.0, do_normalize=True)
```
قم بإنشاء مقسّم رموز لمعالجة المدخلات النصية:
```py
>>> from transformers import Wav2Vec2CTCTokenizer
>>> tokenizer = Wav2Vec2CTCTokenizer(vocab_file="my_vocab_file.txt")
```
قم بدمج مستخرج الميزات ومقسّم الرموز في [`Wav2Vec2Processor`]:
```py
>>> from transformers import Wav2Vec2Processor
>>> processor = Wav2Vec2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer)
```
باستخدام فئتين أساسيتين - التكوين والنموذج - بالإضافة إلى فئة معالجة مسبق (مقسّم رموز أو معالج صورة أو مستخرج ميزات أو معالج)، يمكنك إنشاء أي من النماذج التي تدعمها مكتبة 🤗 Transformers. يمكن تكوين كل من هذه الفئات الأساسية، مما يسمح لك باستخدام السمات المطلوبة. يمكنك بسهولة تهيئة نموذج للتدريب أو تعديل نموذج مدرب مسبقاً لإجراء ضبط دقيق.

View File

@ -1,323 +0,0 @@
# بناء نماذج مخصصة
تم تصميم مكتبة 🤗 Transformers لتكون قابلة للتوسيع بسهولة. كل نموذج مُشفّر بالكامل في مجلد فرعي معين بالمستودع، دون أي تجريد، لذلك يمكنك بسهولة نسخ ملف النمذجة وتعديله وفقًا لاحتياجاتك.
إذا كنت تُنشئ نموذجًا جديدًا تمامًا، فقد يكون من الأسهل البدء من الصفر. في هذا البرنامج التعليمي، سنُرِيك كيفية كتابة نموذج مخصص وتكوينه ليُستخدم داخل Transformers، وكيفية مشاركته مع المجتمع (مع الكود الذي يعتمد عليه) بحيث يمكن لأي شخص استخدامه، حتى إذا لم يكن موجودًا في مكتبة 🤗 Transformers. سنرى كيفية البناء على المحولات ونوسّع الإطار باستخدام الأدوات التي يمكن استخدامها لتعديل سلوك الإطار (hooks) والتعليمات البرمجية المخصصة.
سنوضح كل هذا من خلال نموذج ResNet، بتغليف فئة ResNet من
[مكتبة timm](https://github.com/rwightman/pytorch-image-models) داخل [`PreTrainedModel`].
## كتابة إعدادات مخصصة
لنبدأ بكتابة إعدادات النموذج. إعدادات النموذج هو كائنٌ يحتوي على جميع المعلومات اللازمة لبنائه. كما سنرى لاحقًا، يتطلب النموذج كائن `config` لتهيئته، لذا يجب أن يكون هذا الكائن كاملاً.
<Tip>
تتبع النماذج في مكتبة `transformers` اتفاقية قبول كائن `config` في دالة `__init__` الخاصة بها، ثم تمرر كائن `config` بالكامل إلى الطبقات الفرعية في النموذج، بدلاً من تقسيمه إلى معامﻻت متعددة. يؤدي كتابة نموذجك بهذا الأسلوب إلى كود أبسط مع "مصدر حقيقة" واضح لأي فرط معلمات، كما يسهل إعادة استخدام الكود من نماذج أخرى في `transformers`.
</Tip>
في مثالنا، سنعدّل بعض الوسائط في فئة ResNet التي قد نرغب في ضبطها. ستعطينا التكوينات المختلفة أنواع ResNets المختلفة الممكنة. سنقوم بتخزين هذه الوسائط بعد التحقق من صحته.
```python
from transformers import PretrainedConfig
from typing import List
class ResnetConfig(PretrainedConfig):
model_type = "resnet"
def __init__(
self,
block_type="bottleneck",
layers: List[int] = [3, 4, 6, 3],
num_classes: int = 1000,
input_channels: int = 3,
cardinality: int = 1,
base_width: int = 64,
stem_width: int = 64,
stem_type: str = "",
avg_down: bool = False,
**kwargs,
):
if block_type not in ["basic", "bottleneck"]:
raise ValueError(f"`block_type` must be 'basic' or bottleneck', got {block_type}.")
if stem_type not in ["", "deep", "deep-tiered"]:
raise ValueError(f"`stem_type` must be '', 'deep' or 'deep-tiered', got {stem_type}.")
self.block_type = block_type
self.layers = layers
self.num_classes = num_classes
self.input_channels = input_channels
self.cardinality = cardinality
self.base_width = base_width
self.stem_width = stem_width
self.stem_type = stem_type
self.avg_down = avg_down
super().__init__(**kwargs)
```
الأشياء الثلاثة المهمة التي يجب تذكرها عند كتابة تكوينك الخاص هي:
- يجب أن ترث من `PretrainedConfig`،
- يجب أن تقبل دالة `__init__` الخاصة بـ `PretrainedConfig` أي معامﻻت إضافية kwargs،
- يجب تمرير هذه المعامﻻت الإضافية إلى دالة `__init__` فى الفئة الأساسية الاعلى.
يضمن الإرث حصولك على جميع الوظائف من مكتبة 🤗 Transformers، في حين أن القيدين التانى والثالث يأتيان من حقيقة أن `PretrainedConfig` لديه المزيد من الحقول أكثر من تلك التي تقوم بتعيينها. عند إعادة تحميل تكوين باستخدام طريقة `from_pretrained`، يجب أن يقبل تكوينك هذه الحقول ثم إرسالها إلى الفئة الأساسية الأعلى.
تحديد `model_type` لتكوينك (هنا `model_type="resnet"`) ليس إلزاميًا، ما لم ترغب في
تسجيل نموذجك باستخدام الفئات التلقائية (راجع القسم الأخير).
مع القيام بذلك، يمكنك بسهولة إنشاء تكوينك وحفظه مثلما تفعل مع أي تكوين نموذج آخر في
المكتبة. إليك كيفية إنشاء تكوين resnet50d وحفظه:
```py
resnet50d_config = ResnetConfig(block_type="bottleneck", stem_width=32, stem_type="deep", avg_down=True)
resnet50d_config.save_pretrained("custom-resnet")
```
سيؤدي هذا إلى حفظ ملف باسم `config.json` داخل مجلد `custom-resnet`. يمكنك بعد ذلك إعادة تحميل تكوينك باستخدام
طريقة `from_pretrained`:
```py
resnet50d_config = ResnetConfig.from_pretrained("custom-resnet")
```
يمكنك أيضًا استخدام أي طريقة أخرى من فئة [`PretrainedConfig`]، مثل [`~PretrainedConfig.push_to_hub`] لتحميل تكوينك مباشرة إلى Hub.
## كتابة نموذج مخصص
الآن بعد أن أصبح لدينا تكوين ResNet، يمكننا المتابعة لإنشاء نموذجين: الأول يستخرج الميزات المخفية من دفعة من الصور (مثل [`BertModel`]) والآخر مناسب لتصنيف الصور (مثل [`BertForSequenceClassification`]).
كما ذكرنا سابقًا، سنقوم ببناء نموذج مبسط لتسهيل الفهم في هذا المثال. الخطوة الوحيدة المطلوبة قبل كتابة هذه الفئة هي لربط أنواع وحدات البناء بفئات ذات وحدات بناء فعلية. بعد ذلك، يُعرّف النموذج من خلال التكوين عبر تمرير كل شيء إلى فئة `ResNet`:
```py
from transformers import PreTrainedModel
from timm.models.resnet import BasicBlock, Bottleneck, ResNet
from .configuration_resnet import ResnetConfig
BLOCK_MAPPING = {"basic": BasicBlock, "bottleneck": Bottleneck}
class ResnetModel(PreTrainedModel):
config_class = ResnetConfig
def __init__(self, config):
super().__init__(config)
block_layer = BLOCK_MAPPING[config.block_type]
self.model = ResNet(
block_layer,
config.layers,
num_classes=config.num_classes,
in_chans=config.input_channels,
cardinality=config.cardinality,
base_width=config.base_width,
stem_width=config.stem_width,
stem_type=config.stem_type,
avg_down=config.avg_down,
)
def forward(self, tensor):
return self.model.forward_features(tensor)
```
بالنسبة للنموذج الذي سيصنف الصور، فإننا نغير فقط طريقة التقديم:
```py
import torch
class ResnetModelForImageClassification(PreTrainedModel):
config_class = ResnetConfig
def __init__(self, config):
super().__init__(config)
block_layer = BLOCK_MAPPING[config.block_type]
self.model = ResNet(
block_layer,
config.layers,
num_classes=config.num_classes,
in_chans=config.input_channels,
cardinality=config.cardinality,
base_width=config.base_width,
stem_width=config.stem_width,
stem_type=config.stem_type,
avg_down=config.avg_down,
)
def forward(self, tensor, labels=None):
logits = self.model(tensor)
if labels is not None:
loss = torch.nn.cross_entropy(logits, labels)
return {"loss": loss, "logits": logits}
return {"logits": logits}
```
في كلتا الحالتين، لاحظ كيف نرث من `PreTrainedModel` ونستدعي مُهيئ الفئة الرئيسية باستخدام `config` (كما تفعل عند إنشاء وحدة `torch.nn.Module` عادية). ليس من الضروري تعريف `config_class` إلا إذا كنت ترغب في تسجيل نموذجك مع الفئات التلقائية (راجع القسم الأخير).
<Tip>
إذا كان نموذجك مشابهًا جدًا لنموذج داخل المكتبة، فيمكنك إعادة استخدام نفس التكوين مثل هذا النموذج.
</Tip>
يمكن لنموذجك أن يعيد أي شيء تريده، ولكن إعادة قاموس مثلما فعلنا لـ
`ResnetModelForImageClassification`، مع تضمين الخسارة عند تمرير العلامات، سيجعل نموذجك قابلًا للاستخدام مباشرة داخل فئة [`Trainer`]. يعد استخدام تنسيق إخراج آخر أمرًا جيدًا طالما أنك تخطط لاستخدام حلقة تدريب خاصة بك أو مكتبة أخرى للتدريب.
الآن بعد أن أصبح لدينا فئة النموذج، دعنا ننشئ واحدة:
```py
resnet50d = ResnetModelForImageClassification(resnet50d_config)
```
يمكنك استخدام أي من طرق فئة [`PreTrainedModel`]، مثل [`~PreTrainedModel.save_pretrained`] أو
[`~PreTrainedModel.push_to_hub`]. سنستخدم الثاني في القسم التالي، وسنرى كيفية دفع أوزان النموذج مع كود نموذجنا. ولكن أولاً، دعنا نحمل بعض الأوزان المُعلمة مسبقًا داخل نموذجنا.
في حالة الاستخدام الخاصة بك، فمن المحتمل أن تقوم بتدريب نموذجك المخصص على بياناتك الخاصة. للانتقال بسرعة خلال هذا البرنامج التعليمي،
سنستخدم الإصدار المُعلم مسبقًا من resnet50d. نظرًا لأن نموذجنا هو مجرد غلاف حوله، فمن السهل نقل هذه الأوزان:
```py
import timm
pretrained_model = timm.create_model("resnet50d", pretrained=True)
resnet50d.model.load_state_dict(pretrained_model.state_dict())
```
الآن دعونا نرى كيفية التأكد من أنه عند قيامنا بـ [`~PreTrainedModel.save_pretrained`] أو [`~PreTrainedModel.push_to_hub`]، يتم حفظ كود النموذج.
## تسجيل نموذج مع كود مخصص للفئات التلقائية
إذا كنت تكتب مكتبة توسع 🤗 Transformers، فقد ترغب في توسيع الفئات التلقائية لتشمل نموذجك الخاص. يختلف هذا عن نشر الكود إلى Hub بمعنى أن المستخدمين سيحتاجون إلى استيراد مكتبتك للحصول على النماذج المخصصة (على عكس تنزيل كود النموذج تلقائيًا من Hub).
ما دام تكوينك يحتوي على معامل `model_type` مختلفة عن أنواع النماذج الحالية، وأن فئات نماذجك لديك لديها الخصائص الصحيحة `config_class`، فيمكنك ببساطة إضافتها إلى الفئات التلقائية مثل هذا:
```py
from transformers import AutoConfig, AutoModel, AutoModelForImageClassification
AutoConfig.register("resnet", ResnetConfig)
AutoModel.register(ResnetConfig, ResnetModel)
AutoModelForImageClassification.register(ResnetConfig, ResnetModelForImageClassification)
```
لاحظ أن الحجة الأولى المستخدمة عند تسجيل تكوينك المخصص لـ [`AutoConfig`] يجب أن تتطابق مع `model_type`
من تكوينك المخصص، والحجة الأولى المستخدمة عند تسجيل نماذجك المخصصة لأي فئة نموذج تلقائي يجب
أن تتطابق مع `config_class` من تلك النماذج.
## إرسال الكود إلى Hub
<Tip warning={true}>
هذا API تجريبي وقد يكون له بعض التغييرات الطفيفة في الإصدارات القادمة.
</Tip>
أولاً، تأكد من تعريف نموذجك بالكامل في ملف `.py`. يمكن أن يعتمد على الاستيراد النسبي لملفات أخرى طالما أن جميع الملفات موجودة في نفس الدليل (لا ندعم الوحدات الفرعية لهذه الميزة حتى الآن). في مثالنا، سنحدد ملف `modeling_resnet.py` وملف `configuration_resnet.py` في مجلد باسم "resnet_model" في دليل العمل الحالي. يحتوي ملف التكوين على كود لـ `ResnetConfig` ويحتوي ملف النمذجة على كود لـ `ResnetModel` و`ResnetModelForImageClassification`.
```
.
└── resnet_model
├── __init__.py
├── configuration_resnet.py
└── modeling_resnet.py
```
يمكن أن يكون ملف `__init__.py` فارغًا، فهو موجود فقط حتى يتمكن Python من اكتشاف أن `resnet_model` يمكن استخدامه كموديل.
<Tip warning={true}>
إذا كنت تقوم بنسخ ملفات النمذجة من المكتبة، فسوف تحتاج إلى استبدال جميع الواردات النسبية في أعلى الملف
لاستيرادها من حزمة `transformers`.
</Tip>
لاحظ أنه يمكنك إعادة استخدام (أو توسيع) تكوين/نموذج موجود.
لمشاركة نموذجك مع المجتمع، اتبع الخطوات التالية: أولاً، قم باستيراد نموذج ResNet والتكوين من الملفات التي تم إنشاؤها حديثًا:
```py
from resnet_model.configuration_resnet import ResnetConfig
from resnet_model.modeling_resnet import ResnetModel, ResnetModelForImageClassification
```
بعد ذلك، يجب عليك إخبار المكتبة بأنك تريد نسخ ملفات الكود الخاصة بهذه الكائنات عند استخدام طريقة `save_pretrained`
وتسجيلها بشكل صحيح باستخدام فئة تلقائية (خاصة للنماذج)، ما عليك سوى تشغيل:
```py
ResnetConfig.register_for_auto_class()
ResnetModel.register_for_auto_class("AutoModel")
ResnetModelForImageClassification.register_for_auto_class("AutoModelForImageClassification")
```
لاحظ أنه لا توجد حاجة لتحديد فئة تلقائية للتكوين (هناك فئة تلقائية واحدة فقط لها،
[`AutoConfig`]) ولكن الأمر يختلف بالنسبة للنماذج. قد يكون نموذجك المخصص مناسبًا للعديد من المهام المختلفة، لذلك يجب
تحديد أي من الفئات التلقائية هو الصحيح لنموذجك.
<Tip>
استخدم `register_for_auto_class()` إذا كنت تريد نسخ ملفات الكود. إذا كنت تفضل استخدام الكود على Hub من مستودع آخر،
فلا تحتاج إلى استدعائه. في الحالات التي يوجد فيها أكثر من فئة تلقائية واحدة، يمكنك تعديل ملف `config.json` مباشرة باستخدام
الهيكل التالي:
```json
"auto_map": {
"AutoConfig": "<your-repo-name>--<config-name>",
"AutoModel": "<your-repo-name>--<config-name>",
"AutoModelFor<Task>": "<your-repo-name>--<config-name>",
},
```
</Tip>
بعد ذلك، دعنا نقوم بإنشاء التكوين والنماذج كما فعلنا من قبل:
```py
resnet50d_config = ResnetConfig(block_type="bottleneck", stem_width=32, stem_type="deep", avg_down=True)
resnet50d = ResnetModelForImageClassification(resnet50d_config)
pretrained_model = timm.create_model("resnet50d", pretrained=True)
resnet50d.model.load_state_dict(pretrained_model.state_dict())
```
الآن لإرسال النموذج إلى Hub، تأكد من تسجيل الدخول. إما تشغيل في المحطة الأوامر الطرفية الخاصة بك:
```bash
huggingface-cli login
```
أو من دفتر ملاحظات:
```py
from huggingface_hub import notebook_login
notebook_login()
```
يمكنك بعد ذلك الضغط على مساحة الاسم الخاصة بك (أو منظمة أنت عضو فيها) مثل هذا:
```py
resnet50d.push_to_hub("custom-resnet50d")
```
بالإضافة إلى أوزان النمذجة والتكوين بتنسيق json، فقد قام هذا أيضًا بنسخ ملفات النمذجة والتكوين `.py` في مجلد `custom-resnet50d` وتحميل النتيجة إلى Hub. يمكنك التحقق من النتيجة في هذا [مستودع النموذج](https://huggingface.co/sgugger/custom-resnet50d).
راجع [البرنامج التعليمي للمشاركة](model_sharing) لمزيد من المعلومات حول طريقة الدفع إلى المحور.
### استخدام نموذج مع كود مخصص
يمكنك استخدام أي تكوين أو نموذج أو مقسم لغوي مع ملفات برمجة مخصصة في مستودعه باستخدام الفئات التلقائية و دالة `from_pretrained`.تُفحص جميع الملفات والرموز المرفوع إلى Hub بحثًا عن البرامج الضارة (راجع وثائق [أمان Hub](https://huggingface.co/docs/hub/security#malware-scanning) لمزيد من المعلومات)، ولكن يجب عليك مراجعة كود النموذج والمؤلف لتجنب تنفيذ التعليمات البرمجية الضارة على جهازك. لتفعيل نموذج يحتوي على شفرة برمجية مخصصة، عيّن `trust_remote_code=True`:
```py
from transformers import AutoModelForImageClassification
model = AutoModelForImageClassification.from_pretrained("sgugger/custom-resnet50d", trust_remote_code=True)
```
يُنصح بشدة بتحديد رقم إصدار (commit hash) كـ `revision` للتأكد من عدم تعديل مؤلف النموذج للشفرة لاحقًابإضافة أسطر ضارة (إلا إذا كنت تثق تمامًا بمؤلفي النموذج):
```py
commit_hash = "ed94a7c6247d8aedce4647f00f20de6875b5b292"
model = AutoModelForImageClassification.from_pretrained(
"sgugger/custom-resnet50d"، trust_remote_code=True، revision=commit_hash
)
```
لاحظ وجود زرّ لنسخ رقم إصدار بسهولة عند تصفح سجل التزامات مستودع النموذج على منصة Hugging Face.

View File

@ -1,51 +0,0 @@
# استخدام مجزئيات النصوص من 🤗 Tokenizers
يعتمد [`PreTrainedTokenizerFast`] على مكتبة [🤗 Tokenizers](https://huggingface.co/docs/tokenizers). يمكن تحميل المجزئات اللغويين الذين تم الحصول عليهم من مكتبة 🤗 Tokenizers ببساطة شديدة في 🤗 Transformers.
قبل الدخول في التفاصيل، دعونا نبدأ أولاً بإنشاء مُجزىء لغوي تجريبي في بضع سطور:
```python
>>> from tokenizers import Tokenizer
>>> from tokenizers.models import BPE
>>> from tokenizers.trainers import BpeTrainer
>>> from tokenizers.pre_tokenizers import Whitespace
>>> tokenizer = Tokenizer(BPE(unk_token="[UNK]"))
>>> trainer = BpeTrainer(special_tokens=["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"])
>>> tokenizer.pre_tokenizer = Whitespace()
>>> files = [...]
>>> tokenizer.train(files, trainer)
```
الآن لدينا مُجزىء لغوي مدرب على الملفات التي حددناها. يمكننا إما الاستمرار في استخدامه في وقت التشغيل هذا، أو حفظه في ملف JSON لإعادة استخدامه لاحقًا.
## تحميل مُجزئ النّصوص مُباشرةً
دعونا نرى كيف يمكننا الاستفادة من كائن (مُجزئ النصوص) في مكتبة 🤗 Transformers. تسمح فئة [`PreTrainedTokenizerFast`] سهولة إنشاء *tokenizer*، من خلال قبول كائن *المُجزئ النصوص* مُهيّأ مُسبقًا كمعامل:
```python
>>> from transformers import PreTrainedTokenizerFast
>>> fast_tokenizer = PreTrainedTokenizerFast(tokenizer_object=tokenizer)
```
يمكن الآن استخدام هذا الكائن مع جميع الطرق المُشتركة بين مُجزّئي النّصوص لـ 🤗 Transformers! انتقل إلى [صفحة مُجزّئ النّصوص](main_classes/tokenizer) لمزيد من المعلومات.
## التحميل من ملف JSON
لتحميل مُجزّئ النص من ملف JSON، دعونا نبدأ أولاً بحفظ مُجزّئ النّصوص:
```python
>>> tokenizer.save("tokenizer.json")
```
يمكن تمرير المسار الذي حفظنا به هذا الملف إلى طريقة تهيئة [`PreTrainedTokenizerFast`] باستخدام المُعامل `tokenizer_file`:
```python
>>> from transformers import PreTrainedTokenizerFast
>>> fast_tokenizer = PreTrainedTokenizerFast(tokenizer_file="tokenizer.json")
```
يمكن الآن استخدام هذا الكائن مع جميع الطرق التي تشترك فيها مُجزّئي النّصوص لـ 🤗 Transformers! انتقل إلى [صفحة مُجزّئ النص](main_classes/tokenizer) لمزيد من المعلومات.

View File

@ -1,89 +0,0 @@
# GGUF وتفاعلها مع المحولات
تُستخدم صيغة ملف GGUF لتخزين النماذج للاستدلال باستخدام [GGML](https://github.com/ggerganov/ggml) والمكتبات الأخرى التي تعتمد عليه، مثل [llama.cpp](https://github.com/ggerganov/llama.cpp) أو [whisper.cpp](https://github.com/ggerganov/whisper.cpp) الشهيرة جدًا.
إنها صيغة ملف [مدعومة من قبل Hugging Face Hub](https://huggingface.co/docs/hub/en/gguf) مع ميزات تسمح بالفحص السريع للموترات والبيانات الوصفية داخل الملف.
تم تصميم تنسيق الملف هذا كـ "تنسيق ملف واحد" حيث يحتوي ملف واحد عادةً على كل من سمات التكوين ومفردات المجزىء اللغوي والخصائص الأخرى، بالإضافة إلى جميع الموترات التي سيتم تحميلها في النموذج. تأتي هذه الملفات بتنسيقات مختلفة وفقًا لنوع التكميم في الملف. نلقي نظرة موجزة على بعضها [هنا](https://huggingface.co/docs/hub/en/gguf#quantization-types).
## الدعم داخل المحولات
أضفنا القدرة على تحميل ملفات `gguf` داخل `المحولات` لتوفير قدرات تدريب/ضبط إضافية لنماذج gguf، قبل إعادة تحويل تلك النماذج إلى `gguf` لاستخدامها داخل نظام `ggml`. عند تحميل نموذج، نقوم أولاً بإلغاء تكميمه إلى fp32، قبل تحميل الأوزان لاستخدامها في PyTorch.
> [!NOTE]
> لا يزال الدعم تجريبيًا للغاية ونرحب بالمساهمات من أجل ترسيخه عبر أنواع التكميم وبنى النماذج.
فيما يلي، بنيات النماذج وأنواع التكميم المدعومة:
### أنواع التكميم المدعومة
تُحدد أنواع التكميم المدعومة مبدئيًا وفقًا لملفات التكميم الشائعة التي تمت مشاركتها على Hub.
- F32
- F16
- BF16
- Q4_0
- Q4_1
- Q5_0
- Q5_1
- Q8_0
- Q2_K
- Q3_K
- Q4_K
- Q5_K
- Q6_K
- IQ1_S
- IQ1_M
- IQ2_XXS
- IQ2_XS
- IQ2_S
- IQ3_XXS
- IQ3_S
- IQ4_XS
- IQ4_NL
> [!NOTE]
> لدعم إلغاء تكميم gguf، يلزم تثبيت `gguf>=0.10.0`.
### بنيات النماذج المدعومة
في الوقت الحالي، بنيات النماذج المدعومة هي البنيات التي كانت شائعة جدًا على Hub، وهي:
- LLaMa
- Mistral
- Qwen2
- Qwen2Moe
- Phi3
- Bloom
- Falcon
- StableLM
- GPT2
- Starcoder2
- T5
## مثال الاستخدام
لتحميل ملفات `gguf` في `transformers`، يجب تحديد معامل `gguf_file` فى دالة `from_pretrained` لكل من المُجزّئ اللغوية والنموذج. فيما يلي كيفية تحميل المُجزّئ اللغوي ونموذج، يمكن تحميلهما من نفس الملف:
```py
from transformers import AutoTokenizer, AutoModelForCausalLM
model_id = "TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF"
filename = "tinyllama-1.1b-chat-v1.0.Q6_K.gguf"
tokenizer = AutoTokenizer.from_pretrained(model_id, gguf_file=filename)
model = AutoModelForCausalLM.from_pretrained(model_id, gguf_file=filename)
```
الآن لديك إمكانية الوصول إلى النسخة الكامل غير المكممة للنموذج في بيئة PyTorch، حيث يمكنك دمجه مع مجموعة كبيرة من الأدوات الأخرى.
لإعادة التحويل إلى ملف `gguf`، نوصي باستخدام ملف [`convert-hf-to-gguf.py`](https://github.com/ggerganov/llama.cpp/blob/master/convert-hf-to-gguf.py) من llama.cpp.
فيما يلي كيفية إكمال البرنامج النصي أعلاه لحفظ النموذج وإعادة تصديره مرة أخرى إلى `gguf`:
```py
tokenizer.save_pretrained('directory')
model.save_pretrained('directory')
!python ${path_to_llama_cpp}/convert-hf-to-gguf.py ${directory}
```

View File

@ -1,446 +0,0 @@
# قاموس المصطلحات
يحدد هذا المسرد مصطلحات التعلم الآلي العامة و 🤗 Transformers لمساعدتك على فهم الوثائق بشكل أفضل.
## A
### قناع الانتباه (Attention Mask)
قناع الانتباه هو مُدخل اختياري يستخدم عند تجميع التسلسلات معًا
<Youtube id="M6adb1j2jPI"/>
يشير هذا المُدخل إلى النموذج أى الرموز المميزة (tokens) التي يجب الانتباه إليها، وأيها لا ينبغي ذلك.
على سبيل المثال، تأمّل هذين التسلسُلين :
```python
>>> from transformers import BertTokenizer
>>> tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-cased")
>>> sequence_a = "This is a short sequence."
>>> sequence_b = "This is a rather long sequence. It is at least longer than sequence A."
>>> encoded_sequence_a = tokenizer(sequence_a)["input_ids"]
>>> encoded_sequence_b = tokenizer(sequence_b)["input_ids"]
```
لدى الإصدارات المشفرة أطوال مختلفة:
```python
>>> len(encoded_sequence_a), len(encoded_sequence_b)
(8, 19)
```
لذلك، لا يمكننا وضعها معًا في نفس المصفوفة كما هي. يجب إضافة حشو إلى التسلسل الأول حتى يصل إلى طول التسلسل الثاني، أو يجب تقليص الثاني إلى طول الأول.
في الحالة الأولى، يتم تمديد قائمة المعرفات بواسطة مؤشرات الحشو. يمكننا تمرير قائمة إلى المحلل اللغوي وطلب منه إضافة الحشو بهذه الطريقة:
```python
>>> padded_sequences = tokenizer([sequence_a, sequence_b], padding=True)
```
يمكننا أن نرى أنه تمت إضافة اصفار على يمين الجملة الأولى لجعلها بنفس طول الجملة الثانية:
```python
>>> padded_sequences["input_ids"]
[[101, 1188, 1110, 170, 1603, 4954, 119, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [101, 1188, 1110, 170, 1897, 1263, 4954, 119, 1135, 1110, 1120, 1655, 2039, 1190, 1103, 4954, 138, 119, 102]]
```
يمكن بعد ذلك تحويل هذا إلى مصفوفة في PyTorch أو TensorFlow. قناع الانتباه هو مصفوفة ثنائية تشير إلى
موضع المؤشرات المحشوه بحيث لا ينتبه إليها النموذج. بالنسبة إلى [`BertTokenizer`]`1` يشير إلى
قيمة يجب الانتباه إليها، في حين يشير `0` إلى قيمة مبطنة. يُمكن إيجاد قناع الانتباه في القاموس الذي يُعيده مُجزِّئ النصوص (tokenizer) تحت المفتاح "attention_mask".
```python
>>> padded_sequences["attention_mask"]
[[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
```
### نماذج الترميز التلقائي (autoencoding models)
راجع [نماذج الترميز](#encoder-models) و [نمذجة اللغة المقنعة](#masked-language-modeling-mlm)
### النماذج ذاتية الانحدار (Autoregressive Models)
راجع [نمذجة اللغة السببية](#causal-language-modeling) و [نماذج فك التشفير](#decoder-models)
## B
### العمود الفقري (backbone)
يُمثل العمود الفقري الشبكة العصبونية (الترميزات والطبقات) المسؤولة عن إخراج الحالات الخفية أو المُميزات الأولية. عادة ما يكون متصلاً بـ [رأس](#head) يستقبل المُميزات كمدخلات لإجراء تنبؤ. على سبيل المثال، يُعد النموذج [`ViTModel`] عمودًا فقريًا دون رأس مُحدد مُرفق به. يمكن أيضًا استخدام `ViTModel` كعمود فقري في نماذج أخرى, مثل [DPT](model_doc/dpt).
## C
### نمذجة اللغة السببية (أو التنبؤية) causal language modeling
مهمة ما قبل التدريب يقوم فيها النموذج بقراءة النصوص بالترتيب ويتنبأ بالكلمة التالية. يتم ذلك عادةً من خلال قراءة الجملة كاملةً، ولكن مع استخدام قناع داخل النموذج لإخفاء الرموز المميزة اللاحقة في خطوة زمنية معينة.
### قناة(channel)
تتكون الصور الملونة من مزيج من القيم في ثلاث قنوات لونية: الأحمر والأخضر والأزرق (RGB) بينما تحتوي صور ذات التدرج رمادي على قناة واحدة فقط. في مكتبة 🤗 Transformers، يمكن أن تكون القناة اللونية البُعد الأول أو الأخير في مُصفوفة الصورة: [`n_channels`، `height`، `width`] أو [`height`، `width`، `n_channels`].
### التصنيف الزمني التوصيلي connectionist temporal classification (CTC)
خوارزمية تسمح للنموذج بالتعلم دون معرفة كيفية محاذاة المدخلات مع المخرجات بدقة؛ يحسب CTC توزيع جميع المخرجات المحتملة لمدخلات مُحددة ويختار المخرج الأكثر احتمالًا. تُستخدم CTC بشكل شائع في مهام التعرف على الكلام نظرًا لأن الكلام المنطوق لا يتوافق دائمًا بشكل مُباشر مع النص المكتوب، لأسباب مختلفة مثل معدلات الكلام المختلفة للمتكلم.
### الالتفاف (Convolution)
نوع من الطبقات في شبكة عصبية، حيث تُضرب مصفوفة الإدخال عُنصرًا بُعنصر بمصفوفة أصغر تُسمى (النواة أو المرشح) ويتم جمع القيم في مصفوفة جديدة. يُعرف هذا باسم عملية الالتفاف التي يتم تكرارها عبر مصفوفة الإدخال بأكملها. تُطبق كل عملية التفاف على جزء مُختلف من مصفوفة الإدخال. تُستخدم الشبكات العصبية الالتفافية (CNNs) بشكل شائع في رؤية الحاسوب.
## D
### التوازي على مستوى البيانات (DataParallel - DP)
هي تقنية تُستخدم لتدريب النماذج على عدة وحدات معالجة رسومات (GPUs)، حيث يتم نسخ نفس إعداد التدريب عدة مرات، بحيث تتلقى كل نسخة شريحة مختلفة من البيانات يتم تنفيذ المعالجة بالتوازي ويتم مزامنة جميع الإعدادات في نهاية كل خطوة تدريب.
تعرف على المزيد حول كيفية عمل DataParallel [هنا](perf_train_gpu_many#dataparallel-vs-distributeddataparallel).
### معرفات مدخلات وحدة فك التشفير (decoder input IDs)
هذا المدخل خاص بنماذج الترميز وفك التشفير، ويحتوي على معرفات الإدخال التي سيتم تغذيتها إلى وحدة فك التشفير.
يجب استخدام هذه المدخلات لمهام التسلسل إلى التسلسل، مثل الترجمة أو التلخيص، وعادة ما يتم بناؤها بطريقة محددة لكل نموذج.
تقوم معظم نماذج الترميز وفك التشفير (BART، T5) بإنشاء معرفات `decoder_input_ids` الخاصة بها من `labels`. في مثل هذه النماذج،
يعد تمرير `labels` هو الطريقة المفضلة للتعامل مع التدريب.
يرجى التحقق من وثائق كل نموذج لمعرفة كيفية تعاملها مع معرفات الإدخال هذه للتدريب على التسلسل إلى التسلسل.
### نماذج فك التشفير (decoder models)
يُشار إليها أيضًا باسم نماذج التنبؤية الذاتية، وتنطوي نماذج فك التشفير على مهمة ما قبل التدريب (تسمى نمذجة اللغة السببية) حيث يقرأ النموذج النصوص بالترتيب ويتعين عليه التنبؤ بالكلمة التالية. يتم ذلك عادةً عن طريق
قراءة الجملة بأكملها مع قناع لإخفاء الرموز المميزة المستقبلية في خطوة زمنية معينة.
<Youtube id="d_ixlCubqQw"/>
### التعلم العميق deep learning (DL)
خوارزميات التعلم الآلي التي تستخدم الشبكات العصبية متعددة الطبقات.
## E
### نماذج الترميز (encoder models)
تُعرف أيضًا باسم نماذج الترميز التلقائي، وتأخذ نماذج الترميز إدخالًا (مثل النص أو الصور) وتحويلها إلى تمثيل رقمي مكثف يُطلق عليه الترميز. غالبًا ما يتم تدريب نماذج الترميز مسبقًا باستخدام تقنيات مثل [نمذجة اللغة المقنعة](#masked-language-modeling-mlm)، والتي تقوم بإخفاء أجزاء من تسلسل الإدخال وإجبار النموذج على إنشاء تمثيلات أكثر دلالة (فائدة ووضوحاً).
<Youtube id="H39Z_720T5s"/>
## F
### استخراج الميزات (feature extraction)
عملية اختيار وتحويل البيانات الأولية إلى مجموعة من الميزات الأكثر إفادة وفائدة لخوارزميات التعلم الآلي. بعض الأمثلة على استخراج الميزات تشمل تحويل النص الأولي/الخام إلى ترميزات الكلمات واستخراج ميزات مهمة مثل الحواف أو الأشكال من بيانات الصور/الفيديو.
### تجزئة التغذية الأمامية (feed forward chunking)
في كل وحدة الانتباه الباقية في المحولات، تلي طبقة الاهتمام الانتباه عادة طبقتان للتغذية الأمامية.
حجم تضمين الطبقة الأمامية الوسيطة أكبر عادة من حجم المخفي للنموذج (على سبيل المثال، لـ
`google-bert/bert-base-uncased`).
بالنسبة لإدخال بحجم `[batch_size, sequence_length]`، يمكن أن تمثل الذاكرة المطلوبة لتخزين التضمينات الأمامية الوسيطة `[batch_size، sequence_length, config.intermediate_size]` جزءًا كبيرًا من استخدام الذاكرة. لاحظ مؤلفو (https://arxiv.org/abs/2001.04451)[Reformer: The Efficient Transformer] أنه نظرًا لأن الحساب مستقل عن بعد `sequence_length`، فإنه من المكافئ رياضيًا حساب تضمينات الإخراج الأمامية `[batch_size، config.hidden_size]_0, ..., [batch_size، `config_size]_n
فردياً والتوصيل بها لاحقًا إلى `[batch_size, sequence_length, config.hidden_size]` مع `n = sequence_length`، والذي يتداول زيادة وقت الحساب مقابل تقليل استخدام الذاكرة، ولكنه ينتج عنه نتيجة مكافئة رياضيا.
بالنسبة للنماذج التي تستخدم الدالة `[apply_chunking_to_forward]`، يحدد `chunk_size` عدد التضمينات يتم حساب الإخراج بالتوازي وبالتالي يحدد المقايضة بين حجم الذاكرة والتعقيد الوقت. إذا تم تعيين `chunk_size` إلى `0`، فلن يتم إجراء تجزئة التغذية الأمامية.
### النماذج المضبوطة (finetuned models)
الضبط الدقيق هو شكل من أشكال نقل التعلم، يتضمن أخذ نموذج مُدرّب مسبقًا، وتجميد أوزانه، واستبدال طبقة الإخراج برأس نموذج مُضاف حديثًا. يتم تدريب رأس النموذج على مجموعة البيانات المستهدفة.
راجع البرنامج التعليمي [Fine-tune a pretrained model](https://huggingface.co/docs/transformers/training) لمزيد من التفاصيل، وتعرف على كيفية ضبط النماذج باستخدام 🤗 Transformers.
## H
### رأس النموذج (head)
يشير رأس النموذج إلى الطبقة الأخيرة من الشبكة العصبية التي تقبل الحالات المخفية الخام/الأولية وتُسقطها على بُعد مختلف. يوجد رأس نموذج مختلف لكل مهمة.
* [`GPT2ForSequenceClassification`] هو رأس تصنيف تسلسل - طبقة خطية - أعلى نموذج [`GPT2Model`] الأساسي.
* [`ViTForImageClassification`] هو رأس تصنيف صورة - طبقة خطية أعلى حالة مخفية نهائية للرمز `CLS` - أعلى نموذج [`ViTModel`] الأساسي.
* [`Wav2Vec2ForCTC`] هو رأس نمذجة اللغة مع [CTC](#connectionist-temporal-classification-ctc) أعلى نموذج [`Wav2Vec2Model`] الأساسي.
## I
### رقعة الصور (image patch)
"رقعة الصورة" في نماذج المحولات البصرية، تُقسم الصورة إلى أجزاء أصغر تسمى "رقعات". يتم تمثيل كل رقعة بشكل رقمي (تحويلها إلى مجموعة من الأرقام) ثم تُعالج كسلسلة من البيانات. يمكنك العثور على حجم الرُقعة patch_size - أو دقتها - في إعدادات النموذج.
