Compare commits

..

173 Commits

Author SHA1 Message Date
1b876127cb Go back to exhaustive list of bools 2025-04-08 14:08:46 +00:00
bb12b84ec0 Unhardcode use_chunked_attention, fix no_rope_layers 2025-04-07 12:38:06 +00:00
0fb8d49e88 Use Python 3.9 syntax in examples (#37279)
Signed-off-by: cyy <cyyever@outlook.com>
2025-04-07 12:52:21 +01:00
08f36771b3 Fix init empty weights without accelerate (#37337)
* add the integration

* Update accelerate.py

* Update accelerate.py

* add find_tied_params as well

* Update accelerate.py

* add where copied from

* simplify

* add error
2025-04-07 11:37:29 +02:00
9db31ea585 Fix deepspeed with quantization (#37324)
* Update modeling_utils.py

* Update modeling_utils.py
2025-04-07 11:36:44 +02:00
debfe904c9 fix llama4 training (#37319) 2025-04-07 09:24:44 +02:00
54538ebee3 fix flex attn when optional args aren't passed (#37327) 2025-04-07 09:12:21 +02:00
d1b92369ca v4.52.0.dev0 2025-04-05 22:04:21 +02:00
25b7f27234 Add llama4 (#37307)
* remove one of the last deps

* update fast image processor after refactor

* styling

* more quality of life improvements

* nit

* update

* cleanups

* some cleanups

* vllm updates

* update fake image token

* [convert] Fix typo

* [convert] Strip extraneous bytes from shards

* [convert] Minor fixes

* [convert] Use num_experts

* multi-image fixes in modeling + processor

* fixup size

* 128 experts

* Use default rope

* Unfuse mlp

* simplify a lot inputs embeds merging

* remove .item() 👀

* fix from review

* Address feedback

* Use None "default" for rope_scaling. Add eot.

* set seed

* return aspect ratios and bug fixes

* Moe 128 rebased (#8)

* 128 experts

* Use default rope

* Unfuse mlp

* Address feedback

* Use None "default" for rope_scaling. Add eot.

* Meta/llama quant compat (#7)

* add quant compatible model & conversion code for llama4

* fix a few issues

* fix a few issues

* minor type mapping fix

---------

Co-authored-by: Lu Fang <fanglu@fb.com>

* use a new config parameter to determine which model definition to use for MoE

---------

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
Co-authored-by: Lu Fang <fanglu@fb.com>

* un-comment write_tokenizer from converting script

* remove un-used imports

* [llama4] Pop aspect_ratios from image processor output in Llama4Processor

Signed-off-by: Jon Swenson <jmswen@gmail.com>

* Fix parameter_count name

* Update src/transformers/models/llama4/configuration_llama4.py

* nit

* Add changes for no_rope, moe_layers, chunked attention. Just need to test all

* Update src/transformers/models/llama4/image_processing_llama4_fast.py

* nit

* fix post merge with main

* support flex attention

* fixes

* fix

* add layer

* small updates

* rebase and delete llm_compressor

* nit

* [llama4/mm] Add back <|image|> token that delimits global tile

* [llama4/mm] Fix Llama 4 image processing unit tests

* add explicit dtype

Signed-off-by: Jon Swenson <jmswen@gmail.com>

* sdpa works

* comment todo small

* fix model loading

Signed-off-by: Zijing Liu <liuzijing2014@gmail.com>

* revert

* nits

* small fix for TP on 1 node

* Read new params from config

* Add <|eom|>

* lol don't know how this got here

* adding fp8

* Save processor, fix chat template

* style

* Add boi/eoi tokens

We don't use them.

* fixes for now flex seems to work :)

* updates

* nits

* updates

* missking keys

* add context parallel

* update

* update

* fix

* nits

* add worldsize and make eager attn work for vision

* Ignore new key present in base models

* add tp_plan

* fix nope

Signed-off-by: Zijing Liu <liuzijing2014@gmail.com>

* minor fix

Signed-off-by: Zijing Liu <liuzijing2014@gmail.com>

* Clean up Llama4 vision model

* current updates

* add support for `attn_temperature_tuning`

* add floor scale

* add missing attn scales

* push what works, dirty trick for the device synch

* oups

* Fix pad_token_id

See
https://huggingface.co/ll-re/Llama-4-Scout-17B-16E/discussions/2/files
Confirmed in the original codebase.

* fix causallml loading

* rm

* fix tied-weights

* fix sdpa

* push current version

* should work with both short and long

* add compressed_tensos & fix fbgemm tp

* Fix flex impl

* style

* chunking

* try to revert the potentially breaking change

* fix auto factory

* fix shapes in general

* rm processing

* commit cache utils cleanup

* Fix context length

* fix

* allocate

* update tp_plan

* fix SDPA!

* Add support for sparse `Llama4TextMoe` layer from the kernel hub

* cleanup

* better merge

* update

* still broken fixing now

* nits

* revert print

* Write max_position_embeddings and max_model_length

* Update modeling_llama4.py

* Save attention_chunk_size

* Sync eos terminators

* Read initializer_range

* style

* remove `dict`

* fix

* eager should use `chunked_attention_mask`

* revert

* fixup

* fix config

* Revert "Merge pull request #36 from huggingface/sparse-llama4-moe"

This reverts commit ccda19f050867dd42ea143c5de60f3dec81375f0, reversing
changes made to a515579aed8c0fe9bf529b6c40446a289406d5d6.

* Fix typo and remove warning with compiled flex and chunked prefill

* Fix MoE vs FF (#41)

* fix

* Use correct no_rope_layers if provided one is empty list

* update tests

* fix

* skipping some tests

* fix fp8 loading

Signed-off-by: Zijing Liu <liuzijing2014@gmail.com>

* fix text geneartion pipeline

Signed-off-by: Zijing Liu <liuzijing2014@gmail.com>

* eager needs 4D mask

* fix

* Some cleanup

* fix

* update

* fix

* replace correctly module

* patch

* modulelist

* update

* update

* clean up

* Don't move to `cuda:0` in distributed mode

* restrict to compressed tensors for now

* rm print

* Docs!

* Fixes

* Update docs/source/en/model_doc/llama4.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Fixes

* cuda graph fix

* revert some stuff

* fixup

* styling

* Update src/transformers/models/llama4/modeling_llama4.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fixup

* commit licence, cleanup here and there and style

* more styling changes

* fix dummies

* fix and clean docstrings

* remove comment

* remove warning

* Only fast image processor is supported

* nit

* trigger CI

* fix issue with flex encoder

* fix dynamic cache

* Code quality

* Code quality

* fix more tests for now

* Code quality

* Code quality

* Nuke bunch of failing stuff

* Code quality

* Code quality

* cleanup removal of slow image processor

* ruff fix fast image processor

* fix

* fix styling

* Docs

* Repo consistency

* Repo consistency

* fix sliding window issue

* separate llama cache

* styling

* Repo consistency

* Repo consistency

* push waht works

* L4 Repo consistency

* Docs

* fix last last alst alst alst alstsaltlsltlaslt

---------

Signed-off-by: Jon Swenson <jmswen@gmail.com>
Signed-off-by: Zijing Liu <liuzijing2014@gmail.com>
Co-authored-by: yonigozlan <yoni.gozlan10@gmail.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
Co-authored-by: Pablo Montalvo <pablo.montalvo.leroux@gmail.com>
Co-authored-by: Pablo Montalvo <39954772+molbap@users.noreply.github.com>
Co-authored-by: Keyun Tong <tongkeyun@gmail.com>
Co-authored-by: Zijing Liu <liuzijing2014@users.noreply.github.com>
Co-authored-by: Lu Fang <fanglu@fb.com>
Co-authored-by: Zijing Liu <liuzijing2014@gmail.com>
Co-authored-by: Jon Swenson <jmswen@gmail.com>
Co-authored-by: jmswen <jmswen@users.noreply.github.com>
Co-authored-by: MekkCyber <mekk.cyber@gmail.com>
Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
Co-authored-by: Mohit Sharma <mohit21sharma.ms@gmail.com>
Co-authored-by: Yong Hoon Shin <yhshin@meta.com>
Co-authored-by: Marc Sun <marc@huggingface.co>
Co-authored-by: drisspg <drisspguessous@gmail.com>
Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>
Co-authored-by: Daniël de Kok <me@danieldk.eu>
Co-authored-by: Lysandre <hi@lysand.re>
Co-authored-by: Ye (Charlotte) Qi <ye.charlotte.qi@gmail.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-04-05 22:02:22 +02:00
aa40fda346 Hf Xet extra (#37305)
* Hf Xet extra

* Hf Xet extra
2025-04-05 21:06:05 +02:00
e94571580b Fix deepspeed loading (part 2) (#37306)
* fix

* Update modeling_utils.py

* Update modeling_utils.py

* oups remove print
2025-04-05 20:41:42 +02:00
84aa13dd85 Fix deepspeed loading (#37281)
* Update modeling_utils.py

* Update modeling_utils.py

* fix and remove all imports

* Update modeling_utils.py

* Update modeling_utils.py

* style

* Update modeling_utils.py
2025-04-05 17:05:45 +02:00
0ef339ff1b Update OpenAI GPT model card (#37255)
* Update OpenAI GPT model card

* Update docs/source/en/model_doc/openai-gpt.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/openai-gpt.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/openai-gpt.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/openai-gpt.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update OpenAI GPT model card: add usage examples and notes section

* Add API autodoc tags after Notes section for OpenAI GPT model

* Update docs/source/en/model_doc/openai-gpt.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/openai-gpt.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/openai-gpt.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/openai-gpt.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/openai-gpt.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/openai-gpt.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/openai-gpt.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/openai-gpt.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/openai-gpt.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/openai-gpt.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/openai-gpt.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/openai-gpt.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/openai-gpt.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Added missing badges

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-04-04 15:25:16 -07:00
46d73910d5 Updated T5 model card with standardized format (#37261)
* Updated T5 model card with standardized format

* Updated T5 model card with standardized format, fixed typo

* Update docs/source/en/model_doc/t5.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/t5.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/t5.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/t5.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/t5.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/t5.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/t5.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/t5.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/t5.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/t5.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Apply reviewer suggestions

* Update docs/source/en/model_doc/t5.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-04-04 15:23:09 -07:00
579135a2f6 Updated model card for distilbert (#37157)
* Updated model card for distilbert

* Updated the distilbert model card

* Updated model card for distilbert

* Updated the distilbert model card

* Addressed code review comments

* Addressed review comments

* fix pipeline

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-04-04 15:22:46 -07:00
8cd57eb731 mobilebert model card update (#37256)
* mobilebert model card update

* Updates to model card mobilebert

---------

Co-authored-by: Reshan Gomis <reshang@verdentra.com>
2025-04-04 14:28:35 -07:00
ebe47ce3e9 Fix: Unexpected Keys, Improve run_compressed, Rename Test Folder (#37077) 2025-04-04 21:30:11 +02:00
531e4fcf0e Update model card for Depth Anything (#37065)
[docs] Update model card for Depth Anything
2025-04-04 11:36:05 -07:00
a4e55fcff8 Disable delay_optimizer_creation in Trainer to support fsdp2 (#37147)
* github why you do this

* fix

* make fixup

* disable cpu offload test

* fixup

* tmp reworks

* git branch movement

* make fixup

* add require_fsdp_v2_version

* dep issues

* update ruff and fixup
2025-04-04 20:11:37 +02:00
878562b68d fix test device spec relative path importing issue (#37190)
Signed-off-by: YAO Matrix <matrix.yao@intel.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2025-04-04 18:22:55 +02:00
8ebc435267 Fix llava_onevision tests (#37280)
* Fix llava_onevision tests

* Trigger tests
2025-04-04 15:03:38 +01:00
ad3d157188 [RoPE] abstract dynamic RoPE update under a decorator (#37249)
* dynamic rope decorator

* longrope; shorter fwd pass

* propper docstring

* make fixup
2025-04-04 14:27:28 +01:00
3d40bda30e Hugging Face Hub pin to v0.30.0 for Xet (#37166) 2025-04-04 14:58:22 +02:00
acbcb5d07d [Tests] flaky test_constrained_beam_search_generate_dict_output (#37276) 2025-04-04 13:38:42 +01:00
4ba0989eab Clarify error message to ensure min 28x28 image supplied for Qwen 2.5 VL (#37264)
fix: clarify error message for min 28x28 images

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
2025-04-04 12:53:38 +01:00
352ec8ef22 pin specific natten version in docker file (#37274)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-04-04 13:47:16 +02:00
edd345b52e Fix deprecated PT functions (#37237)
* Fix deprecated PT functions

Signed-off-by: cyy <cyyever@outlook.com>

* Revert some changes

Signed-off-by: cyy <cyyever@outlook.com>

---------

Signed-off-by: cyy <cyyever@outlook.com>
2025-04-04 12:31:11 +01:00
b016de1ae4 Fix utils/check_bad_commit.py (#37272)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-04-04 12:18:20 +02:00
f74d7da836 Introduce modular files for speech models (#35902)
* WAV_2_VEC_2 to WAV2VEC2

* added modular files for hubert, wavlm, wav2vec2_bert, data2vec_audio

* remove unnessary definitions in modulars

* added modular files for UniSpeech, UniSpeechSat, Wav2Vec2Conformer

* docstring fix for UniSpeechForCTC

* removed unneccessary re-definition of modular classes

* reverted lazy imports change on modular_model_converter, type-alias for Wav2Vec2BaseModelOutput

* top-level import of deepspeed in seamless_m4t, speecht5

* avoid tracking imports inside classes, relocate lazy deepspeed, peft imports in their original locations

* convert modular

* tiny modular typing fixes

* some more modular fixes

* make style

---------

Co-authored-by: eustlb <94853470+eustlb@users.noreply.github.com>
Co-authored-by: Eustache Le Bihan <eulebihan@gmail.com>
2025-04-04 11:46:27 +02:00
d130cd0e16 update error msg (#37207) 2025-04-04 10:21:30 +02:00
41b9b92b52 [qwen-vl] fix image processor (#37258)
* fix

* add test
2025-04-03 19:48:56 +02:00
8dd0a2b89c Update model card for electra (#37063)
* Update ELECTRA model card with new format

* Update ELECTRA model card with new format

* Update docs/source/en/model_doc/electra.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/electra.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/electra.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/electra.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/electra.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/electra.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/electra.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/electra.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/electra.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* close hfoption block

---------

Co-authored-by: Wun0 <f20191221@hyderabad.bits-pilani.ac.in>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-04-03 10:45:35 -07:00
15ac2b6ac5 Update Model Card for ModernBERT (#37052)
* Modify Model Card for ModernBERT.

* Update as per code review.

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update model card.

* Update model card.

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-04-03 10:14:02 -07:00
b552708694 chore: Update model doc for code_llama (#37115)
* Update code_llama.md

aims to handle https://github.com/huggingface/transformers/issues/36979#issuecomment-2758560598

sub part of https://github.com/huggingface/transformers/issues/36979

* Update docs/source/en/model_doc/code_llama.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/code_llama.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/code_llama.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* make changes as per code review

* chore: make the function smaller for attention mask visualizer

* chore[docs]: update code_llama.md with some more suggested changes

* Update docs/source/en/model_doc/code_llama.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* chore[docs] : Update code_llama.md with indentation changes

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-04-03 10:09:41 -07:00
2b84831a93 Update model card for Cohere (#37056)
* Update Cohere model card to follow standard template

* Update docs/source/en/model_doc/cohere.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/cohere.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/cohere.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/cohere.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/cohere.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/cohere.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update cohere.md

Update code snippet for AutoModel, quantization, and transformers-cli

* Update cohere.md

* Update docs/source/en/model_doc/cohere.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-04-03 09:51:40 -07:00
2d46a08b63 Purge unused ModelTester code (#37085)
* Purge correctly this time

* Remove more methods from recent PRs

* make fixup
2025-04-03 17:48:35 +01:00
1b29409d89 feat: updated model card for qwen_2.5_vl (#37099)
* feat: updated model card for qwen_2.5_vl

* applied suggested change 1

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* applied suggested change 2

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* applied suggested change 3

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* fix: made requested changes for quantization and notes

* suggeested model card change 4

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* updated model card wiht suggested change 5

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* updated model card wiht suggested change 6

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* updated model card wiht suggested change 7

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* feat: applied requested changes

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-04-03 09:13:26 -07:00
8a828a747e Add Optional to types (#37163)
Signed-off-by: cyy <cyyever@outlook.com>
2025-04-03 16:38:01 +01:00
3f6af96732 Adding links to ShieldGemma 2 technical report (#37247) 2025-04-03 16:26:29 +01:00
9a1c1fe7ed [CI] green llama tests (#37244)
* green llama tests

* use cleanup instead

* better test comment; cleanup upgrade

* better test comment; cleanup upgrade
2025-04-03 14:15:53 +01:00
782d7d945d Allow flexible generation params arg when checking pipeline specs (#37211)
* Allow flexible generation params arg

* Trigger tests

* Add docstring and rename js_generate to hub_generate
2025-04-03 13:29:36 +01:00
afafb84b59 Add support for fast image processing in image-pretraining example (#37021)
* Add support for fast image processing in image-pretraining example

Fix typo: correct tuple formatting in IMAGE_PROCESSOR_MAPPING_NAMES

Signed-off-by: jafraustro <jaime.fraustro.valdez@intel.com>

* Use fast image processor by default

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
Signed-off-by: jafraustro <jaime.fraustro.valdez@intel.com>

---------

Signed-off-by: jafraustro <jaime.fraustro.valdez@intel.com>
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
2025-04-03 13:26:46 +01:00
34ccfebf32 Fix AST parsing when looking for remote code imports (#37245)
* Not all Call.func nodes have id because they can be methods

* Trigger tests

* Trigger tests
2025-04-03 13:00:51 +01:00
f697b3f824 enable 2 types of case on XPU (#37198)
enable 2 types of case on XPU 1. test_resize_tokens_embeddings_with_deepspeed_multi_gpu 2. test_resize_embeddings_untied_with_deepspeed_multi_gpu

Signed-off-by: YAO Matrix <matrix.yao@intel.com>
2025-04-03 11:37:55 +02:00
2099287a59 [CI] lazy loading external datasets (#37218) 2025-04-03 09:57:45 +01:00
a0803a9555 [tests] fix mamba integration simple inference precision issue (#37193)
* fix precision issue

* use float32
2025-04-03 10:38:03 +02:00
6ce238fe7a Fix test (#37213)
* Update test_modeling_common.py

* style
2025-04-03 10:24:34 +02:00
12048990a9 Add new dim to num_items_in_batch if necessary (#36967)
* Add new dim to `num_items_in_batch` if necessary

* Unsqueeze only in the DP case

---------

Co-authored-by: Ilyas Moutawwakil <57442720+IlyasMoutawwakil@users.noreply.github.com>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2025-04-03 09:57:03 +02:00
98601cc818 [Phi4] add multimodal chat template (#36996)
* phi4 chat template

* remove from valid kwargs
2025-04-03 09:52:09 +02:00
c9302c0983 Fix static cache export (#37229)
Co-authored-by: Guang Yang <guangyang@fb.com>
2025-04-03 07:05:57 +02:00
2056287940 Updated model card for Qwen2 (#37192)
* Update qwen2.md

* Update qwen2.md

* Update qwen2.md

* Update qwen2.md

* Update docs/source/en/model_doc/qwen2.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/qwen2.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/qwen2.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/qwen2.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/qwen2.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/qwen2.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/qwen2.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/qwen2.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/qwen2.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update qwen2.md

* Update docs/source/en/model_doc/qwen2.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/qwen2.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/qwen2.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/qwen2.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/qwen2.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/qwen2.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/qwen2.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/qwen2.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/qwen2.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/qwen2.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/qwen2.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/qwen2.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/qwen2.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/qwen2.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/qwen2.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/qwen2.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/qwen2.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/qwen2.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-04-02 18:10:41 -07:00
3e96a0c32b Update falcon model card (#37184)
* feat: updated model card for falcon

* fix:rewrite model description

* fix: add link to conversion script

* Update docs/source/en/model_doc/falcon.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/falcon.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/falcon.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/falcon.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/falcon.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/falcon.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/falcon.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/falcon.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* fix: Add suggested changes

* fix: typo in link for quantization

* Update docs/source/en/model_doc/falcon.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/falcon.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* fix: fix indent and close ticks

* fix: add indent

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-04-02 17:30:37 -07:00
199d7adf10 Updated the model card for CLIP (#37040)
* Update clip.md

* Update docs/source/en/model_doc/clip.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/clip.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/clip.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Incorporated suggested changes

* Update docs/source/en/model_doc/clip.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/clip.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/clip.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-04-02 14:57:38 -07:00
126abe3461 More ReDOS fixes! (#36964)
* More ReDOS fixes!

* Slight regex cleanup

* Cleanup regex replacement

* Drop that regex entirely too

* The regex didn't match config.json, let's make sure we don't either

* Cleanup allowed_value_chars a little

* Cleanup the import search

* Catch multi-condition blocks too

* Trigger tests

* Trigger tests
2025-04-02 18:46:14 +01:00
3d133cc557 Stop DOSing the Hub in the CI (#37209)
* As the title suggests, stop hammering the same files

* make fixup

* Use shutil instead of pathlib
2025-04-02 17:19:33 +01:00
e90d55ebcc [Tests] add min_new_tokens to prevent flaky length checks (#37175) 2025-04-02 15:24:00 +01:00
cbfa14823b No more dtype_byte_size() (#37144)
* No more dtype_byte_size()

* Remove function once again

* Fix rebase cruft

* Trigger tests
2025-04-02 14:58:38 +01:00
7613cf1a45 Add py.typed (#37022) 2025-04-02 14:17:27 +01:00
32c12aaec3 [3/N] Use pyupgrade --py39-plus to improve code (#36936)
Use pyupgrade --py39-plus to improve code

Signed-off-by: cyy <cyyever@outlook.com>
2025-04-02 14:16:06 +01:00
764ab0d46a Merge tensor operations with device transfer operations (#37097)
* Merge operations with to

Signed-off-by: cyy <cyyever@outlook.com>

* Use dtype

Signed-off-by: cyy <cyyever@outlook.com>

---------

Signed-off-by: cyy <cyyever@outlook.com>
2025-04-02 14:15:23 +01:00
c94c6ed397 Fix some code annotation typos. (#37102)
Signed-off-by: zhanluxianshen <zhanluxianshen@163.com>
2025-04-02 14:00:41 +01:00
e94d607c8b fix: Add 'image-text-to-text' to TASK_MAPPING (#37107)
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2025-04-02 14:51:03 +02:00
adfc91cd46 Try to avoid/reduce some remaining CI job failures (#37202)
* try

* try

* Update tests/pipelines/test_pipelines_video_classification.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2025-04-02 14:39:57 +02:00
6f5dc9c82e Fixes DynamicCache export issues due to control flow and inplace modifications (#36652)
* Remove unnecessary masked_fill in deberta models

* Enable some code when exporting but not compiling

* add missing import

* style

* replace if by torch.cond

* style

* use numel

* style

* add unit tests

* style

* change empty value for dynamic cache

* replace != [] by numel()

* fix import issue

* style
2025-04-02 12:04:40 +01:00
a165458901 Add device workaround for int4 weight only quantization after API update (#36980)
* merge

* fix import

* format

* reformat

* reformat

---------

Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
2025-04-02 12:42:22 +02:00
ed95493ce0 Skip code 307 in RequestCounter (#36953)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-04-02 11:35:46 +02:00
211e4dc9a4 [chat-template] fix video loading (#37146)
* fix

* add video

* trigger

* push new iamges

* fix tests

* revert

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-04-02 11:27:50 +02:00
800510c67b [doc] Fix link for Quark quantization page (#37179)
Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
2025-04-01 20:57:38 +02:00
41f5c3216c Revert #37031 (#37178)
Update modeling_utils.py
2025-04-01 19:48:15 +02:00
bc2dea3f54 Fix meta state dict loading with quantizers (#37136)
Update modeling_utils.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-04-01 18:45:58 +02:00
35253076f4 Avoid pipeline test failing related to Hub call (#37170)
* cls

* cls

* cls

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-04-01 18:22:45 +02:00
bf41e54fc8 Fixes the inconsistency of the optionality of attention_mask (#37153)
* debugging issue 36758

* debugging issue 36758

* debugging issue 36758

* updated attn_mask type specification in _flash_attention_forward

* removed pdb

* added a blank line

* removed indentation
2025-04-01 15:31:10 +01:00
3249c5dc15 Refactor attention for SigLIP based models (#36981)
* Update Siglip attention implementation

* Update tests for Siglip

* Remove one level of indentation

* Update test to be more specific

* Fixup

* Idefics2

* Idefics3

* Emu3

* SmolVLM

* Phi4 (just init small update)

* Idefics2 (test fix)

* Update siglip2 tests

* Update eager

* trigger

* Clean up

* Transfer inputs to device in test

* Fixing test

* Fixing test

* Revert contiguous

* Remove unused is_flash_attn_2_available

* Move flaky to specific models
2025-04-01 15:37:25 +02:00
24e311f42b fix XPU UT error case brough by RNG difference btw XPU and CUDA (#37121)
* fix XPU UT error case brough by RNG difference btw XPU and CUDA

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* enable tests/models/llama/test_modeling_llama.py::LlamaIntegrationTest::test_model_7b_logits and tests/models/llama/test_modeling_llama.py::LlamaIntegrationTest::test_model_7b_logits_bf16 on xpu

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* Revert "enable tests/models/llama/test_modeling_llama.py::LlamaIntegrationTest::test_model_7b_logits and tests/models/llama/test_modeling_llama.py::LlamaIntegrationTest::test_model_7b_logits_bf16 on xpu"

This reverts commit 3ef83a4f0204642daa45fda56e8aca1afed24b4f.

---------

Signed-off-by: YAO Matrix <matrix.yao@intel.com>
2025-04-01 13:52:55 +01:00
897ff9af0e [ModernBERT] Never save 'reference_compile' config; should be set based on end user (#36305)
* Never save 'reference_compile' config; should be set based on end user

* Reformat (I ran 'make style' from the wrong env)

* Use pop instead of del

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* Use pop instead of del

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

---------

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2025-04-01 14:14:39 +02:00
c0bd8048a5 Make canine model exportable by removing unncessary complicated logic (#37124) 2025-04-01 12:31:12 +01:00
60b75d99b6 Only count num items in batch when needed (#36867)
only count num itels when needed
2025-04-01 12:30:39 +02:00
fac70ff3c0 Convert _VALID_DICT_FIELDS to class attribute for shared dict parsing in subclasses (#36736)
* make _VALID_DICT_FIELDS as a class attribute

* fix test case about TrainingArguments
2025-04-01 12:29:12 +02:00
ae34bd75fd Use public export API on torch 2.5 and future (#36781)
Co-authored-by: Guang Yang <guangyang@fb.com>
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
2025-04-01 10:47:38 +01:00
8f6b27eb5c enable test_assisted_decoding_in_different_gpu test on XPU (#37120)
Signed-off-by: YAO Matrix <matrix.yao@intel.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2025-04-01 11:22:59 +02:00
737cbd2109 Fix llava xpu tests. (#37130)
* fix llava 4bit xpu test

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix llava 4bit xpu test

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix format

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix format

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

---------

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>
2025-04-01 11:10:13 +02:00
3a6ab46a0b add gpt2 test on XPU (#37028)
* add gpt2 test on XPU

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* auto dtype has been fixed

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* convert model to train mode

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

---------

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>
2025-04-01 11:09:29 +02:00
4b13a02920 Fix std initialization in Idefics variants (#37100)
* Nit 😅

* Another one

* fix

* run ci

* revert change
2025-04-01 09:18:54 +02:00
786d9c5ed9 Fix more inefficient PT operations (#37060)
* Fix inefficient operations

* Remove cpu() call

* Reorder detach()

* Reorder detach()

* tolist without detach

* item without detach

* Update src/transformers/models/rag/modeling_rag.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update tests/models/encodec/test_modeling_encodec.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Use detach().cpu().numpy

* Revert some numpy operations

* More fixes

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2025-03-31 16:31:24 +01:00
a1e389e637 Refactor return_dict logic to remove complicated if/else paths (#36794)
* SAM

* CLIP

* SigLIP

* GOT-OCR2 (depends on SAM)

* SigLIP2 (depends on SigLIP)

* trigger tests

* Fix SAM

* Fix missed indexing, use named attributes

* Llama

* Aria

* Bamba

* Update llama: missed outputs return type

* (fixup) Aria

* DiffLlama

* Emu3

* Gemma

* Gemma2

* Paligemma

* Fix paligemma

* Gemma3

* GLM

* Helium

* JetMoe

* Jamba

* Mistral

* Mistral

* Mixtral

* Nemotron

* Olmo

* Olmo2

* Persimmon

* Phi

* Phi3

* PhiMoe

* Qwen2

* Qwen2_moe

* StableLM

* Starcoder2

* Add return_dict decorator

* SAM

* Update decorator: compile, export, trace - friendly

* Llama (decorator)

* SAM (decorator)

* Add decorator `can_return_tuple`

* Llama

* Update to decorator

* Update CLIP

* Update decorator to store `_is_top_level_module` in self

* Update decorator to correctly handle compile/export

* Remove is_torchdynamo_compiling constraint, all work fine with self attribute assignment

* Typing

* GPT NeoX

* Fixup

* Fix attribute Granite

* Fix return type mixtral

* Update Gemma3

* Fix Cohere amd Cohere2

* Fixup

* Fix corner case for Phi4, when activation is shared

* (fix-copies) deepseekv3, phi4

* Fixup

* Apply to qwen3/qwen3_moe

* Fix
2025-03-31 16:23:37 +01:00
f304318f5f Remove low_cpu_mem_usage and _fast_init (#36963)
* Remove low_cpu_mem_usage and _fast_init

* Update deepspeed.py

* Update modeling_utils.py

* remove the first 2 tests everywhere

* Update test_modeling_common.py

* remove what was remaining about fast_init

* fix logic and simplify

* mismatched keys logic update

* Update modeling_utils.py

* Update modeling_utils.py

* Update modeling_utils.py

* Update modeling_utils.py

* fix 2 models init_weights

* extend to others

* remove grad

* Update modeling_fsmt.py

* init weights in tests

* style

* Update test_modeling_fsmt.py

* more old models

* fix more init_weights

* copies

* fix

* style

* Update modeling_lxmert.py

* fix inits

* more and more

* more

* should finalize

* style

* Update modeling_dinov2_with_registers.py

* fix

* Update modeling_encoder_decoder.py

* fix

* style

* Update modeling_lxmert.py

* post rebase cleanup

* Update modeling_informer.py

* back to start for device

* fix

* add test to detect all failing cases correctly

* Update test_modeling_common.py

* fix

* fix

* sam

* style

* Update modeling_maskformer_swin.py

* CIs

* CIs

* remove test - will add it on separate PR

* fix

* fix

* Update modeling_sam.py

* CIs

* CIs

* CIs

* convnext

* suggestions

* CIs

* fix copies after merge

---------

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2025-03-31 17:18:43 +02:00
8805600406 [qwen3] fix generation tests (#37142)
* do not skip tests

* fix qwen3-moe as well

* fixup

* fixup
2025-03-31 16:33:41 +02:00
e686fed635 [Feature] Support using FlashAttention2 on Ascend NPU (#36696)
* [Feature] Support using flash-attention on Ascend NPU

* Fix qwen3 and qwen3_moe moduler conversion mismatch
2025-03-31 16:12:58 +02:00
a03cee7a1d skip (#37141)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-03-31 15:38:40 +02:00
3b07ca78bb Export T5 (encoder-decoder) to ExecuTorch (#36486)
Co-authored-by: Guang Yang <guangyang@fb.com>
2025-03-31 12:10:26 +02:00
475664e2c6 [tests] remove cuda-only test marker in AwqConfigTest (#37032)
* enable on xpu

* add xpu support

---------

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-03-31 11:53:02 +02:00
0710e9b1e8 Create and Expose SamVisionModel as public for better accessibility (#36493)
* move encoder below

* auto modeling

* write SamVisionTester

* fix vision attention shape

* fix SamVisionTest

* minor changes to SamVisionTest

* Revert "fix vision attention shape"

This reverts commit d2a4083ae5704716e33351aed03af8f3cc45f3ae.

* fix attention output shape in new tests

* remove encoder examples

* run modular on got_ocr2

* code formatting

* fix got_ocr2

* ruff fixes

* code quality

* add sam_vision in auto modeling and auto configuration

* remove composite test

* updated index.md

* add TFSamVisionEncoder to __init__

* fix public TFSamVisionEncoder

* remove outdated todo comment

* set test_torch_exportable

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* rename: VisionEncoder -> VisionModel

* bring back original SamVisionEncoder

* rename back: VisionEncoderOutput -> VisionModelOutput

* undo changes in SamModelTester

* reuse SamVisionEncoder in SamVisionModel

---------

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
2025-03-31 11:45:07 +02:00
f99c279d20 Remove deprecated code (#37059)
* Remove deprecated code

* fix get_loading_attributes

* fix error

* skip test

---------

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
2025-03-31 11:15:35 +02:00
d1efaf0318 RWKV: fix mask warning typo (#37114)
rwkv: fix mask warning typo
2025-03-31 11:07:51 +02:00
19919689b2 Fix Gemma3 embedding scaling (#37109)
fix gemma3 embedding
2025-03-31 11:04:02 +02:00
d0b65bb479 [MLU] Fix FA2 check error, remove deepspeed-mlu deps. (#36159)
* add Cambricon MLUs support

* fix mlu device rng state

* up for quality check

* up mlu to support fp16

* fix mlu device dependency error

* fix mlu device dependency error

* enable mlu device for bf16

* fix mlu device memory tracker

* Cambricon support SDPA and flash_attn

* MLU devices : Checks if `mlu` is available via an `cndev-based` check which won't trigger the drivers and leave mlu

* Fix mlu FA2 check. Remove deepspeed-mlu check. add mlu tests support.

* fix testing errors.

* Merge branch 'hf/main' into main

* fix get_device_count error.

* fix mlu testing utils.

* fix code quality and style.

* switch to @require_torch_multi_accelerator
2025-03-31 11:02:49 +02:00
ad63d20dff fix whisper re-compile (#36712)
* fix whisper re-compile

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix copy

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix comment

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix copies

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* revert useless changes

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

---------

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-03-31 11:01:51 +02:00
286393fbb1 enable tp on CPU (#36299)
* enable tp on CPU

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* get rank from cpu

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* update

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* enable TP tests

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix comment

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* em print

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix model id

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix conflict

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix index and add doc

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

---------

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>
2025-03-31 10:55:47 +02:00
4705b04c74 Fix 4090/ada not detected as having FP8 support (#37067)
fix 4090/ada not detected as having FP8 support

Signed-off-by: Qubitium <qubitium@modelcloud.ai>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
2025-03-31 10:53:48 +02:00
2b4734bd49 Support passing flash_attn_kwargs when gradient_checkpointing is enabled (#37037)
* support passing flash_attn_kwargs when gradient_checkpointing is enabled

* make modeling_deepspeek_v3.py consistent with modular_deepseek_v3.py
2025-03-31 10:53:02 +02:00
bd41b9c1ac Gaudi: Fix the pipeline failed issue with hpu device (#36990)
* Gaudi: fix the issue of is_torch_hpu_available() returns false

Signed-off-by: yuanwu <yuan.wu@intel.com>

* Fix make fixup

Signed-off-by: yuanwu <yuan.wu@intel.com>

* Add comments for the implicit behavior of import

Signed-off-by: yuanwu <yuan.wu@intel.com>

* Update src/transformers/utils/import_utils.py

* Update src/transformers/utils/import_utils.py

---------

Signed-off-by: yuanwu <yuan.wu@intel.com>
Co-authored-by: Ilyas Moutawwakil <57442720+IlyasMoutawwakil@users.noreply.github.com>
2025-03-31 10:23:47 +02:00
6acd5aecb3 Adding Qwen3 and Qwen3MoE (#36878)
* Initial commit for Qwen3

* fix and add tests for qwen3 & qwen3_moe

* rename models for tests.

* fix

* fix

* fix and add docs.

* fix model name in docs.

* simplify modular and fix configuration issues

* Fix the red CI: ruff was updated

* revert ruff, version was wrong

* fix qwen3moe.

