Compare commits

..

1 Commits

Author SHA1 Message Date
ea26c11614 check 2025-11-06 14:22:59 +01:00
869 changed files with 11986 additions and 11412 deletions

View File

@ -46,8 +46,8 @@ jobs:
- run: uv pip install -U -e .
- run: echo 'export "GIT_COMMIT_MESSAGE=$(git show -s --format=%s)"' >> "$BASH_ENV" && source "$BASH_ENV"
- run: mkdir -p test_preparation
- run: python utils/tests_fetcher.py | tee tests_fetched_summary.txt || true
- run: python utils/tests_fetcher.py --filter_tests || true
- run: python utils/tests_fetcher.py | tee tests_fetched_summary.txt
- run: python utils/tests_fetcher.py --filter_tests
- run: export "GIT_COMMIT_MESSAGE=$(git show -s --format=%s)" && echo $GIT_COMMIT_MESSAGE && python .circleci/create_circleci_config.py --fetcher_folder test_preparation
- run: |
if [ ! -s test_preparation/generated_config.yml ]; then
@ -98,8 +98,8 @@ jobs:
- run: uv pip install -U -e .
- run: echo 'export "GIT_COMMIT_MESSAGE=$(git show -s --format=%s)"' >> "$BASH_ENV" && source "$BASH_ENV"
- run: mkdir -p test_preparation
- run: python utils/tests_fetcher.py --fetch_all | tee tests_fetched_summary.txt || true
- run: python utils/tests_fetcher.py --filter_tests || true
- run: python utils/tests_fetcher.py --fetch_all | tee tests_fetched_summary.txt
- run: python utils/tests_fetcher.py --filter_tests
- run: export "GIT_COMMIT_MESSAGE=$(git show -s --format=%s)" && echo $GIT_COMMIT_MESSAGE && python .circleci/create_circleci_config.py --fetcher_folder test_preparation
- run: |
if [ ! -s test_preparation/generated_config.yml ]; then

View File

@ -185,8 +185,8 @@ class CircleCIJob:
},
# During the CircleCI docker images build time, we might already (or not) download the data.
# If it's done already, the files are inside the directory `/test_data/`.
# {"run": {"name": "fetch hub objects before pytest", "command": "cp -r /test_data/* . 2>/dev/null || true; python3 utils/fetch_hub_objects_for_ci.py"}},
# {"run": {"name": "download and unzip hub cache", "command": 'curl -L -o huggingface-cache.tar.gz https://huggingface.co/datasets/hf-internal-testing/hf_hub_cache/resolve/main/huggingface-cache.tar.gz && apt-get install pigz && tar --use-compress-program="pigz -d -p 8" -xf huggingface-cache.tar.gz && mv -n hub/* /root/.cache/huggingface/hub/ && ls -la /root/.cache/huggingface/hub/'}},
{"run": {"name": "fetch hub objects before pytest", "command": "cp -r /test_data/* . 2>/dev/null || true; python3 utils/fetch_hub_objects_for_ci.py"}},
{"run": {"name": "download and unzip hub cache", "command": 'curl -L -o huggingface-cache.tar.gz https://huggingface.co/datasets/hf-internal-testing/hf_hub_cache/resolve/main/huggingface-cache.tar.gz && apt-get install pigz && tar --use-compress-program="pigz -d -p 8" -xf huggingface-cache.tar.gz && mv -n hub/* /root/.cache/huggingface/hub/ && ls -la /root/.cache/huggingface/hub/'}},
{"run": {
"name": "Run tests",
"command": f"({timeout_cmd} python3 -m pytest {marker_cmd} -n {self.pytest_num_workers} {junit_flags} {repeat_on_failure_flags} {' '.join(pytest_flags)} $(cat splitted_tests.txt) | tee tests_output.txt)"}

View File

@ -32,16 +32,16 @@ jobs:
options: --gpus all --privileged --ipc host
steps:
- name: Get repo
uses: actions/checkout@v5
uses: actions/checkout@v4
with:
fetch-depth: 1
ref: ${{ github.event.pull_request.head.sha || github.sha }}
- name: Install benchmark script dependencies
run: python3 -m pip install -r benchmark_v2/requirements.txt kernels
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e ".[torch]"
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e ".[torch]" && python3 -m pip uninstall -y torchvision # temp fix
- name: Run benchmark
run: |

View File

@ -1,23 +0,0 @@
---
name: Check Permissions Advisor
on:
workflow_dispatch:
inputs:
workflow_name:
description: 'Workflow file name'
type: string
run_count:
description: 'Number of runs to analyze'
type: string
default: "10"
jobs:
advisor:
uses: huggingface/security-workflows/.github/workflows/permissions-advisor-reusable.yml@main
permissions:
actions: read
contents: read
with:
workflow_name: ${{ inputs.workflow_name }}
run_count: ${{ fromJSON(inputs.run_count) }}

View File

@ -125,7 +125,7 @@ jobs:
const { data: merge_commit } = await github.rest.repos.getCommit({
owner: pr.base.repo.owner.login,
repo: pr.base.repo.name,
ref: '${{ inputs.commit_sha }}',
ref: pr.merge_commit_sha,
});
core.setOutput('merge_commit_base_sha', merge_commit.parents[0].sha);

View File

@ -30,8 +30,6 @@ jobs:
# We need to use `${{ ... }}` here to avoid `Argument list too long` error when a PR changes a lot of files.
# (We could also try to use artifact approach, but it's more involved).
# `CodeQL` doesn't identify any security issue here. Also `PR_FILES` is from `get-pr-info.yml` by using an api
# `github.rest.pulls.listFiles`, which is fine.
- name: Write pr_files file
run: |
cat > pr_files.txt << 'EOF'

View File

@ -45,7 +45,6 @@ repo-consistency:
python utils/check_modular_conversion.py
python utils/check_dummies.py
python utils/check_repo.py
python utils/check_init_weights_data.py
python utils/check_inits.py
python utils/check_pipeline_typing.py
python utils/check_config_docstrings.py

View File

@ -1,5 +1,6 @@
gpustat==1.1.1
psutil==6.0.0
psycopg2==2.9.9
torch>=2.4.0
hf_xet
pandas>=1.5.0
pandas>=1.5.0

View File

@ -36,7 +36,6 @@ class BenchmarkConfig:
warmup_iterations: int = 5,
measurement_iterations: int = 20,
gpu_monitoring: bool = True, # NOTE: you may want to disable this at times as we have obsvered it could heavily slow down benchmarks on AMD
continuous_batching: bool = False,
batch_size: int = 1,
sequence_length: int = 128,
num_tokens_to_generate: int = 128,
@ -52,7 +51,6 @@ class BenchmarkConfig:
self.warmup_iterations = warmup_iterations
self.measurement_iterations = measurement_iterations
self.gpu_monitoring = gpu_monitoring
self.continuous_batching = continuous_batching
# Input parameters
self.batch_size = batch_size
self.sequence_length = sequence_length
@ -87,22 +85,6 @@ class BenchmarkConfig:
if is_fa:
logger.warning("Flash attention does not support compile mode. Turning off compile mode.")
self.compile_mode = None
# Handle SDPA backend if not determined by the config (needs to be done before skipping duplicates)
if self.attn_implementation == "sdpa" and self.sdpa_backend is None:
default_backend = "flash_attention" # FIXME: torch has a _cur_sdpa_kernel_backends but it fails
logger.warning(f"No SDPA backend provided, using {default_backend} instead.")
self.sdpa_backend = default_backend
if self.continuous_batching:
if self.attn_implementation == "flex_attention":
logger.error(
"disabling continuous batching because of invalid configuration: flex attention is not supported"
)
self.continuous_batching = False
elif self.attn_implementation == "sdpa" and self.sdpa_backend is not None:
logger.warning(
"when continuous batching is enabled, sdpa_backend must be None because of the attention mask, setting it to None"
)
self.sdpa_backend = "math"
@property
def hash(self) -> str:
@ -118,7 +100,6 @@ class BenchmarkConfig:
attn_code += f"_{self.sdpa_backend}" if self.attn_implementation == "sdpa" else ""
compile_str = f"compiled_{self.compile_mode}" if self.compile_mode is not None else "uncompiled"
kernelize_str = "kernelized" if self.kernelize else "unkernelized"
continuous_batching_str = "cb" if self.continuous_batching else "generate"
sep = "-"
else:
iter_str = f"{self.warmup_iterations} warmup, {self.measurement_iterations} iterations"
@ -128,11 +109,8 @@ class BenchmarkConfig:
attn_code += f" with {self.sdpa_backend} backend" if self.attn_implementation == "sdpa" else ""
compile_str = "compiled" if self.compile_mode is not None else "not compiled"
kernelize_str = "kernelized" if self.kernelize else "not kernelized"
continuous_batching_str = "continuous batching" if self.continuous_batching else "regular generate"
sep = ", "
return sep.join(
[iter_str, gpu_monitor_str, dimensions_str, attn_code, compile_str, kernelize_str, continuous_batching_str]
)
return sep.join([iter_str, gpu_monitor_str, dimensions_str, attn_code, compile_str, kernelize_str])
def to_dict(self) -> dict[str, Any]:
return {
@ -140,7 +118,6 @@ class BenchmarkConfig:
"warmup_iterations": self.warmup_iterations,
"measurement_iterations": self.measurement_iterations,
"gpu_monitoring": self.gpu_monitoring,
"continuous_batching": self.continuous_batching,
"batch_size": self.batch_size,
"sequence_length": self.sequence_length,
"num_tokens_to_generate": self.num_tokens_to_generate,
@ -157,7 +134,6 @@ class BenchmarkConfig:
warmup_iterations=data.get("warmup_iterations", 5),
measurement_iterations=data.get("measurement_iterations", 20),
gpu_monitoring=data.get("gpu_monitoring", False),
continuous_batching=data.get("continuous_batching", False),
batch_size=data.get("batch_size", 1),
sequence_length=data.get("sequence_length", 128),
num_tokens_to_generate=data.get("num_tokens_to_generate", 128),
@ -215,17 +191,15 @@ def get_config_by_level(level: int) -> list[BenchmarkConfig]:
# Usually there is not much to gain by compiling with other modes, but we allow it for level 4
compile_modes = BenchmarkConfig.all_compiled_modes if level >= 4 else [None, "default"]
for cm in compile_modes:
for kernelize_on in {False, KERNELIZATION_AVAILABLE}:
for cb_on in [False, True]:
configs.append(
BenchmarkConfig(
attn_implementation=attn_implementation,
sdpa_backend=sdpa_backend,
compile_mode=cm,
kernelize=kernelize_on,
continuous_batching=cb_on,
)
for kernelize_on in [False, KERNELIZATION_AVAILABLE]:
configs.append(
BenchmarkConfig(
attn_implementation=attn_implementation,
sdpa_backend=sdpa_backend,
compile_mode=cm,
kernelize=kernelize_on,
)
)
return configs
# Otherwise, we add the configs for the given level
if level >= 0:
@ -233,10 +207,8 @@ def get_config_by_level(level: int) -> list[BenchmarkConfig]:
if level >= 1:
configs.append(BenchmarkConfig(attn_implementation="flash_attention_2"))
configs.append(BenchmarkConfig(attn_implementation="eager", compile_mode="default"))
configs.append(BenchmarkConfig(attn_implementation="flash_attention_2", continuous_batching=True))
if level >= 2:
configs.append(BenchmarkConfig(attn_implementation="sdpa", compile_mode="default"))
configs.append(BenchmarkConfig(attn_implementation="flex_attention", compile_mode="default", kernelize=True))
configs.append(BenchmarkConfig(attn_implementation="flash_attention_2", kernelize=True))
configs.append(BenchmarkConfig(attn_implementation="paged|sdpa", continuous_batching=True))
return configs

View File

@ -234,9 +234,8 @@ class BenchmarkRunner:
self.logger.info(f"Running benchmark scenario: {config.name}")
# Quick validation: try one measurement first to see if this scenario works
generate_fn = self.time_generate_batch if config.continuous_batching else self.time_generate
flush_memory()
e2e_latency, token_generation_times, shape_and_decoded_output, gpu_metrics = generate_fn(
e2e_latency, token_generation_times, shape_and_decoded_output, gpu_metrics = self.time_generate(
max_new_tokens=1, gpu_monitor=None
)
if e2e_latency < 0:
@ -246,14 +245,14 @@ class BenchmarkRunner:
# Warmup runs
self.logger.info(f"Warming up with {config.warmup_iterations} iterations...")
for _ in trange(config.warmup_iterations):
_ = generate_fn(max_new_tokens=config.num_tokens_to_generate)
_ = self.time_generate(max_new_tokens=config.num_tokens_to_generate)
self.logger.info("Warmup over.")
# Measurement runs
result = BenchmarkResult()
self.logger.info(f"Benchmarking with {config.measurement_iterations} iterations.")
for _ in trange(config.measurement_iterations):
e2e_latency, token_generation_times, shape_and_decoded_output, gpu_metrics = generate_fn(
e2e_latency, token_generation_times, shape_and_decoded_output, gpu_metrics = self.time_generate(
max_new_tokens=config.num_tokens_to_generate,
gpu_monitor=(GPUMonitor(logger=self.logger) if config.gpu_monitoring else None),
)
@ -275,58 +274,6 @@ class BenchmarkRunner:
"config": config,
}
# TODO: refactor `generate_batch` to handle streaming so we can use it here
def time_generate_batch(
self,
max_new_tokens: int,
gpu_monitor: GPUMonitor | None = None,
) -> tuple[float, list[float], str, GPURawMetrics | None]:
if gpu_monitor is not None:
gpu_monitor.start()
config = GenerationConfig(
max_new_tokens=max_new_tokens,
eos_token_id=self.tokenizer.eos_token_id,
pad_token_id=self.tokenizer.pad_token_id,
do_sample=True,
)
manager = self.model.init_continuous_batching(config)
manager.start()
try:
first_req_results = []
timestamps = []
wall_time_0 = time.perf_counter()
inputs = self.inputs["input_ids"].tolist()
manager.add_requests(inputs, max_new_tokens=max_new_tokens, streaming=True)
first_req_id = None
num_requests = len(inputs)
finished_requests = 0
while finished_requests < num_requests:
# NOTE: I don't like having the extra if stmt here, but hopefully won't degrade perf too much
result = manager.get_result()
if result:
timestamps.append(time.perf_counter() - wall_time_0)
if result.is_finished():
finished_requests += 1
if first_req_id is None:
first_req_id = result.request_id
if result.request_id == first_req_id:
first_req_results.append(result)
else:
if not manager.is_running():
raise RuntimeError("Generation thread exited unexpectedly")
wall_time_1 = time.perf_counter()
gpu_metrics = gpu_monitor.stop_and_collect() if gpu_monitor is not None else None
decoded_output = self.tokenizer.decode(
[res.generated_tokens[0] for res in first_req_results], skip_special_tokens=True
)
shape_and_decoded_output = f"{(1, len(first_req_results))} | {decoded_output}"
e2e_latency = wall_time_1 - wall_time_0
return e2e_latency, timestamps, shape_and_decoded_output, gpu_metrics
except Exception as e:
raise e
finally:
manager.stop()
def time_generate(
self,
max_new_tokens: int,
@ -392,6 +339,12 @@ class BenchmarkRunner:
n_configs = len(benchmark_configs)
for i, config in enumerate(benchmark_configs):
# Handle SDPA backend if not determined by the config (needs to be done before skipping duplicates)
if config.attn_implementation == "sdpa" and config.sdpa_backend is None:
default_backend = "flash_attention" # FIXME: torch has a _cur_sdpa_kernel_backends but it fails
self.logger.warning(f"No SDPA backend provided, using {default_backend} instead.")
config.sdpa_backend = default_backend
# Skip if already run
if config.hash in all_results:
self.logger.info(f"Skipping duplicate config {config.name} for model {model_id} ({i + 1}/{n_configs})")
@ -415,27 +368,21 @@ class BenchmarkRunner:
self.cleanup()
self.save_results(model_id, all_results, timestamp=timestamp)
if len(all_results) < 1:
raise RuntimeError("No benchmark was run succesfully")
if pretty_print_summary:
print()
print("=" * 100)
print(f"Finished benchmarks in {time.perf_counter() - start_time:.2f} seconds")
print(f"Total number of benchmarks: {len(all_results)}")
print("First run metadata:")
first_key = list(all_results.keys())[0]
first_metadata = all_results[first_key]["metadata"].to_dict()
hardware_info = first_metadata.pop("hardware_info")
pretty_print_dict(first_metadata | hardware_info, tabs=1)
if len(all_results) > 0:
print("First run metadata:")
first_key = list(all_results.keys())[0]
first_metadata = all_results[first_key]["metadata"].to_dict()
hardware_info = first_metadata.pop("hardware_info")
pretty_print_dict(first_metadata | hardware_info, tabs=1)
for result in all_results.values():
print("=" * 100)
print(f"Config: {result['config'].infer_name(compact=False)}\n")
result["measurements"].pprint(
batch_size=result["config"].batch_size,
num_generated_tokens=result["config"].num_tokens_to_generate,
tabs=1,
)
result["measurements"].pprint(batch_size=result["config"].batch_size, tabs=1)
print("=" * 100)
return (timestamp, all_results)

View File

@ -36,17 +36,16 @@ def add_unit_to_duration(stats: dict[str, float]) -> dict[str, str]:
return stats
def equalize_lengths_and_collate(stats: dict[str, dict[str, str]]) -> dict[str, str]:
"""Note: This operation is destructive as it will update values in place before returning a new correctly formatted dict"""
def equalize_lengths_and_collate(stats: list[dict[str, str]]) -> list[str]:
keys = ["avg", "std", "min", "med", "max", "p95"]
for key in keys:
max_length = max(len(stat[key]) for stat in stats.values())
for stat in stats.values():
max_length = max(len(stat[key]) for stat in stats)
for stat in stats:
stat[key] = stat[key].ljust(max_length, " ")
return {name: " ".join([f"{key}={stat[key]}" for key in keys]) for name, stat in stats.items()}
return [" ".join([f"{key}={stat[key]}" for key in keys]) for stat in stats]
def pretty_print_dict(data: dict[str, str], tabs: int = 0) -> None:
def pretty_print_dict(data: dict[str, Any], tabs: int = 0) -> None:
max_key_length = max([len(key) for key in data.keys()])
for key, value in data.items():
tabs_str = " " * tabs
@ -142,19 +141,27 @@ class BenchmarkResult:
def get_measured_itl(self) -> list[float]:
return [(dt[-1] - dt[0]) / (len(dt) - 1) for dt in self.token_generation_times if len(dt) > 1]
def get_throughput(self, total_generated_tokens: int) -> list[float]:
return [total_generated_tokens / e2e_latency for e2e_latency in self.e2e_latency]
def get_throughput(self, batch_size: int) -> float:
return [
batch_size * len(dt) / e2e_latency
for e2e_latency, dt in zip(self.e2e_latency, self.token_generation_times)
]
def pprint(self, batch_size: int = 0, num_generated_tokens: int = 0, tabs: int = 0) -> None:
measurements = {
"E2E Latency": add_unit_to_duration(compute_basic_statistics(self.e2e_latency)),
"Time to First Token": add_unit_to_duration(compute_basic_statistics(self.get_measured_ttft())),
}
itl_values = self.get_measured_itl()
if len(itl_values) > 0:
measurements["Inter-Token Latency"] = add_unit_to_duration(compute_basic_statistics(itl_values))
def pprint(self, batch_size: int = 0, tabs: int = 0) -> None:
stats_to_collate = [
add_unit_to_duration(compute_basic_statistics(self.e2e_latency)),
add_unit_to_duration(compute_basic_statistics(self.get_measured_ttft())),
add_unit_to_duration(compute_basic_statistics(self.get_measured_itl())),
]
if batch_size > 0:
throughput_stats = compute_basic_statistics(self.get_throughput(batch_size * num_generated_tokens))
measurements["Throughput"] = {key: f"{value:.2f}tok/s" for key, value in throughput_stats.items()}
dict_to_pprint = equalize_lengths_and_collate(measurements)
throughput_stats = compute_basic_statistics(self.get_throughput(batch_size))
stats_to_collate.append({key: f"{value:.2f}tok/s" for key, value in throughput_stats.items()})
collated_stats = equalize_lengths_and_collate(stats_to_collate)
dict_to_pprint = {
"E2E Latency": collated_stats[0],
"Time to First Token": collated_stats[1],
"Inter-Token Latency": collated_stats[2],
}
if batch_size > 0:
dict_to_pprint["Throughput"] = collated_stats[3]
pretty_print_dict(dict_to_pprint, tabs=tabs)

View File

@ -2,5 +2,6 @@ numpy>=1.21.0
psutil>=5.8.0
gpustat>=1.0.0
torch>=2.0.0
transformers>=4.30.0
datasets>=2.10.0
huggingface_hub>=0.16.0

View File

@ -80,10 +80,6 @@ if __name__ == "__main__":
logger.info(f"Benchmark run UUID: {benchmark_run_uuid}")
logger.info(f"Output directory: {args.output_dir}")
# We cannot compute ITL if we don't have at least two measurements
if any(n <= 1 for n in args.num_tokens_to_generate):
raise ValueError("--num_tokens_to_generate arguments should be larger than 1")
# Error out if one of the arguments is not provided
if len(args.batch_size) * len(args.sequence_length) * len(args.num_tokens_to_generate) == 0:
raise ValueError(

View File

@ -508,16 +508,16 @@ BERT `_init_weights` Methode:
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
module.weight.normal_(mean=0.0, std=self.config.initializer_range)
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.zero_()
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.normal_(mean=0.0, std=self.config.initializer_range)
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.zero_()
module.weight.fill_(1.0)
module.bias.data.zero_()
module.weight.data.fill_(1.0)
```
Sie können weitere benutzerdefinierte Schemata verwenden, wenn Sie eine spezielle Initialisierung für einige Module benötigen. Zum Beispiel in
@ -533,9 +533,9 @@ def _init_weights(self, module):
module.project_hid._is_hf_initialized = True
module.project_q._is_hf_initialized = True
elif isinstance(module, nn.Linear):
module.weight.normal_(mean=0.0, std=self.config.initializer_range)
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.zero_()
module.bias.data.zero_()
```
Das Flag `_is_hf_initialized` wird intern verwendet, um sicherzustellen, dass wir ein Submodul nur einmal initialisieren. Wenn Sie es auf

View File

@ -314,16 +314,16 @@ Random initialization occurs in the `_init_weights` method of `BrandNewLlamaPreT
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
module.weight.normal_(mean=0.0, std=self.config.initializer_range)
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.zero_()
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.normal_(mean=0.0, std=self.config.initializer_range)
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.zero_()
module.weight.fill_(1.0)
module.bias.data.zero_()
module.weight.data.fill_(1.0)
```
The initialization scheme can look different if you need to adapt it to your model. For example, [`Wav2Vec2ForPreTraining`] initializes [nn.Linear](https://pytorch.org/docs/stable/generated/torch.nn.Linear.html) in its last two linear layers.
@ -339,9 +339,9 @@ def _init_weights(self, module):
module.project_hid._is_hf_initialized = True
module.project_q._is_hf_initialized = True
elif isinstance(module, nn.Linear):
module.weight.normal_(mean=0.0, std=self.config.initializer_range)
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.zero_()
module.bias.data.zero_()
```
### Convert checkpoints to Transformers

View File

@ -169,9 +169,6 @@ print("Pooled output shape:", pooled_output.shape)
[[autodoc]] DINOv3ViTModel
- forward
## DINOv3ViTBackbone
[[autodoc]] DINOv3ViTBackbone
## DINOv3ConvNextModel
[[autodoc]] DINOv3ConvNextModel

View File

@ -159,7 +159,7 @@ conversation3 = [
conversations = [conversation1, conversation2, conversation3]
inputs = processor.apply_chat_template(
conversations,
conversation,
add_generation_prompt=True,
tokenize=True,
return_dict=True,

View File

@ -149,7 +149,7 @@ The example below packs `up_proj` and `gate_proj` into a single `gate_up_proj` m
```python
class Llama4TextExperts(nn.Module):
...
self.gate_up_proj = nn.Parameter(torch.zeros(self.num_experts, self.hidden_size, 2 * self.expert_dim))
self.gate_up_proj = nn.Parameter(torch.empty(self.num_experts, self.hidden_size, 2 * self.expert_dim))
```
Batch matrix multiplication can be used in the `forward` pass to compute the output of the `gate_up_proj` module.