### الاستدلال (Inference)
الاستدلال هو عملية تقييم نموذج على بيانات جديدة بعد اكتمال التدريب. راجع البرنامج التعليمي [Pipeline for inference](https://huggingface.co/docs/transformers/pipeline_tutorial) لمعرفة كيفية إجراء الاستدلال باستخدام 🤗 Transformers.
### معرفات الإدخال (input IDs)
معرفات الإدخال هي غالبًا المعلمات المطلوبة الوحيدة التي يجب تمريرها إلى النموذج كإدخال. هذه المعرفات عبارة عن أرقام تمثل كل كلمة أو رمز في الجملة التي نريد أن يفهمها النموذج. بمعنى آخر، هي طريقة لترجمة الكلمات إلى أرقام يتم استخدامها كإدخال بواسطة النموذج.
<Youtube id="VFp38yj8h3A"/>
يعمل كل محلل لغوي بشكل مختلف ولكن الآلية الأساسية تبقى كما هي. إليك مثال باستخدام محلل BERT اللغوي، والذي يعد محلل لغوي [WordPiece](https://arxiv.org/pdf/1609.08144.pdf):
```python
>>> from transformers import BertTokenizer
>>> tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-cased")
>>> sequence = "A Titan RTX has 24GB of VRAM"
```
يتولى المحلل اللغوي مهمة تقسيم التسلسل إلى رموز مميزة متوفرة في قاموس المحلل اللغوي.
```python
>>> tokenized_sequence = tokenizer.tokenize(sequence)
```
االرموز إما كلمات أو أجزاء كلمات. هنا على سبيل المثال، لم تكن كلمة "VRAM" موجودة في مفردات النموذج، لذلك تم تقسيمها إلى "V" و "RA" و "M". للإشارة إلى أن هذه الرموز ليست كلمات منفصلة ولكنها أجزاء من نفس الكلمة، تمت إضافة بادئة مزدوجة (#) إلى "RA" و "M":
```python
>>> print(tokenized_sequence)
['A', 'Titan', 'R', '##T', '##X', 'has', '24', '##GB', 'of', 'V', '##RA', '##M']
```
```python
>>> print(tokenized_sequence)
['A'، 'Titan'، 'R'، '##T'، '##X'، 'has'، '24'، '##GB'، 'of'، 'V'، '##RA'، '##M']
```
يمكن بعد ذلك تحويل هذه الرموز إلى مُعرفات يفهمها النموذج. يمكن القيام بذلك عن طريق تغذية الجملة مباشرةً إلى مُجزّئ الرموز، والذي يستفيد من تنفيذ 🤗 Tokenizers بلغة Rust للحصول على أعلى أداء.
```python
>>> inputs = tokenizer(sequence)
```
يقوم المحلل اللغوي بإرجاع قاموس يحتوي على جميع المعلومات التي يحتاجها النموذج للعمل بشكل صحيح. وتوجد مؤشرات الرموز المميزة تحت مفتاح `input_ids`:
```python
>>> encoded_sequence = inputs["input_ids"]
>>> print(encoded_sequence)
[101، 138، 18696، 155، 1942، 3190، 1144، 1572، 13745، 1104، 159، 9664، 2107، 102]
```
لاحظ أن المحلل اللغوي يضيف تلقائيًا "رموزًا خاصة" (إذا كان النموذج المرتبط يعتمد عليها) وهي معرفات خاصة
يستخدمها النموذج في بعض الأحيان.
إذا قمنا بفك تشفير التسلسل السابق،
```python
>>> decoded_sequence = tokenizer.decode(encoded_sequence)
```
سنرى
```python
>>> print(decoded_sequence)
[CLS] A Titan RTX has 24GB of VRAM [SEP]
```
لأن هذه هي الطريقة التي يتوقع بها نموذج [`BertModel`] إدخالاته.
## L
### االملصقات (Labels)
هي معامل اختياري يمكن إدخاله في النموذج لحساب الخسارة بنفسه.
نماذج تصنيف التسلسل: ([BertForSequenceClassification]) يتوقع النموذج مصفوفة ذات بعد (batch_size) حيث تتوافق كل قيمة من المجموعة مع الملصق المتوقع للتسلسل بأكمله.
نماذج تصنيف الرمز: ([BertForTokenClassification]) يتوقع النموذج مصفوفة ذات بعد (batch_size, seq_length) حيث تتوافق كل قيمة مع الملصق المتوقع لكل رمز فردي.
نماذج النمذجة اللغوية المقنعة:([BertForMaskedLM]) يتوقع النموذج مصفوفة ذات بعد (batch_size, seq_length) حيث تتوافق كل قيمة مع الملصق المتوقع لكل رمز فردي: تكون الملصقات هي معرف رمز الكلمة المقنعة، والقيم الأخرى يتم تجاهلها (عادةً -100).
مهام التسلسل إلى التسلسل: ([BartForConditionalGeneration], [MBartForConditionalGeneration]) يتوقع النموذج مصفوفة ذات بعد (batch_size, tgt_seq_length) حيث تتوافق كل قيمة مع التسلسل الهدف المرتبط بكل تسلسل مدخل. أثناء التدريب، سيقوم كل من BART و T5 بإنشاء decoder_input_ids و decoder attention masks داخليًا. عادةً لا يلزم توفيرها. هذا لا ينطبق على النماذج التي تستخدم إطار العمل Encoder-Decoder.
نماذج تصنيف الصور: ([ViTForImageClassification]) يتوقع النموذج مصفوفة ذات بعد (batch_size) حيث تتوافق كل قيمة من المجموعة مع الملصق المتوقع لكل صورة فردية.
نماذج التقسيم الدلالي: ([SegformerForSemanticSegmentation]) يتوقع النموذج مصفوفة ذات بعد (batch_size, height, width) حيث تتوافق كل قيمة من المجموعة مع الملصق المتوقع لكل بكسل فردي.
نماذج اكتشاف الأجسام: ([DetrForObjectDetection]) يتوقع النموذج قائمة من القواميس تحتوي على مفتاح class_labels و boxes حيث تتوافق كل قيمة من المجموعة مع الملصق المتوقع وعدد المربعات المحيطة بكل صورة فردية.
نماذج التعرف التلقائي على الكلام: ([Wav2Vec2ForCTC]) يتوقع النموذج مصفوفة ذات بعد (batch_size, target_length) حيث تتوافق كل قيمة مع الملصق المتوقع لكل رمز فردي.
<Tip>
قد تختلف تسميات كل نموذج، لذا تأكد دائمًا من مراجعة وثائق كل نموذج للحصول على معلومات حول التسميات الخاصة به.
</Tip>
لا تقبل النماذج الأساسية ([`BertModel`]) الملصقات ، لأنها نماذج المحول الأساسية، والتي تقوم ببساطة بإخراج الميزات.
### نماذج اللغة الكبيرة large language models (LLM)
مصطلح عام يشير إلى نماذج اللغة المحولة (GPT-3 و BLOOM و OPT) التي تم تدريبها على كمية كبيرة من البيانات. تميل هذه النماذج أيضًا إلى وجود عدد كبير من المعلمات القابلة للتعلم (على سبيل المثال، 175 مليار لمعلمة GPT-3).
## M
### نمذجة اللغة المقنعة masked language modeling (MLM)
مهمة تدريب مسبق حيث يرى النموذج نسخة تالفة من النصوص، وعادة ما يتم ذلك عن طريق حجب بعض الرموز بشكل عشوائي، ويتعين على النموذج التنبؤ بالنص الأصلي.
### متعدد الوسائط (multimodal)
مهمة تجمع بين النصوص مع نوع آخر من المدخلات (على سبيل المثال، الصور).
## N
### توليد اللغة الطبيعية Natural language generation (NLG)
جميع المهام المتعلقة بتوليد النص (على سبيل المثال، [اكتب باستخدام المحولات](https://transformer.huggingface.co/)، والترجمة).
### معالجة اللغة الطبيعية Natural language processing (NLP)
طريقة عامة للقول "التعامل مع النصوص".
### فهم اللغة الطبيعية Natural language understanding (NLU)
جميع المهام المتعلقة بفهم ما هو موجود في نص (على سبيل المثال تصنيف النص بأكمله، أو الكلمات الفردية).
## P
### خط الأنابيب (pipeline)
في مكتبة Transformers، يُشير مصطلح "خط الأنابيب" إلى سلسلة من الخطوات التي يتم تنفيذها بترتيب محدد لمعالجة البيانات وتحويلها وإرجاع تنبؤ من نموذج. بعض المراحل الشائعة في خط الأنابيب قد تشمل معالجة البيانات الأولية، واستخراج الميزات، والتوحيد.
للحصول على مزيد من التفاصيل، راجع [خطوط الأنابيب للاستدلال](https://huggingface.co/docs/transformers/pipeline_tutorial).
### التوازي على مستوى خط الأنابيب (PipelineParallel)
تقنية توازي يتم فيها تقسيم النموذج رأسياً (على مستوى الطبقة) عبر وحدات معالجة الرسومات (GPU) متعددة، بحيث توجد طبقة واحدة أو عدة طبقات من النموذج على وحدة معالجة الرسومات (GPU) واحدة فقط. تقوم كل وحدة معالجة رسومات (GPU) بمعالجة مراحل مختلفة من خط الأنابيب بالتوازي والعمل على جزء صغير من الدفعة. تعرف على المزيد حول كيفية عمل PipelineParallel [هنا](perf_train_gpu_many#from-naive-model-parallelism-to-pipeline-parallelism).
### قيم البكسل (pixel values)
مصفوفة من التمثيلات الرقمية لصورة يتم تمريرها إلى نموذج. تأخذ قيم البكسل شكل [`batch_size`، `num_channels`، `height`، `width`]، ويتم إنشاؤها من معالج الصور.
### التجميع (Pooling)
هي عملية تقوم بتقليص مصفوفة إلى مصفوفة أصغر، إما عن طريق أخذ القيمة القصوى أو المتوسط الحسابي للأبعاد التي يتم تجميعها. توجد طبقات التجميع بشكل شائع بين الطبقات التلافيفية convolutional layers لتقليل حجم تمثيل الميزات.
### معرفات الموضع (position IDs)
على عكس الشبكات العصبية المتكررة (RNNs) التي تتضمن موضع كل رمز (token) ضمن بنيتها، لا تدرك المحولات موضع كل رمز. لذلك، تستخدم معرفات الموضع (`position_ids`) من قبل النموذج لتحديد موضع كل رمز في قائمة الرموز.
إنها معلمة اختيارية. إذا لم يتم تمرير أي `position_ids` إلى النموذج، يتم إنشاء المعرفات تلقائيًا كترميزات موضعية مطلقة.
يتم اختيار الترميزات الموضعية المطلقة في النطاق `[0، config.max_position_embeddings - 1]`. تستخدم بعض النماذج أنواعًا أخرى من الترميزات الموضعية، مثل الترميزات الموضعية الجيبية أو الترميزات الموضعية النسبية.
### ما قبل المعالجة (preprocessing)
مهمة إعداد البيانات الخام بتنسيق يمكن أن تستهلكه نماذج التعلم الآلي بسهولة. على سبيل المثال، عادةً ما تتم معالجة النص مسبقًا عن طريق التمييز. للحصول على فكرة أفضل عن كيفية ظهور المعالجة المسبقة لأنواع الإدخال الأخرى، راجع البرنامج التعليمي [Preprocess](https://huggingface.co/docs/transformers/preprocessing).
### النموذج المسبق التدريب (pretrained model)
نموذج تم تدريبه مسبقًا على بعض البيانات (على سبيل المثال، كل Wikipedia). تنطوي طرق التدريب المسبق على هدف ذاتي الإشراف، والذي يمكن أن يكون قراءة النص ومحاولة التنبؤ بالكلمة التالية ( راجع (causal-language-modeling#)[نمذجة اللغة السببية] ) أو قناع بعض الكلمات ومحاولة التنبؤ بها ( راجع (masked-language#)[نمذجة اللغة المقنعة]- عرض MLM).
لدى نماذج الكلام والرؤية أهدافها التدريبية المسبقة الخاصة. على سبيل المثال، Wav2Vec2 هو نموذج كلام تم تدريبه مسبقًا على مهمة تباينية تتطلب من النموذج تحديد تمثيل الكلام "الحقيقي" من مجموعة من تمثيلات الكلام "الخاطئة". من ناحية أخرى، BEiT هو نموذج رؤية تم تدريبه مسبقًا على مهمة نمذجة صورة مقنعة تقوم بقناع بعض رقع الصورة وتتطلب من النموذج التنبؤ بالرقع المقنعة (مشابهة لهدف نمذجة اللغة المقيدة).
## R
### شبكة عصبية متكررة (RNN)
هي نوع من النماذج التي تستخدم حلقة متكررة فوق طبقة معينة لمعالجة النصوص.
### التعلم التمثيلي (representation learning)
هو فرع من فروع تعلم الآلة يركز على تعلم تمثيلات ذات معنى للبيانات الخام. بعض الأمثلة على تقنيات التعلم التمثيلي تشمل تضمين الكلمات، والمشفرات ذاتية، وشبكات التنافس التوليدية(GANs).
## S
### معدل العينات (sampling rate)
قياس، بالهرتز، لعدد العينات (إشارة الصوت) المأخوذة في الثانية. ينتج معدل العينات عن تمييز إشارة مستمرة مثل الكلام.
### الانتباه الذاتي (Self-Attention)
هو آلية تتيح لكل عنصر في المدخل أن يحدد أي العناصر الأخرى في نفس المدخل يجب أن ينتبه إليها.
### التعلم الذاتي الخاضع للإشراف (supervised learning)
فئة من تقنيات التعلم الآلي التي يقوم فيها النموذج بإنشاء هدفه التعليمي الخاص من البيانات غير الموسومة. يختلف عن [التعلم غير الخاضع للإشراف](#unsupervised-learning) و [التعلم الخاضع للإشراف](#supervised-learning) في أن عملية التعلم خاضعة للإشراف، ولكن ليس صراحة من المستخدم.
مثال واحد على التعلم الذاتي الخاضع للإشراف هو [نمذجة اللغة المقيدة](#masked-language- عرض MLM)، حيث يتم تمرير جمل للنموذج مع إزالة نسبة من رموزه ويتعلم التنبؤ بالرموز المفقودة.
### التعلم شبه الخاضع للإشراف (semi-supervised learning)
فئة واسعة من تقنيات تدريب التعلم الآلي التي تستفيد من كمية صغيرة من البيانات الموسومة مع كمية أكبر من البيانات غير الموسومة لتحسين دقة النموذج، على عكس [التعلم الخاضع للإشراف](#supervised-learning) و [التعلم غير الخاضع للإشراف](#unsupervised-learning).
مثال على نهج التعلم شبه الخاضع للإشراف هو "التدريب الذاتي"، حيث يتم تدريب نموذج على بيانات موسومة، ثم يستخدم لتقديم تنبؤات حول البيانات غير الموسومة. يتم إضافة الجزء من البيانات غير الموسومة التي يتنبأ بها النموذج بأكبر قدر من الثقة إلى مجموعة البيانات الموسومة ويتم استخدامها لإعادة تدريب النموذج.
### تسلسل إلى تسلسل (seq2seq)
نماذج تولد تسلسلًا جديدًا من إدخال، مثل نماذج الترجمة، أو نماذج التلخيص (مثل [Bart](model_doc/bart) أو [T5](model_doc/t5)).
### Sharded DDP
اسم آخر لمفهوم [Zero Redundancy Optimizer](#zero-redundancy-optimizer-zero) الأساسي كما هو مستخدم من قبل العديد من التطبيقات الأخرى لـ Zero.
### الخطوة (Stride)
في العمليات التلافيفية أو التجميعية، تشير الخطوة إلى المسافة التي يتحرك بها النواة (kernel) فوق المصفوفة. خطوة تساوي 1 تعني أن النواة تتحرك بكسل واحد في كل مرة.
### التعلم الخاضع للإشراف (supervised learning)
هو نوع من تدريب النماذج التي تستخدم بيانات مُعلَّمة بشكل مباشر لتصحيح أداء النموذج وتوجيهه. يتم تغذية البيانات إلى النموذج قيد التدريب، ويتم مقارنة تنبؤاته بالنتائج الصحيحة المعروفة. يقوم النموذج بتعديل أوزانه بناءً على مدى خطأ تنبؤاته، وتتكرر هذه العملية لتحسين أداء النموذج.
## T
### توازي Tensor (TP)
تقنية توازي لتدريب وحدات معالجة الرسومات (GPU) متعددة يتم فيها تقسيم المصفوفة إلى عدة أجزاء، لذا بدلاً من وجود المصفوفة بأكملها على وحدة معالجة الرسومات (GPU) واحدة، توجد كل شظية من المصفوفة على وحدة معالجة الرسومات (GPU) المخصصة لها. تتم معالجة الشظايا بشكل منفصل وبالتوازي على وحدات معالجة الرسومات (GPU) المختلفة ويتم مزامنة النتائج في نهاية خطوة المعالجة. هذا ما يُطلق عليه أحيانًا التوازي الأفقي، حيث يحدث الانقسام على المستوى الأفقي.
تعرف على المزيد حول توازي Tensor [هنا](perf_train_gpu_many#tensor-parallelism).
### الرمز اللغوي (Token)
جزء من جملة، عادة ما يكون كلمة، ولكن يمكن أن يكون أيضًا كلمة فرعية (غالبًا ما يتم تقسيم الكلمات غير الشائعة إلى كلمات فرعية) أو علامة ترقيم.
### معرفات نوع الرمز (token type ids)
الغرض من بعض النماذج هو إجراء التصنيف على أزواج من الجمل أو الإجابة على الأسئلة.
<Youtube id="0u3ioSwev3s"/>
يتطلب ذلك تسلسلين مختلفين يتم دمجهما في إدخال "input_ids" واحد، والذي يتم عادةً باستخدام رموز خاصة، مثل رموز التصنيف (`[CLS]`) والفاصل (`[SEP]`). على سبيل المثال، يقوم نموذج BERT ببناء إدخال تسلسلين على النحو التالي:
```python
>>> # [CLS] SEQUENCE_A [SEP] SEQUENCE_B [SEP]
```
يمكننا استخدام برنامجنا للتمييز لإنشاء مثل هذه الجملة تلقائيًا عن طريق تمرير التسلسلين إلى `tokenizer` كمعامليين (وليس قائمة، كما كان من قبل) مثل هذا:
```python
>>> from transformers import BertTokenizer
>>> tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-cased")
>>> sequence_a = "HuggingFace is based in NYC"
>>> sequence_b = "Where is HuggingFace based?"
>>> encoded_dict = tokenizer(sequence_a، sequence_b)
>>> decoded = tokenizer.decode(encoded_dict["input_ids"])
```
والذي سيعيد:
```python
>>> print(decoded)
[CLS] HuggingFace is based in NYC [SEP] Where is HuggingFace based؟ [SEP]
```
هذا يكفي لبعض النماذج لفهم أين ينتهي تسلسل واحد وأين يبدأ الآخر. ومع ذلك، تستخدم نماذج أخرى، مثل BERT، أيضًا معرفات نوع الرمز (يُطلق عليها أيضًا معرفات الجزء). يتم تمثيلها كماسك ثنائي لتحديد نوعي التسلسل في النموذج.
يعيد برنامج الترميز هذا القناع كإدخال "token_type_ids":
```python
>>> encoded_dict["token_type_ids"]
[0، 0، 0، 0، 0، 0، 0، 0، 0، 0، 1، 1، 1، 1، 1، 1، 1، 1، 1]
```
يتم تمثيل التسلسل الأول، "السياق" المستخدم للسؤال، بجميع رموزه بواسطة `0`، في حين يتم تمثيل التسلسل الثاني، المقابل إلى "السؤال"، بجميع رموزه بواسطة `1`.
تستخدم بعض النماذج، مثل [`XLNetModel`] رمزًا إضافيًا يمثله `2`.
### التعلم الانتقالي (Transfer Learning)
تقنية تنطوي على أخذ نموذج تم تدريبه مسبقًا وتكييفه مع مجموعة بيانات خاصة بمهمتك. بدلاً من تدريب نموذج من الصفر، يمكنك الاستفادة من المعرفة المكتسبة من نموذج موجود كنقطة بداية. يسرع هذا عملية التعلم ويقلل من كمية بيانات التدريب المطلوبة.
### المحول (Transformer)
هو بنية لنموذج تعلم عميق يعتمد على الانتباه الذاتي.
## U
### التعلم غير الخاضع للإشراف (unsupervised learning)
شكل من أشكال تدريب النماذج حيث لا يتم وضع علامات على البيانات المقدمة إلى النموذج. تستفيد تقنيات التعلم غير الخاضعة للإشراف من المعلومات الإحصائية لتوزيع البيانات للعثور على الأنماط المفيدة للمهمة المعنية.
## Z
### محسن التكرار الصفري (ZeRO)
تقنية توازي تقوم بتشظية المصفوفات بطريقة مشابهة لـ [TensorParallel](#tensor-parallelism-tp)، باستثناء إعادة بناء المصفوفة بالكامل في الوقت المناسب لحساب التقدير أو الحساب الخلفي، وبالتالي لا يلزم تعديل النموذج. تدعم هذه الطريقة أيضًا تقنيات الإخلاء المختلفة للتعويض عن ذاكرة GPU المحدودة.
تعرف على المزيد حول Zero [هنا](perf_train_gpu_many#zero-data-parallelism).

View File

@ -1,163 +0,0 @@
# كيفية تعديل أي نموذج من نماذج Transformers
توفر مكتبة [🤗 Transformers](https://github.com/huggingface/transformers) مجموعة من النماذج المسبقة التدريب والأدوات لمعالجة اللغات الطبيعية، والرؤية، وما إلى ذلك. على الرغم من أن هذه النماذج تغطي مجموعة واسعة من التطبيقات، فقد تواجه حالات استخدام لا تدعمها المكتبة بشكل افتراضي. يُمكن للتخصيص أن يفتح إمكانيات جديدة، مثل إضافة طبقات جديدة، أو تعديل البنية المعمارية، أو تحسين آليات الانتباه. سيُوضح لك هذا الدليل كيفية تعديل نماذج Transformers الموجودة لتلبية احتياجاتك المحددة. الشيء الرائع هو أنك لست بحاجة إلى الخروج من إطار عمل Transformers لإجراء هذه التغييرات. ي يمكنك تعديل النماذج مباشرةً في Transformers والاستفادة من الميزات مثل [واجهة برمجة التطبيقات Trainer](https://huggingface.co/docs/transformers/main/en/main_classes/trainer)، و [PreTrainedModel](https://huggingface.co/docs/transformers/main/en/main_classes/model#transformers.PreTrainedModel)، والضبط الدقيق الفعال باستخدام أدوات مثل [PEFT](https://huggingface.co/docs/peft/index).
سنرشدك في هذا الدليل لكيفية تخصيص نماذج Transformers الموجودة لتلبية متطلباتك، دون فقدان مزايا الإطار. ستتعلم كيفية:
- تعديل بنية نموذج ما من خلال تغيير آلية الانتباه الخاصة به.
- تطبيق تقنيات مثل Low-Rank Adaptation (LoRA) على مكونات نموذج محددة.
نحن نشجعك على المساهمة باختراقاتك الخاصة ومشاركتها هنا مع المجتمع1
## مثال: تعديل آلية الانتباه في نموذج Segment Anything (SAM)
نموذج **Segment Anything (SAM)** هو نموذج رائد في مجال تجزئة الصور. في تنفيذه الافتراضي، يستخدم SAM إسقاطًا مجمعًا للاستعلام والمفتاح والقيمة (`qkv`) في آلية الانتباه الخاصة به. ومع ذلك، قد ترغب في ضبط مكونات محددة فقط من آلية الانتباه، مثل إسقاطات الاستعلام (`q`) والقيمة (`v`)، لتقليل عدد المعلمات القابلة للتدريب والموارد الحسابية المطلوبة.
### الدافع
من خلال تقسيم الإسقاط المجمع `qkv` إلى إسقاطات منفصلة `q` و `k` و `v`، يمكنك تطبيق تقنيات مثل **LoRA** (Low-Rank Adaptation) على إسقاطي `q` و `v` فقط. يسمح لك هذا بما يلي:
- ضبط عدد أقل من المعلمات، مما يقلل من العبء الحسابي.
- تحقيق أداء أفضل من خلال التركيز على مكونات محددة.
- تجربة استراتيجيات تعديل مختلفة في آلية الانتباه.
### التنفيذ
#### **الخطوة 1: إنشاء فئة اهتمام مخصصة**
بعد ذلك، قم بإنشاء فئة فرعية من فئة `SamVisionAttention` الأصلية وعدلها لتضم إسقاطات `q` و `k` و `v` منفصلة.
```python
import torch
import torch.nn as nn
from transformers.models.sam.modeling_sam import SamVisionAttention
class SamVisionAttentionSplit(SamVisionAttention, nn.Module):
def __init__(self, config, window_size):
super().__init__(config, window_size)
del self.qkv
# إسقاطات منفصلة q و k و v
self.q = nn.Linear(config.hidden_size, config.hidden_size, bias=config.qkv_bias)
self.k = nn.Linear(config.hidden_size, config.hidden_size, bias=config.qkv_bias)
self.v = nn.Linear(config.hidden_size, config.hidden_size, bias=config.qkv_bias)
self._register_load_state_dict_pre_hook(self.split_q_k_v_load_hook)
def split_q_k_v_load_hook(self, state_dict, prefix, *args):
keys_to_delete = []
for key in list(state_dict.keys()):
if "qkv." in key:
# تقسيم q و k و v من الإسقاط المجمع
q, k, v = state_dict[key].chunk(3, dim=0)
# استبدال الإسقاطات الفردية q و k و v
state_dict[key.replace("qkv.", "q.")] = q
state_dict[key.replace("qkv.", "k.")] = k
state_dict[key.replace("qkv.", "v.")] = v
# وضع علامة على مفتاح qkv القديم للحذف
keys_to_delete.append(key)
# حذف مفاتيح qkv القديمة
for key in keys_to_delete:
del state_dict[key]
def forward(self, hidden_states: torch.Tensor, output_attentions=False) -> torch.Tensor:
batch_size, height, width, _ = hidden_states.shape
qkv_shapes = (batch_size * self.num_attention_heads, height * width, -1)
query = self.q(hidden_states).reshape((batch_size, height * width,self.num_attention_heads, -1)).permute(0,2,1,3).reshape(qkv_shapes)
key = self.k(hidden_states).reshape((batch_size, height * width,self.num_attention_heads, -1)).permute(0,2,1,3).reshape(qkv_shapes)
value = self.v(hidden_states).reshape((batch_size, height * width,self.num_attention_heads, -1)).permute(0,2,1,3).reshape(qkv_shapes)
attn_weights = (query * self.scale) @ key.transpose(-2, -1)
if self.use_rel_pos:
attn_weights = self.add_decomposed_rel_pos(
attn_weights, query, self.rel_pos_h, self.rel_pos_w, (height, width), (height, width)
)
attn_weights = torch.nn.functional.softmax(attn_weights, dtype=torch.float32, dim=-1).to(query.dtype)
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = (attn_probs @ value).reshape(batch_size, self.num_attention_heads, height, width, -1)
attn_output = attn_output.permute(0, 2, 3, 1, 4).reshape(batch_size, height, width, -1)
attn_output = self.proj(attn_output)
if output_attentions:
outputs = (attn_output, attn_weights)
else:
outputs = (attn_output, None)
return outputs
```
**الشرح:**
- **الإسقاطات المنفصلة:** يتم إزالة الإسقاط المُجمع `qkv`، وإنشاء إسقاطات خطية منفصلة `q` و `k` و `v`.
- **دالة استدعاء تحميل الأوزان:** تقوم طريقة `_split_qkv_load_hook` بتقسيم أوزان `qkv` المسبقة التدريب إلى أوزان `q` و `k` و `v` منفصلة عند تحميل النموذج. يضمن هذا التوافق مع أي نموذج مسبق التدريب.
- **التنفيذ الأمامي:** يتم حساب الاستعلامات والمفاتيح والقيم بشكل منفصل، وتستمر آلية الانتباه كالمعتاد.
#### **الخطوة 2: استبدال فئة الانتباه الأصلية**
استبدل فئة `SamVisionAttention` الأصلية بفئتك المخصصة بحيث يستخدم النموذج آلية الانتباه المعدلة.
```python
from transformers import SamModel
from transformers.models.sam import modeling_sam
# استبدال فئة الاهتمام في وحدة نمطية modeling_sam
modeling_sam.SamVisionAttention = SamVisionAttentionSplit
# تحميل نموذج SAM المسبق التدريب
model = SamModel.from_pretrained("facebook/sam-vit-base")
```
**الشرح:**
- **استبدال الفئة:** من خلال تعيين فئتك المخصصة إلى `modeling_sam.SamVisionAttention`، فإن أي حالات من فئة `SamVisionAttention` في النموذج ستستخدم النسخة المعدلة. وبالتالي، عند استدعاء `SamModel`، سيتم استخدام `SamVisionAttentionSplit` المحددة حديثًا.
- **تحميل النموذج:** يتم تحميل النموذج باستخدام `from_pretrained`، ويتم دمج آلية الانتباه المخصصة.
#### **الخطوة 3: تطبيق LoRA على إسقاطات محددة**
مع وجود إسقاطات `q` و `k` و `v` منفصلة، يمكنك الآن تطبيق LoRA على مكونات محددة، مثل إسقاطات `q` و `v`.
```python
from peft import LoraConfig, get_peft_model
config = LoraConfig(
r=16,
lora_alpha=32,
target_modules=["q", "v"], # تطبيق LoRA على إسقاطات q و v
lora_dropout=0.1,
task_type="mask-generation"
)
# تطبيق LoRA على النموذج
model = get_peft_model(model, config)
```
**الشرح:**
- **تكوين LoRA:** تحدد `LoraConfig` المرتبة `r`، وعامل القياس `lora_alpha`، والوحدات المستهدفة (`"q"` و `"v"`)، ومعدل التخلي، ونوع المهمة.
- **تطبيق LoRA:** تقوم دالة `get_peft_model` بتطبيق LoRA على الوحدات المحددة في النموذج.
- **تقليل المعلمات:** من خلال التركيز على `q` و `v`، فإنك تقلل عدد المعلمات القابلة للتدريب، مما يؤدي إلى تسريع التدريب وتقليل استخدام الذاكرة.
#### **الخطوة 4: التحقق من عدد المعلمات القابلة للتدريب**
من السهل التحقق من عدد المعلمات القابلة للتدريب ومعرفة تأثير تعديلك.
```python
model.print_trainable_parameters()
```
**الناتج المتوقع:**
```
عدد المعلمات القابلة للتدريب: 608,256 || جميع المعلمات: 94,343,728 || نسبة المعلمات القابلة للتدريب: 0.6447
عدد المعلمات القابلة للتدريب: 912,384 || جميع المعلمات: 94,647,856 || نسبة المعلمات القابلة للتدريب: 0.9640 # مع k
```
## المساهمة بابداعاتك الخاصة
يمكن لتعديل النماذج المسبقة التدريب أن يفتح آفاقًا جديدة للبحث والتطبيق. من خلال فهم وتعديل الآليات الداخلية للنماذج مثل SAM، يمكنك تخصيصها لتلبية احتياجاتك المحددة، وتحسين الأداء، وتجربة أفكار جديدة.
إذا قمت بتطوير تعديﻻتك الخاصة لنماذج Transformers وترغب في مشاركتها، ففكر في المساهمة في هذه الوثيقة.
- **إنشاء طلب سحب (Pull Request):** شارك تغييراتك وتحسيناتك في التعليمات البرمجية مباشرة في المستودع.
- **كتابة التوثيق:** قدم تفسيرات وأمثلة واضحة لتعديلاتك.
- **التفاعل مع المجتمع:** ناقش أفكارك واحصل على تعليقات من المطورين والباحثين الآخرين من خلال فتح مشكلة.

View File

@ -1,342 +0,0 @@
# 🤗 Transformers: لمحة عامة
أحدث ما في مجال التعلم الآلي لـ [PyTorch](https://pytorch.org/) و [TensorFlow](https://www.tensorflow.org/) و [JAX](https://jax.readthedocs.io/en/latest/)
توفر 🤗 Transformers واجهات برمجة التطبيقات (APIs) والأدوات اللازمة لتنزيل وتدريب أحدث النماذج المسبقة التدريب بسهولة. ويمكن أن يقلل استخدام النماذج المسبقة التدريب من تكاليف الحوسبة والحد من الأثر البيئي، وتوفّر الوقت والموارد اللازمين لتدريب نموذج من الصفر. وتدعم هذه النماذج المهام الشائعة في مجالات مختلفة، مثل:
📝 **معالجة اللغات الطبيعية**: تصنيف النصوص، وتعريف الكيانات المسماة، والإجابة على الأسئلة، ونمذجة اللغة، والتلخيص، والترجمة، والاختيار من متعدد، وتوليد النصوص. <br>
🖼️ **الرؤية الحاسوبية**: تصنيف الصور، وكشف الأشياء، وتجزئتها. <br>
🗣️ **الصوت**: التعرف التلقائي على الكلام، وتصنيف الصوت. <br>
🐙 **متعدد الوسائط**: الإجابة على الأسئلة الجدولية، والتعرف البصري على الحروف، واستخراج المعلومات من المستندات الممسوحة ضوئيًا، وتصنيف الفيديو، والإجابة على الأسئلة البصرية.
تدعم 🤗 Transformers التوافق بين أطر العمل المختلفة مثل PyTorch و TensorFlow و JAX. ويوفر ذلك المرونة لاستخدام إطار عمل مختلف في كل مرحلة من مراحل حياة النموذج؛ قم بتدريب نموذج في ثلاث خطوط من التعليمات البرمجية في إطار واحد، وقم بتحميله للاستدلال في إطار آخر. ويمكن أيضًا تصدير النماذج إلى صيغ مثل ONNX و TorchScript للنشر في بيئات الإنتاج.
انضم إلى المجتمع المتنامي على [Hub](https://huggingface.co/models) أو [المنتدى](https://discuss.huggingface.co/) أو [Discord](https://discord.com/invite/JfAtkvEtRb) اليوم!
## إذا كنت تبحث عن دعم مخصص من فريق Hugging Face
<a target="_blank" href="https://huggingface.co/support">
<img alt="HuggingFace Expert Acceleration Program" src="https://cdn-media.huggingface.co/marketing/transformers/new-support-improved.png" style="width: 100%; max-width: 600px; border: 1px solid #eee; border-radius: 4px; box-shadow: 0 1px 2px 0 rgba(0, 0, 0, 0.05);">
</a>
## المحتويات
ينقسم التوثيق إلى خمسة أقسام:
- **ابدأ** تقدم جولة سريعة في المكتبة وتعليمات التثبيت للبدء.
- **الدروس التعليمية** هي مكان رائع للبدء إذا كنت مبتدئًا. سيساعدك هذا القسم على اكتساب المهارات الأساسية التي تحتاجها للبدء في استخدام المكتبة.
- **أدلة كيفية الاستخدام** تُظهر لك كيفية تحقيق هدف محدد، مثل ضبط نموذج مسبق التدريب لنمذجة اللغة أو كيفية كتابة ومشاركة نموذج مخصص.
- **الأدلة المفاهيمية** تقدم مناقشة وتفسيرًا أكثر للأفكار والمفاهيم الأساسية وراء النماذج والمهام وفلسفة التصميم في 🤗 Transformers.
- **واجهة برمجة التطبيقات (API)** تصف جميع الفئات والوظائف:
- **الفئات الرئيسية** تشرح الفئات الأكثر أهمية مثل التكوين والنمذجة والتحليل النصي وخط الأنابيب.
- **النماذج** تشرح الفئات والوظائف المتعلقة بكل نموذج يتم تنفيذه في المكتبة.
- **المساعدون الداخليون** يشرحون فئات ووظائف المساعدة التي يتم استخدامها داخليًا.
## النماذج والأطر المدعومة
يمثل الجدول أدناه الدعم الحالي في المكتبة لكل من هذه النماذج، وما إذا كان لديها محلل نحوي Python (يُسمى "بطيء"). محلل نحوي "سريع" مدعوم بمكتبة 🤗 Tokenizers، وما إذا كان لديها دعم في Jax (عبر Flax) و/أو PyTorch و/أو TensorFlow.
<!--يتم تحديث هذا الجدول تلقائيًا من الوحدات النمطية التلقائية مع _make fix-copies_. لا تقم بالتحديث يدويًا!-->
<!--This table is updated automatically from the auto modules with _make fix-copies_. Do not update manually!-->
| Model | PyTorch support | TensorFlow support | Flax Support |
|:------------------------------------------------------------------------:|:---------------:|:------------------:|:------------:|
| [ALBERT](model_doc/albert) | ✅ | ✅ | ✅ |
| [ALIGN](model_doc/align) | ✅ | ❌ | ❌ |
| [AltCLIP](model_doc/altclip) | ✅ | ❌ | ❌ |
| [Audio Spectrogram Transformer](model_doc/audio-spectrogram-transformer) | ✅ | ❌ | ❌ |
| [Autoformer](model_doc/autoformer) | ✅ | ❌ | ❌ |
| [Bark](model_doc/bark) | ✅ | ❌ | ❌ |
| [BART](model_doc/bart) | ✅ | ✅ | ✅ |
| [BARThez](model_doc/barthez) | ✅ | ✅ | ✅ |
| [BARTpho](model_doc/bartpho) | ✅ | ✅ | ✅ |
| [BEiT](model_doc/beit) | ✅ | ❌ | ✅ |
| [BERT](model_doc/bert) | ✅ | ✅ | ✅ |
| [Bert Generation](model_doc/bert-generation) | ✅ | ❌ | ❌ |
| [BertJapanese](model_doc/bert-japanese) | ✅ | ✅ | ✅ |
| [BERTweet](model_doc/bertweet) | ✅ | ✅ | ✅ |
| [BigBird](model_doc/big_bird) | ✅ | ❌ | ✅ |
| [BigBird-Pegasus](model_doc/bigbird_pegasus) | ✅ | ❌ | ❌ |
| [BioGpt](model_doc/biogpt) | ✅ | ❌ | ❌ |
| [BiT](model_doc/bit) | ✅ | ❌ | ❌ |
| [Blenderbot](model_doc/blenderbot) | ✅ | ✅ | ✅ |
| [BlenderbotSmall](model_doc/blenderbot-small) | ✅ | ✅ | ✅ |
| [BLIP](model_doc/blip) | ✅ | ✅ | ❌ |
| [BLIP-2](model_doc/blip-2) | ✅ | ❌ | ❌ |
| [BLOOM](model_doc/bloom) | ✅ | ❌ | ✅ |
| [BORT](model_doc/bort) | ✅ | ✅ | ✅ |
| [BridgeTower](model_doc/bridgetower) | ✅ | ❌ | ❌ |
| [BROS](model_doc/bros) | ✅ | ❌ | ❌ |
| [ByT5](model_doc/byt5) | ✅ | ✅ | ✅ |
| [CamemBERT](model_doc/camembert) | ✅ | ✅ | ❌ |
| [CANINE](model_doc/canine) | ✅ | ❌ | ❌ |
| [Chameleon](model_doc/chameleon) | ✅ | ❌ | ❌ |
| [Chinese-CLIP](model_doc/chinese_clip) | ✅ | ❌ | ❌ |
| [CLAP](model_doc/clap) | ✅ | ❌ | ❌ |
| [CLIP](model_doc/clip) | ✅ | ✅ | ✅ |
| [CLIPSeg](model_doc/clipseg) | ✅ | ❌ | ❌ |
| [CLVP](model_doc/clvp) | ✅ | ❌ | ❌ |
| [CodeGen](model_doc/codegen) | ✅ | ❌ | ❌ |
| [CodeLlama](model_doc/code_llama) | ✅ | ❌ | ✅ |
| [Cohere](model_doc/cohere) | ✅ | ❌ | ❌ |
| [Conditional DETR](model_doc/conditional_detr) | ✅ | ❌ | ❌ |