* fix

* make sure MOE can load

* fix copies

---------

Co-authored-by: Arthur Zucker <arthur.zucker@gmail.com>
2025-03-31 09:50:49 +02:00
0d6a60fe55 🌐 [i18n-KO] Translated qwen2_vl.md to Korean (#36750)
* fix: manual edits

* fix: resolve suggestions

* Update toctree.yml
2025-03-30 15:00:27 -07:00
b7fc2daf8b Kenlm (#37091)
* kenlm

* kenlm

* kenlm

* kenlm

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-03-28 21:42:54 +01:00
bab605dd04 [Cache] rename dtype attribute 🚨 🚨 (#37044)
* yoink

* same pattern in all cache
2025-03-28 19:08:02 +01:00
9fd9476005 [generate] beam search -- fix output cropping (#37080)
* handle jagged beams

* better comment

* bart -- beam search tests print special tokens

* more bart test updates

* more tests!

* better comment
2025-03-28 18:57:51 +01:00
257bc670fb fixed typo. (#37057)
Signed-off-by: zhanluxianshen <zhanluxianshen@163.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2025-03-28 17:12:14 +00:00
2bea6bf24e Fix AttentionInterface following feedback (#37010)
* up

* typo

* update doc

* Update attention_interface.md
2025-03-28 18:00:35 +01:00
a86dad56bc Fix state_dict map location when quantized (#37086)
* Update modeling_utils.py

* Update modeling_utils.py
2025-03-28 17:57:16 +01:00
d6064754ea Update w/ new account (#37084)
* Update w/ new account

* DS
2025-03-28 12:43:00 -04:00
581cf96e0c fix tied weigths issue (#37031)
* fix

* comment

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-03-28 16:36:44 +01:00
eca74d1367 [WIP] add deepseek-v3 (#35926)
* init commit

* style

* take comments into account

* add deepseekv3 modeling

* remove redundant code

* apply make style

* apply fix-copies

* make format

* add init files

* rename deepseekv3 into deepseek_v3 based on its model_type

* rename deepseekv3 into deepseek_v3 based on its model_type

* deepseek-v3 not deepseek_v3

* set model_type as deepseek_v3

* use default docs

* apply make

* fill type and docstring

* add rope_config_validation

* use custom DeepseekV3MLP

* hold code only for checkpoints congifuration; remove redundant

* revise rope yarn for DeepSeek variation

* rename DeepSeek-V3

* some refactoring

* revise load_hook to work properly; make moe func trainable; use llama instead of mixtral

* fix attention forward

* use -1 for not-changing dim when to use exapnd

* refactor DeepseekV3TopkRouter

* use reshape_for_rope instead of load_hook; revise attention forward for TP; rename q_head_dim with qk_head_dim

* register pre_hook and hook both

* make style

* use n_shared_experts

* Update src/transformers/models/deepseek_v3/configuration_deepseek_v3.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* add test file

* update modeling_file according to modular file

* make style

* add mapping for DeepseekV3ForSequenceClassification

* remove aux_loss_alpha

* add deepseek_v3 for perf

* add deepseek_v3

* rename test as deepseekv3

* use tiny-deepseek-v3

* remove DeepseekV3ForSequenceClassification

* cache before padding

* remote output_router_logits

* Revert "remote output_router_logits"

This reverts commit f264f800d04950390db8413b9efb24cef8186330.

* remove output_router_logits

* make e_score_correction_bias as buffer

* skip tests not compatible

* make style

* make e_score_correction_bias as buffer

* use rope_interleave instead of load_hook

* skip tests not compatible with MLA

* add doc for rope_interleave

* fix typo

* remove torch.no_grad for selecting topk

* fix post merge issue

* mrege with main and simplify

* nits

* final

* small fixes

* fix

* support TP better

* stash

* changes currently requires

* remove synch

* more fixes for TP

* temp fix for TP : some attention layers's FP8 scales are too small + shared is local colwise and anything is local if FP8 because weights are used

* updates to have generation work!

* push most of the changes

* reorder functions + call for contributions!

* update readme

* nits

* update

* ruff was updated on main

* merge with main and fix copies

* revert unrelated changes

* route all tokens to all experts when testing to avoid no gradient iddues

* finish fixing all tests

* fixup

* nit

* clean config

* last readme changes

* nit

* do cnit

* typo

* last nit

* one more one more

---------

Co-authored-by: Arthur Zucker <arthur.zucker@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: arthur@huggingface.co <arthur@ip-26-0-165-131.ec2.internal>
2025-03-28 15:56:59 +01:00
52cc204dd7 [blip-2] Fix dtype mismatch when keep in fp32 (#37068)
* fix fp32 BLIP2

* no need to reorder that

* check for `Noneness` as well before casting dtype
2025-03-28 15:52:11 +01:00
aa3778afc2 Change deprecated PT functions (#37041)
Change deprecated functions
2025-03-28 14:26:22 +00:00
c90e6e9625 Fix some typos about benchmark scripts. (#37027)
Signed-off-by: zhanluxianshen <zhanluxianshen@163.com>
2025-03-28 14:10:20 +00:00
1fcaad6df9 Use lru_cache for tokenization tests (#36818)
* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-03-28 15:09:35 +01:00
jp
3af425d4c6 fix: AttributeError: 'LlavaProcessor' object has no attribute 'image_token_id' (#37026)
* Add image_token_id and video_token_id handling in Llava processors

* fix: image to video

* fix: correct image and video token ID handling in Llava processors

* fix: improve image and video token ID handling in Llava processors
2025-03-28 10:46:24 +01:00
064cd7cdac Fix SDPA implementation in Qwen2-VL (issues with torch==2.6.0) (#36891)
* fix sdpa implementation

* ruff

* also modify 2_5 for consistency
2025-03-28 09:54:21 +01:00
348f3285c5 fix: Fully remove legacy cache from Llama (#36958)
* bug: fully remove legacy cache from Llama

* bug: fix CI issues

* bug: update jetmoe model

* bug: apply =check_modular_conversion.py= fix

* bug: apply make fix-copies

* bug: fix ruff

* PR suggestions

* Remove trailing commas in auto-gen files

* Trivial new line removal
2025-03-27 17:22:44 +00:00
d6b3c7486b fixed typo (#37036) 2025-03-27 15:37:53 +00:00
6cc9c8d7d1 Remove deprecated batch_size parameter (#37007) 2025-03-27 15:01:56 +00:00
4cc65e990f Replace default split function with jnp.split() in flax models (#37001)
Replace split with jnp's split function for flax models (#36854)
2025-03-27 14:59:57 +00:00
41a0e58e5b Set weights_only in torch.load (#36991) 2025-03-27 14:55:50 +00:00
de77f5b1ec Fix typing for None valued variables (#37004)
Fix typing for None-able variables
2025-03-27 14:46:32 +00:00
8c5e29bad5 Avoid unnecessary device operations in loss computing (#36950)
* Avoid unnecessary tensor copy in loss computing

* Add type
2025-03-27 14:45:14 +00:00
471cf1de63 clean pipeline question_answering. (#36986)
Signed-off-by: zhanluxianshen <zhanluxianshen@163.com>
2025-03-27 14:35:33 +00:00
29f322d04d [generate, cache] handle more complex device maps (#37014) 2025-03-27 14:33:20 +00:00
fb8e6c50e4 [audio utils] fix fft_bin_width computation (#36603)
* fix fft_bin_width computation

* update docstring + enforce correct params

* update test with correct value

* udpate test

* update feature extractors for concerned models

* update

* make

* udpate docstring

* udpate docstring
2025-03-27 15:20:02 +01:00
e97c760006 [chat templates} support loading audio from video (#36955)
* add audio from video

* typos

* delete print

* comments
2025-03-27 14:46:11 +01:00
c7bc79bd2a Fixup for distill_any_depth conversion script (#37043)
* Fixup

* trigger
2025-03-27 13:29:25 +00:00
d1eafe8d4e Optimize to_py_obj for python-native numeric lists and scalars (#36885)
* Optimize to_py_obj for python-native numeric lists and scalars

* Fix bug that tuple is not converted to list

* Try np.array for more robust type checking

* Apply review and add tests for to_py_obj
2025-03-27 14:16:46 +01:00
0e56fb69a2 fix pegasus init weights and other copied models (#36844)
* fix pegasus init weights

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix the rest of models

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix test

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix informer init

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* init weight before checking

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix roformer tests

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix roformer tests

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

---------

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>
2025-03-27 14:14:30 +01:00
7e813f9cf0 Add Distill Any Depth (#36614)
* Added conversion Script

* Update src/transformers/models/depth_anything/convert_distill_any_depth_to_hf.py

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* Updated Conversion Script

* Update src/transformers/models/depth_anything/convert_distill_any_depth_to_hf.py

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

---------

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
2025-03-27 13:10:03 +00:00
92429057d9 Skip FP8 linear tests For device capability < 9.0(#37008)
* skip fp8 linear

* add capability check

* format
2025-03-27 12:38:37 +01:00
279c2e302a remove redundant code in trainer (#36994)
* Update optimization.py

* Update optimization.py
2025-03-27 11:35:15 +01:00
d13c390d01 Mark 2 tests as flaky for now (#37038)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-03-27 10:59:47 +01:00
d6d930a64b [Modeling] Load FP8 safetensors such as DeepSeek (#36828)
support loading fp8

Signed-off-by: Kyle Sayers <kylesayrs@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2025-03-27 10:47:10 +01:00
927ce1d39f Fix PixtralProcessor patch_size when spatial_merge_size is used (#37019) 2025-03-27 10:46:23 +01:00
49b5ab6a27 Support QuestionAnswering Module for ModernBert based models. (#35566)
* push ModernBertForQuestionAnswering

* update ModernBertForQuestionAnswering

* update __init__ loading

* set imports for ModernBertForQuestionAnswering

* update ModernBertForQuestionAnswering

* remove debugging logs

* update init_weights method

* remove custom initialization for ModernBertForQuestionAnswering

* apply make fix-copies

* apply make style

* apply make fix-copies

* append ModernBertForQuestionAnswering to the pipeline supported models

* remove unused file

* remove invalid autoload value

* update en/model_doc/modernbert.md

* apply make fixup command

* make fixup

* Update dummies

* update usage tips for ModernBertForQuestionAnswering

* update usage tips for ModernBertForQuestionAnswering

* add init

* add lint

* add consistency

* update init test

* change text to trigger stuck text

* use self.loss_function instead of custom loss

By @Cyrilvallez

Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>

* Update modeling_modernbert.py

make comparable commit to even it out

* Match whitespace

* whitespace

---------

Co-authored-by: Matt <rocketknight1@gmail.com>
Co-authored-by: Orion Weller <wellerorion@gmail.com>
Co-authored-by: Orion Weller <31665361+orionw@users.noreply.github.com>
Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>
2025-03-26 21:24:18 +01:00
5b08db8844 fix transformers_cli import relative path issue (#36989)
* fix transformers_cli relative import path issue

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>

* fix style

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>

---------

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2025-03-26 18:45:56 +00:00
3a8ec8c467 [docs] Attention mask image (#36970)
add image
2025-03-26 10:11:34 -07:00
2b550c47b2 Remove deprecated training arguments (#36946)
* Remove deprecated training arguments

* More fixes

* More fixes

* More fixes
2025-03-26 16:44:48 +00:00
44715225e3 fix typos in the code comments and error messages (#36993)
* chore: enhance code comments

* chore: enhance code comments

* chore: enhance code comments

* chore: enhance code comments

* chore: enhance code comments

* chore: enhance code comments

* chore: enhance code comments
2025-03-26 16:09:48 +00:00
79d6f9fd70 Log the correct learning rate (#36973)
* fix learning rate log

* fix lr log

* add lr
2025-03-26 16:52:00 +01:00
13d36e89fe Fix device_map check for ggml files (#37003)
fix
2025-03-26 16:24:57 +01:00
021006e1b0 Fix removing "cpu" from frozenset in bitsandbytes.py to allow better ROCm support. (#36975)
* Fix removing "cpu" from frozenset in bitsandbytes.py to allow better ROCm support.

Related to https://github.com/bitsandbytes-foundation/bitsandbytes/issues/1573 and https://github.com/huggingface/transformers/issues/36949 , this resolves a bug in allowing ROCm/HIP support in bitsandbytes.

* Related to bitsandbytes-foundation/bitsandbytes#1573 and huggingface#36949 , this resolves a bug in the biteandbytes integration, allowing ROCm/HIP support in bitsandbytes.

---------

Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
2025-03-26 16:18:08 +01:00
788e1092e9 Allow easy registration of custom attention functions (#36889)
* Update modeling_utils.py

* style

* Update modeling_utils.py

* Update modeling_utils.py

* Update modeling_utils.py

* Update modeling_utils.py

* Update modeling_utils.py

* Update modeling_utils.py

* add to init

* Update modeling_utils.py

* style

* update

* Update modeling_utils.py

* Update modeling_utils.py

* style

* Add some doc

* Update _toctree.yml

* readd it for tgi/vllm compat

* CIs

* CIs
2025-03-26 16:15:06 +01:00
ad5d40de9c Fix get_device_properties (#36997)
Fix remove remnant self from get_device_properties

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2025-03-26 15:46:34 +01:00
8084b26294 Fix Optional type annotation (#36841)
* Fix annotation

* Update src/transformers/generation/candidate_generator.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/generation/utils.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/generation/utils.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2025-03-26 13:53:44 +00:00
b56d8f07e4 Install networkx==3.2.1 manually in some CircleCI jobs after #36957 (#37000)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-03-26 14:49:09 +01:00
78afa1c537 Use torch.expm1 (#36995) 2025-03-26 13:06:33 +00:00
181d453069 byebye CircleCI TF jobs (#36998)
* byebye tf jobs

* byebye tf jobs

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-03-26 12:49:50 +01:00
e7139d06f5 Fix tensor dtype mismatch (#36985)
* Fix tensor dtype mismatch

* update

* update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-03-26 10:37:46 +01:00
be37d34f44 🚨Deprecate legacy argument for image-text-to-text models and adopt new behavior by default (#36307)
* deprecate legacy argument and adopt new behavior by default

* revert back modification git
2025-03-25 17:32:17 -04:00
ab4656f6b7 update bot comment again (#36974)
update

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-03-25 19:42:09 +01:00
ba531278ca Add ruff target-version (#36971) 2025-03-25 19:41:25 +01:00
a844297088 [docs] Fix image link (#36869)
* fix image link

* fix

* update

* fix
2025-03-25 11:34:21 -07:00
d68a91aebf Remove extra tensor clone in PyTorch code (#36748)
* Use detach().clone()

* Eliminate continuous()

* Merge clone and other calls with to

* Merge clone and other calls with to
2025-03-25 17:42:15 +00:00
121830ab47 update examples after ruff being updated (#36972)
* update

* update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-03-25 18:15:47 +01:00
a41677a68b Updated docker files to use uv for installing packages (#36957)
* Updated docker files to use uv pip install as uv is blazingly fast.

* Removed -y flag for uv pip uninstall.

* Passed --no-build-isolation flag

---------

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2025-03-25 18:12:51 +01:00
3dce98a437 typo fixed in README_fr.md (#36951) 2025-03-25 09:29:36 -07:00
ebd2029483 Change GPUS to GPUs (#36945)
Signed-off-by: zhanluxianshen <zhanluxianshen@163.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2025-03-25 17:25:39 +01:00
69632aadb7 Update after #36962 (#36965)
update

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-03-25 16:16:06 +01:00
c6814b4ee8 Update ruff to 0.11.2 (#36962)
* update

* update

* update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-03-25 16:00:11 +01:00
bc1c90a755 [Utils] torch version checks optionally accept dev versions (#36847) 2025-03-25 10:58:58 +00:00
80b4c5dcc9 Fix cuda index issue in cache allocator (#36937)
fix
2025-03-25 11:51:41 +01:00
0f733110a6 Support return_tensors in audio chat templates (#34601)
* add audio chat templates

* update

* update

* nit

* green ci

* we dont care about the order anymore

* clean up after rebase

* overriden tests rename

* rename shieldgemma also

* one more rename

* require_read_token

* removde images/videos

* retrigger CI flaky
2025-03-25 11:08:47 +01:00
19085c28da fix typos in the tests directory (#36932)
* chore: fix typos in test codes

* chore: fix typos in test codes

* chore: fix typos in test codes

* chore: fix typos in test codes

* chore: fix typos in test codes

* chore: fix typos in test codes

* chore: fix typos in test codes

* chore: fix typos in test codes

* chore: format codes
2025-03-25 10:49:24 +01:00
69bcb86c58 Export for Phi4-mini (#36780)
* Export for Phi4-mini

* Update tests/models/phi3/test_modeling_phi3.py

---------

Co-authored-by: Guang Yang <guangyang@fb.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2025-03-25 10:46:38 +01:00
be2c0e7bff Fixing _pre_quantization_dtype when torch_dtype is None (#36930)
fix
2025-03-25 10:43:27 +01:00
4303d88c09 Add Phi4 multimodal (#36939)
* raw start

* update

* update

* add to imports

* update

* up

* simplify configs

* clean configs

* style

* typos

* Update convert_phi4_multimodal_weights_to_hf.py

* Update convert_phi4_multimodal_weights_to_hf.py

* fix

* up

* up

* up

* Update convert_phi4_multimodal_weights_to_hf.py

* Update convert_phi4_multimodal_weights_to_hf.py

* up

* up

* up

* Update feature_extraction_phi4_multimodal.py

* up

* up

* up

* up

* up

* simplify configs

* typo

* cut code

* typo

* typo

* typo

* re

* typo

* up

* up

* up

* add tests

* fix

* fix

* Update test_modeling_phi4_multimodal.py

* up

* Update test_modeling_phi4_multimodal.py

* doc

* fix

* up

* up

* up

* up

* up

* up

* simplify

* up

* simplify

* config docstrings

* cleanup

* clean

* typo

* typo

* fix

* Update phi4_multimodal.md

* fix

* fix

* Update test_modeling_phi4_multimodal.py

* update

* simplify reshapes and permutes

* up

* simplify special tokens

* simplify processor a lot

* Update processing_phi4_multimodal.py

* Update processing_phi4_multimodal.py

* switch to fast processor

* image processor

* Update image_processing_phi4_multimodal_fast.py

* add lora extraction to converter

* Update convert_phi4_multimodal_weights_to_hf.py

* Update __init__.py

* add AudioInput type in audio_utils

* rewrite feature_extraction: support torch batched FFT

* input_audio_embeds -> audio_input_features, input_image_embeds -> image_pixel_values

* test update

* not mono channel warning update

* remove auto maps from processor

* kargs dispatch in processor

* simplify kwargs dispatch

* simplify merging

* remove default sampling rate

* style

* Update test_modeling_phi4_multimodal.py

* update doc

* doc

* torch only feature extractor

* make fake tokens adjustable

* Update feature_extraction_phi4_multimodal.py

* fix

* Update processing_phi4_multimodal.py

* simplify mask

* last touch

* fix copies

* style

* Update audio_utils.py

* style

* Update feature_extraction_phi4_multimodal.py

* Update __init__.py

* docstrings

* copies

* fix all checks

* back to fix-copies

* trigger CIs

* Update feature_extraction_phi4_multimodal.py

* improve tests with multimodal inputs

* trigger CIs

---------

Co-authored-by: Eustache Le Bihan <eulebihan@gmail.com>
2025-03-25 09:55:21 +01:00
47e5432805 Deprecate #36741 and map Causal to Conditional (#36917)
* deprecate the prev fix

* reword warning and update docs

* reword warning

* tests

* dont bloat `get_text_config()`
2025-03-25 09:13:56 +01:00
2b8a15cc3f Disallow Offload to disk for gguf files (#36933)
update

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-03-24 19:30:01 +01:00
1198 changed files with 39868 additions and 19993 deletions

View File

@ -154,7 +154,7 @@ jobs:
path: ~/transformers/installed.txt
- run: python -c "from transformers import *" || (echo '🚨 import failed, this means you introduced unprotected imports! 🚨'; exit 1)
- run: ruff check examples tests src utils
- run: ruff format tests src utils --check
- run: ruff format examples tests src utils --check
- run: python utils/custom_init_isort.py --check_only
- run: python utils/sort_auto_mappings.py --check_only
- run: python utils/check_doc_toc.py

View File

@ -171,6 +171,7 @@ class CircleCIJob:
"command": f"TESTS=$(circleci tests split --split-by=timings {self.job_name}_test_list.txt) && echo $TESTS > splitted_tests.txt && echo $TESTS | tr ' ' '\n'" if self.parallelism else f"awk '{{printf \"%s \", $0}}' {self.job_name}_test_list.txt > splitted_tests.txt"
}
},
{"run": {"name": "fetch hub objects before pytest", "command": "python3 utils/fetch_hub_objects_for_ci.py"}},
{"run": {
"name": "Run tests",
"command": f"({timeout_cmd} python3 -m pytest {marker_cmd} -n {self.pytest_num_workers} {junit_flags} {repeat_on_failure_flags} {' '.join(pytest_flags)} $(cat splitted_tests.txt) | tee tests_output.txt)"}
@ -206,6 +207,9 @@ torch_job = CircleCIJob(
generate_job = CircleCIJob(
"generate",
docker_image=[{"image": "huggingface/transformers-torch-light"}],
# networkx==3.3 (after #36957) cause some issues
# TODO: remove this once it works directly
install_steps=["uv venv && uv pip install . && uv pip install networkx==3.2.1"],
marker="generate",
parallelism=6,
)
@ -328,6 +332,9 @@ repo_utils_job = CircleCIJob(
non_model_job = CircleCIJob(
"non_model",
docker_image=[{"image": "huggingface/transformers-torch-light"}],
# networkx==3.3 (after #36957) cause some issues
# TODO: remove this once it works directly
install_steps=["uv venv && uv pip install . && uv pip install networkx==3.2.1"],
marker="not generate",
parallelism=6,
)
@ -357,9 +364,9 @@ doc_test_job = CircleCIJob(
pytest_num_workers=1,
)
REGULAR_TESTS = [torch_job, tf_job, flax_job, hub_job, onnx_job, tokenization_job, processor_job, generate_job, non_model_job] # fmt: skip
EXAMPLES_TESTS = [examples_torch_job, examples_tensorflow_job]
PIPELINE_TESTS = [pipelines_torch_job, pipelines_tf_job]
REGULAR_TESTS = [torch_job, flax_job, hub_job, onnx_job, tokenization_job, processor_job, generate_job, non_model_job] # fmt: skip
EXAMPLES_TESTS = [examples_torch_job]
PIPELINE_TESTS = [pipelines_torch_job]
REPO_UTIL_TESTS = [repo_utils_job]
DOC_TESTS = [doc_test_job]
ALL_TESTS = REGULAR_TESTS + EXAMPLES_TESTS + PIPELINE_TESTS + REPO_UTIL_TESTS + DOC_TESTS + [custom_tokenizers_job] + [exotic_models_job] # fmt: skip

View File

@ -48,11 +48,11 @@ body:
- pipelines: @Rocketknight1
- tensorflow: @gante and @Rocketknight1
- tokenizers: @ArthurZucker and @itazap
- trainer: @muellerzr @SunMarc
- trainer: @zach-huggingface @SunMarc
Integrations:
- deepspeed: HF Trainer/Accelerate: @muellerzr
- deepspeed: HF Trainer/Accelerate: @SunMarc @zach-huggingface
- ray/raytune: @richardliaw, @amogkam
- Big Model Inference: @SunMarc
- quantization (bitsandbytes, autogpt): @SunMarc @MekkCyber

View File

@ -51,12 +51,12 @@ Library:
- pipelines: @Rocketknight1
- tensorflow: @gante and @Rocketknight1
- tokenizers: @ArthurZucker
- trainer: @muellerzr and @SunMarc
- trainer: @zach-huggingface and @SunMarc
- chat templates: @Rocketknight1
Integrations:
- deepspeed: HF Trainer/Accelerate: @muellerzr
- deepspeed: HF Trainer/Accelerate: @SunMarc @zach-huggingface
- ray/raytune: @richardliaw, @amogkam
- Big Model Inference: @SunMarc
- quantization (bitsandbytes, autogpt): @SunMarc @MekkCyber

View File

@ -14,7 +14,7 @@ docs/ @stevhliu
# Owners of subsections of the library
/src/transformers/generation/ @gante
/src/transformers/pipeline/ @Rocketknight1 @yonigozlan
/src/transformers/integrations/ @SunMarc @MekkCyber @muellerzr
/src/transformers/integrations/ @SunMarc @MekkCyber @zach-huggingface
/src/transformers/quantizers/ @SunMarc @MekkCyber
tests/ @ydshieh
tests/generation/ @gante
@ -27,8 +27,8 @@ tests/generation/ @gante
# Specific files come after the sections/globs, so they take priority
/.circleci/config.yml @ArthurZucker @ydshieh
/utils/tests_fetcher.py @ydshieh
trainer.py @muellerzr @SunMarc
trainer_utils.py @muellerzr @SunMarc
trainer.py @zach-huggingface @SunMarc
trainer_utils.py @zach-huggingface @SunMarc
/utils/modular_model_converter.py @Cyrilvallez @ArthurZucker
# Owners of individual models are specific / high priority, and so they come last

View File

@ -22,4 +22,4 @@ jobs:
run: |
echo $PR_NUMBER
gh pr ready $PR_NUMBER --repo $REPO --undo
gh pr comment $PR_NUMBER --repo $REPO --body "Hi 👋, thank you for opening this pull request! The pull request is converted to draft by default. The CI will be paused while the PR is in draft mode. When it is ready for review, please click the \`Ready for review\` button (at the bottom of the PR page). This will assign reviewers."
gh pr comment $PR_NUMBER --repo $REPO --body "Hi 👋, thank you for opening this pull request! The pull request is converted to draft by default. The CI will be paused while the PR is in draft mode. When it is ready for review, please click the \`Ready for review\` button (at the bottom of the PR page). This will assign reviewers and trigger CI."

View File

@ -263,9 +263,9 @@ You are not required to read the following guidelines before opening an issue. H
But if you're replying to a comment that happened some comments back it's always a good practice to quote just the relevant lines you're replying it. The `>` is used for quoting, or you can always use the menu to do so. For example your editor box will look like:
```
> How big is your gpu cluster?
> How big is your GPU cluster?
Our cluster is made of 256 gpus.
Our cluster is made of 256 GPUs.
```
If you are addressing multiple comments, quote the relevant parts of each before your answer. Some people use the same comment to do multiple replies, others separate them into separate comments. Either way works. The latter approach helps for linking to a specific comment.

View File

@ -12,7 +12,7 @@ def run_benchmark(logger: Logger, branch: str, commit_id: str, commit_msg: str,
## Writing metrics to the database
`MetricRecorder` is thread-safe, in the sense of the python [`Thread`](https://docs.python.org/3/library/threading.html#threading.Thread). This means you can start a background thread to do the readings on the device measurements while not blocking the main thread to execute the model measurements.
`MetricsRecorder` is thread-safe, in the sense of the python [`Thread`](https://docs.python.org/3/library/threading.html#threading.Thread). This means you can start a background thread to do the readings on the device measurements while not blocking the main thread to execute the model measurements.
cf [`llama.py`](./llama.py) to see an example of this in practice.

View File

@ -3,7 +3,6 @@ import importlib.util
import logging
import os
from typing import Dict
import psycopg2
import sys
from psycopg2.extras import Json

View File

@ -118,7 +118,7 @@ def run_benchmark(logger: Logger, branch: str, commit_id: str, commit_msg: str,
with torch.no_grad():
past_key_values = StaticCache(
model.config,
batch_size=batch_size,
max_batch_size=batch_size,
device=device,
dtype=torch.float16,
max_cache_len=seq_length + num_tokens_to_generate,
@ -144,7 +144,7 @@ def run_benchmark(logger: Logger, branch: str, commit_id: str, commit_msg: str,
past_key_values = StaticCache(
model.config,
batch_size=batch_size,
max_batch_size=batch_size,
device=device,
dtype=torch.float16,
max_cache_len=seq_length + num_tokens_to_generate,
@ -187,7 +187,7 @@ def run_benchmark(logger: Logger, branch: str, commit_id: str, commit_msg: str,
# TODO use decode_one_token(model, input_id.clone(), cache_position) for verification
past_key_values = StaticCache(
model.config,
batch_size=batch_size,
max_batch_size=batch_size,
device=device,
dtype=torch.float16,
max_cache_len=seq_length + num_tokens_to_generate + 10,
@ -204,7 +204,7 @@ def run_benchmark(logger: Logger, branch: str, commit_id: str, commit_msg: str,
time_to_first_token = end - start
logger.info(f"completed first compile generation in: {time_to_first_token}s")
cache_position += 1
all_generated_tokens += next_token.clone().detach().cpu().tolist()
all_generated_tokens += next_token.tolist()
cache_position = torch.tensor([seq_length], device=device)
### First compile, decoding
@ -215,9 +215,9 @@ def run_benchmark(logger: Logger, branch: str, commit_id: str, commit_msg: str,
torch.cuda.synchronize()
end = perf_counter()
time_to_second_token = end - start
logger.info(f"completed second compile generation in: {time_to_first_token}s")
logger.info(f"completed second compile generation in: {time_to_second_token}s")
cache_position += 1
all_generated_tokens += next_token.clone().detach().cpu().tolist()
all_generated_tokens += next_token.tolist()
### Second compile, decoding
start = perf_counter()
@ -227,15 +227,15 @@ def run_benchmark(logger: Logger, branch: str, commit_id: str, commit_msg: str,
torch.cuda.synchronize()
end = perf_counter()
time_to_third_token = end - start
logger.info(f"completed third compile forward in: {time_to_first_token}s")
logger.info(f"completed third compile forward in: {time_to_third_token}s")
cache_position += 1
all_generated_tokens += next_token.clone().detach().cpu().tolist()
all_generated_tokens += next_token.tolist()
### Using cuda graphs decoding
start = perf_counter()
for _ in range(1, num_tokens_to_generate):
all_generated_tokens += next_token.clone().detach().cpu().tolist()
all_generated_tokens += next_token.tolist()
next_token = decode_one_token(
model, next_token.clone(), cache_position=cache_position, past_key_values=past_key_values
)
@ -254,7 +254,7 @@ def run_benchmark(logger: Logger, branch: str, commit_id: str, commit_msg: str,
past_key_values = StaticCache(
model.config,
batch_size=batch_size,
max_batch_size=batch_size,
device=device,
dtype=torch.float16,
max_cache_len=seq_length + 128,
@ -271,7 +271,7 @@ def run_benchmark(logger: Logger, branch: str, commit_id: str, commit_msg: str,
past_key_values = StaticCache(
model.config,
batch_size=batch_size,
max_batch_size=batch_size,
device=device,
dtype=torch.float16,
max_cache_len=seq_length + 128,
@ -287,7 +287,7 @@ def run_benchmark(logger: Logger, branch: str, commit_id: str, commit_msg: str,
past_key_values = StaticCache(
model.config,
batch_size=batch_size,
max_batch_size=batch_size,
device=device,
dtype=torch.float16,
max_cache_len=seq_length + 128,
@ -298,12 +298,12 @@ def run_benchmark(logger: Logger, branch: str, commit_id: str, commit_msg: str,
output = model.generate(**inputs, past_key_values=past_key_values)
end = perf_counter()
third_compile_generate_time = end - start
logger.info(f"completed second compile generation in: {third_compile_generate_time}s")
logger.info(f"completed third compile generation in: {third_compile_generate_time}s")
logger.info(f"generated: {tokenizer.batch_decode(output.cpu().tolist())}")
past_key_values = StaticCache(
model.config,
batch_size=batch_size,
max_batch_size=batch_size,
device=device,
dtype=torch.float16,
max_cache_len=seq_length + 128,
@ -313,7 +313,7 @@ def run_benchmark(logger: Logger, branch: str, commit_id: str, commit_msg: str,
output = model.generate(**inputs, past_key_values=past_key_values)
end = perf_counter()
fourth_compile_generate_time = end - start
logger.info(f"completed second compile generation in: {fourth_compile_generate_time}s")
logger.info(f"completed fourth compile generation in: {fourth_compile_generate_time}s")
logger.info(f"generated: {tokenizer.batch_decode(output.cpu().tolist())}")
metrics_recorder.collect_model_measurements(

View File

@ -46,10 +46,6 @@ NOT_DEVICE_TESTS = {
"test_keep_in_fp32_modules",
"test_gradient_checkpointing_backward_compatibility",
"test_gradient_checkpointing_enable_disable",
"test_save_load_fast_init_from_base",
"test_fast_init_context_manager",
"test_fast_init_tied_embeddings",
"test_save_load_fast_init_to_base",
"test_torch_save_load",
"test_initialization",
"test_forward_signature",

View File

@ -2,8 +2,8 @@
In this folder you will find various docker files, and some subfolders.
- dockerfiles (ex: `consistency.dockerfile`) present under `~/docker` are used for our "fast" CIs. You should be able to use them for tasks that only need CPU. For example `torch-light` is a very light weights container (703MiB).
- subfloder contain dockerfiles used for our `slow` CIs, which *can* be used for GPU tasks, but they are **BIG** as they were not specifically designed for a single model / single task. Thus the `~/docker/transformers-pytorch-gpu` includes additional dependencies to allow us to run ALL model tests (say `librosa` or `tesseract`, which you do not need to run LLMs)
- subfolders contain dockerfiles used for our `slow` CIs, which *can* be used for GPU tasks, but they are **BIG** as they were not specifically designed for a single model / single task. Thus the `~/docker/transformers-pytorch-gpu` includes additional dependencies to allow us to run ALL model tests (say `librosa` or `tesseract`, which you do not need to run LLMs)
Note that in both case, you need to run `uv pip install -e .`, which should take around 5 seconds. We do it outside the dockerfile for the need of our CI: we checkout a new branch each time, and the `transformers` code is thus updated.
We are open to contribution, and invite the community to create dockerfiles with potential arguments that properly choose extras depending on the model's dependencies! :hugs:
We are open to contribution, and invite the community to create dockerfiles with potential arguments that properly choose extras depending on the model's dependencies! :hugs:

View File

@ -5,12 +5,12 @@ ARG REF=main
RUN apt-get update && apt-get install -y time git g++ pkg-config make git-lfs
ENV UV_PYTHON=/usr/local/bin/python
RUN pip install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools GitPython
RUN pip install --no-cache-dir --upgrade 'torch' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir --upgrade 'torch' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
# tensorflow pin matching setup.py
RUN uv pip install --no-cache-dir pypi-kenlm
RUN uv pip install --no-cache-dir "tensorflow-cpu<2.16" "tf-keras<2.16"
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[flax,quality,testing,torch-speech,vision]"
RUN git lfs install
RUN pip uninstall -y transformers
RUN apt-get clean && rm -rf /var/lib/apt/lists/* && apt-get autoremove && apt-get autoclean
RUN uv pip uninstall transformers
RUN apt-get clean && rm -rf /var/lib/apt/lists/* && apt-get autoremove && apt-get autoclean

View File

@ -21,7 +21,7 @@ RUN uv pip install --no-cache-dir --no-deps accelerate --extra-index-url https:
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[ja,testing,sentencepiece,jieba,spacy,ftfy,rjieba]" unidic unidic-lite
# spacy is not used so not tested. Causes to failures. TODO fix later
RUN python3 -m unidic download
RUN pip uninstall -y transformers
RUN uv pip uninstall transformers
RUN apt-get clean && rm -rf /var/lib/apt/lists/*
RUN apt remove -y g++ cmake xz-utils libprotobuf-dev protobuf-compiler

View File

@ -7,7 +7,7 @@ RUN apt-get install -y g++ cmake
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv venv
RUN uv pip install --no-cache-dir -U pip setuptools albumentations seqeval
RUN pip install --upgrade --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[tf-cpu,sklearn,testing,sentencepiece,tf-speech,vision]"
RUN uv pip install --upgrade --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[tf-cpu,sklearn,testing,sentencepiece,tf-speech,vision]"
RUN uv pip install --no-cache-dir "protobuf==3.20.3"
RUN pip uninstall -y transformers
RUN uv pip uninstall transformers
RUN apt-get clean && rm -rf /var/lib/apt/lists/*

View File

@ -5,8 +5,8 @@ USER root
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git g++ cmake pkg-config openssh-client git
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
RUN pip install --no-cache-dir 'torch' 'torchvision' 'torchaudio' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir 'torch' 'torchvision' 'torchaudio' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-deps timm accelerate --extra-index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir librosa "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[sklearn,sentencepiece,vision,testing]" seqeval albumentations jiwer
RUN pip uninstall -y transformers
RUN uv pip uninstall transformers
RUN apt-get clean && rm -rf /var/lib/apt/lists/*