View File

@ -170,7 +170,7 @@ Per quanto riguarda la classe `TrainingArguments`:
- L'argomento `evaluate_during_training` di `TrainingArguments` è deprecato a favore di `eval_strategy`.
Per quanto riguarda il modello Transfo-XL:
- L'attributo di configurazione `tie_weight` di Transfo-XL diventa `tie_word_embeddings`.
- L'attributo di configurazione `tie_weight` di Transfo-XL diventa `tie_words_embeddings`.
- Il metodo di modellazione `reset_length` di Transfo-XL diventa `reset_memory_length`.
Per quanto riguarda le pipeline:

View File

@ -406,16 +406,16 @@ model = BrandNewBertModel(BrandNewBertConfig())
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
module.weight.normal_(mean=0.0, std=self.config.initializer_range)
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.zero_()
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.normal_(mean=0.0, std=self.config.initializer_range)
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.zero_()
module.weight.fill_(1.0)
module.bias.data.zero_()
module.weight.data.fill_(1.0)
```
特定のモジュールに特別な初期化が必要な場合、カスタムスキームをさらに持つことができます。たとえば、
@ -431,9 +431,9 @@ def _init_weights(self, module):
module.project_hid._is_hf_initialized = True
module.project_q._is_hf_initialized = True
elif isinstance(module, nn.Linear):
module.weight.normal_(mean=0.0, std=self.config.initializer_range)
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.zero_()
module.bias.data.zero_()
```
`_is_hf_initialized`フラグは、サブモジュールを一度だけ初期化することを確実にするために内部で使用されます。

View File

@ -348,16 +348,16 @@ model = BrandNewBertModel(BrandNewBertConfig())
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
module.weight.normal_(mean=0.0, std=self.config.initializer_range)
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.zero_()
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.normal_(mean=0.0, std=self.config.initializer_range)
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.zero_()
module.weight.fill_(1.0)
module.bias.data.zero_()
module.weight.data.fill_(1.0)
```
몇 가지 모듈에 대해 특별한 초기화가 필요한 경우 사용자 정의 방식을 사용할 수도 있습니다. 예를 들어, `Wav2Vec2ForPreTraining`에서 마지막 두 개의 선형 레이어는 일반적인 PyTorch `nn.Linear`의 초기화를 가져야 하지만, 다른 모든 레이어는 위와 같은 초기화를 사용해야 합니다. 이는 다음과 같이 코드화됩니다:
@ -371,9 +371,9 @@ def _init_weights(self, module):
module.project_hid._is_hf_initialized = True
module.project_q._is_hf_initialized = True
elif isinstance(module, nn.Linear):
module.weight.normal_(mean=0.0, std=self.config.initializer_range)
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.zero_()
module.bias.data.zero_()
```
`_is_hf_initialized` 플래그는 서브모듈을 한 번만 초기화하도록 내부적으로 사용됩니다. `module.project_q``module.project_hid`에 대해 `True`로 설정함으로써, 우리가 수행한 사용자 정의 초기화가 이후에 덮어쓰이지 않도록 합니다. 즉, `_init_weights` 함수가 이들에게 적용되지 않습니다.

View File

@ -152,7 +152,7 @@ class ParallelInterface(MutableMapping):
```python
class Llama4TextExperts(nn.Module):
...
self.gate_up_proj = nn.Parameter(torch.zeros(self.num_experts, self.hidden_size, 2 * self.expert_dim))
self.gate_up_proj = nn.Parameter(torch.empty(self.num_experts, self.hidden_size, 2 * self.expert_dim))
```
배치 행렬 곱셈을 `forward` 패스에서 사용하여 `gate_up_proj` 모듈의 출력을 계산할 수 있습니다.

View File

@ -502,10 +502,16 @@ class DummyBertLMPredictionHead(nn.Module):
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=True)
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
self.decoder.bias = self.bias
def _tie_weights(self):
self.decoder.bias = self.bias
def forward(self, hidden_states):
hidden_states = self.transform(hidden_states)
hidden_states = self.decoder(hidden_states)
@ -530,18 +536,18 @@ class DummyBertPreTrainedModel(PreTrainedModel):
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
module.weight.normal_(mean=0.0, std=self.config.initializer_range)
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.zero_()
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.normal_(mean=0.0, std=self.config.initializer_range)
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.zero_()
module.weight.fill_(1.0)
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, DummyBertLMPredictionHead):
module.bias.zero_()
module.bias.data.zero_()
@auto_docstring(

View File

@ -265,7 +265,7 @@ class MyNewModel2PreTrainedModel(PreTrainedModel):
# We initialize with 0s to be 1 centered as the RMSNorm here does (1 + weight)
if "RMSNorm" in module.__class__.__name__:
module.weight.zero_()
module.weight.data.zero_()
class MyNewModel2ForSequenceClassification(GenericForSequenceClassification, MyNewModel2PreTrainedModel):

View File

@ -104,9 +104,9 @@ class NewTaskModelPreTrainedModel(PreTrainedModel):
std = getattr(self.config, "initializer_range", self.config.get_text_config().initializer_range)
if isinstance(module, nn.Linear):
module.weight.normal_(mean=0.0, std=std)
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.zero_()
module.bias.data.zero_()
def token_type_ids_mask_function(
@ -428,7 +428,7 @@ class NewTaskModelForNewTask(NewTaskModelPreTrainedModel, GenerationMixin):
"^multi_modal_projector": "model.multi_modal_projector",
"^language_model.lm_head": "lm_head",
}
_tied_weights_keys = {"lm_head.weight": "model.language_model.embed_tokens.weight"}
_tied_weights_keys = ["lm_head.weight"]
main_input_name: ClassVar[str] = "doc_input_ids" # transformers-related
def __init__(self, config):
@ -440,15 +440,7 @@ class NewTaskModelForNewTask(NewTaskModelPreTrainedModel, GenerationMixin):
self.custom_text_proj = nn.Linear(self.config.text_config.hidden_size, self.embedding_dim)
if self.language_model._tied_weights_keys is not None:
prefix = "model.language_model."
prefixed_mapping = {
f"{prefix}{target}": f"{prefix}{source}"
for target, source in self.language_model._tied_weights_keys.items()
}
if isinstance(self._tied_weights_keys, dict):
self._tied_weights_keys.update(prefixed_mapping)
else:
self._tied_weights_keys = prefixed_mapping
self._tied_weights_keys = [f"model.language_model.{k}" for k in self.language_model._tied_weights_keys]
self.post_init()
def get_input_embeddings(self):

View File

@ -505,10 +505,16 @@ class RobertaLMPredictionHead(nn.Module):
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=True)
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
self.decoder.bias = self.bias
def _tie_weights(self):
self.decoder.bias = self.bias
def forward(self, hidden_states):
hidden_states = self.transform(hidden_states)
hidden_states = self.decoder(hidden_states)
@ -533,18 +539,18 @@ class RobertaPreTrainedModel(PreTrainedModel):
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
module.weight.normal_(mean=0.0, std=self.config.initializer_range)
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.zero_()
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.normal_(mean=0.0, std=self.config.initializer_range)
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.zero_()
module.weight.fill_(1.0)
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, RobertaLMPredictionHead):
module.bias.zero_()
module.bias.data.zero_()
@auto_docstring(

View File

@ -846,11 +846,11 @@ class TestDetrPreTrainedModel(PreTrainedModel):
nn.init.xavier_uniform_(module.output_proj.weight.data)
nn.init.constant_(module.output_proj.bias.data, 0.0)
elif isinstance(module, (nn.Linear, nn.Conv2d, nn.BatchNorm2d)):
module.weight.normal_(mean=0.0, std=std)
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.zero_()
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.normal_(mean=0.0, std=std)
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
if hasattr(module, "reference_points") and not self.config.two_stage:

View File

@ -19,15 +19,7 @@ class NewTaskModelForNewTask(PaliGemmaForConditionalGeneration):
self.custom_text_proj = nn.Linear(self.config.text_config.hidden_size, self.embedding_dim)
if self.language_model._tied_weights_keys is not None:
prefix = "model.language_model."
prefixed_mapping = {
f"{prefix}{target}": f"{prefix}{source}"
for target, source in self.language_model._tied_weights_keys.items()
}
if isinstance(self._tied_weights_keys, dict):
self._tied_weights_keys.update(prefixed_mapping)
else:
self._tied_weights_keys = prefixed_mapping
self._tied_weights_keys = [f"model.language_model.{k}" for k in self.language_model._tied_weights_keys]
self.post_init()

View File

@ -127,7 +127,7 @@ def parse_args():
parser.add_argument(
"--use_slow_tokenizer",
action="store_true",
help="If passed, will use a slow tokenizer (not backed by the Hugging Face Tokenizers library).",
help="If passed, will use a slow tokenizer (not backed by the 🤗 Tokenizers library).",
)
parser.add_argument(
"--per_device_train_batch_size",

View File

@ -132,7 +132,7 @@ def parse_args():
parser.add_argument(
"--use_slow_tokenizer",
action="store_true",
help="If passed, will use a slow tokenizer (not backed by the Tokenizers library).",
help="If passed, will use a slow tokenizer (not backed by the 🤗 Tokenizers library).",
)
parser.add_argument(
"--per_device_train_batch_size",

View File

@ -130,7 +130,7 @@ def parse_args():
parser.add_argument(
"--use_slow_tokenizer",
action="store_true",
help="If passed, will use a slow tokenizer (not backed by the Hugging Face Tokenizers library).",
help="If passed, will use a slow tokenizer (not backed by the 🤗 Tokenizers library).",
)
parser.add_argument(
"--per_device_train_batch_size",

View File

@ -128,7 +128,7 @@ def parse_args():
parser.add_argument(
"--use_slow_tokenizer",
action="store_true",
help="If passed, will use a slow tokenizer (not backed by the HuggingFace Tokenizers library).",
help="If passed, will use a slow tokenizer (not backed by the 🤗 Tokenizers library).",
)
parser.add_argument(
"--per_device_train_batch_size",

View File

@ -151,7 +151,7 @@ def parse_args():
parser.add_argument(
"--use_slow_tokenizer",
action="store_true",
help="If passed, will use a slow tokenizer (not backed by the Hugging Face Tokenizers library).",
help="If passed, will use a slow tokenizer (not backed by the 🤗 Tokenizers library).",
)
parser.add_argument(
"--per_device_train_batch_size",

View File

@ -223,7 +223,7 @@ def parse_args():
parser.add_argument(
"--use_slow_tokenizer",
action="store_true",
help="If passed, will use a slow tokenizer (not backed by the Hugging Face Tokenizers library).",
help="If passed, will use a slow tokenizer (not backed by the 🤗 Tokenizers library).",
)
parser.add_argument(
"--per_device_train_batch_size",

View File

@ -120,7 +120,7 @@ def parse_args():
parser.add_argument(
"--use_slow_tokenizer",
action="store_true",
help="If passed, will use a slow tokenizer (not backed by the Hugging Face Tokenizers library).",
help="If passed, will use a slow tokenizer (not backed by the 🤗 Tokenizers library).",
)
parser.add_argument(
"--per_device_train_batch_size",

View File

@ -212,7 +212,7 @@ def parse_args():
parser.add_argument(
"--use_slow_tokenizer",
action="store_true",
help="If passed, will use a slow tokenizer (not backed by the Hugging Face Tokenizers library).",
help="If passed, will use a slow tokenizer (not backed by the 🤗 Tokenizers library).",
)
parser.add_argument(
"--per_device_train_batch_size",

View File

@ -138,7 +138,7 @@ _deps = [
"pyyaml>=5.1",
"pydantic>=2",
"pytest>=7.2.0",
"pytest-asyncio>=1.2.0",
"pytest-asyncio",
"pytest-rerunfailures<16.0",
"pytest-timeout",
"pytest-xdist",

View File

@ -876,7 +876,7 @@ class PreTrainedConfig(PushToHubMixin):
if hasattr(self, "quantization_config"):
serializable_config_dict["quantization_config"] = (
self.quantization_config.to_dict()
if not isinstance(self.quantization_config, dict) and self.quantization_config is not None
if not isinstance(self.quantization_config, dict)
else self.quantization_config
)
self.dict_dtype_to_str(serializable_config_dict)
@ -910,7 +910,7 @@ class PreTrainedConfig(PushToHubMixin):
if hasattr(self, "quantization_config"):
output["quantization_config"] = (
self.quantization_config.to_dict()
if not isinstance(self.quantization_config, dict) and self.quantization_config is not None
if not isinstance(self.quantization_config, dict)
else self.quantization_config
)
self.dict_dtype_to_str(output)

View File

@ -1,136 +0,0 @@
# coding=utf-8
# Copyright (C) 2025 the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from copy import deepcopy
from .core_model_loading import Concatenate, MergeModulelist, WeightConverter
from .utils import is_torch_available
if is_torch_available():
import torch
def _build_checkpoint_conversion_mapping():
mapping = {
"mixtral": [
WeightConverter(
source_keys=[
"block_sparse_moe.experts.*.w1.weight",
"block_sparse_moe.experts.*.w3.weight",
], # you give me a list of 2 keys, I collect a list of a list of tensors
target_keys="mlp.experts.gate_up_proj", # target key gets the list of two tensors
operations=[
MergeModulelist(
dim=0
), # each process has two lists of tensors, we cat each list. -> we end up with 2 tensors
Concatenate(dim=1), # each process has 2 tensors, gate and up, we concat them into gate_up
], # we want the loading to add this shard operation here. Though we can't shard after concats and merge, needs to be first
),
WeightConverter(
source_keys=[
"block_sparse_moe.experts.*.w2.weight",
],
target_keys="mlp.experts.down_proj", # target key gets the list of two tensors
operations=[
MergeModulelist(
dim=0
), # each process has two lists of tensors, we cat each list. -> we end up with 2 tensors
], # we want the loading to add this shard operation here. Though we can't shard after concats and merge, needs to be first
),
# WeightConverter(
# ["self_attn.q_proj", "self_attn.k_proj", "self_attn.v_proj"],
# "self_attn.qkv_proj",
# operations=[Concatenate(dim=0)], # more like stack?
# ),
WeightConverter("*.block_sparse_moe.", "*.mlp."),
],
"qwen2_moe": [
WeightConverter(
source_keys=[
"mlp.experts.*.gate_proj.weight",
"mlp.experts.*.up_proj.weight",
],
target_keys="mlp.experts.gate_up_proj",
operations=[MergeModulelist(dim=0), Concatenate(dim=1)],
),
WeightConverter(
source_keys=["mlp.experts.*.down_proj.weight"],
target_keys="mlp.experts.down_proj",
operations=[MergeModulelist(dim=0)],
),
],
"legacy": [
WeightConverter(
source_keys="LayerNorm.gamma",
target_keys="LayerNorm.weight",
),
WeightConverter(
source_keys="LayerNorm.beta",
target_keys="LayerNorm.bias",
),
],
}
if hasattr(torch.nn.utils.parametrizations, "weight_norm"):
mapping["legacy"] += [
WeightConverter(
source_keys="weight_g",
target_keys="parametrizations.weight.original0",
),
WeightConverter(
source_keys="weight_v",
target_keys="parametrizations.weight.original1",
),
]
else:
mapping["legacy"] += [
WeightConverter(
source_keys="parametrizations.weight.original0",
target_keys="weight_g",
),
WeightConverter(
source_keys="parametrizations.weight.original1",
target_keys="weight_v",
),
]
mapping["phimoe"] = mapping["mixtral"].copy()
mapping["deepseek_v2"] = mapping["qwen2_moe"].copy()
mapping["deepseek_v3"] = mapping["qwen2_moe"].copy()
mapping["dot1"] = mapping["qwen2_moe"].copy()
mapping["ernie_4_5_moe"] = mapping["qwen2_moe"].copy()
mapping["glm4_moe"] = mapping["qwen2_moe"].copy()
mapping["glm4v_moe"] = mapping["qwen2_moe"].copy()
mapping["jamba"] = mapping["qwen2_moe"].copy()
mapping["lfm2_moe"] = mapping["mixtral"].copy()
mapping["long_cat_flash"] = mapping["qwen2_moe"].copy()
mapping["qwen3_moe"] = mapping["qwen2_moe"].copy()
mapping["qwen3_omni_moe"] = mapping["qwen2_moe"].copy()
mapping["qwen3_next"] = mapping["qwen2_moe"].copy()
mapping["qwen3_vl_moe"] = mapping["qwen2_moe"].copy()
mapping["hunyuan_v1_moe"] = mapping["qwen2_moe"].copy()
mapping["minimax"] = mapping["mixtral"].copy()
return mapping
_checkpoint_conversion_mapping_cache = None
def get_checkpoint_conversion_mapping(model_type):
global _checkpoint_conversion_mapping_cache
_checkpoint_conversion_mapping_cache = _build_checkpoint_conversion_mapping()
globals()["_checkpoint_conversion_mapping"] = _checkpoint_conversion_mapping_cache
return deepcopy(_checkpoint_conversion_mapping_cache.get(model_type, None))