| [ConvBERT](model_doc/convbert) | ✅ | ✅ | ❌ |
| [ConvNeXT](model_doc/convnext) | ✅ | ✅ | ❌ |
| [ConvNeXTV2](model_doc/convnextv2) | ✅ | ✅ | ❌ |
| [CPM](model_doc/cpm) | ✅ | ✅ | ✅ |
| [CPM-Ant](model_doc/cpmant) | ✅ | ❌ | ❌ |
| [CTRL](model_doc/ctrl) | ✅ | ✅ | ❌ |
| [CvT](model_doc/cvt) | ✅ | ✅ | ❌ |
| [DAC](model_doc/dac) | ✅ | ❌ | ❌ |
| [Data2VecAudio](model_doc/data2vec) | ✅ | ❌ | ❌ |
| [Data2VecText](model_doc/data2vec) | ✅ | ❌ | ❌ |
| [Data2VecVision](model_doc/data2vec) | ✅ | ✅ | ❌ |
| [DBRX](model_doc/dbrx) | ✅ | ❌ | ❌ |
| [DeBERTa](model_doc/deberta) | ✅ | ✅ | ❌ |
| [DeBERTa-v2](model_doc/deberta-v2) | ✅ | ✅ | ❌ |
| [Decision Transformer](model_doc/decision_transformer) | ✅ | ❌ | ❌ |
| [Deformable DETR](model_doc/deformable_detr) | ✅ | ❌ | ❌ |
| [DeiT](model_doc/deit) | ✅ | ✅ | ❌ |
| [DePlot](model_doc/deplot) | ✅ | ❌ | ❌ |
| [Depth Anything](model_doc/depth_anything) | ✅ | ❌ | ❌ |
| [DETA](model_doc/deta) | ✅ | ❌ | ❌ |
| [DETR](model_doc/detr) | ✅ | ❌ | ❌ |
| [DialoGPT](model_doc/dialogpt) | ✅ | ✅ | ✅ |
| [DiNAT](model_doc/dinat) | ✅ | ❌ | ❌ |
| [DINOv2](model_doc/dinov2) | ✅ | ❌ | ✅ |
| [DistilBERT](model_doc/distilbert) | ✅ | ✅ | ✅ |
| [DiT](model_doc/dit) | ✅ | ❌ | ✅ |
| [DonutSwin](model_doc/donut) | ✅ | ❌ | ❌ |
| [DPR](model_doc/dpr) | ✅ | ✅ | ❌ |
| [DPT](model_doc/dpt) | ✅ | ❌ | ❌ |
| [EfficientFormer](model_doc/efficientformer) | ✅ | ✅ | ❌ |
| [EfficientNet](model_doc/efficientnet) | ✅ | ❌ | ❌ |
| [ELECTRA](model_doc/electra) | ✅ | ✅ | ✅ |
| [EnCodec](model_doc/encodec) | ✅ | ❌ | ❌ |
| [Encoder decoder](model_doc/encoder-decoder) | ✅ | ✅ | ✅ |
| [ERNIE](model_doc/ernie) | ✅ | ❌ | ❌ |
| [ErnieM](model_doc/ernie_m) | ✅ | ❌ | ❌ |
| [ESM](model_doc/esm) | ✅ | ✅ | ❌ |
| [FairSeq Machine-Translation](model_doc/fsmt) | ✅ | ❌ | ❌ |
| [Falcon](model_doc/falcon) | ✅ | ❌ | ❌ |
| [FalconMamba](model_doc/falcon_mamba) | ✅ | ❌ | ❌ |
| [FastSpeech2Conformer](model_doc/fastspeech2_conformer) | ✅ | ❌ | ❌ |
| [FLAN-T5](model_doc/flan-t5) | ✅ | ✅ | ✅ |
| [FLAN-UL2](model_doc/flan-ul2) | ✅ | ✅ | ✅ |
| [FlauBERT](model_doc/flaubert) | ✅ | ✅ | ❌ |
| [FLAVA](model_doc/flava) | ✅ | ❌ | ❌ |
| [FNet](model_doc/fnet) | ✅ | ❌ | ❌ |
| [FocalNet](model_doc/focalnet) | ✅ | ❌ | ❌ |
| [Funnel Transformer](model_doc/funnel) | ✅ | ✅ | ❌ |
| [Fuyu](model_doc/fuyu) | ✅ | ❌ | ❌ |
| [Gemma](model_doc/gemma) | ✅ | ❌ | ✅ |
| [Gemma2](model_doc/gemma2) | ✅ | ❌ | ❌ |
| [GIT](model_doc/git) | ✅ | ❌ | ❌ |
| [GLPN](model_doc/glpn) | ✅ | ❌ | ❌ |
| [GPT Neo](model_doc/gpt_neo) | ✅ | ❌ | ✅ |
| [GPT NeoX](model_doc/gpt_neox) | ✅ | ❌ | ❌ |
| [GPT NeoX Japanese](model_doc/gpt_neox_japanese) | ✅ | ❌ | ❌ |
| [GPT-J](model_doc/gptj) | ✅ | ✅ | ✅ |
| [GPT-Sw3](model_doc/gpt-sw3) | ✅ | ✅ | ✅ |
| [GPTBigCode](model_doc/gpt_bigcode) | ✅ | ❌ | ❌ |
| [GPTSAN-japanese](model_doc/gptsan-japanese) | ✅ | ❌ | ❌ |
| [Granite](model_doc/granite) | ✅ | ❌ | ❌ |
| [Graphormer](model_doc/graphormer) | ✅ | ❌ | ❌ |
| [Grounding DINO](model_doc/grounding-dino) | ✅ | ❌ | ❌ |
| [GroupViT](model_doc/groupvit) | ✅ | ✅ | ❌ |
| [HerBERT](model_doc/herbert) | ✅ | ✅ | ✅ |
| [Hiera](model_doc/hiera) | ✅ | ❌ | ❌ |
| [Hubert](model_doc/hubert) | ✅ | ✅ | ❌ |
| [I-BERT](model_doc/ibert) | ✅ | ❌ | ❌ |
| [IDEFICS](model_doc/idefics) | ✅ | ✅ | ❌ |
| [Idefics2](model_doc/idefics2) | ✅ | ❌ | ❌ |
| [ImageGPT](model_doc/imagegpt) | ✅ | ❌ | ❌ |
| [Informer](model_doc/informer) | ✅ | ❌ | ❌ |
| [InstructBLIP](model_doc/instructblip) | ✅ | ❌ | ❌ |
| [InstructBlipVideo](model_doc/instructblipvideo) | ✅ | ❌ | ❌ |
| [Jamba](model_doc/jamba) | ✅ | ❌ | ❌ |
| [JetMoe](model_doc/jetmoe) | ✅ | ❌ | ❌ |
| [Jukebox](model_doc/jukebox) | ✅ | ❌ | ❌ |
| [KOSMOS-2](model_doc/kosmos-2) | ✅ | ❌ | ❌ |
| [LayoutLM](model_doc/layoutlm) | ✅ | ✅ | ❌ |
| [LayoutLMv2](model_doc/layoutlmv2) | ✅ | ❌ | ❌ |
| [LayoutLMv3](model_doc/layoutlmv3) | ✅ | ✅ | ❌ |
| [LayoutXLM](model_doc/layoutxlm) | ✅ | ❌ | ❌ |
| [LED](model_doc/led) | ✅ | ✅ | ❌ |
| [LeViT](model_doc/levit) | ✅ | ❌ | ❌ |
| [LiLT](model_doc/lilt) | ✅ | ❌ | ❌ |
| [LLaMA](model_doc/llama) | ✅ | ❌ | ✅ |
| [Llama2](model_doc/llama2) | ✅ | ❌ | ✅ |
| [Llama3](model_doc/llama3) | ✅ | ❌ | ✅ |
| [LLaVa](model_doc/llava) | ✅ | ❌ | ❌ |
| [LLaVA-NeXT](model_doc/llava_next) | ✅ | ❌ | ❌ |
| [LLaVa-NeXT-Video](model_doc/llava_next_video) | ✅ | ❌ | ❌ |
| [Longformer](model_doc/longformer) | ✅ | ✅ | ❌ |
| [LongT5](model_doc/longt5) | ✅ | ❌ | ✅ |
| [LUKE](model_doc/luke) | ✅ | ❌ | ❌ |
| [LXMERT](model_doc/lxmert) | ✅ | ✅ | ❌ |
| [M-CTC-T](model_doc/mctct) | ✅ | ❌ | ❌ |
| [M2M100](model_doc/m2m_100) | ✅ | ❌ | ❌ |
| [MADLAD-400](model_doc/madlad-400) | ✅ | ✅ | ✅ |
| [Mamba](model_doc/mamba) | ✅ | ❌ | ❌ |
| [mamba2](model_doc/mamba2) | ✅ | ❌ | ❌ |
| [Marian](model_doc/marian) | ✅ | ✅ | ✅ |
| [MarkupLM](model_doc/markuplm) | ✅ | ❌ | ❌ |
| [Mask2Former](model_doc/mask2former) | ✅ | ❌ | ❌ |
| [MaskFormer](model_doc/maskformer) | ✅ | ❌ | ❌ |
| [MatCha](model_doc/matcha) | ✅ | ❌ | ❌ |
| [mBART](model_doc/mbart) | ✅ | ✅ | ✅ |
| [mBART-50](model_doc/mbart50) | ✅ | ✅ | ✅ |
| [MEGA](model_doc/mega) | ✅ | ❌ | ❌ |
| [Megatron-BERT](model_doc/megatron-bert) | ✅ | ❌ | ❌ |
| [Megatron-GPT2](model_doc/megatron_gpt2) | ✅ | ✅ | ✅ |
| [MGP-STR](model_doc/mgp-str) | ✅ | ❌ | ❌ |
| [Mistral](model_doc/mistral) | ✅ | ✅ | ✅ |
| [Mixtral](model_doc/mixtral) | ✅ | ❌ | ❌ |
| [mLUKE](model_doc/mluke) | ✅ | ❌ | ❌ |
| [MMS](model_doc/mms) | ✅ | ✅ | ✅ |
| [MobileBERT](model_doc/mobilebert) | ✅ | ✅ | ❌ |
| [MobileNetV1](model_doc/mobilenet_v1) | ✅ | ❌ | ❌ |
| [MobileNetV2](model_doc/mobilenet_v2) | ✅ | ❌ | ❌ |
| [MobileViT](model_doc/mobilevit) | ✅ | ✅ | ❌ |
| [MobileViTV2](model_doc/mobilevitv2) | ✅ | ❌ | ❌ |
| [MPNet](model_doc/mpnet) | ✅ | ✅ | ❌ |
| [MPT](model_doc/mpt) | ✅ | ❌ | ❌ |
| [MRA](model_doc/mra) | ✅ | ❌ | ❌ |
| [MT5](model_doc/mt5) | ✅ | ✅ | ✅ |
| [MusicGen](model_doc/musicgen) | ✅ | ❌ | ❌ |
| [MusicGen Melody](model_doc/musicgen_melody) | ✅ | ❌ | ❌ |
| [MVP](model_doc/mvp) | ✅ | ❌ | ❌ |
| [NAT](model_doc/nat) | ✅ | ❌ | ❌ |
| [Nemotron](model_doc/nemotron) | ✅ | ❌ | ❌ |
| [Nezha](model_doc/nezha) | ✅ | ❌ | ❌ |
| [NLLB](model_doc/nllb) | ✅ | ❌ | ❌ |
| [NLLB-MOE](model_doc/nllb-moe) | ✅ | ❌ | ❌ |
| [Nougat](model_doc/nougat) | ✅ | ✅ | ✅ |
| [Nyströmformer](model_doc/nystromformer) | ✅ | ❌ | ❌ |
| [OLMo](model_doc/olmo) | ✅ | ❌ | ❌ |
| [OneFormer](model_doc/oneformer) | ✅ | ❌ | ❌ |
| [OpenAI GPT](model_doc/openai-gpt) | ✅ | ✅ | ❌ |
| [OpenAI GPT-2](model_doc/gpt2) | ✅ | ✅ | ✅ |
| [OpenLlama](model_doc/open-llama) | ✅ | ❌ | ❌ |
| [OPT](model_doc/opt) | ✅ | ✅ | ✅ |
| [OWL-ViT](model_doc/owlvit) | ✅ | ❌ | ❌ |
| [OWLv2](model_doc/owlv2) | ✅ | ❌ | ❌ |
| [PaliGemma](model_doc/paligemma) | ✅ | ❌ | ❌ |
| [PatchTSMixer](model_doc/patchtsmixer) | ✅ | ❌ | ❌ |
| [PatchTST](model_doc/patchtst) | ✅ | ❌ | ❌ |
| [Pegasus](model_doc/pegasus) | ✅ | ✅ | ✅ |
| [PEGASUS-X](model_doc/pegasus_x) | ✅ | ❌ | ❌ |
| [Perceiver](model_doc/perceiver) | ✅ | ❌ | ❌ |
| [Persimmon](model_doc/persimmon) | ✅ | ❌ | ❌ |
| [Phi](model_doc/phi) | ✅ | ❌ | ❌ |
| [Phi3](model_doc/phi3) | ✅ | ❌ | ❌ |
| [PhoBERT](model_doc/phobert) | ✅ | ✅ | ✅ |
| [Pix2Struct](model_doc/pix2struct) | ✅ | ❌ | ❌ |
| [PLBart](model_doc/plbart) | ✅ | ❌ | ❌ |
| [PoolFormer](model_doc/poolformer) | ✅ | ❌ | ❌ |
| [Pop2Piano](model_doc/pop2piano) | ✅ | ❌ | ❌ |
| [ProphetNet](model_doc/prophetnet) | ✅ | ❌ | ❌ |
| [PVT](model_doc/pvt) | ✅ | ❌ | ❌ |
| [PVTv2](model_doc/pvt_v2) | ✅ | ❌ | ❌ |
| [QDQBert](model_doc/qdqbert) | ✅ | ❌ | ❌ |
| [Qwen2](model_doc/qwen2) | ✅ | ❌ | ❌ |
| [Qwen2Audio](model_doc/qwen2_audio) | ✅ | ❌ | ❌ |
| [Qwen2MoE](model_doc/qwen2_moe) | ✅ | ❌ | ❌ |
| [Qwen2VL](model_doc/qwen2_vl) | ✅ | ❌ | ❌ |
| [RAG](model_doc/rag) | ✅ | ✅ | ❌ |
| [REALM](model_doc/realm) | ✅ | ❌ | ❌ |
| [RecurrentGemma](model_doc/recurrent_gemma) | ✅ | ❌ | ❌ |
| [Reformer](model_doc/reformer) | ✅ | ❌ | ❌ |
| [RegNet](model_doc/regnet) | ✅ | ✅ | ✅ |
| [RemBERT](model_doc/rembert) | ✅ | ✅ | ❌ |
| [ResNet](model_doc/resnet) | ✅ | ✅ | ✅ |
| [RetriBERT](model_doc/retribert) | ✅ | ❌ | ❌ |
| [RoBERTa](model_doc/roberta) | ✅ | ✅ | ✅ |
| [RoBERTa-PreLayerNorm](model_doc/roberta-prelayernorm) | ✅ | ✅ | ✅ |
| [RoCBert](model_doc/roc_bert) | ✅ | ❌ | ❌ |
| [RoFormer](model_doc/roformer) | ✅ | ✅ | ✅ |
| [RT-DETR](model_doc/rt_detr) | ✅ | ❌ | ❌ |
| [RT-DETR-ResNet](model_doc/rt_detr_resnet) | ✅ | ❌ | ❌ |
| [RWKV](model_doc/rwkv) | ✅ | ❌ | ❌ |
| [SAM](model_doc/sam) | ✅ | ✅ | ❌ |
| [SeamlessM4T](model_doc/seamless_m4t) | ✅ | ❌ | ❌ |
| [SeamlessM4Tv2](model_doc/seamless_m4t_v2) | ✅ | ❌ | ❌ |
| [SegFormer](model_doc/segformer) | ✅ | ✅ | ❌ |
| [SegGPT](model_doc/seggpt) | ✅ | ❌ | ❌ |
| [SEW](model_doc/sew) | ✅ | ❌ | ❌ |
| [SEW-D](model_doc/sew-d) | ✅ | ❌ | ❌ |
| [SigLIP](model_doc/siglip) | ✅ | ❌ | ❌ |
| [Speech Encoder decoder](model_doc/speech-encoder-decoder) | ✅ | ❌ | ✅ |
| [Speech2Text](model_doc/speech_to_text) | ✅ | ✅ | ❌ |
| [SpeechT5](model_doc/speecht5) | ✅ | ❌ | ❌ |
| [Splinter](model_doc/splinter) | ✅ | ❌ | ❌ |
| [SqueezeBERT](model_doc/squeezebert) | ✅ | ❌ | ❌ |
| [StableLm](model_doc/stablelm) | ✅ | ❌ | ❌ |
| [Starcoder2](model_doc/starcoder2) | ✅ | ❌ | ❌ |
| [SuperPoint](model_doc/superpoint) | ✅ | ❌ | ❌ |
| [SwiftFormer](model_doc/swiftformer) | ✅ | ✅ | ❌ |
| [Swin Transformer](model_doc/swin) | ✅ | ✅ | ❌ |
| [Swin Transformer V2](model_doc/swinv2) | ✅ | ❌ | ❌ |
| [Swin2SR](model_doc/swin2sr) | ✅ | ❌ | ❌ |
| [SwitchTransformers](model_doc/switch_transformers) | ✅ | ❌ | ❌ |
| [T5](model_doc/t5) | ✅ | ✅ | ✅ |
| [T5v1.1](model_doc/t5v1.1) | ✅ | ✅ | ✅ |
| [Table Transformer](model_doc/table-transformer) | ✅ | ❌ | ❌ |
| [TAPAS](model_doc/tapas) | ✅ | ✅ | ❌ |
| [TAPEX](model_doc/tapex) | ✅ | ✅ | ✅ |
| [Time Series Transformer](model_doc/time_series_transformer) | ✅ | ❌ | ❌ |
| [TimeSformer](model_doc/timesformer) | ✅ | ❌ | ❌ |
| [Trajectory Transformer](model_doc/trajectory_transformer) | ✅ | ❌ | ❌ |
| [Transformer-XL](model_doc/transfo-xl) | ✅ | ✅ | ❌ |
| [TrOCR](model_doc/trocr) | ✅ | ❌ | ❌ |
| [TVLT](model_doc/tvlt) | ✅ | ❌ | ❌ |
| [TVP](model_doc/tvp) | ✅ | ❌ | ❌ |
| [UDOP](model_doc/udop) | ✅ | ❌ | ❌ |
| [UL2](model_doc/ul2) | ✅ | ✅ | ✅ |
| [UMT5](model_doc/umt5) | ✅ | ❌ | ❌ |
| [UniSpeech](model_doc/unispeech) | ✅ | ❌ | ❌ |
| [UniSpeechSat](model_doc/unispeech-sat) | ✅ | ❌ | ❌ |
| [UnivNet](model_doc/univnet) | ✅ | ❌ | ❌ |
| [UPerNet](model_doc/upernet) | ✅ | ❌ | ❌ |
| [VAN](model_doc/van) | ✅ | ❌ | ❌ |
| [VideoLlava](model_doc/video_llava) | ✅ | ❌ | ❌ |
| [VideoMAE](model_doc/videomae) | ✅ | ❌ | ❌ |
| [ViLT](model_doc/vilt) | ✅ | ❌ | ❌ |
| [VipLlava](model_doc/vipllava) | ✅ | ❌ | ❌ |
| [Vision Encoder decoder](model_doc/vision-encoder-decoder) | ✅ | ✅ | ✅ |
| [VisionTextDualEncoder](model_doc/vision-text-dual-encoder) | ✅ | ✅ | ✅ |
| [VisualBERT](model_doc/visual_bert) | ✅ | ❌ | ❌ |
| [ViT](model_doc/vit) | ✅ | ✅ | ✅ |
| [ViT Hybrid](model_doc/vit_hybrid) | ✅ | ❌ | ❌ |
| [VitDet](model_doc/vitdet) | ✅ | ❌ | ❌ |
| [ViTMAE](model_doc/vit_mae) | ✅ | ✅ | ❌ |
| [ViTMatte](model_doc/vitmatte) | ✅ | ❌ | ❌ |
| [ViTMSN](model_doc/vit_msn) | ✅ | ❌ | ❌ |
| [VITS](model_doc/vits) | ✅ | ❌ | ❌ |
| [ViViT](model_doc/vivit) | ✅ | ❌ | ❌ |
| [Wav2Vec2](model_doc/wav2vec2) | ✅ | ✅ | ✅ |
| [Wav2Vec2-BERT](model_doc/wav2vec2-bert) | ✅ | ❌ | ❌ |
| [Wav2Vec2-Conformer](model_doc/wav2vec2-conformer) | ✅ | ❌ | ❌ |
| [Wav2Vec2Phoneme](model_doc/wav2vec2_phoneme) | ✅ | ✅ | ✅ |
| [WavLM](model_doc/wavlm) | ✅ | ❌ | ❌ |
| [Whisper](model_doc/whisper) | ✅ | ✅ | ✅ |
| [X-CLIP](model_doc/xclip) | ✅ | ❌ | ❌ |
| [X-MOD](model_doc/xmod) | ✅ | ❌ | ❌ |
| [XGLM](model_doc/xglm) | ✅ | ✅ | ✅ |
| [XLM](model_doc/xlm) | ✅ | ✅ | ❌ |
| [XLM-ProphetNet](model_doc/xlm-prophetnet) | ✅ | ❌ | ❌ |
| [XLM-RoBERTa](model_doc/xlm-roberta) | ✅ | ✅ | ✅ |
| [XLM-RoBERTa-XL](model_doc/xlm-roberta-xl) | ✅ | ❌ | ❌ |
| [XLM-V](model_doc/xlm-v) | ✅ | ✅ | ✅ |
| [XLNet](model_doc/xlnet) | ✅ | ✅ | ❌ |
| [XLS-R](model_doc/xls_r) | ✅ | ✅ | ✅ |
| [XLSR-Wav2Vec2](model_doc/xlsr_wav2vec2) | ✅ | ✅ | ✅ |
| [YOLOS](model_doc/yolos) | ✅ | ❌ | ❌ |
| [YOSO](model_doc/yoso) | ✅ | ❌ | ❌ |
| [ZoeDepth](model_doc/zoedepth) | ✅ | ❌ | ❌ |
<!-- End table-->

View File

@ -1,246 +0,0 @@
# التثبيت (Installation)
قم بتثبيت مكتبة 🤗 Transformers المناسبة لمكتبة التعلم العميق التي تستخدمها، وقم بإعداد ذاكرة التخزين المؤقت الخاصة بك، وقم بإعداد 🤗 Transformers للعمل دون اتصال بالإنترنت (اختياري).
تم اختبار 🤗 Transformers على Python 3.6 والإصدارات الأحدث، وPyTorch 1.1.0 والإصدارات الأحدث، وTensorFlow 2.0 والإصدارات الأحدث، وFlax. اتبع تعليمات التثبيت أدناه لمكتبة التعلم العميق التي تستخدمها:
* تعليمات تثبيت [PyTorch](https://pytorch.org/get-started/locally/).
* تعليمات تثبيت [TensorFlow 2.0](https://www.tensorflow.org/install/pip).
* تعليمات تثبيت [Flax](https://flax.readthedocs.io/en/latest/).
## التثبيت باستخدام pip
يجب عليك تثبيت 🤗 Transformers داخل [بيئة افتراضية](https://docs.python.org/3/library/venv.html). إذا لم تكن غير ملم ببيئات Python الافتراضية، فراجع هذا [الدليل](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/). البيئة الافتراضية تسهل إدارة المشاريع المختلف، وتجنب مشكلات التوافق بين المكتبات المطلوبة (اعتماديات المشروع).
ابدأ بإنشاء بيئة افتراضية في دليل مشروعك:
```bash
python -m venv .env
```
قم بتفعيل البيئة الافتراضية. على Linux وMacOs:
```bash
source .env/bin/activate
```
قم بتفعيل البيئة الافتراضية على Windows:
```bash
.env/Scripts/activate
```
الآن أنت مستعد لتثبيت 🤗 Transformers باستخدام الأمر التالي:
```bash
pip install transformers
```
للحصول على الدعم الخاص بـ CPU فقط، يمكنك تثبيت 🤗 Transformers ومكتبة التعلم العميق في خطوة واحدة. على سبيل المثال، قم بتثبيت 🤗 Transformers وPyTorch باستخدام:
```bash
pip install 'transformers[torch]'
```
🤗 Transformers وTensorFlow 2.0:
```bash
pip install 'transformers[tf-cpu]'
```
<Tip warning={true}>
لمستخدمي M1 / ARM
ستحتاج إلى تثبيت ما يلي قبل تثبيت TensorFLow 2.0
```bash
brew install cmake
brew install pkg-config
```
</Tip>
🤗 Transformers وFlax:
```bash
pip install 'transformers[flax]'
```
أخيرًا، تحقق مما إذا كان 🤗 Transformers قد تم تثبيته بشكل صحيح عن طريق تشغيل الأمر التالي. سيقوم بتنزيل نموذج مدرب مسبقًا:
```bash
python -c "from transformers import pipeline; print(pipeline('sentiment-analysis')('we love you'))"
```
ثم قم بطباعة التسمية والنتيجة:
```bash
[{'label': 'POSITIVE', 'score': 0.9998704791069031}]
```
## التثبيت من المصدر
قم بتثبيت 🤗 Transformers من المصدر باستخدام الأمر التالي:
```bash
pip install git+https://github.com/huggingface/transformers
```
يقوم هذا الأمر بتثبيت أحدث إصدار تجريبي `main` بدلاً من الإصدار المستقر `stable`. يعد إصدار `main` مفيدًا للمواكبة مع أحدث التطورات. على سبيل المثال، إذا تم إصلاح خطأ منذ الإصدار الرسمي الأخير ولكن لم يتم طرح إصدار جديد بعد. ومع ذلك، فإن هذا يعني أن إصدار التجريبي `main` قد لا يكون مستقرًا دائمًا. نسعى جاهدين للحفاظ على تشغيل إصدار `main`، ويتم حل معظم المشكلات عادةً في غضون بضع ساعات أو يوم. إذا واجهتك مشكلة، يرجى فتح [تقرير عن خلل](https://github.com/huggingface/transformers/issues) حتى نتمكن من إصلاحها في أقرب وقت ممكن!
تحقق مما إذا كان 🤗 Transformers قد تم تثبيته بشكل صحيح عن طريق تشغيل الأمر التالي:
```bash
python -c "from transformers import pipeline; print(pipeline('sentiment-analysis')('I love you'))"
```
تحقق مما إذا كان 🤗 Transformers قد تم تثبيته بشكل صحيح عن طريق تشغيل الأمر التالي:
```bash
python -c "from transformers import pipeline; print(pipeline('sentiment-analysis')('I love you'))"
```
## التثبيت القابل للتعديل
ستحتاج إلى تثبيت قابل للتعديل إذا كنت ترغب في:
* استخدام إصدار `main` من كود المصدر.
* المساهمة في 🤗 Transformers وتحتاج إلى اختبار التغييرات في الكود.
قم باستنساخ المستودع وقم بتثبيت 🤗 Transformers باستخدام الأوامر التالية:
```bash
git clone https://github.com/huggingface/transformers.git
cd transformers
pip install -e .
```
ستقوم هذه الأوامر بربط المجلد الذي قمت باستنساخ المستودع فيه بمسارات مكتبة Python. بمعنى آخر، سيبحث Python داخل المجلد الذي قمت باستنساخه بالإضافة إلى المسارات المعتادة للمكتبات. على سبيل المثال، إذا تم تثبيت حزم Python الخاصة بك عادةً في `~/anaconda3/envs/main/lib/python3.7/site-packages/`, فسيقوم Python أيضًا بالبحث في المجلد الذي قمت باستنساخه: `~/transformers/`.
<Tip warning={true}>
يجب عليك الاحتفاظ بمجلد `transformers` إذا كنت تريد الاستمرار في استخدام المكتبة.
</Tip>
الآن يمكنك تحديث المستنسخ الخاص بك بسهولة إلى أحدث إصدار من 🤗 Transformers باستخدام الأمر التالي:
```bash
cd ~/transformers/
git pull
```
ستجد بيئة Python الإصدار `main` من 🤗 Transformers في المرة التالية التي تقوم فيها بتشغيله.
## التثبيت باستخدام conda
قم بالتثبيت من قناة conda `conda-forge`:
```bash
conda install conda-forge::transformers
```
## إعداد ذاكرة التخزين المؤقت
تُحمّل النماذج المُسبقة التدريب وتُخزّن مؤقتًا في: `~/.cache/huggingface/hub`. هذا هو المجلد الافتراضي الذي يُحدده متغير البيئة `TRANSFORMERS_CACHE`. على Windows، يكون دليل ذاكرة التخزين المؤقت الافتراضي هو `C:\Users\username\.cache\huggingface\hub`. يمكنك تغيير متغيرات البيئة shell الموضحة أدناه - حسب الأولوية - لتحديد دليل ذاكرة تخزين مؤقت مختلف:
1. متغير البيئة (افتراضي): `HF_HUB_CACHE` أو `TRANSFORMERS_CACHE`.
2. متغير البيئة: `HF_HOME`.
3. متغير البيئة: `XDG_CACHE_HOME` + `/huggingface`.
<Tip>
سيستخدم 🤗 Transformers متغيرات البيئة `PYTORCH_TRANSFORMERS_CACHE` أو `PYTORCH_PRETRAINED_BERT_CACHE` إذا كنت قادمًا من إصدار سابق من هذه المكتبة وقمت بتعيين متغيرات البيئة هذه، ما لم تحدد متغير البيئة `TRANSFORMERS_CACHE`.
</Tip>
## الوضع دون اتصال بالإنترنت
قم بتشغيل 🤗 Transformers في بيئة محمية بجدار حماية أو غير متصلة باستخدام الملفات المخزنة مؤقتًا محليًا عن طريق تعيين متغير البيئة `HF_HUB_OFFLINE=1`.
<Tip>
أضف [🤗 Datasets](https://huggingface.co/docs/datasets/) إلى سير عمل التدريب غير المتصل باستخدام متغير البيئة `HF_DATASETS_OFFLINE=1`.
</Tip>
```bash
HF_DATASETS_OFFLINE=1 HF_HUB_OFFLINE=1 \
python examples/pytorch/translation/run_translation.py --model_name_or_path google-t5/t5-small --dataset_name wmt16 --dataset_config ro-en ...
```
يجب أن يعمل هذا البرنامج النصي دون توقف أو انتظار انتهاء المهلة الزمنية لأنه لن يحاول تنزيل النموذج من Hub.
يمكنك أيضًا تجاوز تحميل نموذج من Hub من كل استدعاء [`~PreTrainedModel.from_pretrained`] باستخدام معلمة [`local_files_only`]. عندما يتم تعيينها على `True`، يتم تحميل الملفات المحلية فقط:
```py
from transformers import T5Model
model = T5Model.from_pretrained("./path/to/local/directory", local_files_only=True)
```
### جلب النماذج والمُجزّئات لاستخدامها دون اتصال بالإنترنت
خيار آخر لاستخدام 🤗 Transformers دون اتصال هو تنزيل الملفات مسبقًا، ثم الإشارة إلى مسارها المحلي عند الحاجة إلى استخدامها دون اتصال. هناك ثلاث طرق للقيام بذلك:
* قم بتنزيل ملف عبر واجهة المستخدم على [Model Hub](https://huggingface.co/models) بالنقر فوق أيقونة ↓.
![download-icon](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/download-icon.png)
* استخدم سير عمل [`PreTrainedModel.from_pretrained`] و [`PreTrainedModel.save_pretrained`]:
1. قم بتنزيل ملفاتك مسبقًا باستخدام [`PreTrainedModel.from_pretrained`]:
* استخدم سير عمل [`PreTrainedModel.from_pretrained`] و [`PreTrainedModel.save_pretrained`]:
1. قم بتنزيل ملفاتك مسبقًا باستخدام [`PreTrainedModel.from_pretrained`]:
```py
>>> from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
>>> tokenizer = AutoTokenizer.from_pretrained("bigscience/T0_3B")
>>> model = AutoModelForSeq2SeqLM.from_pretrained("bigscience/T0_3B")
```
2. احفظ ملفاتك إلى دليل محدد باستخدام [`PreTrainedModel.save_pretrained`]:
```py
>>> tokenizer.save_pretrained("./your/path/bigscience_t0")
>>> model.save_pretrained("./your/path/bigscience_t0")
```
3. الآن عندما تكون غير متصل بالإنترنت، أعد تحميل ملفاتك باستخدام [`PreTrainedModel.from_pretrained`] من الدليل المحدد:
```py
>>> tokenizer = AutoTokenizer.from_pretrained("./your/path/bigscience_t0")
>>> model = AutoModel.from_pretrained("./your/path/bigscience_t0")
```
* قم بتنزيل الملفات برمجيًا باستخدام مكتبة [huggingface_hub](https://github.com/huggingface/huggingface_hub/tree/main/src/huggingface_hub):
1. قم بتثبيت مكتبة `huggingface_hub` في بيئتك الافتراضية:
```bash
python -m pip install huggingface_hub
```
2. استخدم وظيفة [`hf_hub_download`](https://huggingface.co/docs/hub/adding-a-library#download-files-from-the-hub) لتنزيل ملف إلى مسار محدد. على سبيل المثال، يقوم الأمر التالي بتنزيل ملف `config.json` من نموذج [T0](https://huggingface.co/bigscience/T0_3B) إلى المسار المطلوب:
```py
>>> from huggingface_hub import hf_hub_download
>>> hf_hub_download(repo_id="bigscience/T0_3B", filename="config.json", cache_dir="./your/path/bigscience_t0")
```
بمجرد تنزيل ملفك وتخزينه مؤقتًا محليًا، حدد مساره المحلي الخاص به لتحميله واستخدامه:
```py
>>> from transformers import AutoConfig
>>> config = AutoConfig.from_pretrained("./your/path/bigscience_t0/config.json")
```
<Tip>
راجع قسم [كيفية تنزيل الملفات من Hub](https://huggingface.co/docs/hub/how-to-downstream) لمزيد من التفاصيل حول تنزيل الملفات المخزنة على Hub.
</Tip>

View File

@ -1,248 +0,0 @@
# التوليد باستخدام نماذج اللغات الكبيرة (LLMs)
[[open-in-colab]]
تعد LLMs، أو نماذج اللغة الكبيرة، المكون الرئيسي وراء توليد النصوص. وباختصار، تتكون من نماذج محول كبيرة مسبقة التدريب تم تدريبها للتنبؤ بالكلمة التالية (أو، بشكل أكثر دقة، الرمز اللغوي) بالنظر إلى نص معين. نظرًا لأنها تتنبأ برمز واحد في كل مرة، يجب عليك القيام بشيء أكثر تعقيدًا لتوليد جمل جديدة بخلاف مجرد استدعاء النموذج - يجب عليك إجراء التوليد التلقائي.
التوليد التلقائي هو إجراء وقت الاستدلال الذي يتضمن استدعاء النموذج بشكل متكرر باستخدام مخرجاته الخاصة، بالنظر إلى بعض المدخلات الأولية. في 🤗 Transformers، يتم التعامل مع هذا بواسطة دالة [`~generation.GenerationMixin.generate`]، والتي تتوفر لجميع النماذج ذات القدرات التوليدية.
سيوضح هذا البرنامج التعليمي كيفية:
* تتوليد نص باستخدام نموذج اللغات الكبيرة (LLM)
* تجنب الوقوع في الأخطاء الشائعة
* الخطوات التالية لمساعدتك في الاستفادة القصوى من LLM الخاص بك
قبل البدء، تأكد من تثبيت جميع المكتبات الضرورية:
```bash
pip install transformers bitsandbytes>=0.39.0 -q
```
## توليد النص
يأخذ نموذج اللغة المدرب لـ [نمذجة اللغة السببية](tasks/language_modeling) يأخذ تسلسلًا من رموز نصية كمدخل ويعيد توزيع الاحتمالية للرمز التالي.
<!-- [GIF 1 -- FWD PASS] -->
<figure class="image table text-center m-0 w-full">
<video
style="max-width: 90%; margin: auto;"
autoplay loop muted playsinline
src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/blog/assisted-generation/gif_1_1080p.mov"
></video>
<figcaption>"التنبؤ بالكلمة التالية لنموذج اللغة (LLM)"</figcaption>
</figure>
هناك جانب بالغ الأهمية في التوليد التلقائي باستخدام LLMs وهو كيفية اختيار الرمز التالي من توزيع الاحتمالية هذا. كل شيء مسموح به في هذه الخطوة طالما أنك تنتهي برمز للتكرار التالي. وهذا يعني أنه يمكن أن يكون بسيطًا مثل اختيار الرمز الأكثر احتمالًا من توزيع الاحتمالية أو معقدًا مثل تطبيق عشرات التحولات قبل أخذ العينات من التوزيع الناتج.
<!-- [GIF 2 -- TEXT GENERATION] -->
<figure class="image table text-center m-0 w-full">
<video
style="max-width: 90%; margin: auto;"
autoplay loop muted playsinline
src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/blog/assisted-generation/gif_2_1080p.mov"
></video>
<figcaption>"التوليد التلقائي المتسلسل"</figcaption>
</figure>
تتكرر العملية الموضحة أعلاه بشكل تكراري حتى يتم الوصول إلى شرط التوقف. في الوضع المثالي، يحدد النموذج شرط التوقف، والذي يجب أن يتعلم عند إخراج رمز نهاية التسلسل (`EOS`). إذا لم يكن الأمر كذلك، يتوقف التوليد عند الوصول إلى طول أقصى محدد مسبقًا.
من الضروري إعداد خطوة اختيار الرمز وشرط التوقف بشكل صحيح لجعل نموذجك يتصرف كما تتوقع في مهمتك. ولهذا السبب لدينا [`~generation.GenerationConfig`] ملف مرتبط بكل نموذج، والذي يحتوي على معلمة توليدية افتراضية جيدة ويتم تحميله جنبًا إلى جنب مع نموذجك.
دعنا نتحدث عن الكود!
<Tip>
إذا كنت مهتمًا بالاستخدام الأساسي لـ LLM، فإن واجهة [`Pipeline`](pipeline_tutorial) عالية المستوى هي نقطة انطلاق رائعة. ومع ذلك، غالبًا ما تتطلب LLMs ميزات متقدمة مثل التكميم والتحكم الدقيق في خطوة اختيار الرمز، والتي يتم تنفيذها بشكل أفضل من خلال [`~generation.GenerationMixin.generate`]. التوليد التلقائي باستخدام LLMs يستهلك الكثير من المواردد ويجب تنفيذه على وحدة معالجة الرسومات للحصول على أداء كافٍ.
</Tip>
أولاً، تحتاج إلى تحميل النموذج.
```py
>>> from transformers import AutoModelForCausalLM
>>> model = AutoModelForCausalLM.from_pretrained(
... "mistralai/Mistral-7B-v0.1", device_map="auto", load_in_4bit=True
... )
```
ستلاحظ وجود معاملين في الاستدعاء `from_pretrained`:
- `device_map` يضمن انتقال النموذج إلى وحدة معالجة الرسومات (GPU) الخاصة بك
- `load_in_4bit` يطبق [4-bit dynamic quantization](main_classes/quantization) لخفض متطلبات الموارد بشكل كبير
هناك طرق أخرى لتهيئة نموذج، ولكن هذا خط أساس جيد للبدء باستخدام LLM.
بعد ذلك، تحتاج إلى معالجة إدخال النص الخاص بك باستخدام [مُجزّئ اللغوي](tokenizer_summary).
```py
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1", padding_side="left")
>>> model_inputs = tokenizer(["A list of colors: red, blue"], return_tensors="pt").to("cuda")
```
يحتوي متغير `model_inputs` على النص المدخل بعد تقسيمه إلى وحدات لغوية (tokens)، بالإضافة إلى قناع الانتباه. في حين أن [`~generation.GenerationMixin.generate`] تبذل قصارى جهدها لاستنتاج قناع الانتباه عندما لا يتم تمريره، نوصي بتمريره كلما أمكن ذلك للحصول على نتائج مثالية.
بعد تقسيم المدخلات إلى وحدات لغوية، يمكنك استدعاء الدالة [`~generation.GenerationMixin.generate`] لإرجاع الوحدات اللغوية الناتجة. يجب بعد ذلك تحويل الوحدات المولدة إلى نص قبل طباعته.
```py
>>> generated_ids = model.generate(**model_inputs)
>>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
'A list of colors: red, blue, green, yellow, orange, purple, pink,'
```
أخيرًا، ليس عليك معالجة المتتاليات الواحدة تلو الأخرى! يمكنك معالجة مجموعة من المدخلات دفعة واحدة، والتي ستعمل على تحسين الإنتاجية بشكل كبير بتكلفة صغيرة في زمن الاستجابة واستهلاك الذاكر. كل ما عليك التأكد منه هو تعبئة المدخلات بشكل صحيح (المزيد حول ذلك أدناه).
```py
>>> tokenizer.pad_token = tokenizer.eos_token # Most LLMs don't have a pad token by default
>>> model_inputs = tokenizer(
... ["A list of colors: red, blue", "Portugal is"], return_tensors="pt", padding=True
... ).to("cuda")
>>> generated_ids = model.generate(**model_inputs)
>>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
['A list of colors: red, blue, green, yellow, orange, purple, pink,',
'Portugal is a country in southwestern Europe, on the Iber']
```
وهذا كل شيء! في بضع سطور من التعليمات البرمجية، يمكنك تسخير قوة LLM.
## الأخطاء الشائعة
هناك العديد من [استراتيجيات التوليد](generation_strategies)، وفي بعض الأحيان قد لا تكون القيم الافتراضية مناسبة لحالتك الاستخدام. إذا لم تكن الإخراج الخاصة بك متوافقة مع ما تتوقعه، فقد قمنا بإنشاء قائمة بأكثر الأخطاء الشائعة وكيفية تجنبها.
```py
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")
>>> tokenizer.pad_token = tokenizer.eos_token # Most LLMs don't have a pad token by default
>>> model = AutoModelForCausalLM.from_pretrained(
... "mistralai/Mistral-7B-v0.1", device_map="auto", load_in_4bit=True
... )
```
### الإخراج المولد قصير جدًا/طويل جدًا
إذا لم يتم تحديد العدد الأقصى للرموز في [`~generation.GenerationConfig`] الملف، `generate` يعيد ما يصل إلى 20 رمزًا بشكل افتراضي. نوصي بشدة بتعيين `max_new_tokens` يدويًا في مكالمة `generate` للتحكم في العدد الأقصى من الرموز الجديدة التي يمكن أن يعيدها. ضع في اعتبارك أن LLMs (بشكل أكثر دقة، [نماذج فك التشفير فقط](https://huggingface.co/learn/nlp-course/chapter1/6؟fw=pt)) تعيد أيضًا المدخلات الأصلية كجزء من الناتج.
```py
>>> model_inputs = tokenizer(["A sequence of numbers: 1, 2"], return_tensors="pt").to("cuda")
>>> # By default, the output will contain up to 20 tokens
>>> generated_ids = model.generate(**model_inputs)
>>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
'A sequence of numbers: 1, 2, 3, 4, 5'
>>> # Setting `max_new_tokens` allows you to control the maximum length