View File

@ -5,13 +5,13 @@ USER root
RUN apt-get update && apt-get install -y libsndfile1-dev espeak-ng time git libgl1-mesa-glx libgl1 g++ tesseract-ocr
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
RUN pip install --no-cache-dir 'torch' 'torchvision' 'torchaudio' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir 'torch' 'torchvision' 'torchaudio' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir --no-deps timm accelerate
RUN pip install -U --upgrade-strategy eager --no-cache-dir pytesseract python-Levenshtein opencv-python nltk
# RUN uv pip install --no-cache-dir natten==0.15.1+torch210cpu -f https://shi-labs.com/natten/wheels
RUN pip install --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[testing, vision]" 'scikit-learn' 'torch-stft' 'nose' 'dataset'
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[testing, vision]" 'scikit-learn' 'torch-stft' 'nose' 'dataset'
# RUN git clone https://github.com/facebookresearch/detectron2.git
# RUN python3 -m pip install --no-cache-dir -e detectron2
RUN pip install 'git+https://github.com/facebookresearch/detectron2.git@92ae9f0b92aba5867824b4f12aa06a22a60a45d3'
RUN pip uninstall -y transformers
RUN uv pip install 'git+https://github.com/facebookresearch/detectron2.git@92ae9f0b92aba5867824b4f12aa06a22a60a45d3' --no-build-isolation
RUN uv pip uninstall transformers
RUN apt-get clean && rm -rf /var/lib/apt/lists/*

View File

@ -5,6 +5,6 @@ USER root
RUN apt-get update && apt-get install -y libsndfile1-dev espeak-ng time git g++ cmake
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
RUN pip install --no-cache-dir "scipy<1.13" "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[flax,testing,sentencepiece,flax-speech,vision]"
RUN pip uninstall -y transformers
RUN apt-get clean && rm -rf /var/lib/apt/lists/* && apt-get autoremove && apt-get autoclean
RUN uv pip install --no-cache-dir "scipy<1.13" "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[flax,testing,sentencepiece,flax-speech,vision]"
RUN uv pip uninstall transformers
RUN apt-get clean && rm -rf /var/lib/apt/lists/* && apt-get autoremove && apt-get autoclean

View File

@ -5,6 +5,6 @@ USER root
RUN apt-get update && apt-get install -y libsndfile1-dev espeak-ng time git cmake g++
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
RUN pip install --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[sklearn,tf-cpu,testing,sentencepiece,tf-speech,vision]"
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[sklearn,tf-cpu,testing,sentencepiece,tf-speech,vision]"
RUN uv pip install --no-cache-dir "protobuf==3.20.3" tensorflow_probability
RUN apt-get clean && rm -rf /var/lib/apt/lists/*
RUN apt-get clean && rm -rf /var/lib/apt/lists/*

View File

@ -5,7 +5,7 @@ USER root
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git pkg-config openssh-client git
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
RUN pip install --no-cache-dir 'torch' 'torchvision' 'torchaudio' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir 'torch' 'torchvision' 'torchaudio' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-deps timm accelerate --extra-index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir librosa "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[sklearn,sentencepiece,vision,testing]"
RUN pip uninstall -y transformers
RUN uv pip uninstall transformers

View File

@ -6,4 +6,4 @@ RUN apt-get update && apt-get install -y time git
ENV UV_PYTHON=/usr/local/bin/python
RUN pip install uv && uv venv
RUN uv pip install --no-cache-dir -U pip setuptools GitPython "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[ruff]" urllib3
RUN apt-get install -y jq curl && apt-get clean && rm -rf /var/lib/apt/lists/*
RUN apt-get install -y jq curl && apt-get clean && rm -rf /var/lib/apt/lists/*

View File

@ -6,7 +6,7 @@ RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-de
RUN apt-get install -y cmake
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
RUN pip install --upgrade --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[tf-cpu,sklearn,testing,sentencepiece,tf-speech,vision]"
RUN uv pip install --upgrade --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[tf-cpu,sklearn,testing,sentencepiece,tf-speech,vision]"
RUN uv pip install --no-cache-dir "protobuf==3.20.3"
RUN pip uninstall -y transformers
RUN uv pip uninstall transformers
RUN apt-get clean && rm -rf /var/lib/apt/lists/* && apt-get autoremove && apt-get autoclean

View File

@ -6,11 +6,11 @@ RUN apt-get update && apt-get install -y libsndfile1-dev espeak-ng time git g++
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
RUN uv pip install --no-deps accelerate
RUN pip install --no-cache-dir 'torch' 'torchvision' 'torchaudio' --index-url https://download.pytorch.org/whl/cpu
RUN pip install --no-cache-dir "scipy<1.13" "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[flax,audio,sklearn,sentencepiece,vision,testing]"
RUN uv pip install --no-cache-dir 'torch' 'torchvision' 'torchaudio' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir "scipy<1.13" "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[flax,audio,sklearn,sentencepiece,vision,testing]"
# RUN pip install --no-cache-dir "scipy<1.13" "transformers[flax,testing,sentencepiece,flax-speech,vision]"
RUN pip uninstall -y transformers
RUN uv pip uninstall transformers
RUN apt-get clean && rm -rf /var/lib/apt/lists/* && apt-get autoremove && apt-get autoclean

View File

@ -5,7 +5,7 @@ USER root
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git g++ cmake pkg-config openssh-client git git-lfs
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
RUN pip install --no-cache-dir 'torch' 'torchvision' 'torchaudio' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir 'torch' 'torchvision' 'torchaudio' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-deps timm accelerate --extra-index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir librosa "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[sklearn,sentencepiece,vision,testing,tiktoken,num2words]"
RUN pip uninstall -y transformers
RUN uv pip install --no-cache-dir librosa "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[sklearn,sentencepiece,vision,testing,tiktoken,num2words,video]"
RUN uv pip uninstall transformers

View File

@ -7,13 +7,13 @@ RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-de
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
RUN uv pip install --no-cache-dir --no-deps accelerate --extra-index-url https://download.pytorch.org/whl/cpu
RUN pip install --no-cache-dir 'torch' 'torchvision' 'torchaudio' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir 'torch' 'torchvision' 'torchaudio' --index-url https://download.pytorch.org/whl/cpu
RUN git lfs install
RUN uv pip install --no-cache-dir pypi-kenlm
RUN pip install --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[tf-cpu,sklearn,sentencepiece,vision,testing]"
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[tf-cpu,sklearn,sentencepiece,vision,testing]"
RUN uv pip install --no-cache-dir "protobuf==3.20.3" librosa
RUN pip uninstall -y transformers
RUN apt-get clean && rm -rf /var/lib/apt/lists/* && apt-get autoremove && apt-get autoclean
RUN uv pip uninstall transformers
RUN apt-get clean && rm -rf /var/lib/apt/lists/* && apt-get autoremove && apt-get autoclean

View File

@ -57,7 +57,8 @@ RUN python3 -m pip uninstall -y ninja
# For `dinat` model
# The `XXX` part in `torchXXX` needs to match `PYTORCH` (to some extent)
RUN python3 -m pip install --no-cache-dir natten==0.15.1+torch220$CUDA -f https://shi-labs.com/natten/wheels
# pin `0.17.4` otherwise `cannot import name 'natten2dav' from 'natten.functional'`
RUN python3 -m pip install --no-cache-dir natten==0.17.4+torch250cu121 -f https://shi-labs.com/natten/wheels
# For `nougat` tokenizer
RUN python3 -m pip install --no-cache-dir python-Levenshtein

View File

@ -29,6 +29,8 @@
title: The Transformer model family
- local: attention
title: Attention mechanisms
- local: attention_interface
title: Customizing attention function
title: Models
- sections:
- local: fast_tokenizers
@ -413,6 +415,8 @@
title: DeBERTa
- local: model_doc/deberta-v2
title: DeBERTa-v2
- local: model_doc/deepseek_v3
title: DeepSeek-V3
- local: model_doc/dialogpt
title: DialoGPT
- local: model_doc/diffllama
@ -503,6 +507,8 @@
title: Llama2
- local: model_doc/llama3
title: Llama3
- local: model_doc/llama4
title: Llama4
- local: model_doc/longformer
title: Longformer
- local: model_doc/longt5
@ -583,6 +589,8 @@
title: Phi
- local: model_doc/phi3
title: Phi-3
- local: model_doc/phi4_multimodal
title: Phi4 Multimodal
- local: model_doc/phimoe
title: PhiMoE
- local: model_doc/phobert
@ -597,6 +605,10 @@
title: Qwen2
- local: model_doc/qwen2_moe
title: Qwen2MoE
- local: model_doc/qwen3
title: Qwen3
- local: model_doc/qwen3_moe
title: Qwen3MoE
- local: model_doc/rag
title: RAG
- local: model_doc/realm

View File

@ -0,0 +1,128 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Attention Interface
This page describes how to use the `AttentionInterface` in order to register custom attention functions to use with
supported models.
## Customizing attention function
Most recent models can now switch from one attention function used in the Attention layer to the other, thanks to a simple mapping.
By default, we provide the implementation for [`sdpa`](https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html),
[`flash_attention_2`](https://github.com/Dao-AILab/flash-attention) and [`flex_attention`](https://pytorch.org/docs/stable/nn.attention.flex_attention.html#module-torch.nn.attention.flex_attention)
as well as `eager`, which is a simple matrix multiplication without any optimization on top.
This is the setting you can usually choose when instantiating a model:
```python
from transformers import AutoModelForCausalLM
model_id = "meta-llama/Llama-3.2-1B"
# Here, using flash attention as an example
model = AutoModelForCausalLM.from_pretrained(model_id, attn_implementation="flash_attention_2")
```
But what if you wanted to create your own attention function? Or simply play around with existing ones, adding
a few statements here and there? You can now do so with the `AttentionInterface`! Here is an example:
```python
from transformers import AutoModelForCausalLM, AttentionInterface
from transformers.integrations.sdpa_attention import sdpa_attention_forward
import torch
model_id = "meta-llama/Llama-3.2-1B"
def my_new_sdpa(*args, **kwargs):
print("I just entered the attention computation")
return sdpa_attention_forward(*args, **kwargs)
AttentionInterface.register("my_new_sdpa", my_new_sdpa)
model = AutoModelForCausalLM.from_pretrained(model_id, attn_implementation="my_new_sdpa")
# Try running the forward with the new attention function
model(torch.ones(1, 5, dtype=int))
```
You will see it prints "I just entered the attention computation" as many times as there are layers in the model (with this example, 16 times).
## Dynamically switching attention function
You could dynamically change the model's attention function as well, by overriding the `config._attn_implementation` field:
```python
# Back to use original sdpa implementation
model.config._attn_implementation = "sdpa"
model(torch.ones(1, 5, dtype=int))
```
and it will stop printing the statements, as it now uses the `sdpa` attention.
This allows to quickly change an attention function, without needing to reload the model!
## What about new args needed in my custom attention function?
But indeed, what if the new function requires a new arg to be properly used? It's no issue! Models supporting the
`AttentionInterface` propagate kwargs all the way to the Attention layers, and to the used attention function. That way,
you can simply pass the arg (as a kwargs, i.e. you need to qualify the name of the arg) in the model's forward, and it will be correctly used in the attention. However, custom attention functions have some limitations. In particular, it must follow the signature and return format of other attention functions, i.e.
```python
from transformers import AutoModelForCausalLM, AttentionInterface
from transformers.integrations.sdpa_attention import sdpa_attention_forward
import torch
def custom_attention(
module: torch.nn.Module, # required arg
query: torch.Tensor, # required arg
key: torch.Tensor, # required arg
value: torch.Tensor, # required arg
attention_mask: Optional[torch.Tensor], # required arg
a_new_kwargs = None, # You can now add as many kwargs as you need
another_new_kwargs = None, # You can now add as many kwargs as you need
**kwargs, # You need to accept **kwargs as models will pass other args
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]
... # do your magic!
return attn_output, attn_weights # attn_weights are optional here
AttentionInterface.register("custom", custom_attention)
model = AutoModelForCausalLM.from_pretrained(model_id, attn_implementation="custom")
# Forward pass with the new kwargs
model(torch.ones(1, 5, dtype=int), a_new_kwargs=..., another_new_kwargs=...)
```
If in doubt about what args/kwargs a given model sends to the attention function, simply check that model's modeling code on [GitHub](https://github.com/huggingface/transformers/tree/main/src/transformers/models)!
## Accessing current available implementations
Most of the time, you will simply need to `register` a new function. If, however, you need to access an existing one,
and/or perform a few checks, the prefered way is to use the global `ALL_ATTENTION_FUNCTIONS`. It behaves the same way you
would expect from a usual Python dictionary:
```python
>>> from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS
>>> list(ALL_ATTENTION_FUNCTIONS.keys())
>>> ['flash_attention_2', 'flex_attention', 'sdpa']
>>> ALL_ATTENTION_FUNCTIONS["sdpa"]
>>> <function transformers.integrations.sdpa_attention.sdpa_attention_forward>
>>> ALL_ATTENTION_FUNCTIONS.get("sdpa", None)
>>> <function transformers.integrations.sdpa_attention.sdpa_attention_forward>
# You can also globally `register` a new function directly on it
>>> ALL_ATTENTION_FUNCTIONS.register("new_func", new_func)
```

View File

@ -43,4 +43,3 @@ Transformers is designed for developers and machine learning engineers and resea
</a>
</div>
Join us on the Hugging Face [Hub](https://huggingface.co/), [Discord](https://discord.com/invite/JfAtkvEtRb), or [forum](https://discuss.huggingface.co/) to collaborate and build models, datasets, and applications together.

View File

@ -16,10 +16,18 @@ rendered properly in your Markdown viewer.
# Custom Layers and Utilities
This page lists all the custom layers used by the library, as well as the utility functions it provides for modeling.
This page lists all the custom layers used by the library, as well as the utility functions and classes it provides for modeling.
Most of those are only useful if you are studying the code of the models in the library.
## Attention Functions
[[autodoc]] AttentionInterface
- register
## Rotary Position Embedding Functions
[[autodoc]] dynamic_rope_update
## Pytorch custom modules

View File

@ -93,7 +93,7 @@ model.generation_config.max_new_tokens = 16
past_key_values = StaticCache(
config=model.config,
batch_size=1,
max_batch_size=1,
# If you plan to reuse the cache, make sure the cache length is large enough for all cases
max_cache_len=prompt_length+(model.generation_config.max_new_tokens*2),
device=model.device,
@ -159,7 +159,7 @@ from torch.nn.attention import SDPBackend, sdpa_kernel
batch_size, seq_length = inputs["input_ids"].shape
with torch.no_grad():
past_key_values = StaticCache(
config=model.config, batch_size=2, max_cache_len=4096, device=torch_device, dtype=model.dtype
config=model.config, max_batch_size=2, max_cache_len=4096, device=torch_device, dtype=model.dtype
)
cache_position = torch.arange(seq_length, device=torch_device)
generated_ids = torch.zeros(

View File

@ -14,221 +14,77 @@ rendered properly in your Markdown viewer.
-->
# CLIP
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
## Overview
# CLIP
The CLIP model was proposed in [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever. CLIP
(Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pairs. It can be
instructed in natural language to predict the most relevant text snippet, given an image, without directly optimizing
for the task, similarly to the zero-shot capabilities of GPT-2 and 3.
[CLIP](https://huggingface.co/papers/2103.00020) is a is a multimodal vision and language model motivated by overcoming the fixed number of object categories when training a computer vision model. CLIP learns about images directly from raw text by jointly training on 400M (image, text) pairs. Pretraining on this scale enables zero-shot transfer to downstream tasks. CLIP uses an image encoder and text encoder to get visual features and text features. Both features are projected to a latent space with the same number of dimensions and their dot product gives a similarity score.
The abstract from the paper is the following:
You can find all the original CLIP checkpoints under the [OpenAI](https://huggingface.co/openai?search_models=clip) organization.
*State-of-the-art computer vision systems are trained to predict a fixed set of predetermined object categories. This
restricted form of supervision limits their generality and usability since additional labeled data is needed to specify
any other visual concept. Learning directly from raw text about images is a promising alternative which leverages a
much broader source of supervision. We demonstrate that the simple pre-training task of predicting which caption goes
with which image is an efficient and scalable way to learn SOTA image representations from scratch on a dataset of 400
million (image, text) pairs collected from the internet. After pre-training, natural language is used to reference
learned visual concepts (or describe new ones) enabling zero-shot transfer of the model to downstream tasks. We study
the performance of this approach by benchmarking on over 30 different existing computer vision datasets, spanning tasks
such as OCR, action recognition in videos, geo-localization, and many types of fine-grained object classification. The
model transfers non-trivially to most tasks and is often competitive with a fully supervised baseline without the need
for any dataset specific training. For instance, we match the accuracy of the original ResNet-50 on ImageNet zero-shot
without needing to use any of the 1.28 million training examples it was trained on. We release our code and pre-trained
model weights at this https URL.*
> [!TIP]
> Click on the CLIP models in the right sidebar for more examples of how to apply CLIP to different image and language tasks.
This model was contributed by [valhalla](https://huggingface.co/valhalla). The original code can be found [here](https://github.com/openai/CLIP).
The example below demonstrates how to calculate similarity scores between multiple text descriptions and an image with [`Pipeline`] or the [`AutoModel`] class.
## Usage tips and example
<hfoptions id="usage">
<hfoption id="Pipeline">
CLIP is a multi-modal vision and language model. It can be used for image-text similarity and for zero-shot image
classification. CLIP uses a ViT like transformer to get visual features and a causal language model to get the text
features. Both the text and visual features are then projected to a latent space with identical dimension. The dot
product between the projected image and text features is then used as a similar score.
```py
import torch
from transformers import pipeline
To feed images to the Transformer encoder, each image is split into a sequence of fixed-size non-overlapping patches,
which are then linearly embedded. A [CLS] token is added to serve as representation of an entire image. The authors
also add absolute position embeddings, and feed the resulting sequence of vectors to a standard Transformer encoder.
The [`CLIPImageProcessor`] can be used to resize (or rescale) and normalize images for the model.
The [`CLIPTokenizer`] is used to encode the text. The [`CLIPProcessor`] wraps
[`CLIPImageProcessor`] and [`CLIPTokenizer`] into a single instance to both
encode the text and prepare the images. The following example shows how to get the image-text similarity scores using
[`CLIPProcessor`] and [`CLIPModel`].
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import CLIPProcessor, CLIPModel
>>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
>>> processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True)
>>> outputs = model(**inputs)
>>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
>>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
clip = pipeline(
task="zero-shot-image-classification",
model="openai/clip-vit-base-patch32",
torch_dtype=torch.bfloat16,
device=0
)
labels = ["a photo of a cat", "a photo of a dog", "a photo of a car"]
clip("http://images.cocodataset.org/val2017/000000039769.jpg", candidate_labels=labels)
```
</hfoption>
<hfoption id="AutoModel">
### Combining CLIP and Flash Attention 2
```py
import requests
import torch
from PIL import Image
from transformers import AutoProcessor, AutoModel
First, make sure to install the latest version of Flash Attention 2.
model = AutoModel.from_pretrained("openai/clip-vit-base-patch32", torch_dtype=torch.bfloat16, attn_implementation="sdpa")
processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
```bash
pip install -U flash-attn --no-build-isolation
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
labels = ["a photo of a cat", "a photo of a dog", "a photo of a car"]
inputs = processor(text=labels, images=image, return_tensors="pt", padding=True)
outputs = model(**inputs)
logits_per_image = outputs.logits_per_image
probs = logits_per_image.softmax(dim=1)
most_likely_idx = probs.argmax(dim=1).item()
most_likely_label = labels[most_likely_idx]
print(f"Most likely label: {most_likely_label} with probability: {probs[0][most_likely_idx].item():.3f}")
```
Make also sure that you have a hardware that is compatible with Flash-Attention 2. Read more about it in the official documentation of flash-attn repository. Make also sure to load your model in half-precision (e.g. `torch.float16`)
</hfoption>
</hfoptions>
<Tip warning={true}>
## Notes
For small batch sizes, you might notice a slowdown in your model when using flash attention. Refer to the section [Expected speedups with Flash Attention and SDPA](#Expected-speedups-with-Flash-Attention-and-SDPA) below and select an appropriate attention implementation.
</Tip>
To load and run a model using Flash Attention 2, refer to the snippet below:
```python
>>> import torch
>>> import requests
>>> from PIL import Image
>>> from transformers import CLIPProcessor, CLIPModel
>>> device = "cuda"
>>> torch_dtype = torch.float16
>>> model = CLIPModel.from_pretrained(
... "openai/clip-vit-base-patch32",
... attn_implementation="flash_attention_2",
... device_map=device,
... torch_dtype=torch_dtype,
... )
>>> processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True)
>>> inputs.to(device)
>>> with torch.no_grad():
... with torch.autocast(device):
... outputs = model(**inputs)
>>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
>>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
>>> print(probs)
tensor([[0.9946, 0.0052]], device='cuda:0', dtype=torch.float16)
```
### Using Scaled Dot Product Attention (SDPA)
PyTorch includes a native scaled dot-product attention (SDPA) operator as part of `torch.nn.functional`. This function
encompasses several implementations that can be applied depending on the inputs and the hardware in use. See the
[official documentation](https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html)
or the [GPU Inference](https://huggingface.co/docs/transformers/main/en/perf_infer_gpu_one#pytorch-scaled-dot-product-attention)
page for more information.
SDPA is used by default for `torch>=2.1.1` when an implementation is available, but you may also set
`attn_implementation="sdpa"` in `from_pretrained()` to explicitly request SDPA to be used.
```python
from transformers import CLIPModel
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32", torch_dtype=torch.float16, attn_implementation="sdpa")
```
For the best speedups, we recommend loading the model in half-precision (e.g. `torch.float16` or `torch.bfloat16`).
### Expected speedups with Flash Attention and SDPA
On a local benchmark (NVIDIA A10G, PyTorch 2.3.1+cu121) with `float16`, we saw the following speedups during inference for `"openai/clip-vit-large-patch14"` checkpoint ([code](https://gist.github.com/qubvel/ac691a54e54f9fae8144275f866a7ff8)):
#### CLIPTextModel
| Num text labels | Eager (s/iter) | FA2 (s/iter) | FA2 speedup | SDPA (s/iter) | SDPA speedup |
|------------------:|-----------------:|---------------:|--------------:|----------------:|---------------:|
| 4 | 0.009 | 0.012 | 0.737 | 0.007 | 1.269 |
| 16 | 0.009 | 0.014 | 0.659 | 0.008 | 1.187 |
| 32 | 0.018 | 0.021 | 0.862 | 0.016 | 1.142 |
| 64 | 0.034 | 0.034 | 1.001 | 0.03 | 1.163 |
| 128 | 0.063 | 0.058 | 1.09 | 0.054 | 1.174 |
![clip_text_model_viz_3](https://github.com/user-attachments/assets/e9826b43-4e66-4f4c-952b-af4d90bd38eb)
#### CLIPVisionModel
| Image batch size | Eager (s/iter) | FA2 (s/iter) | FA2 speedup | SDPA (s/iter) | SDPA speedup |
|-------------------:|-----------------:|---------------:|--------------:|----------------:|---------------:|
| 1 | 0.016 | 0.013 | 1.247 | 0.012 | 1.318 |
| 4 | 0.025 | 0.021 | 1.198 | 0.021 | 1.202 |
| 16 | 0.093 | 0.075 | 1.234 | 0.075 | 1.24 |
| 32 | 0.181 | 0.147 | 1.237 | 0.146 | 1.241 |
![clip_image_model_viz_3](https://github.com/user-attachments/assets/50a36206-e3b9-4adc-ac8e-926b8b071d63)
#### CLIPModel
| Image batch size | Num text labels | Eager (s/iter) | FA2 (s/iter) | FA2 speedup | SDPA (s/iter) | SDPA speedup |
|-------------------:|------------------:|-----------------:|---------------:|--------------:|----------------:|---------------:|
| 1 | 4 | 0.025 | 0.026 | 0.954 | 0.02 | 1.217 |
| 1 | 16 | 0.026 | 0.028 | 0.918 | 0.02 | 1.287 |
| 1 | 64 | 0.042 | 0.046 | 0.906 | 0.036 | 1.167 |
| 4 | 4 | 0.028 | 0.033 | 0.849 | 0.024 | 1.189 |
| 4 | 16 | 0.034 | 0.035 | 0.955 | 0.029 | 1.169 |
| 4 | 64 | 0.059 | 0.055 | 1.072 | 0.05 | 1.179 |
| 16 | 4 | 0.096 | 0.088 | 1.091 | 0.078 | 1.234 |
| 16 | 16 | 0.102 | 0.09 | 1.129 | 0.083 | 1.224 |
| 16 | 64 | 0.127 | 0.11 | 1.157 | 0.105 | 1.218 |
| 32 | 4 | 0.185 | 0.159 | 1.157 | 0.149 | 1.238 |
| 32 | 16 | 0.19 | 0.162 | 1.177 | 0.154 | 1.233 |
| 32 | 64 | 0.216 | 0.181 | 1.19 | 0.176 | 1.228 |
## Resources
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with CLIP.
- [Fine tuning CLIP with Remote Sensing (Satellite) images and captions](https://huggingface.co/blog/fine-tune-clip-rsicd), a blog post about how to fine-tune CLIP with [RSICD dataset](https://github.com/201528014227051/RSICD_optimal) and comparison of performance changes due to data augmentation.
- This [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/contrastive-image-text) shows how to train a CLIP-like vision-text dual encoder model using a pre-trained vision and text encoder using [COCO dataset](https://cocodataset.org/#home).
<PipelineTag pipeline="image-to-text"/>
- A [notebook](https://colab.research.google.com/drive/1tuoAC5F4sC7qid56Z0ap-stR3rwdk0ZV?usp=sharing) on how to use a pretrained CLIP for inference with beam search for image captioning. 🌎
**Image retrieval**
- A [notebook](https://colab.research.google.com/drive/1bLVwVKpAndpEDHqjzxVPr_9nGrSbuOQd?usp=sharing) on image retrieval using pretrained CLIP and computing MRR(Mean Reciprocal Rank) score. 🌎
- A [notebook](https://colab.research.google.com/github/deep-diver/image_search_with_natural_language/blob/main/notebooks/Image_Search_CLIP.ipynb) on image retrieval and showing the similarity score. 🌎
- A [notebook](https://colab.research.google.com/drive/1xO-wC_m_GNzgjIBQ4a4znvQkvDoZJvH4?usp=sharing) on how to map images and texts to the same vector space using Multilingual CLIP. 🌎
- A [notebook](https://colab.research.google.com/github/vivien000/clip-demo/blob/master/clip.ipynb#scrollTo=uzdFhRGqiWkR) on how to run CLIP on semantic image search using [Unsplash](https://unsplash.com) and [TMDB](https://www.themoviedb.org/) datasets. 🌎
**Explainability**
- A [notebook](https://colab.research.google.com/github/hila-chefer/Transformer-MM-Explainability/blob/main/CLIP_explainability.ipynb) on how to visualize similarity between input token and image segment. 🌎
If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we will review it.
The resource should ideally demonstrate something new instead of duplicating an existing resource.
- Use [`CLIPImageProcessor`] to resize (or rescale) and normalizes images for the model.
## CLIPConfig

View File

@ -14,108 +14,154 @@ rendered properly in your Markdown viewer.
-->
# CodeLlama
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
</div>
</div>
## Overview
# CodeLlama
The Code Llama model was proposed in [Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/) by Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, Gabriel Synnaeve.
[Code Llama](https://huggingface.co/papers/2308.12950) is a specialized family of large language models based on [Llama 2](./llama2) for coding tasks. It comes in different flavors - general code, Python-specific, and instruction-following variant - all available in 7B, 13B, 34B, and 70B parameters. Code Llama models can generate, explain, and even fill in missing parts of your code (called "infilling"). It can also handle very long contexts with stable generation up to 100k tokens, even though it was trained on sequences of 16K tokens.
The abstract from the paper is the following:
You can find all the original Code Llama checkpoints under the [Code Llama](https://huggingface.co/collections/meta-llama/code-llama-family-661da32d0a9d678b6f55b933) collection.
*We release Code Llama, a family of large language models for code based on Llama 2 providing state-of-the-art performance among open models, infilling capabilities, support for large input contexts, and zero-shot instruction following ability for programming tasks. We provide multiple flavors to cover a wide range of applications: foundation models (Code Llama), Python specializations (Code Llama - Python), and instruction-following models (Code Llama - Instruct) with 7B, 13B and 34B parameters each. All models are trained on sequences of 16k tokens and show improvements on inputs with up to 100k tokens. 7B and 13B Code Llama and Code Llama - Instruct variants support infilling based on surrounding content. Code Llama reaches state-of-the-art performance among open models on several code benchmarks, with scores of up to 53% and 55% on HumanEval and MBPP, respectively. Notably, Code Llama - Python 7B outperforms Llama 2 70B on HumanEval and MBPP, and all our models outperform every other publicly available model on MultiPL-E. We release Code Llama under a permissive license that allows for both research and commercial use.*
> [!TIP]
> Click on the Code Llama models in the right sidebar for more examples of how to apply Code Llama to different coding tasks.
Check out all Code Llama model checkpoints [here](https://huggingface.co/models?search=code_llama) and the officially released ones in the [Meta Llama org](https://huggingface.co/meta-llama).
The example below demonstrates how to generate code with [`Pipeline`], or the [`AutoModel`], and from the command line.
This model was contributed by [ArthurZucker](https://huggingface.co/ArthurZ). The original code of the authors can be found [here](https://github.com/facebookresearch/llama).
<hfoptions id="usage">
<hfoption id="Pipeline">
```py
import torch
from transformers import pipeline
## Usage tips and examples
pipe = pipeline(
"text-generation",
model="meta-llama/CodeLlama-7b-hf",
torch_dtype=torch.float16,
device_map=0
)
<Tip warning={true}>
# basic code generation
result = pipe("# Function to calculate the factorial of a number\ndef factorial(n):", max_new_tokens=256)
print(result[0]['generated_text'])
The `Llama2` family models, on which Code Llama is based, were trained using `bfloat16`, but the original inference uses `float16`. Let's look at the different precisions:
# infilling
infill_result = pipe("def remove_non_ascii(s: str) -> str:\n \"\"\" <FILL_ME>\n return result", max_new_tokens=200)
print(infill_result[0]['generated_text'])
```
* `float32`: PyTorch convention on model initialization is to load models in `float32`, no matter with which `dtype` the model weights were stored. `transformers` also follows this convention for consistency with PyTorch. This will be picked by default. If you want the `AutoModel` API to load the checkpoints with the storage weights type, you must specify `torch_dtype="auto"`, e.g. `model = AutoModelForCausalLM.from_pretrained("path", torch_dtype = "auto")`.
* `bfloat16`: Code Llama was trained with this precision, so we recommend using it for further training or fine-tuning.
* `float16`: We recommend running inference using this precision, as it's usually faster than `bfloat16`, and evaluation metrics show no discernible degradation with respect to `bfloat16`. You can also run inference using `bfloat16`, and we recommend you check inference results with both `float16` and `bfloat16` after fine-tuning.
</hfoption>
<hfoption id="AutoModel">
As mentioned above, the `dtype` of the storage weights is mostly irrelevant unless you are using `torch_dtype="auto"` when initializing a model using. The reason is that the model will first be downloaded (using the `dtype` of the checkpoints online) and then will be casted to the default `dtype` of `torch` (becomes `torch.float32`). If there is a specified `torch_dtype`, it will be used instead.
```py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
</Tip>
tokenizer = AutoTokenizer.from_pretrained("meta-llama/CodeLlama-7b-hf")
model = AutoModelForCausalLM.from_pretrained(
"meta-llama/CodeLlama-7b-hf",
torch_dtype=torch.float16,
device_map="auto",
attn_implementation="sdpa"
)
# basic code generation
prompt = "# Function to calculate the factorial of a number\ndef factorial(n):"
input_ids = tokenizer(prompt, return_tensors="pt").to("cuda")
Tips:
- The infilling task is supported out of the box. You should be using the `tokenizer.fill_token` where you want your input to be filled.
- The model conversion script is the same as for the `Llama2` family:
output = model.generate(
**input_ids,
max_new_tokens=256,
cache_implementation="static"
)
print(tokenizer.decode(output[0], skip_special_tokens=True))
Here is a sample usage:
# infilling
infill_prompt = "def remove_non_ascii(s: str) -> str:\n \"\"\" <FILL_ME>\n return result"
input_ids = tokenizer(infill_prompt, return_tensors="pt").to(model.device)
filled_output = model.generate(**input_ids, max_new_tokens=200)
filled_text = tokenizer.decode(filled_output[0], skip_special_tokens=True)
print(filled_text)
```
</hfoption>
<hfoption id="transformers-cli">
```bash
python src/transformers/models/llama/convert_llama_weights_to_hf.py \
--input_dir /path/to/downloaded/llama/weights --model_size 7B --output_dir /output/path
echo -e "# Function to calculate the factorial of a number\ndef factorial(n):" | transformers-cli run --task text-generation --model meta-llama/CodeLlama-7b-hf --device 0
```
Note that executing the script requires enough CPU RAM to host the whole model in float16 precision (even if the biggest versions
come in several checkpoints they each contain a part of each weight of the model, so we need to load them all in RAM).
</hfoption>
</hfoptions>
After conversion, the model and tokenizer can be loaded via:
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
```python
>>> from transformers import LlamaForCausalLM, CodeLlamaTokenizer
The example below uses [bitsandbytes](../quantization/bitsandbytes) to only quantize the weights to 4-bits.
>>> tokenizer = CodeLlamaTokenizer.from_pretrained("meta-llama/CodeLlama-7b-hf")
>>> model = LlamaForCausalLM.from_pretrained("meta-llama/CodeLlama-7b-hf")
>>> PROMPT = '''def remove_non_ascii(s: str) -> str:
... """ <FILL_ME>
... return result
... '''
>>> input_ids = tokenizer(PROMPT, return_tensors="pt")["input_ids"]
>>> generated_ids = model.generate(input_ids, max_new_tokens=128)
```py
# pip install bitsandbytes
import torch
from transformers import AutoModelForCausalLM, CodeLlamaTokenizer, BitsAndBytesConfig
>>> filling = tokenizer.batch_decode(generated_ids[:, input_ids.shape[1]:], skip_special_tokens = True)[0]
>>> print(PROMPT.replace("<FILL_ME>", filling))
def remove_non_ascii(s: str) -> str:
""" Remove non-ASCII characters from a string.
<BLANKLINE>
Args:
s: The string to remove non-ASCII characters from.
<BLANKLINE>
Returns:
The string with non-ASCII characters removed.
"""
result = ""
for c in s:
if ord(c) < 128:
result += c
return result
<BLANKLINE>
bnb_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True)
tokenizer = CodeLlamaTokenizer.from_pretrained("meta-llama/CodeLlama-34b-hf")
model = AutoModelForCausalLM.from_pretrained(
"meta-llama/CodeLlama-34b-hf",
torch_dtype=torch.bfloat16,
device_map="auto",
quantization_config=bnb_config
)
prompt = "# Write a Python function to check if a string is a palindrome\ndef is_palindrome(s):"
input_ids = tokenizer(prompt, return_tensors="pt").to("cuda")
output = model.generate(**input_ids, max_new_tokens=200, cache_implementation="static")
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
If you only want the infilled part:
```python
>>> from transformers import pipeline
>>> import torch
Use the [AttentionMaskVisualizer](https://github.com/huggingface/transformers/blob/beb9b5b02246b9b7ee81ddf938f93f44cfeaad19/src/transformers/utils/attention_visualizer.py#L139) to better understand what tokens the model can and cannot attend to.
>>> generator = pipeline("text-generation",model="meta-llama/CodeLlama-7b-hf",torch_dtype=torch.float16, device_map="auto")
>>> generator('def remove_non_ascii(s: str) -> str:\n """ <FILL_ME>\n return result', max_new_tokens = 128)
[{'generated_text': 'def remove_non_ascii(s: str) -> str:\n """ <FILL_ME>\n return resultRemove non-ASCII characters from a string. """\n result = ""\n for c in s:\n if ord(c) < 128:\n result += c'}]
```py
from transformers.utils.attention_visualizer import AttentionMaskVisualizer
visualizer = AttentionMaskVisualizer("meta-llama/CodeLlama-7b-hf")
visualizer("""def func(a, b):
return a + b""")
```
Under the hood, the tokenizer [automatically splits by `<FILL_ME>`](https://huggingface.co/docs/transformers/main/model_doc/code_llama#transformers.CodeLlamaTokenizer.fill_token) to create a formatted input string that follows [the original training pattern](https://github.com/facebookresearch/codellama/blob/cb51c14ec761370ba2e2bc351374a79265d0465e/llama/generation.py#L402). This is more robust than preparing the pattern yourself: it avoids pitfalls, such as token glueing, that are very hard to debug. To see how much CPU and GPU memory you need for this model or others, try [this calculator](https://huggingface.co/spaces/hf-accelerate/model-memory-usage) which can help determine that value.
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/codellama-attn-mask.png"/>
</div>
The LLaMA tokenizer is a BPE model based on [sentencepiece](https://github.com/google/sentencepiece). One quirk of sentencepiece is that when decoding a sequence, if the first token is the start of the word (e.g. "Banana"), the tokenizer does not prepend the prefix space to the string.
<Tip>
Code Llama has the same architecture as the `Llama2` models, refer to [Llama2's documentation page](llama2) for the API reference.
Find Code Llama tokenizer reference below.
</Tip>
## Notes
- Infilling is only available in the 7B and 13B base models, and not in the Python, Instruct, 34B, or 70B models.
- Use the `<FILL_ME>` token where you want your input to be filled. The tokenizer splits this token to create a formatted input string that follows the [original training pattern](https://github.com/facebookresearch/codellama/blob/cb51c14ec761370ba2e2bc351374a79265d0465e/llama/generation.py#L402). This is more robust than preparing the pattern yourself.
```py
from transformers import LlamaForCausalLM, CodeLlamaTokenizer
tokenizer = CodeLlamaTokenizer.from_pretrained("meta-llama/CodeLlama-7b-hf")
model = LlamaForCausalLM.from_pretrained("meta-llama/CodeLlama-7b-hf")
PROMPT = '''def remove_non_ascii(s: str) -> str:
""" <FILL_ME>
return result
'''
input_ids = tokenizer(PROMPT, return_tensors="pt")["input_ids"]
generated_ids = model.generate(input_ids, max_new_tokens=128)
filling = tokenizer.batch_decode(generated_ids[:, input_ids.shape[1]:], skip_special_tokens = True)[0]
print(PROMPT.replace("<FILL_ME>", filling))
```
- Use `bfloat16` for further training or fine-tuning and `float16` for inference.
- The `BOS` character is not used for infilling when encoding the prefix or suffix, but only at the beginning of each prompt.
- The tokenizer is a byte-pair encoding model based on [SentencePiece](https://github.com/google/sentencepiece). During decoding, if the first token is the start of the word (for example, “Banana”), the tokenizer doesnt prepend the prefix space to the string.
## CodeLlamaTokenizer