View File

@ -1,733 +0,0 @@
# coding=utf-8
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Core helpers for loading model checkpoints."""
from __future__ import annotations
import itertools
import os
import re
from abc import abstractmethod
from collections import defaultdict
from collections.abc import MutableMapping, MutableSet, Sequence
from concurrent.futures import Future, ThreadPoolExecutor
from contextlib import contextmanager
from dataclasses import dataclass, field
from functools import partial
from types import MethodType
from typing import TYPE_CHECKING, Any, Optional, Union
import torch
from .integrations.tensor_parallel import ALL_PARALLEL_STYLES, DTensor, Replicate, TensorParallelLayer
from .utils import is_torch_greater_or_equal, logging
_torch_distributed_available = torch.distributed.is_available()
_is_dtensor_available = _torch_distributed_available and is_torch_greater_or_equal("2.5")
if _is_dtensor_available:
from torch.distributed.tensor import DTensor
if TYPE_CHECKING:
from .modeling_utils import PreTrainedModel
from .quantizers import HfQuantizer
logger = logging.get_logger(__name__)
str_to_torch_dtype = {
"BOOL": torch.bool,
"U8": torch.uint8,
"I8": torch.int8,
"I16": torch.int16,
"F16": torch.float16,
"BF16": torch.bfloat16,
"I32": torch.int32,
"F32": torch.float32,
"F64": torch.float64,
"I64": torch.int64,
"F8_E4M3": torch.float8_e4m3fn,
"F8_E5M2": torch.float8_e5m2,
}
logger = logging.get_logger(__name__)
def _glob_to_regex_src(glob: str, *, digits_only: bool = True) -> str:
"""
Convert a glob with '*' into a regex *source* string. We don't use `glob.translate`
'*' matches (\\d+) if digits_only else (.+). Inner groups are non-capturing.
"""
star = r"(\d+)" if digits_only else r"(.+)"
return glob.replace(r"\*", star)
def build_glob_alt(
globs: list[str],
) -> tuple[re.Pattern, dict[str, str]]:
r"""
Build one compiled regex alternation with a named group per glob. This allows to run a single
re.match and get the correct group name to finally get which pattern matched.
Returns (compiled_regex, name->glob map).
Example:
```py
>>> reg, map_ = build_glob_alt(["mlp.*.w1", "mlp.*.w2"])
>>> print(reg)
(re.compile(r'(?P<g0>.*mlp\.(\d+)\.w1)|(?P<g1>.*mlp\.(\d+)\.w2)', re.UNICODE),
>>> print(map_)
{'g0': 'mlp.*.w1', 'g1': 'mlp.*.w2'})
>>> match_ = reg.match("model.layers.0.mlp.0.w1.weight")
>>> print(match_.lastgroup)
'g0'
>>> print(map_[match_.lastgroup])
mlp.*.w1
```
"""
name_map: dict[str, str] = {}
parts: list[str] = []
for i, g in enumerate(globs):
name = f"g{i}"
name_map[name] = g
pat_src = _glob_to_regex_src(g)
prefix_src = ""
if pat_src.startswith("*"):
prefix_src = "."
elif not pat_src.startswith(r"\^") and not pat_src.startswith(r".*"):
prefix_src = ".*"
parts.append(f"(?P<{name}>{prefix_src}{pat_src})")
alt_src = "|".join(parts).replace("\\^", "^").replace("\\.", r"\.")
try:
reg = re.compile(alt_src)
except re.error as e:
logger.error(f"Error compiling regex for alternation: {alt_src}")
raise e
return reg, name_map
def match_glob(key: str, alt: re.Pattern, name_map: dict[str, str]) -> Optional[str]:
"""
Match the key against the alternation; return the original glob string that matched.
"""
m = alt.match(key)
if not m:
return None
return name_map.get(m.lastgroup)
class ConversionOps:
"""Base class for weight conversion operations."""
# The inverse operation class, will be used when saving the checkpoint
reverse_op: type[ConversionOps]
@abstractmethod
def convert(
self, value: Union[dict[str, torch.Tensor], Sequence[torch.Tensor], torch.Tensor], *args, **kwargs
) -> torch.Tensor:
raise NotImplementedError
class Chunk(ConversionOps):
"""Split a tensor along ``dim`` into equally sized chunks or using explicit ``sizes``."""
reverse_op: type[ConversionOps]
def __init__(self, dim: int = 0, chunks: Optional[int] = None, sizes: Optional[Sequence[int]] = None):
if chunks is None and sizes is None:
raise ValueError("`chunks` or `sizes` must be provided for Chunk operations.")
if chunks is not None and chunks <= 0:
raise ValueError("`chunks` must be a strictly positive integer.")
self.dim = dim
self.chunks = chunks
self.sizes = list(sizes) if sizes is not None else None
self.reverse_op = Concatenate
def convert(self, value: torch.Tensor, *args, **kwargs) -> list[torch.Tensor]:
if not isinstance(value, torch.Tensor):
raise TypeError("Chunk expects a torch.Tensor as input.")
if self.sizes is not None:
return list(torch.split(value, self.sizes, dim=self.dim))
return list(torch.chunk(value, self.chunks, dim=self.dim))
class Concatenate(ConversionOps):
"""Concatenate tensors along `dim` using a reusable buffer."""
reverse_op: type[ConversionOps]
def __init__(self, dim: int = 0):
self.dim = dim
self.reverse_op = Chunk
@torch.no_grad
def convert(self, value: Sequence[torch.Tensor], *args, **kwargs) -> torch.Tensor:
if isinstance(value[0], list):
value = [v[0] for v in value]
tensors = value
if not tensors:
raise ValueError("Fuse requires at least one tensor to concatenate.")
return torch.cat(tuple(tensors), dim=self.dim)
class MergeModulelist(Concatenate):
"""
Merge a list of tensors into a single tensor along the first dimension.
We explicitly define this because for EP or TP you want to make sure you know what you are doing!
"""
def __init__(self, dim: int = 0):
super().__init__(dim=dim)
self.reverse_op = SplitModulelist
@torch.no_grad
def convert(self, value: Sequence[torch.Tensor], *args, **kwargs) -> list[torch.Tensor]:
merged = []
for group in value:
if not isinstance(group, Sequence) or len(group) == 0:
raise ValueError("MergeModulelist requires non-empty sub-sequences.")
group = [k for k in group if k.ndim]
merged.append(torch.stack(group, dim=self.dim))
return merged
class SplitModulelist(ConversionOps):
"""Inverse of :class:`MergeModulelist` using explicit split sizes per group."""
def __init__(self, sizes: Sequence[Sequence[int]], dim: int = 0):
if not isinstance(sizes, Sequence) or not all(isinstance(sub, Sequence) and sub for sub in sizes):
raise ValueError("`sizes` must be a sequence of non-empty sequences of integers.")
self.sizes = [list(sub) for sub in sizes]
self.dim = dim
self.reverse_op = MergeModulelist
@torch.no_grad
def convert(self, value: Sequence[torch.Tensor], *, context: dict[str, Any]) -> list[list[torch.Tensor]]:
if not isinstance(value, Sequence):
raise TypeError("SplitModulelist expects a sequence of tensors.")
if len(value) != len(self.sizes):
raise ValueError("Number of tensors does not match the provided split specifications.")
result: list[list[torch.Tensor]] = []
for tensor, split_sizes in zip(value, self.sizes):
if not isinstance(tensor, torch.Tensor):
raise TypeError("SplitModulelist can only split torch.Tensor instances.")
splits = torch.split(tensor, split_sizes, dim=self.dim)
result.append(list(splits))
return result
class PermuteForRope(ConversionOps):
"""
Applies the permutation required to convert complex RoPE weights to the split sin/cos format.
"""
def __init__(self):
pass
def _apply(self, tensor: torch.Tensor) -> torch.Tensor:
dim1, dim2 = tensor.shape
n_heads = self.config.getattr("num_attention_heads", 1)
tensor = tensor.view(n_heads, dim1 // n_heads // 2, 2, dim2)
tensor = tensor.transpose(1, 2).reshape(dim1, dim2)
return tensor
@torch.no_grad
def convert(
self, value: Union[dict[str, torch.Tensor], Sequence[torch.Tensor], torch.Tensor], config
) -> Union[dict[str, torch.Tensor], list[torch.Tensor], torch.Tensor]:
self.config = config
out = [[self._apply(x) for x in inner] if isinstance(inner, list) else self._apply(inner) for inner in value]
return out
@dataclass(slots=True)
class WeightConverter:
r"""
A weight convert that acts on a pattern of source keys.
The keys need to be collected based on the target keys.
With wild card, glob patterns are matched, so you have to be detailed with what to match. If you match:
`model.layers.*.experts.*` -> it will act on all of them
{"model.layers.*.experts.*": []}
but
`experts.*.mlp` will be layer specific.
{"model.layers.1.experts.*": [], }
- source_keys: str | list[str] (wildcards '*' match digits)
- target_keys: str | list[str] | None
- distributed_operation / operations / quantization_operations are ALWAYS lists.
TODO: for BNB we need to collect model.weight.quant_state_keys
"""
source_keys: Union[str, list[str]]
target_keys: Optional[Union[str, list[str]]] = None
operations: list[ConversionOps] = field(default_factory=list, repr=False)
distributed_operation: Optional[TensorParallelLayer] = None
quantization_operation: Optional[ConversionOps] = None
def __post_init__(self):
if not isinstance(self.source_keys, list):
self.source_keys = [self.source_keys]
targets_were_none = False
if not isinstance(self.target_keys, list):
if self.target_keys is None:
self.target_keys = list(self.source_keys)
targets_were_none = True
else:
self.target_keys = [self.target_keys]
if not targets_were_none and bool(len(self.source_keys) - 1) + bool(len(self.target_keys) - 1) >= 2:
raise ValueError(
f"source keys={self.source_keys}, target_keys={self.target_keys} but you can only have one to many, one to one or many to one."
)
@dataclass(slots=True)
class ConversionEntry:
weight_converter: WeightConverter
collected_tensors: dict = field(default_factory=lambda: defaultdict(dict))
GLOBAL_WORKERS = min(16, (os.cpu_count() or 8) * 2) # NVMe: 8-16; HDD/NFS: 2-4
# Factory function to create LoadedParameter subclasses dynamically
def get_loaded_parameter_class(base_cls):
"""
base_cls: an nn.Parameter subclass (or nn.Parameter) or a Tensor
Returns a new class that combines the base_cls with LoadedParameterMixin
"""
class LoadedParam(base_cls):
_inplace_methods = [
"add_",
"mul_",
"clamp_",
"zero_",
"fill_",
"normal_",
"uniform_",
"copy_",
"erfinv_",
"log_",
"__getitem__",
"neg_",
"exp_",
"sub_",
]
def __new__(cls, from_existing, **kwargs):
if isinstance(from_existing, torch.nn.Parameter):
inst = super().__new__(cls, from_existing.data, from_existing.requires_grad, **from_existing.__dict__)
else:
inst = super().__new__(cls, from_existing)
# we store the original object to get it back later on
inst._original = from_existing
# Explicitly override all in-place methods per instance
for method_name in inst._inplace_methods:
setattr(inst, method_name, MethodType(inst._skip, inst))
return inst
def _skip(self, *args, **kwargs):
"""Helper to skip in-place operations."""
return self
def __repr__(self):
return f"LoadedParameter(data={self.data})"
@property
def data(self):
return super().data
@data.setter
def data(self, new):
pass
def __lt__(self, other):
return torch.Tensor.__lt__(self, other)
def __le__(self, other):
return torch.Tensor.__le__(self, other)
def __gt__(self, other):
return torch.Tensor.__gt__(self, other)
def __ge__(self, other):
return torch.Tensor.__ge__(self, other)
def __eq__(self, other):
return torch.Tensor.__eq__(self, other)
def __ne__(self, other):
return torch.Tensor.__ne__(self, other)
def __iadd__(self, *args, **kwargs):
return self
def __isub__(self, *args, **kwargs):
return self
def __imul__(self, *args, **kwargs):
return self
def __imatmul__(self, *args, **kwargs):
return self
def __itruediv__(self, *args, **kwargs):
return self
def __ifloordiv__(self, *args, **kwargs):
return self
def __imod__(self, *args, **kwargs):
return self
def __ipow__(self, *args, **kwargs):
return self
def __iand__(self, *args, **kwargs):
return self
def __ior__(self, *args, **kwargs):
return self
def __ixor__(self, *args, **kwargs):
return self
def __ilshift__(self, *args, **kwargs):
return self
def __irshift__(self, *args, **kwargs):
return self
return LoadedParam
def _materialize_copy(tensor, dtype=None):
tensor = tensor[...]
if dtype is not None:
tensor = tensor.to(dtype)
return tensor
def spawn_materialize(thread_pool, tensor, dtype=None) -> Future:
def _job():
return _materialize_copy(tensor, dtype)
return thread_pool.submit(_job)
def spawn_tp_materialize(thread_pool, tensor, sharding_method, tensor_idx, dtype=None) -> Future:
def _job():
return sharding_method.shard_tensor(tensor, param_casting_dtype=dtype, tensor_idx=tensor_idx)[0]
return thread_pool.submit(_job)
def dot_natural_key(s: str):
parts = s.split(".")
for i, p in enumerate(parts):
# whole-segment digits -> int; otherwise leave as str
if p.isdigit():
parts[i] = int(p)
return parts
@contextmanager
def log_to_misc(
layer_name: str,
misc: MutableMapping[str, str],
extras: Any = None,
op: Union[list[ConversionOps], ConversionOps, None] = None,
):
# A simple helper to handle errors with contextual messages.
try:
yield
except Exception as e:
def _format_op_name(curr_op: Union[list[ConversionOps], ConversionOps, None]) -> Optional[str]:
if curr_op is None:
return None
if isinstance(curr_op, (list, tuple, set)):
names = [o.__class__.__name__ for o in curr_op if o is not None]
if not names:
return None
return ", ".join(names)
return curr_op.__class__.__name__
op_name = _format_op_name(op)
if isinstance(extras, tuple) and len(extras) == 2:
values, target_keys = extras
descriptor = f"{op_name} " if op_name else ""
misc[layer_name] = (
f"{e}\nError: {descriptor}on tensors destined for {target_keys}. Ckpt contains: {len(values[0])}"
)
elif isinstance(extras, str):
suffix = f" via {op_name}" if op_name else ""
misc[layer_name] = f"{e}\nError{suffix} when processing parameter {extras}"
elif extras is None and op_name:
misc[layer_name] = f"{op_name}: {e}"
else:
misc[layer_name] = f"{extras} |Error: {e}"
raise SkipLayer()
def set_param_for_module(
model: PreTrainedModel,
layer_name: str,
param_value: torch.Tensor,
mismatch_keys: MutableSet[tuple[str, torch.Size, torch.Size]],
missing_keys: MutableSet[str],
misc: MutableMapping[str, Any],
distributed_operation: Optional[TensorParallelLayer],
):
with log_to_misc(layer_name, misc, layer_name):
module_path, _, param_name = layer_name.rpartition(".")
module_obj = model.get_submodule(module_path) if module_path else model
param_value = param_value[0] if isinstance(param_value, list) else param_value[...]
ref = getattr(module_obj, param_name)
use_dtensor = hasattr(distributed_operation, "use_dtensor") and distributed_operation.use_dtensor
if not isinstance(param_value, torch.nn.Parameter):
if distributed_operation is not None:
param_value = DTensor.from_local(
param_value,
distributed_operation.device_mesh,
getattr(distributed_operation, "shard", Replicate()),
run_check=False,
shape=ref.size(),
stride=ref.stride(),
)
if not use_dtensor:
# we convert to local
param_value = param_value.to_local()
if param_name not in module_obj._buffers:
param_value = torch.nn.Parameter(param_value, requires_grad=param_value.is_floating_point())
param_value = get_loaded_parameter_class(param_value.__class__)(from_existing=param_value)
# Remove from missing keys (it's either mismatched, or all good)
missing_keys.discard(layer_name)
if ref is not None and ref.shape != param_value.shape:
mismatch_keys.add((layer_name, param_value.shape, ref.shape))
module_obj.param_name._is_hf_initialized = False # Needs to be initialized
else:
param_value._is_hf_initialized = True # super important otherwise _init_weight re-initi if bias is missing
setattr(module_obj, param_name, param_value)
class SkipLayer(Exception):
"""Control-flow sentinel: abort processing of the current layer only."""
pass
def convert_and_load_state_dict_in_model(
model: PreTrainedModel,
state_dict: dict[str, Any],
weight_mapping: dict[str, WeightConverter] | None,
tp_plan: dict[str, str] | None,
quantizer: HfQuantizer | None,
dtype: torch.dtype | None = None,
device_map: dict | None = None,
dtype_plan: dict | None = None,
device_mesh: torch.distributed.device_mesh.DeviceMesh | None = None,
):
"""
Convert a state dict according to a weight mapping (one WeightConverter per glob pattern),
collecting tensors per *layer instance* (the concrete indices captured from '*').
"""
prefix = model.base_model_prefix
tp_plan = tp_plan or {} # {glob_pattern: plan_obj_or_key}
device_map = device_map or {} # {exact_target_key: device}
dtype_plan = dtype_plan or {} # {glob_pattern: dtype}
weight_mapping = weight_mapping or {} # {glob_pattern: WeightConverter}
meta_model_state_dict = model.state_dict()
missing_keys = set(meta_model_state_dict.keys())
misc = {}
mismatch_keys = set()
unexpected_keys = set()
# Global thread_pool
thread_pool = ThreadPoolExecutor(max_workers=GLOBAL_WORKERS)
_patterns = list(itertools.chain.from_iterable([k.source_keys for k in weight_mapping]))
source_to_target = {sk: k for k in weight_mapping for sk in k.source_keys}
weight_pattern_alt, weight_pattern_by_group_name = build_glob_alt(_patterns)
tp_plan_alt, tp_plan_by_group_name = build_glob_alt(list(tp_plan.keys()))
dtype_policy_alt, dtype_policy_by_group_name = build_glob_alt(list(dtype_plan.keys()))
state_dict = sorted(state_dict.items(), key=lambda kv: dot_natural_key(kv[0]))
# 1. Create the conversion entries
by_conversion_pattern: dict[str, ConversionEntry] = {}
for original_key, tensor in state_dict:
matched_pattern = match_glob(original_key, weight_pattern_alt, weight_pattern_by_group_name)
if matched_pattern is not None:
converter = source_to_target[matched_pattern] # TODO make sure its the ref
sub_with_extractor = partial(re.sub, matched_pattern.replace("*", r"(\d+)"), string=original_key)
entry_key = "|".join(converter.target_keys)
target_key = "|".join(map(sub_with_extractor, [k.replace("*", "\\1") for k in converter.target_keys]))
entry: ConversionEntry = by_conversion_pattern.setdefault(entry_key, ConversionEntry(converter))
converter_key = sub_with_extractor(matched_pattern)
else:
converter = WeightConverter(original_key)
converter_key = entry_key = target_key = original_key
entry = by_conversion_pattern.setdefault(converter_key, ConversionEntry(converter))
_dtype = dtype
new_target_key = [] # test_load_with_mismatched_shapes for AutoModel.from_pretrained(AutoForCausal, vocab=10)
for t in target_key.split("|"):
if t.startswith(prefix) and meta_model_state_dict.get(t.replace(f"{prefix}.", "")) is not None:
t = t.replace(f"{prefix}.", "")
elif meta_model_state_dict.get(f"{prefix}.{t}") is not None:
t = f"{prefix}.{t}"
new_target_key.append(t)
empty_param = meta_model_state_dict.get(t)
# If it does not exist, it's unexpected
if empty_param is None:
unexpected_keys.add(t)
continue
if quantizer is not None and quantizer.param_needs_quantization(model, t):
if quantizer.__class__.__name__ == "FineGrainedFP8HfQuantizer":
from .integrations.finegrained_fp8 import Fp8Quantize
converter.quantization_operation = Fp8Quantize() # TODO support other methods
else:
raise ValueError("This quantization method is gonna be supported SOOOON")
else:
_dtype = dtype
matched_dtype_pattern = match_glob(t, dtype_policy_alt, dtype_policy_by_group_name)
if matched_dtype_pattern is not None:
_dtype = dtype_plan[matched_dtype_pattern]
elif empty_param.dtype != _dtype:
_dtype = empty_param.dtype
first_target_key = new_target_key[0]
target_key = "|".join(new_target_key)
future = None
if device_mesh:
if matched_tp_pattern := match_glob(first_target_key, tp_plan_alt, tp_plan_by_group_name):
empty_param = meta_model_state_dict.get(first_target_key)
if getattr(converter, "distributed_operation", {}) is None:
tp_layer = ALL_PARALLEL_STYLES[model.tp_plan[matched_tp_pattern]].__class__
converter.distributed_operation = tp_layer(
device_mesh=device_mesh, rank=device_map[""].index, empty_param=empty_param.clone()
)
# VERY IMPORTANT: this tells us wether we collected stuffs or not.
shard_index = len(entry.collected_tensors[target_key].get(converter_key, []))
future = spawn_tp_materialize(
thread_pool,
tensor,
_dtype,
converter.distributed_operation,
shard_index,
)
if future is None: # If not TP, async materialize the tensors. TODO handle disk offload?
future = spawn_materialize(thread_pool, tensor, _dtype)
entry.collected_tensors[target_key].setdefault(converter_key, []).append(future)
# 2. Actually convert the ckpt
inverse_converters = {}
keys = list(by_conversion_pattern.keys())
with logging.tqdm(total=len(keys), desc="Loading weights") as pbar:
for key in keys[::-1]: # revert to process simple keys first
group = by_conversion_pattern.pop(key)
converter = group.weight_converter
operations = converter.operations if isinstance(converter.operations, list) else [converter.operations]
for layer_name, tensors_for_this_layer in group.collected_tensors.items():
pbar.update(1)
pbar.set_postfix({"Materializing param": layer_name})
pbar.refresh()
concrete_target_keys = layer_name.split("|")
try:
if bool(set(concrete_target_keys) - unexpected_keys):
with log_to_misc(layer_name, misc):
values = [[k.result() for k in inner] for inner in tensors_for_this_layer.values()]
for op in operations:
with log_to_misc(layer_name, misc, (values, concrete_target_keys), operations):
values = op.convert(values, model.config)
values = [values] if not isinstance(values, list) else values
with log_to_misc(layer_name, misc, (values, concrete_target_keys), operations):
realized_value = {
k: t for k, t in zip(concrete_target_keys, values) if k not in unexpected_keys
}
for k in list(realized_value.keys()).copy():
if op := converter.quantization_operation:
with log_to_misc(layer_name, misc, op=op):
realized_value.update(
op.convert(
{k: realized_value.pop(k)}, quant_config=quantizer.quantization_config
)
)
for k, output_value in realized_value.items():
for src in converter.source_keys: # what should happen to k when we meet k at saving
inverse_converters[k] = {src: converter}
set_param_for_module(
model,
k,
output_value,
mismatch_keys,
missing_keys,
misc,
converter.distributed_operation,
)
except SkipLayer:
continue
del group
model.inverse_converters = inverse_converters
thread_pool.shutdown(wait=False)
return missing_keys, unexpected_keys, mismatch_keys, misc
# TODO this is not done yet!
def revert_weight_conversion(model, state_dict):
mapping = getattr(model, "_checkpoint_conversion_mapping", {}) # IDK why but setting this will fail all llava.
reverse_key_mapping = [(v, k) for k, v in mapping.items()]
original_state_dict = {}
for key, value in state_dict.items():
for pattern, inverse_converter in reverse_key_mapping:
# TODO FIXME you name it
replacement = inverse_converter.lstrip("^") # strip off un-needed chars and patterns
replacement = re.sub(r"\(.*\)", "", replacement)
key, n_replace = re.subn(pattern, replacement, key)
# Early exit of the loop
if n_replace > 0:
break
original_state_dict[key] = value
state_dict = original_state_dict
return state_dict

View File

@ -723,7 +723,7 @@ class DataCollatorForLanguageModeling(DataCollatorMixin):
if self.mask_replace_prob < 1:
warnings.warn(
"Random token replacement is not supported with whole word masking. "
"Random token replacement is not supported with whole word masking.",
"Setting mask_replace_prob to 1.",
)
self.mask_replace_prob = 1

View File

@ -82,7 +82,7 @@ class GlueDataset(Dataset):
cache_dir: Optional[str] = None,
):
warnings.warn(
"This dataset will be removed from the library soon, preprocessing should be handled with the Hugging Face Datasets "
"This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets "
"library. You can have a look at this example script for pointers: "
"https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py",
FutureWarning,

View File

@ -21,7 +21,7 @@ if is_sklearn_available():
DEPRECATION_WARNING = (
"This metric will be removed from the library soon, metrics should be handled with the Hugging Face Evaluate "
"This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate "
"library. You can have a look at this example script for pointers: "
"https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py"
)

View File

@ -28,7 +28,7 @@ from .utils import DataProcessor, InputExample, InputFeatures
logger = logging.get_logger(__name__)
DEPRECATION_WARNING = (
"This {0} will be removed from the library soon, preprocessing should be handled with the Hugging Face Datasets "
"This {0} will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets "
"library. You can have a look at this example script for pointers: "
"https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py"
)

View File

@ -48,7 +48,7 @@ deps = {
"pyyaml": "pyyaml>=5.1",
"pydantic": "pydantic>=2",
"pytest": "pytest>=7.2.0",
"pytest-asyncio": "pytest-asyncio>=1.2.0",
"pytest-asyncio": "pytest-asyncio",
"pytest-rerunfailures": "pytest-rerunfailures<16.0",
"pytest-timeout": "pytest-timeout",
"pytest-xdist": "pytest-xdist",

View File

@ -807,7 +807,7 @@ class ContinuousBatchingManager:
"""Check if the background generation thread is running."""
return self._generation_thread is not None and self._generation_thread.is_alive()
def stop(self, block: bool = True, timeout: Optional[float] = None) -> None:
def stop(self, block: bool = False, timeout: Optional[float] = None) -> None:
"""Signal the background thread to stop.
Args:
@ -818,15 +818,14 @@ class ContinuousBatchingManager:
logger.warning("Manager not started.")
return
stop_trigger_time = perf_counter()
if not self.stop_event.is_set():
self.stop_event.set()
logger.info("Stopping continuous batching manager...")
if block:
self.join(stop_trigger_time, timeout)
self.join(timeout)
def join(self, stop_trigger_time: float, timeout: Optional[float] = None) -> None:
def join(self, timeout: Optional[float] = None) -> None:
"""Wait for the background thread to finish.
Args:
@ -835,10 +834,9 @@ class ContinuousBatchingManager:
if self._generation_thread is not None:
self._generation_thread.join(timeout=timeout)
if self._generation_thread.is_alive():
logger.warning(f"Generation thread did not exit after join timeout ({timeout}).")
logger.warning("Generation thread did not exit after join timeout.")
else:
end = perf_counter()
logger.info(f"Continuous Batching Manager stopped after {end - stop_trigger_time:.2f}s.")
logger.info("Continuous Batching Manager stopped.")
self._generation_thread = None
def add_request(
@ -879,11 +877,9 @@ class ContinuousBatchingManager:
self.input_queue.put(state, block=True, timeout=10) # XXX: pass timeout as fn arg?
return request_id
def add_requests(
self, inputs: list[list[int]], max_new_tokens: Optional[int] = None, streaming: bool = False
) -> None:
def add_requests(self, inputs: list[list[int]], max_new_tokens: Optional[int] = None) -> None:
for input_ids in inputs:
self.add_request(input_ids, max_new_tokens=max_new_tokens, streaming=streaming)
self.add_request(input_ids, max_new_tokens=max_new_tokens)
def cancel_request(self, request_id: str) -> None:
"""Cancel a request by its ID.
@ -894,7 +890,6 @@ class ContinuousBatchingManager:
if self.batch_processor is not None:
self.batch_processor.scheduler.set_request_cancellation(request_id)
# TODO:handle benchmarking properly when updating / fixing the requeue logic
def get_result(
self, request_id: Optional[str] = None, timeout: Optional[float] = None
) -> Optional[GenerationOutput]:
@ -910,7 +905,6 @@ class ContinuousBatchingManager:
return None
try:
result = self.output_queue.get(block=True, timeout=timeout)
# NOTE: requeue logic here
if request_id is not None and result.request_id != request_id:
self.output_queue.put(result)
return None
@ -1098,7 +1092,6 @@ class ContinuousMixin:
num_kv_cuda_graphs=num_kv_cuda_graphs,
)
# TODO: support streaming
@traced
@torch.inference_mode()
def generate_batch(
@ -1155,7 +1148,7 @@ class ContinuousMixin:
result = manager.get_result(timeout=1)
if result:
req_id = result.request_id
if result.is_finished():
if result.status == RequestStatus.FINISHED:
results[req_id] = result
finished_count += 1
pbar.update(1)

View File

@ -19,7 +19,6 @@ from typing import Optional
import torch
from ...utils import is_torch_xpu_available
from ...utils.logging import logging
from ...utils.metrics import traced
@ -36,13 +35,6 @@ def get_device_and_memory_breakdown() -> tuple[torch.device, int, int, int]:
total_memory = torch.cuda.get_device_properties(device).total_memory
reserved_memory = torch.cuda.memory_reserved(device)
allocated_memory = torch.cuda.memory_allocated(device)
elif is_torch_xpu_available():
device = torch.device("xpu")
torch.xpu.empty_cache()
torch.xpu.synchronize()
total_memory = torch.xpu.get_device_properties(device).total_memory
reserved_memory = torch.xpu.memory_reserved(device)
allocated_memory = torch.xpu.memory_allocated(device)
elif torch.backends.mps.is_available() and torch.backends.mps.is_built():
device = torch.device("mps")
# MPS memory reporting (PyTorch 2.0+)
@ -91,9 +83,6 @@ class GenerationOutput:
status: RequestStatus = RequestStatus.PENDING
created_time: float = field(default_factory=time.time)
def is_finished(self) -> bool:
return self.status == RequestStatus.FINISHED
@dataclass
class RequestState:

View File

@ -608,7 +608,7 @@ class GenerationMixin(ContinuousMixin):
use_cache = kwargs.get("use_cache")
if use_cache is None:
use_cache = getattr(self.config, "use_cache", False)
if past_key_values is not None or use_cache:
if past_key_values is None or use_cache:
# TODO (joao): handle the case where cache length == input_ids length. The function below results in an
# exception because we get empty input_ids after slicing. In essence, we need to roll back the cache 1
# token to recompute the logits for the first token to be generated (but not all caches support roll backs)
@ -1635,12 +1635,7 @@ class GenerationMixin(ContinuousMixin):
# TransformersKwargs are model-agnostic attention and generation arguments such as 'output_attentions'
for key, value in model_kwargs.items():
if (
value is not None
and key not in model_args
and key not in TransformersKwargs.__optional_keys__
and key != "debug_io"
):
if value is not None and key not in model_args and key not in TransformersKwargs.__optional_keys__:
unused_model_args.append(key)
if unused_model_args:

View File

@ -383,11 +383,10 @@ class BayesianDetectorModel(PreTrainedModel):
)
self.prior = torch.nn.Parameter(torch.tensor([self.base_rate]))
@torch.no_grad()
def _init_weights(self, module):
"""Initialize the weights."""
if isinstance(module, nn.Parameter):
nn.init.normal_(module.weight, mean=0.0, std=0.02)
module.weight.data.normal_(mean=0.0, std=0.02)
def _compute_posterior(
self,

View File

@ -821,26 +821,14 @@ def split_to_tiles(images: "torch.Tensor", num_tiles_height: int, num_tiles_widt
return image
def _cast_tensor_to_float(x):
if x.is_floating_point():
return x
return x.float()
def _group_images_by_shape(nested_images, *paired_inputs, is_nested: bool = False):
"""
Helper function to flatten a single level of nested image and batch structures and group by shape.
Args:
nested_images (list):
A list of images or a single tensor
paired_inputs (Any, *optional*):
Zero or more lists that mirror the structure of `nested_images` (flat list, or list of lists when
`is_nested=True`). Each element is paired 1:1 with the corresponding image so it can be grouped by the
same shape key. These paired values are grouped alongside `nested_images` but are not stacked in the output, so
they do not need to be tensors.
is_nested (bool, *optional*, defaults to False):
Whether the images are nested.
Returns:
tuple[dict, ...]:
- A dictionary with shape as key and list of images with that shape as value
- A dictionary with shape as key and list of paired values with that shape as value
- A dictionary mapping original indices to (shape, index) tuples
- A dictionary mapping original indices to (shape, index) tuples for each paired input
"""
"""Helper function to flatten a single level of nested image and batch structures and group by shape."""
grouped_images = defaultdict(list)
grouped_images_index = {}
paired_grouped_values = [defaultdict(list) for _ in paired_inputs]
@ -892,20 +880,27 @@ def _reconstruct_nested_structure(indices, processed_images):
return result
def _iterate_items(items, is_nested: bool):
"""
Helper function to iterate over items yielding (key, item) pairs.
def _disable_grouping_output_nested(images, *paired_inputs):
"""Build the disable_grouping output tuple for a single-level nested structure."""
outer_range = range(len(images))
inner_ranges = [range(len(images[i])) for i in outer_range]
For nested structures, yields ((row_index, col_index), item).
For flat structures, yields (index, item).
"""
if is_nested:
for i, row in enumerate(items):
for j, item in enumerate(row):
yield (i, j), item
else:
for i, item in enumerate(items):
yield i, item
# Precompute all (i, j) pairs
ij_pairs = [(i, j) for i in outer_range for j in inner_ranges[i]]
images_dict = {(i, j): images[i][j].unsqueeze(0) for (i, j) in ij_pairs}
paired_dicts = [{(i, j): paired_list[i][j].unsqueeze(0) for (i, j) in ij_pairs} for paired_list in paired_inputs]
index_map = {(i, j): ((i, j), 0) for (i, j) in ij_pairs}
return images_dict, *paired_dicts, index_map
def _disable_grouping_output_flat(images, *paired_inputs):
"""Build the disable_grouping output tuple for a flat list structure."""
idx_range = range(len(images))
images_dict = {i: images[i].unsqueeze(0) for i in idx_range}
paired_dicts = [{i: paired_list[i].unsqueeze(0) for i in idx_range} for paired_list in paired_inputs]
index_map = {i: (i, 0) for i in idx_range}
return images_dict, *paired_dicts, index_map
def group_images_by_shape(
@ -925,7 +920,7 @@ def group_images_by_shape(
Args:
images (Union[list["torch.Tensor"], "torch.Tensor"]):
A list of images or a single tensor
paired_inputs (Any, *optional*):
*paired_inputs (Any):
Zero or more lists that mirror the structure of `images` (flat list, or list of lists when
`is_nested=True`). Each element is paired 1:1 with the corresponding image so it can be grouped by the
same shape key. These paired values are grouped alongside `images` but are not stacked in the output, so
@ -949,14 +944,10 @@ def group_images_by_shape(
disable_grouping = device == "cpu"
if disable_grouping:
return (
{key: img.unsqueeze(0) for key, img in _iterate_items(images, is_nested)},
*[
{key: item.unsqueeze(0) for key, item in _iterate_items(paired_list, is_nested)}
for paired_list in paired_inputs
],
{key: (key, 0) for key, _ in _iterate_items(images, is_nested)},
)
if is_nested:
return _disable_grouping_output_nested(images, *paired_inputs)
else:
return _disable_grouping_output_flat(images, *paired_inputs)
# Handle single level nested structure
grouped_images, *paired_grouped_values, grouped_images_index = _group_images_by_shape(
@ -999,3 +990,14 @@ def reorder_images(
]
return _reconstruct_nested_structure(grouped_images_index, processed_images)
class NumpyToTensor:
"""
Convert a numpy array to a PyTorch tensor.
"""
def __call__(self, image: np.ndarray):
# Same as in PyTorch, we assume incoming numpy images are in HWC format
# c.f. https://github.com/pytorch/vision/blob/61d97f41bc209e1407dcfbd685d2ee2da9c1cdad/torchvision/transforms/functional.py#L154
return torch.from_numpy(image.transpose(2, 0, 1)).contiguous()

View File

@ -1,210 +0,0 @@
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from contextlib import contextmanager
from functools import wraps
import torch
def uniform_(
tensor: torch.Tensor, a: float = 0.0, b: float = 1.0, generator: torch.Generator | None = None
) -> torch.Tensor:
if not getattr(tensor, "_is_hf_initialized", False):
return torch.nn.init.uniform_(tensor, a=a, b=b, generator=generator)
return tensor
def normal_(
tensor: torch.Tensor, mean: float = 0.0, std: float = 1.0, generator: torch.Generator | None = None
) -> torch.Tensor:
if not getattr(tensor, "_is_hf_initialized", False):
return torch.nn.init.normal_(tensor, mean=mean, std=std, generator=generator)
return tensor
def constant_(tensor: torch.Tensor, val: float) -> torch.Tensor:
if not getattr(tensor, "_is_hf_initialized", False):
return torch.nn.init.constant_(tensor, val=val)
return tensor
def ones_(tensor: torch.Tensor) -> torch.Tensor:
if not getattr(tensor, "_is_hf_initialized", False):
return torch.nn.init.ones_(tensor)
return tensor
def zeros_(tensor: torch.Tensor) -> torch.Tensor:
if not getattr(tensor, "_is_hf_initialized", False):
return torch.nn.init.zeros_(tensor)
return tensor
def eye_(tensor: torch.Tensor) -> torch.Tensor:
if not getattr(tensor, "_is_hf_initialized", False):
return torch.nn.init.eye_(tensor)
return tensor
def dirac_(tensor: torch.Tensor, groups: int = 1) -> torch.Tensor:
if not getattr(tensor, "_is_hf_initialized", False):
return torch.nn.init.dirac_(tensor, groups=groups)
return tensor
def xavier_uniform_(tensor: torch.Tensor, gain: float = 1.0, generator: torch.Generator | None = None) -> torch.Tensor:
if not getattr(tensor, "_is_hf_initialized", False):
return torch.nn.init.xavier_uniform_(tensor, gain=gain, generator=generator)
return tensor
def xavier_normal_(tensor: torch.Tensor, gain: float = 1.0, generator: torch.Generator | None = None) -> torch.Tensor:
if not getattr(tensor, "_is_hf_initialized", False):
return torch.nn.init.xavier_normal_(tensor, gain=gain, generator=generator)
return tensor
def kaiming_uniform_(
tensor: torch.Tensor,
a: float = 0,
mode: str = "fan_in",
nonlinearity: str = "leaky_relu",
generator: torch.Generator | None = None,
) -> torch.Tensor:
if not getattr(tensor, "_is_hf_initialized", False):
return torch.nn.init.kaiming_uniform_(tensor, a=a, mode=mode, nonlinearity=nonlinearity, generator=generator)
return tensor
def kaiming_normal_(
tensor: torch.Tensor,
a: float = 0,
mode: str = "fan_in",
nonlinearity: str = "leaky_relu",
generator: torch.Generator | None = None,
) -> torch.Tensor:
if not getattr(tensor, "_is_hf_initialized", False):
return torch.nn.init.kaiming_normal_(tensor, a=a, mode=mode, nonlinearity=nonlinearity, generator=generator)
return tensor
def trunc_normal_(
tensor: torch.Tensor,
mean: float = 0.0,
std: float = 1.0,
a: float = -2.0,
b: float = 2.0,
generator: torch.Generator | None = None,
) -> torch.Tensor:
if not getattr(tensor, "_is_hf_initialized", False):
return torch.nn.init.trunc_normal_(tensor, mean=mean, std=std, a=a, b=b, generator=generator)
return tensor
def orthogonal_(
tensor: torch.Tensor,
gain: float = 1,
generator: torch.Generator | None = None,
) -> torch.Tensor:
if not getattr(tensor, "_is_hf_initialized", False):
return torch.nn.init.orthogonal_(tensor, gain=gain, generator=generator)
return tensor
def sparse_(
tensor: torch.Tensor, sparsity: float, std: float = 0.01, generator: torch.Generator | None = None
) -> torch.Tensor:
if not getattr(tensor, "_is_hf_initialized", False):
return torch.nn.init.sparse_(tensor, sparsity=sparsity, std=std, generator=generator)
return tensor
def copy_(tensor: torch.Tensor, other: torch.Tensor) -> torch.Tensor:
if not getattr(tensor, "_is_hf_initialized", False):
with torch.no_grad():
return tensor.copy_(other)
return tensor
TORCH_INIT_FUNCTIONS = (
"uniform_",
"normal_",
"constant_",
"ones_",
"zeros_",
"eye_",
"dirac_",
"xavier_uniform_",
"xavier_normal_",
"kaiming_uniform_",
"kaiming_normal_",
"trunc_normal_",
"orthogonal_",
"sparse_",
)
@contextmanager
def no_init_weights():
"""
Context manager to globally disable weight initialization to speed up loading large models.
"""
global _init_weights
old_init_weights = _init_weights
_init_weights = False
def _skip_init(*args, **kwargs):
pass
# Save the original initialization functions
for name, init_func in TORCH_INIT_FUNCTIONS.items():
setattr(torch.nn.init, name, _skip_init)
try:
yield
finally:
_init_weights = old_init_weights
# Restore the original initialization functions
for name, init_func in TORCH_INIT_FUNCTIONS.items():
setattr(torch.nn.init, name, init_func)
@contextmanager
def guard_torch_init():
"""
Guard the `torch.nn.init` primitive functions to behave exactly like the functions in this file, i.e. be
protected against the `_is_hf_initialized` flag to avoid re-init if the param was already loaded.
"""
originals = {}
def make_wrapper(fn):
@wraps(fn)
def wrapped(*args, **kwargs):
# Tensor can come positionally or as a kwarg
tensor = args[0] if args else kwargs.get("tensor")
if not getattr(tensor, "_is_hf_initialized", False):
return fn(*args, **kwargs)
return tensor
return wrapped
try:
for name in TORCH_INIT_FUNCTIONS:
originals[name] = getattr(torch.nn.init, name)
setattr(torch.nn.init, name, make_wrapper(originals[name]))
yield
finally:
for name, fn in originals.items():
setattr(torch.nn.init, name, fn)

View File

@ -512,8 +512,10 @@ def accelerate_disk_offload(
checkpoint_files,
device_map,
checkpoint_keys,
key_renaming_mapping,
sharded_metadata,
dtype,
reverse_key_renaming_mapping,
):
disk_only_shard_files = []
if disk_offload_folder is not None:
@ -532,13 +534,19 @@ def accelerate_disk_offload(
weight_map = dict.fromkeys(checkpoint_keys, checkpoint_files[0])
else:
folder = os.path.sep.join(checkpoint_files[0].split(os.path.sep)[:-1])
# Fix the weight map keys according to the key mapping
weight_map = {
key_renaming_mapping[k]: v
for k, v in sharded_metadata["weight_map"].items()
if k in key_renaming_mapping
}
weight_map = {k: os.path.join(folder, v) for k, v in weight_map.items()}
# Find potential checkpoints containing only offloaded weights
disk_only_shard_files = get_disk_only_shard_files(device_map, weight_map)
disk_offload_index = {
name: {
"safetensors_file": file,
"weight_name": name,
"weight_name": reverse_key_renaming_mapping[name],
"dtype": str_dtype,
}
for name, file in weight_map.items()

View File

@ -1,4 +1,5 @@
import inspect
from copy import deepcopy
from inspect import signature
from ..utils import (
@ -23,6 +24,7 @@ if is_accelerate_available():
import accelerate
from accelerate import init_empty_weights
from accelerate.hooks import add_hook_to_module, remove_hook_from_module
from accelerate.utils import find_tied_parameters
logger = logging.get_logger(__name__)
@ -149,6 +151,52 @@ def replace_with_bnb_linear(model, modules_to_not_convert=None, current_key_name
return model
def get_keys_to_not_convert(model):
r"""
An utility function to get the key of the module to keep in full precision if any For example for CausalLM modules
we may want to keep the lm_head in full precision for numerical stability reasons. For other architectures, we want
to keep the tied weights of the model. The function will return a list of the keys of the modules to not convert in
int8.
Parameters:
model (`torch.nn.Module`):
Input model
"""
# Create a copy of the model and tie the weights, then
# check if it contains tied weights
tied_model = deepcopy(model) # this has 0 cost since it is done inside `init_empty_weights` context manager`
tied_model.tie_weights()
tied_params = find_tied_parameters(tied_model)
tied_keys = sum(tied_params, [])
has_tied_params = len(tied_keys) > 0
# If there is not tied weights, we want to keep the lm_headoutput_embedding) in full precision
if not has_tied_params:
output_emb = model.get_output_embeddings()
if output_emb is not None:
list_last_module = [name for name, module in model.named_modules() if id(module) == id(output_emb)]
return list_last_module
# otherwise, no tied weights, no output embedding defined, simply keep the last module in full precision
list_modules = list(model.named_parameters())
list_last_module = [list_modules[-1][0]]
# add last module together with tied weights
intersection = set(list_last_module) - set(tied_keys)
list_untouched = list(set(tied_keys)) + list(intersection)
# remove ".weight" from the keys
names_to_remove = [".weight", ".bias"]
filtered_module_names = []
for name in list_untouched:
for name_to_remove in names_to_remove:
if name_to_remove in name:
name = name.replace(name_to_remove, "")
filtered_module_names.append(name)
return filtered_module_names
# Copied from PEFT: https://github.com/huggingface/peft/blob/47b3712898539569c02ec5b3ed4a6c36811331a1/src/peft/utils/integrations.py#L41
def dequantize_bnb_weight(weight: "torch.nn.Parameter", dtype: "torch.dtype", state=None):
"""

View File

@ -11,6 +11,7 @@
# specific language governing permissions and limitations under the License.
import logging
from collections.abc import Callable
from typing import Optional
import torch
@ -23,7 +24,13 @@ from ..cache_utils import (
StaticCache,
)
from ..generation.configuration_utils import GenerationConfig
from ..modeling_utils import PreTrainedModel
from ..masking_utils import (
ALL_MASK_ATTENTION_FUNCTIONS,
_ignore_causal_mask_sdpa,
_is_torch_greater_or_equal_than_2_5,
prepare_padding_mask,
)
from ..modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from ..pytorch_utils import (
is_torch_greater_or_equal,
is_torch_greater_or_equal_than_2_3,
@ -222,6 +229,10 @@ class TorchExportableModuleForDecoderOnlyLM(torch.nn.Module):
"Using `StaticCache` for export as `layer_types` is not specified or `sliding_window` is `null` in the config."
)
self.model = TorchExportableModuleWithStaticCache(model, batch_size, max_cache_len, device)
# This is the same as sdpa, but mask creation does not use `vmap` which is not exportable
ALL_MASK_ATTENTION_FUNCTIONS.register("sdpa_without_vmap", sdpa_mask_without_vmap)
ALL_ATTENTION_FUNCTIONS.register("sdpa_without_vmap", ALL_ATTENTION_FUNCTIONS["sdpa"])
self.model.model.config._attn_implementation = "sdpa_without_vmap"
def forward(
self,
@ -757,6 +768,11 @@ def convert_and_export_with_cache(
import torch.export._trace
# This is the same as sdpa, but mask creation does not use `vmap` which is not exportable
ALL_MASK_ATTENTION_FUNCTIONS.register("sdpa_without_vmap", sdpa_mask_without_vmap)
ALL_ATTENTION_FUNCTIONS.register("sdpa_without_vmap", ALL_ATTENTION_FUNCTIONS["sdpa"])
model.config._attn_implementation = "sdpa_without_vmap"
with torch.no_grad():
# TODO: The default inputs only work for text models. We need to add support for vision/audio models.
example_input_ids = (
@ -1020,6 +1036,11 @@ def export_with_dynamic_cache(
if not is_torch_greater_or_equal_than_2_3:
raise ImportError("torch >= 2.3 is required.")
# This is the same as sdpa, but mask creation does not use `vmap` which is not exportable
ALL_MASK_ATTENTION_FUNCTIONS.register("sdpa_without_vmap", sdpa_mask_without_vmap)
ALL_ATTENTION_FUNCTIONS.register("sdpa_without_vmap", ALL_ATTENTION_FUNCTIONS["sdpa"])
model.config._attn_implementation = "sdpa_without_vmap"
register_dynamic_cache_export_support()
with torch.no_grad():
@ -1088,3 +1109,92 @@ def _unflatten_dynamic_cache(values, context: torch.utils._pytree.Context):
value = value_list[idx] if idx < len(value_list) else None
cache.update(key, value, idx)
return cache
def sdpa_mask_without_vmap(
batch_size: int,
cache_position: torch.Tensor,
kv_length: int,
kv_offset: int = 0,
mask_function: Optional[Callable] = None,
attention_mask: Optional[torch.Tensor] = None,
local_size: Optional[int] = None,
allow_is_causal_skip: bool = True,
allow_torch_fix: bool = True,
**kwargs,
) -> Optional[torch.Tensor]:
"""
Create a 4D boolean mask of shape `(batch_size, 1, query_length, kv_length)` where a value of True indicates that
the element should take part in the attention computation, and False that it should not.
This is similar to `masking_utils.sdpa_mask` but does not use `vmap` which is incompatible with export.
Args:
batch_size (`int`):
The batch size of the input sequence.
cache_position (`torch.Tensor`):
A tensor of shape (query_length,) indicating the current indices of the input sequence elements.
kv_length (`int`):
The size that the key and value states will have during the attention computation.
kv_offset (`int`, optional):
An optional offset to indicate at which first position the key and values states will refer to.
mask_function (`Callable`):
The mask factory function describing the mask pattern.
attention_mask (`torch.Tensor`, optional):
The 2D attention mask corresponding to padded tokens of shape (batch_size, number_of_seen_tokens+q_length)
local_size (`int`, optional):
The size of the local attention, if we do not use full attention. This is used only if `allow_is_causal_skip=True`
to try to skip mask creation if possible.
allow_is_causal_skip (`bool`, optional):
Whether to allow to return `None` for the mask under conditions where we can use the `is_causal` argument in
`torch.sdpa` instead. Default to `True`.
allow_torch_fix (`bool`, optional):
Whether to update the mask in case a query is not attending to any tokens, to solve a bug in torch's older
versions. We need an arg to skip it when using eager. By default `True`.
"""
q_length = cache_position.shape[0]
# Potentially pad the 2D mask, and slice it correctly
padding_mask = prepare_padding_mask(attention_mask, kv_length, kv_offset)
# Under specific conditions, we can avoid materializing the mask, instead relying on the `is_causal` argument
if allow_is_causal_skip and _ignore_causal_mask_sdpa(padding_mask, q_length, kv_length, local_size):
return None
# Similar to `kv_arange = torch.arange(start=kv_offset, end=kv_offset + kv_length, device=cache_position.device)`
# but without data-dependent slicing (i.e. torch.compile friendly)
kv_arange = torch.arange(kv_length, device=cache_position.device)
kv_arange += kv_offset
reshaped_cache_position = cache_position.view(-1, 1)
# This is a bit hacky to know what pattern we are using, but all mask creation function actually forward
# the config through kwargs anyway, so it allows to rely on it
# Usually, the `mask_function` is the only entry-point to define the pattern - we could do for loops over it,
# but this is more efficient
sliding_window = getattr(kwargs["config"], "sliding_window", None)
chunk_size = getattr(kwargs["config"], "attention_chunk_size", None)
if sliding_window is not None and chunk_size is not None:
raise ValueError("Cannot use both `sliding_window` and `attention_chunk_size`")
# Simplest and most efficient way to obtain a causal mask
causal_mask = kv_arange <= reshaped_cache_position
# If using sliding window, add the sliding mask
if sliding_window is not None:
sliding_mask_overlay = kv_arange > reshaped_cache_position - sliding_window
causal_mask *= sliding_mask_overlay
# If using chunk attention, add the chunked mask
elif chunk_size is not None:
chunked_mask_overlay = kv_arange // chunk_size == reshaped_cache_position // chunk_size
causal_mask *= chunked_mask_overlay
causal_mask = causal_mask[None, None, :, :].expand(batch_size, -1, -1, -1)
if padding_mask is not None:
causal_mask = causal_mask * padding_mask[:, None, None, :]
# Due to a bug in some older torch version, we need to update the mask in case a query is not attending to any
# tokens (due to padding). See details in https://github.com/pytorch/pytorch/issues/110213
if not _is_torch_greater_or_equal_than_2_5 and allow_torch_fix:
causal_mask |= torch.all(~causal_mask, dim=-1, keepdim=True)
return causal_mask