>>> generated_ids = model.generate(**model_inputs, max_new_tokens=50)
>>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
'A sequence of numbers: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,'
```
### وضع التوليد الافتراضي
بشكل افتراضي، وما لم يتم تحديده في [`~generation.GenerationConfig`] الملف، `generate` يحدد الكلمة الأكثر احتمالًا فى كل خطوة من خطوات عملية التوليد (وهذا يُعرف بالتشفير الجشع). اعتمادًا على مهمتك، قد يكون هذا غير مرغوب فيه؛ تستفيد المهام الإبداعية مثل برامج الدردشة أو كتابة مقال ستفيد من أسلوب العينة العشوائية في اختيار الكلمات، تمن ناحية أخرى، فإن المهام التي تعتمد على مدخلات محددة مثل تحويل الصوت إلى نص أو الترجم من فك التشفير الجشع. قم بتفعيل أسلوب العينات العشوائية باستخدام `do_sample=True`، ويمكنك معرفة المزيد حول هذا الموضوع في [تدوينة المدونة](https://huggingface.co/blog/how-to-generate).
```py
>>> # Set seed or reproducibility -- you don't need this unless you want full reproducibility
>>> from transformers import set_seed
>>> set_seed(42)
>>> model_inputs = tokenizer(["I am a cat."], return_tensors="pt").to("cuda")
>>> # LLM + greedy decoding = repetitive, boring output
>>> generated_ids = model.generate(**model_inputs)
>>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
'I am a cat. I am a cat. I am a cat. I am a cat'
>>> # With sampling, the output becomes more creative!
>>> generated_ids = model.generate(**model_inputs, do_sample=True)
>>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
'I am a cat. Specifically, I am an indoor-only cat. I'
```
### مشكلة حشو المدخلات فى الاتجاة الخطأ
LLMs هي [معماريات فك التشفير فقط](https://huggingface.co/learn/nlp-course/chapter1/6؟fw=pt)، مما يعني أنها تستمر في التكرار على موجه الإدخال الخاص بك. فإن جميع المدخلات يجب أن تكون بنفس الطول. لحل هذه المسألة، يتم إضافة رموز حشو إلى المدخلات الأقصر. نظرًا لأن LLMs لا تولي اهتمامًا لرموز الحشو هذه، ذلك، يجب تحديد الجزء المهم من المدخل الذي يجب أن يركز عليه النموذج، وهذا يتم عن طريق ما يسمى بـ "قناع الانتباه". يجب أن يكون الحشو في بداية المدخل (الحشو من اليسار)، وليس في نهايته.
```py
>>> # The tokenizer initialized above has right-padding active by default: the 1st sequence,
>>> # which is shorter, has padding on the right side. Generation fails to capture the logic.
>>> model_inputs = tokenizer(
... ["1, 2, 3", "A, B, C, D, E"], padding=True, return_tensors="pt"
... ).to("cuda")
>>> generated_ids = model.generate(**model_inputs)
>>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
'1, 2, 33333333333'
>>> # With left-padding, it works as expected!
>>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1", padding_side="left")
>>> tokenizer.pad_token = tokenizer.eos_token # Most LLMs don't have a pad token by default
>>> model_inputs = tokenizer(
... ["1, 2, 3", "A, B, C, D, E"], padding=True, return_tensors="pt"
... ).to("cuda")
>>> generated_ids = model.generate(**model_inputs)
>>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
'1, 2, 3, 4, 5, 6,'
```
### موجه غير صحيح
تتوقع بعض نماذج اللغات الكبيرة على صيغة محددة للمدخلات للعمل بشكل صحيح. إذا لم يتم اتباع هذه الصيغة، فإن أداء النموذج يتأثر سلبًا: لكن هذا التدهور قد لا يكون واضحًا للعيان. تتوفر معلومات إضافية حول التوجيه، بما في ذلك النماذج والمهام التي تحتاج إلى توخي الحذر، في [الدليل](tasks/prompting). دعنا نرى مثالاً باستخدام LLM للدردشة، والذي يستخدم [قالب الدردشة](chat_templating):
```python
>>> tokenizer = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-alpha")
>>> model = AutoModelForCausalLM.from_pretrained(
... "HuggingFaceH4/zephyr-7b-alpha", device_map="auto", load_in_4bit=True
... )
>>> set_seed(0)
>>> prompt = """How many helicopters can a human eat in one sitting? Reply as a thug."""
>>> model_inputs = tokenizer([prompt], return_tensors="pt").to("cuda")
>>> input_length = model_inputs.input_ids.shape[1]
>>> generated_ids = model.generate(**model_inputs, max_new_tokens=20)
>>> print(tokenizer.batch_decode(generated_ids[:, input_length:], skip_special_tokens=True)[0])
"I'm not a thug, but i can tell you that a human cannot eat"
>>> # Oh no, it did not follow our instruction to reply as a thug! Let's see what happens when we write
>>> # a better prompt and use the right template for this model (through `tokenizer.apply_chat_template`)
>>> set_seed(0)
>>> messages = [
... {
... "role": "system",
... "content": "You are a friendly chatbot who always responds in the style of a thug",
... },
... {"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
... ]
>>> model_inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to("cuda")
>>> input_length = model_inputs.shape[1]
>>> generated_ids = model.generate(model_inputs, do_sample=True, max_new_tokens=20)
>>> print(tokenizer.batch_decode(generated_ids[:, input_length:], skip_special_tokens=True)[0])
'None, you thug. How bout you try to focus on more useful questions?'
>>> # As we can see, it followed a proper thug style 😎
```
## موارد إضافية
في حين أن عملية التوليد التلقائي بسيطة نسبيًا، فإن الاستفادة القصوى من LLM الخاص بك يمكن أن تكون مهمة صعبة لأن هناك العديد من الأجزاء المتحركة. للخطوات التالية لمساعدتك في الغوص بشكل أعمق في استخدام LLM وفهمه:
### استخدامات متقدمة للتوليد في نماذج اللغات الكبيرة
1. دليل حول كيفية [التحكم في طرق التوليد المختلفة](generation_strategies)، وكيفية إعداد ملف تكوين التوليد، وكيفية بث الناتج؛
2. [تسريع توليد النص](llm_optims
3.[قوالب موجهات للدردشة LLMs](chat_
4. [دليل تصميم الموجه](tasks/prompting);
5. مرجع واجهة برمجة التطبيقات (API) [`~generation.GenerationConfig`], [`~generation.GenerationMixin.generate`], و [generate-related classes](internal/generation_utils). والعديد من الفئات الأخرى المرتبطة بعملية التوليد.!
### لوحات صدارة نماذج اللغات الكبيرة
1. لوحة صدارة نماذج اللغات الكبيرة المفتوحة المصدر (Open LLM Leaderboard): تركز على جودة النماذج مفتوحة المصدر [رابط لوحة الصدارة](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
2. لوحة صدارة أداء نماذج اللغات الكبيرة المفتوحة المصدر (Open LLM-Perf Leaderboard): تركز على إنتاجية نماذج اللغات الكبيرة [رابط لوحة الصدارة](https://huggingface.co/spaces/optimum/llm-perf-leaderboard).
### زمن الاستجابة والإنتاجية واستهلاك الذاكرة
1. دليل تحسين نماذج اللغات الكبيرة من حيث السرعة والذاكرة: دليل تحسين نماذج اللغات الكبيرة.
2. التكميم (Quantization): دليل حول تقنية التكميم التكميم مثل تقنيتي bitsandbytes و autogptq، والتي توضح كيفية تقليل متطلبات الذاكرة بشكل كبير.
### مكتبات مرتبطة
1. [`optimum`](https://github.com/huggingface/optimum), امتداد لمكتبة Transformers يعمل على تحسين الأداء لأجهزة معينة.
2. [`outlines`](https://github.com/outlines-dev/outlines), مكتبة للتحكم في توليد النصوص (على سبيل المثال، لتوليد ملفات JSON).
3. [`SynCode`](https://github.com/uiuc-focal-lab/syncode), مكتبة للتوليد الموجه بقواعد اللغة الخالية من السياق (على سبيل المثال، JSON، SQL، Python).
4. [`text-generation-inference`](https://github.com/huggingface/text-generation-inference), خادم جاهز للإنتاج لنماذج اللغات الكبيرة.
5. [`text-generation-webui`](https://github.com/oobabooga/text-generation-webui), واجهة مستخدم لتوليد النصوص.  

View File

@ -1,795 +0,0 @@
# تحسين نماذج اللغة الكبيرة من حيث السرعة والذاكرة
[[open-in-colab]]
تحقق نماذج اللغة الكبيرة (LLMs) مثل GPT3/4، [Falcon](https://huggingface.co/tiiuae/falcon-40b)، و [Llama](https://huggingface.co/meta-llama/Llama-2-70b-hf) تقدمًا سريعًا في قدرتها على معالجة المهام التي تركز على الإنسان، مما يجعلها أدوات أساسية في الصناعات القائمة على المعرفة الحديثة.
لا يزال نشر هذه النماذج في المهام الواقعية يمثل تحديًا، ومع ذلك:
- لكي تظهر نماذج اللغة الكبيرة قدرات فهم وتوليد النصوص قريبة من قدرات الإنسان، فإنها تتطلب حاليًا إلى تكوينها من مليارات المعلمات (انظر [كابلان وآخرون](https://arxiv.org/abs/2001.08361)، [وي وآخرون](https://arxiv.org/abs/2206.07682)). وهذا بدوره يزيد من متطلبات الذاكرة للاستدلال.
- في العديد من المهام الواقعية، تحتاج نماذج اللغة الكبيرة إلى معلومات سياقية شاملة. يتطلب ذلك قدرة النموذج على إدارة تسلسلات إدخال طويلة للغاية أثناء الاستدلال.
يكمن جوهر صعوبة هذه التحديات في تعزيز القدرات الحسابية والذاكرة لنماذج اللغة الكبيرة، خاصة عند التعامل مع تسلسلات الإدخال الضخمة.
في هذا الدليل، سنستعرض التقنيات الفعالة لتُحسِّن من كفاءة نشر نماذج اللغة الكبيرة:
1. سنتناول تقنية "دقة أقل" التي أثبتت الأبحاث فعاليتها في تحقيق مزايا حسابية دون التأثير بشكل ملحوظ على أداء النموذج عن طريق العمل بدقة رقمية أقل [8 بت و4 بت](/main_classes/quantization.md).
2. **اFlash Attention:** إن Flash Attention وهي نسخة مُعدَّلة من خوارزمية الانتباه التي لا توفر فقط نهجًا أكثر كفاءة في استخدام الذاكرة، ولكنها تحقق أيضًا كفاءة متزايدة بسبب الاستخدام الأمثل لذاكرة GPU.
3. **الابتكارات المعمارية:** حيث تم اقتراح هياكل متخصصة تسمح باستدلال أكثر فعالية نظرًا لأن نماذج اللغة الكبيرة يتم نشرها دائمًا بنفس الطريقة أثناء عملية الاستدلال، أي توليد النص التنبؤي التلقائي مع سياق الإدخال الطويل، فقد تم اقتراح بنيات نموذج متخصصة تسمح بالاستدلال الأكثر كفاءة. أهم تقدم في بنيات النماذج هنا هو [عذر](https://arxiv.org/abs/2108.12409)، [الترميز الدوار](https://arxiv.org/abs/2104.09864)، [الاهتمام متعدد الاستعلامات (MQA)](https://arxiv.org/abs/1911.02150) و [مجموعة الانتباه بالاستعلام (GQA)]((https://arxiv.org/abs/2305.13245)).
على مدار هذا الدليل، سنقدم تحليلًا للتوليد التنبؤي التلقائي من منظور المُوتِّرات. نتعمق في مزايا وعيوب استخدام دقة أقل، ونقدم استكشافًا شاملاً لخوارزميات الانتباه الأحدث، ونناقش بنيات نماذج نماذج اللغة الكبيرة المحسنة. سندعم الشرح بأمثلة عملية تُبرِز كل تحسين على حدة.
## 1. دقة أقل
يمكن فهم متطلبات ذاكرة نماذج اللغة الكبيرة بشكل أفضل من خلال النظر إلى نموذج اللغة الكبيرة على أنها مجموعة من المصفوفات والمتجهات الوزنية، ومدخلات النص على أنها تسلسل من المتجهات. فيما يلي، سيتم استخدام تعريف "الأوزان" للإشارة إلى جميع مصفوفات الأوزان والمتجهات في النموذج.
في وقت كتابة هذا الدليل، تتكون نماذج اللغة الكبيرة من مليارات المعلمات على الأقل.كل معلمة يتم تمثيلها برقم عشري مثل 4.5689 `` والذي يتم تخزينه عادةً بتنسيق [float32](https://en.wikipedia.org/wiki/Single-precision_floating-point_format)، [bfloat16](https://en.wikipedia.org/wiki/Bfloat16_floating-point_format)، أو [float16](https://en.wikipedia.org/wiki/Half-precision_floating-point_format) . يسمح لنا هذا بحساب متطلبات الذاكرة لتحميل نموذج اللغة الكبيرة في الذاكرة بسهولة:
> *يتطلب تحميل أوزان نموذج به X مليار معلمة حوالي 4 * X جيجابايت من ذاكرة الفيديو العشوائية (VRAM) بدقة float32*
ومع ذلك، نادرًا ما يتم تدريب النماذج في الوقت الحالي بدقة float32 الكاملة، ولكن عادةً ما تكون بدقة bfloat16 أو بشكل أقل في تنسيق float16. لذلك، تصبح القاعدة الإرشادية كما يلي:
> *يتطلب تحميل أوزان نموذج به X مليار معلمة حوالي 2 * X جيجابايت من ذاكرة الفيديو العشوائية (VRAM) بدقة bfloat16/float16*
بالنسبة لمدخلات النصوص القصيرة (أقل من 1024 رمزًا)، فإن متطلبات الذاكرة للاستدلال تهيمن عليها إلى حد كبير متطلبات الذاكرة لتحميل الأوزان. لذلك، دعنا نفترض، في الوقت الحالي، أن متطلبات الذاكرة للاستدلال تساوي متطلبات الذاكرة لتحميل النموذج في ذاكرة VRAM لوحدة معالجة الرسومات GPU..
ولإعطاء بعض الأمثلة على مقدار ذاكرة الفيديو العشوائية (VRAM) التي يتطلبها تحميل نموذج بتنسيق bfloat16 تقريبًا:
- **GPT3** يتطلب 2 \* 175 جيجا بايت = **350 جيجا بايت** VRAM
- [**بلوم**](https://huggingface.co/bigscience/bloom) يتطلب 2 \* 176 جيجا بايت = **352 جيجا بايت** VRAM
- [**Llama-2-70b**](https://huggingface.co/meta-llama/Llama-2-70b-hf) يتطلب 2 \* 70 جيجا بايت = **140 جيجا بايت** VRAM
- [**Falcon-40b**](https://huggingface.co/tiiuae/falcon-40b) يتطلب 2 \* 40 جيجا بايت = **80 جيجا بايت** VRAM
- [**MPT-30b**](https://huggingface.co/mosaicml/mpt-30b) يتطلب 2 \* 30 جيجا بايت = **60 جيجا بايت** VRAM
- [**bigcode/starcoder**](https://huggingface.co/bigcode/starcoder) يتطلب 2 \* 15.5 = **31 جيجا بايت** VRAM
عند كتابة هذا الدليل، أكبر شريحة لوحدة معالجة الرسومات المتوفّرة هي A100 و H100 التي توفر 80 جيجابايت من ذاكرة الفيديو العشوائية (VRAM). تتطلب معظم النماذج المدرجة أعلاه أكثر من 80 جيجابايت فقط لتحميلها، وبالتالي فهي تتطلب بالضرورة [التوازي للموتّرات](https://huggingface.co/docs/transformers/perf_train_gpu_many#tensor-parallelism) و/أو [لتوازي الخطي](https://huggingface.co/docs/transformers/perf_train_gpu_many#naive-model-parallelism-vertical-and-pipeline-parallelism).
🤗 لا يدعم Transformers موازاة التنسور خارج الصندوق لأنه يتطلب كتابة هيكلة النموذج بطريقة محددة. إذا كنت مهتمًا بكتابة نماذج بطريقة صديقة لموازاة التنسور، فلا تتردد في إلقاء نظرة على [مكتبة الاستدلال بتوليد النص](https://github.com/huggingface/text-generation-inference/tree/main/server/text_generation_server/models/custom_modeling).
بدعم موازاة قنوات المعالجة البسيطة خارج الصندوق. للقيام بذلك، قم بتحميل النموذج باستخدام `device="auto"` والذي سيقوم تلقائيًا بوضع الطبقات المختلفة على وحدات معالجة الرسومات (GPU) المتاحة كما هو موضح [هنا](https://huggingface.co/docs/accelerate/v0.22.0/en/concept_guides/big_model_inference).
لاحظ، مع ذلك، أنه في حين أن موازاة قنوات المعالجة البسيطة فعالة للغاية، إلا أنها لا تعالج مشكلات عدم نشاط وحدة معالجة الرسومات (GPU). لهذا، تكون موازاة قنوات المعالجة المتقدمة مطلوبة كما هو موضح [هنا](https://huggingface.co/docs/transformers/en/perf_train_gpu_many#naive-model-parallelism-vertical-and-pipeline-parallelism).
إذا كان لديك حق الوصول إلى عقدة 8 x 80 جيجابايت A100، فيمكنك تحميل BLOOM كما يلي
```bash
!pip install transformers accelerate bitsandbytes optimum
```
```python
from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained("bigscience/bloom", device_map="auto", pad_token_id=0)
```
من خلال استخدام `device_map="auto"` سيتم توزيع طبقات الاهتمام بالتساوي عبر جميع وحدات معالجة الرسومات (GPU) المتاحة.
في هذا الدليل، سنستخدم [bigcode/octocoder](https://huggingface.co/bigcode/octocoder) لأنه يمكن تشغيله على شريحة جهاز GPU A100 ذات 40 جيجا بايت. لاحظ أن جميع تحسينات الذاكرة والسرعة التي سنطبقها من الآن فصاعدًا تنطبق بالتساوي على النماذج التي تتطلب موازاة النماذج أو المصفوفات.
نظرًا لأن النموذج مُحمَّل بدقة bfloat16، فباستخدام قاعدتنا الإرشادية أعلاه، نتوقع أن تكون متطلبات الذاكرة لتشغيل الاستدلال باستخدام `bigcode/octocoder` حوالي 31 جيجا بايت من ذاكرة الفيديو العشوائية (VRAM). دعنا نجرب.
نقوم أولاً بتحميل النموذج والمجزىء اللغوي ثم نقوم بتمرير كلاهما إلى كائن [قنوات المعالجة](https://huggingface.co/docs/transformers/main_classes/pipelines) في Transformers.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import torch
model = AutoModelForCausalLM.from_pretrained("bigcode/octocoder", torch_dtype=torch.bfloat16, device_map="auto", pad_token_id=0)
tokenizer = AutoTokenizer.from_pretrained("bigcode/octocoder")
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
```
```python
prompt = "Question: Please write a function in Python that transforms bytes to Giga bytes.\n\nAnswer:"
result = pipe(prompt, max_new_tokens=60)[0]["generated_text"][len(prompt):]
result
```
**الإخراج**:
```
Here is a Python function that transforms bytes to Giga bytes:\n\n```python\ndef bytes_to_giga_bytes(bytes):\n return bytes / 1024 / 1024 / 1024\n```\n\nThis function takes a single
```
رائع، يمكننا الآن استخدام النتيجة مباشرة لتحويل البايت إلى جيجا بايت.
```python
def bytes_to_giga_bytes(bytes):
return bytes / 1024 / 1024 / 1024
```
دعونا نستدعي [`torch.cuda.max_memory_allocated`](https://pytorch.org/docs/stable/generated/torch.cuda.max_memory_allocated.html) لقياس ذروة تخصيص ذاكرة وحدة معالجة الرسومات (GPU).
```python
bytes_to_giga_bytes(torch.cuda.max_memory_allocated())
```
**الإخراج**:
```bash
29.0260648727417
```
قريب بما يكفي من حسابنا التقريبي! يمكننا أن نرى أن الرقم غير صحيح تمامًا لأن الانتقال من البايت إلى الكيلوبايت يتطلب الضرب في 1024 بدلاً من 1000. لذلك يمكن أيضًا فهم صيغة التقريب على أنها حساب "بحد أقصى X جيجا بايت".
لاحظ أنه إذا حاولنا تشغيل النموذج بدقة float32 الكاملة، فستكون هناك حاجة إلى 64 جيجا بايت من ذاكرة الفيديو العشوائية (VRAM).
> يتم تدريب جميع النماذج تقريبًا بتنسيق bfloat16 في الوقت الحالي، ولا يوجد سبب لتشغيل النموذج بدقة float32 الكاملة إذا [كانت وحدة معالجة الرسومات (GPU) الخاصة بك تدعم bfloat16](https://discuss.pytorch.org/t/bfloat16-native-support/117155/5). لن توفر دقة float32 نتائج استدلال أفضل من الدقة التي تم استخدامها لتدريب النموذج.
إذا لم تكن متأكدًا من تنسيق تخزين أوزان النموذج على Hub، فيمكنك دائمًا الاطلاع على تهيئة نقطة التفتيش في `"torch_dtype"`، على سبيل المثال [هنا](https://huggingface.co/meta-llama/Llama-2-7b-hf/blob/6fdf2e60f86ff2481f2241aaee459f85b5b0bbb9/config.json#L21). يوصى بتعيين النموذج إلى نفس نوع الدقة كما هو مكتوب في التهيئة عند التحميل باستخدام `from_pretrained(..., torch_dtype=...)` إلا إذا كان النوع الأصلي هو float32، وفي هذه الحالة يمكن استخدام `float16` أو `bfloat16` للاستدلال.
دعونا نحدد وظيفة `flush(...)` لتحرير جميع الذاكرة المخصصة بحيث يمكننا قياس ذروة ذاكرة وحدة معالجة الرسومات (GPU) المخصصة بدقة.
```python
del pipe
del model
import gc
import torch
def flush():
gc.collect()
torch.cuda.empty_cache()
torch.cuda.reset_peak_memory_stats()
```
دعونا نستدعيه الآن للتجربة التالية.
```python
flush()
```
في الإصدار الأخير من مكتبة Accelerate، يمكنك أيضًا استخدام طريقة مساعدة تسمى `release_memory()`
```python
from accelerate.utils import release_memory
# ...
release_memory(model)
```
```python
from accelerate.utils import release_memory
# ...
release_memory(model)
```
والآن ماذا لو لم يكن لدى وحدة معالجة الرسومات (GPU) لديك 32 جيجا بايت من ذاكرة الفيديو العشوائية (VRAM)؟ لقد وجد أن أوزان النماذج يمكن تحويلها إلى 8 بتات أو 4 بتات دون خسارة كبيرة في الأداء (انظر [Dettmers et al.](https://arxiv.org/abs/2208.07339)).
يمكن تحويل النموذج إلى 3 بتات أو 2 بتات مع فقدان مقبول في الأداء كما هو موضح في ورقة [GPTQ](https://arxiv.org/abs/2210.17323) 🤯.
دون الدخول في الكثير من التفاصيل، تهدف مخططات التكميم إلى تخفيض دقة الأوزان مع محاولة الحفاظ على دقة نتائج النموذج كما هي (*أي* أقرب ما يمكن إلى bfloat16).
لاحظ أن التكميم يعمل بشكل خاص جيدًا لتوليد النص حيث كل ما نهتم به هو اختيار *مجموعة الرموز الأكثر احتمالًا التالية* ولا نهتم حقًا بالقيم الدقيقة لتوزيع الرمز التالي *logit*.
كل ما يهم هو أن توزيع الرمز التالي *logit* يظل كما هو تقريبًا بحيث تعطي عملية `argmax` أو `topk` نفس النتائج.
هناك عدة تقنيات للتكميم، والتي لن نناقشها بالتفصيل هنا، ولكن بشكل عام، تعمل جميع تقنيات التكميم كما يلي:
- 1. تكميم جميع الأوزان إلى الدقة المستهدفة
- 2. تحميل الأوزان المحولة، ومرر تسلسل المدخلات من المتجهات بتنسيق bfloat16
- 3. قم بتحويل الأوزان ديناميكيًا إلى bfloat1 لإجراء الحسابات مع متجهات المدخلات بدقة `bfloat16`
باختصار، هذا يعني أن مضروبات *مصفوفة المدخلات-الوزن*، حيث \\( X \\) هي المدخلات، \\( W \\) هي مصفوفة وزن و \\( Y \\) هي الناتج:
$$ Y = X * W $$
تتغير إلى
$$ Y = X * \text{dequantize}(W) $$
لكل عملية ضرب المصفوفات. يتم تنفيذ إلغاء التكميم وإعادة التكميم بشكل متسلسل لجميع مصفوفات الأوزان أثناء مرور المدخلات عبر رسم الشبكة.
لذلك، غالبًا ما لا يتم تقليل وقت الاستدلال عند استخدام الأوزان المكممة، ولكن بدلاً من ذلك يزيد.
كفى نظرية، دعنا نجرب! لتكميم الأوزان باستخدام المحولات، تحتاج إلى التأكد من تثبيت مكتبة [`bitsandbytes`](https://github.com/TimDettmers/bitsandbytes).
```bash
!pip install bitsandbytes
```
يمكننا بعد ذلك تحميل النماذج في تكميم 8 بت ببساطة عن طريق إضافة علامة `load_in_8bit=True` إلى `from_pretrained`.
```python
model = AutoModelForCausalLM.from_pretrained("bigcode/octocoder", load_in_8bit=True, pad_token_id=0)
```
الآن، دعنا نعيد تشغيل مثالنا ونقيس استخدام الذاكرة.
```python
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
result = pipe(prompt, max_new_tokens=60)[0]["generated_text"][len(prompt):]
result
```
**الإخراج**:
```
Here is a Python function that transforms bytes to Giga bytes:\n\n```python\ndef bytes_to_giga_bytes(bytes):\n return bytes / 1024 / 1024 / 1024\n```\n\nThis function takes a single
```
جميل، نحصل على نفس النتيجة كما في السابق، لذلك لا يوجد فقدان في الدقة! دعنا نلقي نظرة على مقدار الذاكرة المستخدمة هذه المرة.
```python
bytes_to_giga_bytes(torch.cuda.max_memory_allocated())
```
**الإخراج**:
```
15.219234466552734
```
أقل بكثير! لقد انخفضنا إلى ما يزيد قليلاً عن 15 جيجابايت، وبالتالي يمكننا تشغيل هذا النموذج على وحدات معالجة الرسومات للمستهلك مثل 4090.
نرى مكسبًا لطيفًا جدًا في كفاءة الذاكرة ولا يوجد تقريبًا أي تدهور في ناتج النموذج. ومع ذلك، يمكننا أيضًا ملاحظة تباطؤ طفيف أثناء الاستدلال.
نحذف النماذج ونفرغ الذاكرة مرة أخرى.
```python
del model
del pipe
```
```python
flush()
```
دعنا نرى ما هو استهلاك ذاكرة GPU الذروة الذي يوفره تكميم 4 بت. يمكن تكميم النموذج إلى 4 بت باستخدام نفس واجهة برمجة التطبيقات كما في السابق - هذه المرة عن طريق تمرير `load_in_4bit=True` بدلاً من `load_in_8bit=True`.
```python
model = AutoModelForCausalLM.from_pretrained("bigcode/octocoder", load_in_4bit=True, low_cpu_mem_usage=True, pad_token_id=0)
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
result = pipe(prompt, max_new_tokens=60)[0]["generated_text"][len(prompt):]
result
```
**الإخراج**:
```
Here is a Python function that transforms bytes to Giga bytes:\n\n```\ndef bytes_to_gigabytes(bytes):\n return bytes / 1024 / 1024 / 1024\n```\n\nThis function takes a single argument
```
نحن نرى تقريبًا نفس نص الإخراج كما في السابق - فقط `python` مفقود قبل مقطع الكود. دعنا نرى مقدار الذاكرة المطلوبة.
```python
bytes_to_giga_bytes(torch.cuda.max_memory_allocated())
```
**الإخراج**:
```
9.543574333190918
```
فقط 9.5 جيجابايت! هذا ليس كثيرًا بالفعل لنموذج يزيد عدد معاملاته عن 15 مليار.
على الرغم من أننا نرى تدهورًا بسيطًا جدًا في الدقة لنموذجنا هنا، إلا أن تكميم 4 بت يمكن أن يؤدي في الممارسة العملية غالبًا إلى نتائج مختلفة مقارنة بتكميم 8 بت أو الاستدلال الكامل `bfloat16`. الأمر متروك للمستخدم لتجربته.
لاحظ أيضًا أن الاستدلال هنا كان أبطأ قليلاً مقارنة بتكميم 8 بت والذي يرجع إلى طريقة التكميم الأكثر عدوانية المستخدمة لتكميم 4 بت مما يؤدي إلى \\( \text{quantize} \\) و \\( \text{dequantize} \\) يستغرق وقتًا أطول أثناء الاستدلال.
```python
del model
del pipe
```
```python
flush()
```
بشكل عام، رأينا أن تشغيل OctoCoder بدقة 8 بت قلل من ذاكرة GPU VRAM المطلوبة من 32G GPU VRAM إلى 15 جيجابايت فقط، وتشغيل النموذج بدقة 4 بت يقلل من ذاكرة GPU VRAM المطلوبة إلى ما يزيد قليلاً عن 9 جيجابايت.
يسمح تكميم 4 بت بتشغيل النموذج على وحدات معالجة الرسومات مثل RTX3090 و V100 و T4 والتي يمكن الوصول إليها بسهولة لمعظم الأشخاص.
لمزيد من المعلومات حول التكميم ولمعرفة كيف يمكن تكميم النماذج لطلب ذاكرة GPU VRAM أقل حتى من 4 بت، نوصي بالاطلاع على تنفيذ [`AutoGPTQ`](https://huggingface.co/docs/transformers/main/en/main_classes/quantization#autogptq-integration%60).
> كاستنتاج، من المهم تذكر أن تكميم النموذج يتداول كفاءة الذاكرة المحسنة مقابل الدقة وفي بعض الحالات وقت الاستدلال.
إذا لم تكن ذاكرة GPU قيدًا لحالتك الاستخدام، فغالبًا لا توجد حاجة للنظر في التكميم. ومع ذلك، لا يمكن للعديد من وحدات معالجة الرسومات ببساطة تشغيل نماذج اللغة الكبيرة بدون طرق التكميم وفي هذه الحالة، تعد مخططات التكميم 4 بت و 8 بت أدوات مفيدة للغاية.
لمزيد من المعلومات حول الاستخدام التفصيلي، نوصي بشدة بإلقاء نظرة على [وثائق تكميم المحولات](https://huggingface.co/docs/transformers/main_classes/quantization#general-usage).
بعد ذلك، دعنا نلقي نظرة على كيفية تحسين الكفاءة الحسابية وكفاءة الذاكرة باستخدام خوارزميات أفضل وبنية نموذج محسنة.
## 2. الانتباه السريع
تتشارك نماذج اللغة الكبيرة (LLMs) الأعلى أداءً اليوم تقريبًا نفس البنية الأساسية التي تتكون من طبقات التغذية الأمامية، وطبقات التنشيط، وطبقات التطبيع الطبقي، والأهم من ذلك، طبقات الانتباه الذاتي.
تعد طبقات الانتباه الذاتي مركزية لنماذج اللغة الكبيرة (LLMs) حيث تمكن النموذج من فهم العلاقات السياقية بين رموز المدخلات.
ومع ذلك، فإن استهلاك ذاكرة GPU الذروة لطبقات الانتباه الذاتي ينمو بشكل *رباعي* في كل من التعقيد الحسابي وتعقيد الذاكرة مع عدد رموز المدخلات (والذي يُطلق عليه أيضًا *طول التسلسل*) الذي نسميه في ما يلي بـ \\( N \\) .
على الرغم من أن هذا غير ملحوظ حقًا للتسلسلات الأقصر (حتى 1000 رمز إدخال)، إلا أنه يصبح مشكلة خطيرة للتسلسلات الأطول (حوالي 16000 رمز إدخال).
دعنا نلقي نظرة أقرب. الصيغة لحساب الناتج \\( \mathbf{O} \\) لطبقة الانتباه الذاتي لإدخال \\( \mathbf{X} \\) بطول \\( N \\) هي:
$$ \textbf{O} = \text{Attn}(\mathbf{X}) = \mathbf{V} \times \text{Softmax}(\mathbf{QK}^T) \text{ with } \mathbf{Q} = \mathbf{W}_q \mathbf{X}, \mathbf{V} = \mathbf{W}_v \mathbf{X}, \mathbf{K} = \mathbf{W}_k \mathbf{X} $$
يعد \\( \mathbf{X} = (\mathbf{x}_1, ... \mathbf{x}_{N}) \\) بالتالي تسلسل الإدخال إلى طبقة الاهتمام. وستتكون كل من الإسقاطات \\( \mathbf{Q} \\) و \\( \mathbf{K} \\) من \\( N \\) من المتجهات مما يؤدي إلى أن يكون حجم \\( \mathbf{QK}^T \\) هو \\( N^2 \\).
عادة ما يكون لدى LLMs العديد من رؤوس الاهتمام، وبالتالي يتم إجراء العديد من حسابات الاهتمام الذاتي بالتوازي.
وبافتراض أن LLM لديها 40 رأس اهتمام وتعمل بدقة bfloat16، يمكننا حساب متطلبات الذاكرة لتخزين مصفوفات \\( \mathbf{QK^T} \\) لتكون \\( 40 * 2 * N^2 \\) بايت. بالنسبة لـ \\( N=1000 \\)، لا يلزم سوى حوالي 50 ميجابايت من VRAM، ولكن بالنسبة لـ \\( N=16000 \\) سنحتاج إلى 19 جيجابايت من VRAM، وبالنسبة لـ \\( N=100,000 \\) سنحتاج إلى ما يقرب من 1 تيرابايت فقط لتخزين مصفوفات \\( \mathbf{QK}^T \\).
باختصار، سرعان ما يصبح خوارزمية الانتباه الذاتي الافتراضية مكلفة للغاية من حيث الذاكرة بالنسبة لسياقات الإدخال الكبيرة.
مع تحسن LLMs في فهم النص وتوليد النص، يتم تطبيقها على مهام متزايدة التعقيد. في حين أن النماذج كانت تتعامل سابقًا مع ترجمة أو تلخيص بضع جمل، فإنها الآن تدير صفحات كاملة، مما يتطلب القدرة على معالجة أطوال إدخال واسعة.
كيف يمكننا التخلص من متطلبات الذاكرة الباهظة للتطويلات المدخلة الكبيرة؟ نحن بحاجة إلى طريقة جديدة لحساب آلية الاهتمام الذاتي التي تتخلص من مصفوفة \\( QK^T \\). [طريقه داو وآخرون.](Https://arxiv.org/abs/2205.14135) طوروا بالضبط مثل هذا الخوارزمية الجديدة وأطلقوا عليها اسم **Flash Attention**.
باختصار، يكسر الاهتمام الفلاشي حساب \\( \mathbf{V} \times \operatorname{Softmax}(\mathbf{QK}^T\\)) ويحسب بدلاً من ذلك قطعًا أصغر من الإخراج عن طريق التكرار عبر العديد من خطوات حساب Softmax:
$$ \textbf{O}_i \leftarrow s^a_{ij} * \textbf{O}_i + s^b_{ij} * \mathbf{V}_{j} \times \operatorname{Softmax}(\mathbf{QK}^T_{i,j}) \text{ for multiple } i, j \text{ iterations } $$
مع \\( s^a_{ij} \\) و \\( s^b_{ij} \\) كونها بعض إحصائيات التطبيع softmax التي يجب إعادة حسابها لكل \\( i \\) و \\( j \\).
يرجى ملاحظة أن Flash Attention بالكامل أكثر تعقيدًا إلى حد ما ويتم تبسيطه بشكل كبير هنا حيث أن التعمق كثيرًا يخرج عن نطاق هذا الدليل. القارئ مدعو لإلقاء نظرة على ورقة Flash Attention المكتوبة جيدًا [1] لمزيد من التفاصيل.
الفكرة الرئيسية هنا هي:
> من خلال تتبع إحصائيات التطبيع softmax واستخدام بعض الرياضيات الذكية، يعطي Flash Attention **مخرجات متطابقة رقميًا** مقارنة بطبقة الاهتمام الذاتي الافتراضية بتكلفة ذاكرة لا تزيد خطيًا مع \\( N \\).
عند النظر إلى الصيغة، قد يقول المرء بديهيًا أن الاهتمام الفلاشي يجب أن يكون أبطأ بكثير مقارنة بصيغة الاهتمام الافتراضية حيث يلزم إجراء المزيد من الحسابات. في الواقع، يتطلب Flash Attention المزيد من عمليات الفاصلة العائمة مقارنة بالاهتمام العادي حيث يجب إعادة حساب إحصائيات التطبيع softmax باستمرار (راجع [الورقة](https://arxiv.org/abs/2205.14135) لمزيد من التفاصيل إذا كنت مهتمًا)
> ومع ذلك، فإن الاهتمام الفلاشي أسرع بكثير في الاستدلال مقارنة بالاهتمام الافتراضي الذي يأتي من قدرته على تقليل الطلبات على ذاكرة GPU الأبطأ ذات النطاق الترددي العالي (VRAM)، والتركيز بدلاً من ذلك على ذاكرة SRAM الأسرع الموجودة على الشريحة.
من الناحية الأساسية، يتأكد Flash Attention من إمكانية إجراء جميع عمليات الكتابة والقراءة الوسيطة باستخدام ذاكرة SRAM السريعة الموجودة على الشريحة بدلاً من الاضطرار إلى الوصول إلى ذاكرة VRAM الأبطأ لحساب متجه الإخراج \\( \mathbf{O} \\).
من الناحية العملية، لا يوجد حاليًا أي سبب **عدم** استخدام الاهتمام الفلاشي إذا كان متاحًا. الخوارزمية تعطي نفس المخرجات رياضيا، وأسرع وأكثر كفاءة في استخدام الذاكرة.
لنلقِ نظرة على مثال عملي.
يحصل نموذج OctoCoder الخاص بنا الآن على موجه إدخال أطول بشكل كبير يتضمن ما يسمى *موجه النظام*. تُستخدم موجهات النظام لتوجيه LLM إلى مساعد أفضل مصمم لمهام المستخدمين.
فيما يلي، نستخدم موجه النظام الذي سيجعل OctoCoder مساعد ترميز أفضل.
```python
system_prompt = """Below are a series of dialogues between various people and an AI technical assistant.