View File

@ -1,124 +1,115 @@
# Cohere
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
## Overview
The Cohere Command-R model was proposed in the blogpost [Command-R: Retrieval Augmented Generation at Production Scale](https://txt.cohere.com/command-r/) by the Cohere Team.
# Cohere
The abstract from the paper is the following:
Cohere Command-R is a 35B parameter multilingual large language model designed for long context tasks like retrieval-augmented generation (RAG) and calling external APIs and tools. The model is specifically trained for grounded generation and supports both single-step and multi-step tool use. It supports a context length of 128K tokens.
*Command-R is a scalable generative model targeting RAG and Tool Use to enable production-scale AI for enterprise. Today, we are introducing Command-R, a new LLM aimed at large-scale production workloads. Command-R targets the emerging “scalable” category of models that balance high efficiency with strong accuracy, enabling companies to move beyond proof of concept, and into production.*
You can find all the original Command-R checkpoints under the [Command Models](https://huggingface.co/collections/CohereForAI/command-models-67652b401665205e17b192ad) collection.
*Command-R is a generative model optimized for long context tasks such as retrieval augmented generation (RAG) and using external APIs and tools. It is designed to work in concert with our industry-leading Embed and Rerank models to provide best-in-class integration for RAG applications and excel at enterprise use cases. As a model built for companies to implement at scale, Command-R boasts:
- Strong accuracy on RAG and Tool Use
- Low latency, and high throughput
- Longer 128k context and lower pricing
- Strong capabilities across 10 key languages
- Model weights available on HuggingFace for research and evaluation
Checkout model checkpoints [here](https://huggingface.co/CohereForAI/c4ai-command-r-v01).
This model was contributed by [Saurabh Dash](https://huggingface.co/saurabhdash) and [Ahmet Üstün](https://huggingface.co/ahmetustun). The code of the implementation in Hugging Face is based on GPT-NeoX [here](https://github.com/EleutherAI/gpt-neox).
> [!TIP]
> Click on the Cohere models in the right sidebar for more examples of how to apply Cohere to different language tasks.
## Usage tips
The example below demonstrates how to generate text with [`Pipeline`] or the [`AutoModel`], and from the command line.
<Tip warning={true}>
The checkpoints uploaded on the Hub use `torch_dtype = 'float16'`, which will be
used by the `AutoModel` API to cast the checkpoints from `torch.float32` to `torch.float16`.
The `dtype` of the online weights is mostly irrelevant unless you are using `torch_dtype="auto"` when initializing a model using `model = AutoModelForCausalLM.from_pretrained("path", torch_dtype = "auto")`. The reason is that the model will first be downloaded ( using the `dtype` of the checkpoints online), then it will be casted to the default `dtype` of `torch` (becomes `torch.float32`), and finally, if there is a `torch_dtype` provided in the config, it will be used.
Training the model in `float16` is not recommended and is known to produce `nan`; as such, the model should be trained in `bfloat16`.
</Tip>
The model and tokenizer can be loaded via:
<hfoptions id="usage">
<hfoption id="Pipeline">
```python
# pip install transformers
import torch
from transformers import pipeline
pipeline = pipeline(
task="text-generation",
model="CohereForAI/c4ai-command-r-v01",
torch_dtype=torch.float16,
device=0
)
pipeline("Plants create energy through a process known as")
```
</hfoption>
<hfoption id="AutoModel">
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
model_id = "CohereForAI/c4ai-command-r-v01"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained("CohereForAI/c4ai-command-r-v01")
model = AutoModelForCausalLM.from_pretrained("CohereForAI/c4ai-command-r-v01", torch_dtype=torch.float16, device_map="auto", attn_implementation="sdpa")
# Format message with the command-r chat template
messages = [{"role": "user", "content": "Hello, how are you?"}]
input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
## <BOS_TOKEN><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Hello, how are you?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>
gen_tokens = model.generate(
# format message with the Command-R chat template
messages = [{"role": "user", "content": "How do plants make energy?"}]
input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to("cuda")
output = model.generate(
input_ids,
max_new_tokens=100,
do_sample=True,
temperature=0.3,
)
gen_text = tokenizer.decode(gen_tokens[0])
print(gen_text)
cache_implementation="static",
)
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
- When using Flash Attention 2 via `attn_implementation="flash_attention_2"`, don't pass `torch_dtype` to the `from_pretrained` class method and use Automatic Mixed-Precision training. When using `Trainer`, it is simply specifying either `fp16` or `bf16` to `True`. Otherwise, make sure you are using `torch.autocast`. This is required because the Flash Attention only support `fp16` and `bf16` data type.
</hfoption>
<hfoption id="transformers-cli">
## Resources
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with Command-R. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
<PipelineTag pipeline="text-generation"/>
Loading FP16 model
```python
# pip install transformers
from transformers import AutoTokenizer, AutoModelForCausalLM
model_id = "CohereForAI/c4ai-command-r-v01"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
# Format message with the command-r chat template
messages = [{"role": "user", "content": "Hello, how are you?"}]
input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
## <BOS_TOKEN><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Hello, how are you?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>
gen_tokens = model.generate(
input_ids,
max_new_tokens=100,
do_sample=True,
temperature=0.3,
)
gen_text = tokenizer.decode(gen_tokens[0])
print(gen_text)
```bash
# pip install -U flash-attn --no-build-isolation
transformers-cli chat --model_name_or_path CohereForAI/c4ai-command-r-v01 --torch_dtype auto --attn_implementation flash_attention_2
```
Loading bitsnbytes 4bit quantized model
</hfoption>
</hfoptions>
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
The example below uses [bitsandbytes](../quantization/bitsandbytes) to quantize the weights to 4-bits.
```python
# pip install transformers bitsandbytes accelerate
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
import torch
from transformers import BitsAndBytesConfig, AutoTokenizer, AutoModelForCausalLM
bnb_config = BitsAndBytesConfig(load_in_4bit=True)
tokenizer = AutoTokenizer.from_pretrained("CohereForAI/c4ai-command-r-v01")
model = AutoModelForCausalLM.from_pretrained("CohereForAI/c4ai-command-r-v01", torch_dtype=torch.float16, device_map="auto", quantization_config=bnb_config, attn_implementation="sdpa")
model_id = "CohereForAI/c4ai-command-r-v01"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=bnb_config)
gen_tokens = model.generate(
# format message with the Command-R chat template
messages = [{"role": "user", "content": "How do plants make energy?"}]
input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to("cuda")
output = model.generate(
input_ids,
max_new_tokens=100,
do_sample=True,
temperature=0.3,
)
gen_text = tokenizer.decode(gen_tokens[0])
print(gen_text)
cache_implementation="static",
)
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
Use the [AttentionMaskVisualizer](https://github.com/huggingface/transformers/blob/beb9b5b02246b9b7ee81ddf938f93f44cfeaad19/src/transformers/utils/attention_visualizer.py#L139) to better understand what tokens the model can and cannot attend to.
```py
from transformers.utils.attention_visualizer import AttentionMaskVisualizer
visualizer = AttentionMaskVisualizer("CohereForAI/c4ai-command-r-v01")
visualizer("Plants create energy through a process known as")
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/cohere-attn-mask.png"/>
</div>
## Notes
- Dont use the torch_dtype parameter in [`~AutoModel.from_pretrained`] if youre using FlashAttention-2 because it only supports fp16 or bf16. You should use [Automatic Mixed Precision](https://pytorch.org/tutorials/recipes/recipes/amp_recipe.html), set fp16 or bf16 to True if using [`Trainer`], or use [torch.autocast](https://pytorch.org/docs/stable/amp.html#torch.autocast).
## CohereConfig
@ -143,5 +134,3 @@ print(gen_text)
[[autodoc]] CohereForCausalLM
- forward

View File

@ -0,0 +1,184 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# DeepSeek-V3
## Overview
The DeepSeek-V3 model was proposed in [DeepSeek-V3 Technical Report](https://arxiv.org/abs/2412.19437) by DeepSeek-AI Team.
The abstract from the paper is the following:
We present DeepSeek-V3, a strong Mixture-of-Experts (MoE) language model with 671B total parameters with 37B activated for each token. To achieve efficient inference and cost-effective training, DeepSeek-V3 adopts Multi-head Latent Attention (MLA) and DeepSeekMoE architectures, which were thoroughly validated in DeepSeek-V2. Furthermore, DeepSeek-V3 pioneers an auxiliary-loss-free strategy for load balancing and sets a multi-token prediction training objective for stronger performance. We pre-train DeepSeek-V3 on 14.8 trillion diverse and high-quality tokens, followed by Supervised Fine-Tuning and Reinforcement Learning stages to fully harness its capabilities. Comprehensive evaluations reveal that DeepSeek-V3 outperforms other open-source models and achieves performance comparable to leading closed-source models. Despite its excellent performance, DeepSeek-V3 requires only 2.788M H800 GPU hours for its full training. In addition, its training process is remarkably stable. Throughout the entire training process, we did not experience any irrecoverable loss spikes or perform any rollbacks. The model checkpoints are available at https://github.com/deepseek-ai/DeepSeek-V3.
## Limitations and call for contribution!
We are super happy to make this code community-powered, and would love to see how you can best optimize the following:
- current implementation uses the "naive" attention compution (so not really MLA)
- current implementation loops through the experts. This should be replaced. Pointers to use `get_packed_weights` from `intetrations/tensor_parallel`.
- current implementation uses the eleuther formula for ROPE, using the orginal one would be more efficient! (should still follow our API)
- static cache is not supported (this should be just a generation config issue / config shape issues)
### Usage tips
The model uses Multi-head Latent Attention (MLA) and DeepSeekMoE architectures for efficient inference and cost-effective training. It employs an auxiliary-loss-free strategy for load balancing and multi-token prediction training objective. The model can be used for various language tasks after being pre-trained on 14.8 trillion tokens and going through Supervised Fine-Tuning and Reinforcement Learning stages.
You can run the model in `FP8` automatically, using 2 nodes of 8 H100 should be more than enough!
```python
# `run_deepseek_v1.py`
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
torch.manual_seed(30)
tokenizer = AutoTokenizer.from_pretrained("deepseek-r1")
chat = [
{"role": "user", "content": "Hello, how are you?"},
{"role": "assistant", "content": "I'm doing great. How can I help you today?"},
{"role": "user", "content": "I'd like to show off how chat templating works!"},
]
model = AutoModelForCausalLM.from_pretrained("deepseek-r1", device_map="auto", torch_dtype=torch.bfloat16)
inputs = tokenizer.apply_chat_template(chat, tokenize=True, add_generation_prompt=True, return_tensors="pt").to(model.device)
import time
start = time.time()
outputs = model.generate(inputs, max_new_tokens=50)
print(tokenizer.batch_decode(outputs))
print(time.time()-start)
```
This generated:
``````
<Assistant><think>
Okay, the user wants to demonstrate how chat templating works. Let me break down what that means. Chat templating is about structuring the conversation data, especially for models that need specific input formats. Maybe they're referring to something like how messages are formatted with roles (user, assistant, system) in APIs like OpenAI.
First, I should explain what chat templating is. It's the process of formatting conversation data into a structured format that the model can understand. This usually includes roles and content. For example, user messages, assistant responses, and system messages each have their own role tags.
They might want an example. Let me think of a simple conversation. The user says "Hello, how are you?" and the assistant responds "I'm doing great. How can I help you today?" Then the user follows up with wanting to show off chat templating. So the example should include the history and the new message.
In some frameworks, like Hugging Face's Transformers, chat templates are applied using Jinja2 templates. The template might look something like combining system messages, then looping through user and assistant messages with appropriate tags. For instance, using {% for message in messages %} and assigning roles like <|user|>, <|assistant|>, etc.
I should structure the example with the messages array, showing each role and content. Then apply a hypothetical template to convert that into a formatted string the model uses. Also, mention that different models have different templating requirements, like using special tokens or varying role labels.
Wait, the user mentioned "chat templating" in the context of showing off. Maybe they want a practical example they can present. So providing a code snippet or a structured data example would be helpful. Let me outline a typical messages array and then the templated output.
Also, it's important to note that proper templating ensures the model knows the conversation flow, which is crucial for generating coherent responses. Maybe include a note about why it's important, like maintaining context and role-specific processing.
Let me check if there are any common mistakes or things to avoid. For example, not closing tags properly, or mismatching roles. But maybe that's too detailed unless the user asks. Focus on the positive example first.
Putting it all together, the response should have an example messages array, the applied template, and the final formatted string. Maybe use angle brackets or special tokens as placeholders. Also, mention that this helps in training or fine-tuning models with structured data.
I think that's a solid approach. Let me structure it step by step to make it clear.
</think>
Chat templating is a way to structure conversation data (e.g., user/assistant interactions) into a format that language models understand. This is especially important for models trained to handle multi-turn dialogues, where the input must explicitly separate roles (user, assistant, system, etc.) and messages. Lets break this down with an example!
---
### **Step 1: Raw Conversation History**
Suppose we have this conversation:
- **User**: "Hello, how are you?"
- **Assistant**: "I'm doing great. How can I help you today?"
- **User**: "I'd like to show off how chat templating works!"
---
### **Step 2: Structured Messages**
In frameworks like Hugging Face Transformers or OpenAI, conversations are often formatted as a list of dictionaries with `role` and `content`:
```python
messages = [
{"role": "user", "content": "Hello, how are you?"},
{"role": "assistant", "content": "I'm doing great. How can I help you today?"},
{"role": "user", "content": "I'd like to show off how chat templating works!"},
]
```
---
### **Step 3: Apply a Chat Template**
A **chat template** converts this structured data into a single string formatted for the model. For example, using a Jinja-style template (common in Hugging Face):
```jinja
{% for message in messages %}
{% if message['role'] == 'user' %}
<|user|>{{ message['content'] }}<|end|>
{% elif message['role'] == 'assistant' %}
<|assistant|>{{ message['content'] }}<|end|>
{% endif %}
{% endfor %}
<|assistant|>
```
---
### **Step 4: Final Templated Output**
Applying the template to our `messages` list would produce:
```text
<|user|>Hello, how are you?<|end|>
<|assistant|>I'm doing great. How can I help you today?<|end|>
<|user|>I'd like to show off how chat templating works!<|end|>
<|assistant|>
```
This tells the model:
1. The conversation history (user/assistant turns).
2. The models turn to generate a response (`<|assistant|>` at the end).
---
### **Key Notes**:
- **Role Separation**: Tags like `<|user|>` and `<|assistant|>` help the model distinguish speakers.
- **Special Tokens**: Models often use unique tokens (e.g., `<|end|>`) to mark message boundaries.
- **Flexibility**: Templates vary by model (e.g., OpenAI uses `{"role": "user", "content": "..."}` instead of tags).
---
### **Why This Matters**:
- **Consistency**: Ensures the model understands dialogue structure.
- **Context Preservation**: Maintains the flow of multi-turn conversations.
- **Alignment**: Matches the format the model was trained on for better performance.
Want to dive deeper or see a specific frameworks implementation (e.g., OpenAI, Llama, Mistral)? Let me know! 😊<end▁of▁sentence>
``````
Use the following to run it
```bash
torchrun --nproc_per_node=8 --nnodes=2 --node_rank=0|1 --rdzv-id an_id --rdzv-backend c10d --rdzv-endpoint master_addr:master_port run_deepseek_r1.py
```
If you have:
```bash
[rank0]: ncclInternalError: Internal check failed.
[rank0]: Last error:
[rank0]: Bootstrap : no socket interface found
```
error, it means NCCL was probably not loaded.
## DeepseekV3Config
[[autodoc]] DeepseekV3Config
## DeepseekV3Model
[[autodoc]] DeepseekV3Model
- forward
## DeepseekV3ForCausalLM
[[autodoc]] DeepseekV3ForCausalLM
- forward

View File

@ -14,101 +14,69 @@ rendered properly in your Markdown viewer.
-->
# Depth Anything
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
## Overview
# Depth Anything
The Depth Anything model was proposed in [Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data](https://arxiv.org/abs/2401.10891) by Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, Hengshuang Zhao. Depth Anything is based on the [DPT](dpt) architecture, trained on ~62 million images, obtaining state-of-the-art results for both relative and absolute depth estimation.
[Depth Anything](https://huggingface.co/papers/2401.10891) is designed to be a foundation model for monocular depth estimation (MDE). It is jointly trained on labeled and ~62M unlabeled images to enhance the dataset. It uses a pretrained [DINOv2](./dinov2) model as an image encoder to inherit its existing rich semantic priors, and [DPT](./dpt) as the decoder. A teacher model is trained on unlabeled images to create pseudo-labels. The student model is trained on a combination of the pseudo-labels and labeled images. To improve the student model's performance, strong perturbations are added to the unlabeled images to challenge the student model to learn more visual knowledge from the image.
<Tip>
You can find all the original Depth Anything checkpoints under the [Depth Anything](https://huggingface.co/collections/LiheYoung/depth-anything-release-65b317de04eec72abf6b55aa) collection.
[Depth Anything V2](depth_anything_v2) was released in June 2024. It uses the same architecture as Depth Anything and therefore it is compatible with all code examples and existing workflows. However, it leverages synthetic data and a larger capacity teacher model to achieve much finer and robust depth predictions.
> [!TIP]
> Click on the Depth Anything models in the right sidebar for more examples of how to apply Depth Anything to different vision tasks.
</Tip>
The example below demonstrates how to obtain a depth map with [`Pipeline`] or the [`AutoModel`] class.
The abstract from the paper is the following:
<hfoptions id="usage">
<hfoption id="Pipeline">
*This work presents Depth Anything, a highly practical solution for robust monocular depth estimation. Without pursuing novel technical modules, we aim to build a simple yet powerful foundation model dealing with any images under any circumstances. To this end, we scale up the dataset by designing a data engine to collect and automatically annotate large-scale unlabeled data (~62M), which significantly enlarges the data coverage and thus is able to reduce the generalization error. We investigate two simple yet effective strategies that make data scaling-up promising. First, a more challenging optimization target is created by leveraging data augmentation tools. It compels the model to actively seek extra visual knowledge and acquire robust representations. Second, an auxiliary supervision is developed to enforce the model to inherit rich semantic priors from pre-trained encoders. We evaluate its zero-shot capabilities extensively, including six public datasets and randomly captured photos. It demonstrates impressive generalization ability. Further, through fine-tuning it with metric depth information from NYUv2 and KITTI, new SOTAs are set. Our better depth model also results in a better depth-conditioned ControlNet.*
```py
import torch
from transformers import pipeline
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/depth_anything_overview.jpg"
alt="drawing" width="600"/>
<small> Depth Anything overview. Taken from the <a href="https://arxiv.org/abs/2401.10891">original paper</a>.</small>
This model was contributed by [nielsr](https://huggingface.co/nielsr).
The original code can be found [here](https://github.com/LiheYoung/Depth-Anything).
## Usage example
There are 2 main ways to use Depth Anything: either using the pipeline API, which abstracts away all the complexity for you, or by using the `DepthAnythingForDepthEstimation` class yourself.
### Pipeline API
The pipeline allows to use the model in a few lines of code:
```python
>>> from transformers import pipeline
>>> from PIL import Image
>>> import requests
>>> # load pipe
>>> pipe = pipeline(task="depth-estimation", model="LiheYoung/depth-anything-small-hf")
>>> # load image
>>> url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> # inference
>>> depth = pipe(image)["depth"]
pipe = pipeline(task="depth-estimation", model="LiheYoung/depth-anything-base-hf", torch_dtype=torch.bfloat16, device=0)
pipe("http://images.cocodataset.org/val2017/000000039769.jpg")["depth"]
```
### Using the model yourself
</hfoption>
<hfoption id="AutoModel">
If you want to do the pre- and postprocessing yourself, here's how to do that:
```py
import torch
import requests
import numpy as np
from PIL import Image
from transformers import AutoImageProcessor, AutoModelForDepthEstimation
```python
>>> from transformers import AutoImageProcessor, AutoModelForDepthEstimation
>>> import torch
>>> import numpy as np
>>> from PIL import Image
>>> import requests
image_processor = AutoImageProcessor.from_pretrained("LiheYoung/depth-anything-base-hf")
model = AutoModelForDepthEstimation.from_pretrained("LiheYoung/depth-anything-base-hf", torch_dtype=torch.bfloat16)
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
inputs = image_processor(images=image, return_tensors="pt")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
with torch.no_grad():
outputs = model(**inputs)
>>> image_processor = AutoImageProcessor.from_pretrained("LiheYoung/depth-anything-small-hf")
>>> model = AutoModelForDepthEstimation.from_pretrained("LiheYoung/depth-anything-small-hf")
>>> # prepare image for the model
>>> inputs = image_processor(images=image, return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> # interpolate to original size and visualize the prediction
>>> post_processed_output = image_processor.post_process_depth_estimation(
... outputs,
... target_sizes=[(image.height, image.width)],
... )
>>> predicted_depth = post_processed_output[0]["predicted_depth"]
>>> depth = (predicted_depth - predicted_depth.min()) / (predicted_depth.max() - predicted_depth.min())
>>> depth = depth.detach().cpu().numpy() * 255
>>> depth = Image.fromarray(depth.astype("uint8"))
post_processed_output = image_processor.post_process_depth_estimation(
outputs,
target_sizes=[(image.height, image.width)],
)
predicted_depth = post_processed_output[0]["predicted_depth"]
depth = (predicted_depth - predicted_depth.min()) / (predicted_depth.max() - predicted_depth.min())
depth = depth.detach().cpu().numpy() * 255
Image.fromarray(depth.astype("uint8"))
```
## Resources
</hfoption>
</hfoptions>
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with Depth Anything.
## Notes
- [Monocular depth estimation task guide](../tasks/monocular_depth_estimation)
- A notebook showcasing inference with [`DepthAnythingForDepthEstimation`] can be found [here](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/Depth%20Anything/Predicting_depth_in_an_image_with_Depth_Anything.ipynb). 🌎
If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
- [DepthAnythingV2](./depth_anything_v2), released in June 2024, uses the same architecture as Depth Anything and is compatible with all code examples and existing workflows. It uses synthetic data and a larger capacity teacher model to achieve much finer and robust depth predictions.
## DepthAnythingConfig

View File

@ -14,199 +14,91 @@ rendered properly in your Markdown viewer.
-->
# DistilBERT
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
</div>
</div>
## Overview
# DistilBERT
The DistilBERT model was proposed in the blog post [Smaller, faster, cheaper, lighter: Introducing DistilBERT, a
distilled version of BERT](https://medium.com/huggingface/distilbert-8cf3380435b5), and the paper [DistilBERT, a
distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108). DistilBERT is a
small, fast, cheap and light Transformer model trained by distilling BERT base. It has 40% less parameters than
*google-bert/bert-base-uncased*, runs 60% faster while preserving over 95% of BERT's performances as measured on the GLUE language
understanding benchmark.
[DistilBERT](https://huggingface.co/papers/1910.01108) is pretrained by knowledge distillation to create a smaller model with faster inference and requires less compute to train. Through a triple loss objective during pretraining, language modeling loss, distillation loss, cosine-distance loss, DistilBERT demonstrates similar performance to a larger transformer language model.
The abstract from the paper is the following:
You can find all the original DistilBERT checkpoints under the [DistilBERT](https://huggingface.co/distilbert) organization.
*As Transfer Learning from large-scale pre-trained models becomes more prevalent in Natural Language Processing (NLP),
operating these large models in on-the-edge and/or under constrained computational training or inference budgets
remains challenging. In this work, we propose a method to pre-train a smaller general-purpose language representation
model, called DistilBERT, which can then be fine-tuned with good performances on a wide range of tasks like its larger
counterparts. While most prior work investigated the use of distillation for building task-specific models, we leverage
knowledge distillation during the pretraining phase and show that it is possible to reduce the size of a BERT model by
40%, while retaining 97% of its language understanding capabilities and being 60% faster. To leverage the inductive
biases learned by larger models during pretraining, we introduce a triple loss combining language modeling,
distillation and cosine-distance losses. Our smaller, faster and lighter model is cheaper to pre-train and we
demonstrate its capabilities for on-device computations in a proof-of-concept experiment and a comparative on-device
study.*
> [!TIP]
> Click on the DistilBERT models in the right sidebar for more examples of how to apply DistilBERT to different language tasks.
This model was contributed by [victorsanh](https://huggingface.co/victorsanh). This model jax version was
contributed by [kamalkraj](https://huggingface.co/kamalkraj). The original code can be found [here](https://github.com/huggingface/transformers-research-projects/tree/main/distillation).
The example below demonstrates how to classify text with [`Pipeline`], [`AutoModel`], and from the command line.
## Usage tips
<hfoptions id="usage">
<hfoption id="Pipeline">
```py
from transformers import pipeline
classifier = pipeline(
task="text-classification",
model="distilbert-base-uncased-finetuned-sst-2-english",
torch_dtype=torch.float16,
device=0
)
result = classifier("I love using Hugging Face Transformers!")
print(result)
# Output: [{'label': 'POSITIVE', 'score': 0.9998}]
```
</hfoption>
<hfoption id="AutoModel">
```py
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(
"distilbert/distilbert-base-uncased-finetuned-sst-2-english",
)
model = AutoModelForSequenceClassification.from_pretrained(
"distilbert/distilbert-base-uncased-finetuned-sst-2-english",
torch_dtype=torch.float16,
device_map="auto",
attn_implementation="sdpa"
)
inputs = tokenizer("I love using Hugging Face Transformers!", return_tensors="pt").to("cuda")
with torch.no_grad():
outputs = model(**inputs)
predicted_class_id = torch.argmax(outputs.logits, dim=-1).item()
predicted_label = model.config.id2label[predicted_class_id]
print(f"Predicted label: {predicted_label}")
```
</hfoption>
<hfoption id="transformers-cli">
```bash
echo -e "I love using Hugging Face Transformers!" | transformers-cli run --task text-classification --model distilbert-base-uncased-finetuned-sst-2-english
```
</hfoption>
</hfoptions>
## Notes
- DistilBERT doesn't have `token_type_ids`, you don't need to indicate which token belongs to which segment. Just
separate your segments with the separation token `tokenizer.sep_token` (or `[SEP]`).
- DistilBERT doesn't have options to select the input positions (`position_ids` input). This could be added if
necessary though, just let us know if you need this option.
- Same as BERT but smaller. Trained by distillation of the pretrained BERT model, meaning its been trained to predict the same probabilities as the larger model. The actual objective is a combination of:
* finding the same probabilities as the teacher model
* predicting the masked tokens correctly (but no next-sentence objective)
* a cosine similarity between the hidden states of the student and the teacher model
### Using Scaled Dot Product Attention (SDPA)
PyTorch includes a native scaled dot-product attention (SDPA) operator as part of `torch.nn.functional`. This function
encompasses several implementations that can be applied depending on the inputs and the hardware in use. See the
[official documentation](https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html)
or the [GPU Inference](https://huggingface.co/docs/transformers/main/en/perf_infer_gpu_one#pytorch-scaled-dot-product-attention)
page for more information.
SDPA is used by default for `torch>=2.1.1` when an implementation is available, but you may also set
`attn_implementation="sdpa"` in `from_pretrained()` to explicitly request SDPA to be used.
```
from transformers import DistilBertModel
model = DistilBertModel.from_pretrained("distilbert-base-uncased", torch_dtype=torch.float16, attn_implementation="sdpa")
```
For the best speedups, we recommend loading the model in half-precision (e.g. `torch.float16` or `torch.bfloat16`).
On a local benchmark (NVIDIA GeForce RTX 2060-8GB, PyTorch 2.3.1, OS Ubuntu 20.04) with `float16` and the `distilbert-base-uncased` model with
a MaskedLM head, we saw the following speedups during training and inference.
#### Training
| num_training_steps | batch_size | seq_len | is cuda | Time per batch (eager - s) | Time per batch (sdpa - s) | Speedup (%) | Eager peak mem (MB) | sdpa peak mem (MB) | Mem saving (%) |
|--------------------|------------|---------|---------|----------------------------|---------------------------|-------------|---------------------|--------------------|----------------|
| 100 | 1 | 128 | False | 0.010 | 0.008 | 28.870 | 397.038 | 399.629 | -0.649 |
| 100 | 1 | 256 | False | 0.011 | 0.009 | 20.681 | 412.505 | 412.606 | -0.025 |
| 100 | 2 | 128 | False | 0.011 | 0.009 | 23.741 | 412.213 | 412.606 | -0.095 |
| 100 | 2 | 256 | False | 0.015 | 0.013 | 16.502 | 427.491 | 425.787 | 0.400 |
| 100 | 4 | 128 | False | 0.015 | 0.013 | 13.828 | 427.491 | 425.787 | 0.400 |
| 100 | 4 | 256 | False | 0.025 | 0.022 | 12.882 | 594.156 | 502.745 | 18.182 |
| 100 | 8 | 128 | False | 0.023 | 0.022 | 8.010 | 545.922 | 502.745 | 8.588 |
| 100 | 8 | 256 | False | 0.046 | 0.041 | 12.763 | 983.450 | 798.480 | 23.165 |
#### Inference
| num_batches | batch_size | seq_len | is cuda | is half | use mask | Per token latency eager (ms) | Per token latency SDPA (ms) | Speedup (%) | Mem eager (MB) | Mem BT (MB) | Mem saved (%) |
|-------------|------------|---------|---------|---------|----------|-----------------------------|-----------------------------|-------------|----------------|--------------|---------------|
| 50 | 2 | 64 | True | True | True | 0.032 | 0.025 | 28.192 | 154.532 | 155.531 | -0.642 |
| 50 | 2 | 128 | True | True | True | 0.033 | 0.025 | 32.636 | 157.286 | 157.482 | -0.125 |
| 50 | 4 | 64 | True | True | True | 0.032 | 0.026 | 24.783 | 157.023 | 157.449 | -0.271 |
| 50 | 4 | 128 | True | True | True | 0.034 | 0.028 | 19.299 | 162.794 | 162.269 | 0.323 |
| 50 | 8 | 64 | True | True | True | 0.035 | 0.028 | 25.105 | 160.958 | 162.204 | -0.768 |
| 50 | 8 | 128 | True | True | True | 0.052 | 0.046 | 12.375 | 173.155 | 171.844 | 0.763 |
| 50 | 16 | 64 | True | True | True | 0.051 | 0.045 | 12.882 | 172.106 | 171.713 | 0.229 |
| 50 | 16 | 128 | True | True | True | 0.096 | 0.081 | 18.524 | 191.257 | 191.517 | -0.136 |
## Resources
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with DistilBERT. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
<PipelineTag pipeline="text-classification"/>
- A blog post on [Getting Started with Sentiment Analysis using Python](https://huggingface.co/blog/sentiment-analysis-python) with DistilBERT.
- A blog post on how to [train DistilBERT with Blurr for sequence classification](https://huggingface.co/blog/fastai).
- A blog post on how to use [Ray to tune DistilBERT hyperparameters](https://huggingface.co/blog/ray-tune).
- A blog post on how to [train DistilBERT with Hugging Face and Amazon SageMaker](https://huggingface.co/blog/the-partnership-amazon-sagemaker-and-hugging-face).
- A notebook on how to [finetune DistilBERT for multi-label classification](https://colab.research.google.com/github/DhavalTaunk08/Transformers_scripts/blob/master/Transformers_multilabel_distilbert.ipynb). 🌎
- A notebook on how to [finetune DistilBERT for multiclass classification with PyTorch](https://colab.research.google.com/github/abhimishra91/transformers-tutorials/blob/master/transformers_multiclass_classification.ipynb). 🌎
- A notebook on how to [finetune DistilBERT for text classification in TensorFlow](https://colab.research.google.com/github/peterbayerle/huggingface_notebook/blob/main/distilbert_tf.ipynb). 🌎
- [`DistilBertForSequenceClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification.ipynb).
- [`TFDistilBertForSequenceClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/text-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification-tf.ipynb).
- [`FlaxDistilBertForSequenceClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/flax/text-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification_flax.ipynb).
- [Text classification task guide](../tasks/sequence_classification)
<PipelineTag pipeline="token-classification"/>
- [`DistilBertForTokenClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/token-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification.ipynb).
- [`TFDistilBertForTokenClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/token-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification-tf.ipynb).
- [`FlaxDistilBertForTokenClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/flax/token-classification).
- [Token classification](https://huggingface.co/course/chapter7/2?fw=pt) chapter of the 🤗 Hugging Face Course.
- [Token classification task guide](../tasks/token_classification)
<PipelineTag pipeline="fill-mask"/>
- [`DistilBertForMaskedLM`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/language-modeling#robertabertdistilbert-and-masked-language-modeling) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb).
- [`TFDistilBertForMaskedLM`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/language-modeling#run_mlmpy) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling-tf.ipynb).
- [`FlaxDistilBertForMaskedLM`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/flax/language-modeling#masked-language-modeling) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/masked_language_modeling_flax.ipynb).
- [Masked language modeling](https://huggingface.co/course/chapter7/3?fw=pt) chapter of the 🤗 Hugging Face Course.
- [Masked language modeling task guide](../tasks/masked_language_modeling)
<PipelineTag pipeline="question-answering"/>
- [`DistilBertForQuestionAnswering`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/question-answering) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/question_answering.ipynb).
- [`TFDistilBertForQuestionAnswering`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/question-answering) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/question_answering-tf.ipynb).
- [`FlaxDistilBertForQuestionAnswering`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/flax/question-answering).
- [Question answering](https://huggingface.co/course/chapter7/7?fw=pt) chapter of the 🤗 Hugging Face Course.
- [Question answering task guide](../tasks/question_answering)
**Multiple choice**
- [`DistilBertForMultipleChoice`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/multiple-choice) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/multiple_choice.ipynb).
- [`TFDistilBertForMultipleChoice`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/multiple-choice) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/multiple_choice-tf.ipynb).
- [Multiple choice task guide](../tasks/multiple_choice)
⚗️ Optimization
- A blog post on how to [quantize DistilBERT with 🤗 Optimum and Intel](https://huggingface.co/blog/intel).
- A blog post on how [Optimizing Transformers for GPUs with 🤗 Optimum](https://www.philschmid.de/optimizing-transformers-with-optimum-gpu).
- A blog post on [Optimizing Transformers with Hugging Face Optimum](https://www.philschmid.de/optimizing-transformers-with-optimum).
⚡️ Inference
- A blog post on how to [Accelerate BERT inference with Hugging Face Transformers and AWS Inferentia](https://huggingface.co/blog/bert-inferentia-sagemaker) with DistilBERT.
- A blog post on [Serverless Inference with Hugging Face's Transformers, DistilBERT and Amazon SageMaker](https://www.philschmid.de/sagemaker-serverless-huggingface-distilbert).
🚀 Deploy
- A blog post on how to [deploy DistilBERT on Google Cloud](https://huggingface.co/blog/how-to-deploy-a-pipeline-to-google-clouds).
- A blog post on how to [deploy DistilBERT with Amazon SageMaker](https://huggingface.co/blog/deploy-hugging-face-models-easily-with-amazon-sagemaker).
- A blog post on how to [Deploy BERT with Hugging Face Transformers, Amazon SageMaker and Terraform module](https://www.philschmid.de/terraform-huggingface-amazon-sagemaker).
## Combining DistilBERT and Flash Attention 2
First, make sure to install the latest version of Flash Attention 2 to include the sliding window attention feature.
```bash
pip install -U flash-attn --no-build-isolation
```
Make also sure that you have a hardware that is compatible with Flash-Attention 2. Read more about it in the official documentation of flash-attn repository. Make also sure to load your model in half-precision (e.g. `torch.float16`)
To load and run a model using Flash Attention 2, refer to the snippet below:
```python
>>> import torch
>>> from transformers import AutoTokenizer, AutoModel
>>> device = "cuda" # the device to load the model onto
>>> tokenizer = AutoTokenizer.from_pretrained('distilbert/distilbert-base-uncased')
>>> model = AutoModel.from_pretrained("distilbert/distilbert-base-uncased", torch_dtype=torch.float16, attn_implementation="flash_attention_2")
>>> text = "Replace me by any text you'd like."
>>> encoded_input = tokenizer(text, return_tensors='pt').to(device)
>>> model.to(device)
>>> output = model(**encoded_input)
```
## DistilBertConfig

View File

@ -14,66 +14,95 @@ rendered properly in your Markdown viewer.
-->
# ELECTRA
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
## Overview
# ELECTRA
The ELECTRA model was proposed in the paper [ELECTRA: Pre-training Text Encoders as Discriminators Rather Than
Generators](https://openreview.net/pdf?id=r1xMH1BtvB). ELECTRA is a new pretraining approach which trains two
transformer models: the generator and the discriminator. The generator's role is to replace tokens in a sequence, and
is therefore trained as a masked language model. The discriminator, which is the model we're interested in, tries to
identify which tokens were replaced by the generator in the sequence.
[ELECTRA](https://huggingface.co/papers/2003.10555) modifies the pretraining objective of traditional masked language models like BERT. Instead of just masking tokens and asking the model to predict them, ELECTRA trains two models, a generator and a discriminator. The generator replaces some tokens with plausible alternatives and the discriminator (the model you'll actually use) learns to detect which tokens are original and which were replaced. This training approach is very efficient and scales to larger models while using considerably less compute.
The abstract from the paper is the following:
This approach is super efficient because ELECTRA learns from every single token in the input, not just the masked ones. That's why even the small ELECTRA models can match or outperform much larger models while using way less computing resources.
*Masked language modeling (MLM) pretraining methods such as BERT corrupt the input by replacing some tokens with [MASK]
and then train a model to reconstruct the original tokens. While they produce good results when transferred to
downstream NLP tasks, they generally require large amounts of compute to be effective. As an alternative, we propose a
more sample-efficient pretraining task called replaced token detection. Instead of masking the input, our approach
corrupts it by replacing some tokens with plausible alternatives sampled from a small generator network. Then, instead
of training a model that predicts the original identities of the corrupted tokens, we train a discriminative model that
predicts whether each token in the corrupted input was replaced by a generator sample or not. Thorough experiments
demonstrate this new pretraining task is more efficient than MLM because the task is defined over all input tokens
rather than just the small subset that was masked out. As a result, the contextual representations learned by our
approach substantially outperform the ones learned by BERT given the same model size, data, and compute. The gains are
particularly strong for small models; for example, we train a model on one GPU for 4 days that outperforms GPT (trained
using 30x more compute) on the GLUE natural language understanding benchmark. Our approach also works well at scale,
where it performs comparably to RoBERTa and XLNet while using less than 1/4 of their compute and outperforms them when
using the same amount of compute.*
You can find all the original ELECTRA checkpoints under the [ELECTRA](https://huggingface.co/collections/google/electra-release-64ff6e8b18830fabea30a1ab) release.
This model was contributed by [lysandre](https://huggingface.co/lysandre). The original code can be found [here](https://github.com/google-research/electra).
> [!TIP]
> Click on the right sidebar for more examples of how to use ELECTRA for different language tasks like sequence classification, token classification, and question answering.
## Usage tips
The example below demonstrates how to classify text with [`Pipeline`] or the [`AutoModel`] class.
- ELECTRA is the pretraining approach, therefore there is nearly no changes done to the underlying model: BERT. The
only change is the separation of the embedding size and the hidden size: the embedding size is generally smaller,
while the hidden size is larger. An additional projection layer (linear) is used to project the embeddings from their
embedding size to the hidden size. In the case where the embedding size is the same as the hidden size, no projection
layer is used.
- ELECTRA is a transformer model pretrained with the use of another (small) masked language model. The inputs are corrupted by that language model, which takes an input text that is randomly masked and outputs a text in which ELECTRA has to predict which token is an original and which one has been replaced. Like for GAN training, the small language model is trained for a few steps (but with the original texts as objective, not to fool the ELECTRA model like in a traditional GAN setting) then the ELECTRA model is trained for a few steps.
- The ELECTRA checkpoints saved using [Google Research's implementation](https://github.com/google-research/electra)
contain both the generator and discriminator. The conversion script requires the user to name which model to export
into the correct architecture. Once converted to the HuggingFace format, these checkpoints may be loaded into all
available ELECTRA models, however. This means that the discriminator may be loaded in the
[`ElectraForMaskedLM`] model, and the generator may be loaded in the
[`ElectraForPreTraining`] model (the classification head will be randomly initialized as it
doesn't exist in the generator).
<hfoptions id="usage">
<hfoption id="Pipeline">
## Resources
```py
import torch
from transformers import pipeline
- [Text classification task guide](../tasks/sequence_classification)
- [Token classification task guide](../tasks/token_classification)
- [Question answering task guide](../tasks/question_answering)
- [Causal language modeling task guide](../tasks/language_modeling)
- [Masked language modeling task guide](../tasks/masked_language_modeling)
- [Multiple choice task guide](../tasks/multiple_choice)
classifier = pipeline(
task="text-classification",
model="bhadresh-savani/electra-base-emotion",
torch_dtype=torch.float16,
device=0
)
classifier("This restaurant has amazing food!")
```
</hfoption>
<hfoption id="AutoModel">
```py
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained(
"bhadresh-savani/electra-base-emotion",
)
model = AutoModelForSequenceClassification.from_pretrained(
"bhadresh-savani/electra-base-emotion",
torch_dtype=torch.float16
)
inputs = tokenizer("ELECTRA is more efficient than BERT", return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
predicted_class_id = logits.argmax(dim=-1).item()
predicted_label = model.config.id2label[predicted_class_id]
print(f"Predicted label: {predicted_label}")
```
</hfoption>
<hfoption id="transformers-cli">
```bash
echo -e "This restaurant has amazing food." | transformers-cli run --task text-classification --model bhadresh-savani/electra-base-emotion --device 0
```
</hfoption>
</hfoptions>
## Notes
- ELECTRA consists of two transformer models, a generator (G) and a discriminator (D). For most downstream tasks, use the discriminator model (as indicated by `*-discriminator` in the name) rather than the generator.
- ELECTRA comes in three sizes: small (14M parameters), base (110M parameters), and large (335M parameters).
- ELECTRA can use a smaller embedding size than the hidden size for efficiency. When `embedding_size` is smaller than `hidden_size` in the configuration, a projection layer connects them.
- When using batched inputs with padding, make sure to use attention masks to prevent the model from attending to padding tokens.
```py
# Example of properly handling padding with attention masks
inputs = tokenizer(["Short text", "This is a much longer text that needs padding"],
padding=True,
return_tensors="pt")
outputs = model(**inputs) # automatically uses the attention_mask
```
- When using the discriminator for a downstream task, you can load it into any of the ELECTRA model classes ([`ElectraForSequenceClassification`], [`ElectraForTokenClassification`], etc.).
## ElectraConfig

View File

@ -14,48 +14,113 @@ rendered properly in your Markdown viewer.
-->
# Falcon
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
## Overview
# Falcon
Falcon is a class of causal decoder-only models built by [TII](https://www.tii.ae/). The largest Falcon checkpoints
have been trained on >=1T tokens of text, with a particular emphasis on the [RefinedWeb](https://arxiv.org/abs/2306.01116)
corpus. They are made available under the Apache 2.0 license.
[Falcon](https://huggingface.co/papers/2311.16867) is a family of large language models, available in 7B, 40B, and 180B parameters, as pretrained and instruction tuned variants. This model focuses on scaling pretraining over three categories, performance, data, and hardware. Falcon uses multigroup attention to significantly reduce inference memory requirements and rotary positional embeddings (RoPE). These models are pretrained on [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb), a high-quality and deduplicated 5T token dataset.
You can find all the original Falcon checkpoints under the [Falcon](https://huggingface.co/collections/tiiuae/falcon-64fb432660017eeec9837b5a) collection.
Falcon's architecture is modern and optimized for inference, with multi-query attention and support for efficient
attention variants like `FlashAttention`. Both 'base' models trained only as causal language models as well as
'instruct' models that have received further fine-tuning are available.
> [!TIP]
> Click on the Falcon models in the right sidebar for more examples of how to apply Falcon to different language tasks.
The example below demonstrates how to generate text with [`Pipeline`], [`AutoModel`], and from the command line.
Falcon models are (as of 2023) some of the largest and most powerful open-source language models,
and consistently rank highly in the [OpenLLM leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
<hfoptions id="usage">
<hfoption id="Pipeline">
## Converting custom checkpoints
```py
import torch
from transformers import pipeline
<Tip>
pipeline = pipeline(
task="text-generation",
model="tiiuae/falcon-7b-instruct",
torch_dtype=torch.bfloat16,
device=0
)
pipeline(
"Write a short poem about coding",
max_length=100,
do_sample=True,
temperature=0.7
)
```
Falcon models were initially added to the Hugging Face Hub as custom code checkpoints. However, Falcon is now fully
supported in the Transformers library. If you fine-tuned a model from a custom code checkpoint, we recommend converting
your checkpoint to the new in-library format, as this should give significant improvements to stability and
performance, especially for generation, as well as removing the need to use `trust_remote_code=True`!
</hfoption>
<hfoption id="AutoModel">
</Tip>
```py
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
You can convert custom code checkpoints to full Transformers checkpoints using the `convert_custom_code_checkpoint.py`
script located in the
[Falcon model directory](https://github.com/huggingface/transformers/tree/main/src/transformers/models/falcon)
of the Transformers library. To use this script, simply call it with
`python convert_custom_code_checkpoint.py --checkpoint_dir my_model`. This will convert your checkpoint in-place, and
you can immediately load it from the directory afterwards with e.g. `from_pretrained()`. If your model hasn't been
uploaded to the Hub, we recommend making a backup before attempting the conversion, just in case!
tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-7b-instruct")
model = AutoModelForCausalLM.from_pretrained(
"tiiuae/falcon-7b-instruct",
torch_dtype=torch.bfloat16,
device_map="auto",
attn_implementation="sdpa",
)
input_ids = tokenizer("Write a short poem about coding", return_tensors="pt").to("cuda")
output = model.generate(**input_ids)
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
</hfoption>
<hfoption id="transformers-cli">
```bash
# pip install -U flash-attn --no-build-isolation
transformers-cli chat --model_name_or_path tiiuae/falcon-7b-instruct --torch_dtype auto --attn_implementation flash_attention_2 --device 0
```
</hfoption>
</hfoptions>
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
The example below uses [bitsandbytes](../quantization/bitsandbytes) to only quantize the weights to 4-bits.
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
)
tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-7b")
model = AutoModelForCausalLM.from_pretrained(
"tiiuae/falcon-7b",
torch_dtype=torch.bfloat16,
device_map="auto",
quantization_config=quantization_config,
)
inputs = tokenizer("In quantum physics, entanglement means", return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Notes
- If you're upgrading from an older custom code checkpoint, remember to convert it to the official Transformers format for better stability and performance using the conversion script located in the [Falcon model directory](https://github.com/huggingface/transformers/tree/main/src/transformers/models/falcon).
```bash
python convert_custom_code_checkpoint.py --checkpoint_dir my_model
```
## FalconConfig
@ -85,6 +150,4 @@ uploaded to the Hub, we recommend making a backup before attempting the conversi
## FalconForQuestionAnswering
[[autodoc]] FalconForQuestionAnswering
- forward
- forward