View File

@ -13,11 +13,8 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import re
from collections.abc import Sequence
from typing import Any, Optional, Union
from typing import Optional
from ..core_model_loading import ConversionOps
from ..utils import is_accelerate_available, is_torch_accelerator_available, is_torch_available, logging
@ -33,18 +30,6 @@ if is_accelerate_available():
logger = logging.get_logger(__name__)
try:
_FP8_DTYPE = torch.float8_e4m3fn
_FP8_MIN = torch.finfo(_FP8_DTYPE).min
_FP8_MAX = torch.finfo(_FP8_DTYPE).max
_FP8_IS_INT = False
except AttributeError:
_FP8_DTYPE = torch.int8
_FP8_MIN, _FP8_MAX = -127, 127
_FP8_IS_INT = True
logger.warning_once(
"torch.float8_e4m3fn not available; falling back to int8 emulation for Fp8Quantize operations."
)
# Copied from https://huggingface.co/deepseek-ai/DeepSeek-V3/blob/main/inference/kernel.py
@ -347,12 +332,6 @@ class FP8Linear(nn.Linear):
if self.weight.element_size() > 1:
return F.linear(input, self.weight, self.bias)
else:
if isinstance(self.weight, torch.distributed.tensor.DTensor):
weight = self.weight._local_tensor.contiguous()
scale_inv = self.weight_scale_inv._local_tensor.contiguous()
else:
weight = self.weight.contiguous()
scale_inv = self.weight_scale_inv.contiguous()
# Context manager used to switch among the available accelerators
device_type = torch.accelerator.current_accelerator().type if is_torch_accelerator_available() else "cuda"
torch_accelerator_module = getattr(torch, device_type, torch.cuda)
@ -360,9 +339,9 @@ class FP8Linear(nn.Linear):
qinput, scale = act_quant(input, self.block_size[1])
output = w8a8_block_fp8_matmul_triton(
qinput,
weight,
self.weight,
scale,
scale_inv,
self.weight_scale_inv,
self.block_size,
output_dtype=input.dtype,
)
@ -371,124 +350,9 @@ class FP8Linear(nn.Linear):
torch_accelerator_module.synchronize()
if self.bias is not None:
output = output + self.bias
output = torch.nan_to_num(output, nan=0.0)
return output.to(dtype=input.dtype)
def _ceil_div(a, b):
return (a + b - 1) // b
class FP8Expert(nn.Module):
dtype = torch.float8_e4m3fn
def __init__(self, config, block_size, device):
super().__init__()
from ..activations import ACT2FN
self.block_size = block_size
self.num_experts = config.num_local_experts
self.hidden_dim = config.hidden_size
self.intermediate_dim = config.intermediate_size
Wg_out, Wg_in = 2 * self.intermediate_dim, self.hidden_dim
Wd_out, Wd_in = self.hidden_dim, self.intermediate_dim
self.gate_up_proj = nn.Parameter(
torch.zeros(self.num_experts, Wg_out, Wg_in, dtype=FP8Expert.dtype, device=device)
)
self.down_proj = nn.Parameter(
torch.zeros(self.num_experts, Wd_out, Wd_in, dtype=FP8Expert.dtype, device=device)
)
# Create inverse scale tiles only when using 1-byte types (fp8)
if self.gate_up_proj.element_size() == 1:
bo, bi = self.block_size
# gate_up tiles: ceil(Wg_out/bo) x ceil(Wg_in/bi)
gu_scale_o = _ceil_div(Wg_out, bo)
gu_scale_i = _ceil_div(Wg_in, bi)
self.gate_up_proj_scales_inv = nn.Parameter(
torch.zeros(self.num_experts, gu_scale_o, gu_scale_i, dtype=torch.float32, device=device)
)
# down tiles: ceil(Wd_out/bo) x ceil(Wd_in/bi)
dp_scale_o = _ceil_div(Wd_out, bo)
dp_scale_i = _ceil_div(Wd_in, bi)
self.down_proj_scales_inv = nn.Parameter(
torch.zeros(self.num_experts, dp_scale_o, dp_scale_i, dtype=torch.float32, device=device)
)
else:
# Match FP8Linear behavior when not using 1-byte weights
self.register_parameter("gate_up_proj_scale_inv", None)
self.register_parameter("down_proj_scale_inv", None)
# (Optional) bias per projection — many MoEs omit bias; keep None to match your FP8Linear default
self.register_parameter("gate_up_bias", None)
self.register_parameter("down_bias", None)
# Activation used in the MLP (same as your config / ACT2FN)
# Keep a handle here; actual usage happens in forward of your MoE block
self.act_fn = ACT2FN[config.hidden_act]
def forward(
self,
hidden_states: torch.Tensor,
top_k_index: torch.Tensor,
top_k_weights: torch.Tensor,
) -> torch.Tensor:
final_hidden_states = torch.zeros_like(hidden_states)
num_experts = top_k_weights.shape[1]
with torch.no_grad():
expert_mask = torch.nn.functional.one_hot(top_k_index, num_classes=num_experts + 1)
expert_mask = expert_mask.permute(2, 1, 0)
expert_hit = torch.greater(expert_mask.sum(dim=(-1, -2)), 0).nonzero()
for expert_idx in expert_hit:
expert_idx = expert_idx[0]
if expert_idx == num_experts:
continue
_, token_idx = torch.where(expert_mask[expert_idx])
current_state = hidden_states.index_select(0, token_idx)
gate, up = self.linear(
current_state, self.gate_up_proj[expert_idx], self.gate_up_proj_scales_inv[expert_idx]
).chunk(2, dim=-1)
current_hidden_states = self.act_fn(gate) * up
current_hidden_states = self.linear(
current_hidden_states, self.down_proj[expert_idx], self.down_proj_scales_inv[expert_idx]
)
routing_weights = top_k_weights[token_idx, expert_idx].unsqueeze(-1)
current_hidden_states = current_hidden_states * routing_weights.to(current_hidden_states.dtype)
final_hidden_states.index_add_(0, token_idx, current_hidden_states.to(final_hidden_states.dtype))
return final_hidden_states
def linear(self, input: torch.Tensor, weight: torch.Tensor, weight_scale_inv: torch.Tensor) -> torch.Tensor:
if weight.element_size() > 1:
return F.linear(input, weight, None)
else:
# Context manager used to switch among the available accelerators
device_type = torch.accelerator.current_accelerator().type if is_torch_accelerator_available() else "cuda"
torch_accelerator_module = getattr(torch, device_type, torch.cuda)
with torch_accelerator_module.device(input.device):
qinput, scale = act_quant(input, self.block_size[1])
output = w8a8_block_fp8_matmul_triton(
qinput,
weight,
scale,
weight_scale_inv,
self.block_size,
output_dtype=input.dtype,
)
# Blocks the CPU until all accelerator operations on the specified device are complete. It is used to ensure that the results of the
# preceding operations are ready before proceeding
torch_accelerator_module.synchronize()
return output.to(dtype=input.dtype)
# TODO: we do need this.... but not recursive...
def _replace_with_fp8_linear(
model,
tp_plan=None,
@ -497,48 +361,40 @@ def _replace_with_fp8_linear(
quantization_config=None,
has_been_replaced=False,
):
iterator = list(model.named_parameters()).copy()
for name, empty_tensor in iterator:
current_key_name = name
name = name.rsplit(".", 1)[0] if "." in name else name
module = model.get_submodule(name)
"""Replace Linear layers with FP8Linear."""
if current_key_name is None:
current_key_name = []
current_key_name_str = re.sub(r"\d+", "*", current_key_name)
if not any(key in current_key_name_str for key in (modules_to_not_convert or [])):
with init_empty_weights():
if (
"gate_up_proj" in current_key_name
or "down_proj" in current_key_name
and "experts" in current_key_name
): # Experts!
in_features = empty_tensor.size(-2)
out_features = empty_tensor.size(-1)
model.set_submodule(
name,
FP8Expert(
config=model.config,
block_size=quantization_config.weight_block_size,
device=empty_tensor.device,
),
)
for name, module in model.named_children():
current_key_name.append(name)
elif isinstance(module, nn.Linear):
in_features = module.in_features
out_features = module.out_features
model.set_submodule(
name,
FP8Linear(
in_features=in_features,
out_features=out_features,
bias=module.bias is not None,
device=module.weight.device,
dtype=module.weight.dtype,
activation_scheme=quantization_config.activation_scheme,
block_size=quantization_config.weight_block_size,
),
if isinstance(module, nn.Linear) and name not in (modules_to_not_convert or []):
current_key_name_str = ".".join(current_key_name)
if not any(key in current_key_name_str for key in (modules_to_not_convert or [])):
with init_empty_weights():
model._modules[name] = FP8Linear(
in_features=module.in_features,
out_features=module.out_features,
bias=module.bias is not None,
device=module.weight.device,
dtype=module.weight.dtype,
activation_scheme=quantization_config.activation_scheme,
block_size=quantization_config.weight_block_size,
)
has_been_replaced = True
# when changing a layer the TP PLAN for that layer should be updated. TODO
has_been_replaced = True
# when changing a layer the TP PLAN for that layer should be updated. TODO
if len(list(module.children())) > 0:
_, has_been_replaced = _replace_with_fp8_linear(
module,
tp_plan,
modules_to_not_convert,
current_key_name,
quantization_config,
has_been_replaced=has_been_replaced,
)
current_key_name.pop(-1)
return model, has_been_replaced
@ -549,7 +405,7 @@ def replace_with_fp8_linear(
quantization_config=None,
):
"""Helper function to replace model layers with FP8 versions."""
modules_to_not_convert += ["lm_head"]
modules_to_not_convert = ["lm_head"] if modules_to_not_convert is None else modules_to_not_convert
if quantization_config.modules_to_not_convert is not None:
modules_to_not_convert.extend(quantization_config.modules_to_not_convert)
@ -568,133 +424,3 @@ def replace_with_fp8_linear(
)
return model
class QuantizationOp(ConversionOps):
"""Base class for quantization operations."""
pass
class Fp8Quantize(QuantizationOp):
"""
A quantization operation that creates two tensors, weight and scale out of a weight.
"""
reverse_op: type[ConversionOps]
def __init__(self, block_size: Optional[tuple[int, int]] = None):
self.block_size = block_size
self.reverse_op = Fp8Dequantize
def convert(self, input_dict: torch.Tensor, *, quant_config: dict[str, Any]) -> dict[str, torch.Tensor]:
# Unpack single key/value (value may be wrapped in a list)
target_keys, value = tuple(input_dict.items())[0]
value = value[0] if isinstance(value, list) else value
# Resolve block size (support dict-like or attr-like quant_config)
block_size = None
if quant_config is not None:
if isinstance(quant_config, dict):
block_size = quant_config.get("weight_block_size")
else:
block_size = getattr(quant_config, "weight_block_size", None)
if block_size is None:
block_size = (value.shape[-2], value.shape[-1])
block_m, block_n = block_size
rows, cols = value.shape[-2], value.shape[-1]
# Enforce exact tiling like your original
if rows % block_m != 0 or cols % block_n != 0:
raise ValueError(
f"Matrix dimensions ({rows}, {cols}) must be divisible by block sizes ({block_m}, {block_n}). for {target_keys}"
)
# Leading dims can be empty (2D) or include num_experts/... (3D+)
leading_shape = value.shape[:-2]
rows_tiles = rows // block_m
cols_tiles = cols // block_n
original_shape = value.shape
value_fp32 = value.to(torch.float32)
# Reshape to (..., rows_tiles, block_m, cols_tiles, block_n)
reshaped = value_fp32.reshape(*leading_shape, rows_tiles, block_m, cols_tiles, block_n)
# Per-tile max-abs over the block dims
# dims: block_m is at -3, block_n is at -1 after the reshape
max_abs = reshaped.abs().amax(dim=(-3, -1))
safe_max_abs = torch.where(max_abs > 0, max_abs, torch.ones_like(max_abs))
# Tile scale (we store inverse scale like your Linear: weight_scale_inv)
scales = _FP8_MAX / safe_max_abs
scales = torch.where(max_abs > 0, scales, torch.ones_like(scales)) # keep zeros stable
# Broadcast scales back over the block dims and quantize
# max_abs/scales shape: (..., rows_tiles, cols_tiles)
scales_broadcast = scales.unsqueeze(-1).unsqueeze(-3) # -> (..., rows_tiles, 1, cols_tiles, 1)
scaled = reshaped * scales_broadcast
if _FP8_IS_INT:
quantized = torch.clamp(scaled.round(), min=_FP8_MIN, max=_FP8_MAX).to(_FP8_DTYPE)
else:
quantized = torch.clamp(scaled, min=_FP8_MIN, max=_FP8_MAX).to(_FP8_DTYPE)
quantized = quantized.reshape(original_shape)
inv_scales = (1.0 / scales).to(torch.float32) # shape: (*leading, rows_tiles, cols_tiles)
if target_keys.endswith("weight"):
scale_key = target_keys.rsplit(".", 1)[0] + ".weight_scale_inv"
else:
scale_key = target_keys + "_scales_inv"
# Return both quantized weights and per-tile inverse scales (keeps leading dims, e.g., num_experts)
return {
target_keys: quantized,
scale_key: inv_scales,
}
class Fp8Dequantize(QuantizationOp):
"""Inverse operation of :class:`Fp8Quantize`. Takes a pair (weight, scale) and reconstructs the fp32 tensor."""
def __init__(self, block_size: Optional[tuple[int, int]] = None):
self.block_size = block_size
self.reverse_op = Fp8Quantize
def convert(
self,
value: Union[Sequence[torch.Tensor], dict[str, torch.Tensor]],
*,
context: dict[str, Any],
) -> torch.Tensor:
if isinstance(value, dict):
tensors = list(value.values())
else:
tensors = list(value) if isinstance(value, Sequence) else [value]
if len(tensors) != 2:
raise ValueError("Fp8Dequantize expects exactly two tensors: quantized weights and scales.")
quantized, scales = tensors
if not isinstance(quantized, torch.Tensor) or not isinstance(scales, torch.Tensor):
raise TypeError("Fp8Dequantize expects tensors as inputs.")
quantized_fp32 = quantized.to(torch.float32)
rows, cols = quantized_fp32.shape[-2:]
block_size = self.block_size
if block_size is None:
quant_config = context.get("quantization_config")
block_size = getattr(quant_config, "weight_block_size", None)
if block_size is None:
block_size = (rows, cols)
block_m, block_n = block_size
if rows % block_m != 0 or cols % block_n != 0:
raise ValueError(
f"Matrix dimensions ({rows}, {cols}) must be divisible by block sizes ({block_m}, {block_n})."
)
reshaped = quantized_fp32.reshape(-1, rows // block_m, block_m, cols // block_n, block_n)
expanded_scales = scales.to(torch.float32).reshape(-1, rows // block_m, cols // block_n)
expanded_scales = expanded_scales.unsqueeze(-1).unsqueeze(2)
dequantized = reshaped * expanded_scales
return dequantized.reshape(quantized_fp32.shape)

View File

@ -38,7 +38,7 @@ from transformers.utils.import_utils import _is_package_available
if os.getenv("WANDB_MODE") == "offline":
print("[INFO] Running in WANDB offline mode")
print("⚙️ Running in WANDB offline mode")
from .. import PreTrainedModel, TrainingArguments
from .. import __version__ as version

View File

@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from ..utils import is_accelerate_available, is_torch_available, is_torch_xpu_available, logging
from ..utils import is_accelerate_available, is_torch_available, logging
if is_torch_available():
@ -114,9 +114,6 @@ def convert_moe_packed_tensors(
if not blocks.is_cuda and torch.cuda.is_available():
blocks = blocks.cuda()
scales = scales.cuda()
elif (blocks.device.type != "xpu") and is_torch_xpu_available():
blocks = blocks.to("xpu")
scales = scales.to("xpu")
scales = scales.to(torch.int32) - 127 # TODO that's because 128=2**7
@ -354,8 +351,6 @@ def dequantize(module, param_name, param_value, target_device, dq_param_name, **
dequantized = convert_moe_packed_tensors(getattr(module, blocks_attr), getattr(module, scales_attr))
if target_device == "cpu" and torch.cuda.is_available():
torch.cuda.empty_cache()
elif target_device == "cpu" and is_torch_xpu_available():
torch.xpu.empty_cache()
setattr(module, proj, torch.nn.Parameter(dequantized.to(target_device)))
delattr(module, blocks_attr)
delattr(module, scales_attr)
@ -400,7 +395,7 @@ def load_and_swizzle_mxfp4(module, param_name, param_value, target_device, trito
else:
blocks = blocks.reshape(local_experts, -1, module.intermediate_size // 2)
if getattr(target_device, "type", target_device) == "cpu":
target_device = torch.accelerator.current_accelerator().type if hasattr(torch, "accelerator") else "cuda"
target_device = "cuda"
blocks = blocks.to(target_device).contiguous()
scales = scales.to(target_device).contiguous()
with on_device(target_device):

View File

@ -236,7 +236,7 @@ class PeftAdapterMixin:
**adapter_kwargs,
)
peft_config.inference_mode = not is_trainable
# TODO: WE NEED TOO APPLY OUR DYNAMIC WEIGHT CONVERSION AT SOME POINT HERE!
# Create and add fresh new adapters into the model.
inject_adapter_in_model(peft_config, self, adapter_name, **peft_load_kwargs)