The assistant tries to be helpful, polite, honest, sophisticated, emotionally aware, and humble but knowledgeable.
The assistant is happy to help with code questions and will do their best to understand exactly what is needed.
It also tries to avoid giving false or misleading information, and it caveats when it isn't entirely sure about the right answer.
That said, the assistant is practical really does its best, and doesn't let caution get too much in the way of being useful.
The Starcoder models are a series of 15.5B parameter models trained on 80+ programming languages from The Stack (v1.2) (excluding opt-out requests).
The model uses Multi Query Attention, was trained using the Fill-in-the-Middle objective, and with 8,192 tokens context window for a trillion tokens of heavily deduplicated data.
-----
Question: Write a function that takes two lists and returns a list that has alternating elements from each input list.
Answer: Sure. Here is a function that does that.
def alternating(list1, list2):
results = []
for i in range(len(list1)):
results.append(list1[i])
results.append(list2[i])
return results
Question: Can you write some test cases for this function?
Answer: Sure, here are some tests.
assert alternating([10, 20, 30], [1, 2, 3]) == [10, 1, 20, 2, 30, 3]
assert alternating([True, False], [4, 5]) == [True, 4, False, 5]
assert alternating([], []) == []
Question: Modify the function so that it returns all input elements when the lists have uneven length. The elements from the longer list should be at the end.
Answer: Here is the modified function.
def alternating(list1, list2):
results = []
for i in range(min(len(list1), len(list2))):
results.append(list1[i])
results.append(list2[i])
if len(list1) > len(list2):
results.extend(list1[i+1:])
else:
results.extend(list2[i+1:])
return results
-----
"""
```
لأغراض التوضيح، سنكرر موجه النظام عشر مرات بحيث يكون طول الإدخال طويلاً بما يكفي لملاحظة وفورات ذاكرة Flash Attention.
نضيف موجه النص الأصلي "سؤال: يرجى كتابة وظيفة في Python تقوم بتحويل البايتات إلى جيجا بايت.
```python
long_prompt = 10 * system_prompt + prompt
```
نقوم بتنفيذ نموذجنا مرة أخرى بدقة bfloat16.
```python
model = AutoModelForCausalLM.from_pretrained("bigcode/octocoder", torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained("bigcode/octocoder")
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
```
دعنا الآن نقوم بتشغيل النموذج تمامًا مثلما كان من قبل *بدون اهتمام فلاشي* وقياس متطلبات ذاكرة GPU وقت الذروة ووقت الاستدلال.
```python
import time
start_time = time.time()
result = pipe(long_prompt, max_new_tokens=60)[0]["generated_text"][len(long_prompt):]
print(f"Generated in {time.time() - start_time} seconds.")
result
```
**الإخراج**:
```
تم التوليد في 10.96854019165039 ثانية.
بالتأكيد. إليك وظيفة للقيام بذلك.
def bytes_to_giga(bytes):
return bytes / 1024 / 1024 / 1024
الإجابة: بالتأكيد. إليك وظيفة للقيام بذلك.
ديف
```
نحصل على نفس الإخراج كما كان من قبل، ولكن هذه المرة، يقوم النموذج بتكرار الإجابة عدة مرات حتى يتم قطعها عند 60 رمزًا. ليس من المستغرب أننا كررنا موجه النظام عشر مرات لأغراض التوضيح وبالتالي قمنا بتشغيل النموذج لتكرار نفسه.
**ملاحظة** لا ينبغي تكرار موجه النظام عشر مرات في التطبيقات الواقعية - مرة واحدة كافية!
دعنا نقيس متطلبات ذاكرة GPU وقت الذروة.
```python
bytes_to_giga_bytes(torch.cuda.max_memory_allocated())
```
**الإخراج**:
```
37.668193340301514
```
كما نرى، فإن متطلبات ذاكرة GPU وقت الذروة أعلى بكثير مما كانت عليه في البداية، وهو ما يرجع إلى حد كبير إلى تسلسل الإدخال الأطول. أيضًا، يستغرق التوليد أكثر من دقيقة بقليل الآن.
نستدعي `flush()` لتحرير ذاكرة GPU لتجربتنا التالية.
```python
flush()
```
لمقارنة، دعونا نقوم بتشغيل نفس الدالة، ولكن تمكين الاهتمام فلاش بدلا من ذلك.
للقيام بذلك، نقوم بتحويل النموذج إلى [BetterTransformer](Https://huggingface.co/docs/optimum/bettertransformer/overview) ومن خلال القيام بذلك تمكين PyTorch's [SDPA self-attention](Https://pytorch.org/docs/master/generated/torch.nn.functional.scaled_dot_product_attention) والتي بدورها قادرة على استخدام الاهتمام فلاش.
```python
model.to_bettertransformer()
```
الآن نقوم بتشغيل نفس مقتطف التعليمات البرمجية بالضبط كما كان من قبل وتحت الغطاء سوف تستخدم المحولات الاهتمام فلاش.
```py
start_time = time.time()
with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False):
result = pipe(long_prompt, max_new_tokens=60)[0]["generated_text"][len(long_prompt):]
print(f"Generated in {time.time() - start_time} seconds.")
result
```
**الإخراج**:
```
تم التوليد في 3.0211617946624756 ثانية.
بالتأكيد. إليك وظيفة للقيام بذلك.
def bytes_to_giga(bytes):
return bytes / 1024 / 1024 / 1024
الإجابة: بالتأكيد. إليك وظيفة للقيام بذلك.
ديف
```
نحصل على نفس النتيجة بالضبط كما كان من قبل، ولكن يمكننا ملاحظة تسريع كبير بفضل الاهتمام فلاش.
دعنا نقيس استهلاك الذاكرة لآخر مرة.
```python
bytes_to_giga_bytes(torch.cuda.max_memory_allocated())
```
**الإخراج**:
```
32.617331981658936
```
ونحن تقريبا مرة أخرى إلى ذاكرة GPU الذروة الأصلية لدينا 29GB.
يمكننا أن نلاحظ أننا نستخدم فقط حوالي 100 ميجابايت إضافية من ذاكرة GPU عند تمرير تسلسل إدخال طويل جدًا مع الاهتمام فلاش مقارنة بتمرير تسلسل إدخال قصير كما فعلنا في البداية.
```py
flush()
```
لمزيد من المعلومات حول كيفية استخدام Flash Attention، يرجى الاطلاع على [صفحة doc هذه](Https://huggingface.co/docs/transformers/en/perf_infer_gpu_one#flashattention-2).
## 3. الابتكارات المعمارية
حتى الآن، نظرنا في تحسين الكفاءة الحسابية والذاكرة من خلال:
- صب الأوزان في تنسيق دقة أقل
- استبدال خوارزمية الاهتمام الذاتي بإصدار أكثر كفاءة من حيث الذاكرة والحساب
دعونا الآن نلقي نظرة على كيفية تغيير بنية LLM بحيث تكون أكثر فعالية وكفاءة للمهام التي تتطلب مدخلات نصية طويلة، على سبيل المثال:
- استرجاع الأسئلة المعززة،
- تلخيص،
- الدردشة
لاحظ أن "الدردشة" لا تتطلب من LLM التعامل مع مدخلات نصية طويلة فحسب، بل تتطلب أيضًا أن يكون LLM قادرًا على التعامل بكفاءة مع الحوار ذهابًا وإيابًا بين المستخدم والمساعد (مثل ChatGPT).
بمجرد تدريبها، يصبح من الصعب تغيير بنية LLM الأساسية، لذلك من المهم مراعاة مهام LLM مسبقًا وتحسين بنية النموذج وفقًا لذلك.
هناك مكونان مهمان لبنية النموذج يصبحان بسرعة عنق زجاجة للذاكرة و/أو الأداء لتسلسلات الإدخال الكبيرة.
- الترميزات الموضعية
- ذاكرة التخزين المؤقت للقيمة الرئيسية
دعنا نلقي نظرة على كل مكون بمزيد من التفاصيل
### 3.1 تحسين الترميزات الموضعية لـ LLMs
يضع الاهتمام الذاتي كل رمز في علاقة مع رموز أخرى.
كمثال، يمكن أن تبدو مصفوفة \\( \operatorname{Softmax}(\mathbf{QK}^T) \\) لتسلسل الإدخال النصي *"مرحبًا"، "أنا"، "أحب"، "أنت"* كما يلي:
![](/blog/assets/163_optimize_llm/self_attn_tokens.png)
يتم منح كل رمز كلمة كتلة احتمال يتم من خلالها الاهتمام بجميع رموز الكلمات الأخرى، وبالتالي يتم وضعها في علاقة مع جميع رموز الكلمات الأخرى. على سبيل المثال، تحضر كلمة *"الحب"* كلمة *"مرحبًا"* بنسبة 5%، و *"أنا"* بنسبة 30%، ونفسها بنسبة 65%.
سيواجه LLM القائم على الاهتمام الذاتي، ولكن بدون الترميزات الموضعية، صعوبات كبيرة في فهم مواضع نصوص الإدخال بالنسبة لبعضها البعض.
ويرجع ذلك إلى أن درجة الاحتمال التي يحسبها \\( \mathbf{QK}^T \\) تربط كل رمز كلمة بكل رمز كلمة أخرى في حسابات \\( O (1) \\) بغض النظر عن مسافة الموضع النسبي بينهما.
لذلك، بالنسبة إلى LLM بدون ترميزات موضعية، يبدو أن كل رمز له نفس المسافة إلى جميع الرموز الأخرى، على سبيل المثال، سيكون من الصعب التمييز بين *"مرحبًا أنا أحبك"* و *"أنت تحبني مرحبًا"*.
لكي يفهم LLM ترتيب الجملة، يلزم وجود *إشارة* إضافية ويتم تطبيقها عادةً في شكل *الترميزات الموضعية* (أو ما يُطلق عليه أيضًا *الترميزات الموضعية*).
لم يتم ترجمة النص الخاص والروابط وأكواد HTML وCSS بناءً على طلبك.
قدم مؤلفو الورقة البحثية [*Attention Is All You Need*](https://arxiv.org/abs/1706.03762) تضمينات موضعية جيبية مثلثية \\( \mathbf{P} = \mathbf{p}_1, \ldots, \mathbf{p}_N \\) حيث يتم حساب كل متجه \\( \mathbf{p}_i \\) كدالة جيبية لموضعه \\( i \\) .
بعد ذلك يتم ببساطة إضافة التضمينات الموضعية إلى متجهات تسلسل الإدخال \\( \mathbf{\hat{X}} = \mathbf{\hat{x}}_1, \ldots, \mathbf{\hat{x}}_N \\) = \\( \mathbf{x}_1 + \mathbf{p}_1, \ldots, \mathbf{x}_N + \mathbf{p}_N \\) وبالتالي توجيه النموذج لتعلم ترتيب الجملة بشكل أفضل.
بدلاً من استخدام التضمينات الموضعية الثابتة، استخدم آخرون (مثل [Devlin et al.](https://arxiv.org/abs/1810.04805)) تضمينات موضعية مكتسبة يتم من خلالها تعلم التضمينات الموضعية \\( \mathbf{P} \\) أثناء التدريب.
كانت التضمينات الموضعية الجيبية والمكتسبة هي الطرق السائدة لترميز ترتيب الجملة في نماذج اللغة الكبيرة، ولكن تم العثور على بعض المشكلات المتعلقة بهذه التضمينات الموضعية:
1. التضمينات الموضعية الجيبية والمكتسبة هي تضمينات موضعية مطلقة، أي ترميز تضمين فريد لكل معرف موضعي: \\( 0, \ldots, N \\) . كما أظهر [Huang et al.](https://arxiv.org/abs/2009.13658) و [Su et al.](https://arxiv.org/abs/2104.09864)، تؤدي التضمينات الموضعية المطلقة إلى أداء ضعيف لنماذج اللغة الكبيرة للمدخلات النصية الطويلة. بالنسبة للمدخلات النصية الطويلة، يكون من المفيد إذا تعلم النموذج المسافة الموضعية النسبية التي تمتلكها رموز المدخلات إلى بعضها البعض بدلاً من موضعها المطلق.
2. عند استخدام التضمينات الموضعية المكتسبة، يجب تدريب نموذج اللغة الكبيرة على طول إدخال ثابت \\( N \\)، مما يجعل من الصعب الاستقراء إلى طول إدخال أطول مما تم تدريبه عليه.
في الآونة الأخيرة، أصبحت التضمينات الموضعية النسبية التي يمكنها معالجة المشكلات المذكورة أعلاه أكثر شعبية، وأبرزها:
- [تضمين الموضع الدوراني (RoPE)](https://arxiv.org/abs/2104.09864)
- [ALiBi](https://arxiv.org/abs/2108.12409)
يؤكد كل من *RoPE* و *ALiBi* أنه من الأفضل توجيه نموذج اللغة الكبيرة حول ترتيب الجملة مباشرة في خوارزمية الانتباه الذاتي حيث يتم وضع رموز الكلمات في علاقة مع بعضها البعض. على وجه التحديد، يجب توجيه ترتيب الجملة عن طريق تعديل عملية \\( \mathbf{QK}^T \\) .
دون الدخول في الكثير من التفاصيل، يشير *RoPE* إلى أنه يمكن ترميز المعلومات الموضعية في أزواج الاستعلام-المفتاح، على سبيل المثال \\( \mathbf{q}_i \\) و \\( \mathbf{x}_j \\) عن طريق تدوير كل متجه بزاوية \\( \theta * i \\) و \\( \theta * j \\) على التوالي مع \\( i, j \\) تصف موضع الجملة لكل متجه:
$$ \mathbf{\hat{q}}_i^T \mathbf{\hat{x}}_j = \mathbf{{q}}_i^T \mathbf{R}_{\theta, i -j} \mathbf{{x}}_j. $$
يمثل \\( \mathbf{R}_{\theta, i - j} \\) مصفوفة دورانية. \\( \theta \\) *لا* يتم تعلمه أثناء التدريب، ولكن بدلاً من ذلك يتم تعيينه إلى قيمة محددة مسبقًا تعتمد على طول تسلسل الإدخال الأقصى أثناء التدريب.
> من خلال القيام بذلك، يتم التأثير على درجة الاحتمال بين \\( \mathbf{q}_i \\) و \\( \mathbf{q}_j \\) فقط إذا \\( i \ne j \\) ويعتمد فقط على المسافة النسبية \\( i - j \\) بغض النظر عن المواضع المحددة لكل متجه \\( i \\) و \\( j \\) .
يستخدم *RoPE* في العديد من نماذج اللغة الكبيرة الأكثر أهمية اليوم، مثل:
- [**Falcon**](https://huggingface.co/tiiuae/falcon-40b)
- [**Llama**](https://arxiv.org/abs/2302.13971)
- [**PaLM**](https://arxiv.org/abs/2204.02311)
كبديل، يقترح *ALiBi* مخطط ترميز موضعي نسبي أبسط بكثير. يتم إضافة المسافة النسبية التي تمتلكها رموز المدخلات إلى بعضها البعض كعدد صحيح سلبي مقياس بقيمة محددة مسبقًا `m` إلى كل إدخال استعلام-مفتاح لمصفوفة \\( \mathbf{QK}^T \\) مباشرة قبل حساب softmax.
![](/blog/assets/163_optimize_llm/alibi.png)
كما هو موضح في ورقة [ALiBi](https://arxiv.org/abs/2108.12409)، يسمح هذا الترميز الموضعي النسبي البسيط للنموذج بالحفاظ على أداء عالٍ حتى في تسلسلات المدخلات النصية الطويلة جدًا.
يُستخدم *ALiBi* في العديد من أهم نماذج اللغة الكبيرة المستخدمة اليوم، مثل:
- [**MPT**](https://huggingface.co/mosaicml/mpt-30b)
- [**BLOOM**](https://huggingface.co/bigscience/bloom)
يمكن لكل من ترميزات الموضع *RoPE* و *ALiBi* الاستقراء إلى أطوال إدخال لم يتم ملاحظتها أثناء التدريب، في حين ثبت أن الاستقراء يعمل بشكل أفضل بكثير خارج الصندوق لـ *ALiBi* مقارنة بـ *RoPE*.
بالنسبة لـ ALiBi، ما عليك سوى زيادة قيم مصفوفة الموضع المثلث السفلي لمطابقة طول تسلسل الإدخال.
بالنسبة لـ *RoPE*، يؤدي الحفاظ على نفس \\( \theta \\) الذي تم استخدامه أثناء التدريب إلى نتائج سيئة عند تمرير إدخالات نصية أطول بكثير من تلك التي شوهدت أثناء التدريب، راجع [Press et al.](https://arxiv.org/abs/2108.12409). ومع ذلك، وجد المجتمع بعض الحيل الفعالة التي تقوم بتعديل \\( \theta \\)، مما يسمح لترميزات الموضع *RoPE* بالعمل بشكل جيد لتسلسلات إدخال النص المستقرئة (راجع [هنا](https://github.com/huggingface/transformers/pull/24653)).
> كل من RoPE و ALiBi عبارة عن ترميزات موضع نسبي *لا* يتم تعلمها أثناء التدريب، ولكن بدلاً من ذلك تستند إلى الحدس التالي:
- يجب إعطاء الإشارات الموضعية حول إدخالات النص مباشرة إلى مصفوفة \\( QK^T \\) لطبقة الاهتمام الذاتي
- يجب تحفيز LLM لتعلم ترميزات موضعية ثابتة *نسبية* المسافة لبعضها البعض
- كلما ابتعدت رموز إدخال النص عن بعضها البعض، انخفض احتمال الاستعلام والقيمة. كل من RoPE و ALiBi يقللان من احتمال الاستعلام والمفتاح للرموز البعيدة عن بعضها البعض. يقوم RoPE بذلك عن طريق تقليل منتج المتجه من خلال زيادة الزاوية بين متجهات الاستعلام والمفتاح. تضيف ALiBi أرقامًا كبيرة سالبة إلى المنتج الاتجاهي
في الختام، من الأفضل تدريب نماذج اللغة الكبيرة المراد نشرها في مهام تتطلب التعامل مع إدخالات نصية كبيرة باستخدام ترميزات موضعية نسبية، مثل RoPE و ALiBi. لاحظ أيضًا أنه حتى إذا تم تدريب نموذج لغة كبيرة باستخدام RoPE و ALiBi على طول ثابت يبلغ، على سبيل المثال، \\( N_1 = 2048 \\)، فيمكن استخدامه عمليًا بإدخالات نصية أكبر بكثير من \\( N_1 \\)، مثل \\( N_2 = 8192> N_1 \\) عن طريق استقراء الترميزات الموضعية.
### 3.2 ذاكرة التخزين المؤقت للمفتاح والقيمة
تعمل عملية توليد النص ذاتي التراجع باستخدام نماذج اللغة الكبيرة عن طريق إدخال تسلسل إدخال بشكل تكراري، وأخذ عينات من الرمز التالي، وإلحاق الرمز التالي بتسلسل الإدخال، والاستمرار في ذلك حتى ينتج نموذج اللغة الكبيرة رمزًا يشير إلى انتهاء التوليد.
يرجى الاطلاع على [دليل إنشاء النص الخاص بـ Transformer](https://huggingface.co/docs/transformers/llm_tutorial#generate-text) للحصول على شرح مرئي أفضل لكيفية عمل التوليد ذاتي التراجع.
دعنا ننفذ مقتطفًا قصيرًا من التعليمات البرمجية لإظهار كيفية عمل التوليد ذاتي التراجع في الممارسة. ببساطة، سنأخذ الرمز الأكثر احتمالًا عبر `torch.argmax`.
```python
input_ids = tokenizer(prompt, return_tensors="pt")["input_ids"].to("cuda")
for _ in range(5):
next_logits = model(input_ids)["logits"][:, -1:]
next_token_id = torch.argmax(next_logits,dim=-1)
input_ids = torch.cat([input_ids, next_token_id], dim=-1)
print("shape of input_ids", input_ids.shape)
generated_text = tokenizer.batch_decode(input_ids[:, -5:])
generated_text
```
**الإخراج**:
```
shape of input_ids torch.Size([1, 21])
shape of input_ids torch.Size([1, 22])
shape of input_ids torch.Size([1, 23])
shape of input_ids torch.Size([1, 24])
shape of input_ids torch.Size([1, 25])
[' Here is a Python function']
```
كما نرى، في كل مرة نزيد من رموز إدخال النص بالرمز الذي تم أخذ عينات منه للتو.
باستثناءات قليلة جدًا، يتم تدريب نماذج اللغة الكبيرة باستخدام [هدف نمذجة اللغة السببية](https://huggingface.co/docs/transformers/tasks/language_modeling#causal-language-modeling) وبالتالي يتم قناع المثلث العلوي لمصفوفة نتيجة الاهتمام - وهذا هو السبب في ترك نتائج الاهتمام فارغة (*أي لها احتمال 0*) في المخططين أعلاه. للحصول على ملخص سريع حول نمذجة اللغة السببية، يمكنك الرجوع إلى مدونة [*Illustrated Self Attention*](https://jalammar.github.io/illustrated-gpt2/#part-2-illustrated-self-attention).
ونتيجة لذلك، *لا* تعتمد الرموز *أبدًا* على الرموز السابقة، وبشكل أكثر تحديدًا، لا يتم أبدًا وضع المتجه \\( \mathbf{q}_i \\) في علاقة مع أي متجهات المفاتيح والقيم \\( \mathbf{k}_j، \mathbf{v}_j \\) إذا \\( j> i \\). بدلاً من ذلك، يحضر \\( \mathbf{q}_i \\) فقط إلى متجهات المفاتيح والقيم السابقة \\( \mathbf{k}_{m < i}، \mathbf{v}_{m < i} \text{ , for } m \in \{0، \ ldots i - 1\} \\). لتقليل الحسابات غير الضرورية، يمكن تخزين ذاكرة التخزين المؤقت لكل طبقة للمفاتيح ومتجهات القيم لجميع الخطوات الزمنية السابقة.
فيما يلي، سنطلب من نموذج اللغة الكبيرة استخدام ذاكرة التخزين المؤقت للمفاتيح والقيم عن طريق استردادها وإرسالها لكل عملية توجيه.
في Transformers، يمكننا استرداد ذاكرة التخزين المؤقت للمفاتيح والقيم عن طريق تمرير علم `use_cache` إلى مكالمة `forward` ويمكننا بعد ذلك تمريره مع الرمز الحالي.
```python
past_key_values = None # past_key_values is the key-value cache
generated_tokens = []
next_token_id = tokenizer(prompt, return_tensors="pt")["input_ids"].to("cuda")
for _ in range(5):
next_logits, past_key_values = model(next_token_id, past_key_values=past_key_values, use_cache=True).to_tuple()
next_logits = next_logits[:, -1:]
next_token_id = torch.argmax(next_logits, dim=-1)
print("shape of input_ids", next_token_id.shape)
print("length of key-value cache", len(past_key_values[0][0])) # past_key_values are of shape [num_layers, 0 for k, 1 for v, batch_size, length, hidden_dim]
generated_tokens.append(next_token_id.item())
generated_text = tokenizer.batch_decode(generated_tokens)
generated_text
```
**الإخراج**:
```
shape of input_ids torch.Size([1, 1])
length of key-value cache 20
shape of input_ids torch.Size([1, 1])
length of key-value cache 21
shape of input_ids torch.Size([1, 1])
length of key-value cache 22
shape of input_ids torch.Size([1, 1])
length of key-value cache 23
shape of input_ids torch.Size([1, 1])
length of key-value cache 24
[' Here', ' is', ' a', ' Python', ' function']
```
كما هو موضح، عند استخدام ذاكرة التخزين المؤقت للمفاتيح والقيم، لا يتم زيادة رموز إدخال النص في الطول، ولكنها تظل متجه إدخال واحدًا. من ناحية أخرى، يتم زيادة طول ذاكرة التخزين المؤقت للمفاتيح والقيم بواحد في كل خطوة فك التشفير.
> يعني استخدام ذاكرة التخزين المؤقت للمفاتيح والقيم أن \\( \mathbf{QK}^T \\) يتم تقليله بشكل أساسي إلى \\( \mathbf{q}_c\mathbf{K}^T \\) مع \\( \mathbf{q}_c \\) كونها إسقاط الاستعلام للرمز المدخل الحالي الذي يكون *دائمًا* مجرد متجه واحد.
لاستخدام ذاكرة التخزين المؤقت للمفاتيح والقيم ميزتان:
- زيادة كبيرة في الكفاءة الحسابية حيث يتم إجراء حسابات أقل مقارنة بحساب مصفوفة \\( \mathbf{QK}^T \\) الكاملة. يؤدي ذلك إلى زيادة سرعة الاستدلال
- لا تزداد الذاكرة القصوى المطلوبة بشكل تربيعي مع عدد الرموز المولدة، ولكنها تزداد بشكل خطي فقط.
> يجب *دائمًا* استخدام ذاكرة التخزين المؤقت للمفاتيح والقيم حيث يؤدي ذلك إلى نتائج متطابقة وزيادة كبيرة في السرعة لتسلسلات الإدخال الأطول. ذاكرة التخزين المؤقت للمفاتيح والقيم ممكّنة بشكل افتراضي في Transformers عند استخدام خط أنابيب النص أو طريقة [`generate`](https://huggingface.co/docs/transformers/main_classes/text_generation).
<Tip warning={true}>
لاحظ أنه على الرغم من نصيحتنا باستخدام ذاكرة التخزين المؤقت للمفاتيح والقيم، فقد يكون إخراج نموذج اللغة الكبيرة مختلفًا قليلاً عند استخدامها. هذه خاصية نوى ضرب المصفوفة نفسها - يمكنك قراءة المزيد عنها [هنا](https://github.com/huggingface/transformers/issues/25420#issuecomment-1775317535).
</Tip>
#### 3.2.1 محادثة متعددة الجولات
ذاكرة التخزين المؤقت للمفاتيح والقيم مفيدة بشكل خاص للتطبيقات مثل الدردشة حيث تكون هناك حاجة إلى عدة تمريرات من فك التشفير ذاتي التراجع. دعنا نلقي نظرة على مثال.
```
المستخدم: كم عدد الأشخاص الذين يعيشون في فرنسا؟
المساعد: يعيش حوالي 75 مليون شخص في فرنسا
المستخدم: وكم عدد الأشخاص في ألمانيا؟
المساعد: يوجد في ألمانيا حوالي 81 مليون نسمة
User: How many people live in France?
Assistant: Roughly 75 million people live in France
User: And how many are in Germany?
Assistant: Germany has ca. 81 million inhabitants
```
In this chat، يقوم LLM بتشغيل فك التشفير التلقائي مرتين:
1. المرة الأولى، تكون ذاكرة التخزين المؤقت key-value فارغة، ويكون موجه الإدخال هو "User: How many people live in France؟" ويقوم النموذج بإنشاء النص "Roughly 75 million people live in France" بشكل تلقائي أثناء زيادة ذاكرة التخزين المؤقت key-value في كل خطوة فك تشفير.
2. في المرة الثانية، يكون موجه الإدخال هو "User: How many people live in France؟ \n Assistant: Roughly 75 million people live in France \n User: And how many in Germany؟". بفضل ذاكرة التخزين المؤقت، يتم بالفعل حساب جميع متجهات القيمة الرئيسية لجاريتين الأولى. لذلك يتكون موجه الإدخال فقط من "User: And how many in Germany؟". أثناء معالجة موجه الإدخال المختصر، يتم ربط متجهات القيمة المحسوبة بذاكرة التخزين المؤقت key-value الخاصة بفك التشفير الأول. يتم بعد ذلك إنشاء إجابة المساعد الثانية "Germany has ca. 81 million inhabitants" بشكل تلقائي باستخدام ذاكرة التخزين المؤقت key-value المكونة من متجهات القيمة المشفرة لـ "User: How many people live in France؟ \n Assistant: Roughly 75 million people live in France \n User: And how many are in Germany؟".
يجب ملاحظة أمرين هنا:
1. الحفاظ على كل السياق أمر بالغ الأهمية للنماذج اللغوية الكبيرة (LLMs) التي يتم نشرها في الدردشة بحيث يفهم LLM كل سياق المحادثة السابق. على سبيل المثال، بالنسبة للمثال أعلاه، يحتاج LLM إلى فهم أن المستخدم يشير إلى السكان عند السؤال "And how many are in Germany؟".
2. ذاكرة التخزين المؤقت key-value مفيدة للغاية للدردشة حيث تتيح لنا النمو المستمر لتاريخ الدردشة المشفرة بدلاً من الاضطرار إلى إعادة تشفير تاريخ الدردشة من البداية (كما هو الحال، على سبيل المثال، عند استخدام بنية ترميز فك التشفير).
في `transformers`، ستعيد مكالمة `generate` `past_key_values` عندما يتم تمرير `return_dict_in_generate=True`، بالإضافة إلى `use_cache=True` الافتراضي. لاحظ أنه غير متوفر بعد من خلال واجهة `pipeline`.
```python
# Generation as usual
prompt = system_prompt + "Question: Please write a function in Python that transforms bytes to Giga bytes.\n\nAnswer: Here"
model_inputs = tokenizer(prompt، return_tensors='pt')
generation_output = model.generate(**model_inputs، max_new_tokens=60، return_dict_in_generate=True)
decoded_output = tokenizer.batch_decode(generation_output.sequences)[0]
# Piping the returned `past_key_values` to speed up the next conversation round
prompt = decoded_output + "\nQuestion: How can I modify the function above to return Mega bytes instead?\n\nAnswer: Here"
model_inputs = tokenizer(prompt، return_tensors='pt')
generation_output = model.generate(
**model_inputs،
past_key_values=generation_output.past_key_values،
max_new_tokens=60،
return_dict_in_generate=True
)
tokenizer.batch_decode(generation_output.sequences)[0][len(prompt):]
```
**الإخراج**:
```
هي نسخة معدلة من الدالة التي تعيد ميجا بايت بدلاً من ذلك.
def bytes_to_megabytes(bytes):
return bytes / 1024 / 1024
Answer: The function takes a number of bytes as input and returns the number of
```
رائع، لا يتم إنفاق وقت إضافي على إعادة حساب نفس المفتاح والقيم لطبقة الاهتمام! ومع ذلك، هناك شيء واحد يجب ملاحظته. في حين أن ذروة الذاكرة المطلوبة لمصفوفة \\( \mathbf{QK}^T \\) يتم تقليلها بشكل كبير، فإن الاحتفاظ بذاكرة التخزين المؤقت key-value في الذاكرة يمكن أن يصبح مكلفًا جدًا من حيث الذاكرة لسلاسل الإدخال الطويلة أو الدردشة متعددة الجولات. تذكر أن ذاكرة التخزين المؤقت key-value بحاجة إلى تخزين متجهات القيمة الرئيسية لجميع متجهات الإدخال السابقة \\( \mathbf{x}_i \text{، لـ } i \in \{1، \ ldots، c - 1\} \\) لجميع طبقات الاهتمام الذاتي وكل رؤوس الاهتمام.
دعنا نحسب عدد القيم العائمة التي يجب تخزينها في ذاكرة التخزين المؤقت key-value لنموذج LLM `bigcode/octocoder` الذي استخدمناه من قبل.
يبلغ عدد القيم العائمة ضعف طول التسلسل مضروبًا في عدد رؤوس الاهتمام مضروبًا في بعد رأس الاهتمام ومضروبًا في عدد الطبقات.
حساب هذا لنموذج LLM لدينا عند طول تسلسل افتراضي يبلغ 16000 يعطي:
```python
config = model.config
2 * 16_000 * config.n_layer * config.n_head * config.n_embd // config.n_head
```
**الإخراج**:
```
7864320000
```
Roughly 8 مليار قيمة عائمة! يتطلب تخزين 8 مليارات قيمة عائمة في دقة `float16` حوالي 15 جيجابايت من ذاكرة الوصول العشوائي (RAM) وهو ما يقرب من نصف حجم أوزان النموذج نفسها!
اقترح الباحثون طريقتين تسمحان بتقليل تكلفة الذاكرة لتخزين ذاكرة التخزين المؤقت key-value بشكل كبير، والتي يتم استكشافها في الأقسام الفرعية التالية.
#### 3.2.2 Multi-Query-Attention (MQA)
[Multi-Query-Attention](https://arxiv.org/abs/1911.02150) اقترحها Noam Shazeer في ورقته *Fast Transformer Decoding: One Write-Head is All You Need*. كما يقول العنوان، اكتشف Noam أنه بدلاً من استخدام `n_head` من أوزان إسقاط القيمة الرئيسية، يمكن استخدام زوج واحد من أوزان إسقاط رأس القيمة التي يتم مشاركتها عبر جميع رؤوس الاهتمام دون أن يتدهور أداء النموذج بشكل كبير.
> باستخدام زوج واحد من أوزان إسقاط رأس القيمة، يجب أن تكون متجهات القيمة الرئيسية \\( \mathbf{k}_i، \mathbf{v}_i \\) متطابقة عبر جميع رؤوس الاهتمام والتي بدورها تعني أننا بحاجة فقط إلى تخزين زوج إسقاط قيمة رئيسي واحد في ذاكرة التخزين المؤقت بدلاً من `n_head` منها.
نظرًا لأن معظم LLMs تستخدم ما بين 20 و100 رأس اهتمام، فإن MQA يقلل بشكل كبير من استهلاك الذاكرة لذاكرة التخزين المؤقت key-value. بالنسبة إلى LLM المستخدم في هذا الدفتر، يمكننا تقليل استهلاك الذاكرة المطلوبة من 15 جيجابايت إلى أقل من 400 ميجابايت عند طول تسلسل الإدخال 16000.
بالإضافة إلى توفير الذاكرة، يؤدي MQA أيضًا إلى تحسين الكفاءة الحسابية كما هو موضح في ما يلي.
في فك التشفير التلقائي، يجب إعادة تحميل متجهات القيمة الرئيسية الكبيرة، ودمجها مع زوج متجه القيمة الحالي، ثم إدخالها في \\( \mathbf{q}_c\mathbf{K}^T \\) الحساب في كل خطوة. بالنسبة لفك التشفير التلقائي، يمكن أن تصبح عرض النطاق الترددي للذاكرة المطلوبة لإعادة التحميل المستمر عنق زجاجة زمنيًا خطيرًا. من خلال تقليل حجم متجهات القيمة الرئيسية، يجب الوصول إلى ذاكرة أقل، وبالتالي تقليل عنق الزجاجة في عرض النطاق الترددي للذاكرة. لمزيد من التفاصيل، يرجى إلقاء نظرة على [ورقة Noam](https://arxiv.org/abs/1911.02150).
الجزء المهم الذي يجب فهمه هنا هو أن تقليل عدد رؤوس الاهتمام بالقيمة الرئيسية إلى 1 لا معنى له إلا إذا تم استخدام ذاكرة التخزين المؤقت للقيمة الرئيسية. يظل الاستهلاك الذروي لذاكرة النموذج لمرور واحد للأمام بدون ذاكرة التخزين المؤقت للقيمة الرئيسية دون تغيير لأن كل رأس اهتمام لا يزال لديه متجه استعلام فريد بحيث يكون لكل رأس اهتمام مصفوفة \\( \mathbf{QK}^T \\) مختلفة.
شهدت MQA اعتمادًا واسع النطاق من قبل المجتمع ويتم استخدامها الآن بواسطة العديد من LLMs الأكثر شهرة:
- [**Falcon**](https://huggingface.co/tiiuae/falcon-40b)
- [**PaLM**](https://arxiv.org/abs/2204.02311)
- [**MPT**](https://huggingface.co/mosaicml/mpt-30b)
- [**BLOOM**](https://huggingface.co/bigscience/bloom)
كما يستخدم نقطة التحقق المستخدمة في هذا الدفتر - `bigcode/octocoder` - MQA.
#### 3.2.3 مجموعة الاستعلام الاهتمام (GQA)
[مجموعة الاستعلام الاهتمام](https://arxiv.org/abs/2305.13245)، كما اقترح Ainslie et al. من Google، وجد أن استخدام MQA يمكن أن يؤدي غالبًا إلى تدهور الجودة مقارنة باستخدام إسقاطات رأس القيمة الرئيسية المتعددة. تجادل الورقة بأنه يمكن الحفاظ على أداء النموذج بشكل أكبر عن طريق تقليل عدد أوزان إسقاط رأس الاستعلام بشكل أقل حدة. بدلاً من استخدام وزن إسقاط قيمة رئيسية واحدة فقط، يجب استخدام `n <n_head` أوزان إسقاط قيمة رئيسية. من خلال اختيار `n` إلى قيمة أقل بكثير من `n_head مثل 2 أو 4 أو 8، يمكن الاحتفاظ بمعظم مكاسب الذاكرة والسرعة من MQA مع التضحية بقدر أقل من سعة النموذج وبالتالي، من المفترض، أقل أداء.
علاوة على ذلك، اكتشف مؤلفو GQA أنه يمكن *تدريب* نقاط تفتيش النموذج الموجودة ليكون لها بنية GQA باستخدام 5% فقط من الحوسبة الأصلية للتعليم المسبق. في حين أن 5% من الحوسبة الأصلية للتعليم المسبق يمكن أن تكون كمية هائلة، يسمح GQA *uptraining* بنقاط تفتيش موجودة للاستفادة من تسلسلات الإدخال الأطول.
تم اقتراح GQA مؤخرًا فقط، ولهذا السبب هناك اعتماد أقل وقت كتابة هذا الدفتر.
أبرز تطبيق لـ GQA هو [Llama-v2](https://huggingface.co/meta-llama/Llama-2-70b-hf).
> كخاتمة، من المستحسن بشدة استخدام GQA أو MQA إذا تم نشر LLM باستخدام فك التشفير التلقائي ويتطلب التعامل مع تسلسلات الإدخال الكبيرة كما هو الحال على سبيل المثال للدردشة.
## الخاتمة
مجتمع البحث يأتي باستمرار بطرق جديدة ومبتكرة لتسريع وقت الاستدلال للنماذج اللغوية الكبيرة على الإطلاق. كمثال، أحد اتجاهات البحث الواعدة هو [فك التشفير التخميني](https://arxiv.org/abs/2211.17192) حيث تقوم "الرموز السهلة" بإنشائها نماذج اللغة الأصغر والأسرع ويتم إنشاء "الرموز الصعبة" فقط بواسطة LLM نفسه. إن التعمق في التفاصيل يتجاوز نطاق هذا الدفتر، ولكن يمكن قراءته في هذه [تدوينة المدونة اللطيفة](https://huggingface.co/blog/assisted-generation).
السبب في أن LLMs الضخمة مثل GPT3/4، وLlama-2-70b، وClaude، وPaLM يمكن أن تعمل بسرعة كبيرة في واجهات الدردشة مثل [Hugging Face Chat](https://huggingface.co/chat/) أو ChatGPT يرجع إلى حد كبير إلى التحسينات المذكورة أعلاه في الدقة والخوارزميات والهندسة المعمارية.
في المستقبل، ستكون أجهزة التسريع مثل وحدات معالجة الرسومات (GPUs) ووحدات معالجة الرسومات (TPUs وما إلى ذلك... ستكون أسرع فقط وستسمح بمزيد من الذاكرة، ولكن يجب دائمًا التأكد من استخدام أفضل الخوارزميات والهندسة المعمارية المتاحة للحصول على أكبر قدر من المال