View File

@ -164,6 +164,10 @@ visualizer = AttentionMaskVisualizer("google/gemma-3-4b-it")
visualizer("<img>What is shown in this image?")
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/gemma-3-attn-mask.png"/>
</div>
## Notes
- Use [`Gemma3ForConditionalGeneration`] for image-and-text and image-only inputs.
@ -204,7 +208,7 @@ visualizer("<img>What is shown in this image?")
+ do_pan_and_scan=True,
).to("cuda")
```
- For text-only inputs, use [`AutoModelForCausalLM`] instead to skip loading the vision components and save resources.
- For Gemma-3 1B checkpoint trained in text-only mode, use [`AutoModelForCausalLM`] instead.
```py
import torch

View File

@ -116,6 +116,10 @@ visualizer = AttentionMaskVisualizer("huggyllama/llama-7b")
visualizer("Plants create energy through a process known as")
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/llama-attn-mask.png"/>
</div>
## Notes
- The tokenizer is a byte-pair encoding model based on [SentencePiece](https://github.com/google/sentencepiece). During decoding, if the first token is the start of the word (for example, "Banana"), the tokenizer doesn't prepend the prefix space to the string.

View File

@ -116,6 +116,10 @@ visualizer = AttentionMaskVisualizer("meta-llama/Llama-2-7b-hf")
visualizer("Plants create energy through a process known as")
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/llama-2-attn-mask.png"/>
</div>
## Notes
- Setting `config.pretraining_tp` to a value besides `1` activates a more accurate but slower computation of the linear layers. This matches the original logits better.

View File

@ -0,0 +1,442 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Llama4
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
</div>
</div>
Llama 4, developed by Meta, introduces a new auto-regressive Mixture-of-Experts (MoE) architecture.
This generation includes two models:
- The highly capable Llama 4 Maverick with 17B active parameters out of ~400B total, with 128 experts.
- The efficient Llama 4 Scout also has 17B active parameters out of ~109B total, using just 16 experts.
-
Both models leverage early fusion for native multimodality, enabling them to process text and image inputs.
Maverick and Scout are both trained on up to 40 trillion tokens on data encompassing 200 languages
(with specific fine-tuning support for 12 languages including Arabic, Spanish, German, and Hindi).
For deployment, Llama 4 Scout is designed for accessibility, fitting on a single server-grade GPU via
on-the-fly 4-bit or 8-bitint4 quantization, while Maverick is available in BF16 and FP8 formats.
These models are released under the custom Llama 4 Community License Agreement, available on the model repositories.
You can find all the original Llama checkpoints under the [meta-llama](https://huggingface.co/meta-llama) organization.
> [!TIP]
> The Llama 4 family of models comes in two flavors: 109B, and 402B parameters. Both of these flavors are extremely
> large and won't fit on your run-of-the-mill device. See below for some examples to reduce the memory usage of the
> model.
>
> For the download to be faster and more resilient, we recommend installing the `hf_xet` dependency as followed:
> `pip install transformers[hf_xet]`
The examples below demonstrates how to generate with [`Pipeline`] or the [`AutoModel`]. We additionally add an example
showcasing how to toggle the right attributes to enable very long-context generations, as some flavors of Llama 4
have context lengths going up to 10 million tokens.
<hfoptions id="usage">
<hfoption id="Pipeline">
```py
from transformers import pipeline
import torch
model_id = "meta-llama/Llama-4-Scout-17B-16E-Instruct"
messages = [
{"role": "user", "content": "what is the recipe of mayonnaise?"},
]
pipe = pipeline(
"text-generation",
model=model_id,
device_map="auto",
torch_dtype=torch.bfloat16
)
output = pipe(messages, do_sample=False, max_new_tokens=200)
print(output[0]["generated_text"][-1]["content"])
```
</hfoption>
<hfoption id="AutoModel - Text only">
```py
from transformers import AutoTokenizer, Llama4ForConditionalGeneration
import torch
model_id = "meta-llama/Llama-4-Scout-17B-16E-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_id)
messages = [
{"role": "user", "content": "Who are you?"},
]
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt", return_dict=True)
model = Llama4ForConditionalGeneration.from_pretrained(
model_id,
device_map="auto",
torch_dtype=torch.bfloat16
)
outputs = model.generate(**inputs.to(model.device), max_new_tokens=100)
outputs = tokenizer.batch_decode(outputs[:, inputs["input_ids"].shape[-1]:])
print(outputs[0])
```
</hfoption>
<hfoption id="AutoModel - Multimodal">
```py
from transformers import AutoProcessor, Llama4ForConditionalGeneration
import torch
model_id = "meta-llama/Llama-4-Scout-17B-16E-Instruct"
processor = AutoProcessor.from_pretrained(model_id)
model = Llama4ForConditionalGeneration.from_pretrained(
model_id,
device_map="auto",
torch_dtype=torch.bfloat16,
)
img_url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/0052a70beed5bf71b92610a43a52df6d286cd5f3/diffusers/rabbit.jpg"
messages = [
{
"role": "user",
"content": [
{"type": "image", "url": img_url},
{"type": "text", "text": "Describe this image in two sentences."},
]
},
]
inputs = processor.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
).to(model.device)
outputs = model.generate(
**inputs,
max_new_tokens=256,
)
response = processor.batch_decode(outputs[:, inputs["input_ids"].shape[-1]:])[0]
print(response)
```
</hfoption>
<hfoption id="AutoModel - Multimodal with multiple images">
```py
from transformers import AutoProcessor, Llama4ForConditionalGeneration
import torch
model_id = "meta-llama/Llama-4-Scout-17B-16E-Instruct"
processor = AutoProcessor.from_pretrained(model_id)
model = Llama4ForConditionalGeneration.from_pretrained(
model_id,
device_map="auto",
torch_dtype=torch.bfloat16,
)
url1 = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/0052a70beed5bf71b92610a43a52df6d286cd5f3/diffusers/rabbit.jpg"
url2 = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/datasets/cat_style_layout.png"
messages = [
{
"role": "user",
"content": [
{"type": "image", "url": url1},
{"type": "image", "url": url2},
{"type": "text", "text": "Can you describe how these two images are similar, and how they differ?"},
]
},
]
inputs = processor.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
).to(model.device)
outputs = model.generate(
**inputs,
max_new_tokens=256,
)
response = processor.batch_decode(outputs[:, inputs["input_ids"].shape[-1]:])[0]
print(response)
```
</hfoption>
<hfoption id="AutoModel - Long context">
Beware: the example below uses both `device_map="auto"` and flex-attention.
Please use `torchrun` to run this example in tensor-parallel mode.
We will work to enable running with `device_map="auto"` and flex-attention without
tensor-parallel in the future.
```py
from transformers import Llama4ForConditionalGeneration, AutoTokenizer
import torch
import time
file = "very_long_context_prompt.txt"
model_id = "meta-llama/Llama-4-Scout-17B-16E-Instruct"
with open(file, "r") as f:
very_long_text = "\n".join(f.readlines())
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = Llama4ForConditionalGeneration.from_pretrained(
model_id,
device_map="auto",
attn_implementation="flex_attention",
torch_dtype=torch.bfloat16
)
messages = [
{"role": "user", "content": f"Look at the following texts: [{very_long_text}]\n\n\n\nWhat are the books, and who wrote them? Make me a nice list."},
]
input_ids = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")
torch.cuda.synchronize()
start = time.time()
out = model.generate(
input_ids.to(model.device),
prefill_chunk_size=2048*8,
max_new_tokens=300,
cache_implementation="hybrid",
)
print(time.time()-start)
print(tokenizer.batch_decode(out[:, input_ids.shape[-1]:]))
print(f"{torch.cuda.max_memory_allocated(model.device) / 1024**3:.2f} GiB")
```
</hfoption>
</hfoptions>
## Efficiency; how to get the best out of llama 4
### The Attention methods
Updating the default attention function can significantly improve compute performance as well as memory usage. Refer to the [Attention Interface](../attention_interface) overview for an in-depth explanation of our interface.
As of release, the Llama 4 model supports the following attention methods: `eager`, `flex_attention`, `sdpa`. We recommend using `flex_attention` for best results.
Switching attention mechanism is done at the model initialization step:
<hfoptions id="Attention">
<hfoption id="Flex Attention">
Setting Flex Attention ensures the best results with the very long context the model can handle.
> [!TIP] Beware: the example below uses both `device_map="auto"` and flex-attention.
> Please use `torchrun` to run this example in tensor-parallel mode.
>
> We will work to enable running with `device_map="auto"` and flex-attention without
> tensor-parallel in the future.
```py
from transformers import Llama4ForConditionalGeneration
import torch
model = Llama4ForConditionalGeneration.from_pretrained(
model_id,
attn_implementation="flex_attention",
device_map="auto",
torch_dtype=torch.bfloat16,
)
```
</hfoption>
<hfoption id="SDPA">
The `sdpa` attention method is generally more compute-efficient than the `eager` method.
```py
from transformers import Llama4ForConditionalGeneration
import torch
model = Llama4ForConditionalGeneration.from_pretrained(
model_id,
attn_implementation="sdpa",
device_map="auto",
torch_dtype=torch.bfloat16,
)
```
</hfoption>
<hfoption id="Eager">
The `eager` attention method is set by default, so no need for anything different when loading the model:
```py
from transformers import Llama4ForConditionalGeneration
import torch
model = Llama4ForConditionalGeneration.from_pretrained(
model_id,
device_map="auto",
torch_dtype=torch.bfloat16,
)
```
</hfoption>
</hfoptions>
### Quantization
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for available quantization backends.
At time of release, both FBGEMM and LLM-Compressor are supported; more quantization methods will be supported in the days that follow the release.
See below for examples using both:
Here is an example loading an BF16 model in FP8 using the FBGEMM approach:
<hfoptions id="Quantization">
<hfoption id="FBGEMM">
```python
from transformers import AutoTokenizer, Llama4ForConditionalGeneration, FbgemmFp8Config
import torch
model_id = "meta-llama/Llama-4-Scout-17B-16E-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_id)
messages = [
{"role": "user", "content": "Who are you?"},
]
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt", return_dict=True)
model = Llama4ForConditionalGeneration.from_pretrained(
model_id,
device_map="auto",
torch_dtype=torch.bfloat16,
quantization_config=FbgemmFp8Config()
)
outputs = model.generate(**inputs.to(model.device), max_new_tokens=100)
outputs = tokenizer.batch_decode(outputs[:, inputs["input_ids"].shape[-1]:])
print(outputs[0])
```
</hfoption>
<hfoption id="LLM-Compressor">
To use the LLM-Compressor technique, we recommend leveraging the pre-quantized FP8 checkpoint available with the release:
```python
from transformers import AutoTokenizer, Llama4ForConditionalGeneration
import torch
model_id = "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8"
tokenizer = AutoTokenizer.from_pretrained(model_id)
messages = [
{"role": "user", "content": "Who are you?"},
]
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt", return_dict=True)
model = Llama4ForConditionalGeneration.from_pretrained(
model_id,
tp_plan="auto",
torch_dtype=torch.bfloat16,
)
outputs = model.generate(**inputs.to(model.device), max_new_tokens=100)
outputs = tokenizer.batch_decode(outputs[:, inputs["input_ids"].shape[-1]:])
print(outputs[0])
```
</hfoption>
</hfoptions>
### Offloading
Enabling CPU-offloading means that components of the model might be moved to CPU instead of GPU in case the GPU-memory available isn't sufficient to load the entire model.
At inference, different components will be loaded/unloaded from/to the GPU on the fly. This ensures that the model can be loaded on smaller machines as long as the CPU-memory is sufficient.
However, this also slows down inference as it adds communication overhead.
In order to enable CPU-offloading, you simply need to specify the `device_map` to `auto` at model load:
```py
from transformers import Llama4ForConditionalGeneration
import torch
model = Llama4ForConditionalGeneration.from_pretrained(
model_id,
device_map="auto",
torch_dtype=torch.bfloat16,
)
```
## Llama4Config
[[autodoc]] Llama4Config
## Llama4TextConfig
[[autodoc]] Llama4TextConfig
## Llama4VisionConfig
[[autodoc]] Llama4VisionConfig
## Llama4Processor
[[autodoc]] Llama4Processor
## Llama4ImageProcessorFast
[[autodoc]] Llama4ImageProcessorFast
## Llama4ForConditionalGeneration
[[autodoc]] Llama4ForConditionalGeneration
- forward
## Llama4ForCausalLM
[[autodoc]] Llama4ForCausalLM
- forward
## Llama4TextModel
[[autodoc]] Llama4TextModel
- forward
## Llama4ForCausalLM
[[autodoc]] Llama4ForCausalLM
- forward
## Llama4VisionModel
[[autodoc]] Llama4VisionModel
- forward

View File

@ -14,52 +14,81 @@ rendered properly in your Markdown viewer.
-->
# MobileBERT
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
</div>
</div>
## Overview
# MobileBERT
The MobileBERT model was proposed in [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny
Zhou. It's a bidirectional transformer based on the BERT model, which is compressed and accelerated using several
approaches.
[MobileBERT](https://huggingface.co/papers/2004.02984) is a lightweight and efficient variant of BERT, specifically designed for resource-limited devices such as mobile phones. It retains BERT's architecture but significantly reduces model size and inference latency while maintaining strong performance on NLP tasks. MobileBERT achieves this through a bottleneck structure and carefully balanced self-attention and feedforward networks. The model is trained by knowledge transfer from a large BERT model with an inverted bottleneck structure.
The abstract from the paper is the following:
You can find the original MobileBERT checkpoint under the [Google](https://huggingface.co/google/mobilebert-uncased) organization.
> [!TIP]
> Click on the MobileBERT models in the right sidebar for more examples of how to apply MobileBERT to different language tasks.
*Natural Language Processing (NLP) has recently achieved great success by using huge pre-trained models with hundreds
of millions of parameters. However, these models suffer from heavy model sizes and high latency such that they cannot
be deployed to resource-limited mobile devices. In this paper, we propose MobileBERT for compressing and accelerating
the popular BERT model. Like the original BERT, MobileBERT is task-agnostic, that is, it can be generically applied to
various downstream NLP tasks via simple fine-tuning. Basically, MobileBERT is a thin version of BERT_LARGE, while
equipped with bottleneck structures and a carefully designed balance between self-attentions and feed-forward networks.
To train MobileBERT, we first train a specially designed teacher model, an inverted-bottleneck incorporated BERT_LARGE
model. Then, we conduct knowledge transfer from this teacher to MobileBERT. Empirical studies show that MobileBERT is
4.3x smaller and 5.5x faster than BERT_BASE while achieving competitive results on well-known benchmarks. On the
natural language inference tasks of GLUE, MobileBERT achieves a GLUEscore o 77.7 (0.6 lower than BERT_BASE), and 62 ms
latency on a Pixel 4 phone. On the SQuAD v1.1/v2.0 question answering task, MobileBERT achieves a dev F1 score of
90.0/79.2 (1.5/2.1 higher than BERT_BASE).*
The example below demonstrates how to predict the `[MASK]` token with [`Pipeline`], [`AutoModel`], and from the command line.
This model was contributed by [vshampor](https://huggingface.co/vshampor). The original code can be found [here](https://github.com/google-research/google-research/tree/master/mobilebert).
<hfoptions id="usage">
<hfoption id="Pipeline">
## Usage tips
```py
import torch
from transformers import pipeline
- MobileBERT is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather
than the left.
- MobileBERT is similar to BERT and therefore relies on the masked language modeling (MLM) objective. It is therefore
efficient at predicting masked tokens and at NLU in general, but is not optimal for text generation. Models trained
with a causal language modeling (CLM) objective are better in that regard.
pipeline = pipeline(
task="fill-mask",
model="google/mobilebert-uncased",
torch_dtype=torch.float16,
device=0
)
pipeline("The capital of France is [MASK].")
```
</hfoption>
<hfoption id="AutoModel">
```py
import torch
from transformers import AutoModelForMaskedLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(
"google/mobilebert-uncased",
)
model = AutoModelForMaskedLM.from_pretrained(
"google/mobilebert-uncased",
torch_dtype=torch.float16,
device_map="auto",
)
inputs = tokenizer("The capital of France is [MASK].", return_tensors="pt").to("cuda")
with torch.no_grad():
outputs = model(**inputs)
predictions = outputs.logits
masked_index = torch.where(inputs['input_ids'] == tokenizer.mask_token_id)[1]
predicted_token_id = predictions[0, masked_index].argmax(dim=-1)
predicted_token = tokenizer.decode(predicted_token_id)
print(f"The predicted token is: {predicted_token}")
```
</hfoption>
<hfoption id="transformers-cli">
```bash
echo -e "The capital of France is [MASK]." | transformers-cli run --task fill-mask --model google/mobilebert-uncased --device 0
```
</hfoption>
</hfoptions>
## Resources
## Notes
- [Text classification task guide](../tasks/sequence_classification)
- [Token classification task guide](../tasks/token_classification)
- [Question answering task guide](../tasks/question_answering)
- [Masked language modeling task guide](../tasks/masked_language_modeling)
- [Multiple choice task guide](../tasks/multiple_choice)
- Inputs should be padded on the right because BERT uses absolute position embeddings.
## MobileBertConfig

View File

@ -14,52 +14,79 @@ rendered properly in your Markdown viewer.
-->
# ModernBERT
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
## Overview
# ModernBERT
The ModernBERT model was proposed in [Smarter, Better, Faster, Longer: A Modern Bidirectional Encoder for Fast, Memory Efficient, and Long Context Finetuning and Inference](https://arxiv.org/abs/2412.13663) by Benjamin Warner, Antoine Chaffin, Benjamin Clavié, Orion Weller, Oskar Hallström, Said Taghadouini, Alexis Galalgher, Raja Bisas, Faisal Ladhak, Tom Aarsen, Nathan Cooper, Grifin Adams, Jeremy Howard and Iacopo Poli.
[ModernBERT](https://huggingface.co/papers/2412.13663) is a modernized version of [`BERT`] trained on 2T tokens. It brings many improvements to the original architecture such as rotary positional embeddings to support sequences of up to 8192 tokens, unpadding to avoid wasting compute on padding tokens, GeGLU layers, and alternating attention.
It is a refresh of the traditional encoder architecture, as used in previous models such as [BERT](https://huggingface.co/docs/transformers/en/model_doc/bert) and [RoBERTa](https://huggingface.co/docs/transformers/en/model_doc/roberta).
You can find all the original ModernBERT checkpoints under the [ModernBERT](https://huggingface.co/collections/answerdotai/modernbert-67627ad707a4acbf33c41deb) collection.
It builds on BERT and implements many modern architectural improvements which have been developed since its original release, such as:
- [Rotary Positional Embeddings](https://huggingface.co/blog/designing-positional-encoding) to support sequences of up to 8192 tokens.
- [Unpadding](https://arxiv.org/abs/2208.08124) to ensure no compute is wasted on padding tokens, speeding up processing time for batches with mixed-length sequences.
- [GeGLU](https://arxiv.org/abs/2002.05202) Replacing the original MLP layers with GeGLU layers, shown to improve performance.
- [Alternating Attention](https://arxiv.org/abs/2004.05150v2) where most attention layers employ a sliding window of 128 tokens, with Global Attention only used every 3 layers.
- [Flash Attention](https://github.com/Dao-AILab/flash-attention) to speed up processing.
- A model designed following recent [The Case for Co-Designing Model Architectures with Hardware](https://arxiv.org/abs/2401.14489), ensuring maximum efficiency across inference GPUs.
- Modern training data scales (2 trillion tokens) and mixtures (including code ande math data)
> [!TIP]
> Click on the ModernBERT models in the right sidebar for more examples of how to apply ModernBERT to different language tasks.
The abstract from the paper is the following:
The example below demonstrates how to predict the `[MASK]` token with [`Pipeline`], [`AutoModel`], and from the command line.
*Encoder-only transformer models such as BERT offer a great performance-size tradeoff for retrieval and classification tasks with respect to larger decoder-only models. Despite being the workhorse of numerous production pipelines, there have been limited Pareto improvements to BERT since its release. In this paper, we introduce ModernBERT, bringing modern model optimizations to encoder-only models and representing a major Pareto improvement over older encoders. Trained on 2 trillion tokens with a native 8192 sequence length, ModernBERT models exhibit state-of-the-art results on a large pool of evaluations encompassing diverse classification tasks and both single and multi-vector retrieval on different domains (including code). In addition to strong downstream performance, ModernBERT is also the most speed and memory efficient encoder and is designed for inference on common GPUs.*
<hfoptions id="usage">
<hfoption id="Pipeline">
The original code can be found [here](https://github.com/answerdotai/modernbert).
```py
import torch
from transformers import pipeline
## Resources
pipeline = pipeline(
task="fill-mask",
model="answerdotai/ModernBERT-base",
torch_dtype=torch.float16,
device=0
)
pipeline("Plants create [MASK] through a process known as photosynthesis.")
```
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with ModernBert.
</hfoption>
<hfoption id="AutoModel">
<PipelineTag pipeline="text-classification"/>
```py
import torch
from transformers import AutoModelForMaskedLM, AutoTokenizer
- A notebook on how to [finetune for General Language Understanding Evaluation (GLUE) with Transformers](https://github.com/AnswerDotAI/ModernBERT/blob/main/examples/finetune_modernbert_on_glue.ipynb), also available as a Google Colab [notebook](https://colab.research.google.com/github/AnswerDotAI/ModernBERT/blob/main/examples/finetune_modernbert_on_glue.ipynb). 🌎
tokenizer = AutoTokenizer.from_pretrained(
"answerdotai/ModernBERT-base",
)
model = AutoModelForMaskedLM.from_pretrained(
"answerdotai/ModernBERT-base",
torch_dtype=torch.float16,
device_map="auto",
attn_implementation="sdpa"
)
inputs = tokenizer("Plants create [MASK] through a process known as photosynthesis.", return_tensors="pt").to("cuda")
<PipelineTag pipeline="sentence-similarity"/>
with torch.no_grad():
outputs = model(**inputs)
predictions = outputs.logits
- A script on how to [finetune for text similarity or information retrieval with Sentence Transformers](https://github.com/AnswerDotAI/ModernBERT/blob/main/examples/train_st.py). 🌎
- A script on how to [finetune for information retrieval with PyLate](https://github.com/AnswerDotAI/ModernBERT/blob/main/examples/train_pylate.py). 🌎
masked_index = torch.where(inputs['input_ids'] == tokenizer.mask_token_id)[1]
predicted_token_id = predictions[0, masked_index].argmax(dim=-1)
predicted_token = tokenizer.decode(predicted_token_id)
<PipelineTag pipeline="fill-mask"/>
print(f"The predicted token is: {predicted_token}")
```
- [Masked language modeling task guide](../tasks/masked_language_modeling)
</hfoption>
<hfoption id="transformers-cli">
```bash
echo -e "Plants create [MASK] through a process known as photosynthesis." | transformers-cli run --task fill-mask --model answerdotai/ModernBERT-base --device 0
```
</hfoption>
</hfoptions>
## ModernBertConfig
@ -88,5 +115,15 @@ A list of official Hugging Face and community (indicated by 🌎) resources to h
[[autodoc]] ModernBertForTokenClassification
- forward
## ModernBertForQuestionAnswering
[[autodoc]] ModernBertForQuestionAnswering
- forward
### Usage tips
The ModernBert model can be fine-tuned using the HuggingFace Transformers library with its [official script](https://github.com/huggingface/transformers/blob/main/examples/pytorch/question-answering/run_qa.py) for question-answering tasks.
</pt>
</frameworkcontent>