View File

@ -18,7 +18,6 @@ import operator
import os
import re
from functools import partial, reduce
from typing import Optional
import torch
import torch.distributed as dist
@ -307,7 +306,7 @@ def repack_weights(
return final_ordered_tensor
def get_tensor_shard(param, empty_param, device_mesh, rank, dim, tensor_idx: Optional[int] = None):
def get_tensor_shard(param, empty_param, device_mesh, rank, dim):
"""
Generalized tensor sharding across a multi-dimensional device mesh.
Extract only the fraction of the parameter owned by the given `rank` when the parameter would have gone sharding at provided `dim`.
@ -359,57 +358,32 @@ def get_tensor_shard(param, empty_param, device_mesh, rank, dim, tensor_idx: Opt
rank (int): Global rank of the current process/device.
dim (int): Dimension along which to shard the tensor.
"""
param_dim = empty_param.ndim
param_dim = empty_param.dim()
if dim < 0:
dim = param_dim + dim
if dim >= param_dim:
raise ValueError(f"dim {dim} is out of bounds for tensor of dimension {param_dim}")
# Flatten the mesh to get the total number of devices
mesh_shape = device_mesh.shape
world_size = reduce(operator.mul, mesh_shape)
if dim < 0:
dim = param_dim + dim
if empty_param.dim() == 3 and dim == 1 and len(param.get_shape()) == 2:
dim = 0
elif empty_param.dim() == 3 and dim == 2 and len(param.get_shape()) == 2:
dim = 0
shard_size = math.ceil(empty_param.size(dim) / world_size)
start = rank * shard_size
end = min(start + shard_size, empty_param.size(dim))
if dim >= param_dim:
raise ValueError(f"dim {dim} is out of bounds for tensor of dimension {param_dim}")
if rank >= world_size:
raise ValueError(f"Rank {rank} is out of bounds for mesh size {world_size}")
# we have the full tensor not 1 part of it.
# in that case, we just assume that the weight was properly saved
# and thus because we TP if the layer is colwise it should not use this. Layer should be packed_colwise
# to inform that it needs to read form a packed tensor. It will also take care of the module list thingy.
# here we take care of potential chunking / layer split / layer chunking.
# The only "hard" case is? if we collect q,k,v -> merge it into qkv. In that case
# actually we still shard dim=0 does not change
# so only case is if the dim of the empty param is 3 and the shard dim is 0 -> we put the
# tensor on a certain device (with the input tensor_index)
dimensions = param.get_shape()
shard_size = math.ceil(empty_param.shape[dim] / world_size)
start = rank * shard_size
if empty_param.dim() == 3 and dim == 0 and len(param.get_shape()) == 2:
# special case we don't "shard" just send this entire tensor to the correct rank.
if start <= tensor_idx < end:
# this tensor does need to be materialized on this device:
return param[:]
else:
return torch.empty([], dtype=torch.int64, device=rank)
slice_indices = [slice(None)] * len(param.get_shape())
if start < param.get_shape()[dim]:
# Construct slicing index dynamically
end = min(start + shard_size, empty_param.shape[dim])
slice_indices = [slice(None)] * param_dim
if start < empty_param.shape[dim]:
slice_indices[dim] = slice(start, end)
param = param[tuple(slice_indices)]
if isinstance(param, list): # TODO handle the modulelist case!
param = [p[:] for p in param]
return param
return param[tuple(slice_indices)]
dimensions = list(param.shape)
dimensions[dim] = 0
return torch.empty(tuple(dimensions), dtype=torch.int64) # empty allocates memory....
return torch.empty(tuple(dimensions), dtype=torch.int64)
def distribute_module(
@ -436,19 +410,6 @@ class TensorParallelLayer:
"""
use_dtensor = True
device_mesh = None
rank = None
# Used to compare the shape of the original tensor
empty_param = None
# Used to init the corresponding DTensor
shard = None
def __init__(self, device_mesh=None, rank=None, empty_param=None):
self.rank = rank
self.device_mesh = device_mesh
self.empty_param = empty_param
@staticmethod
def _prepare_input_fn(input_layouts, desired_input_layouts, mod, inputs, device_mesh): ...
@ -478,12 +439,12 @@ class GatherParallel(TensorParallelLayer):
def __init__(
self,
*,
input_layouts: Placement | None = None,
output_layouts: Placement | None = None,
use_local_output: bool = True,
**kwargs,
):
super().__init__(**kwargs)
super().__init__()
self.input_layouts = (input_layouts or Replicate(),)
self.output_layouts = output_layouts
self.desired_input_layouts = (Replicate(),)
@ -504,21 +465,6 @@ class GatherParallel(TensorParallelLayer):
dist.all_reduce(outputs[0], op=dist.ReduceOp.SUM, async_op=False)
return outputs
def shard_tensor(
self,
param,
param_type=None,
param_casting_dtype=None,
to_contiguous=None,
rank=None,
device_mesh=None,
tensor_idx=None,
):
shard = [Replicate()]
parameter = param[...].to(param_casting_dtype)
self.shard = shard
return parameter, shard
def prepare_module_tp(self, module: nn.Module, device_mesh) -> nn.Module:
distribute_module(
module,
@ -547,23 +493,6 @@ class IsolatedParallel(TensorParallelLayer):
# TODO: figure out dynamo support for instance method and switch this to instance method
return outputs
def shard_tensor(
self,
param,
param_type=None,
param_casting_dtype=None,
to_contiguous=None,
rank=None,
device_mesh=None,
tensor_idx=None,
):
mesh = device_mesh or self.device_mesh
parameter = param[...].to(param_casting_dtype)
if mesh is not None:
parameter = parameter / mesh.size()
self.shard = None
return parameter, None
def partition_tensor(self, param, empty_param, param_type, param_casting_dtype, to_contiguous, rank, device_mesh):
param = param[...].to(param_casting_dtype)
if to_contiguous:
@ -586,8 +515,8 @@ class ReplicateParallel(TensorParallelLayer):
This class is used to replicate computation in a TP layer (used in SP regions when we don't use sequence parallelism for example)
"""
def __init__(self, use_dtensor=True, use_local_output=True, **kwargs):
super().__init__(**kwargs)
def __init__(self, *, use_dtensor=True, use_local_output=True):
super().__init__()
self.input_layouts = (Replicate(),)
self.output_layouts = (Replicate(),)
self.desired_input_layouts = (Replicate(),)
@ -608,33 +537,12 @@ class ReplicateParallel(TensorParallelLayer):
def _prepare_output_fn(output_layouts, use_local_output, mod, outputs, device_mesh):
return outputs.to_local() if use_local_output and isinstance(outputs, DTensor) else outputs
def shard_tensor(
self,
param,
param_type=None,
param_casting_dtype=None,
to_contiguous=None,
rank=None,
device_mesh=None,
tensor_idx=None,
):
parameter = param[...].to(param_casting_dtype)
shard = [Replicate()]
self.shard = shard
return parameter, shard
def partition_tensor(self, param, empty_param, param_type, param_casting_dtype, to_contiguous, rank, device_mesh):
parameter, shard = self.shard_tensor(
param,
param_type=param_type,
param_casting_dtype=param_casting_dtype,
to_contiguous=to_contiguous,
rank=rank,
device_mesh=device_mesh,
)
if self.use_dtensor:
parameter = DTensor.from_local(parameter, device_mesh, shard, run_check=False)
return parameter
param = param[...].to(param_casting_dtype)
if to_contiguous:
param = param.contiguous()
param = DTensor.from_local(param, device_mesh, [Replicate()], run_check=False)
return param
class ColwiseParallel(TensorParallelLayer):
@ -644,13 +552,13 @@ class ColwiseParallel(TensorParallelLayer):
def __init__(
self,
*,
input_layouts: Placement | None = None,
output_layouts: Placement | None = None,
use_local_output: bool = True,
use_dtensor=True,
**kwargs,
):
super().__init__(**kwargs)
super().__init__()
self.input_layouts = (input_layouts or Replicate(),)
self.output_layouts = (output_layouts or Shard(-1),)
self.desired_input_layouts = (Replicate(),)
@ -670,34 +578,18 @@ class ColwiseParallel(TensorParallelLayer):
input_tensor = input_tensor.redistribute(placements=desired_input_layouts, async_op=False)
return input_tensor
def shard_tensor(
self,
param,
param_type=None,
param_casting_dtype=None,
to_contiguous=None,
rank=None,
device_mesh=None,
tensor_idx=None,
):
device_mesh = self.device_mesh
empty_param = self.empty_param
rank = self.rank
if param_type == "bias":
parameter = get_tensor_shard(param, empty_param, device_mesh, rank, -1, tensor_idx)
shard = [Shard(-1)]
else:
shard = [Shard(-2)]
parameter = get_tensor_shard(param, empty_param, device_mesh, rank, -2, tensor_idx)
parameter = parameter.to(param_casting_dtype)
self.shard = shard
return parameter, shard
def partition_tensor(self, param, empty_param, param_type, param_casting_dtype, to_contiguous, rank, device_mesh):
# colwise shard weight/bias to Shard(0), weight be Shard(-2) (0 if you have 1 dim only)
# means Colwise as Linear is input * weight^T + bias, where
# weight would become Shard(1)
parameter, shard = self.shard_tensor(param, param_type, param_casting_dtype, to_contiguous, rank, device_mesh)
if param_type == "bias":
parameter = get_tensor_shard(param, empty_param, device_mesh, rank, -1)
shard = [Shard(-1)]
else:
shard = [Shard(-2)]
parameter = get_tensor_shard(param, empty_param, device_mesh, rank, -2)
parameter = parameter.to(param_casting_dtype)
if to_contiguous:
parameter = parameter.contiguous()
if self.use_dtensor:
@ -716,21 +608,6 @@ class ColwiseParallel(TensorParallelLayer):
class PackedColwiseParallel(ColwiseParallel):
def shard_tensor(
self,
param,
param_type=None,
param_casting_dtype=None,
to_contiguous=None,
rank=None,
device_mesh=None,
tensor_idx=None,
):
device_mesh = device_mesh or self.device_mesh
empty_param = self.empty_param
rank = rank if rank is not None else self.rank
return get_packed_weights(param, empty_param, device_mesh, rank, -2).to(param_casting_dtype), [Shard(-2)]
def partition_tensor(self, param, empty_param, param_type, param_casting_dtype, to_contiguous, rank, device_mesh):
# colwise shard weight/bias to Shard(0), weight be Shard(-2) (0 if you have 1 dim only)
# means Colwise as Linear is input * weight^T + bias, where
@ -765,41 +642,18 @@ class RowwiseParallel(TensorParallelLayer):
def __init__(
self,
*,
input_layouts: Placement | None = None,
output_layouts: Placement | None = None,
use_local_output: bool = True,
use_dtensor=True,
**kwargs,
):
super().__init__(**kwargs)
super().__init__()
self.input_layouts = (input_layouts or Shard(-1),)
self.output_layouts = (output_layouts or Replicate(),)
self.use_local_output = use_local_output
self.use_dtensor = use_dtensor
def shard_tensor(
self,
param,
param_type=None,
param_casting_dtype=None,
to_contiguous=None,
rank=None,
device_mesh=None,
tensor_idx=None,
):
device_mesh = device_mesh or self.device_mesh
empty_param = self.empty_param
rank = rank if rank is not None else self.rank
if param_type == "bias":
shard = [Replicate()]
parameter = param[...]
else:
parameter = get_tensor_shard(param, empty_param, device_mesh, rank, -1, tensor_idx=tensor_idx)
shard = [Shard(-1)]
parameter = parameter.to(param_casting_dtype)
self.shard = shard
return parameter, shard
def partition_tensor(self, param, empty_param, param_type, param_casting_dtype, to_contiguous, rank, device_mesh):
# Rowwise shard weight to Shard(1), bias to Replicate(), weight be Shard(1)
# means Rowwise as nn.Linear is input * weight^T + bias, where
@ -871,21 +725,6 @@ class RowwiseParallel(TensorParallelLayer):
class PackedRowwiseParallel(RowwiseParallel):
def shard_tensor(
self,
param,
param_type=None,
param_casting_dtype=None,
to_contiguous=None,
rank=None,
device_mesh=None,
tensor_idx=None,
):
device_mesh = device_mesh or self.device_mesh
empty_param = self.empty_param
rank = rank if rank is not None else self.rank
return get_packed_weights(param, empty_param, device_mesh, rank, -1), [Shard(-1)]
def partition_tensor(self, param, empty_param, param_type, param_casting_dtype, to_contiguous, rank, device_mesh):
# colwise shard weight/bias to Shard(0), weight be Shard(-2) (0 if you have 1 dim only)
# means Colwise as Linear is input * weight^T + bias, where
@ -944,8 +783,8 @@ class SequenceParallel(TensorParallelLayer):
to ensure that they are replicated.
"""
def __init__(self, sequence_dim: int = 1, use_local_output: bool = False, use_dtensor=False, **kwargs):
super().__init__(**kwargs)
def __init__(self, *, sequence_dim: int = 1, use_local_output: bool = False, use_dtensor=False):
super().__init__()
self.input_layouts = (Replicate(),)
self.desired_input_layouts = (Shard(1),)
self.output_layouts = (Replicate(),)
@ -954,21 +793,6 @@ class SequenceParallel(TensorParallelLayer):
self.sequence_sharding = (Shard(sequence_dim),)
self.use_local_output = use_local_output
def shard_tensor(
self,
param,
param_type=None,
param_casting_dtype=None,
to_contiguous=None,
rank=None,
device_mesh=None,
tensor_idx=None,
):
parameter = param[...].to(param_casting_dtype)
shard = [Replicate()]
self.shard = shard
return parameter, shard
@staticmethod
def _prepare_input_fn(input_layouts, desired_input_layouts, mod, inputs, device_mesh):
input_tensor = inputs[0]
@ -1003,34 +827,10 @@ class GroupedGemmParallel(TensorParallelLayer):
Applies Expert Parallelism to MoE experts by loading the correct experts on each device.
"""
def __init__(self, **kwargs):
super().__init__(**kwargs)
def __init__(self):
super().__init__()
self.use_dtensor = False
def shard_tensor(
self,
param,
param_type=None,
param_casting_dtype=None,
to_contiguous=None,
rank=None,
device_mesh=None,
tensor_idx=None,
):
empty_param = self.empty_param
ep_rank = self.rank
device_mesh = self.device_mesh
global_num_experts = empty_param.shape[0]
if global_num_experts % device_mesh.size() != 0:
raise ValueError(
f"Global number of experts must be divisible by number of devices: {global_num_experts} % {device_mesh.size()} != 0"
)
local_num_experts = global_num_experts // device_mesh.size()
parameter = param[ep_rank * local_num_experts : (ep_rank + 1) * local_num_experts].to(param_casting_dtype)
self.shard = None
return parameter, None
def partition_tensor(self, param, empty_param, param_type, param_casting_dtype, to_contiguous, rank, device_mesh):
ep_rank = rank
global_num_experts = empty_param.shape[0]
@ -1051,8 +851,8 @@ class RouterParallel(TensorParallelLayer):
"""
def __init__(self, *args, **kwargs):
super().__init__(**kwargs)
self.args = args
self.kwargs = kwargs
self.use_dtensor = False
@staticmethod
@ -1117,20 +917,6 @@ class RouterParallel(TensorParallelLayer):
) # masking class for one hot
return router_scores, router_indices
def shard_tensor(
self,
param,
param_type=None,
param_casting_dtype=None,
to_contiguous=None,
rank=None,
device_mesh=None,
tensor_idx=None,
):
parameter = param[...].to(param_casting_dtype)
self.shard = None
return parameter, None
def partition_tensor(self, param, empty_param, param_type, param_casting_dtype, to_contiguous, rank, device_mesh):
# TODO: i'd like for this to be the default
param = param[...].to(param_casting_dtype)
@ -1273,9 +1059,6 @@ def shard_and_distribute_module(
if current_shard_plan is not None:
try:
tp_layer = ALL_PARALLEL_STYLES[current_shard_plan]
tp_layer.empty_param = empty_param
tp_layer.device_mesh = device_mesh
tp_layer.rank = rank
param = tp_layer.partition_tensor(
param, empty_param, param_type, param_casting_dtype, is_contiguous, rank, device_mesh
)

View File

@ -82,10 +82,8 @@ def causal_mask_function(batch_idx: int, head_idx: int, q_idx: int, kv_idx: int)
def bidirectional_mask_function(batch_idx: int, head_idx: int, q_idx: int, kv_idx: int) -> bool:
"""
This creates a full bidirectional mask.
NOTE: It is important to keep an index-based version for non-vmap expansion.
"""
return q_idx >= 0
return q_idx.new_ones((), dtype=torch.bool)
def sliding_window_overlay(sliding_window: int) -> Callable:
@ -112,6 +110,18 @@ def chunked_overlay(chunk_size: int, left_padding: torch.Tensor) -> Callable:
return inner_mask
def _legacy_chunked_overlay(chunk_size: int) -> Callable:
"""
Same as the above function, but do not correctly account for left padding tokens.
Only kept for compatibility with older torch versions (< 2.6).
"""
def inner_mask(batch_idx: int, head_idx: int, q_idx: int, kv_idx: int) -> bool:
return kv_idx // chunk_size == q_idx // chunk_size
return inner_mask
def sliding_window_causal_mask_function(sliding_window: int) -> Callable:
"""
This return the mask_function function to create a sliding window mask.
@ -123,6 +133,8 @@ def chunked_causal_mask_function(chunk_size: int, left_padding: torch.Tensor) ->
"""
This return the mask_function function to create a chunked attention mask.
"""
if not _is_torch_greater_or_equal_than_2_6:
return and_masks(_legacy_chunked_overlay(chunk_size), causal_mask_function)
return and_masks(chunked_overlay(chunk_size, left_padding), causal_mask_function)
@ -163,17 +175,52 @@ def add_offsets_to_mask_function(mask_function: Callable, q_offset: int, kv_offs
return inner_mask
def _vmap_for_bhqkv(mask_function: Callable, bh_indices: bool = True) -> Callable:
"""
Used to vmap our mask_functions over the q_idx and kv_idx dimensions of the inputs. Optionally, vmap over
the batch and head indices as well if `bh_indices=True`.
Using vmap here allows us to keep the performance of vectorized ops, while having a single set of primitive
functions between attention interfaces (i.e. between flex and sdpa/eager, FA2 being a bit different).
Args:
mask_function (`Callable`):
The mask_function to vmap.
bh_indices (`bool`, optional):
Whether to vmap over the batch and head indices as well, or only q and kv indices.
Returns:
Callable: The vmapped function.
"""
# We vmap the function 2 times, broadcasting the [q_idx, kv_idx] dimensions
dimensions = [(None, None, None, 0), (None, None, 0, None)]
if bh_indices:
# We extend broadcasting over the [batch_idx, head_idx] dimensions
dimensions.extend([(None, 0, None, None), (0, None, None, None)])
for dims in dimensions:
mask_function = torch.vmap(mask_function, in_dims=dims, out_dims=0)
return mask_function
def prepare_padding_mask(
attention_mask: Optional[torch.Tensor], kv_length: int, kv_offset: int
attention_mask: Optional[torch.Tensor], kv_length: int, kv_offset: int, _slice: bool = True
) -> Optional[torch.Tensor]:
"""
From the 2D attention mask, prepare the correct padding mask to use by potentially padding it.
From the 2D attention mask, prepare the correct padding mask to use by potentially padding it, and slicing
according to the `kv_offset` if `_slice` is `True`.
"""
local_padding_mask = attention_mask
if attention_mask is not None:
# Pad it if necessary
if (padding_length := kv_length + kv_offset - attention_mask.shape[-1]) > 0:
local_padding_mask = torch.nn.functional.pad(attention_mask, (0, padding_length))
# For flex, we should not slice them, only use an offset
if _slice:
# Equivalent to: `local_padding_mask = attention_mask[:, kv_offset : kv_offset + kv_length]`,
# but without data-dependent slicing (i.e. torch.compile friendly)
mask_indices = torch.arange(kv_length, device=local_padding_mask.device)
mask_indices += kv_offset
local_padding_mask = local_padding_mask[:, mask_indices]
return local_padding_mask
@ -235,39 +282,7 @@ def _ignore_bidirectional_mask_sdpa(padding_mask: Optional[torch.Tensor]) -> boo
return False
def _vmap_expansion_sdpa(mask_function: Callable) -> Callable:
"""
Used to vmap our mask_functions over the all 4 dimensions (b_idx, h_idx, q_idx, kv_idx) of the inputs.
Using vmap here allows us to keep the performance of vectorized ops, while having a single set of primitive
functions between attention interfaces (i.e. between flex and sdpa/eager, FA2 being a bit different).
"""
# We vmap the function over all 4 dimensions, broadcasting [b_idx, h_idx, q_idx, kv_idx]
dimensions = [(None, None, None, 0), (None, None, 0, None), (None, 0, None, None), (0, None, None, None)]
for dims in dimensions:
mask_function = torch.vmap(mask_function, in_dims=dims, out_dims=0)
return mask_function
def _non_vmap_expansion_sdpa(
batch_indices: torch.Tensor, head_indices: torch.Tensor, q_indices: torch.Tensor, kv_indices: torch.Tensor
):
"""
Used to broadcast our mask_functions over the all 4 dimensions (b_idx, h_idx, q_idx, kv_idx) of the inputs.
Allows the usage of any index-based mask function without relying on vmap.
NOTE: This is limited to index based functions only and is not guaranteed to work otherwise.
Reference:
- https://github.com/huggingface/optimum-onnx/blob/c123e8f4fab61b54a8e0e31ce74462bcacca576e/optimum/exporters/onnx/model_patcher.py#L362-L365
"""
batch_indices = batch_indices[:, None, None, None]
head_indices = head_indices[None, :, None, None]
q_indices = q_indices[None, None, :, None]
kv_indices = kv_indices[None, None, None, :]
return batch_indices, head_indices, q_indices, kv_indices
def sdpa_mask(
def sdpa_mask_recent_torch(
batch_size: int,
cache_position: torch.Tensor,
kv_length: int,
@ -277,8 +292,6 @@ def sdpa_mask(
local_size: Optional[int] = None,
allow_is_causal_skip: bool = True,
allow_is_bidirectional_skip: bool = False,
allow_torch_fix: bool = True,
use_vmap: bool = False,
**kwargs,
) -> Optional[torch.Tensor]:
"""
@ -311,12 +324,6 @@ def sdpa_mask(
allow_is_bidirectional_skip (`bool`, optional):
Whether to allow to return `None` for the mask under conditions where we do not have to add any bias,
i.e. full attention without any padding. Default to `False`.
allow_torch_fix (`bool`, optional):
Whether to update the mask in case a query is not attending to any tokens, to solve a bug in torch's older
versions. We need an arg to skip it when using eager. By default `True`.
use_vmap (`bool`, optional):
Whether to use `vmap` during the mask construction or not. Allows powerful custom patterns that may not be
index-based (for the cost of speed performance). By default `False`.
## Creating a simple causal mask:
@ -384,8 +391,97 @@ def sdpa_mask(
"""
q_length = cache_position.shape[0]
# Potentially pad the 2D mask, and slice it correctly
padding_mask = prepare_padding_mask(attention_mask, kv_length, kv_offset, _slice=False)
# Potentially pad the 2D mask
# Under specific conditions, we can avoid materializing the mask
# 1. Causal masks can rely on the `is_causal` argument
# 2. Bidirectional do not need any further processing (no bias)
if allow_is_causal_skip and _ignore_causal_mask_sdpa(padding_mask, q_length, kv_length, kv_offset, local_size):
return None
if allow_is_bidirectional_skip and _ignore_bidirectional_mask_sdpa(padding_mask):
return None
# vmap can incur performance issues as reported in #41566 for bidirectional mask as we only need to expand the
# padding mask. Thus, we allow early exit here if we do not detect any modification to the base mask function
if mask_function is bidirectional_mask_function:
if padding_mask is not None:
# used for slicing without data-dependent slicing
mask_indices = torch.arange(kv_length, device=cache_position.device) + kv_offset
return padding_mask[:, None, None, mask_indices].expand(-1, -1, q_length, -1)
else:
return torch.ones(batch_size, 1, q_length, kv_length, dtype=torch.bool, device=cache_position.device)
# Similar to `kv_arange = torch.arange(start=kv_offset, end=kv_offset + kv_length, device=cache_position.device)`
# but without data-dependent slicing (i.e. torch.compile friendly)
kv_arange = torch.arange(kv_length, device=cache_position.device)
kv_arange += kv_offset
# Potentially add the padding 2D mask
if padding_mask is not None:
mask_function = and_masks(mask_function, padding_mask_function(padding_mask))
batch_arange = torch.arange(batch_size, device=cache_position.device)
head_arange = torch.arange(1, device=cache_position.device)
# This creates the 4D mask easily. Note that we need this context manager as vmap cannot handle slicing a tensor from
# scalar tensor (it internally calls `.item()` which vmap does not allow, but this context works around it
# We don't need to add an offset to the mask_function either, as we vmap directly the correct indices for k and kv indices
with TransformGetItemToIndex():
causal_mask = _vmap_for_bhqkv(mask_function)(batch_arange, head_arange, cache_position, kv_arange)
return causal_mask
def sdpa_mask_older_torch(
batch_size: int,
cache_position: torch.Tensor,
kv_length: int,
kv_offset: int = 0,
mask_function: Callable = causal_mask_function,
attention_mask: Optional[torch.Tensor] = None,
local_size: Optional[int] = None,
allow_is_causal_skip: bool = True,
allow_torch_fix: bool = True,
allow_is_bidirectional_skip: bool = False,
**kwargs,
) -> Optional[torch.Tensor]:
"""
NOTE: This function is only used when torch version is torch<2.5 - see `sdpa_mask_recent_torch` otherwise.
Create a 4D boolean mask of shape `(batch_size, 1, query_length, kv_length)` where a value of True indicates that
the element should take part in the attention computation, and False that it should not.
If `allow_torch_fix=True` (the default), rows corresponding to query tokens that do not attend
to any other tokens (due to padding) will be fully attended to instead, in order to avoid `nan` propagation (this does
not change the final result).
Args:
batch_size (`int`):
The batch size of the input sequence.
cache_position (`torch.Tensor`):
A tensor of shape (query_length,) indicating the current indices of the input sequence elements.
kv_length (`int`):
The size that the key and value states will have during the attention computation.
kv_offset (`int`, optional):
An optional offset to indicate at which first position the key and values states will refer to.
mask_function (`Callable`):
The mask factory function describing the mask pattern.
attention_mask (`torch.Tensor`, optional):
The 2D attention mask corresponding to padded tokens of shape (batch_size, number_of_seen_tokens+q_length)
local_size (`int`, optional):
The size of the local attention, if we do not use full attention. This is used only if `allow_is_causal_skip=True`
to try to skip mask creation if possible.
allow_is_causal_skip (`bool`, optional):
Whether to allow to return `None` for the mask under conditions where we can use the `is_causal` argument in
`torch.sdpa` instead. Default to `True`.
allow_torch_fix (`bool`, optional):
Whether to update the mask in case a query is not attending to any tokens, to solve a bug in torch's older
versions. We need an arg to skip it when using eager. By default `True`.
allow_is_bidirectional_skip (`bool`, optional):
Whether to allow to return `None` for the mask under conditions where we do not have to add any bias,
i.e. full attention without any padding. Default to `False`.
"""
q_length = cache_position.shape[0]
# Potentially pad the 2D mask, and slice it correctly
padding_mask = prepare_padding_mask(attention_mask, kv_length, kv_offset)
# Under specific conditions, we can avoid materializing the mask
@ -396,45 +492,38 @@ def sdpa_mask(
if allow_is_bidirectional_skip and _ignore_bidirectional_mask_sdpa(padding_mask):
return None
# Potentially add the padding 2D mask
if padding_mask is not None:
mask_function = and_masks(mask_function, padding_mask_function(padding_mask))
# vmap can incur performance issues as reported in #41566 for bidirectional mask as we only need to expand the
# padding mask. Thus, we allow early exit here if we do not detect any modification to the base mask function
if mask_function is bidirectional_mask_function:
if padding_mask is not None:
return padding_mask[:, None, None, :].expand(-1, -1, q_length, -1)
else:
return torch.ones(batch_size, 1, q_length, kv_length, dtype=torch.bool, device=cache_position.device)
batch_arange = torch.arange(batch_size, device=cache_position.device)
head_arange = torch.arange(1, device=cache_position.device)
# Similar to `kv_arange = torch.arange(start=kv_offset, end=kv_offset + kv_length, device=cache_position.device)`
# but without data-dependent slicing (i.e. torch.compile friendly)
kv_arange = torch.arange(kv_length, device=cache_position.device) + kv_offset
kv_arange = torch.arange(kv_length, device=cache_position.device)
kv_arange += kv_offset
# Actual mask creation
# Option 1: Fast non-vmap mask creation (default)
if not use_vmap:
# Apply mask function element-wise through broadcasting
attention_mask = mask_function(*_non_vmap_expansion_sdpa(batch_arange, head_arange, cache_position, kv_arange))
# Expand the mask to match batch size and query length if they weren't used in the mask function
attention_mask = attention_mask.expand(batch_size, -1, q_length, kv_length)
# Option 2: Vmap mask creation (torch>=2.6 and custom patterns)
elif _is_torch_greater_or_equal_than_2_6:
# This creates the 4D mask easily. Note that we need this context manager as vmap cannot handle slicing a tensor from
# scalar tensor (it internally calls `.item()` which vmap does not allow, but this context works around it
# We don't need to add an offset to the mask_function either, as we vmap directly the correct indices for k and kv indices
with TransformGetItemToIndex():
attention_mask = _vmap_expansion_sdpa(mask_function)(batch_arange, head_arange, cache_position, kv_arange)
# Option 3: Error out since it indicates that the user did something custom, which they shouldn't have (torch<2.6)
else:
raise ValueError(
"The vmap functionality for mask creation is only supported from torch>=2.6. "
"Please update your torch version or use `use_vmap=False` with index-based masks."
)
# This creates the 4D mask easily. Note that we do not include vmap over the batch_idx dimension as well,
# as vmap cannot handle slicing a tensor from scalar tensor (it internally calls `.item()` which vmap does not allow
# However, in more recent version of Pytorch, a trick was introduced to handle it - which is the reason we have
# `sdpa_mask_recent_torch`, as it allows more general `mask_function`
causal_mask = _vmap_for_bhqkv(mask_function, bh_indices=False)(None, None, cache_position, kv_arange)
causal_mask = causal_mask[None, None, :, :].expand(batch_size, -1, -1, -1)
if padding_mask is not None:
causal_mask = causal_mask * padding_mask[:, None, None, :]
# Due to a bug in versions of torch<2.5, we need to update the mask in case a query is not attending to any
# tokens (due to padding). See details in https://github.com/pytorch/pytorch/issues/110213
if not _is_torch_greater_or_equal_than_2_5 and allow_torch_fix:
attention_mask = attention_mask | torch.all(~attention_mask, dim=-1, keepdim=True)
causal_mask |= torch.all(~causal_mask, dim=-1, keepdim=True)
return causal_mask
return attention_mask
# We use the version with newer torch whenever possible, as it is more general and can handle arbitrary mask functions
# (especially mask_function indexing a tensor, such as the padding mask function)
sdpa_mask = sdpa_mask_recent_torch if _is_torch_greater_or_equal_than_2_6 else sdpa_mask_older_torch
def eager_mask(
@ -445,7 +534,6 @@ def eager_mask(
mask_function: Callable = causal_mask_function,
attention_mask: Optional[torch.Tensor] = None,
dtype: torch.dtype = torch.float32,
use_vmap: bool = False,
**kwargs,
) -> torch.Tensor:
"""
@ -468,14 +556,10 @@ def eager_mask(
The 2D attention mask corresponding to padded tokens of shape (batch_size, number_of_seen_tokens+q_length)
dtype (`torch.dtype`, optional):
The dtype to use for the mask. By default, `torch.float32`.
use_vmap (`bool`, optional):
Whether to use `vmap` during the mask construction or not. Allows powerful custom patterns that may not be
index-based (for the cost of speed performance). By default `False`.
"""
# The masks for eager attention are simply boolean mask from sdpa, casted to 0 and -inf
_ = kwargs.pop("allow_is_causal_skip", None)
_ = kwargs.pop("allow_is_bidirectional_skip", None)
_ = kwargs.pop("allow_torch_fix", None)
mask = sdpa_mask(
batch_size=batch_size,
cache_position=cache_position,
@ -486,7 +570,6 @@ def eager_mask(
allow_is_causal_skip=False,
allow_is_bidirectional_skip=False,
allow_torch_fix=False,
use_vmap=use_vmap,
**kwargs,
)
min_dtype = torch.finfo(dtype).min
@ -572,7 +655,7 @@ def flex_attention_mask(
if not _is_torch_greater_or_equal_than_2_6 and pad_len > 0:
attention_mask = torch.nn.functional.pad(attention_mask, value=0, pad=(0, pad_len))
padding_mask = prepare_padding_mask(attention_mask, kv_length, kv_offset)
padding_mask = prepare_padding_mask(attention_mask, kv_length, kv_offset, _slice=False)
mask_function = and_masks(mask_function, padding_mask_function(padding_mask))
# Add the offsets on top (because flex interface only allows length, not start and end indices)
@ -768,11 +851,6 @@ def create_causal_mask(
mask_factory_function = causal_mask_function
mask_interface = ALL_MASK_ATTENTION_FUNCTIONS[config._attn_implementation]
# Defaulting to using non-vmap based mask creations except when detecting
# users passing custom mask functions (as we cannot guarantee that they
# are properly index-based as required by our implementation).
use_vmap = False
# Do not allow skip if we are compiling (this is to match BC)
# TODO: cyril -> probably revisit and remove this, but a lot of tests rely on it
if _is_torch_xpu_available:
@ -789,16 +867,14 @@ def create_causal_mask(
raise ValueError("Using `or_mask_function` or `and_mask_function` arguments require torch>=2.6")
mask_factory_function = or_masks(mask_factory_function, or_mask_function)
allow_is_causal_skip = False
use_vmap = True
if and_mask_function is not None:
if not _is_torch_greater_or_equal_than_2_6:
raise ValueError("Using `or_mask_function` or `and_mask_function` arguments require torch>=2.6")
mask_factory_function = and_masks(mask_factory_function, and_mask_function)
allow_is_causal_skip = False
use_vmap = True
# If we detected packing format
if packed_sequence_mask is not None:
if packed_sequence_mask is not None and _is_torch_greater_or_equal_than_2_6:
mask_factory_function = and_masks(mask_factory_function, packed_sequence_mask_function(packed_sequence_mask))
allow_is_causal_skip = False
@ -813,7 +889,6 @@ def create_causal_mask(
allow_is_causal_skip=allow_is_causal_skip, # additional kwarg for sdpa
dtype=dtype, # Additional kwarg for eager
config=config, # Pass the config as well, in case someone wants to easily have their own mask_interface
use_vmap=use_vmap, # Short-circuit to non-vmap expansions for the mask
)
return causal_mask
@ -867,10 +942,6 @@ def create_bidirectional_mask(
# Allow skipping the mask creation except we have additional masking operators (and/or masks)
allow_is_bidirectional_skip = True
# Defaulting to using non-vmap based mask creations except when detecting
# users passing custom mask functions (as we cannot guarantee that they
# are properly index-based as required by our implementation).
use_vmap = False
# Allow slight deviations from the base mask
# Note that it is very important to apply this before any other deviations of the mask (such as packed sequence mask,
@ -880,13 +951,11 @@ def create_bidirectional_mask(
raise ValueError("Using `or_mask_function` or `and_mask_function` arguments require torch>=2.6")
mask_factory_function = or_masks(mask_factory_function, or_mask_function)
allow_is_bidirectional_skip = False
use_vmap = True
if and_mask_function is not None:
if not _is_torch_greater_or_equal_than_2_6:
raise ValueError("Using `or_mask_function` or `and_mask_function` arguments require torch>=2.6")
mask_factory_function = and_masks(mask_factory_function, and_mask_function)
allow_is_bidirectional_skip = False
use_vmap = True
# We now create the mask
attention_mask = mask_interface(
@ -901,7 +970,6 @@ def create_bidirectional_mask(
allow_is_bidirectional_skip=allow_is_bidirectional_skip,
dtype=dtype, # Additional kwarg for eager
config=config, # Pass the config as well, in case someone wants to easily have their own mask_interface
use_vmap=use_vmap, # Short-circuit to non-vmap expansions for the mask
)
return attention_mask
@ -964,10 +1032,6 @@ def create_sliding_window_causal_mask(
mask_factory_function = sliding_window_causal_mask_function(sliding_window)
mask_interface = ALL_MASK_ATTENTION_FUNCTIONS[config._attn_implementation]
# Defaulting to using non-vmap based mask creations except when detecting
# users passing custom mask functions (as we cannot guarantee that they
# are properly index-based as required by our implementation).
use_vmap = False
# Do not allow skip if we are compiling (this is to match BC)
# TODO: cyril -> probably revisit and remove this, but a lot of tests rely on it
allow_is_causal_skip = not getattr(past_key_values, "is_compileable", False)
@ -980,16 +1044,14 @@ def create_sliding_window_causal_mask(
raise ValueError("Using `or_mask_function` or `and_mask_function` arguments require torch>=2.6")
mask_factory_function = or_masks(mask_factory_function, or_mask_function)
allow_is_causal_skip = False
use_vmap = True
if and_mask_function is not None:
if not _is_torch_greater_or_equal_than_2_6:
raise ValueError("Using `or_mask_function` or `and_mask_function` arguments require torch>=2.6")
mask_factory_function = and_masks(mask_factory_function, and_mask_function)
allow_is_causal_skip = False
use_vmap = True
# If we detected packing format
if packed_sequence_mask is not None:
if packed_sequence_mask is not None and _is_torch_greater_or_equal_than_2_6:
mask_factory_function = and_masks(mask_factory_function, packed_sequence_mask_function(packed_sequence_mask))
allow_is_causal_skip = False
@ -1005,7 +1067,6 @@ def create_sliding_window_causal_mask(
local_size=sliding_window, # Additional kwarg for sdpa
dtype=dtype, # Additional kwarg for eager
config=config, # Pass the config as well, in case someone wants to easily have their own mask_interface
use_vmap=use_vmap, # Short-circuit to non-vmap expansions for the mask
)
return causal_mask
@ -1079,13 +1140,20 @@ def create_chunked_causal_mask(
left_padding_tokens = (attention_mask.cumsum(dim=-1) == torch.zeros_like(attention_mask)).sum(dim=-1)
else:
left_padding_tokens = torch.zeros(batch_size, device=cache_position.device, dtype=int)
# Raise a warning for older versions if the problematic left-padding situation arises
if (
not _is_torch_greater_or_equal_than_2_6
and kv_length + kv_offset > chunk_size
and (left_padding_tokens > 0).any()
):
logger.warning_once(
"Due to limitations of your current torch version, we cannot correctly account for the left-padding "
"when computing the chunked attention pattern. This will lead to a wrong attention mask for the padded "
"sequences. Behavior will be undefined. Please upgrade to `torch>=2.6` to solve this issue."
)
mask_factory_function = chunked_causal_mask_function(chunk_size, left_padding_tokens)
mask_interface = ALL_MASK_ATTENTION_FUNCTIONS[config._attn_implementation]
# Defaulting to using non-vmap based mask creations except when detecting
# users passing custom mask functions (as we cannot guarantee that they
# are properly index-based as required by our implementation).
use_vmap = False
# Do not allow skip if we are compiling (this is to match BC)
# TODO: cyril -> probably revisit and remove this, but a lot of tests rely on it
allow_is_causal_skip = not getattr(past_key_values, "is_compileable", False)
@ -1098,16 +1166,14 @@ def create_chunked_causal_mask(
raise ValueError("Using `or_mask_function` or `and_mask_function` arguments require torch>=2.6")
mask_factory_function = or_masks(mask_factory_function, or_mask_function)
allow_is_causal_skip = False
use_vmap = True
if and_mask_function is not None:
if not _is_torch_greater_or_equal_than_2_6:
raise ValueError("Using `or_mask_function` or `and_mask_function` arguments require torch>=2.6")
mask_factory_function = and_masks(mask_factory_function, and_mask_function)
allow_is_causal_skip = False
use_vmap = True
# If we detected packing format
if packed_sequence_mask is not None:
if packed_sequence_mask is not None and _is_torch_greater_or_equal_than_2_6:
mask_factory_function = and_masks(mask_factory_function, packed_sequence_mask_function(packed_sequence_mask))
allow_is_causal_skip = False
@ -1123,7 +1189,6 @@ def create_chunked_causal_mask(
local_size=chunk_size, # Additional kwarg for sdpa
dtype=dtype, # Additional kwarg for eager
config=config, # Pass the config as well, in case someone wants to easily have their own mask_interface
use_vmap=use_vmap, # Short-circuit to non-vmap expansions for the mask
)
return causal_mask