View File

@ -1,226 +0,0 @@
# تشريح عملية تدريب النموذج
لفهم تقنيات تحسين الأداء التي يمكن تطبيقها لتحسين كفاءة استخدام الذاكرة وسرعة تدريب النموذج، من المفيد التعرف على كيفية استخدام وحدة معالجة الرسوميات (GPU) أثناء التدريب، وكيف تختلف كثافة العمليات الحسابية باختلاف العملية التي يتم تنفيذها.
لنبدأ باستكشاف مثال توضيحي على استخدام وحدة GPU وتشغيل تدريب نموذج. وللتوضيح، سنحتاج إلى تثبيت بعض المكتبات:
```bash
pip install transformers datasets accelerate nvidia-ml-py3
```
تتيح مكتبة `nvidia-ml-py3` إمكانية مراقبة استخدام الذاكرة في النماذج من داخل بايثون. قد تكون على دراية بأمر `nvidia-smi` في الجهاز - تسمح هذه المكتبة بالوصول إلى نفس المعلومات مباشرة في بايثون.
ثم، نقوم بإنشاء بعض البيانات الوهمية:معرّفات رموز عشوائية بين 100 و30000 وتصنيفات ثنائية للمصنف.
في المجموع، نحصل على 512 تسلسلًا، لكل منها طول 512، ونخزنها في [`~datasets.Dataset`] بتنسيق PyTorch.
```py
>>> import numpy as np
>>> from datasets import Dataset
>>> seq_len, dataset_size = 512, 512
>>> dummy_data = {
... "input_ids": np.random.randint(100, 30000, (dataset_size, seq_len)),
... "labels": np.random.randint(0, 1, (dataset_size)),
... }
>>> ds = Dataset.from_dict(dummy_data)
>>> ds.set_format("pt")
```
لطباعة إحصائيات موجزة لاستخدام وحدة GPU وتشغيل التدريب مع [`Trainer`]، نقوم بتعريف دالتين مساعدتين:
```py
>>> from pynvml import *
>>> def print_gpu_utilization():
... nvmlInit()
... handle = nvmlDeviceGetHandleByIndex(0)
... info = nvmlDeviceGetMemoryInfo(handle)
... print(f"GPU memory occupied: {info.used//1024**2} MB.")
>>> def print_summary(result):
... print(f"Time: {result.metrics['train_runtime']:.2f}")
... print(f"Samples/second: {result.metrics['train_samples_per_second']:.2f}")
... print_gpu_utilization()
```
دعنا نتأكد من أننا نبدأ بذاكرة وحدة GPU خالية:
```py
>>> print_gpu_utilization()
GPU memory occupied: 0 MB.
```
يبدو ذلك جيدًا: لم يتم شغل ذاكرة وحدة معالجة الرسومات كما نتوقع قبل تحميل أي نماذج. إذا لم يكن الأمر كذلك على جهازك، فتأكد من إيقاف جميع العمليات التي تستخدم ذاكرة وحدة GPU. ومع ذلك، لا يمكن للمستخدم استخدام كل ذاكرة وحدة GPU الفارغة. عندما يتم تحميل نموذج إلى وحدة GPU، يتم أيضًا تحميل النواة، والتي يمكن أن تستهلك 1-2 جيجابايت من الذاكرة. ولرؤية مقدار ذلك، نقوم بتحميل مصفوفة صغيرة إلى وحدة GPU والتي تؤدي إلى تحميل النواة أيضًا.
```py
>>> import torch
>>> torch.ones((1, 1)).to("cuda")
>>> print_gpu_utilization()
GPU memory occupied: 1343 MB.
```
نلاحظ أن النواة وحدها تستهلك 1.3 جيجابايت من ذاكرة وحدة GPU. الآن دعنا نرى مقدار المساحة التي يستخدمها النموذج.
## تحميل النموذج
أولاً، نقوم بتحميل نموذج `google-bert/bert-large-uncased`. نقوم بتحميل أوزان النموذج مباشرة إلى وحدة GPU حتى نتمكن من التحقق من مقدار المساحة التي تستخدمها الأوزان فقط.
```py
>>> from transformers import AutoModelForSequenceClassification
>>> model = AutoModelForSequenceClassification.from_pretrained("google-bert/bert-large-uncased").to("cuda")
>>> print_gpu_utilization()
GPU memory occupied: 2631 MB.
```
يمكننا أن نرى أن أوزان النموذج وحدها تستهلك 1.3 جيجابايت من ذاكرة وحدة GPU. يعتمد الرقم الدقيق على وحدة GPU المحددة التي تستخدمها. لاحظ أنه في وحدات GPU الأحدث، قد يستغرق النموذج في بعض الأحيان مساحة أكبر نظرًا لأن الأوزان يتم تحميلها بطريقة مُحسّنة تُسرّع من استخدام النموذج. الآن يمكننا أيضًا التحقق بسرعة مما إذا كنا نحصل على نفس النتيجة كما هو الحال مع `nvidia-smi` CLI:
```bash
nvidia-smi
```
```bash
Tue Jan 11 08:58:05 2022
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 460.91.03 Driver Version: 460.91.03 CUDA Version: 11.2 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 Tesla V100-SXM2... On | 00000000:00:04.0 Off | 0 |
| N/A 37C P0 39W / 300W | 2631MiB / 16160MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
| 0 N/A N/A 3721 C ...nvs/codeparrot/bin/python 2629MiB |
+-----------------------------------------------------------------------------+
```
نحصل على نفس الرقم كما كان من قبل، ويمكنك أيضًا أن ترى أننا نستخدم GPU من طراز V100 مع 16 جيجابايت من الذاكرة. لذا الآن يمكننا بدء تدريب النموذج ورؤية كيف يتغير استخدام ذاكرة GPU. أولاً، نقوم بإعداد بعض معاملات التدريب القياسية:
```py
default_args = {
"output_dir": "tmp"،
"eval_strategy": "steps"،
"num_train_epochs": 1،
"log_level": "error"،
"report_to": "none"،
}
```
<Tip>
إذا كنت تخطط لتشغيل عدة تجارب، من أجل مسح الذاكرة بشكل صحيح بين التجارب، قم بإعادة تشغيل نواة Python بين التجارب.
</Tip>
## استخدام الذاكرة في التدريب الأساسي
دعونا نستخدم [`Trainer`] وقم بتدريب النموذج دون استخدام أي تقنيات تحسين أداء GPU وحجم دفعة يبلغ 4:
```py
>>> from transformers import TrainingArguments، Trainer، logging
>>> logging.set_verbosity_error()
>>> training_args = TrainingArguments(per_device_train_batch_size=4، **default_args)
>>> trainer = Trainer(model=model، args=training_args، train_dataset=ds)
>>> result = trainer.train()
>>> print_summary(result)
```
```
الوقت: 57.82
العينات / الثانية: 8.86
ذاكرة GPU المشغولة: 14949 ميجابايت.
```
يمكننا أن نرى أن حجم دفعة صغير نسبيًا يملأ تقريبًا ذاكرة GPU بالكامل. ومع ذلك، غالبًا ما يؤدي حجم دفعة أكبر في تقارب نموذج أسرع أو أداء أفضل في النهاية. لذلك نريد أن نضبط حجم الدفعة وفقًا لاحتياجات النموذج لدينا وليس مع قيود وحدة GPU. ما يثير الاهتمام هو أننا نستخدم ذاكرة أكثر بكثير من حجم النموذج.
لفهم سبب ذلك بشكل أفضل، دعنا نلقي نظرة على عمليات النموذج واحتياجاته من الذاكرة.
## تشريح عمليات النموذج
تتضمن بنية المحولات 3 مجموعات رئيسية من العمليات مُجمعة أدناه حسب كثافة العمليات الحسابية.
1. **عمليات ضرب المصفوفات**
تقوم الطبقات الخطية ومكونات الانتباه متعدد الرؤوس جميعها بعمليات ضرب ** المصفوفة بالمصفوفة** على دفعات. هذه العمليات هي أكثر أجزاء تدريب المحولات كثافة من الناحية الحسابية.
2. **عمليات التسوية الإحصائية**
تُعد عمليات Softmax والتسوية الطبقية أقل كثافة من ناحية الحسابية من عمليات ضرب المصفوفات، وتنطوي على عملية أو أكثر من عمليات **الاختزال**، والتي يتم تطبيق نتيجتها بعد ذلك عبر خريطة.
3. **العمليات على مستوى العناصر**
هذه هي العمليات المتبقية: **الانحيازات، والتسرب، ووظائف التنشيط، والوصلات المتبقية**. هذه هي عمليات أقل كثافة من الناحية الحسابية.
يمكن أن تكون هذه المعرفة مفيدة لمعرفة عند تحليل اختناقات الأداء.
هذا الملخص مُشتق من [نقل البيانات هو كل ما تحتاجه: دراسة حالة حول تحسين المحولات 2020](https://arxiv.org/abs/2007.00072)
## تشريح ذاكرة النموذج
لقد رأينا أن تدريب النموذج يستخدم ذاكرة أكثر بكثير من مجرد وضع النموذج على GPU. ويرجع ذلك إلى
هناك العديد من المكونات أثناء التدريب التي تستخدم ذاكرة GPU. المكونات الموجودة في ذاكرة GPU هي التالية:
1. أوزان النموذج
2. الدول المُحسّن
3. المُتدرجات
4. تنشيطات المسار الأمامي المحفوظة لحساب المُتدرجات
5. المخازن المؤقتة
6. ذاكرة محددة الوظائف
يتطلب نموذج نموذجي مدرب بدقة مختلطة 18 بايت للمُحسّن AdamW كل معلمة نموذج بالإضافة إلى ذاكرة التنشيط. للاستدلال لا توجد حالات مُحسّن و مُتدرجات، لذلك يمكننا طرح تلك. وهكذا ننتهي مع 6 بايت لكل
معلمة نموذج للدقة المختلطة الاستدلال، بالإضافة إلى ذاكرة التنشيط.
دعنا نلقي نظرة على التفاصيل.
**أوزان النموذج:**
- 4 بايت * عدد المعلمات للتدريب على دقة fp32
- 6 بايت * عدد المعلمات لتدريب الدقة المختلطة (يحافظ على نموذج في fp32 وآخر بدقة fp16 في الذاكرة)
**حالات المُحسّن:**
- 8 بايت * عدد المعلمات للمُحسّن AdamW العادي (يحافظ على حالتين)
- 2 بايت * عدد المعلمات لمُحسّنات 8 بت AdamW مثل [bitsandbytes](https://github.com/TimDettmers/bitsandbytes)
- 4 بايت * عدد المعلمات لمُحسّنات مثل SGD مع الزخم momentum (يحافظ على حالة واحدة فقط)
**المُتدرجات**
- 4 بايت * عدد المعلمات للتدريب بدقة fp32 أو بدقة مختلطة (المُتدرجات تكون دائمًا بدقة fp32)
**تنشيطات المسار الأمامي**
- يعتمد الحجم على العديد من العوامل، وأهمها طول التسلسل وحجم المخفية وحجم الدُفعة.
هناك المدخلات والمخرجات لذي يتم تمريرها وإرجاعها بواسطة وظائف المسار الأمامي والمسار الخلفي وتنشيطات المسار الأمامي المحفوظة لحساب المُتدرجات.
**الذاكرة المؤقتة**
بالإضافة إلى ذلك، هناك جميع أنواع المتغيرات المؤقتة التي يتم تحريرها بمجرد الانتهاء من الحساب، ولكن في
لحظة يمكن أن تتطلب هذه المتغيرات المؤقتة ذاكرة إضافية ويقد تؤدي إلى نفاد الذاكرة المُخصصة (OOM). لذلك، عند البرمجة، من المهم التفكير بشكل استراتيجي حول هذه المتغيرات المؤقتة وأحيانًا تحريرها بشكل صريح بمجرد عدم الحاجة إليها.
**ذاكرة محددة الوظائف**
ثم، قد يكون لبرنامجك احتياجات خاصة بالذاكرة. على سبيل المثال، عند إنشاء نص باستخدام البحث الشعاعي، يحتاج البرنامج
إلى الاحتفاظ بنسخ متعددة من المدخلات والمخرجات.
**سرعة تنفيذ `forward` مقابل `backward`**
بالنسبة للالتفافات والطبقات الخطية، هناك ضِعف عدد العمليات 2x flops في المسار الخلفى مقارنة بالمسار الأمامي، والتي يُترجم عمومًا إلى ~2x أبطأ (أحيانًا أكثر، لأن الأحجام في المسار الخلفى تميل إلى أن تكون أكثر صعوبة). عادةً ما تكون عمليات التنشيط محدودة بعرض النطاق الترددي، ومن المعتاد أن يتعين على التنشيط قراءة المزيد من البيانات في المسار الخلفى أكثر من المسار الأمامى.
(على سبيل المثال، قراءة التنشيط المسار الأمامى مرة واحدة، وتكتب مرة واحدة، وبينما تقرأ عملية التنشيط الخلفي مرتين، gradOutput وإخراج الأمام، وتكتب مرة واحدة، gradInput).
كما ترى، هناك بضعة أماكن يمكننا فيها توفير ذاكرة GPU أو تسريع العمليات.
الآن بعد أن فهمت ما يؤثر على استخدام GPU وسرعة الحساب، راجع
صفحة وثائق [أساليب وأدوات التدريب الفعال على GPU واحد](perf_train_gpu_one) لمعرفة المزيد حول تقنيات تحسين الأداء.

View File

@ -1,223 +0,0 @@
# شارك نموذجك مع العالم
أظهرت آخر درسين تعليميين كيفية ضبط نموذج بدقة باستخدام PyTorch و Keras و 🤗 Accelerate لعمليات التهيئة الموزعة. والخطوة التالية هي مشاركة نموذجك مع المجتمع! في Hugging Face، نؤمن بالمشاركة المفتوحة للمعرفة والموارد لتمكين الجميع من الاستفادة من الذكاء الاصطناعي. ونشجعك على مشاركة نموذجك مع المجتمع لمساعدة الآخرين على توفير الوقت والموارد.
في هذا الدرس، ستتعلم طريقتين لمشاركة نموذجك المدرب أو مضبوط على منصة [Model Hub](https://huggingface.co/models):
- رفع ملفاتك إلى منصة Hub مباشرة باستخدام الكود البرمجي.
- قم بسحب وإفلات ملفاتك إلى Hub باستخدام الواجهة web.
<iframe width="560" height="315" src="https://www.youtube.com/embed/XvSGPZFEjDY" title="مشغل فيديو YouTube"
frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope;
picture-in-picture" allowfullscreen></iframe>
<Tip>
لمشاركة نموذج مع المجتمع، تحتاج إلى حساب على [huggingface.co](https://huggingface.co/join). يمكنك أيضًا الانضمام إلى منظمة موجودة أو إنشاء منظمة جديدة.
</Tip>
## ميزات المستودع
يعمل كل مستودع على Model Hub مثل مستودع GitHub النتقليدي. تقدم مستودعاتنا التحكم في الإصدارات وسجل التغييرات، وقدرة على رؤية الاختلافات بين الإصدارات.
تعتمد آلية التحكم في الإصدارات على منصة Model Hub على نظامي git و [git-lfs](https://git-lfs.github.com/). وبعبارة أخرى، يمكنك التعامل مع كل نموذج كأنه مستودع مستقل، مما يمكّن من زيادة التحكم في الوصول والقابلية للتطوير. يسمح التحكم في الإصدار بإجراء تعديلات وتثبيت إصدار محدد من النموذج باستخدام رمز التغيير (commit hash) أو وسم (tag) أو فرع (branch).
بفضل هذه الميزة، يمكنك تحميل إصدار محدد من النموذج باستخدام معلمة الإصدار "revision":
```py
>>> model = AutoModel.from_pretrained(
... "julien-c/EsperBERTo-small", revision="4c77982" # اسم العلامة، أو اسم الفرع، أو تجزئة الالتزام
... )
```
من السهل أيضًا تعديل الملفات الموجودة داخل مستودع، ويمكنك عرض سجل التغييرات التي طرأت على هذه الملفات ومعاينة الاختلافات بين الإصدارات المختلفة:
![vis_diff](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/vis_diff.png)
## الإعداد
قبل مشاركة نموذج على Hub، ستحتاج إلى بيانات اعتماد حساب Hugging Face الخاصة بك. إذا كنت تستخدم منصة الأوامر، فقم بتشغيل الأمر التالي في بيئة افتراضية حيث تم تثبيت 🤗 Transformers. سيقوم هذا الأمر بتخزين رمز الدخول الخاص بك في مجلد تخزين المؤقت لـ Hugging Face (`~/.cache/` بشكل افتراضي):
```bash
huggingface-cli login
```
إذا كنت تستخدم دفتر ملاحظات مثل Jupyter أو Colaboratory، فتأكد من تثبيت مكتبة [`huggingface_hub`](https://huggingface.co/docs/hub/adding-a-library). تسمح لك هذه المكتبة بالتفاعل برمجيًا مع Hub.
```bash
pip install huggingface_hub
```
ثم استخدم `notebook_login` لتسجيل الدخول إلى Hub، واتبع الرابط [هنا](https://huggingface.co/settings/token) لإنشاء رمز للتسجيل:
```py
>>> from huggingface_hub import notebook_login
>>> notebook_login()
```
## تحويل النموذج ليتوافق مع جميع الأطر العمل
لضمان إمكانية استخدام نموذجك من قبل شخص يعمل بإطار عمل مختلف، نوصي بتحويل نموذجك ورفعه مع نقاط التحقق من PyTorch و TensorFlow. في حين أن المستخدمين لا يزال بإمكانهم تحميل نموذجك من إطار عمل مختلف إذا تخطيت هذه الخطوة، إلا أنه سيكون أبطأ لأن 🤗 Transformers ستحتاج إلى تحويل نقطة التحقق أثناء التشغيل.
تحويل نقطة التحقق لإطار عمل آخر أمر سهل. تأكد من تثبيت PyTorch و TensorFlow (راجع [هنا](installation) لتعليمات التثبيت)، ثم ابحث عن النموذج الملائم لمهمتك في الإطار الآخر.
<frameworkcontent>
<pt>
حدد `from_tf=True` لتحويل نقطة تحقق من TensorFlow إلى PyTorch:
```py
>>> pt_model = DistilBertForSequenceClassification.from_pretrained("path/to/awesome-name-you-picked", from_tf=True)
>>> pt_model.save_pretrained("path/to/awesome-name-you-picked")
```
</pt>
<tf>
حدد `from_pt=True` لتحويل نقطة تحقق من PyTorch إلى TensorFlow:
```py
>>> tf_model = TFDistilBertForSequenceClassification.from_pretrained("path/to/awesome-name-you-picked", from_pt=True)
```
بعد ذلك، يمكنك حفظ نموذج TensorFlow الجديد بنقطة التحقق الجديدة:
```py
>>> tf_model.save_pretrained("path/to/awesome-name-you-picked")
```
</tf>
<jax>
إذا كان النموذج متاحًا في Flax، فيمكنك أيضًا تحويل نقطة تحقق من PyTorch إلى Flax:
```py
>>> flax_model = FlaxDistilBertForSequenceClassification.from_pretrained(
... "path/to/awesome-name-you-picked", from_pt=True
... )
```
</jax>
</frameworkcontent>
## دفع نموذج أثناء التدريب
<frameworkcontent>
<pt>
<Youtube id="Z1-XMy-GNLQ"/>
مشاركة نموذجك على Hub مر بسيط للغاية كل ما عليك هو إضافة معلمة أو استدعاء رد إضافي. كما تذكر من درس [التدريب الدقيق](training)، فإن فئة [`TrainingArguments`] هي المكان الذي تحدد فيه المعلمات الفائقة وخيارات التدريب الإضافية. تشمل إحدى خيارات التدريب هذه القدرة على دفع النموذج مباشرة إلى المنصة Hub. قم بتعيين `push_to_hub=True` في [`TrainingArguments`]:
```py
>>> training_args = TrainingArguments(output_dir="my-awesome-model", push_to_hub=True)
```
مرر معامﻻت التدريب كالمعتاد إلى [`Trainer`]:
```py
>>> trainer = Trainer(
... model=model,
... args=training_args,
... train_dataset=small_train_dataset,
... eval_dataset=small_eval_dataset,
... compute_metrics=compute_metrics,
... )
```
بعد ضبط نموذجك بدقة، يمكنك استخدام دالة [`~transformers.Trainer.push_to_hub`] المتاحة في [`Trainer`] لدفع النموذج المدرب إلى المنصة Hub. سوف تضيف 🤗 Transformers تلقائيًا المعلمات الفائقة المستخدمة في التدريب ونتائج التدريب وإصدارات الإطار إلى بطاقة معلومات النموذج الخاصة بك!
```py
>>> trainer.push_to_hub()
```
</pt>
<tf>
شارك نموذجًا على Hub باستخدام [`PushToHubCallback`]. في دالة [`PushToHubCallback`], أضف:
- دليل إخراج لنموذجك.
- مُجزّئ اللغوي.
- `hub_model_id`، والذي هو اسم مستخدم Hub واسم النموذج الخاص بك.
```py
>>> from transformers import PushToHubCallback
>>> push_to_hub_callback = PushToHubCallback(
... output_dir="./your_model_save_path", tokenizer=tokenizer, hub_model_id="your-username/my-awesome-model"
... )
```
أضف الاستدعاء إلى [`fit`](https://keras.io/api/models/model_training_apis/)، وسيقوم 🤗 Transformers بدفع النموذج المدرب إلى Hub:
```py
>>> model.fit(tf_train_dataset, validation_data=tf_validation_dataset, epochs=3, callbacks=push_to_hub_callback)
```
</tf>
</frameworkcontent>
## استخدام دالة `push_to_hub`
يمكنك أيضًا استدعاء `push_to_hub` مباشرة على نموذجك لتحميله إلى Hub.
حدد اسم نموذجك في `push_to_hub`:
```py
>>> pt_model.push_to_hub("my-awesome-model")
```
ينشئ هذا مستودعًا تحت اسم المستخدم الخاص بك باسم نموذج `my-awesome-model`. يمكن للمستخدمين الآن تحميل نموذجك باستخدام دالة `from_pretrained`:
```py
>>> from transformers import AutoModel
>>> model = AutoModel.from_pretrained("your_username/my-awesome-model")
```
```py
>>> from transformers import AutoModel
>>> model = AutoModel.from_pretrained("your_username/my-awesome-model")
```
إذا كنت تنتمي إلى منظمة وتريد دفع نموذجك تحت اسم المنظمة بدلاً من ذلك، فما عليك سوى إضافته إلى `repo_id`:
```py
>>> pt_model.push_to_hub("my-awesome-org/my-awesome-model")
```
يمكن أيضًا استخدام دالة `push_to_hub` لإضافة ملفات أخرى إلى مستودع النماذج. على سبيل المثال، أضف رموزًا إلى مستودع نموذج:
```py
>>> tokenizer.push_to_hub("my-awesome-model")
```
أو ربما تريد إضافة إصدار TensorFlow من نموذج PyTorch المضبوط:
```py
>>> tf_model.push_to_hub("my-awesome-model")
```
الآن عند الانتقال إلى ملفك الشخصي على Hugging Face، يجب أن ترى مستودع النماذج الذي أنشأته حديثًا. سيؤدي النقر فوق علامة التبويب **Files** إلى عرض جميع الملفات التي قمت بتحميلها في المستودع.
للحصول على مزيد من التفاصيل حول كيفية إنشاء الملفات وتحميلها إلى مستودع، راجع وثائق Hub [هنا](https://huggingface.co/docs/hub/how-to-upstream).
## التحميل باستخدام الواجهة web
يمكن للمستخدمين الذين يفضلون نهج عدم الترميز تحميل نموذج من خلال واجهة Hub web. قم بزيارة [huggingface.co/new](https://huggingface.co/new) لإنشاء مستودع جديد:
![new_model_repo](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/new_model_repo.png)
من هنا، أضف بعض المعلومات حول نموذجك:
- حدد **مالك** المستودع. يمكن أن يكون هذا أنت أو أي من المنظمات التي تنتمي إليها.
- اختر اسمًا لنموذجك، والذي سيكون أيضًا اسم المستودع.
- اختر ما إذا كان نموذجك عامًا أم خاصًا.
- حدد ترخيص الاستخدام لنموذجك.
الآن انقر فوق علامة التبويب **Files** ثم انقر فوق الزر **Add file** لإضافة ملف جديد إلى مستودعك. ثم اسحب وأسقط ملفًا لتحميله وأضف رسالة الالتزام.
![upload_file](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/upload_file.png)
## إضافة بطاقة نموذج
للتأكد من فهم المستخدمين لقدرات نموذجك وقيوده وتحيزاته المحتملة واعتباراته الأخلاقية، يرجى إضافة بطاقة نموذج إلى مستودعك. يتم تعريف بطاقة النموذج في ملف `README.md`. يمكنك إضافة بطاقة نموذج عن طريق:
* قم بإنشاء ملف `README.md` وتحميله يدويًا.
* انقر فوق الزر **Edit model card** في مستودع نموذجك.
الق نظرة على بطاقة [DistilBert](https://huggingface.co/distilbert/distilbert-base-uncased) للحصول على مثال جيد على نوع المعلومات التي يجب أن تتضمنها بطاقة النموذج. للحصول على مزيد من التفاصيل حول الخيارات الأخرى التي يمكنك التحكم فيها في ملف `README.md` مثل البصمة الكربونية للنموذج أو أمثلة الأداة، راجع الوثائق [هنا](https://huggingface.co/docs/hub/models-cards).