View File

@ -14,154 +14,123 @@ rendered properly in your Markdown viewer.
-->
# OpenAI GPT
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=data:image/png;base64,...">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
</div>
</div>
## Overview
OpenAI GPT model was proposed in [Improving Language Understanding by Generative Pre-Training](https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf)
by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever. It's a causal (unidirectional) transformer
pre-trained using language modeling on a large corpus with long range dependencies, the Toronto Book Corpus.
The abstract from the paper is the following:
*Natural language understanding comprises a wide range of diverse tasks such as textual entailment, question answering,
semantic similarity assessment, and document classification. Although large unlabeled text corpora are abundant,
labeled data for learning these specific tasks is scarce, making it challenging for discriminatively trained models to
perform adequately. We demonstrate that large gains on these tasks can be realized by generative pretraining of a
language model on a diverse corpus of unlabeled text, followed by discriminative fine-tuning on each specific task. In
contrast to previous approaches, we make use of task-aware input transformations during fine-tuning to achieve
effective transfer while requiring minimal changes to the model architecture. We demonstrate the effectiveness of our
approach on a wide range of benchmarks for natural language understanding. Our general task-agnostic model outperforms
discriminatively trained models that use architectures specifically crafted for each task, significantly improving upon
the state of the art in 9 out of the 12 tasks studied.*
[Write With Transformer](https://transformer.huggingface.co/doc/gpt) is a webapp created and hosted by Hugging Face
showcasing the generative capabilities of several models. GPT is one of them.
This model was contributed by [thomwolf](https://huggingface.co/thomwolf). The original code can be found [here](https://github.com/openai/finetune-transformer-lm).
## Usage tips
- GPT is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than
the left.
- GPT was trained with a causal language modeling (CLM) objective and is therefore powerful at predicting the next
token in a sequence. Leveraging this feature allows GPT-2 to generate syntactically coherent text as it can be
observed in the *run_generation.py* example script.
Note:
# GPT
If you want to reproduce the original tokenization process of the *OpenAI GPT* paper, you will need to install `ftfy`
and `SpaCy`:
[GPT (Generative Pre-trained Transformer)](https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf) focuses on effectively learning text representations and transferring them to tasks. This model trains the Transformer decoder to predict the next word, and then fine-tuned on labeled data.
```bash
pip install spacy ftfy==4.4.3
python -m spacy download en
GPT can generate high-quality text, making it well-suited for a variety of natural language understanding tasks such as textual entailment, question answering, semantic similarity, and document classification.
You can find all the original GPT checkpoints under the [OpenAI community](https://huggingface.co/openai-community/openai-gpt) organization.
> [!TIP]
> Click on the GPT models in the right sidebar for more examples of how to apply GPT to different language tasks.
The example below demonstrates how to generate text with [`Pipeline`], [`AutoModel`], and from the command line.
<hfoptions id="usage">
<hfoption id="Pipeline">
```python
import torch
from transformers import pipeline
generator = pipeline(task="text-generation", model="openai-community/gpt", torch_dtype=torch.float16, device=0)
output = generator("The future of AI is", max_length=50, do_sample=True)
print(output[0]["generated_text"])
```
If you don't install `ftfy` and `SpaCy`, the [`OpenAIGPTTokenizer`] will default to tokenize
using BERT's `BasicTokenizer` followed by Byte-Pair Encoding (which should be fine for most usage, don't worry).
</hfoption>
<hfoption id="AutoModel">
## Resources
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with OpenAI GPT. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt")
model = AutoModelForCausalLM.from_pretrained("openai-community/openai-gpt", torch_dtype=torch.float16)
<PipelineTag pipeline="text-classification"/>
inputs = tokenizer("The future of AI is", return_tensors="pt")
outputs = model.generate(**inputs, max_length=50)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
- A blog post on [outperforming OpenAI GPT-3 with SetFit for text-classification](https://www.philschmid.de/getting-started-setfit).
- See also: [Text classification task guide](../tasks/sequence_classification)
</hfoption>
<hfoption id="transformers-cli">
<PipelineTag pipeline="text-generation"/>
```bash
echo -e "The future of AI is" | transformers-cli run --task text-generation --model openai-community/openai-gpt --device 0
- A blog on how to [Finetune a non-English GPT-2 Model with Hugging Face](https://www.philschmid.de/fine-tune-a-non-english-gpt-2-model-with-huggingface).
- A blog on [How to generate text: using different decoding methods for language generation with Transformers](https://huggingface.co/blog/how-to-generate) with GPT-2.
- A blog on [Training CodeParrot 🦜 from Scratch](https://huggingface.co/blog/codeparrot), a large GPT-2 model.
- A blog on [Faster Text Generation with TensorFlow and XLA](https://huggingface.co/blog/tf-xla-generate) with GPT-2.
- A blog on [How to train a Language Model with Megatron-LM](https://huggingface.co/blog/megatron-training) with a GPT-2 model.
- A notebook on how to [finetune GPT2 to generate lyrics in the style of your favorite artist](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb). 🌎
- A notebook on how to [finetune GPT2 to generate tweets in the style of your favorite Twitter user](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb). 🌎
- [Causal language modeling](https://huggingface.co/course/en/chapter7/6?fw=pt#training-a-causal-language-model-from-scratch) chapter of the 🤗 Hugging Face Course.
- [`OpenAIGPTLMHeadModel`] is supported by this [causal language modeling example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/language-modeling#gpt-2gpt-and-causal-language-modeling), [text generation example script](https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-generation/run_generation.py) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb).
- [`TFOpenAIGPTLMHeadModel`] is supported by this [causal language modeling example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/language-modeling#run_clmpy) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling-tf.ipynb).
- See also: [Causal language modeling task guide](../tasks/language_modeling)
```
</hfoption>
</hfoptions>
<PipelineTag pipeline="token-classification"/>
## Notes
- A course material on [Byte-Pair Encoding tokenization](https://huggingface.co/course/en/chapter6/5).
- Inputs should be padded on the right because GPT uses absolute position embeddings.
## OpenAIGPTConfig
[[autodoc]] OpenAIGPTConfig
## OpenAIGPTModel
[[autodoc]] OpenAIGPTModel
- forward
## OpenAIGPTLMHeadModel
[[autodoc]] OpenAIGPTLMHeadModel
- forward
## OpenAIGPTDoubleHeadsModel
[[autodoc]] OpenAIGPTDoubleHeadsModel
- forward
## OpenAIGPTForSequenceClassification
[[autodoc]] OpenAIGPTForSequenceClassification
- forward
## OpenAIGPTTokenizer
[[autodoc]] OpenAIGPTTokenizer
- save_vocabulary
## OpenAIGPTTokenizerFast
[[autodoc]] OpenAIGPTTokenizerFast
## OpenAI specific outputs
[[autodoc]] models.openai.modeling_openai.OpenAIGPTDoubleHeadsModelOutput
[[autodoc]] models.openai.modeling_tf_openai.TFOpenAIGPTDoubleHeadsModelOutput
<frameworkcontent>
<pt>
## OpenAIGPTModel
[[autodoc]] OpenAIGPTModel
- forward
## OpenAIGPTLMHeadModel
[[autodoc]] OpenAIGPTLMHeadModel
- forward
## OpenAIGPTDoubleHeadsModel
[[autodoc]] OpenAIGPTDoubleHeadsModel
- forward
## OpenAIGPTForSequenceClassification
[[autodoc]] OpenAIGPTForSequenceClassification
- forward
</pt>
<tf>
## TFOpenAIGPTModel
[[autodoc]] TFOpenAIGPTModel
- call
- call
## TFOpenAIGPTLMHeadModel
[[autodoc]] TFOpenAIGPTLMHeadModel
- call
- call
## TFOpenAIGPTDoubleHeadsModel
[[autodoc]] TFOpenAIGPTDoubleHeadsModel
- call
- call
## TFOpenAIGPTForSequenceClassification
[[autodoc]] TFOpenAIGPTForSequenceClassification
- call
</tf>
</frameworkcontent>
- call

View File

@ -125,6 +125,10 @@ visualizer = AttentionMaskVisualizer("google/paligemma2-3b-mix-224")
visualizer("<img> What is in this image?")
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/paligemma2-attn-mask.png"/>
</div>
## Notes
- PaliGemma is not a conversational model and works best when fine-tuned for specific downstream tasks such as image captioning, visual question answering (VQA), object detection, and document understanding.

View File

@ -0,0 +1,156 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Phi4 Multimodal
## Overview
Phi4 Multimodal is a lightweight open multimodal foundation model that leverages the language, vision, and speech research and datasets used for Phi-3.5 and 4.0 models. The model processes text, image, and audio inputs, generating text outputs, and comes with 128K token context length. The model underwent an enhancement process, incorporating both supervised fine-tuning, direct preference optimization and RLHF (Reinforcement Learning from Human Feedback) to support precise instruction adherence and safety measures. The languages that each modal supports are the following:
- Text: Arabic, Chinese, Czech, Danish, Dutch, English, Finnish, French, German, Hebrew, Hungarian, Italian, Japanese, Korean, Norwegian, Polish, Portuguese, Russian, Spanish, Swedish, Thai, Turkish, Ukrainian
- Vision: English
- Audio: English, Chinese, German, French, Italian, Japanese, Spanish, Portuguese
This model was contributed by [Cyril Vallez](https://huggingface.co/cyrilvallez). The most recent code can be
found [here](https://github.com/huggingface/transformers/blob/main/src/transformers/models/phi4_multimodal/modeling_phi4_multimodal.py).
## Usage tips
`Phi4-multimodal-instruct` can be found on the [Huggingface Hub](https://huggingface.co/microsoft/Phi-4-multimodal-instruct)
In the following, we demonstrate how to use it for inference depending on the input modalities (text, image, audio).
```python
import torch
from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig
# Define model path
model_path = "microsoft/Phi-4-multimodal-instruct"
device = "cuda:0"
# Load model and processor
processor = AutoProcessor.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device, torch_dtype=torch.float16)
# Optional: load the adapters (note that without them, the base model will very likely not work well)
model.load_adapter(model_path, adapter_name="speech", device_map=device, adapter_kwargs={"subfolder": 'speech-lora'})
model.load_adapter(model_path, adapter_name="vision", device_map=device, adapter_kwargs={"subfolder": 'vision-lora'})
# Part : Image Processing
messages = [
{
"role": "user",
"content": [
{"type": "image", "url": "https://www.ilankelman.org/stopsigns/australia.jpg"},
{"type": "text", "text": "What is shown in this image?"},
],
},
]
model.set_adapter("vision") # if loaded, activate the vision adapter
inputs = processor.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
).to(device, torch.float16)
# Generate response
generate_ids = model.generate(
**inputs,
max_new_tokens=1000,
do_sample=False,
)
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
response = processor.batch_decode(
generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
)[0]
print(f'>>> Response\n{response}')
# Part 2: Audio Processing
model.set_adapter("speech") # if loaded, activate the speech adapter
audio_url = "https://upload.wikimedia.org/wikipedia/commons/b/b0/Barbara_Sahakian_BBC_Radio4_The_Life_Scientific_29_May_2012_b01j5j24.flac"
messages = [
{
"role": "user",
"content": [
{"type": "audio", "url": audio_url},
{"type": "text", "text": "Transcribe the audio to text, and then translate the audio to French. Use <sep> as a separator between the origina transcript and the translation."},
],
},
]
inputs = processor.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
sample_rate=sample_rate,
).to(device, torch.float16)
generate_ids = model.generate(
**inputs,
max_new_tokens=1000,
do_sample=False,
)
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
response = processor.batch_decode(
generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
)[0]
print(f'>>> Response\n{response}')
```
## Phi4MultimodalFeatureExtractor
[[autodoc]] Phi4MultimodalFeatureExtractor
## Phi4MultimodalImageProcessorFast
[[autodoc]] Phi4MultimodalImageProcessorFast
## Phi4MultimodalProcessor
[[autodoc]] Phi4MultimodalProcessor
## Phi4MultimodalAudioConfig
[[autodoc]] Phi4MultimodalAudioConfig
## Phi4MultimodalVisionConfig
[[autodoc]] Phi4MultimodalVisionConfig
## Phi4MultimodalConfig
[[autodoc]] Phi4MultimodalConfig
## Phi4MultimodalAudioModel
[[autodoc]] Phi4MultimodalAudioModel
## Phi4MultimodalVisionModel
[[autodoc]] Phi4MultimodalVisionModel
## Phi4MultimodalModel
[[autodoc]] Phi4MultimodalModel
- forward
## Phi4MultimodalForCausalLM
[[autodoc]] Phi4MultimodalForCausalLM
- forward

View File

@ -14,51 +14,137 @@ rendered properly in your Markdown viewer.
-->
# Qwen2
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
## Overview
# Qwen2
Qwen2 is the new model series of large language models from the Qwen team. Previously, we released the Qwen series, including Qwen2-0.5B, Qwen2-1.5B, Qwen2-7B, Qwen2-57B-A14B, Qwen2-72B, Qwen2-Audio, etc.
[Qwen2](https://huggingface.co/papers/2407.10671) is a family of large language models (pretrained, instruction-tuned and mixture-of-experts) available in sizes from 0.5B to 72B parameters. The models are built on the Transformer architecture featuring enhancements like group query attention (GQA), rotary positional embeddings (RoPE), a mix of sliding window and full attention, and dual chunk attention with YARN for training stability. Qwen2 models support multiple languages and context lengths up to 131,072 tokens.
### Model Details
You can find all the official Qwen2 checkpoints under the [Qwen2](https://huggingface.co/collections/Qwen/qwen2-6659360b33528ced941e557f) collection.
Qwen2 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes.
> [!TIP]
> Click on the Qwen2 models in the right sidebar for more examples of how to apply Qwen2 to different language tasks.
The example below demonstrates how to generate text with [`Pipeline`], [`AutoModel`], and from the command line using the instruction-tuned models.
## Usage tips
`Qwen2-7B` and `Qwen2-7B-Instruct` can be found on the [Huggingface Hub](https://huggingface.co/Qwen)
In the following, we demonstrate how to use `Qwen2-7B-Instruct` for the inference. Note that we have used the ChatML format for dialog, in this demo we show how to leverage `apply_chat_template` for this purpose.
<hfoptions id="usage">
<hfoption id="Pipeline">
```python
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
>>> device = "cuda" # the device to load the model onto
import torch
from transformers import pipeline
>>> model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-7B-Instruct", device_map="auto")
>>> tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-7B-Instruct")
pipe = pipeline(
task="text-generation",
model="Qwen/Qwen2-1.5B-Instruct",
torch_dtype=torch.bfloat16,
device_map=0
)
>>> prompt = "Give me a short introduction to large language model."
>>> messages = [{"role": "user", "content": prompt}]
>>> text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
>>> model_inputs = tokenizer([text], return_tensors="pt").to(device)
>>> generated_ids = model.generate(model_inputs.input_ids, max_new_tokens=512, do_sample=True)
>>> generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)]
>>> response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Tell me about the Qwen2 model family."},
]
outputs = pipe(messages, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"][-1]['content'])
```
</hfoption>
<hfoption id="AutoModel">
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained(
"Qwen/Qwen2-1.5B-Instruct",
torch_dtype=torch.bfloat16,
device_map="auto",
attn_implementation="sdpa"
)
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-1.5B-Instruct")
prompt = "Give me a short introduction to large language models."
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to("cuda")
generated_ids = model.generate(
model_inputs.input_ids,
cache_implementation="static",
max_new_tokens=512,
do_sample=True,
temperature=0.7,
top_k=50,
top_p=0.95
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
```
</hfoption>
<hfoption id="transformers-cli">
```bash
# pip install -U flash-attn --no-build-isolation
transformers-cli chat --model_name_or_path Qwen/Qwen2-7B-Instruct --torch_dtype auto --attn_implementation flash_attention_2 --device 0
```
</hfoption>
</hfoptions>
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
The example below uses [bitsandbytes](../quantization/bitsandbytes) to quantize the weights to 4-bits.
```python
# pip install -U flash-attn --no-build-isolation
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
)
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-7B")
model = AutoModelForCausalLM.from_pretrained(
"Qwen/Qwen2-7B",
torch_dtype=torch.bfloat16,
device_map="auto",
quantization_config=quantization_config,
attn_implementation="flash_attention_2"
)
inputs = tokenizer("The Qwen2 model family is", return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Notes
- Ensure your Transformers library version is up-to-date. Qwen2 requires Transformers>=4.37.0 for full support.
## Qwen2Config
[[autodoc]] Qwen2Config

View File

@ -14,45 +14,74 @@ rendered properly in your Markdown viewer.
-->
# Qwen2.5-VL
<div class="flex flex-wrap space-x-1">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white"> </div>
</div>
## Overview
# Qwen2.5-VL
The [Qwen2.5-VL](https://qwenlm.github.io/blog/qwen2_5-vl/) model is an update to [Qwen2-VL](https://arxiv.org/abs/2409.12191) from Qwen team, Alibaba Group.
[Qwen2.5-VL](https://huggingface.co/papers/2502.13923) is a multimodal vision-language model, available in 3B, 7B, and 72B parameters, pretrained on 4.1T tokens. The model introduces window attention in the ViT encoder to accelerate training and inference, dynamic FPS sampling on the spatial and temporal dimensions for better video understanding across different sampling rates, and an upgraded MRoPE (multi-resolutional rotary positional encoding) mechanism to better capture and learn temporal dynamics.
The abstract from this update is the following:
*Qwen2.5-VL marks a major step forward from Qwen2-VL, built upon the latest Qwen2.5 LLM. We've accelerated training and testing through the strategic implementation of window attention within the ViT. The ViT architecture itself has been refined with SwiGLU and RMSNorm, aligning it more closely with the LLM's structure. A key innovation is the expansion of native dynamic resolution to encompass the temporal dimension, in addition to spatial aspects. Furthermore, we've upgraded MRoPE, incorporating absolute time alignment on the time axis to allow the model to effectively capture temporal dynamics, regardless of frame rate, leading to superior video understanding.*
You can find all the original Qwen2.5-VL checkpoints under the [Qwen2.5-VL](https://huggingface.co/collections/Qwen/qwen25-vl-6795ffac22b334a837c0f9a5) collection.
## Usage example
> [!TIP]
> Click on the Qwen2.5-VL models in the right sidebar for more examples of how to apply Qwen2.5-VL to different vision and language tasks.
### Single Media inference
The example below demonstrates how to generate text based on an image with [`Pipeline`] or the [`AutoModel`] class.
The model can accept both images and videos as input. Here's an example code for inference.
```python
<hfoptions id="usage">
<hfoption id="Pipeline">
```py
import torch
from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor
from transformers import pipeline
pipe = pipeline(
task="image-text-to-text",
model="Qwen/Qwen2.5-VL-7B-Instruct",
device=0,
torch_dtype=torch.bfloat16
)
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg",
},
{ "type": "text", "text": "Describe this image."},
]
}
]
pipe(text=messages,max_new_tokens=20, return_full_text=False)
# Load the model in half-precision on the available device(s)
model = Qwen2_5_VLForConditionalGeneration.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct", device_map="auto")
```
</hfoption>
<hfoption id="AutoModel">
```py
import torch
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2.5-VL-7B-Instruct",
torch_dtype=torch.float16,
device_map="auto",
attn_implementation="sdpa"
)
processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct")
conversation = [
messages = [
{
"role":"user",
"content":[
{
"type":"image",
"url": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg"
"url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
},
{
"type":"text",
@ -60,212 +89,145 @@ conversation = [
}
]
}
]
inputs = processor.apply_chat_template(
conversation,
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt"
).to(model.device)
).to("cuda")
# Inference: Generation of the output
output_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(inputs.input_ids, output_ids)]
output_text = processor.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)
print(output_text)
# Video
conversation = [
{
"role": "user",
"content": [
{"type": "video", "path": "/path/to/video.mp4"},
{"type": "text", "text": "What happened in the video?"},
],
}
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
inputs = processor.apply_chat_template(
conversation,
video_fps=1,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt"
).to(model.device)
# Inference: Generation of the output
output_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(inputs.input_ids, output_ids)]
output_text = processor.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)
print(output_text)
```
### Batch Mixed Media Inference
The model can batch inputs composed of mixed samples of various types such as images, videos, and text. Here is an example.
```python
# Conversation for the first image
conversation1 = [
{
"role": "user",
"content": [
{"type": "image", "path": "/path/to/image1.jpg"},
{"type": "text", "text": "Describe this image."}
]
}
]
# Conversation with two images
conversation2 = [
{
"role": "user",
"content": [
{"type": "image", "path": "/path/to/image2.jpg"},
{"type": "image", "path": "/path/to/image3.jpg"},
{"type": "text", "text": "What is written in the pictures?"}
]
}
]
# Conversation with pure text
conversation3 = [
{
"role": "user",
"content": "who are you?"
}
]
# Conversation with mixed midia
conversation4 = [
{
"role": "user",
"content": [
{"type": "image", "path": "/path/to/image3.jpg"},
{"type": "image", "path": "/path/to/image4.jpg"},
{"type": "video", "path": "/path/to/video.jpg"},
{"type": "text", "text": "What are the common elements in these medias?"},
],
}
]
conversations = [conversation1, conversation2, conversation3, conversation4]
# Preparation for batch inference
ipnuts = processor.apply_chat_template(
conversations,
video_fps=1,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt"
).to(model.device)
# Batch Inference
output_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(inputs.input_ids, output_ids)]
output_text = processor.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)
print(output_text)
```
### Usage Tips
#### Image Resolution trade-off
The model supports a wide range of resolution inputs. By default, it uses the native resolution for input, but higher resolutions can enhance performance at the cost of more computation. Users can set the minimum and maximum number of pixels to achieve an optimal configuration for their needs.
```python
min_pixels = 224*224
max_pixels = 2048*2048
processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels)
```
In case of limited GPU RAM, one can reduce the resolution as follows:
```python
min_pixels = 256*28*28
max_pixels = 1024*28*28
processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels)
```
This ensures each image gets encoded using a number between 256-1024 tokens. The 28 comes from the fact that the model uses a patch size of 14 and a temporal patch size of 2 (14 x 2 = 28).
#### Multiple Image Inputs
By default, images and video content are directly included in the conversation. When handling multiple images, it's helpful to add labels to the images and videos for better reference. Users can control this behavior with the following settings:
```python
conversation = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "Hello, how are you?"}
]
},
{
"role": "assistant",
"content": "I'm doing well, thank you for asking. How can I assist you today?"
},
{
"role": "user",
"content": [
{"type": "text", "text": "Can you describe these images and video?"},
{"type": "image"},
{"type": "image"},
{"type": "video"},
{"type": "text", "text": "These are from my vacation."}
]
},
{
"role": "assistant",
"content": "I'd be happy to describe the images and video for you. Could you please provide more context about your vacation?"
},
{
"role": "user",
"content": "It was a trip to the mountains. Can you see the details in the images and video?"
}
]
# default:
prompt_without_id = processor.apply_chat_template(conversation, add_generation_prompt=True)
# Excepted output: '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>Hello, how are you?<|im_end|>\n<|im_start|>assistant\nI'm doing well, thank you for asking. How can I assist you today?<|im_end|>\n<|im_start|>user\nCan you describe these images and video?<|vision_start|><|image_pad|><|vision_end|><|vision_start|><|image_pad|><|vision_end|><|vision_start|><|video_pad|><|vision_end|>These are from my vacation.<|im_end|>\n<|im_start|>assistant\nI'd be happy to describe the images and video for you. Could you please provide more context about your vacation?<|im_end|>\n<|im_start|>user\nIt was a trip to the mountains. Can you see the details in the images and video?<|im_end|>\n<|im_start|>assistant\n'
# add ids
prompt_with_id = processor.apply_chat_template(conversation, add_generation_prompt=True, add_vision_id=True)
# Excepted output: '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\nPicture 1: <|vision_start|><|image_pad|><|vision_end|>Hello, how are you?<|im_end|>\n<|im_start|>assistant\nI'm doing well, thank you for asking. How can I assist you today?<|im_end|>\n<|im_start|>user\nCan you describe these images and video?Picture 2: <|vision_start|><|image_pad|><|vision_end|>Picture 3: <|vision_start|><|image_pad|><|vision_end|>Video 1: <|vision_start|><|video_pad|><|vision_end|>These are from my vacation.<|im_end|>\n<|im_start|>assistant\nI'd be happy to describe the images and video for you. Could you please provide more context about your vacation?<|im_end|>\n<|im_start|>user\nIt was a trip to the mountains. Can you see the details in the images and video?<|im_end|>\n<|im_start|>assistant\n'
```
#### Flash-Attention 2 to speed up generation
First, make sure to install the latest version of Flash Attention 2:
```bash
pip install -U flash-attn --no-build-isolation
```
Also, you should have hardware that is compatible with FlashAttention 2. Read more about it in the official documentation of the [flash attention repository](https://github.com/Dao-AILab/flash-attention). FlashAttention-2 can only be used when a model is loaded in `torch.float16` or `torch.bfloat16`.
To load and run a model using FlashAttention-2, add `attn_implementation="flash_attention_2"` when loading the model:
```python
from transformers import Qwen2_5_VLForConditionalGeneration
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2.5-VL-7B-Instruct",
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)
```
</hfoption>
</hfoptions>
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
The example below uses [torchao](../quantization/torchao) to only quantize the weights to int4.
```python
import torch
from transformers import TorchAoConfig, Gemma3ForConditionalGeneration, AutoProcessor
quantization_config = TorchAoConfig("int4_weight_only", group_size=128)
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2.5-VL-7B-Instruct",
torch_dtype=torch.bfloat16,
device_map="auto",
quantization_config=quantization_config
)
```
### Notes
- Use Qwen2.5-VL for video inputs by setting `"type": "video"` as shown below.
```python
conversation = [
{
"role": "user",
"content": [
{"type": "video", "path": "/path/to/video.mp4"},
{"type": "text", "text": "What happened in the video?"},
],
}
]
inputs = processor.apply_chat_template(
conversation,
video_fps=1,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt"
).to(model.device)
# Inference: Generation of the output
output_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(inputs.input_ids, output_ids)]
output_text = processor.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)
print(output_text)
```
- Use Qwen2.5-VL for a mixed batch of inputs (images, videos, text). Add labels when handling multiple images or videos for better reference
as show below.
```python
import torch
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2.5-VL-7B-Instruct",
torch_dtype=torch.float16,
device_map="auto",
attn_implementation="sdpa"
)
processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct")
conversation = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "Hello, how are you?"}
]
},
{
"role": "assistant",
"content": "I'm doing well, thank you for asking. How can I assist you today?"
},
{
"role": "user",
"content": [
{"type": "text", "text": "Can you describe these images and video?"},
{"type": "image"},
{"type": "image"},
{"type": "video"},
{"type": "text", "text": "These are from my vacation."}
]
},
{
"role": "assistant",
"content": "I'd be happy to describe the images and video for you. Could you please provide more context about your vacation?"
},
{
"role": "user",
"content": "It was a trip to the mountains. Can you see the details in the images and video?"
}
]
# default:
prompt_without_id = processor.apply_chat_template(conversation, add_generation_prompt=True)
# Excepted output: '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>Hello, how are you?<|im_end|>\n<|im_start|>assistant\nI'm doing well, thank you for asking. How can I assist you today?<|im_end|>\n<|im_start|>user\nCan you describe these images and video?<|vision_start|><|image_pad|><|vision_end|><|vision_start|><|image_pad|><|vision_end|><|vision_start|><|video_pad|><|vision_end|>These are from my vacation.<|im_end|>\n<|im_start|>assistant\nI'd be happy to describe the images and video for you. Could you please provide more context about your vacation?<|im_end|>\n<|im_start|>user\nIt was a trip to the mountains. Can you see the details in the images and video?<|im_end|>\n<|im_start|>assistant\n'
# add ids
prompt_with_id = processor.apply_chat_template(conversation, add_generation_prompt=True, add_vision_id=True)
# Excepted output: '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\nPicture 1: <|vision_start|><|image_pad|><|vision_end|>Hello, how are you?<|im_end|>\n<|im_start|>assistant\nI'm doing well, thank you for asking. How can I assist you today?<|im_end|>\n<|im_start|>user\nCan you describe these images and video?Picture 2: <|vision_start|><|image_pad|><|vision_end|>Picture 3: <|vision_start|><|image_pad|><|vision_end|>Video 1: <|vision_start|><|video_pad|><|vision_end|>These are from my vacation.<|im_end|>\n<|im_start|>assistant\nI'd be happy to describe the images and video for you. Could you please provide more context about your vacation?<|im_end|>\n<|im_start|>user\nIt was a trip to the mountains. Can you see the details in the images and video?<|im_end|>\n<|im_start|>assistant\n'
```
- Use the `min_pixels` and `max_pixels` parameters in [`AutoProcessor`] to set the resolution.
```python
min_pixels = 224*224
max_pixels = 2048*2048
processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels)
```
Higher resolution can require more compute whereas reducing the resolution can save memory as follows:
```python
min_pixels = 256*28*28
max_pixels = 1024*28*28
processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels)
```
## Qwen2_5_VLConfig
[[autodoc]] Qwen2_5_VLConfig

View File

@ -0,0 +1,59 @@
<!--Copyright 2024 The Qwen Team and The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Qwen3
## Overview
To be released with the official model launch.
### Model Details
To be released with the official model launch.
## Usage tips
To be released with the official model launch.
## Qwen3Config
[[autodoc]] Qwen3Config
## Qwen3Model
[[autodoc]] Qwen3Model
- forward
## Qwen3ForCausalLM
[[autodoc]] Qwen3ForCausalLM
- forward
## Qwen3ForSequenceClassification
[[autodoc]] Qwen3ForSequenceClassification
- forward
## Qwen3ForTokenClassification
[[autodoc]] Qwen3ForTokenClassification
- forward
## Qwen3ForQuestionAnswering
[[autodoc]] Qwen3ForQuestionAnswering
- forward

View File

@ -0,0 +1,58 @@
<!--Copyright 2024 The Qwen Team and The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Qwen3MoE
## Overview
To be released with the official model launch.
### Model Details
To be released with the official model launch.
## Usage tips
To be released with the official model launch.
## Qwen3MoeConfig
[[autodoc]] Qwen3MoeConfig
## Qwen3MoeModel
[[autodoc]] Qwen3MoeModel
- forward
## Qwen3MoeForCausalLM
[[autodoc]] Qwen3MoeForCausalLM
- forward
## Qwen3MoeForSequenceClassification
[[autodoc]] Qwen3MoeForSequenceClassification
- forward
## Qwen3MoeForTokenClassification
[[autodoc]] Qwen3MoeForTokenClassification
- forward
## Qwen3MoeForQuestionAnswering
[[autodoc]] Qwen3MoeForQuestionAnswering
- forward

View File

@ -149,12 +149,24 @@ alt="drawing" width="900"/>
[[autodoc]] SamImageProcessor
## SamVisionModel
[[autodoc]] SamVisionModel
- forward
## SamModel
[[autodoc]] SamModel
- forward
## TFSamVisionModel
[[autodoc]] TFSamVisionModel
- call
## TFSamModel
[[autodoc]] TFSamModel

View File

@ -19,7 +19,7 @@ rendered properly in your Markdown viewer.
## Overview
The ShieldGemma 2 model was proposed in a forthcoming technical report by Google. ShieldGemma 2 is built on [Gemma 3](https://ai.google.dev/gemma/docs/core/model_card_3), is a 4 billion (4B) parameter model that checks the safety of both synthetic and natural images against key categories to help you build robust datasets and models. With this addition to the Gemma family of models, researchers and developers can now easily minimize the risk of harmful content in their models across key areas of harm as defined below:
The ShieldGemma 2 model was proposed in a [technical report](https://arxiv.org/abs/2504.01081) by Google. ShieldGemma 2, built on [Gemma 3](https://ai.google.dev/gemma/docs/core/model_card_3), is a 4 billion (4B) parameter model that checks the safety of both synthetic and natural images against key categories to help you build robust datasets and models. With this addition to the Gemma family of models, researchers and developers can now easily minimize the risk of harmful content in their models across key areas of harm as defined below:
- No Sexually Explicit content: The image shall not contain content that depicts explicit or graphic sexual acts (e.g., pornography, erotic nudity, depictions of rape or sexual assault).
- No Dangerous Content: The image shall not contain content that facilitates or encourages activities that could cause real-world harm (e.g., building firearms and explosive devices, promotion of terrorism, instructions for suicide).