File diff suppressed because it is too large Load Diff

View File

@ -29,7 +29,6 @@ import torch
import torch.nn.functional as F
from torch import nn
from ... import initialization as init
from ...activations import ACT2FN
from ...integrations import use_kernel_forward_from_hub
from ...masking_utils import create_causal_mask
@ -407,14 +406,13 @@ class Aimv2PreTrainedModel(PreTrainedModel):
_supports_flash_attn = True
_supports_flex_attn = True
@torch.no_grad()
def _init_weights(self, module):
super()._init_weights(module)
if hasattr(module, "logit_scale"):
if isinstance(module.logit_scale, nn.Parameter):
init.constant_(module.logit_scale, math.log(1 / 0.07))
module.logit_scale.data.fill_(math.log(1 / 0.07))
elif isinstance(module, Aimv2AttentionPoolingHead):
init.normal_(module.cls_token, mean=0.0, std=self.config.initializer_range)
module.cls_token.data.normal_(mean=0.0, std=self.config.initializer_range)
@auto_docstring(

View File

@ -22,7 +22,6 @@ import torch
import torch.nn.functional as F
from torch import nn
from ... import initialization as init
from ...masking_utils import create_causal_mask
from ...modeling_layers import GradientCheckpointingLayer
from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
@ -450,14 +449,13 @@ class Aimv2PreTrainedModel(PreTrainedModel):
_supports_flash_attn = True
_supports_flex_attn = True
@torch.no_grad()
def _init_weights(self, module):
super()._init_weights(module)
if hasattr(module, "logit_scale"):
if isinstance(module.logit_scale, nn.Parameter):
init.constant_(module.logit_scale, math.log(1 / 0.07))
module.logit_scale.data.fill_(math.log(1 / 0.07))
elif isinstance(module, Aimv2AttentionPoolingHead):
init.normal_(module.cls_token, mean=0.0, std=self.config.initializer_range)
module.cls_token.data.normal_(mean=0.0, std=self.config.initializer_range)
@auto_docstring(

View File

@ -22,7 +22,6 @@ import torch
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ... import initialization as init
from ...activations import ACT2FN
from ...masking_utils import create_bidirectional_mask
from ...modeling_outputs import (
@ -303,22 +302,21 @@ class AlbertPreTrainedModel(PreTrainedModel):
"attentions": AlbertAttention,
}
@torch.no_grad()
def _init_weights(self, module):
"""Initialize the weights."""
if isinstance(module, nn.Linear):
init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
init.zeros_(module.bias)
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
init.zeros_(module.weight[module.padding_idx])
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
init.zeros_(module.bias)
init.ones_(module.weight)
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, AlbertMLMHead):
init.zeros_(module.bias)
module.bias.data.zero_()
@dataclass
@ -427,10 +425,7 @@ class AlbertModel(AlbertPreTrainedModel):
"""
)
class AlbertForPreTraining(AlbertPreTrainedModel):
_tied_weights_keys = {
"predictions.decoder.weight": "albert.embeddings.word_embeddings.weight",
"predictions.decoder.bias": "predictions.bias",
}
_tied_weights_keys = ["predictions.decoder.bias", "predictions.decoder.weight"]
def __init__(self, config: AlbertConfig):
super().__init__(config)
@ -530,6 +525,7 @@ class AlbertMLMHead(nn.Module):
self.dense = nn.Linear(config.hidden_size, config.embedding_size)
self.decoder = nn.Linear(config.embedding_size, config.vocab_size)
self.activation = ACT2FN[config.hidden_act]
self.decoder.bias = self.bias
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
@ -541,6 +537,14 @@ class AlbertMLMHead(nn.Module):
return prediction_scores
def _tie_weights(self) -> None:
# For accelerate compatibility and to not break backward compatibility
if self.decoder.bias.device.type == "meta":
self.decoder.bias = self.bias
else:
# To tie those two weights if they get disconnected (on TPU or when the bias is resized)
self.bias = self.decoder.bias
class AlbertSOPHead(nn.Module):
def __init__(self, config: AlbertConfig):
@ -557,10 +561,7 @@ class AlbertSOPHead(nn.Module):
@auto_docstring
class AlbertForMaskedLM(AlbertPreTrainedModel):
_tied_weights_keys = {
"predictions.decoder.weight": "albert.embeddings.word_embeddings.weight",
"predictions.decoder.bias": "predictions.bias",
}
_tied_weights_keys = ["predictions.decoder.bias", "predictions.decoder.weight"]
def __init__(self, config):
super().__init__(config)

View File

@ -22,7 +22,6 @@ from typing import Any, Optional, Union
import torch
from torch import nn
from ... import initialization as init
from ...activations import ACT2FN
from ...modeling_layers import GradientCheckpointingLayer
from ...modeling_outputs import (
@ -824,25 +823,24 @@ class AlignPreTrainedModel(PreTrainedModel):
input_modalities = ["image", "text"]
supports_gradient_checkpointing = True
@torch.no_grad()
def _init_weights(self, module: nn.Module):
"""Initialize the weights"""
std = self.config.initializer_range
if isinstance(module, (nn.Linear, nn.Conv2d)):
init.normal_(module.weight, mean=0.0, std=std)
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
init.zeros_(module.bias)
module.bias.data.zero_()
elif isinstance(module, AlignModel):
init.xavier_uniform_(module.text_projection.weight)
init.zeros_(module.text_projection.bias)
init.constant_(module.temperature, self.config.temperature_init_value)
nn.init.xavier_uniform_(module.text_projection.weight)
module.text_projection.bias.data.zero_()
module.temperature.data.fill_(self.config.temperature_init_value)
elif isinstance(module, nn.Embedding):
init.normal_(module.weight, mean=0.0, std=std)
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
init.zeros_(module.weight[module.padding_idx])
module.weight.data[module.padding_idx].zero_()
if isinstance(module, (nn.LayerNorm, nn.BatchNorm2d)):
init.zeros_(module.bias)
init.ones_(module.weight)
module.bias.data.zero_()
module.weight.data.fill_(1.0)
@auto_docstring(

View File

@ -59,6 +59,9 @@ class AlignProcessor(ProcessorMixin):
"""
attributes = ["image_processor", "tokenizer"]
image_processor_class = "EfficientNetImageProcessor"
tokenizer_class = ("BertTokenizer", "BertTokenizerFast")
valid_processor_kwargs = AlignProcessorKwargs
def __init__(self, image_processor, tokenizer):

View File

@ -22,7 +22,6 @@ from typing import Any, Optional, Union
import torch
import torch.nn as nn
from ... import initialization as init
from ...activations import ACT2FN
from ...modeling_layers import GradientCheckpointingLayer
from ...modeling_outputs import (
@ -771,49 +770,50 @@ class AltCLIPPreTrainedModel(PreTrainedModel):
supports_gradient_checkpointing = True
_no_split_module = []
@torch.no_grad()
def _init_weights(self, module):
"""Initialize the weights"""
factor = self.config.initializer_factor
if isinstance(module, AltCLIPVisionEmbeddings):
factor = self.config.initializer_factor
init.normal_(module.class_embedding, mean=0.0, std=module.embed_dim**-0.5 * factor)
init.normal_(module.patch_embedding.weight, std=module.config.initializer_range * factor)
init.normal_(module.position_embedding.weight, std=module.config.initializer_range * factor)
nn.init.normal_(module.class_embedding, mean=0.0, std=module.embed_dim**-0.5 * factor)
nn.init.normal_(module.patch_embedding.weight, std=module.config.initializer_range * factor)
nn.init.normal_(module.position_embedding.weight, std=module.config.initializer_range * factor)
elif isinstance(module, AltCLIPAttention):
factor = self.config.initializer_factor
in_proj_std = (module.embed_dim**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
out_proj_std = (module.embed_dim**-0.5) * factor
init.normal_(module.q_proj.weight, std=in_proj_std)
init.normal_(module.k_proj.weight, std=in_proj_std)
init.normal_(module.v_proj.weight, std=in_proj_std)
init.normal_(module.out_proj.weight, std=out_proj_std)
nn.init.normal_(module.q_proj.weight, std=in_proj_std)
nn.init.normal_(module.k_proj.weight, std=in_proj_std)
nn.init.normal_(module.v_proj.weight, std=in_proj_std)
nn.init.normal_(module.out_proj.weight, std=out_proj_std)
elif isinstance(module, AltCLIPMLP):
factor = self.config.initializer_factor
in_proj_std = (module.config.hidden_size**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
fc_std = (2 * module.config.hidden_size) ** -0.5 * factor
init.normal_(module.fc1.weight, std=fc_std)
init.normal_(module.fc2.weight, std=in_proj_std)
nn.init.normal_(module.fc1.weight, std=fc_std)
nn.init.normal_(module.fc2.weight, std=in_proj_std)
elif isinstance(module, AltCLIPModel):
init.normal_(
nn.init.normal_(
module.text_projection.weight,
std=module.text_embed_dim**-0.5 * self.config.initializer_factor,
)
init.normal_(
module.text_projection._is_hf_initialized = True
nn.init.normal_(
module.visual_projection.weight,
std=module.vision_embed_dim**-0.5 * self.config.initializer_factor,
)
module.visual_projection._is_hf_initialized = True
elif isinstance(module, nn.LayerNorm):
init.zeros_(module.bias)
init.ones_(module.weight)
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, nn.Linear):
init.normal_(module.weight, mean=0.0, std=self.config.initializer_factor)
module.weight.data.normal_(mean=0.0, std=self.config.initializer_factor)
if module.bias is not None:
init.zeros_(module.bias)
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
init.normal_(module.weight, mean=0.0, std=self.config.initializer_factor)
module.weight.data.normal_(mean=0.0, std=self.config.initializer_factor)
if module.padding_idx is not None:
init.zeros_(module.weight[module.padding_idx])
module.weight.data[module.padding_idx].zero_()
class AltCLIPVisionTransformer(nn.Module):

View File

@ -35,6 +35,10 @@ class AltCLIPProcessor(ProcessorMixin):
The tokenizer is a required input.
"""
attributes = ["image_processor", "tokenizer"]
image_processor_class = ("CLIPImageProcessor", "CLIPImageProcessorFast")
tokenizer_class = ("XLMRobertaTokenizer", "XLMRobertaTokenizerFast")
@deprecate_kwarg(old_name="feature_extractor", version="5.0.0", new_name="image_processor")
def __init__(self, image_processor=None, tokenizer=None):
super().__init__(image_processor, tokenizer)

View File

@ -429,7 +429,7 @@ class ApertusModel(ApertusPreTrainedModel):
@auto_docstring
class ApertusForCausalLM(ApertusPreTrainedModel, GenerationMixin):
_tied_weights_keys = {"lm_head.weight": "model.embed_tokens.weight"}
_tied_weights_keys = ["lm_head.weight"]
_tp_plan = {"lm_head": "colwise_rep"}
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}

View File

@ -434,7 +434,7 @@ class ArceeModel(ArceePreTrainedModel):
@auto_docstring(checkpoint="arcee-ai/AFM-4.5B")
class ArceeForCausalLM(ArceePreTrainedModel, GenerationMixin):
_tied_weights_keys = {"lm_head.weight": "model.embed_tokens.weight"}
_tied_weights_keys = ["lm_head.weight"]
_tp_plan = {"lm_head": "colwise_rep"}
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}

View File

@ -25,7 +25,6 @@ from typing import Optional, Union
import torch
from torch import nn
from ... import initialization as init
from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache
from ...generation import GenerationMixin
@ -586,11 +585,10 @@ class AriaTextPreTrainedModel(PreTrainedModel):
"attentions": AriaTextAttention,
}
@torch.no_grad()
def _init_weights(self, module):
super()._init_weights(module)
if isinstance(module, AriaGroupedExpertsGemm):
init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
@auto_docstring
@ -610,11 +608,10 @@ class AriaPreTrainedModel(PreTrainedModel):
"attentions": AriaTextAttention,
}
@torch.no_grad()
def _init_weights(self, module):
super()._init_weights(module)
if isinstance(module, AriaProjector):
init.trunc_normal_(module.query, std=self.config.initializer_range)
nn.init.trunc_normal_(module.query, std=self.config.initializer_range)
class AriaTextRotaryEmbedding(nn.Module):
@ -763,7 +760,7 @@ class AriaTextModel(AriaTextPreTrainedModel):
@auto_docstring
class AriaTextForCausalLM(AriaTextPreTrainedModel, GenerationMixin):
_tied_weights_keys = {"lm_head.weight": "model.embed_tokens.weight"}
_tied_weights_keys = ["lm_head.weight"]
_tp_plan = {"lm_head": "colwise_rep"}
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
@ -1056,7 +1053,7 @@ class AriaForConditionalGeneration(AriaPreTrainedModel, GenerationMixin):
"^multi_modal_projector": "model.multi_modal_projector",
"^language_model.lm_head": "lm_head",
}
_tied_weights_keys = {"lm_head.weight": "model.language_model.embed_tokens.weight"}
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config: AriaConfig):
super().__init__(config)