View File

@ -1,89 +0,0 @@
# عائلة نماذج المحول
منذ إطلاقه في عام 2017، ألهم نموذج [المحول الأصلي](https://arxiv.org/abs/1706.03762) (راجع مدونة [المحول المشروح](http://nlp.seas.harvard.edu/2018/04/03/attention.html) لمقدمة تقنية مبسطة)، ألهم العديد من النماذج الجديدة والمبتكرة التي تتجاوز مهام معالجة اللغات الطبيعية (NLP). هناك نماذج للتنبؤ [بالبنية البروتينات المطوية](https://huggingface.co/blog/deep-learning-with-proteins)، و[تدريب على اتخاذ القرار](https://huggingface.co/blog/train-decision-transformers)، و[التنبؤ بالسلاسل الزمنية](https://huggingface.co/blog/time-series-transformers). مع وجود العديد من متغيرات المحول المتاحة، قد يكون من السهل أن تفوتك الصورة الأكبر. ما تشترك فيه جميع هذه النماذج هو أنها تستند إلى بنية المحول الأصلية. تستخدم بعض النماذج فقط الترميز أو فك الترميز، بينما تستخدم نماذج أخرى كليهما. يوفر هذا تصنيفًا مفيدًا لتصنيف واستعراض الفروقات الرئيسية بين نماذج عائلة المحولات، وسيساعدك على فهم النماذج التي لم تصادفها من قبل.
إذا لم تكن على دراية بنموذج المحول الأصلي أو تحتاج إلى تذكير، فراجع الفصل الخاص بـ [كيف تعمل المحولات](https://huggingface.co/course/chapter1/4؟fw=pt) من دورة Hugging Face.
<div align="center">
<iframe width="560" height="315" src="https://www.youtube.com/embed/H39Z_720T5s" title="مشغل فيديو YouTube" frameborder="0" allow="accelerometer؛ تشغيل تلقائي؛ قائمة تشغيل مدمجة؛ محسّنات الفيديو؛ ميزة الإشارات المرجعية" allowfullscreen></iframe>
</div>
## رؤية الحاسب (Computer vision)
<iframe style="border: 1px solid rgba(0, 0, 0, 0.1);" width="1000" height="450" src="https://www.figma.com/embed?embed_host=share&url=https%3A%2F%2Fwww.figma.com%2Ffile%2FacQBpeFBVvrDUlzFlkejoz%2FModelscape-timeline%3Fnode-id%3D0%253A1%26t%3Dm0zJ7m2BQ9oe0WtO-1" allowfullscreen></iframe>
### الشبكة التلافيفية (Convolutional network)
لطالما كانت الشبكات التلافيفية (CNNs) الطريقة السائدة لمهام رؤية الحاسب حتى برز [محول الرؤية](https://arxiv.org/abs/2010.11929) قابليته للتطوير وكفاءته العالية. وحتى بعد ذلك، لا تزال بعض أفضل صفات CNN، مثل ثبات الإزاحة، قوية جدًا (خاصة بالنسبة لمهام معينة) لدرجة أن بعض المحولات تدمج التلافيف في بنيتها. قلب [ConvNeXt](model_doc/convnext) هذا التبادل رأسًا على عقب وأدرج خيارات التصميم من المحولات لتحديث CNN. على سبيل المثال، يستخدم ConvNeXt نوافذ منزلقة غير متداخلة لتقسيم الصورة إلى رقع وزيادة حقل مجال العام الخاص بها. كما يقوم ConvNeXt بعدة خيارات مثل تصميم الطبقة لتكون أكثر كفاءة في الذاكرة وتحسين الأداء، مما يجعله منافسًا قويًا للمحولات!
### الترميز[[cv-encoder]] (Encoder)
فتح [محول الرؤية (ViT)](model_doc/vit) الباب أمام مهام رؤية الحاسب دون الاعتماد على التلافيف. يستخدم ViT ترميز محول قياسي، لكن إنجازه الرئيسي كان طريقة معالجته للصورة. فهو تقسّم الصورة إلى رقّعات ذات حجم ثابت ويستخدمها لإنشاء تضمين، تمامًا مثل تقسيم الجملة إلى رموز. استفاد ViT من بنية المُحوِّلات الفعالة لإظهار نتائج تنافسية مع CNNs في ذلك الوقت مع الحاجة إلى موارد أقل للتدريب. وسرعان ما تبع ViT نماذج رؤية أخرى يمكنها أيضًا التعامل مع مهام الرؤية الكثيفة مثل التجزئة والتعرف.
من بين هذه النماذج [Swin](model_doc/swin) Transformer. فهو يبني خرائط سمات هرمية (مثل CNN 👀 على عكس ViT) من رقّعات أصغر حجمًا ودمجها مع الرقع المجاورة في طبقات أعمق. يتم حساب الانتباه فقط ضمن نافذة محلية، ويتم تحويل النافذة بين طبقات الانتباه لإنشاء اتصالات تساعد النموذج على التعلم بشكل أفضل. نظرًا لأن محول Swin يمكنه إنتاج خرائط خصائص هرمية، فهو مرشح جيد لمهام التنبؤ الكثيفة مثل التجزئة والتعرف. كما يستخدم [SegFormer](model_doc/segformer) ترميز محول لبناء خرائط خصائص هرمية، ولكنه يضيف فك تشفير بسيط متعدد الطبقات (MLP) في الأعلى لدمج جميع خرائط الخصائص وإجراء تنبؤ.
استلهمت نماذج الرؤية الأخرى، مثل BeIT وViTMAE، الإلهام من هدف التدريب المسبق لـ BERT. يتم تدريب [BeIT](model_doc/beit) مسبقًا من خلال *نمذجة الصور المقنعة (MIM)*؛ يتم إخفاء رقّعات الصور بشكل عشوائي، كما يتم تحويل الصورة إلى رموز بصرية. يتم تدريب BeIT للتنبؤ بالرموز البصرية المُناظرة للرقع المخفية. لدى [ViTMAE](model_doc/vitmae) هدف تدريب مسبق مُماثل، باستثناء أنه يجب عليه التنبؤ بالبكسلات بدلاً من الرموز البصرية. ما هو غير عادي هو أن إخفاء 75% من رقع الصور! يقوم فك التشفير بإعادة بناء البكسلات من الرموز المخفية والرقّعات المشفرة. بعد التدريب المسبق، يتم التخلص من فك التشفير، ويصبح الترميز جاهزًا للاستخدام في مهام التالية.
### فك التشفير[[cv-decoder]] (Decoder)
نادرًا ما تستخدم نماذج الرؤية التي تعتمد على فك التشفير فقط لأن معظم نماذج الرؤية تعتمد على الترميز لتعلم تمثيل الصورة. ولكن بالنسبة للاستخدامات مثل توليد الصور، يعد فك التشفير مناسبًا بشكل طبيعي، كما رأينا من نماذج توليد النصوص مثل GPT-2. يستخدم نموذج [ImageGPT](model_doc/imagegpt) نفس بنية GPT-2، ولكنه بدلاً من التنبؤ بالرمز التالي في تسلسل، فإنه يتنبأ بالبكسل التالي في صورة. بالإضافة إلى توليد الصور، يمكن أيضًا ضبط ImageGPT بدقة لتصنيف الصور.
### الترميز وفك التشفير[[cv-encoder-decoder]] (Encoder-decoder)
تستخدم نماذج الرؤية بشكل شائع ترميزًا (يُعرف أيضًا باسم العمود الفقري) لاستخراج ميزات الصورة المهمة قبل تمريرها إلى فك التشفير لنموذج المُحوّل. يستخدم [DETR](model_doc/detr) عمودًا فقريًا مُدربًا مسبقًا، ولكنه يستخدم أيضًا الببنية الكاملة للترميز وفك تشفير لنموذج المحول للكشف عن الأشياء. يتعلم الترميز تمثيلات الصور ويجمعها مع استعلامات الكائنات (كل استعلام كائن هو تضمين مُتعلم يركز على منطقة أو كائن في صورة) في فك التشفير. يتنبأ DETR بإحداثيات مربع الحدود وتسمية الفئة لكل استعلام كائن.
## معالجة اللغات الطبيعية (Natural language processing - NLP)
<iframe style="border: 1px solid rgba(0, 0, 0, 0.1);" width="1000" height="450" src="https://www.figma.com/embed?embed_host=share&url=https%3A%2F%2Fwww.figma.com%2Ffile%2FUhbQAZDlpYW5XEpdFy6GoG%2Fnlp-model-timeline%3Fnode-id%3D0%253A1%26t%3D4mZMr4r1vDEYGJ50-1" allowfullscreen></iframe>
### الترميز اللغوي[[nlp-encoder]]
نموذج [BERT](model_doc/bert) هو محوّل (Transformer) يعتمد على الترميز فقط يقوم بشكل عشوائي بإخفاء رموز معينة في المدخلات لتجنب رؤية باقى الرموز الأخرى، مما يسمح له "بالغش". يتمثل هدف التدريب المسبق في التنبؤ بالرمز المخفي بناءً على السياق. يسمح هذا لـ BERT باستخدام السياقات اليمنى واليسرى بالكامل لمساعدته في تعلم تمثيل أعمق وأغنى للبيانات المدخلة. ومع ذلك، كان هناك مجال للتحسين في استراتيجية التدريب المسبق لـ BERT. نموذج [RoBERTa](model_doc/roberta) اضاف تحسين من خلال تقديم وصفة تدريب مسبق جديدة تشمل التدريب لفترة أطول وعلى دفعات أكبر، وإخفاء الرموز عشوائيًا في كل حقبة بدلاً من مرة واحدة فقط أثناء المعالجة المسبقة، وإزالة هدف التنبؤ بالجملة التالية.
تتمثل الاستراتيجية السائدة لتحسين الأداء في زيادة حجم النموذج. ولكن تدريب النماذج الكبيرة مكلف من الناحية الحسابية. إحدى طرق تقليل التكاليف الحسابية هي استخدام نموذج أصغر مثل [DistilBERT](model_doc/distilbert). يستخدم DistilBERT [ تقنية تقطير المعرفة](https://arxiv.org/abs/1503.02531) - وهي تقنية ضغط - لإنشاء نموذج أصغر من BERT مع الحفاظ على معظم قدراته على فهم اللغةا.
مرت معظم نماذج المحول في الاتجاه نحو المزيد من المعلمات، مما أدى إلى ظهور نماذج جديدة تركز على تحسين كفاءة التدريب. يقلّل [ALBERT](model_doc/albert) من استهلاك الذاكرة عن طريق تقليل عدد المعلمات بطريقتين: فصل تضمين المفردات الأكبر إلى مصفوفتين أصغر والسماح للمستويات بمشاركة المعلمات. أضاف [DeBERTa](model_doc/deberta) آلية انتباه منفصلة حيث يتم ترميز الكلمة وموضعها بشكل منفصل في متجهين. يتم حساب الانتباه من هذه المتجهات المنفصلة بدلاً من متجه واحد يحتوي على تضمين الكلمة والموقع. ركز [Longformer](model_doc/longformer) أيضًا على جعل الانتباه أكثر كفاءة، خاصة لمعالجة المستندات ذات تسلسلات أطولل. فهو يستخدم مزيجًا من انتباه النوافذ المحلية (يتم حساب الانتباه فقط ن نافذة ذات حجم ثابت حول كل رمز) والانتباه العام (فقط لرموز مهمة محددة مثل `[CLS]` للتصنيف) لإنشاء مصفوفة انتباه متفرقة بدلاً من مصفوفة انتباه كاملة.
### فك التشفير[[nlp-decoder]]
نموذج [GPT-2](model_doc/gpt2) هو محول فك تشفير فقط يتنبأ بالكلمة التالية في التسلسل. إنه يخفي الرموز التالية الموجودة على اليمين حتى لا يتمكن النموذج من "الغش" بالنظر إليها. من خلال التدريب المسبق على كميات هائلة من النصوص، أصبح [GPT-2](model_doc/gpt2) بارعًا في توليد النصوص، حتى لو لم تكن النص دقيقًا أو صحيحًا في بعض الأحيان فقط. ولكن كان يفتقر إلى سياق لترابط المتبادل (bidirectional context) الموجود من التدريب المسبق لـ [BERT](model_doc/bert) ، مما جعله غير مناسب لمهام معينة. يجمع [XLNET](model_doc/xlnet) بين أفضل ما في أهداف التدريب المسبق لـ [BERT](model_doc/bert) و [GPT-2](model_doc/gpt2) من خلال اعتماد نهج النمذجة اللغوية باستخدام التباديل (Permutation Language Modeling - PLM) الذي يسمح له بتعلم الترابط ثنائي الاتجاه.
بعد ظهور [GPT-2](model_doc/gpt2)، تطورت النماذج اللغوية بشكل أكبر حجمًا وأكثر تعقيدًا وأصبحت تُعرف الآن باسم *نماذج اللغة الكبيرة (LLMs)*. توضح LLMs مهارات تعلم قليلة الكمية أو حتى معدومة إذا تم تدريبها على مجموعة بيانات كبيرة بما يكفي. [GPT-J](model_doc/gptj) هو LLM به 6 مليارات معلمة مدربة على 400 مليار رمز. تبعه نموذج [OPT](model_doc/opt)، وهي عائلة من نماذج فك التشفير فقط، أكبرها 175 مليار معلمة ودُرب على 180 مليار رمز. تم إصدار [BLOOM](model_doc/bloom) في نفس الوقت تقريبًا، ويحتوي أكبر نموذج في العائلة على 176 مليار معلمة ودُرب على 366 مليار رمز في 46 لغة و13 لغة برمجة.
### الترميز وفك التشفير[[nlp-encoder-decoder]]
يحتفظ [BART](model_doc/bart) ببنية المحول الأصلية، ولكنه يعدّل هدف التدريب المسبق باستخدام إفساد *إدخال النصوص*، حيث يتم استبدال بعض نطاقات النص برمز `mask` واحد. يتنبأ فك التشفير بالرموز غير الفاسدة (يتم إخفاء الرموز المستقبلية) ويستخدم حالات الترميز المخفية للمساعدة. [Pegasus](model_doc/pegasus) مشابه لـ BART، ولكن Pegasus يقوم بإخفاء جمل كاملة بدلاً من مقاطع النص. بالإضافة إلى نمذجة اللغة المقنعة، يتم تدريب Pegasus مسبقًا بواسطة توليد الجمل الفارغة (GSG). يقوم هدف GSG بإخفاء الجمل الكاملة المهمة للمستند، واستبدالها برمز `mask`. يجب على فك التشفير توليد المخرجات من الجمل المتبقية. [T5](model_doc/t5) هو نموذج فريد من نوعه يحوّل جميع مهام معالجة اللغة الطبيعية إلى مشكلة نص إلى نص باستخدام بادئات محددة. على سبيل المثال، يشير البادئة `Summarize:` إلى مهمة تلخيص. يتم تدريب T5 مسبقًا بواسطة التدريب الخاضع للإشراف (GLUE وSuperGLUE) والتدريب ذاتي الإشراف (اختيار عينة عشوائية وحذف 15% من الرموز).
## الصوت (Audio)
<iframe style="border: 1px solid rgba(0, 0, 0, 0.1);" width="1000" height="450" src="https://www.figma.com/embed?embed_host=share&url=https%3A%2F%2Fwww.figma.com%2Ffile%2Fvrchl8jDV9YwNVPWu2W0kK%2Fspeech-and-audio-model-timeline%3Fnode-id%3D0%253A1%26t%3DmM4H8pPMuK23rClL-1" allowfullscreen></iframe>
### الترميز[[audio-encoder]]
يستخدم [Wav2Vec2](model_doc/wav2vec2) ترميز من نوع المحوّل لتعلم تمثيلات الكلام بشكلٍ مباشر من موجات الصوت الخام. يتم تدريبه مسبقًا باستخدام مهمة تباينية لتحديد تمثيل الكلام الصحيح من مجموعة من التمثيلات الخاطئة. [HuBERT](model_doc/hubert) مشابه لـ Wav2Vec2 ولكنه له عملية تدريب مختلفة. يتم إنشاء تسميات الهدف عن طريق خطوة تجميع يتم فيها ت تخصيص مقاطع الصوت المتشابهة إلى مجموعات، تُصبح كل واحدة منها وحدةً خفية. ويتم تعيين الوحدة الخفية إلى تمثيل لإجراء تنبؤ.
### الترميز وفك التشفير[[audio-encoder-decoder]]
[Speech2Text](model_doc/speech_to_text) هو نموذج كلام مصمم للتعرف التلقائي على الكلام (ASR) وترجمة الكلام. يقبل النموذج ميزات بنك المرشح اللغوي التي تم استخراجها من شكل موجة الصوت وتم تدريبه مسبقًا بطريقة ذاتية التعلم لتوليد نسخة أو ترجمة. [Whisper](model_doc/whisper) هو أيضًا نموذج ASR، ولكنه على عكس العديد من نماذج الكلام الأخرى، يتم تدريبه مسبقًا على كمية كبيرة من بيانات نسخ النص الصوتي ✨ المسماة ✨ لتحقيق الأداء الصفري. يحتوي جزء كبير من مجموعة البيانات أيضًا على لغات غير اللغة الإنجليزية، مما يعني أنه يمكن استخدام Whisper أيضًا للغات منخفضة الموارد. من الناحية الهيكلية، يشبه Whisper نموذج Speech2Text. يتم تحويل إشارة الصوت إلى طيف لوجاريتم مل-ميل يتم تشفيره بواسطة الترميز. يقوم فك التشفير بتوليد النسخة بطريقة ذاتية التعلم من حالات الترميز المخفية والرموز السابقة.
## متعدد الوسائط (Multimodal)
<iframe style="border: 1px solid rgba(0, 0, 0, 0.1);" width="1000" height="450" src="https://www.figma.com/embed?embed_host=share&url=https%3A%2F%2Fwww.figma.com%2Ffile%2FcX125FQHXJS2gxeICiY93p%2Fmultimodal%3Fnode-id%3D0%253A1%26t%3DhPQwdx3HFPWJWnVf-1" allowfullscreen></iframe>
### Encoder[[mm-encoder]]
نموذج [VisualBERT](model_doc/visual_bert) هو نموذج متعدد الوسائط لمهام الرؤية اللغوية تم إصداره بعد فترة وجيزة من BERT. فهو يجمع بين BERT ونظام اكتشاف كائن مسبق التدريب لاستخراج ميزات الصورة في تضمينات بصرية، يتم تمريرها جنبًا إلى جنب مع التضمينات النصية إلى BERT. يتنبأ VisualBERT بالنص المقنع بناءً على النص غير المقنع والتضمينات المرئية، ويجب عليه أيضًا التنبؤ بما إذا كان النص متوافقًا مع الصورة. عندما تم إصدار ViT، اعتمد [ViLT](model_doc/vilt) ViT في بنيتها لأنه كان من الأسهل الحصول على تضمينات الصورة بهذه الطريقة. يتم معالجة تضمينات الصورة بشكل مشترك مع التضمينات النصية. ومن هناك، يتم التدريب المسبق لـ ViLT بواسطة مطابقة الصورة النصية، ونمذجة اللغة المقنعة، وإخفاء كلمة كاملة.
يتّبع [CLIP](model_doc/clip) نهجًا مختلفًا ويقوم بتنبؤ ثنائي من ("الصورة"، "النص"). يتم تدريب مشفر صورة (ViT) ومشفر نص (Transformer) بشكل مشترك على مجموعة بيانات مكونة من 400 مليون ثنائي من ("صورة"، "نص") لتعظيم التشابه بين متجهات ترميز الصورة ومتجهات النص ثنائي ("الصورة"، "النص"). بعد التدريب المسبق، يمكنك استخدام اللغة الطبيعية لتوجيه CLIP للتنبؤ بالنص المُعطى بناءً على صورة أو العكس بالعكس. [OWL-ViT](model_doc/owlvit) يبني على CLIP باستخدامه كعمود فقري للكشف عن الكائنات بدون إشراف. بعد التدريب المسبق، يتم إضافة رأس كشف الأجسام لإجراء تنبؤ بمجموعة مُحدّد عبر ثنائيات ("class"، "bounding box").
### Encoder-decoder[[mm-encoder-decoder]]
التعرّف البصري على الحروف (OCR) مهمة قديمة لتعرّف النصوص، التي تنطوي عادةً على عدة مكونات لفهم الصورة وتوليد النص. [TrOCR](model_doc/trocr) بتبسيط العملية باستخدام محول متكامل من النهاية إلى النهاية. المشفر هو نموذج على غرار ViT لفهم الصورة ويعالج الصورة كقطع ثابتة الحجم. يقبل فك التشفير حالات الإخفاء للمشفر وينشئ النص بشكل تلقائي. [Donut](model_doc/donut) هو نموذج أكثر عمومية لفهم المستندات المرئية لا يعتمد على نهج OCR. يستخدم محول Swin كمشفر وBART متعدد اللغات كمُفكّك تشفير. يتم تدريب Donut على قراءة النص عن طريق التنبؤ بالكلمة التالية بناءً على ملاحظات الصورة والنص. يقوم فك التشفير بتوليد تتسلسلًا رمزيًا بناءً على موجه (Prompt). يتم تمثيل الموجه بواسطة رمز خاص لكل مهمة. على سبيل المثال، يحتوي تحليل المستند على رمز خاص "parsing" يتم دمجه مع حالات الإخفاء للـمُشفّر لتحليل المستند بتنسيق إخراج منظم (JSON).
## التعلم التعزيزي (Reinforcement learning - RL)
<iframe style="border: 1px solid rgba(0, 0, 0, 0.1);" width="1000" height="450" src="https://www.figma.com/embed?embed_host=share&url=https%3A%2F%2Fwww.figma.com%2Ffile%2FiB3Y6RvWYki7ZuKO6tNgZq%2Freinforcement-learning%3Fnode-id%3D0%253A1%26t%3DhPQwdx3HFPWJWnVf-1" allowfullscreen></iframe>
### فك التشفير[[rl-decoder]]
يقوم نموذج "محوّل القرارات والمسارات" (Decision and Trajectory Transformer) بتحويل الحالة (State) والإجراء (Action) والمكافأة (Reward) كمشكلة نمذجة تسلسلية. [محوّل القرارات](model_doc/decision_transformer) يقوم بتوليد سلسلة من الإجراءات التي تؤدي إلى عائد مرغوب في المستقبل بناءً على العوائد المتوقعة، والحالات والإجراءات السابقة. في الخطوات الزمنية *K* الأخيرة، يتم تحويل كل وسائط البيانات الثلاث vإلى متجهات تضمين رمزيّة ومعالجتها بواسطة نموذج مشابه لـ GPT للتنبؤ برمز الإجراء المستقبلي.يقوم [محول المسار](model_doc/trajectory_transformer) أيضًا بتحويل الحالات والإجراءات والمكافآت إلى رموز ومعالجتها باستخدام هيكلية GPT. على عكس "محوّل القرارات"، الذي يركز على تكييف المكافأة، يقوم "محوّل المسارات" بتوليد إجراءات مستقبلية باستخدام البحث الشعاعي (Beam Search).

View File

@ -1,184 +0,0 @@
# المحولات النمطية
مكتبة `transformers` هي إطار عمل ذو فلسفة محدد؛ يتم تعريف فلسفتنا في [الدليل المفاهيمي](./philosophy).
جوهر هذه الفلسفة يتمثل في مبدأ [نموذج واحد، ملف واحد](https://huggingface.co/blog/transformers-design-philosophy)
في المكتبة. الجانب السلبي لهذا المكون هو تقييده لوراثة واستيراد مكونات الملفات.
نتيجة لذلك، تتكرر مكونات النموذج عبر العديد من الملفات. يحتوي `transformers` على عدد كبير من طبقات الانتباه، يقارب عدد النماذج، والكثير منها متطابق. يتسبب هذا في تباعد عمليات التنفيذ المستقلة مع تطبيق الإصلاحات والتغييرات.
على أجزاء محددة من التعليمات البرمجية.
ولمعالجة ذلك، اعتمدنا مفهوم "النسخ" في المكتبة. فبإضافة تعليق يُشير إلى أن التعليمات البرمجية هي نسخة من أخرى، نضمن من خلال أنظمة CI والأوامر المحلية عدم تباعد النسخ. لكن هذه العملية، رغم بساطتها، تُسبب إرهاقاً. كما أنها تزيد العبء على المساهمين، وهو ما نهدف إلى تجاوزه.
غالباً ما تتطلب مساهمات النماذج إضافة تعليمات برمجية (حوالي 1000 سطر)، ومعالج (حوالي 500 سطر)، واختبارات، ووثائق، إلخ. ونادراً ما تقل مساهمات النماذج عن 3000-5000 سطر من التعليمات البرمجية، معظمها أكواد نمطية. هذا يرفع مستوى المساهمات،
ونهدف مع المحولات النمطية إلى خفض هذا المستوى إلى حدّ مقبول.
## ما هو؟
تقدم المحولات النمطية مفهوم ملف "نمطي" لمجلد نموذج. يقبل هذا الملف النمطي تعليمات برمجية
غير مقبولة عادة في ملفات النمذجة/المعالجة، حيث يسمح بالاستيراد من نماذج مجاورة وكذلك
الوراثة من الفئات إلى فئات أخرى.
يعرّف هذا الملف النمطي النماذج والمعالجات وفئة التكوين التي سيتم تعريفها في وحداتهم
المتعلقة.
وأخيرًا، يقدم هذا الميزة أداة `linter` جديدة والتي ستعمل على "تفكيك" الملف النمطي إلى بنية "نموذج واحد، ملف واحد"
هيكل الدليل. سيتم إنشاء هذه الملفات تلقائيًا في كل مرة يتم فيها تشغيل البرنامج النصي؛ مما يقلل من المساهمات المطلوبة
إلى الملف النمطي، وبالتالي فقط إلى التغييرات بين النموذج المساهم والنماذج الأخرى.
سيقوم مستخدمو النموذج في النهاية باستيراد واستخدام واجهة الملف الواحد، لذا لا يتوقع حدوث أي تغيير هنا. من خلال القيام بذلك،
نأمل في الجمع بين أفضل ما في العالمين: تمكين المساهمات البسيطة مع الالتزام بفلسفتنا.
لذلك، هذا بديل لعلامات `# Copied from`، ويمكن توقع انتقال النماذج المساهمة سابقًا إلى
تنسيق المحولات النمطية الجديد في الأشهر المقبلة.
### التفاصيل
تُبسط أداة "linter" الوراثة، مُنشئةً جميع الملفات المفردة من الملف النمطي، مع الحفاظ على شفافيتها أمام مستخدمي Python. حاليًا، تُبسط الأداة مستوىً واحدًا من الوراثة
على سبيل المثال:
- إذا ورثت فئة التكوين من فئة أخرى وأضافت/حذفت معامل، فسيتم إما الإشارة إلى الملف المولد مباشرةً
(في حالة الإضافة) أو إزالته تمامًا (في حالة الحذف).
- إذا ورثت فئة من فئة أخرى، على سبيل المثال: `class GemmaModel(LlamaModel):`، تُستنتج التبعيات تلقائيًا
سيتم استنتاج جميع الوحدات الفرعية تلقائيًا من الفئة الأصلية.
- إذا قمت بتعريف وظائف جديدة في الملف `modular` واستخدمتها داخل الفئات، فستستنتج أداة linter ذلك تلقائيًا
يجب أن تكون قادرًا على كتابة كل شيء (المجزىء اللغوي، ومُعالِج الصور، والنموذج، والتكوين) في الملف `modular`، وسيتم إنشاء الملفات المُقابلة تلقائيًا.
### التطبيق
[TODO] نقدم اختبارًا جديدًا، للتأكد من أن المحتوى المولد يتطابق مع ما هو موجود في `modular_xxxx.py`
### الأمثلة
هنا مثال سريع باستخدام BERT و RoBERTa. النموذجان مرتبطان ارتباطًا وثيقًا: يختلف تنفيذهما النموذجي في طبقة تضمين.
بدلاً من إعادة تعريف النموذج بالكامل، إليك كيف يبدو ملف `modular_roberta.py` لفئات النمذجة والتكوين (لأغراض المثال، يتم تجاهل المجزىء اللغوي في هذا الوقت حيث أنه مختلف جدًا).
```python
from torch import nn
from ..bert.configuration_bert import BertConfig
from ..bert.modeling_bert import (
BertModel,
BertEmbeddings,
BertForMaskedLM
)
# تكوين RoBERTa مطابق لتكوين BERT
class RobertaConfig(BertConfig):
model_type = 'roberta'
# نعيد تعريف الإضافات هنا لتسليط الضوء على اختلاف معرف الحشو، ونعيد تعريف الإضافات الموضعية
class RobertaEmbeddings(BertEmbeddings):
def __init__(self, config):
super().__init__(config())
self.padding_idx = config.pad_token_id
self.position_embeddings = nn.Embedding(
config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx
)
# نموذج RoBERTa مطابق لنموذج BERT، باستثناء طبقة الإضافات.
# نعيد تعريف الإضافات أعلاه، لذا هنا لا توجد حاجة لعمل إضافي
class RobertaModel(BertModel):
def __init__(self, config):
super().__init__(config)
self.embeddings = RobertaEmbeddings(config)
# الرؤوس الآن تحتاج فقط إلى إعادة تعريف النموذج داخل `RobertaModel` الصحيح
class RobertaForMaskedLM(BertForMaskedLM):
def __init__(self, config):
super().__init__(config)
self.model = RobertaModel(config)
```
لاحظ أنه إذا لم تستخدم الاعتماد الذي حددته، فستحصل على الخطأ التالي:
```bash
ValueError: You defined `RobertaEmbeddings` in the modular_roberta.py, it should be used
when you define `BertModel`, as it is one of it's direct dependencies. Make sure
you use it in the `__init__` function.
```
بالإضافة إلى ذلك، قد تجد قائمة بالأمثلة هنا:
## ما هو ليس كذلك
ليس بديلاً لتعليمات برمجة النمذجة (بعد؟)، وإذا لم يكن نموذجك يعتمد على أي شيء آخر موجود من قبل، فيمكنك إضافة ملف `نمذجة` كالعادة.
## الاستخدام المتقدم
### إزالة السمات والوظائف
لإزالة السمات التي لا تستخدم في نموذجك النمطي، والتي لا تريد رؤيتها في النمذجة المفككة:
```python
class GemmaModel(LlamaModel): | class GemmaModel(PreTrainedModel):
def __init__(self, config): | def __init__(self, config):
super().__init__(self, eos_token) | super().__init__(config)
del self.embed_tokens | self.padding_idx = config.pad_token_id
| self.vocab_size = config.vocab_size
|
| self.layers = nn.ModuleList(
| [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
| )
| self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
| self.rotary_emb = LlamaRotaryEmbedding(config=config)
| self.gradient_checkpointing = False
|
| # Initialize weights and apply final processing
| self.post_init()
```
إذا قمت بالتحقق من `LlamaModel` الأصلي، فستجد `embed_tokens` الذي تمت إزالته هنا (كما هو متوقع!)
إزالة وظيفة مشابهة، تحتاج فقط إلى كتابتها مع `raise ValueError("")` لمحاكاة السلوك الذي تريده فعليًا عند إزالة وظيفة أصلية في بايثون.
```python
class GemmaTokenizer(LlamaTokenizer):
...
def get_spm_processor(self):
raise AttributeError("Not needed for Gemma")
def unk_token_length(self):
raise AttributeError("Not needed for Gemma")
```
### تعريف وظائف جديدة
إذا قمت بتعريف وظيفة جديدة في الملف `modular` لاستخدامها داخل فئة، على سبيل المثال
```python
def my_new_function(*args, **kwargs):
# Do something here
pass
class GemmaModel(LlamaModel):
def forward(*args, **kwargs):
# Call the function
example = my_new_function(*args, **kwargs)
# continue here
```
سيتم نسخ وظيفة `my_new_function` (وبشكل متكرر، أي وظائف أخرى جديدة يتم استدعاؤها في جسمها) تلقائيًا
في الملف الذي يتم استخدامه.
### استدعاء `super()`
قمنا مؤخرًا بشحن بعض الميزات التي تسمح لك بالانتقال من:
```python
class GemmaTokenizer(LlamaTokenizer, PretrainedTokenizerFast): | class GemmaModel(nn.Module):
def __init__(self, eos_token="</s>"): | def __init__(self):
eos_token = AddedToken(eos_token) | eos_token = AddedToken(eos_token)
PretrainedTokenizerFast.__init__(self, eos_token) | super().__init__(eos_token)
```
هذا مفيد عندما لا تريد تفكيك استدعاء `super()`، وتريد التمييز بين أي استدعاء super init تقوم به!
### التسمية الخاصة
ندعم الآن أيضًا حالات خاصة مثل
```python
class GemmaVisionModel(CLIPModel):
pass
```
حيث اسم فئة `GemmaVision` الخاصة بك ليس هو نفسه `Gemma` النمطي. هذا مفيد للغاية للنماذج المركبة.

View File

@ -1,160 +0,0 @@
# النماذج متعددة اللغات للاستدلال
هناك العديد من النماذج متعددة اللغات في مكتبة 🤗 Transformers، وتختلف طريقة استخدامها للاستدلال عن النماذج أحادية اللغة. ولكن ليس كل استخدام النماذج متعددة اللغات مختلف. فبعض النماذج، مثل [google-bert/bert-base-multilingual-uncased](https://huggingface.co/google-bert/bert-base-multilingual-uncased)، يمكن استخدامها تمامًا مثل النموذج أحادي اللغة. سيوضح لك هذا الدليل كيفية استخدام النماذج متعددة اللغات التي تختلف طريقة استخدامها للاستدلال.
## XLM
يحتوي XLM على عشر نسخ مختلفة، واحدة منها فقط أحادية اللغة. ويمكن تقسيم نسخ النماذج التسع المتبقية إلى فئتين: نسخ التي تستخدم تضمينات اللغة (language embeddings) وتلك التي لا تستخدمها.
### XLM مع تضمينات اللغة
تستخدم النماذج التالية من XLM تضمينات اللغة لتحديد اللغة المستخدمة أثناء الاستدلال:
- `FacebookAI/xlm-mlm-ende-1024` (نمذجة اللغة المقنعة، الإنجليزية-الألمانية)
- `FacebookAI/xlm-mlm-enfr-1024` (نمذجة اللغة المقنعة، الإنجليزية-الفرنسية)
- `FacebookAI/xlm-mlm-enro-1024` (نمذجة اللغة المقنعة، الإنجليزية-الرومانية)
- `FacebookAI/xlm-mlm-xnli15-1024` (نمذجة اللغة المقنعة، لغات XNLI)
- `FacebookAI/xlm-mlm-tlm-xnli15-1024` (نمذجة اللغة المقنعة + الترجمة، لغات XNLI)
- `FacebookAI/xlm-clm-enfr-1024` (نمذجة اللغة السببية، الإنجليزية-الفرنسية)
- `FacebookAI/xlm-clm-ende-1024` (نمذجة اللغة السببية، الإنجليزية-الألمانية)
تُمثل تضمينات اللغة على شكل مصفوفة بنفس شكل `input_ids` التي يتم تمريره إلى النموذج. وتعتمد القيم في هذه المصفوفات على اللغة المستخدمة ويتم تحديدها بواسطة معاملى المجزىء `lang2id` و `id2lang`.
في هذا المثال، قم بتحميل نسخة `FacebookAI/xlm-clm-enfr-1024` ( نمذجة اللغة السببية، الإنجليزية-الفرنسية):
```py
>>> import torch
>>> from transformers import XLMTokenizer, XLMWithLMHeadModel
>>> tokenizer = XLMTokenizer.from_pretrained("FacebookAI/xlm-clm-enfr-1024")
>>> model = XLMWithLMHeadModel.from_pretrained("FacebookAI/xlm-clm-enfr-1024")
```
تُظهر خاصية `lang2id` في المجزىء اللغات وأرقام تعريفها في هذا النموذج:
```py
>>> print(tokenizer.lang2id)
{'en': 0, 'fr': 1}
```
بعد ذلك، قم بإنشاء مثال على المدخلات:
```py
>>> input_ids = torch.tensor([tokenizer.encode("Wikipedia was used to")]) # batch size of 1
```
قم بتعيين معرف اللغة إلى `"en"` واستخدمه لتحديد تضمين اللغة. وتضمين اللغة عبارة عن مصفوفة مملوءة بـ `0` لأن هذا هو معرف اللغة الإنجليزية. يجب أن تكون هذه المصفوفة بنفس حجم `input_ids`.
```py
>>> language_id = tokenizer.lang2id["en"] # 0
>>> langs = torch.tensor([language_id] * input_ids.shape[1]) # torch.tensor([0, 0, 0, ..., 0])
>>> # نقوم بإعادة تشكيلها لتكون بالحجم (batch_size، sequence_length)
>>> langs = langs.view(1, -1) # الآن بالحجم [1، sequence_length] (لدينا batch size تساوي 1)
```
الآن يمكنك تمرير `input_ids` وتضمين اللغة إلى النموذج:
```py
>>> outputs = model(input_ids, langs=langs)
```
يمكن لنص البرنامج النصي [run_generation.py](https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-generation/run_generation.py) توليد النص باستخدام تضمينات اللغة مع نقاط تفتيش `xlm-clm`.
### XLM بدون تضمينات اللغة
النماذج التالية من XLM لا تتطلب تضمينات اللغة أثناء الاستنتاج:
- `FacebookAI/xlm-mlm-17-1280` (نمذجة اللغة المقنعة، 17 لغة)
- `FacebookAI/xlm-mlm-100-1280` (نمذجة اللغة المقنعة، 100 لغة)
تُستخدم هذه النماذج لتمثيل الجمل العامة، على عكس نسح XLM السابقة.
## BERT
يمكن استخدام النماذج التالية من BERT للمهام متعددة اللغات:
- `google-bert/bert-base-multilingual-uncased` (نمذجة اللغة المقنعة + التنبؤ بالجملة التالية، 102 لغة)
- `google-bert/bert-base-multilingual-cased` (نمذجة اللغة المقنعة + التنبؤ بالجملة التالية، 104 لغات)
لا تتطلب هذه النماذج تضمينات اللغة أثناء الاستدلال. يجب أن تُحدّد اللغة من السياق وتستنتج وفقاً لذلك.
## XLM-RoBERTa
يمكن استخدام النماذج التالية من XLM-RoBERTa للمهام متعددة اللغات:
- `FacebookAI/xlm-roberta-base` (نمذجة اللغة المقنعة، 100 لغة)
- `FacebookAI/xlm-roberta-large` (نمذجة اللغة المقنعة، 100 لغة)
تم تدريب XLM-RoBERTa على 2.5 تيرابايت من بيانات CommonCrawl الجديدة والمحسنة في 100 لغة. ويوفر مكاسب قوية على النماذج متعددة اللغات التي تم إصدارها سابقاً مثل mBERT أو XLM في مهام المصب مثل التصنيف، ووضع العلامات التسلسلية، والأسئلة والأجوبة.
## M2M100
يمكن استخدام النماذج التالية من M2M100 للترجمة متعددة اللغات:
- `facebook/m2m100_418M` (الترجمة)
- `facebook/m2m100_1.2B` (الترجمة)
في هذا المثال، قم بتحميل نسحة `facebook/m2m100_418M` لترجمة النص من الصينية إلى الإنجليزية. يمكنك تعيين اللغة المصدر في المجزىء اللغوى:
```py
>>> from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
>>> en_text = "Do not meddle in the affairs of wizards, for they are subtle and quick to anger."
>>> chinese_text = "不要插手巫師的事務, 因為他們是微妙的, 很快就會發怒."
>>> tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M", src_lang="zh")
>>> model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M")
```
تقسيم النّص إلى رموز:
```py
>>> encoded_zh = tokenizer(chinese_text, return_tensors="pt")
```
يجبر M2M100 معرف اللغة الهدف كأول رمز مولد للترجمة إلى اللغة الهدف. قم بتعيين `forced_bos_token_id` إلى `en` في طريقة `generate` للترجمة إلى الإنجليزية:
```py
>>> generated_tokens = model.generate(**encoded_zh, forced_bos_token_id=tokenizer.get_lang_id("en"))
>>> tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
'Do not interfere with the matters of the witches, because they are delicate and will soon be angry.'
```
## MBart
يمكن استخدام النماذج التالية من MBart للترجمة متعددة اللغات:
- `facebook/mbart-large-50-one-to-many-mmt` (الترجمة الآلية متعددة اللغات من واحد إلى كثير، 50 لغة)
- `facebook/mbart-large-50-many-to-many-mmt` (الترجمة الآلية متعددة اللغات من كثير إلى كثير، 50 لغة)
- `facebook/mbart-large-50-many-to-one-mmt` (الترجمة الآلية متعددة اللغات من كثير إلى واحد، 50 لغة)
- `facebook/mbart-large-50` (الترجمة متعددة اللغات، 50 لغة)
- `facebook/mbart-large-cc25`
في هذا المثال، قم بتحميل نسخة `facebook/mbart-large-50-many-to-many-mmt` لترجمة النص من الفنلندية إلى الإنجليزية. يمكنك تعيين اللغة المصدر في المجزىء:
```py
>>> from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
>>> en_text = "Do not meddle in the affairs of wizards, for they are subtle and quick to anger."
>>> fi_text = "Älä sekaannu velhojen asioihin, sillä ne ovat hienovaraisia ja nopeasti vihaisia."
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-50-many-to-many-mmt", src_lang="fi_FI")
>>> model = AutoModelForSeq2SeqLM.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
```
تقسيم النّص إلى رموز:
```py
>>> encoded_en = tokenizer(en_text, return_tensors="pt")
```
يجبر MBart معرف لغة الهدف كأول رمز مولد للترجمة إلى اللغة الهدف. قم بتعيين `forced_bos_token_id` إلى `en` في طريقة `generate` للترجمة إلى الإنجليزية:
```py
>>> generated_tokens = model.generate(**encoded_en, forced_bos_token_id=tokenizer.lang_code_to_id["en_XX"])
>>> tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
"Don't interfere with the wizard's affairs, because they are subtle, will soon get angry."
```
إذا كنت تستخدم نسخة `facebook/mbart-large-50-many-to-one-mmt`، فلا تحتاج إلى إجبار معرف لغة الهدف كأول رمز مولد، وإلا فإن الاستخدام هو نفسه.