View File

@ -14,349 +14,104 @@ rendered properly in your Markdown viewer.
-->
# T5
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
</div>
</div>
## Overview
# T5
The T5 model was presented in [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/pdf/1910.10683.pdf) by [Colin Raffel](https://huggingface.co/craffel), Noam Shazeer, [Adam Roberts](https://huggingface.co/adarob), Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, [Peter J. Liu](https://huggingface.co/peterjliu).
[T5](https://huggingface.co/papers/1910.10683) is a encoder-decoder transformer available in a range of sizes from 60M to 11B parameters. It is designed to handle a wide range of NLP tasks by treating them all as text-to-text problems. This eliminates the need for task-specific architectures because T5 converts every NLP task into a text generation task.
The abstract from the paper is the following:
To formulate every task as text generation, each task is prepended with a task-specific prefix (e.g., translate English to German: ..., summarize: ...). This enables T5 to handle tasks like translation, summarization, question answering, and more.
*Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a downstream
task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness of transfer learning
has given rise to a diversity of approaches, methodology, and practice. In this paper, we explore the landscape of
transfer learning techniques for NLP by introducing a unified framework that converts every language problem into a
text-to-text format. Our systematic study compares pretraining objectives, architectures, unlabeled datasets, transfer
approaches, and other factors on dozens of language understanding tasks. By combining the insights from our exploration
with scale and our new "Colossal Clean Crawled Corpus", we achieve state-of-the-art results on many benchmarks covering
summarization, question answering, text classification, and more. To facilitate future work on transfer learning for
NLP, we release our dataset, pre-trained models, and code.*
You can find all official T5 checkpoints under the [T5](https://huggingface.co/collections/google/t5-release-65005e7c520f8d7b4d037918) collection.
All checkpoints can be found on the [hub](https://huggingface.co/models?search=t5).
> [!TIP]
> Click on the T5 models in the right sidebar for more examples of how to apply T5 to different language tasks.
This model was contributed by [thomwolf](https://huggingface.co/thomwolf). The original code can be found [here](https://github.com/google-research/text-to-text-transfer-transformer).
The example below demonstrates how to generate text with [`Pipeline`], [`AutoModel`], and how to translate with T5 from the command line.
## Usage tips
<hfoptions id="usage">
<hfoption id="Pipeline">
- T5 is an encoder-decoder model pre-trained on a multi-task mixture of unsupervised and supervised tasks and for which
each task is converted into a text-to-text format. T5 works well on a variety of tasks out-of-the-box by prepending a
different prefix to the input corresponding to each task, e.g., for translation: *translate English to German: ...*,
for summarization: *summarize: ...*.
- The pretraining includes both supervised and self-supervised training. Supervised training is conducted on downstream tasks provided by the GLUE and SuperGLUE benchmarks (converting them into text-to-text tasks as explained above).
- Self-supervised training uses corrupted tokens, by randomly removing 15% of the tokens and replacing them with individual sentinel tokens (if several consecutive tokens are marked for removal, the whole group is replaced with a single sentinel token). The input of the encoder is the corrupted sentence, the input of the decoder is the original sentence and the target is then the dropped out tokens delimited by their sentinel tokens.
```py
import torch
from transformers import pipeline
- T5 uses relative scalar embeddings. Encoder input padding can be done on the left and on the right.
- See the [training](#training), [inference](#inference) and [resources](#resources) sections below for all details regarding usage.
T5 comes in different sizes:
- [google-t5/t5-small](https://huggingface.co/google-t5/t5-small)
- [google-t5/t5-base](https://huggingface.co/google-t5/t5-base)
- [google-t5/t5-large](https://huggingface.co/google-t5/t5-large)
- [google-t5/t5-3b](https://huggingface.co/google-t5/t5-3b)
- [google-t5/t5-11b](https://huggingface.co/google-t5/t5-11b).
Based on the original T5 model, Google has released some follow-up works:
- **T5v1.1**: T5v1.1 is an improved version of T5 with some architectural tweaks, and is pre-trained on C4 only without
mixing in the supervised tasks. Refer to the documentation of T5v1.1 which can be found [here](t5v1.1).
- **mT5**: mT5 is a multilingual T5 model. It is pre-trained on the mC4 corpus, which includes 101 languages. Refer to
the documentation of mT5 which can be found [here](mt5).
- **byT5**: byT5 is a T5 model pre-trained on byte sequences rather than SentencePiece subword token sequences. Refer
to the documentation of byT5 which can be found [here](byt5).
- **UL2**: UL2 is a T5 like model pretrained on various denoising objectives
- **Flan-T5**: Flan is a pretraining methods that is based on prompting. The Flan-T5 are T5 models trained on the Flan collection of
datasets which include: `taskmaster2`, `djaym7/wiki_dialog`, `deepmind/code_contests`, `lambada`, `gsm8k`, `aqua_rat`, `esnli`, `quasc` and `qed`.
- **FLan-UL2** : the UL2 model finetuned using the "Flan" prompt tuning and dataset collection.
- **UMT5**: UmT5 is a multilingual T5 model trained on an improved and refreshed mC4 multilingual corpus, 29 trillion characters across 107 language, using a new sampling method, UniMax. Refer to
the documentation of mT5 which can be found [here](umt5).
## Training
T5 is an encoder-decoder model and converts all NLP problems into a text-to-text format. It is trained using teacher
forcing. This means that for training, we always need an input sequence and a corresponding target sequence. The input
sequence is fed to the model using `input_ids`. The target sequence is shifted to the right, i.e., prepended by a
start-sequence token and fed to the decoder using the `decoder_input_ids`. In teacher-forcing style, the target
sequence is then appended by the EOS token and corresponds to the `labels`. The PAD token is hereby used as the
start-sequence token. T5 can be trained / fine-tuned both in a supervised and unsupervised fashion.
One can use [`T5ForConditionalGeneration`] (or the Tensorflow/Flax variant), which includes the
language modeling head on top of the decoder.
- Unsupervised denoising training
In this setup, spans of the input sequence are masked by so-called sentinel tokens (*a.k.a* unique mask tokens) and
the output sequence is formed as a concatenation of the same sentinel tokens and the *real* masked tokens. Each
sentinel token represents a unique mask token for this sentence and should start with `<extra_id_0>`,
`<extra_id_1>`, ... up to `<extra_id_99>`. As a default, 100 sentinel tokens are available in
[`T5Tokenizer`].
For instance, the sentence "The cute dog walks in the park" with the masks put on "cute dog" and "the" should be
processed as follows:
```python
>>> from transformers import T5Tokenizer, T5ForConditionalGeneration
>>> tokenizer = T5Tokenizer.from_pretrained("google-t5/t5-small")
>>> model = T5ForConditionalGeneration.from_pretrained("google-t5/t5-small")
>>> input_ids = tokenizer("The <extra_id_0> walks in <extra_id_1> park", return_tensors="pt").input_ids
>>> labels = tokenizer("<extra_id_0> cute dog <extra_id_1> the <extra_id_2>", return_tensors="pt").input_ids
>>> # the forward function automatically creates the correct decoder_input_ids
>>> loss = model(input_ids=input_ids, labels=labels).loss
>>> loss.item()
3.7837
pipeline = pipeline(
task="text2text-generation",
model="google-t5/t5-base",
torch_dtype=torch.float16,
device=0
)
pipeline("translate English to French: The weather is nice today.")
```
If you're interested in pre-training T5 on a new corpus, check out the [run_t5_mlm_flax.py](https://github.com/huggingface/transformers/tree/main/examples/flax/language-modeling) script in the Examples
directory.
</hfoption>
<hfoption id="AutoModel">
- Supervised training
```py
import torch
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
In this setup, the input sequence and output sequence are a standard sequence-to-sequence input-output mapping.
Suppose that we want to fine-tune the model for translation for example, and we have a training example: the input
sequence "The house is wonderful." and output sequence "Das Haus ist wunderbar.", then they should be prepared for
the model as follows:
tokenizer = AutoTokenizer.from_pretrained(
"google-t5/t5-base"
)
model = AutoModelForSeq2SeqLM.from_pretrained(
"google-t5/t5-base",
torch_dtype=torch.float16,
device_map="auto"
)
```python
>>> from transformers import T5Tokenizer, T5ForConditionalGeneration
input_ids = tokenizer("translate English to French: The weather is nice today.", return_tensors="pt").to("cuda")
>>> tokenizer = T5Tokenizer.from_pretrained("google-t5/t5-small")
>>> model = T5ForConditionalGeneration.from_pretrained("google-t5/t5-small")
>>> input_ids = tokenizer("translate English to German: The house is wonderful.", return_tensors="pt").input_ids
>>> labels = tokenizer("Das Haus ist wunderbar.", return_tensors="pt").input_ids
>>> # the forward function automatically creates the correct decoder_input_ids
>>> loss = model(input_ids=input_ids, labels=labels).loss
>>> loss.item()
0.2542
output = model.generate(**input_ids, cache_implementation="static")
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
As you can see, only 2 inputs are required for the model in order to compute a loss: `input_ids` (which are the
`input_ids` of the encoded input sequence) and `labels` (which are the `input_ids` of the encoded
target sequence). The model will automatically create the `decoder_input_ids` based on the `labels`, by
shifting them one position to the right and prepending the `config.decoder_start_token_id`, which for T5 is
equal to 0 (i.e. the id of the pad token). Also note the task prefix: we prepend the input sequence with 'translate
English to German: ' before encoding it. This will help in improving the performance, as this task prefix was used
during T5's pre-training.
</hfoption>
<hfoption id="transformers-cli">
However, the example above only shows a single training example. In practice, one trains deep learning models in
batches. This entails that we must pad/truncate examples to the same length. For encoder-decoder models, one
typically defines a `max_source_length` and `max_target_length`, which determine the maximum length of the
input and output sequences respectively (otherwise they are truncated). These should be carefully set depending on
the task.
In addition, we must make sure that padding token id's of the `labels` are not taken into account by the loss
function. In PyTorch and Tensorflow, this can be done by replacing them with -100, which is the `ignore_index`
of the `CrossEntropyLoss`. In Flax, one can use the `decoder_attention_mask` to ignore padded tokens from
the loss (see the [Flax summarization script](https://github.com/huggingface/transformers/tree/main/examples/flax/summarization) for details). We also pass
`attention_mask` as additional input to the model, which makes sure that padding tokens of the inputs are
ignored. The code example below illustrates all of this.
```python
>>> from transformers import T5Tokenizer, T5ForConditionalGeneration
>>> import torch
>>> tokenizer = T5Tokenizer.from_pretrained("google-t5/t5-small")
>>> model = T5ForConditionalGeneration.from_pretrained("google-t5/t5-small")
>>> # the following 2 hyperparameters are task-specific
>>> max_source_length = 512
>>> max_target_length = 128
>>> # Suppose we have the following 2 training examples:
>>> input_sequence_1 = "Welcome to NYC"
>>> output_sequence_1 = "Bienvenue à NYC"
>>> input_sequence_2 = "HuggingFace is a company"
>>> output_sequence_2 = "HuggingFace est une entreprise"
>>> # encode the inputs
>>> task_prefix = "translate English to French: "
>>> input_sequences = [input_sequence_1, input_sequence_2]
>>> encoding = tokenizer(
... [task_prefix + sequence for sequence in input_sequences],
... padding="longest",
... max_length=max_source_length,
... truncation=True,
... return_tensors="pt",
... )
>>> input_ids, attention_mask = encoding.input_ids, encoding.attention_mask
>>> # encode the targets
>>> target_encoding = tokenizer(
... [output_sequence_1, output_sequence_2],
... padding="longest",
... max_length=max_target_length,
... truncation=True,
... return_tensors="pt",
... )
>>> labels = target_encoding.input_ids
>>> # replace padding token id's of the labels by -100 so it's ignored by the loss
>>> labels[labels == tokenizer.pad_token_id] = -100
>>> # forward pass
>>> loss = model(input_ids=input_ids, attention_mask=attention_mask, labels=labels).loss
>>> loss.item()
0.188
```bash
echo -e "translate English to French: The weather is nice today." | transformers-cli run --task text2text-generation --model google-t5/t5-base --device 0
```
Additional training tips:
</hfoption>
</hfoptions>
- T5 models need a slightly higher learning rate than the default one set in the `Trainer` when using the AdamW
optimizer. Typically, 1e-4 and 3e-4 work well for most problems (classification, summarization, translation, question
answering, question generation). Note that T5 was pre-trained using the AdaFactor optimizer.
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
According to [this forum post](https://discuss.huggingface.co/t/t5-finetuning-tips/684), task prefixes matter when
(1) doing multi-task training (2) your task is similar or related to one of the supervised tasks used in T5's
pre-training mixture (see Appendix D of the [paper](https://arxiv.org/pdf/1910.10683.pdf) for the task prefixes
used).
The example below uses [torchao](../quantization/torchao) to only quantize the weights to int4.
If training on TPU, it is recommended to pad all examples of the dataset to the same length or make use of
*pad_to_multiple_of* to have a small number of predefined bucket sizes to fit all examples in. Dynamically padding
batches to the longest example is not recommended on TPU as it triggers a recompilation for every batch shape that is
encountered during training thus significantly slowing down the training. only padding up to the longest example in a
batch) leads to very slow training on TPU.
```py
# pip install torchao
import torch
from transformers import TorchAoConfig, AutoModelForSeq2SeqLM, AutoTokenizer
## Inference
quantization_config = TorchAoConfig("int4_weight_only", group_size=128)
model = AutoModelForSeq2SeqLM.from_pretrained(
"google/t5-v1_1-xl",
torch_dtype=torch.bfloat16,
device_map="auto",
quantization_config=quantization_config
)
At inference time, it is recommended to use [`~generation.GenerationMixin.generate`]. This
method takes care of encoding the input and feeding the encoded hidden states via cross-attention layers to the decoder
and auto-regressively generates the decoder output. Check out [this blog post](https://huggingface.co/blog/how-to-generate) to know all the details about generating text with Transformers.
There's also [this blog post](https://huggingface.co/blog/encoder-decoder#encoder-decoder) which explains how
generation works in general in encoder-decoder models.
tokenizer = AutoTokenizer.from_pretrained("google/t5-v1_1-xl")
input_ids = tokenizer("translate English to French: The weather is nice today.", return_tensors="pt").to("cuda")
```python
>>> from transformers import T5Tokenizer, T5ForConditionalGeneration
>>> tokenizer = T5Tokenizer.from_pretrained("google-t5/t5-small")
>>> model = T5ForConditionalGeneration.from_pretrained("google-t5/t5-small")
>>> input_ids = tokenizer("translate English to German: The house is wonderful.", return_tensors="pt").input_ids
>>> outputs = model.generate(input_ids)
>>> print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Das Haus ist wunderbar.
output = model.generate(**input_ids, cache_implementation="static")
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
Note that T5 uses the `pad_token_id` as the `decoder_start_token_id`, so when doing generation without using
[`~generation.GenerationMixin.generate`], make sure you start it with the `pad_token_id`.
## Notes
The example above only shows a single example. You can also do batched inference, like so:
```python
>>> from transformers import T5Tokenizer, T5ForConditionalGeneration
>>> tokenizer = T5Tokenizer.from_pretrained("google-t5/t5-small")
>>> model = T5ForConditionalGeneration.from_pretrained("google-t5/t5-small")
>>> task_prefix = "translate English to German: "
>>> # use different length sentences to test batching
>>> sentences = ["The house is wonderful.", "I like to work in NYC."]
>>> inputs = tokenizer([task_prefix + sentence for sentence in sentences], return_tensors="pt", padding=True)
>>> output_sequences = model.generate(
... input_ids=inputs["input_ids"],
... attention_mask=inputs["attention_mask"],
... do_sample=False, # disable sampling to test if batching affects output
... )
>>> print(tokenizer.batch_decode(output_sequences, skip_special_tokens=True))
['Das Haus ist wunderbar.', 'Ich arbeite gerne in NYC.']
```
Because T5 has been trained with the span-mask denoising objective,
it can be used to predict the sentinel (masked-out) tokens during inference.
The predicted tokens will then be placed between the sentinel tokens.
```python
>>> from transformers import T5Tokenizer, T5ForConditionalGeneration
>>> tokenizer = T5Tokenizer.from_pretrained("google-t5/t5-small")
>>> model = T5ForConditionalGeneration.from_pretrained("google-t5/t5-small")
>>> input_ids = tokenizer("The <extra_id_0> walks in <extra_id_1> park", return_tensors="pt").input_ids
>>> sequence_ids = model.generate(input_ids)
>>> sequences = tokenizer.batch_decode(sequence_ids)
>>> sequences
['<pad> <extra_id_0> park offers <extra_id_1> the <extra_id_2> park.</s>']
```
## Performance
If you'd like a faster training and inference performance, install [NVIDIA APEX](https://github.com/NVIDIA/apex#quick-start) for NVIDIA GPUs, or [ROCm APEX](https://github.com/ROCmSoftwarePlatform/apex) for AMD GPUs and then the model will automatically use `apex.normalization.FusedRMSNorm` instead of `T5LayerNorm`. The former uses an optimized fused kernel which is several times faster than the latter.
## Resources
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with T5. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
<PipelineTag pipeline="text-classification"/>
- A notebook for how to [finetune T5 for classification and multiple choice](https://colab.research.google.com/github/patil-suraj/exploring-T5/blob/master/t5_fine_tuning.ipynb).
- A notebook for how to [finetune T5 for sentiment span extraction](https://colab.research.google.com/github/enzoampil/t5-intro/blob/master/t5_qa_training_pytorch_span_extraction.ipynb). 🌎
<PipelineTag pipeline="token-classification"/>
- A notebook for how to [finetune T5 for named entity recognition](https://colab.research.google.com/drive/1obr78FY_cBmWY5ODViCmzdY6O1KB65Vc?usp=sharing). 🌎
<PipelineTag pipeline="text-generation"/>
- A notebook for [Finetuning CodeT5 for generating docstrings from Ruby code](https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/T5/Fine_tune_CodeT5_for_generating_docstrings_from_Ruby_code.ipynb).
<PipelineTag pipeline="summarization"/>
- A notebook to [Finetune T5-base-dutch to perform Dutch abstractive summarization on a TPU](https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/T5/Fine_tuning_Dutch_T5_base_on_CNN_Daily_Mail_for_summarization_(on_TPU_using_HuggingFace_Accelerate).ipynb).
- A notebook for how to [finetune T5 for summarization in PyTorch and track experiments with WandB](https://colab.research.google.com/github/abhimishra91/transformers-tutorials/blob/master/transformers_summarization_wandb.ipynb#scrollTo=OKRpFvYhBauC). 🌎
- A blog post on [Distributed Training: Train BART/T5 for Summarization using 🤗 Transformers and Amazon SageMaker](https://huggingface.co/blog/sagemaker-distributed-training-seq2seq).
- [`T5ForConditionalGeneration`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/summarization) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/summarization.ipynb).
- [`TFT5ForConditionalGeneration`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/summarization) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/summarization-tf.ipynb).
- [`FlaxT5ForConditionalGeneration`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/flax/summarization).
- [Summarization](https://huggingface.co/course/chapter7/5?fw=pt#summarization) chapter of the 🤗 Hugging Face course.
- [Summarization task guide](../tasks/summarization)
<PipelineTag pipeline="fill-mask"/>
- [`FlaxT5ForConditionalGeneration`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/flax/language-modeling#t5-like-span-masked-language-modeling) for training T5 with a span-masked language model objective. The script also shows how to train a T5 tokenizer. [`FlaxT5ForConditionalGeneration`] is also supported by this [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/masked_language_modeling_flax.ipynb).
<PipelineTag pipeline="translation"/>
- [`T5ForConditionalGeneration`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/translation) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/translation.ipynb).
- [`TFT5ForConditionalGeneration`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/translation) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/translation-tf.ipynb).
- [Translation task guide](../tasks/translation)
<PipelineTag pipeline="question-answering"/>
- A notebook on how to [finetune T5 for question answering with TensorFlow 2](https://colab.research.google.com/github/snapthat/TF-T5-text-to-text/blob/master/snapthatT5/notebooks/TF-T5-Datasets%20Training.ipynb). 🌎
- A notebook on how to [finetune T5 for question answering on a TPU](https://colab.research.google.com/github/patil-suraj/exploring-T5/blob/master/T5_on_TPU.ipynb#scrollTo=QLGiFCDqvuil).
🚀 **Deploy**
- A blog post on how to deploy [T5 11B for inference for less than $500](https://www.philschmid.de/deploy-t5-11b).
- You can pad the encoder inputs on the left or right because T5 uses relative scalar embeddings.
- T5 models need a slightly higher learning rate than the default used in [`Trainer`]. Typically, values of `1e-4` and `3e-4` work well for most tasks.
## T5Config