View File

@ -1,140 +0,0 @@
# دفاتر ملاحظات 🤗 Transformers
يمكنك أن تجد هنا قائمة بدفاتر الملاحظات الرسمية التي تقدمها Hugging Face.
كما نود أن ندرج هنا محتوى مثيرًا للاهتمام تم إنشاؤه بواسطة المجتمع.
إذا كتبت دفتر ملاحظات يستفيد من 🤗 Transformers وتود إدراجه هنا، فيُرجى فتح طلب سحب حتى يمكن تضمينه ضمن دفاتر ملاحظات المجتمع.
## دفاتر ملاحظات Hugging Face 🤗
### دفاتر ملاحظات التوثيق
يمكنك فتح أي صفحة من صفحات التوثيق كدفتر ملاحظات في Colab (يوجد زر مباشرة على تلك الصفحات) ولكنها مدرجة هنا أيضًا إذا كنت بحاجة إليها:
| دفتر الملاحظات | الوصف | | |
|:----------|:-------------|:-------------|------:|
| [جولة سريعة في المكتبة](https://github.com/huggingface/notebooks/blob/main/transformers_doc/en/quicktour.ipynb) | عرض لمختلف واجهات برمجة التطبيقات في Transformers |[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/transformers_doc/en/quicktour.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/en/transformers_doc/quicktour.ipynb)|
| [ملخص المهام](https://github.com/huggingface/notebooks/blob/main/transformers_doc/en/task_summary.ipynb) | كيفية تشغيل نماذج مكتبة Transformers مهمة تلو الأخرى |[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/transformers_doc/en/task_summary.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/transformers_doc/en/task_summary.ipynb)|
| [معالجة البيانات مسبقًا](https://github.com/huggingface/notebooks/blob/main/transformers_doc/en/preprocessing.ipynb) | كيفية استخدام محلل لغوي لمعالجة بياناتك مسبقًا |[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/transformers_doc/en/preprocessing.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/transformers_doc/en/preprocessing.ipynb)|
| [الضبط الدقيق لنموذج مُدرَّب مسبقًا](https://github.com/huggingface/notebooks/blob/main/transformers_doc/en/training.ipynb) | كيفية استخدام المدرب لضبط نموذج مُدرَّب مسبقًا بدقة |[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/transformers_doc/en/training.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/transformers_doc/en/training.ipynb)|
| [ملخص للمحللات اللغوية](https://github.com/huggingface/notebooks/blob/main/transformers_doc/en/tokenizer_summary.ipynb) | الاختلافات بين خوارزمية المحلل اللغوي |[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/transformers_doc/en/tokenizer_summary.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/transformers_doc/en/tokenizer_summary.ipynb)|
| [النماذج متعددة اللغات](https://github.com/huggingface/notebooks/blob/main/transformers_doc/en/multilingual.ipynb) | كيفية استخدام النماذج متعددة اللغات للمكتبة |[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/transformers_doc/en/multilingual.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/transformers_doc/en/multilingual.ipynb)|
### أمثلة PyTorch
#### معالجة اللغة الطبيعية[[pytorch-nlp]]
| دفتر الملاحظات | الوصف | | |
|:----------|:-------------|:-------------|------:|
| [تدريب محللك اللغوي](https://github.com/huggingface/notebooks/blob/main/examples/tokenizer_training.ipynb) | كيفية تدريب واستخدام محللك اللغوي الخاص بك |[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/tokenizer_training.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/tokenizer_training.ipynb)|
| [تدريب نموذج لغتك](https://github.com/huggingface/notebooks/blob/main/examples/language_modeling_from_scratch.ipynb) | كيفية البدء بسهولة في استخدام المحولات |[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling_from_scratch.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/language_modeling_from_scratch.ipynb)|
| [كيفية ضبط نموذج بدقة على تصنيف النص](https://github.com/huggingface/notebooks/blob/main/examples/text_classification.ipynb)| يوضح كيفية معالجة البيانات مسبقًا وضبط نموذج مُدرَّب مسبقًا بدقة على أي مهمة GLUE. | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/text_classification.ipynb)|
| [كيفية ضبط نموذج بدقة على النمذجة اللغوية](https://github.com/huggingface/notebooks/blob/main/examples/language_modeling.ipynb)| يوضح كيفية معالجة البيانات مسبقًا وضبط نموذج مُدرَّب مسبقًا بدقة على مهمة LM سببية أو مقنعة. | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb)|
| [كيفية ضبط نموذج بدقة على تصنيف الرموز المميزة](https://github.com/huggingface/notebooks/blob/main/examples/token_classification.ipynb)| يوضح كيفية معالجة البيانات مسبقًا وضبط نموذج مُدرَّب مسبقًا بدقة على مهمة تصنيف الرموز المميزة (NER، PoS). | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/token_classification.ipynb)|
| [كيفية ضبط نموذج بدقة على الإجابة على الأسئلة](https://github.com/huggingface/notebooks/blob/main/examples/question_answering.ipynb)| يوضح كيفية معالجة البيانات مسبقًا وضبط نموذج مُدرَّب مسبقًا بدقة على SQUAD. | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/question_answering.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/question_answering.ipynb)|
| [كيفية ضبط نموذج بدقة على الاختيار من متعدد](https://github.com/huggingface/notebooks/blob/main/examples/multiple_choice.ipynb)| يوضح كيفية معالجة البيانات مسبقًا وضبط نموذج مُدرَّب مسبقًا بدقة على SWAG. | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/multiple_choice.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/multiple_choice.ipynb)|
| [كيفية ضبط نموذج بدقة على الترجمة](https://github.com/huggingface/notebooks/blob/main/examples/translation.ipynb)| يوضح كيفية معالجة البيانات مسبقًا وضبط نموذج مُدرَّب مسبقًا بدقة على WMT. | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/translation.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/translation.ipynb)|
| [كيفية ضبط نموذج بدقة على التلخيص](https://github.com/huggingface/notebooks/blob/main/examples/summarization.ipynb)| يوضح كيفية معالجة البيانات مسبقًا وضبط نموذج مُدرَّب مسبقًا بدقة على XSUM. | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/summarization.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/summarization.ipynb)|
| [كيفية تدريب نموذج لغة من البداية](https://github.com/huggingface/blog/blob/main/notebooks/01_how_to_train.ipynb)| تسليط الضوء على جميع الخطوات لتدريب نموذج Transformer بشكل فعال على بيانات مخصصة | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/blog/blob/main/notebooks/01_how_to_train.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/blog/blob/main/notebooks/01_how_to_train.ipynb)|
| [كيفية إنشاء نص](https://github.com/huggingface/blog/blob/main/notebooks/02_how_to_generate.ipynb)| كيفية استخدام أساليب فك التشفير المختلفة لإنشاء اللغة باستخدام المحولات | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/blog/blob/main/notebooks/02_how_to_generate.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/blog/blob/main/notebooks/02_how_to_generate.ipynb)|
| [كيفية إنشاء نص (مع قيود)](https://github.com/huggingface/blog/blob/main/notebooks/53_constrained_beam_search.ipynb)| كيفية توجيه إنشاء اللغة باستخدام القيود التي يوفرها المستخدم | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/blog/blob/main/notebooks/53_constrained_beam_search.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/blog/blob/main/notebooks/53_constrained_beam_search.ipynb)|
| [Reformer](https://github.com/huggingface/blog/blob/main/notebooks/03_reformer.ipynb)| كيف يدفع Reformer حدود النمذجة اللغوية | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patrickvonplaten/blog/blob/main/notebooks/03_reformer.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/patrickvonplaten/blog/blob/main/notebooks/03_reformer.ipynb)|
#### رؤية الكمبيوتر[[pytorch-cv]]
| دفتر الملاحظات | الوصف | | |
|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------:|
| [كيفية ضبط نموذج بدقة على تصنيف الصور (Torchvision)](https://github.com/huggingface/notebooks/blob/main/examples/image_classification.ipynb) | يوضح كيفية معالجة البيانات مسبقًا باستخدام Torchvision وضبط أي نموذج رؤية مُدرَّب مسبقًا بدقة على تصنيف الصور | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb) | [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb)|
| [كيفية ضبط نموذج بدقة على تصنيف الصور (Albumentations)](https://github.com/huggingface/notebooks/blob/main/examples/image_classification_albumentations.ipynb) | يوضح كيفية معالجة البيانات مسبقًا باستخدام Albumentations وضبط أي نموذج رؤية مُدرَّب مسبقًا بدقة على تصنيف الصور | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification_albumentations.ipynb) | [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/image_classification_albumentations.ipynb)|
| [كيفية ضبط نموذج بدقة على تصنيف الصور (Kornia)](https://github.com/huggingface/notebooks/blob/main/examples/image_classification_kornia.ipynb) | يوضح كيفية معالجة البيانات مسبقًا باستخدام Kornia وضبط أي نموذج رؤية مُدرَّب مسبقًا بدقة على تصنيف الصور | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification_kornia.ipynb) | [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/image_classification_kornia.ipynb)|
| [كيفية إجراء الكشف عن الأشياء بدون لقطات مع OWL-ViT](https://github.com/huggingface/notebooks/blob/main/examples/zeroshot_object_detection_with_owlvit.ipynb) | يوضح كيفية إجراء الكشف عن الأشياء بدون لقطات على الصور باستخدام استعلامات نصية | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/zeroshot_object_detection_with_owlvit.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/zeroshot_object_detection_with_owlvit.ipynb)|
| [كيفية ضبط نموذج وصف الصور بدقة](https://github.com/huggingface/notebooks/blob/main/examples/image_captioning_blip.ipynb) | يوضح كيفية ضبط BLIP بدقة لوصف الصور على مجموعة بيانات مخصصة | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_captioning_blip.ipynb) | [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/image_captioning_blip.ipynb)|
| [كيفية بناء نظام تشابه الصور مع Transformers](https://github.com/huggingface/notebooks/blob/main/examples/image_similarity.ipynb) | يوضح كيفية بناء نظام تشابه الصور | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_similarity.ipynb) | [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/image_similarity.ipynb)|
| [كيفية ضبط نموذج SegFormer بدقة على التجزئة الدلالية](https://github.com/huggingface/notebooks/blob/main/examples/semantic_segmentation.ipynb) | يوضح كيفية معالجة البيانات مسبقًا وضبط نموذج SegFormer مُدرَّب مسبقًا بدقة على التجزئة الدلالية | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/semantic_segmentation.ipynb) | [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/semantic_segmentation.ipynb)|
| [كيفية ضبط نموذج VideoMAE بدقة على تصنيف الفيديو](https://github.com/huggingface/notebooks/blob/main/examples/video_classification.ipynb) | يوضح كيفية معالجة البيانات مسبقًا وضبط نموذج VideoMAE مُدرَّب مسبقًا بدقة على تصنيف الفيديو | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/video_classification.ipynb) | [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/video_classification.ipynb)|
#### الصوت[[pytorch-audio]]
| دفتر الملاحظات | الوصف | | |
|:----------|:-------------|:-------------|------:|
| [كيفية ضبط نموذج التعرف على الكلام باللغة الإنجليزية بدقة](https://github.com/huggingface/notebooks/blob/main/examples/speech_recognition.ipynb)| يوضح كيفية معالجة البيانات مسبقًا وضبط نموذج كلام مُدرَّب مسبقًا بدقة على TIMIT | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/speech_recognition.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/speech_recognition.ipynb)|
| [كيفية ضبط نموذج التعرف على الكلام بأي لغة بدقة](https://github.com/huggingface/notebooks/blob/main/examples/multi_lingual_speech_recognition.ipynb)| يوضح كيفية معالجة البيانات مسبقًا وضبط نموذج كلام مُدرَّب مسبقًا متعدد اللغات بدقة على Common Voice | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/multi_lingual_speech_recognition.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/multi_lingual_speech_recognition.ipynb)|
| [كيفية ضبط نموذج بدقة على تصنيف الصوت](https://github.com/huggingface/notebooks/blob/main/examples/audio_classification.ipynb)| يوضح كيفية معالجة البيانات مسبقًا وضبط نموذج كلام مُدرَّب مسبقًا بدقة على Keyword Spotting | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/audio_classification.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/audio_classification.ipynb)|
#### التسلسلات البيولوجية[[pytorch-bio]]
| دفتر الملاحظات | الوصف | | |
|:----------|:----------------------------------------------------------------------------------------|:-------------|------:|
| [كيفية ضبط نموذج بروتين مُدرَّب مسبقًا بدقة](https://github.com/huggingface/notebooks/blob/main/examples/protein_language_modeling.ipynb) | شاهد كيفية ترميز البروتينات وضبط نموذج "لغة" بروتين مُدرَّب مسبقًا كبير بدقة | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/protein_language_modeling.ipynb) | [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/protein_language_modeling.ipynb) |
| [كيفية إنشاء طيات بروتينية](https://github.com/huggingface/notebooks/blob/main/examples/protein_folding.ipynb) | شاهد كيفية الانتقال من تسلسل البروتين إلى نموذج بروتين كامل وملف PDB | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/protein_folding.ipynb) | [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/protein_folding.ipynb) |
| [كيفية ضبط نموذج محول النيوكليوتيدات بدقة](https://github.com/huggingface/notebooks/blob/main/examples/nucleotide_transformer_dna_sequence_modelling.ipynb) | شاهد كيفية ترميز الحمض النووي وضبط نموذج "لغة" الحمض النووي مُدرَّب مسبقًا كبير بدقة | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/nucleotide_transformer_dna_sequence_modelling.ipynb) | [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/nucleotide_transformer_dna_sequence_modelling.ipynb) |
| [ضبط نموذج محول النيوكليوتيدات بدقة باستخدام LoRA](https://github.com/huggingface/notebooks/blob/main/examples/nucleotide_transformer_dna_sequence_modelling_with_peft.ipynb) | تدريب نماذج DNA أكبر بكثير بطريقة فعالة من حيث الذاكرة | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/nucleotide_transformer_dna_sequence_modelling_with_peft.ipynb) | [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/nucleotide_transformer_dna_sequence_modelling_with_peft.ipynb) |
#### طرائق أخرى[[pytorch-other]]
| دفتر الملاحظات | الوصف | | |
|:----------|:----------------------------------------------------------------------------------------|:-------------|------:|
| [التنبؤ الاحتمالي بالسلاسل الزمنية](https://github.com/huggingface/notebooks/blob/main/examples/time-series-transformers.ipynb) | شاهد كيفية تدريب Time Series Transformer على مجموعة بيانات مخصصة | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/time-series-transformers.ipynb) | [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/time-series-transformers.ipynb) |
#### دفاتر ملاحظات الأدوات المساعدة [[pytorch-utility]]
| دفتر الملاحظات | الوصف | | |
|:----------|:-------------|:-------------|------:|
| [كيفية تصدير النموذج إلى ONNX](https://github.com/huggingface/notebooks/blob/main/examples/onnx-export.ipynb)| تسليط الضوء على كيفية التصدير وتشغيل أعباء عمل الاستدلال من خلال ONNX | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/onnx-export.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/onnx-export.ipynb)|
| [كيفية استخدام المعايير](https://github.com/huggingface/notebooks/blob/main/examples/benchmark.ipynb)| كيفية قياس أداء النماذج باستخدام المحولات | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/benchmark.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/benchmark.ipynb)|
### أمثلة TensorFlow
#### معالجة اللغة الطبيعية[[tensorflow-nlp]]
| دفتر الملاحظات | الوصف | | |
|:----------|:-------------|:-------------|------:|
| [تدريب محللك اللغوي](https://github.com/huggingface/notebooks/blob/main/examples/tokenizer_training.ipynb) | كيفية تدريب واستخدام محللك اللغوي الخاص بك |[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/tokenizer_training.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/tokenizer_training.ipynb)|
| [تدريب نموذج لغتك](https://github.com/huggingface/notebooks/blob/main/examples/language_modeling_from_scratch-tf.ipynb) | كيفية البدء بسهولة في استخدام المحولات |[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling_from_scratch-tf.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/language_modeling_from_scratch-tf.ipynb)|
| [كيفية ضبط نموذج بدقة على تصنيف النص](https://github.com/huggingface/notebooks/blob/main/examples/text_classification-tf.ipynb)| يوضح كيفية معالجة البيانات مسبقًا وضبط نموذج مُدرَّب مسبقًا بدقة على أي مهمة GLUE. | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification-tf.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/text_classification-tf.ipynb)|
| [كيفية ضبط نموذج بدقة على النمذجة اللغوية](https://github.com/huggingface/notebooks/blob/main/examples/language_modeling-tf.ipynb)| يوضح كيفية معالجة البيانات مسبقًا وضبط نموذج مُدرَّب مسبقًا بدقة على مهمة LM سببية أو مقنعة. | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling-tf.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/language_modeling-tf.ipynb)|
| [كيفية ضبط نموذج بدقة على تصنيف الرموز المميزة](https://github.com/huggingface/notebooks/blob/main/examples/token_classification-tf.ipynb)| يوضح كيفية معالجة البيانات مسبقًا وضبط نموذج مُدرَّب مسبقًا بدقة على مهمة تصنيف الرموز المميزة (NER، PoS). | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification-tf.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/token_classification-tf.ipynb)|
| [كيفية ضبط نموذج بدقة على الإجابة على الأسئلة](https://github.com/huggingface/notebooks/blob/main/examples/question_answering-tf.ipynb)| يوضح كيفية معالجة البيانات مسبقًا وضبط نموذج مُدرَّب مسبقًا بدقة على SQUAD. | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/question_answering-tf.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/question_answering-tf.ipynb)|
| [كيفية ضبط نموذج بدقة على الاختيار من متعدد](https://github.com/huggingface/notebooks/blob/main/examples/multiple_choice-tf.ipynb)| يوضح كيفية معالجة البيانات مسبقًا وضبط نموذج مُدرَّب مسبقًا بدقة على SWAG. | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/multiple_choice-tf.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/multiple_choice-tf.ipynb)|
| [كيفية ضبط نموذج بدقة على الترجمة](https://github.com/huggingface/notebooks/blob/main/examples/translation-tf.ipynb)| يوضح كيفية معالجة البيانات مسبقًا وضبط نموذج مُدرَّب مسبقًا بدقة على WMT. | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/translation-tf.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/translation-tf.ipynb)|
| [كيفية ضبط نموذج بدقة على التلخيص](https://github.com/huggingface/notebooks/blob/main/examples/summarization-tf.ipynb)| يوضح كيفية معالجة البيانات مسبقًا وضبط نموذج مُدرَّب مسبقًا بدقة على XSUM. | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/summarization-tf.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/summarization-tf.ipynb)|
#### رؤية الكمبيوتر[[tensorflow-cv]]
| دفتر الملاحظات | الوصف | | |
|:---------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------|:-------------|------:|
| [كيفية ضبط نموذج بدقة على تصنيف الصور](https://github.com/huggingface/notebooks/blob/main/examples/image_classification-tf.ipynb) | يوضح كيفية معالجة البيانات مسبقًا وضبط أي نموذج رؤية مُدرَّب مسبقًا بدقة على تصنيف الصور | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification-tf.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/image_classification-tf.ipynb)|
| [كيفية ضبط نموذج SegFormer بدقة على التجزئة الدلالية](https://github.com/huggingface/notebooks/blob/main/examples/semantic_segmentation-tf.ipynb) | يوضح كيفية معالجة البيانات مسبقًا وضبط نموذج SegFormer مُدرَّب مسبقًا بدقة على التجزئة الدلالية | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/semantic_segmentation-tf.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/semantic_segmentation-tf.ipynb)|
#### التسلسلات البيولوجية[[tensorflow-bio]]
| دفتر الملاحظات | الوصف | | |
|:----------|:-------------|:-------------|------:|
| [كيفية ضبط نموذج بروتين مُدرَّب مسبقًا بدقة](https://github.com/huggingface/notebooks/blob/main/examples/protein_language_modeling-tf.ipynb) | شاهد كيفية ترميز البروتينات وضبط نموذج "لغة" بروتين مُدرَّب مسبقًا كبير بدقة | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/protein_language_modeling-tf.ipynb) | [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/protein_language_modeling-tf.ipynb) |
#### دفاتر ملاحظات الأدوات المساعدة [[tensorflow-utility]]
| دفتر الملاحظات | الوصف | | |
|:----------|:-------------|:-------------|------:|
| [كيفية تدريب نماذج TF/Keras على TPU](https://github.com/huggingface/notebooks/blob/main/examples/tpu_training-tf.ipynb) | شاهد كيفية التدريب بسرعة عالية على أجهزة TPU من Google | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/tpu_training-tf.ipynb) | [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/tpu_training-tf.ipynb) |
### دفاتر ملاحظات Optimum
🤗 [Optimum](https://github.com/huggingface/optimum) هو امتداد لـ 🤗 Transformers، يوفر مجموعة من أدوات تحسين الأداء التي تمكن من تحقيق أقصى قدر من الكفاءة لتدريب وتشغيل النماذج على الأجهزة المستهدفة.
| دفتر الملاحظات | الوصف | | |
|:----------|:-------------|:-------------|------:|
| [كيفية تكميم نموذج باستخدام ONNX Runtime لتصنيف النص](https://github.com/huggingface/notebooks/blob/main/examples/text_classification_quantization_ort.ipynb)| يوضح كيفية تطبيق التكميم الثابت والديناميكي على نموذج باستخدام [ONNX Runtime](https://github.com/microsoft/onnxruntime) لأي مهمة GLUE. | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification_quantization_ort.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/text_classification_quantization_ort.ipynb)|
| [كيفية ضبط نموذج بدقة على تصنيف النص باستخدام ONNX Runtime](https://github.com/huggingface/notebooks/blob/main/examples/text_classification_ort.ipynb)| يوضح كيفية معالجة البيانات مسبقًا وضبط نموذج بدقة على أي مهمة GLUE باستخدام [ONNX Runtime](https://github.com/microsoft/onnxruntime). | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification_ort.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/text_classification_ort.ipynb)|
| [كيفية ضبط نموذج بدقة على التلخيص باستخدام ONNX Runtime](https://github.com/huggingface/notebooks/blob/main/examples/summarization_ort.ipynb)| يوضح كيفية معالجة البيانات مسبقًا وضبط نموذج بدقة على XSUM باستخدام [ONNX Runtime](https://github.com/microsoft/onnxruntime). | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/summarization_ort.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/summarization_ort.ipynb)|
## دفاتر ملاحظات المجتمع:
تتوفر المزيد من دفاتر الملاحظات التي طورها المجتمع [هنا](https://hf.co/docs/transformers/community#community-notebooks).

View File

@ -1,52 +0,0 @@
# الحشو والتقليم
غالبًا ما تختلف مدخلات الدُفعات في الطول، لذا لا يمكن تحويلها إلى مصفوفات ذات حجم ثابت .يُعدّ الحشو والتقليم هما استراتيجيتان للتعامل مع هذه المشكلة، لإنشاء مصفوفات مستطيلة من مجموعات ذات أطوال مختلفة. ويضيف الحشو رمز **حشو** خاص لضمان أن يكون للتسلسلات الأقصر نفس طول أطول تسلسل في الدفعة أو الطول الأقصى الذي يقبله النموذج. ويعمل التقليم عكس ذلك بتقليم التسلسلات الطويلة.
في معظم الحالات، ييُعدّ حشو دُفعتك إلى طول أطول تسلسل فيها وتقليمها إلى الطول الأقصى المقبول من النموذج حلًا فعالًا. ومع ذلك، تدعم واجهة برمجة التطبيقات المزيد من الاستراتيجيات إذا كنت بحاجة إليها. هناك ثلاثة معامﻻت تحتاجها لفهم آلية العمل: `padding`، و`truncation`، و`max_length`.
يحكم معامل `padding` عملية الحشو. يمكن أن يكون قيمة منطقية أو نصية:
- `True` أو `'longest'`: الحشو إلى أطول تسلسل في الدفعة (لا يتم تطبيق الحشو عند تقديم تسلسل واحد فقط).
- `'max_length'`: الحشو إلى طول محدد بواسطة معامل `max_length` أو الطول الأقصى الذي يقبله
النموذج إذا لم يتم توفير `max_length` (`max_length=None`). سيظل الحشو مطبقًا إذا قدمت تسلسلًا واحدًا فقط.
- `False` أو `'do_not_pad'`: لا يتم تطبيق أي حشو. هذا هو السلوك الافتراضي.
تحكم معامل `truncation` عملية التقليم. يمكن أن يكون قيمة منطقية أو نصية:
-قيمة `True` أو `'longest_first'` : تقليم التسلسلات إلى طول أقصى مُحدد بواسطة معامل `max_length`، أو أقصى طول يقبله النموذج في حال عدم تحديد طول مُحدد من قبل المستخدم (`max_length=None`). ستتم عملية التقليم إزالة رمز تلو الآخر، بدءًا من أطول تسلسل في الزوج، إلى أن يصل الطول إلى القيمة المُحددة.
-قيمة `'only_second'`: اقطع إلى طول أقصى محدد بواسطة معامل `max_length` أو أقصى طول يقبله النموذج إذا لم يتم توفير `max_length` (`max_length=None`). هذا سيقلم فقط الجملة الثانية من الزوج إذا تم توفير زوج من التسلسلات (أو دُفعة من أزواج التسلسلات).
-قيمة `'only_first'`: تقليم الجملة الأولى فقط من الزوج عند تقديم زوج من التسلسلات (أو دُفعة من أزواج التسلسلات) إلى طول أقصى مُحدد بواسطة حجة `max_length`، أو أقصى طول يقبله النموذج في حال عدم تحديد طول مُحدد من قبل المستخدم (`max_length=None`).
-قيمة `False` أو `'do_not_truncate'`: لا يتم تطبيق أي تقليم. هذا هو السلوك الافتراضي.
``
يحكم معامل `max_length` طول الحشو والتقليم. يمكن أن يكون عدد صحيح أو `None`، وعندها يُحدد افتراضيًا إلى الطول الأقصى الذي يمكن أن يقبله النموذج. إذا لم يكن للنموذج طول إدخال أقصى محدد، يتم إلغاء تنشيط التقليم أو الحشو إلى `max_length`.
يلخّص الجدول التالي الطريقة المُوصى بها لإعداد الحشو والتقليم. إذا كنت تستخدم أزواج تسلسلات الإدخال في أي من الأمثلة التالية، فيمكنك استبدال `truncation=True` بـ `STRATEGY` المحدد في `['only_first'، 'only_second'، 'longest_first']`، أي `truncation='only_second'` أو `truncation='longest_first'` للتحكم في كيفية تقليم كلا التسلسلين في الزوج كما هو موضّح سابقًا.
<!-- This file is automatically generated, do not modify manually. -->
# حيل الترميز
هناك العديد من الاستراتيجيات لترميز دفعات الجمل. فيما يلي بعض الأمثلة على ذلك.
| الترميز | الحشو | التعليمات |
|--------------------------------------|-----------------------------------|---------------------------------------------------------------------------------------------|
| لا ترميز | لا حشو | `tokenizer(batch_sentences)` |
| | الحشو إلى الحد الأقصى للتسلسل في الدفعة | `tokenizer(batch_sentences, padding=True)` أو |
| | | `tokenizer(batch_sentences, padding='longest')` |
| | الحشو إلى الحد الأقصى لطول إدخال النموذج | `tokenizer(batch_sentences, padding='max_length')` |
| | الحشو إلى طول محدد | `tokenizer(batch_sentences, padding='max_length', max_length=42)` |
| | الحشو إلى مضاعف لقيمة معينة | `tokenizer(batch_sentences, padding=True, pad_to_multiple_of=8)` |
| الترميز إلى الحد الأقصى لطول إدخال النموذج | لا حشو | `tokenizer(batch_sentences, truncation=True)` أو |
| | | `tokenizer(batch_sentences, truncation=STRATEGY)` |
| | الحشو إلى الحد الأقصى للتسلسل في الدفعة | `tokenizer(batch_sentences, padding=True, truncation=True)` أو |
| | | `tokenizer(batch_sentences, padding=True, truncation=STRATEGY)` |
| | الحشو إلى الحد الأقصى لطول إدخال النموذج | `tokenizer(batch_sentences, padding='max_length', truncation=True)` أو |
| | | `tokenizer(batch_sentences, padding='max_length', truncation=STRATEGY)` |
| | الحشو إلى طول محدد | غير ممكن |
| الترميز إلى طول محدد | لا حشو | `tokenizer(batch_sentences, truncation=True, max_length=42)` أو |
| | | `tokenizer(batch_sentences, truncation=STRATEGY, max_length=42)` |
| | الحشو إلى الحد الأقصى للتسلسل في الدفعة | `tokenizer(batch_sentences, padding=True, truncation=True, max_length=42)` أو |
| | | `tokenizer(batch_sentences, padding=True, truncation=STRATEGY, max_length=42)` |
| | الحشو إلى الحد الأقصى لطول إدخال النموذج | غير ممكن |
| | الحشو إلى طول محدد | `tokenizer(batch_sentences, padding='max_length', truncation=True, max_length=42)` أو |
| | | `tokenizer(batch_sentences, padding='max_length', truncation=STRATEGY, max_length=42)` |

View File

@ -1,250 +0,0 @@
# تحميل المحوّلات باستخدام 🤗 PEFT
[[open-in-colab]]
تقنية "التدريب الدقيق ذو الكفاءة البارامتيرية" (PEFT)](https://huggingface.co/blog/peft) تقوم بتجميد معلمات النموذج المُدرب مسبقًا أثناء الضبط الدقيق وتضيف عدد صغير من المعلمات القابلة للتدريب (المحولات) فوقه. يتم تدريب المحوّلات لتعلم معلومات خاصة بالمهام. وقد ثبت أن هذا النهج فعال للغاية من حيث استخدام الذاكرة مع انخفاض استخدام الكمبيوتر أثناء إنتاج نتائج قمماثلة للنموذج مضبوط دقيقًا بالكامل.
عادة ما تكون المحولات المدربة باستخدام PEFT أصغر بمقدار كبير من حيث الحجم من النموذج الكامل، مما يجعل من السهل مشاركتها وتخزينها وتحميلها.
<div class="flex flex-col justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/peft/PEFT-hub-screenshot.png"/>
<figcaption class="text-center">تبلغ أوزان المحول لطراز OPTForCausalLM المخزن على Hub حوالي 6 ميجابايت مقارنة بالحجم الكامل لأوزان النموذج، والتي يمكن أن تكون حوالي 700 ميجابايت.</figcaption>
</div>
إذا كنت مهتمًا بمعرفة المزيد عن مكتبة 🤗 PEFT، فراجع [الوثائق](https://huggingface.co/docs/peft/index).
## الإعداد
ابدأ بتثبيت 🤗 PEFT:
```bash
pip install peft
```
إذا كنت تريد تجربة الميزات الجديدة تمامًا، فقد تكون مهتمًا بتثبيت المكتبة من المصدر:
```bash
pip install git+https://github.com/huggingface/peft.git
```
## نماذج PEFT المدعومة
يدعم 🤗 Transformers بشكلٍ أصلي بعض طرق PEFT، مما يعني أنه يمكنك تحميل أوزان المحول المخزنة محليًا أو على Hub وتشغيلها أو تدريبها ببضع سطور من التعليمات البرمجية. الطرق المدعومة هي:
- [محولات الرتبة المنخفضة](https://huggingface.co/docs/peft/conceptual_guides/lora)
- [IA3](https://huggingface.co/docs/peft/conceptual_guides/ia3)
- [AdaLoRA](https://arxiv.org/abs/2303.10512)
إذا كنت تريد استخدام طرق PEFT الأخرى، مثل تعلم المحث أو ضبط المحث، أو حول مكتبة 🤗 PEFT بشكل عام، يرجى الرجوع إلى [الوثائق](https://huggingface.co/docs/peft/index).
## تحميل محول PEFT
لتحميل نموذج محول PEFT واستخدامه من 🤗 Transformers، تأكد من أن مستودع Hub أو الدليل المحلي يحتوي على ملف `adapter_config.json` وأوزان المحوّل، كما هو موضح في صورة المثال أعلاه. بعد ذلك، يمكنك تحميل نموذج محوّل PEFT باستخدام فئة `AutoModelFor`. على سبيل المثال، لتحميل نموذج محول PEFT للنمذجة اللغوية السببية:
1. حدد معرف النموذج لPEFT
2. مرره إلى فئة [`AutoModelForCausalLM`]
```py
from transformers import AutoModelForCausalLM, AutoTokenizer
peft_model_id = "ybelkada/opt-350m-lora"
model = AutoModelForCausalLM.from_pretrained(peft_model_id)
```
<Tip>
يمكنك تحميل محول PEFT باستخدام فئة `AutoModelFor` أو فئة النموذج الأساسي مثل `OPTForCausalLM` أو `LlamaForCausalLM`.
</Tip>
يمكنك أيضًا تحميل محول PEFT عن طريق استدعاء طريقة `load_adapter`:
```py
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "facebook/opt-350m"
peft_model_id = "ybelkada/opt-350m-lora"
model = AutoModelForCausalLM.from_pretrained(model_id)
model.load_adapter(peft_model_id)
```
راجع قسم [وثائق API](#transformers.integrations.PeftAdapterMixin) أدناه لمزيد من التفاصيل.
## التحميل في 8 بت أو 4 بت
راجع قسم [وثائق API](#transformers.integrations.PeftAdapterMixin) أدناه لمزيد من التفاصيل.
## التحميل في 8 بت أو 4 بت
يدعم تكامل `bitsandbytes` أنواع بيانات الدقة 8 بت و4 بت، والتي تكون مفيدة لتحميل النماذج الكبيرة لأنها توفر مساحة في الذاكرة (راجع دليل تكامل `bitsandbytes` [guide](./quantization#bitsandbytes-integration) لمعرفة المزيد). أضف المعلمات`load_in_8bit` أو `load_in_4bit` إلى [`~PreTrainedModel.from_pretrained`] وقم بتعيين `device_map="auto"` لتوزيع النموذج بشكل فعال على الأجهزة لديك:
```py
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
peft_model_id = "ybelkada/opt-350m-lora"
model = AutoModelForCausalLM.from_pretrained(peft_model_id, quantization_config=BitsAndBytesConfig(load_in_8bit=True))
```
## إضافة محول جديد
يمكنك استخدام الدالة [`~peft.PeftModel.add_adapter`] لإضافة محوّل جديد إلى نموذج يحتوي بالفعل على محوّل آخر طالما أن المحول الجديد مطابقًا للنوع الحالي. على سبيل المثال، إذا كان لديك محول LoRA موجود مرتبط بنموذج:
```py
from transformers import AutoModelForCausalLM, OPTForCausalLM, AutoTokenizer
from peft import LoraConfig
model_id = "facebook/opt-350m"
model = AutoModelForCausalLM.from_pretrained(model_id)
lora_config = LoraConfig(
target_modules=["q_proj", "k_proj"],
init_lora_weights=False
)
model.add_adapter(lora_config, adapter_name="adapter_1")
```
لإضافة محول جديد:
```py
# قم بتعليق محول جديد بنفس التكوين
model.add_adapter(lora_config, adapter_name="adapter_2")
```
الآن يمكنك استخدام [`~peft.PeftModel.set_adapter`] لتعيين المحول الذي سيتم استخدامه:
```py
# استخدم adapter_1
model.set_adapter("adapter_1")
output = model.generate(**inputs)
print(tokenizer.decode(output_disabled[0], skip_special_tokens=True))
# استخدم adapter_2
model.set_adapter("adapter_2")
output_enabled = model.generate(**inputs)
print(tokenizer.decode(output_enabled[0], skip_special_tokens=True))
```
## تمكين وتعطيل المحولات
بمجرد إضافة محول إلى نموذج، يمكنك تمكين أو تعطيل وحدة المحول. لتمكين وحدة المحول:
```py
from transformers import AutoModelForCausalLM, OPTForCausalLM, AutoTokenizer
from peft import PeftConfig
model_id = "facebook/opt-350m"
adapter_model_id = "ybelkada/opt-350m-lora"
tokenizer = AutoTokenizer.from_pretrained(model_id)
text = "Hello"
inputs = tokenizer(text, return_tensors="pt")
model = AutoModelForCausalLM.from_pretrained(model_id)
peft_config = PeftConfig.from_pretrained(adapter_model_id)
# لبدء تشغيله بأوزان عشوائية
peft_config.init_lora_weights = False
model.add_adapter(peft_config)
model.enable_adapters()
output = model.generate(**inputs)
```
لإيقاف تشغيل وحدة المحول:
```py
model.disable_adapters()
output = model.generate(**inputs)
```
## تدريب محول PEFT
يدعم محول PEFT فئة [`Trainer`] بحيث يمكنك تدريب محول لحالتك الاستخدام المحددة. فهو يتطلب فقط إضافة بضع سطور أخرى من التعليمات البرمجية. على سبيل المثال، لتدريب محول LoRA:
<Tip>
إذا لم تكن معتادًا على ضبط نموذج دقيق باستخدام [`Trainer`، فراجع البرنامج التعليمي](training) لضبط نموذج مُدرب مسبقًا.
</Tip>
1. حدد تكوين المحول باستخدام نوع المهمة والمعاملات الزائدة (راجع [`~peft.LoraConfig`] لمزيد من التفاصيل حول وظيفة هذه المعلمات).
```py
from peft import LoraConfig
peft_config = LoraConfig(
lora_alpha=16,
lora_dropout=0.1,
r=64,
bias="none",
task_type="CAUSAL_LM"،
)
```
2. أضف المحول إلى النموذج.
```py
model.add_adapter(peft_config)
```
3. الآن يمكنك تمرير النموذج إلى [`Trainer`]!
```py
trainer = Trainer(model=model, ...)
trainer.train()
```
لحفظ محول المدرب وتحميله مرة أخرى:
```py
model.save_pretrained(save_dir)
model = AutoModelForCausalLM.from_pretrained(save_dir)
```
## إضافة طبقات قابلة للتدريب إضافية إلى محول PEFT
```py
model.save_pretrained(save_dir)
model = AutoModelForCausalLM.from_pretrained(save_dir)
```
## إضافة طبقات قابلة للتدريب إضافية إلى محول PEFT
يمكنك أيضًا إجراء تدريب دقيق لمحوّلات قابلة للتدريب إضافية فوق نموذج يحتوي بالفعل على محوّلات عن طريق تمرير معلم `modules_to_save` في تكوين PEFT الخاص بك. على سبيل المثال، إذا كنت تريد أيضًا ضبط دقيق لرأس النموذج اللغوي`lm_head` فوق نموذج بمحوّل LoRA:
```py
from transformers import AutoModelForCausalLM, OPTForCausalLM, AutoTokenizer
from peft import LoraConfig
model_id = "facebook/opt-350m"
model = AutoModelForCausalLM.from_pretrained(model_id)
lora_config = LoraConfig(
target_modules=["q_proj", "k_proj"],
modules_to_save=["lm_head"]،
)
model.add_adapter(lora_config)
```
## وثائق API
[[autodoc]] integrations.PeftAdapterMixin
- load_adapter
- add_adapter
- set_adapter
- disable_adapters
- enable_adapters
- active_adapters
- get_adapter_state_dict
<!--
TODO: (@younesbelkada @stevhliu)
- Link to PEFT docs for further details
- Trainer
- 8-bit / 4-bit examples ?
-->

Some files were not shown because too many files have changed in this diff Show More