View File

@ -44,11 +44,6 @@ import os
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
# initialize distributed environment
rank = int(os.environ["RANK"])
device = torch.device(f"cuda:{rank}")
torch.cuda.set_device(device)
torch.distributed.init_process_group("nccl", device_id=device)
# enable tensor parallelism
model = AutoModelForCausalLM.from_pretrained(
@ -59,7 +54,7 @@ model = AutoModelForCausalLM.from_pretrained(
# prepare input tokens
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct")
prompt = "Can I help"
inputs = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
inputs = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device)
# distributed run
outputs = model(inputs)
@ -71,6 +66,13 @@ Launch the inference script above on [torchrun](https://pytorch.org/docs/stable/
torchrun --nproc-per-node 4 demo.py
```
For CPU, please binding different socket on each rank. For example, if you are using Intel 4th Gen Xeon:
```bash
export OMP_NUM_THREADS=56
numactl -C 0-55 -m 0 torchrun --nnodes=2 --node_rank=0 --master_addr="127.0.0.1" --master_port=29500 --nproc-per-node 1 demo.py & numactl -C 56-111 -m 1 torchrun --nnodes=2 --node_rank=1 --master_addr="127.0.0.1" --master_port=29500 --nproc-per-node 1 demo.py & wait
```
The CPU benchmark data will be released soon.
You can benefit from considerable speed ups for inference, especially for inputs with large batch size or long sequences.
For a single forward pass on [Llama](./model_doc/llama) with a sequence length of 512 and various batch sizes, you can expect the following speed ups.

View File

@ -29,8 +29,8 @@ import requests
processor = AutoProcessor.from_pretrained("google/paligemma-3b-pt-224")
prompt = "answer en Where is the cow standing?"
url = "https://huggingface.co/gv-hf/PaliGemma-test-224px-hf/resolve/main/cow_beach_1.png"
prompt = "answer en Where is the cat standing?"
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
image = Image.open(requests.get(url, stream=True).raw)
inputs = processor(text=prompt, images=image, return_tensors="pt")

View File

@ -40,7 +40,7 @@ Use the Space below to help you pick a quantization method depending on your har
| [VPTQ](./vptq) | 🔴 | 🔴 | 🟢 | 🟡 | 🔴 | 🔴 | 🟢 | 1/8 | 🔴 | 🟢 | 🟢 | https://github.com/microsoft/VPTQ |
| [FINEGRAINED_FP8](./finegrained_fp8) | 🟢 | 🔴 | 🟢 | 🔴 | 🔴 | 🔴 | 🔴 | 8 | 🔴 | 🟢 | 🟢 | |
| [SpQR](./spqr) | 🔴 | 🔴 | 🟢 | 🔴 | 🔴 | 🔴 | 🟢 | 3 | 🔴 | 🟢 | 🟢 | https://github.com/Vahe1994/SpQR/ |
| [Quark](./quark.md) | 🔴 | 🟢 | 🟢 | 🟢 | 🟢 | 🟢 | ? | 2/4/6/8/9/16 | 🔴 | 🔴 | 🟢 | https://quark.docs.amd.com/latest/ |
| [Quark](./quark) | 🔴 | 🟢 | 🟢 | 🟢 | 🟢 | 🟢 | ? | 2/4/6/8/9/16 | 🔴 | 🔴 | 🟢 | https://quark.docs.amd.com/latest/ |
## Resources

View File

@ -720,6 +720,8 @@
title: (번역중) Perceiver
- local: in_translation
title: (번역중) Pix2Struct
- local: model_doc/qwen2_vl
title: Qwen2VL
- local: in_translation
title: (번역중) Segment Anything
- local: in_translation

View File

@ -99,7 +99,7 @@ model.generation_config.max_new_tokens = 16
past_key_values = StaticCache(
config=model.config,
batch_size=1,
max_batch_size=1,
# 캐시를 재사용할 계획이 있는 경우, 모든 경우에 충분한 캐시 길이를 설정해야 합니다
max_cache_len=prompt_length+(model.generation_config.max_new_tokens*2),
device=model.device,
@ -109,7 +109,7 @@ outputs = model.generate(**input_ids, past_key_values=past_key_values)
print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
['The theory of special relativity states 1. The speed of light is constant in all inertial reference frames. 2']
# 생성된 텍스트와 동일한 캐시 객체를 전달하여, 중단한 곳에서 생성을 계속합니다.
# 생성된 텍스트와 동일한 캐시 객체를 전달하여, 중단한 곳에서 생성을 계속합니다.
# 다중 턴 대화의 경우, 생성된 텍스트에 새로운 사용자 입력을 추가할 수 있습니다.
new_input_ids = outputs
outputs = model.generate(new_input_ids, past_key_values=past_key_values)

View File

@ -0,0 +1,303 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Qwen2-VL[[Qwen2-VL]]
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
</div>
## Overview[[Overview]]
[Qwen2-VL](https://qwenlm.github.io/blog/qwen2-vl/) 모델은 알리바바 리서치의 Qwen팀에서 개발한 [Qwen-VL](https://arxiv.org/pdf/2308.12966) 모델의 주요 업데이트 버전입니다.
블로그의 요약은 다음과 같습니다:
*이 블로그는 지난 몇 년간 Qwen-VL에서 중대한 개선을 거쳐 발전된 Qwen2-VL 모델을 소개합니다. 중요 개선 사항은 향상된 이미지 이해, 고급 비디오 이해, 통합 시각 에이전트 기능, 확장된 다언어 지원을 포함하고 있습니다.모델 아키텍처는 Naive Dynamic Resolution 지원을 통해 임의의 이미지 해상도를 처리할 수 있도록 최적화되었으며, 멀티모달 회전 위치 임베딩(M-ROPE)을 활용하여 1D 텍스트와 다차원 시각 데이터를 효과적으로 처리합니다. 이 업데이트된 모델은 시각 관련 작업에서 GPT-4o와 Claude 3.5 Sonnet 같은 선도적인 AI 시스템과 경쟁력 있는 성능을 보여주며, 텍스트 능력에서는 오픈소스 모델 중 상위권에 랭크되어 있습니다. 이러한 발전은 Qwen2-VL을 강력한 멀티모달 처리 및 추론 능력이 필요한 다양한 응용 분야에서 활용할 수 있는 다재다능한 도구로 만들어줍니다.*
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/qwen2_vl_architecture.jpeg"
alt="drawing" width="600"/>
<small> Qwen2-VL 구조. 출처: <a href="https://qwenlm.github.io/blog/qwen2-vl/">블로그 게시글</a> </small>
이 모델은 [simonJJJ](https://huggingface.co/simonJJJ)에 의해 기여되었습니다.
## 사용 예시[[Usage example]]
### 단일 미디어 추론[[Single Media inference]]
이 모델은 이미지와 비디오를 모두 인풋으로 받을 수 있습니다. 다음은 추론을 위한 예제 코드입니다.
```python
import torch
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
# 사용 가능한 장치에서 모델을 반 정밀도(half-precision)로 로드
model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", device_map="auto")
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
conversation = [
{
"role":"user",
"content":[
{
"type":"image",
"url": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg"
},
{
"type":"text",
"text":"Describe this image."
}
]
}
]
inputs = processor.apply_chat_template(
conversation,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt"
).to(model.device)
# 추론: 아웃풋 생성
output_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(inputs.input_ids, output_ids)]
output_text = processor.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)
print(output_text)
# 비디오
conversation = [
{
"role": "user",
"content": [
{"type": "video", "path": "/path/to/video.mp4"},
{"type": "text", "text": "What happened in the video?"},
],
}
]
inputs = processor.apply_chat_template(
conversation,
video_fps=1,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt"
).to(model.device)
# 추론: 아웃풋 생성
output_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(inputs.input_ids, output_ids)]
output_text = processor.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)
print(output_text)
```
### 배치 혼합 미디어 추론[[Batch Mixed Media Inference]]
이 모델은 이미지, 비디오, 텍스트 등 다양한 유형의 데이터를 혼합하여 배치 입력으로 처리할 수 있습니다. 다음은 예제입니다.
```python
# 첫번째 이미지에 대한 대화
conversation1 = [
{
"role": "user",
"content": [
{"type": "image", "path": "/path/to/image1.jpg"},
{"type": "text", "text": "Describe this image."}
]
}
]
# 두 개의 이미지에 대한 대화
conversation2 = [
{
"role": "user",
"content": [
{"type": "image", "path": "/path/to/image2.jpg"},
{"type": "image", "path": "/path/to/image3.jpg"},
{"type": "text", "text": "What is written in the pictures?"}
]
}
]
# 순수 텍스트로만 이루어진 대화
conversation3 = [
{
"role": "user",
"content": "who are you?"
}
]
# 혼합된 미디어로 이루어진 대화
conversation4 = [
{
"role": "user",
"content": [
{"type": "image", "path": "/path/to/image3.jpg"},
{"type": "image", "path": "/path/to/image4.jpg"},
{"type": "video", "path": "/path/to/video.jpg"},
{"type": "text", "text": "What are the common elements in these medias?"},
],
}
]
conversations = [conversation1, conversation2, conversation3, conversation4]
# 배치 추론을 위한 준비
ipnuts = processor.apply_chat_template(
conversations,
video_fps=1,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt"
).to(model.device)
# 배치 추론
output_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(inputs.input_ids, output_ids)]
output_text = processor.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)
print(output_text)
```
### 사용 팁[[Usage Tips]]
#### 이미지 해상도 트레이드오프[[Image Resolution trade-off]]
이 모델은 다양한 해상도의 입력을 지원합니다. 디폴트로 입력에 대해 네이티브(native) 해상도를 사용하지만, 더 높은 해상도를 적용하면 성능이 향상될 수 있습니다. 다만, 이는 더 많은 연산 비용을 초래합니다. 사용자는 최적의 설정을 위해 최소 및 최대 픽셀 수를 조정할 수 있습니다.
```python
min_pixels = 224*224
max_pixels = 2048*2048
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels)
```
제한된 GPU RAM의 경우, 다음과 같이 해상도를 줄일 수 있습니다:
```python
min_pixels = 256*28*28
max_pixels = 1024*28*28
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels)
```
이렇게 하면 각 이미지가 256~1024개의 토큰으로 인코딩됩니다. 여기서 28은 모델이 14 크기의 패치(patch)와 2의 시간 패치(temporal patch size)를 사용하기 때문에 나온 값입니다 (14 × 2 = 28).
#### 다중 이미지 인풋[[Multiple Image Inputs]]
기본적으로 이미지와 비디오 콘텐츠는 대화에 직접 포함됩니다. 여러 개의 이미지를 처리할 때는 이미지 및 비디오에 라벨을 추가하면 참조하기가 더 쉬워집니다. 사용자는 다음 설정을 통해 이 동작을 제어할 수 있습니다:
```python
conversation = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "Hello, how are you?"}
]
},
{
"role": "assistant",
"content": "I'm doing well, thank you for asking. How can I assist you today?"
},
{
"role": "user",
"content": [
{"type": "text", "text": "Can you describe these images and video?"},
{"type": "image"},
{"type": "image"},
{"type": "video"},
{"type": "text", "text": "These are from my vacation."}
]
},
{
"role": "assistant",
"content": "I'd be happy to describe the images and video for you. Could you please provide more context about your vacation?"
},
{
"role": "user",
"content": "It was a trip to the mountains. Can you see the details in the images and video?"
}
]
# 디폴트:
prompt_without_id = processor.apply_chat_template(conversation, add_generation_prompt=True)
# 예상 아웃풋: '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>Hello, how are you?<|im_end|>\n<|im_start|>assistant\nI'm doing well, thank you for asking. How can I assist you today?<|im_end|>\n<|im_start|>user\nCan you describe these images and video?<|vision_start|><|image_pad|><|vision_end|><|vision_start|><|image_pad|><|vision_end|><|vision_start|><|video_pad|><|vision_end|>These are from my vacation.<|im_end|>\n<|im_start|>assistant\nI'd be happy to describe the images and video for you. Could you please provide more context about your vacation?<|im_end|>\n<|im_start|>user\nIt was a trip to the mountains. Can you see the details in the images and video?<|im_end|>\n<|im_start|>assistant\n'
# id 추가
prompt_with_id = processor.apply_chat_template(conversation, add_generation_prompt=True, add_vision_id=True)
# 예상 아웃풋: '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\nPicture 1: <|vision_start|><|image_pad|><|vision_end|>Hello, how are you?<|im_end|>\n<|im_start|>assistant\nI'm doing well, thank you for asking. How can I assist you today?<|im_end|>\n<|im_start|>user\nCan you describe these images and video?Picture 2: <|vision_start|><|image_pad|><|vision_end|>Picture 3: <|vision_start|><|image_pad|><|vision_end|>Video 1: <|vision_start|><|video_pad|><|vision_end|>These are from my vacation.<|im_end|>\n<|im_start|>assistant\nI'd be happy to describe the images and video for you. Could you please provide more context about your vacation?<|im_end|>\n<|im_start|>user\nIt was a trip to the mountains. Can you see the details in the images and video?<|im_end|>\n<|im_start|>assistant\n'
```
#### 빠른 생성을 위한 Flash-Attention 2[[Flash-Attention 2 to speed up generation]]
첫번째로, Flash Attention 2의 최신 버전을 설치합니다:
```bash
pip install -U flash-attn --no-build-isolation
```
또한, Flash-Attention 2를 지원하는 하드웨어가 필요합니다. 자세한 내용은 공식 문서인 [flash attention repository](https://github.com/Dao-AILab/flash-attention)에서 확인할 수 있습니다. FlashAttention-2는 모델이 `torch.float16` 또는 `torch.bfloat16` 형식으로 로드된 경우에만 사용할 수 있습니다.
Flash Attention-2를 사용하여 모델을 로드하고 실행하려면, 다음과 같이 모델을 로드할 때 `attn_implementation="flash_attention_2"` 옵션을 추가하면 됩니다:
```python
from transformers import Qwen2VLForConditionalGeneration
model = Qwen2VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2-VL-7B-Instruct",
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
)
```
## Qwen2VLConfig
[[autodoc]] Qwen2VLConfig
## Qwen2VLImageProcessor
[[autodoc]] Qwen2VLImageProcessor
- preprocess
## Qwen2VLImageProcessorFast
[[autodoc]] Qwen2VLImageProcessorFast
- preprocess
## Qwen2VLProcessor
[[autodoc]] Qwen2VLProcessor
## Qwen2VLModel
[[autodoc]] Qwen2VLModel
- forward
## Qwen2VLForConditionalGeneration
[[autodoc]] Qwen2VLForConditionalGeneration
- forward

View File

@ -1,5 +1,4 @@
#!/usr/bin/env python
# coding=utf-8
# Copyright 2022 The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");

View File

@ -1,5 +1,4 @@
#!/usr/bin/env python
# coding=utf-8
# Copyright 2022 The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
@ -833,8 +832,7 @@ def main():
# No need to shuffle here
loader = data_loader(rng, _ds, batch_size=batch_size, shuffle=False)
for batch in loader:
yield batch
yield from loader
# Metric
metric = evaluate.load("rouge", cache_dir=model_args.cache_dir)

View File

@ -1,5 +1,4 @@
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
@ -30,7 +29,7 @@ from dataclasses import asdict, dataclass, field
from enum import Enum
from itertools import chain
from pathlib import Path
from typing import Dict, List, Optional
from typing import Optional
import flax
import jax
@ -294,7 +293,7 @@ class FlaxDataCollatorForBartDenoisingLM:
" language modeling. "
)
def __call__(self, examples: List[Dict[str, List[int]]]) -> BatchEncoding:
def __call__(self, examples: list[dict[str, list[int]]]) -> BatchEncoding:
# convert list to dict and tensorize input
batch = BatchEncoding(
{k: np.array([examples[i][k] for i in range(len(examples))]) for k, v in examples[0].items()}

View File

@ -53,4 +53,4 @@ for _ in range(nbenchmark):
func()
end = time.time()
print(end - start)
print(f"Throughput: {((nbenchmark * BS)/(end-start)):.3f} examples/sec")
print(f"Throughput: {((nbenchmark * BS) / (end - start)):.3f} examples/sec")

View File

@ -1,5 +1,4 @@
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");

View File

@ -1,5 +1,4 @@
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
@ -33,7 +32,7 @@ from itertools import chain
# You can also adapt this script on your own masked language modeling task. Pointers for this are left as comments.
from pathlib import Path
from typing import Dict, List, Optional, Tuple
from typing import Optional
import flax
import jax
@ -302,7 +301,7 @@ class FlaxDataCollatorForLanguageModeling:
"You should pass `mlm=False` to train on causal language modeling instead."
)
def __call__(self, examples: List[Dict[str, np.ndarray]], pad_to_multiple_of: int) -> Dict[str, np.ndarray]:
def __call__(self, examples: list[dict[str, np.ndarray]], pad_to_multiple_of: int) -> dict[str, np.ndarray]:
# Handle dict or lists with proper padding and conversion to tensor.
batch = self.tokenizer.pad(examples, pad_to_multiple_of=pad_to_multiple_of, return_tensors=TensorType.NUMPY)
@ -316,7 +315,7 @@ class FlaxDataCollatorForLanguageModeling:
def mask_tokens(
self, inputs: np.ndarray, special_tokens_mask: Optional[np.ndarray]
) -> Tuple[np.ndarray, np.ndarray]:
) -> tuple[np.ndarray, np.ndarray]:
"""
Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original.
"""

View File

@ -1,5 +1,4 @@
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
@ -32,7 +31,7 @@ from dataclasses import asdict, dataclass, field
from enum import Enum
from itertools import chain
from pathlib import Path
from typing import Dict, List, Optional
from typing import Optional
import flax
import jax
@ -338,7 +337,7 @@ class FlaxDataCollatorForT5MLM:
pad_token_id: int
decoder_start_token_id: int
def __call__(self, examples: List[Dict[str, np.ndarray]]) -> BatchEncoding:
def __call__(self, examples: list[dict[str, np.ndarray]]) -> BatchEncoding:
# convert list to dict and tensorize input
batch = BatchEncoding(
{k: np.array([examples[i][k] for i in range(len(examples))]) for k, v in examples[0].items()}

View File

@ -1,6 +1,7 @@
#!/usr/bin/env python3
import json
from typing import Iterator, List, Union
from collections.abc import Iterator
from typing import Union
from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers
from tokenizers.implementations.base_tokenizer import BaseTokenizer
@ -72,7 +73,7 @@ class SentencePieceUnigramTokenizer(BaseTokenizer):
def train(
self,
files: Union[str, List[str]],
files: Union[str, list[str]],
vocab_size: int = 8000,
show_progress: bool = True,
):

View File

@ -1,5 +1,4 @@
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
@ -28,7 +27,7 @@ import time
from dataclasses import asdict, dataclass, field
from enum import Enum
from pathlib import Path
from typing import Any, Callable, Dict, Optional, Tuple
from typing import Any, Callable, Optional
import datasets
import evaluate
@ -61,7 +60,7 @@ from transformers.utils import check_min_version, send_example_telemetry
logger = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.51.0.dev0")
check_min_version("4.52.0.dev0")
Array = Any
Dataset = datasets.arrow_dataset.Dataset
@ -908,8 +907,8 @@ def main():
# region Define train step functions
def train_step(
state: train_state.TrainState, batch: Dict[str, Array], dropout_rng: PRNGKey
) -> Tuple[train_state.TrainState, float]:
state: train_state.TrainState, batch: dict[str, Array], dropout_rng: PRNGKey
) -> tuple[train_state.TrainState, float]:
"""Trains model with an optimizer (both in `state`) on `batch`, returning a pair `(new_state, loss)`."""
dropout_rng, new_dropout_rng = jax.random.split(dropout_rng)
start_positions = batch.pop("start_positions")

View File

@ -1,4 +1,3 @@
# coding=utf-8
# Copyright 2020 The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
@ -20,7 +19,7 @@ import collections
import json
import logging
import os
from typing import Optional, Tuple
from typing import Optional
import numpy as np
from tqdm.auto import tqdm
@ -32,7 +31,7 @@ logger = logging.getLogger(__name__)
def postprocess_qa_predictions(
examples,
features,
predictions: Tuple[np.ndarray, np.ndarray],
predictions: tuple[np.ndarray, np.ndarray],
version_2_with_negative: bool = False,
n_best_size: int = 20,
max_answer_length: int = 30,
@ -223,7 +222,7 @@ def postprocess_qa_predictions(
# If we have an output_dir, let's save all those dicts.
if output_dir is not None:
if not os.path.isdir(output_dir):
raise EnvironmentError(f"{output_dir} is not a directory.")
raise OSError(f"{output_dir} is not a directory.")
prediction_file = os.path.join(
output_dir, "predictions.json" if prefix is None else f"{prefix}_predictions.json"
@ -253,7 +252,7 @@ def postprocess_qa_predictions(
def postprocess_qa_predictions_with_beam_search(
examples,
features,
predictions: Tuple[np.ndarray, np.ndarray],
predictions: tuple[np.ndarray, np.ndarray],
version_2_with_negative: bool = False,
n_best_size: int = 20,
max_answer_length: int = 30,
@ -417,7 +416,7 @@ def postprocess_qa_predictions_with_beam_search(
# If we have an output_dir, let's save all those dicts.
if output_dir is not None:
if not os.path.isdir(output_dir):
raise EnvironmentError(f"{output_dir} is not a directory.")
raise OSError(f"{output_dir} is not a directory.")
prediction_file = os.path.join(
output_dir, "predictions.json" if prefix is None else f"{prefix}_predictions.json"

View File

@ -1,5 +1,4 @@
#!/usr/bin/env python
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
@ -25,7 +24,7 @@ import time
from dataclasses import field
from functools import partial
from pathlib import Path
from typing import Any, Callable, Dict, List, Optional, Union
from typing import Any, Callable, Optional, Union
import datasets
import evaluate
@ -60,7 +59,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risk.
check_min_version("4.51.0.dev0")
check_min_version("4.52.0.dev0")
require_version("datasets>=2.14.0", "To fix: pip install -r examples/flax/speech-recognition/requirements.txt")
@ -303,7 +302,7 @@ class FlaxDataCollatorSpeechSeq2SeqWithPadding:
pad_input_to_multiple_of: Optional[int] = None
pad_target_to_multiple_of: Optional[int] = None
def __call__(self, features: List[Dict[str, Union[List[int], np.ndarray]]]) -> Dict[str, np.ndarray]:
def __call__(self, features: list[dict[str, Union[list[int], np.ndarray]]]) -> dict[str, np.ndarray]:
# split inputs and labels since they have to be of different lengths and need
# different padding methods
model_input_name = self.processor.model_input_names[0]

View File

@ -1,5 +1,4 @@
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");

View File

@ -1,4 +1,3 @@
# coding=utf-8
# Copyright 2021 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
@ -64,7 +63,7 @@ def get_setup_file():
def get_results(output_dir, split="eval"):
path = os.path.join(output_dir, f"{split}_results.json")
if os.path.exists(path):
with open(path, "r") as f:
with open(path) as f:
return json.load(f)
raise ValueError(f"can't find {path}")

View File

@ -1,5 +1,4 @@
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
@ -25,7 +24,7 @@ import time
import warnings
from dataclasses import dataclass, field
from pathlib import Path
from typing import Any, Callable, Dict, Optional, Tuple
from typing import Any, Callable, Optional
import datasets
import evaluate
@ -56,7 +55,7 @@ from transformers.utils import check_min_version, send_example_telemetry
logger = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.51.0.dev0")
check_min_version("4.52.0.dev0")
Array = Any
Dataset = datasets.arrow_dataset.Dataset
@ -572,8 +571,8 @@ def main():
# define step functions
def train_step(
state: train_state.TrainState, batch: Dict[str, Array], dropout_rng: PRNGKey
) -> Tuple[train_state.TrainState, float]:
state: train_state.TrainState, batch: dict[str, Array], dropout_rng: PRNGKey
) -> tuple[train_state.TrainState, float]:
"""Trains model with an optimizer (both in `state`) on `batch`, returning a pair `(new_state, loss)`."""
dropout_rng, new_dropout_rng = jax.random.split(dropout_rng)
targets = batch.pop("labels")

View File

@ -1,5 +1,4 @@
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
@ -27,7 +26,7 @@ from dataclasses import asdict, dataclass, field
from enum import Enum
from itertools import chain
from pathlib import Path
from typing import Any, Callable, Dict, Optional, Tuple
from typing import Any, Callable, Optional
import datasets
import evaluate
@ -57,7 +56,7 @@ from transformers.utils.versions import require_version
logger = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.51.0.dev0")
check_min_version("4.52.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/token-classification/requirements.txt")
@ -651,8 +650,8 @@ def main():
# define step functions
def train_step(
state: train_state.TrainState, batch: Dict[str, Array], dropout_rng: PRNGKey
) -> Tuple[train_state.TrainState, float]:
state: train_state.TrainState, batch: dict[str, Array], dropout_rng: PRNGKey
) -> tuple[train_state.TrainState, float]:
"""Trains model with an optimizer (both in `state`) on `batch`, returning a pair `(new_state, loss)`."""
dropout_rng, new_dropout_rng = jax.random.split(dropout_rng)
targets = batch.pop("labels")

View File

@ -1,5 +1,4 @@
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
@ -36,12 +35,12 @@ import optax
# for dataset and preprocessing
import torch
import torchvision
import torchvision.transforms as transforms
from flax import jax_utils
from flax.jax_utils import pad_shard_unpad, unreplicate
from flax.training import train_state
from flax.training.common_utils import get_metrics, onehot, shard, shard_prng_key
from huggingface_hub import HfApi
from torchvision import transforms
from tqdm import tqdm
import transformers

View File

@ -15,7 +15,7 @@
import csv
from collections import defaultdict
from dataclasses import dataclass, field
from typing import List, Optional
from typing import Optional
import matplotlib.pyplot as plt
import numpy as np
@ -59,7 +59,7 @@ class PlotArguments:
default=None,
metadata={"help": "Filename under which the plot will be saved. If unused no plot is saved."},
)
short_model_names: Optional[List[str]] = list_field(
short_model_names: Optional[list[str]] = list_field(
default=None, metadata={"help": "List of model names that are used instead of the ones in the csv file."}
)

View File

@ -1,5 +1,4 @@
#!/usr/bin/env python
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#

View File

@ -1,4 +1,3 @@
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
@ -18,7 +17,7 @@
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
from typing import Optional
import numpy as np
from utils_multiple_choice import MultipleChoiceDataset, Split, processors
@ -187,7 +186,7 @@ def main():
else None
)
def compute_metrics(p: EvalPrediction) -> Dict:
def compute_metrics(p: EvalPrediction) -> dict:
preds = np.argmax(p.predictions, axis=1)
return {"acc": simple_accuracy(preds, p.label_ids)}
@ -228,7 +227,7 @@ def main():
logger.info("***** Eval results *****")
for key, value in result.items():
logger.info(" %s = %s", key, value)
writer.write("%s = %s\n" % (key, value))
writer.write("{} = {}\n".format(key, value))
results.update(result)

View File

@ -1,4 +1,3 @@
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
@ -22,7 +21,7 @@ import logging
import os
from dataclasses import dataclass
from enum import Enum
from typing import List, Optional
from typing import Optional
import tqdm
from filelock import FileLock
@ -49,8 +48,8 @@ class InputExample:
example_id: str
question: str
contexts: List[str]
endings: List[str]
contexts: list[str]
endings: list[str]
label: Optional[str]
@ -62,9 +61,9 @@ class InputFeatures:
"""
example_id: str
input_ids: List[List[int]]
attention_mask: Optional[List[List[int]]]
token_type_ids: Optional[List[List[int]]]
input_ids: list[list[int]]
attention_mask: Optional[list[list[int]]]
token_type_ids: Optional[list[list[int]]]
label: Optional[int]
@ -84,7 +83,7 @@ if is_torch_available():
soon.
"""
features: List[InputFeatures]
features: list[InputFeatures]
def __init__(
self,
@ -113,7 +112,7 @@ if is_torch_available():
with FileLock(lock_path):
if os.path.exists(cached_features_file) and not overwrite_cache:
logger.info(f"Loading features from cached file {cached_features_file}")
self.features = torch.load(cached_features_file)
self.features = torch.load(cached_features_file, weights_only=True)
else:
logger.info(f"Creating features from dataset file at {data_dir}")
label_list = processor.get_labels()
@ -149,7 +148,7 @@ if is_tf_available():
soon.
"""
features: List[InputFeatures]
features: list[InputFeatures]
def __init__(
self,
@ -253,7 +252,7 @@ class RaceProcessor(DataProcessor):
def get_train_examples(self, data_dir):
"""See base class."""
logger.info("LOOKING AT {} train".format(data_dir))
logger.info(f"LOOKING AT {data_dir} train")
high = os.path.join(data_dir, "train/high")
middle = os.path.join(data_dir, "train/middle")
high = self._read_txt(high)
@ -262,7 +261,7 @@ class RaceProcessor(DataProcessor):
def get_dev_examples(self, data_dir):
"""See base class."""
logger.info("LOOKING AT {} dev".format(data_dir))
logger.info(f"LOOKING AT {data_dir} dev")
high = os.path.join(data_dir, "dev/high")
middle = os.path.join(data_dir, "dev/middle")
high = self._read_txt(high)
@ -271,7 +270,7 @@ class RaceProcessor(DataProcessor):
def get_test_examples(self, data_dir):
"""See base class."""
logger.info("LOOKING AT {} test".format(data_dir))
logger.info(f"LOOKING AT {data_dir} test")
high = os.path.join(data_dir, "test/high")
middle = os.path.join(data_dir, "test/middle")
high = self._read_txt(high)
@ -286,7 +285,7 @@ class RaceProcessor(DataProcessor):
lines = []
files = glob.glob(input_dir + "/*txt")
for file in tqdm.tqdm(files, desc="read files"):
with open(file, "r", encoding="utf-8") as fin:
with open(file, encoding="utf-8") as fin:
data_raw = json.load(fin)
data_raw["race_id"] = file
lines.append(data_raw)
@ -296,7 +295,7 @@ class RaceProcessor(DataProcessor):
"""Creates examples for the training and dev sets."""
examples = []
for _, data_raw in enumerate(lines):
race_id = "%s-%s" % (set_type, data_raw["race_id"])
race_id = "{}-{}".format(set_type, data_raw["race_id"])
article = data_raw["article"]
for i in range(len(data_raw["answers"])):
truth = str(ord(data_raw["answers"][i]) - ord("A"))
@ -320,17 +319,17 @@ class SynonymProcessor(DataProcessor):
def get_train_examples(self, data_dir):
"""See base class."""
logger.info("LOOKING AT {} train".format(data_dir))
logger.info(f"LOOKING AT {data_dir} train")
return self._create_examples(self._read_csv(os.path.join(data_dir, "mctrain.csv")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
logger.info("LOOKING AT {} dev".format(data_dir))
logger.info(f"LOOKING AT {data_dir} dev")
return self._create_examples(self._read_csv(os.path.join(data_dir, "mchp.csv")), "dev")
def get_test_examples(self, data_dir):
"""See base class."""
logger.info("LOOKING AT {} dev".format(data_dir))
logger.info(f"LOOKING AT {data_dir} dev")
return self._create_examples(self._read_csv(os.path.join(data_dir, "mctest.csv")), "test")
@ -339,10 +338,10 @@ class SynonymProcessor(DataProcessor):
return ["0", "1", "2", "3", "4"]
def _read_csv(self, input_file):
with open(input_file, "r", encoding="utf-8") as f:
with open(input_file, encoding="utf-8") as f:
return list(csv.reader(f))
def _create_examples(self, lines: List[List[str]], type: str):
def _create_examples(self, lines: list[list[str]], type: str):
"""Creates examples for the training and dev sets."""
examples = [
@ -366,17 +365,17 @@ class SwagProcessor(DataProcessor):
def get_train_examples(self, data_dir):
"""See base class."""
logger.info("LOOKING AT {} train".format(data_dir))
logger.info(f"LOOKING AT {data_dir} train")
return self._create_examples(self._read_csv(os.path.join(data_dir, "train.csv")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
logger.info("LOOKING AT {} dev".format(data_dir))
logger.info(f"LOOKING AT {data_dir} dev")
return self._create_examples(self._read_csv(os.path.join(data_dir, "val.csv")), "dev")
def get_test_examples(self, data_dir):
"""See base class."""
logger.info("LOOKING AT {} dev".format(data_dir))
logger.info(f"LOOKING AT {data_dir} dev")
raise ValueError(
"For swag testing, the input file does not contain a label column. It can not be tested in current code "
"setting!"
@ -388,10 +387,10 @@ class SwagProcessor(DataProcessor):
return ["0", "1", "2", "3"]
def _read_csv(self, input_file):
with open(input_file, "r", encoding="utf-8") as f:
with open(input_file, encoding="utf-8") as f:
return list(csv.reader(f))
def _create_examples(self, lines: List[List[str]], type: str):
def _create_examples(self, lines: list[list[str]], type: str):
"""Creates examples for the training and dev sets."""
if type == "train" and lines[0][-1] != "label":
raise ValueError("For training, the input file must contain a label column.")
@ -417,16 +416,16 @@ class ArcProcessor(DataProcessor):
def get_train_examples(self, data_dir):
"""See base class."""
logger.info("LOOKING AT {} train".format(data_dir))
logger.info(f"LOOKING AT {data_dir} train")
return self._create_examples(self._read_json(os.path.join(data_dir, "train.jsonl")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
logger.info("LOOKING AT {} dev".format(data_dir))
logger.info(f"LOOKING AT {data_dir} dev")
return self._create_examples(self._read_json(os.path.join(data_dir, "dev.jsonl")), "dev")
def get_test_examples(self, data_dir):
logger.info("LOOKING AT {} test".format(data_dir))
logger.info(f"LOOKING AT {data_dir} test")
return self._create_examples(self._read_json(os.path.join(data_dir, "test.jsonl")), "test")
def get_labels(self):
@ -434,7 +433,7 @@ class ArcProcessor(DataProcessor):
return ["0", "1", "2", "3"]
def _read_json(self, input_file):
with open(input_file, "r", encoding="utf-8") as fin:
with open(input_file, encoding="utf-8") as fin:
lines = fin.readlines()
return lines
@ -504,11 +503,11 @@ class ArcProcessor(DataProcessor):
def convert_examples_to_features(
examples: List[InputExample],
label_list: List[str],
examples: list[InputExample],
label_list: list[str],
max_length: int,
tokenizer: PreTrainedTokenizer,
) -> List[InputFeatures]:
) -> list[InputFeatures]:
"""
Loads a data file into a list of `InputFeatures`
"""

View File

@ -2,7 +2,7 @@ import argparse
import logging
import os
from pathlib import Path
from typing import Any, Dict
from typing import Any
import pytorch_lightning as pl
from pytorch_lightning.utilities import rank_zero_info
@ -201,7 +201,7 @@ class BaseTransformer(pl.LightningModule):
)
@pl.utilities.rank_zero_only
def on_save_checkpoint(self, checkpoint: Dict[str, Any]) -> None:
def on_save_checkpoint(self, checkpoint: dict[str, Any]) -> None:
save_path = self.output_dir.joinpath("best_tfmr")
self.model.config.save_step = self.step_count
self.model.save_pretrained(save_path)
@ -282,7 +282,7 @@ class LoggingCallback(pl.Callback):
# Log results
for key in sorted(metrics):
if key not in ["log", "progress_bar"]:
rank_zero_info("{} = {}\n".format(key, str(metrics[key])))
rank_zero_info(f"{key} = {str(metrics[key])}\n")
def on_test_end(self, trainer: pl.Trainer, pl_module: pl.LightningModule):
rank_zero_info("***** Test results *****")
@ -292,8 +292,8 @@ class LoggingCallback(pl.Callback):
with open(output_test_results_file, "w") as writer:
for key in sorted(metrics):
if key not in ["log", "progress_bar"]:
rank_zero_info("{} = {}\n".format(key, str(metrics[key])))
writer.write("{} = {}\n".format(key, str(metrics[key])))
rank_zero_info(f"{key} = {str(metrics[key])}\n")
writer.write(f"{key} = {str(metrics[key])}\n")
def add_generic_args(parser, root_dir) -> None:

View File

@ -81,7 +81,7 @@ class GLUETransformer(BaseTransformer):
cached_features_file = self._feature_file(mode)
logger.info("Loading features from cached file %s", cached_features_file)
features = torch.load(cached_features_file)
features = torch.load(cached_features_file, weights_only=True)
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long)
all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long)

View File

@ -63,7 +63,7 @@ class NERTransformer(BaseTransformer):
cached_features_file = self._feature_file(mode)
if os.path.exists(cached_features_file) and not args.overwrite_cache:
logger.info("Loading features from cached file %s", cached_features_file)
features = torch.load(cached_features_file)
features = torch.load(cached_features_file, weights_only=True)
else:
logger.info("Creating features from dataset file at %s", args.data_dir)
examples = self.token_classification_task.read_examples_from_file(args.data_dir, mode)
@ -89,7 +89,7 @@ class NERTransformer(BaseTransformer):
"Load datasets. Called after prepare data."
cached_features_file = self._feature_file(mode)
logger.info("Loading features from cached file %s", cached_features_file)
features = torch.load(cached_features_file)
features = torch.load(cached_features_file, weights_only=True)
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long)
if features[0].token_type_ids is not None:

View File

@ -1,4 +1,3 @@
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
@ -68,7 +67,7 @@ def set_seed(args):
def to_list(tensor):
return tensor.detach().cpu().tolist()
return tensor.tolist()
def train(args, train_dataset, model, tokenizer):
@ -105,8 +104,8 @@ def train(args, train_dataset, model, tokenizer):
os.path.join(args.model_name_or_path, "scheduler.pt")
):
# Load in optimizer and scheduler states
optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt")))
scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt")))
optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt"), weights_only=True))
scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt"), weights_only=True))
if args.fp16:
try:
@ -231,14 +230,14 @@ def train(args, train_dataset, model, tokenizer):
if args.local_rank == -1 and args.evaluate_during_training:
results = evaluate(args, model, tokenizer)
for key, value in results.items():
tb_writer.add_scalar("eval_{}".format(key), value, global_step)
tb_writer.add_scalar(f"eval_{key}", value, global_step)
tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step)
tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step)
logging_loss = tr_loss
# Save model checkpoint
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step))
output_dir = os.path.join(args.output_dir, f"checkpoint-{global_step}")
# Take care of distributed/parallel training
model_to_save = model.module if hasattr(model, "module") else model
model_to_save.save_pretrained(output_dir)
@ -281,7 +280,7 @@ def evaluate(args, model, tokenizer, prefix=""):
model = torch.nn.DataParallel(model)
# Eval!
logger.info("***** Running evaluation {} *****".format(prefix))
logger.info(f"***** Running evaluation {prefix} *****")
logger.info(" Num examples = %d", len(dataset))
logger.info(" Batch size = %d", args.eval_batch_size)
@ -348,11 +347,11 @@ def evaluate(args, model, tokenizer, prefix=""):
logger.info(" Evaluation done in total %f secs (%f sec per example)", evalTime, evalTime / len(dataset))
# Compute predictions
output_prediction_file = os.path.join(args.output_dir, "predictions_{}.json".format(prefix))
output_nbest_file = os.path.join(args.output_dir, "nbest_predictions_{}.json".format(prefix))
output_prediction_file = os.path.join(args.output_dir, f"predictions_{prefix}.json")
output_nbest_file = os.path.join(args.output_dir, f"nbest_predictions_{prefix}.json")
if args.version_2_with_negative:
output_null_log_odds_file = os.path.join(args.output_dir, "null_odds_{}.json".format(prefix))
output_null_log_odds_file = os.path.join(args.output_dir, f"null_odds_{prefix}.json")
else:
output_null_log_odds_file = None
@ -417,7 +416,7 @@ def load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=Fal
# Init features and dataset from cache if it exists
if os.path.exists(cached_features_file) and not args.overwrite_cache:
logger.info("Loading features from cached file %s", cached_features_file)
features_and_dataset = torch.load(cached_features_file)
features_and_dataset = torch.load(cached_features_file, weights_only=True)
features, dataset, examples = (
features_and_dataset["features"],
features_and_dataset["dataset"],
@ -828,10 +827,10 @@ def main():
# Evaluate
result = evaluate(args, model, tokenizer, prefix=global_step)
result = {k + ("_{}".format(global_step) if global_step else ""): v for k, v in result.items()}
result = {k + (f"_{global_step}" if global_step else ""): v for k, v in result.items()}
results.update(result)
logger.info("Results: {}".format(results))
logger.info(f"Results: {results}")
return results

View File

@ -1,4 +1,3 @@
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#

View File

@ -20,10 +20,10 @@ def fill_mask(masked_input, model, tokenizer, topk=5):
topk_filled_outputs = []
for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(" ")):
predicted_token = predicted_token_bpe.replace("\u2581", " ")
if " {0}".format(masked_token) in masked_input:
if f" {masked_token}" in masked_input:
topk_filled_outputs.append(
(
masked_input.replace(" {0}".format(masked_token), predicted_token),
masked_input.replace(f" {masked_token}", predicted_token),
values[index].item(),
predicted_token,
)

View File

@ -1,7 +1,6 @@
#!/usr/bin/env python
import argparse
import json
from typing import List
from ltp import LTP
@ -42,7 +41,7 @@ def is_chinese(word: str):
return 1
def get_chinese_word(tokens: List[str]):
def get_chinese_word(tokens: list[str]):
word_set = set()
for token in tokens:
@ -53,7 +52,7 @@ def get_chinese_word(tokens: List[str]):
return word_list
def add_sub_symbol(bert_tokens: List[str], chinese_word_set: set()):
def add_sub_symbol(bert_tokens: list[str], chinese_word_set: set()):
if not chinese_word_set:
return bert_tokens
max_word_len = max([len(w) for w in chinese_word_set])
@ -77,7 +76,7 @@ def add_sub_symbol(bert_tokens: List[str], chinese_word_set: set()):
return bert_word
def prepare_ref(lines: List[str], ltp_tokenizer: LTP, bert_tokenizer: BertTokenizer):
def prepare_ref(lines: list[str], ltp_tokenizer: LTP, bert_tokenizer: BertTokenizer):
ltp_res = []
for i in range(0, len(lines), 100):
@ -117,7 +116,7 @@ def prepare_ref(lines: List[str], ltp_tokenizer: LTP, bert_tokenizer: BertTokeni
def main(args):
# For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm)
# If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp)
with open(args.file_name, "r", encoding="utf-8") as f:
with open(args.file_name, encoding="utf-8") as f:
data = f.readlines()
data = [line.strip() for line in data if len(line) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
ltp_tokenizer = LTP(args.ltp) # faster in GPU device

View File

@ -1,5 +1,4 @@
#!/usr/bin/env python
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
@ -358,7 +357,7 @@ def main():
logger.info("***** Eval results *****")
for key in sorted(result.keys()):
logger.info(" %s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
writer.write("{} = {}\n".format(key, str(result[key])))
results.update(result)

View File

@ -1,5 +1,4 @@
#!/usr/bin/env python
# coding=utf-8
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
@ -163,7 +162,7 @@ def main():
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
n_gpu = torch.cuda.device_count()
logger.info("device: {}, n_gpu {}".format(device, n_gpu))
logger.info(f"device: {device}, n_gpu {n_gpu}")
if not args.do_train and not args.do_eval:
raise ValueError("At least one of `do_train` or `do_eval` must be True.")
@ -261,7 +260,7 @@ def main():
loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item()
)
nb_tr_steps += 1
tqdm_bar.desc = "Training loss: {:.2e} lr: {:.2e}".format(exp_average_loss, scheduler.get_lr()[0])
tqdm_bar.desc = f"Training loss: {exp_average_loss:.2e} lr: {scheduler.get_lr()[0]:.2e}"
# Save a trained model
if args.do_train:
@ -313,7 +312,7 @@ def main():
logger.info("***** Eval results *****")
for key in sorted(result.keys()):
logger.info(" %s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
writer.write("{} = {}\n".format(key, str(result[key])))
if __name__ == "__main__":

View File

@ -1,5 +1,4 @@
#!/usr/bin/env python
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
@ -51,7 +50,7 @@ except ImportError:
logger = logging.getLogger(__name__)
class SwagExample(object):
class SwagExample:
"""A single training/test example for the SWAG dataset."""
def __init__(self, swag_id, context_sentence, start_ending, ending_0, ending_1, ending_2, ending_3, label=None):
@ -71,22 +70,22 @@ class SwagExample(object):
def __repr__(self):
attributes = [
"swag_id: {}".format(self.swag_id),
"context_sentence: {}".format(self.context_sentence),
"start_ending: {}".format(self.start_ending),
"ending_0: {}".format(self.endings[0]),
"ending_1: {}".format(self.endings[1]),
"ending_2: {}".format(self.endings[2]),
"ending_3: {}".format(self.endings[3]),
f"swag_id: {self.swag_id}",
f"context_sentence: {self.context_sentence}",
f"start_ending: {self.start_ending}",
f"ending_0: {self.endings[0]}",
f"ending_1: {self.endings[1]}",
f"ending_2: {self.endings[2]}",
f"ending_3: {self.endings[3]}",
]
if self.label is not None:
attributes.append("label: {}".format(self.label))
attributes.append(f"label: {self.label}")
return ", ".join(attributes)
class InputFeatures(object):
class InputFeatures:
def __init__(self, example_id, choices_features, label):
self.example_id = example_id
self.choices_features = [
@ -97,7 +96,7 @@ class InputFeatures(object):
def read_swag_examples(input_file, is_training=True):
with open(input_file, "r", encoding="utf-8") as f:
with open(input_file, encoding="utf-8") as f:
lines = list(csv.reader(f))
if is_training and lines[0][-1] != "label":
@ -179,15 +178,15 @@ def convert_examples_to_features(examples, tokenizer, max_seq_length, is_trainin
label = example.label
if example_index < 5:
logger.info("*** Example ***")
logger.info("swag_id: {}".format(example.swag_id))
logger.info(f"swag_id: {example.swag_id}")
for choice_idx, (tokens, input_ids, input_mask, segment_ids) in enumerate(choices_features):
logger.info("choice: {}".format(choice_idx))
logger.info(f"choice: {choice_idx}")
logger.info("tokens: {}".format(" ".join(tokens)))
logger.info("input_ids: {}".format(" ".join(map(str, input_ids))))
logger.info("input_mask: {}".format(" ".join(map(str, input_mask))))
logger.info("segment_ids: {}".format(" ".join(map(str, segment_ids))))
if is_training:
logger.info("label: {}".format(label))
logger.info(f"label: {label}")
features.append(InputFeatures(example_id=example.swag_id, choices_features=choices_features, label=label))
@ -244,7 +243,7 @@ def load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=Fal
)
if os.path.exists(cached_features_file) and not args.overwrite_cache and not output_examples:
logger.info("Loading features from cached file %s", cached_features_file)
features = torch.load(cached_features_file)
features = torch.load(cached_features_file, weights_only=True)
else:
logger.info("Creating features from dataset file at %s", input_file)
examples = read_swag_examples(input_file)
@ -382,14 +381,14 @@ def train(args, train_dataset, model, tokenizer):
): # Only evaluate when single GPU otherwise metrics may not average well
results = evaluate(args, model, tokenizer)
for key, value in results.items():
tb_writer.add_scalar("eval_{}".format(key), value, global_step)
tb_writer.add_scalar(f"eval_{key}", value, global_step)
tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step)
tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step)
logging_loss = tr_loss
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
# Save model checkpoint
output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step))
output_dir = os.path.join(args.output_dir, f"checkpoint-{global_step}")
model_to_save = (
model.module if hasattr(model, "module") else model
) # Take care of distributed/parallel training
@ -423,7 +422,7 @@ def evaluate(args, model, tokenizer, prefix=""):
eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
# Eval!
logger.info("***** Running evaluation {} *****".format(prefix))
logger.info(f"***** Running evaluation {prefix} *****")
logger.info(" Num examples = %d", len(dataset))
logger.info(" Batch size = %d", args.eval_batch_size)
@ -466,7 +465,7 @@ def evaluate(args, model, tokenizer, prefix=""):
logger.info("***** Eval results *****")
for key in sorted(result.keys()):
logger.info("%s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
writer.write("{} = {}\n".format(key, str(result[key])))
return result
@ -710,10 +709,10 @@ def main():
# Evaluate
result = evaluate(args, model, tokenizer, prefix=global_step)
result = {k + ("_{}".format(global_step) if global_step else ""): v for k, v in result.items()}
result = {k + (f"_{global_step}" if global_step else ""): v for k, v in result.items()}
results.update(result)
logger.info("Results: {}".format(results))
logger.info(f"Results: {results}")
return results

View File

@ -1,5 +1,4 @@
#!/usr/bin/env python
# coding=utf-8
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
@ -66,7 +65,7 @@ def main():
ptvsd.wait_for_attach()
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
logger.info("device: {}".format(device))
logger.info(f"device: {device}")
# Load a pre-processed dataset
# You can also build the corpus yourself using TransfoXLCorpus methods
@ -111,7 +110,7 @@ def main():
total_loss += seq_len * loss.item()
total_len += seq_len
total_time = time.time() - start_time
logger.info("Time : {:.2f}s, {:.2f}ms/segment".format(total_time, 1000 * total_time / (idx + 1)))
logger.info(f"Time : {total_time:.2f}s, {1000 * total_time / (idx + 1):.2f}ms/segment")
return total_loss / total_len
# Run on test data.

View File

@ -209,7 +209,7 @@ th 56 \
```
### Multi-GPU Evaluation
here is a command to run xsum evaluation on 8 GPUS. It is more than linearly faster than run_eval.py in some cases
here is a command to run xsum evaluation on 8 GPUs. It is more than linearly faster than run_eval.py in some cases
because it uses SortishSampler to minimize padding. You can also use it on 1 GPU. `data_dir` must have
`{type_path}.source` and `{type_path}.target`. Run `./run_distributed_eval.py --help` for all clargs.

View File

@ -22,7 +22,7 @@ from tqdm import tqdm
def convert(src_path: str, map_location: str = "cpu", save_path: Union[str, None] = None) -> None:
"""Convert a pytorch_model.bin or model.pt file to torch.float16 for faster downloads, less disk space."""
state_dict = torch.load(src_path, map_location=map_location)
state_dict = torch.load(src_path, map_location=map_location, weights_only=True)
for k, v in tqdm(state_dict.items()):
if not isinstance(v, torch.Tensor):
raise TypeError("FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin")

View File

@ -231,9 +231,9 @@ def main():
# set decoder_start_token_id for MBart
if model.config.decoder_start_token_id is None and isinstance(tokenizer, (MBartTokenizer, MBartTokenizerFast)):
assert (
data_args.tgt_lang is not None and data_args.src_lang is not None
), "mBart requires --tgt_lang and --src_lang"
assert data_args.tgt_lang is not None and data_args.src_lang is not None, (
"mBart requires --tgt_lang and --src_lang"
)
if isinstance(tokenizer, MBartTokenizer):
model.config.decoder_start_token_id = tokenizer.lang_code_to_id[data_args.tgt_lang]
else:

View File

@ -1,4 +1,3 @@
# coding=utf-8
# Copyright 2020 Huggingface
#
# Licensed under the Apache License, Version 2.0 (the "License");
@ -13,7 +12,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import io
import json
import unittest
@ -25,7 +23,7 @@ from utils import calculate_bleu
filename = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json"
with io.open(filename, "r", encoding="utf-8") as f:
with open(filename, encoding="utf-8") as f:
bleu_data = json.load(f)

View File

@ -19,7 +19,6 @@ import time
from json import JSONDecodeError
from logging import getLogger
from pathlib import Path
from typing import Dict, List
import torch
from torch.utils.data import DataLoader
@ -55,10 +54,10 @@ def eval_data_dir(
task="summarization",
local_rank=None,
num_return_sequences=1,
dataset_kwargs: Dict = None,
dataset_kwargs: dict = None,
prefix="",
**generate_kwargs,
) -> Dict:
) -> dict:
"""Run evaluation on part of the data for one gpu and save to {save_dir}/rank_{rank}_output.json"""
model_name = str(model_name)
assert local_rank is not None
@ -211,7 +210,7 @@ def run_generate():
calc_bleu = "translation" in args.task
score_fn = calculate_bleu if calc_bleu else calculate_rouge
metric_name = "bleu" if calc_bleu else "rouge"
metrics: Dict = score_fn(preds, labels)
metrics: dict = score_fn(preds, labels)
metrics["n_obs"] = len(preds)
runtime = time.time() - start_time
metrics["seconds_per_sample"] = round(runtime / metrics["n_obs"], 4)
@ -227,7 +226,7 @@ def run_generate():
shutil.rmtree(json_save_dir)
def combine_partial_results(partial_results) -> List:
def combine_partial_results(partial_results) -> list:
"""Concatenate partial results into one file, then sort it by id."""
records = []
for partial_result in partial_results:
@ -237,7 +236,7 @@ def combine_partial_results(partial_results) -> List:
return preds
def gather_results_from_each_node(num_replicas, save_dir, timeout) -> List[Dict[str, List]]:
def gather_results_from_each_node(num_replicas, save_dir, timeout) -> list[dict[str, list]]:
# WAIT FOR lots of .json files
start_wait = time.time()
logger.info("waiting for all nodes to finish")

View File

@ -20,7 +20,6 @@ import time
import warnings
from logging import getLogger
from pathlib import Path
from typing import Dict, List
import torch
from tqdm import tqdm
@ -36,7 +35,7 @@ DEFAULT_DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
def generate_summaries_or_translations(
examples: List[str],
examples: list[str],
out_file: str,
model_name: str,
batch_size: int = 8,
@ -45,7 +44,7 @@ def generate_summaries_or_translations(
task="summarization",
prefix=None,
**generate_kwargs,
) -> Dict:
) -> dict:
"""Save model.generate results to <out_file>, and return how long it took."""
fout = Path(out_file).open("w", encoding="utf-8")
model_name = str(model_name)

View File

@ -34,7 +34,7 @@ task_score_names = {
def parse_search_arg(search):
groups = search.split()
entries = dict((g.split("=") for g in groups))
entries = dict(g.split("=") for g in groups)
entry_names = list(entries.keys())
sets = [[f"--{k} {v}" for v in vs.split(":")] for k, vs in entries.items()]
matrix = [list(x) for x in itertools.product(*sets)]
@ -105,7 +105,7 @@ def run_search():
col_widths = {col: len(str(col)) for col in col_names}
results = []
for r in matrix:
hparams = dict((x.replace("--", "").split() for x in r))
hparams = dict(x.replace("--", "").split() for x in r)
args_exp = " ".join(r).split()
args_exp.extend(["--bs", str(args.bs)]) # in case we need to reduce its size due to CUDA OOM
sys.argv = args_normal + args_exp
@ -128,7 +128,7 @@ def run_search():
results_sorted = sorted(results, key=operator.itemgetter(*task_score_names[task]), reverse=True)
print(" | ".join([f"{col:{col_widths[col]}}" for col in col_names]))
print(" | ".join([f"{'-'*col_widths[col]}" for col in col_names]))
print(" | ".join([f"{'-' * col_widths[col]}" for col in col_names]))
for row in results_sorted:
print(" | ".join([f"{row[col]:{col_widths[col]}}" for col in col_names]))

View File

@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Dict, List, Optional, Tuple, Union
from typing import Any, Optional, Union
import torch
from torch import nn
@ -172,10 +172,10 @@ class Seq2SeqTrainer(Trainer):
def prediction_step(
self,
model: nn.Module,
inputs: Dict[str, Union[torch.Tensor, Any]],
inputs: dict[str, Union[torch.Tensor, Any]],
prediction_loss_only: bool,
ignore_keys: Optional[List[str]] = None,
) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]:
ignore_keys: Optional[list[str]] = None,
) -> tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]:
"""
Perform an evaluation step on :obj:`model` using obj:`inputs`.

Some files were not shown because too many files have changed in this diff Show More