View File

@ -19,7 +19,6 @@ import numpy as np
import torch
from torch import nn
from ... import initialization as init
from ...activations import ACT2FN
from ...cache_utils import Cache
from ...configuration_utils import PreTrainedConfig
@ -907,6 +906,10 @@ class AriaProcessor(ProcessorMixin):
A dictionary indicating size conversions for images.
"""
attributes = ["image_processor", "tokenizer"]
image_processor_class = "AriaImageProcessor"
tokenizer_class = "AutoTokenizer"
def __init__(
self,
image_processor=None,
@ -1188,11 +1191,10 @@ class AriaTextPreTrainedModel(PreTrainedModel):
"attentions": AriaTextAttention,
}
@torch.no_grad()
def _init_weights(self, module):
super()._init_weights(module)
if isinstance(module, AriaGroupedExpertsGemm):
init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
class AriaPreTrainedModel(LlamaPreTrainedModel):
@ -1201,11 +1203,10 @@ class AriaPreTrainedModel(LlamaPreTrainedModel):
_can_compile_fullgraph = False # MoE models don't work with torch.compile (dynamic slicing)
_supports_attention_backend = True
@torch.no_grad()
def _init_weights(self, module):
PreTrainedModel._init_weights(self, module)
if isinstance(module, AriaProjector):
init.trunc_normal_(module.query, std=self.config.initializer_range)
nn.init.trunc_normal_(module.query, std=self.config.initializer_range)
class AriaTextModel(LlamaModel):
@ -1219,7 +1220,7 @@ class AriaTextModel(LlamaModel):
class AriaTextForCausalLM(AriaTextPreTrainedModel, LlamaForCausalLM):
_tied_weights_keys = {"lm_head.weight": "model.embed_tokens.weight"}
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config: AriaTextConfig):
super().__init__(config)
@ -1358,8 +1359,6 @@ class AriaModel(LlavaModel):
"""
)
class AriaForConditionalGeneration(LlavaForConditionalGeneration):
_tied_weights_keys = {"lm_head.weight": "model.language_model.embed_tokens.weight"}
def get_image_features(
self,
pixel_values: torch.FloatTensor,

View File

@ -67,6 +67,10 @@ class AriaProcessor(ProcessorMixin):
A dictionary indicating size conversions for images.
"""
attributes = ["image_processor", "tokenizer"]
image_processor_class = "AriaImageProcessor"
tokenizer_class = "AutoTokenizer"
def __init__(
self,
image_processor=None,

View File

@ -272,9 +272,7 @@ if __name__ == "__main__":
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub",
action="store_true",
help="Whether or not to push the converted model to the Hugging Face hub.",
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
args = parser.parse_args()

View File

@ -20,7 +20,6 @@ from typing import Optional, Union
import torch
from torch import nn
from ... import initialization as init
from ...activations import ACT2FN
from ...modeling_layers import GradientCheckpointingLayer
from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, SequenceClassifierOutput
@ -301,20 +300,23 @@ class ASTPreTrainedModel(PreTrainedModel):
"attentions": ASTSelfAttention,
}
@torch.no_grad()
def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None:
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d)):
init.trunc_normal_(module.weight, mean=0.0, std=self.config.initializer_range)
# Upcast the input in `fp32` and cast it back to desired `dtype` to avoid
# `trunc_normal_cpu` not implemented in `half` issues
module.weight.data = nn.init.trunc_normal_(
module.weight.data.to(torch.float32), mean=0.0, std=self.config.initializer_range
).to(module.weight.dtype)
if module.bias is not None:
init.zeros_(module.bias)
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
init.zeros_(module.bias)
init.ones_(module.weight)
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, ASTEmbeddings):
init.zeros_(module.cls_token)
init.zeros_(module.position_embeddings)
init.zeros_(module.distillation_token)
module.cls_token.data.zero_()
module.position_embeddings.data.zero_()
module.distillation_token.data.zero_()
@auto_docstring

View File

@ -223,7 +223,6 @@ CONFIG_MAPPING_NAMES = OrderedDict[str, str](
("layoutlm", "LayoutLMConfig"),
("layoutlmv2", "LayoutLMv2Config"),
("layoutlmv3", "LayoutLMv3Config"),
("layoutxlm", "LayoutLMv2Config"),
("led", "LEDConfig"),
("levit", "LevitConfig"),
("lfm2", "Lfm2Config"),

View File

@ -41,7 +41,6 @@ FEATURE_EXTRACTOR_MAPPING_NAMES = OrderedDict(
("audio-spectrogram-transformer", "ASTFeatureExtractor"),
("clap", "ClapFeatureExtractor"),
("clvp", "ClvpFeatureExtractor"),
("csm", "EncodecFeatureExtractor"),
("dac", "DacFeatureExtractor"),
("data2vec-audio", "Wav2Vec2FeatureExtractor"),
("dia", "DiaFeatureExtractor"),
@ -50,20 +49,14 @@ FEATURE_EXTRACTOR_MAPPING_NAMES = OrderedDict(
("granite_speech", "GraniteSpeechFeatureExtractor"),
("hubert", "Wav2Vec2FeatureExtractor"),
("kyutai_speech_to_text", "KyutaiSpeechToTextFeatureExtractor"),
("markuplm", "MarkupLMFeatureExtractor"),
("mctct", "MCTCTFeatureExtractor"),
("mimi", "EncodecFeatureExtractor"),
("moonshine", "Wav2Vec2FeatureExtractor"),
("moshi", "EncodecFeatureExtractor"),
("musicgen", "EncodecFeatureExtractor"),
("musicgen_melody", "MusicgenMelodyFeatureExtractor"),
("parakeet_ctc", "ParakeetFeatureExtractor"),
("parakeet_encoder", "ParakeetFeatureExtractor"),
("phi4_multimodal", "Phi4MultimodalFeatureExtractor"),
("pop2piano", "Pop2PianoFeatureExtractor"),
("qwen2_5_omni", "WhisperFeatureExtractor"),
("qwen2_audio", "WhisperFeatureExtractor"),
("qwen3_omni_moe", "WhisperFeatureExtractor"),
("seamless_m4t", "SeamlessM4TFeatureExtractor"),
("seamless_m4t_v2", "SeamlessM4TFeatureExtractor"),
("sew", "Wav2Vec2FeatureExtractor"),
@ -73,7 +66,6 @@ FEATURE_EXTRACTOR_MAPPING_NAMES = OrderedDict(
("unispeech", "Wav2Vec2FeatureExtractor"),
("unispeech-sat", "Wav2Vec2FeatureExtractor"),
("univnet", "UnivNetFeatureExtractor"),
("voxtral", "WhisperFeatureExtractor"),
("wav2vec2", "Wav2Vec2FeatureExtractor"),
("wav2vec2-bert", "Wav2Vec2FeatureExtractor"),
("wav2vec2-conformer", "Wav2Vec2FeatureExtractor"),

View File

@ -62,9 +62,7 @@ else:
("aimv2", ("CLIPImageProcessor", "CLIPImageProcessorFast")),
("aimv2_vision_model", ("CLIPImageProcessor", "CLIPImageProcessorFast")),
("align", ("EfficientNetImageProcessor", "EfficientNetImageProcessorFast")),
("altclip", ("CLIPImageProcessor", "CLIPImageProcessorFast")),
("aria", ("AriaImageProcessor", None)),
("aya_vision", ("GotOcr2ImageProcessor", "GotOcr2ImageProcessorFast")),
("beit", ("BeitImageProcessor", "BeitImageProcessorFast")),
("bit", ("BitImageProcessor", "BitImageProcessorFast")),
("blip", ("BlipImageProcessor", "BlipImageProcessorFast")),
@ -75,8 +73,6 @@ else:
("clip", ("CLIPImageProcessor", "CLIPImageProcessorFast")),
("clipseg", ("ViTImageProcessor", "ViTImageProcessorFast")),
("cohere2_vision", (None, "Cohere2VisionImageProcessorFast")),
("colpali", ("SiglipImageProcessor", "SiglipImageProcessorFast")),
("colqwen2", ("Qwen2VLImageProcessor", "Qwen2VLImageProcessorFast")),
("conditional_detr", ("ConditionalDetrImageProcessor", "ConditionalDetrImageProcessorFast")),
("convnext", ("ConvNextImageProcessor", "ConvNextImageProcessorFast")),
("convnextv2", ("ConvNextImageProcessor", "ConvNextImageProcessorFast")),
@ -99,10 +95,8 @@ else:
("efficientformer", ("EfficientFormerImageProcessor", None)),
("efficientloftr", ("EfficientLoFTRImageProcessor", "EfficientLoFTRImageProcessorFast")),
("efficientnet", ("EfficientNetImageProcessor", "EfficientNetImageProcessorFast")),
("emu3", ("Emu3ImageProcessor", None)),
("eomt", ("EomtImageProcessor", "EomtImageProcessorFast")),
("flava", ("FlavaImageProcessor", "FlavaImageProcessorFast")),
("florence2", ("CLIPImageProcessor", "CLIPImageProcessorFast")),
("focalnet", ("BitImageProcessor", "BitImageProcessorFast")),
("fuyu", ("FuyuImageProcessor", "FuyuImageProcessorFast")),
("gemma3", ("Gemma3ImageProcessor", "Gemma3ImageProcessorFast")),
@ -120,13 +114,11 @@ else:
("ijepa", ("ViTImageProcessor", "ViTImageProcessorFast")),
("imagegpt", ("ImageGPTImageProcessor", "ImageGPTImageProcessorFast")),
("instructblip", ("BlipImageProcessor", "BlipImageProcessorFast")),
("internvl", ("GotOcr2ImageProcessor", "GotOcr2ImageProcessorFast")),
("janus", ("JanusImageProcessor", "JanusImageProcessorFast")),
("kosmos-2", ("CLIPImageProcessor", "CLIPImageProcessorFast")),
("kosmos-2.5", ("Kosmos2_5ImageProcessor", "Kosmos2_5ImageProcessorFast")),
("layoutlmv2", ("LayoutLMv2ImageProcessor", "LayoutLMv2ImageProcessorFast")),
("layoutlmv3", ("LayoutLMv3ImageProcessor", "LayoutLMv3ImageProcessorFast")),
("layoutxlm", ("LayoutLMv2ImageProcessor", "LayoutLMv2ImageProcessor")),
("levit", ("LevitImageProcessor", "LevitImageProcessorFast")),
("lfm2_vl", (None, "Lfm2VlImageProcessorFast")),
("lightglue", ("LightGlueImageProcessor", "LightGlueImageProcessorFast")),
@ -149,7 +141,6 @@ else:
("mobilevitv2", ("MobileViTImageProcessor", "MobileViTImageProcessorFast")),
("nat", ("ViTImageProcessor", "ViTImageProcessorFast")),
("nougat", ("NougatImageProcessor", "NougatImageProcessorFast")),
("omdet-turbo", ("DetrImageProcessor", "DetrImageProcessorFast")),
("oneformer", ("OneFormerImageProcessor", "OneFormerImageProcessorFast")),
("ovis2", ("Ovis2ImageProcessor", "Ovis2ImageProcessorFast")),
("owlv2", ("Owlv2ImageProcessor", "Owlv2ImageProcessorFast")),
@ -164,17 +155,14 @@ else:
("prompt_depth_anything", ("PromptDepthAnythingImageProcessor", "PromptDepthAnythingImageProcessorFast")),
("pvt", ("PvtImageProcessor", "PvtImageProcessorFast")),
("pvt_v2", ("PvtImageProcessor", "PvtImageProcessorFast")),
("qwen2_5_omni", ("Qwen2VLImageProcessor", "Qwen2VLImageProcessorFast")),
("qwen2_5_vl", ("Qwen2VLImageProcessor", "Qwen2VLImageProcessorFast")),
("qwen2_vl", ("Qwen2VLImageProcessor", "Qwen2VLImageProcessorFast")),
("qwen3_omni_moe", ("Qwen2VLImageProcessor", "Qwen2VLImageProcessorFast")),
("qwen3_vl", ("Qwen2VLImageProcessor", "Qwen2VLImageProcessorFast")),
("regnet", ("ConvNextImageProcessor", "ConvNextImageProcessorFast")),
("resnet", ("ConvNextImageProcessor", "ConvNextImageProcessorFast")),
("rt_detr", ("RTDetrImageProcessor", "RTDetrImageProcessorFast")),
("sam", ("SamImageProcessor", "SamImageProcessorFast")),
("sam2", (None, "Sam2ImageProcessorFast")),
("sam2_video", (None, "Sam2ImageProcessorFast")),
("sam_hq", ("SamImageProcessor", "SamImageProcessorFast")),
("segformer", ("SegformerImageProcessor", "SegformerImageProcessorFast")),
("seggpt", ("SegGptImageProcessor", None)),
@ -192,14 +180,12 @@ else:
("textnet", ("TextNetImageProcessor", "TextNetImageProcessorFast")),
("timesformer", ("VideoMAEImageProcessor", None)),
("timm_wrapper", ("TimmWrapperImageProcessor", None)),
("trocr", ("ViTImageProcessor", "ViTImageProcessorFast")),
("tvlt", ("TvltImageProcessor", None)),
("tvp", ("TvpImageProcessor", "TvpImageProcessorFast")),
("udop", ("LayoutLMv3ImageProcessor", "LayoutLMv3ImageProcessorFast")),
("upernet", ("SegformerImageProcessor", "SegformerImageProcessorFast")),
("van", ("ConvNextImageProcessor", "ConvNextImageProcessorFast")),
("video_llama_3", ("VideoLlama3ImageProcessor", "VideoLlama3ImageProcessorFast")),
("video_llava", ("VideoLlavaImageProcessor", None)),
("videomae", ("VideoMAEImageProcessor", None)),
("vilt", ("ViltImageProcessor", "ViltImageProcessorFast")),
("vipllava", ("CLIPImageProcessor", "CLIPImageProcessorFast")),
@ -538,9 +524,10 @@ class AutoImageProcessor:
)
use_fast = False
if use_fast:
# Check if the fast image processor class exists
image_processor_class_fast = get_image_processor_class_from_name(image_processor_type)
if image_processor_class_fast is None:
for image_processors in IMAGE_PROCESSOR_MAPPING_NAMES.values():
if image_processor_type in image_processors:
break
else:
image_processor_type = image_processor_type[:-4]
use_fast = False
logger.warning_once(

View File

@ -1700,7 +1700,6 @@ MODEL_FOR_BACKBONE_MAPPING_NAMES = OrderedDict(
("dinov2", "Dinov2Backbone"),
("dinov2_with_registers", "Dinov2WithRegistersBackbone"),
("dinov3_convnext", "DINOv3ConvNextBackbone"),
("dinov3_vit", "DINOv3ViTBackbone"),
("focalnet", "FocalNetBackbone"),
("hgnet_v2", "HGNetV2Backbone"),
("hiera", "HieraBackbone"),

View File

@ -107,7 +107,6 @@ PROCESSOR_MAPPING_NAMES = OrderedDict(
("mllama", "MllamaProcessor"),
("mm-grounding-dino", "GroundingDinoProcessor"),
("moonshine", "Wav2Vec2Processor"),
("omdet-turbo", "OmDetTurboProcessor"),
("oneformer", "OneFormerProcessor"),
("ovis2", "Ovis2Processor"),
("owlv2", "Owlv2Processor"),

View File

@ -72,7 +72,6 @@ TOKENIZER_MAPPING_NAMES = OrderedDict[str, tuple[Optional[str], Optional[str]]](
),
),
("align", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)),
("altclip", ("XLMRobertaTokenizer", "XLMRobertaTokenizerFast" if is_tokenizers_available() else None)),
("arcee", ("LlamaTokenizer", "LlamaTokenizerFast" if is_tokenizers_available() else None)),
("aria", ("LlamaTokenizer", "LlamaTokenizerFast" if is_tokenizers_available() else None)),
("aya_vision", (None, "CohereTokenizerFast" if is_tokenizers_available() else None)),
@ -157,7 +156,6 @@ TOKENIZER_MAPPING_NAMES = OrderedDict[str, tuple[Optional[str], Optional[str]]](
("codegen", ("CodeGenTokenizer", "CodeGenTokenizerFast" if is_tokenizers_available() else None)),
("cohere", (None, "CohereTokenizerFast" if is_tokenizers_available() else None)),
("cohere2", (None, "CohereTokenizerFast" if is_tokenizers_available() else None)),
("cohere2_vision", (None, "CohereTokenizerFast" if is_tokenizers_available() else None)),
("colpali", ("LlamaTokenizer", "LlamaTokenizerFast" if is_tokenizers_available() else None)),
("colqwen2", ("Qwen2Tokenizer", "Qwen2TokenizerFast" if is_tokenizers_available() else None)),
("convbert", ("ConvBertTokenizer", "ConvBertTokenizerFast" if is_tokenizers_available() else None)),
@ -226,7 +224,6 @@ TOKENIZER_MAPPING_NAMES = OrderedDict[str, tuple[Optional[str], Optional[str]]](
),
),
("distilbert", ("DistilBertTokenizer", "DistilBertTokenizerFast" if is_tokenizers_available() else None)),
("donut", ("XLMRobertaTokenizer", "XLMRobertaTokenizerFast" if is_tokenizers_available() else None)),
(
"dpr",
(
@ -241,7 +238,6 @@ TOKENIZER_MAPPING_NAMES = OrderedDict[str, tuple[Optional[str], Optional[str]]](
("ernie4_5_moe", (None, "LlamaTokenizerFast" if is_tokenizers_available() else None)),
("ernie_m", ("ErnieMTokenizer" if is_sentencepiece_available() else None, None)),
("esm", ("EsmTokenizer", None)),
("evolla", (None, "LlamaTokenizerFast" if is_tokenizers_available() else None)),
(
"exaone4",
(
@ -256,13 +252,10 @@ TOKENIZER_MAPPING_NAMES = OrderedDict[str, tuple[Optional[str], Optional[str]]](
("FastSpeech2ConformerTokenizer" if is_g2p_en_available() else None, None),
),
("flaubert", ("FlaubertTokenizer", None)),
("flava", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)),
("flex_olmo", (None, "GPT2TokenizerFast" if is_tokenizers_available() else None)),
("florence2", ("BartTokenizer", "BartTokenizerFast" if is_tokenizers_available() else None)),
("fnet", ("FNetTokenizer", "FNetTokenizerFast" if is_tokenizers_available() else None)),
("fsmt", ("FSMTTokenizer", None)),
("funnel", ("FunnelTokenizer", "FunnelTokenizerFast" if is_tokenizers_available() else None)),
("fuyu", (None, "LlamaTokenizerFast" if is_tokenizers_available() else None)),
(
"gemma",
(
@ -311,7 +304,6 @@ TOKENIZER_MAPPING_NAMES = OrderedDict[str, tuple[Optional[str], Optional[str]]](
("glm4_moe", (None, "PreTrainedTokenizerFast" if is_tokenizers_available() else None)),
("glm4v", (None, "PreTrainedTokenizerFast" if is_tokenizers_available() else None)),
("glm4v_moe", (None, "PreTrainedTokenizerFast" if is_tokenizers_available() else None)),
("got_ocr2", (None, "PreTrainedTokenizerFast" if is_tokenizers_available() else None)),
("gpt-sw3", ("GPTSw3Tokenizer" if is_sentencepiece_available() else None, None)),
("gpt2", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)),
("gpt_bigcode", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)),
@ -322,7 +314,6 @@ TOKENIZER_MAPPING_NAMES = OrderedDict[str, tuple[Optional[str], Optional[str]]](
("gptj", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)),
("gptsan-japanese", ("GPTSanJapaneseTokenizer", None)),
("granite", ("GPT2Tokenizer", None)),
("granite_speech", ("GPT2Tokenizer", None)),
("granitemoe", ("GPT2Tokenizer", None)),
("granitemoehybrid", ("GPT2Tokenizer", None)),
("granitemoeshared", ("GPT2Tokenizer", None)),
@ -362,14 +353,11 @@ TOKENIZER_MAPPING_NAMES = OrderedDict[str, tuple[Optional[str], Optional[str]]](
),
),
("kosmos-2.5", (None, "PreTrainedTokenizerFast" if is_tokenizers_available() else None)),
("kyutai_speech_to_text", (None, "PreTrainedTokenizerFast" if is_tokenizers_available() else None)),
("layoutlm", ("LayoutLMTokenizer", "LayoutLMTokenizerFast" if is_tokenizers_available() else None)),
("layoutlmv2", ("LayoutLMv2Tokenizer", "LayoutLMv2TokenizerFast" if is_tokenizers_available() else None)),
("layoutlmv3", ("LayoutLMv3Tokenizer", "LayoutLMv3TokenizerFast" if is_tokenizers_available() else None)),
("layoutxlm", ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast" if is_tokenizers_available() else None)),
("led", ("LEDTokenizer", "LEDTokenizerFast" if is_tokenizers_available() else None)),
("lfm2", (None, "PreTrainedTokenizerFast" if is_tokenizers_available() else None)),
("lfm2_vl", (None, "PreTrainedTokenizerFast" if is_tokenizers_available() else None)),
("lilt", ("LayoutLMv3Tokenizer", "LayoutLMv3TokenizerFast" if is_tokenizers_available() else None)),
(
"llama",
@ -410,7 +398,6 @@ TOKENIZER_MAPPING_NAMES = OrderedDict[str, tuple[Optional[str], Optional[str]]](
("mamba", (None, "GPTNeoXTokenizerFast" if is_tokenizers_available() else None)),
("mamba2", (None, "GPTNeoXTokenizerFast" if is_tokenizers_available() else None)),
("marian", ("MarianTokenizer" if is_sentencepiece_available() else None, None)),
("markuplm", ("MarkupLMTokenizer", "MarkupLMTokenizerFast" if is_tokenizers_available() else None)),
(
"mbart",
(
@ -497,7 +484,6 @@ TOKENIZER_MAPPING_NAMES = OrderedDict[str, tuple[Optional[str], Optional[str]]](
"NllbTokenizerFast" if is_tokenizers_available() else None,
),
),
("nougat", (None, "NougatTokenizerFast" if is_tokenizers_available() else None)),
(
"nystromformer",
(
@ -519,7 +505,6 @@ TOKENIZER_MAPPING_NAMES = OrderedDict[str, tuple[Optional[str], Optional[str]]](
("OpenAIGPTTokenizer", "OpenAIGPTTokenizerFast" if is_tokenizers_available() else None),
),
("opt", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)),
("ovis2", (None, "Qwen2TokenizerFast" if is_tokenizers_available() else None)),
("owlv2", ("CLIPTokenizer", "CLIPTokenizerFast" if is_tokenizers_available() else None)),
("owlvit", ("CLIPTokenizer", "CLIPTokenizerFast" if is_tokenizers_available() else None)),
("paligemma", ("LlamaTokenizer", "LlamaTokenizerFast" if is_tokenizers_available() else None)),
@ -545,7 +530,6 @@ TOKENIZER_MAPPING_NAMES = OrderedDict[str, tuple[Optional[str], Optional[str]]](
None,
),
),
("perception_lm", (None, "LlamaTokenizerFast" if is_tokenizers_available() else None)),
(
"persimmon",
(
@ -555,7 +539,6 @@ TOKENIZER_MAPPING_NAMES = OrderedDict[str, tuple[Optional[str], Optional[str]]](
),
("phi", ("CodeGenTokenizer", "CodeGenTokenizerFast" if is_tokenizers_available() else None)),
("phi3", ("LlamaTokenizer", "LlamaTokenizerFast" if is_tokenizers_available() else None)),
("phi4_multimodal", (None, "GPT2TokenizerFast" if is_tokenizers_available() else None)),
("phimoe", ("LlamaTokenizer", "LlamaTokenizerFast" if is_tokenizers_available() else None)),
("phobert", ("PhobertTokenizer", None)),
("pix2struct", ("T5Tokenizer", "T5TokenizerFast" if is_tokenizers_available() else None)),
@ -569,7 +552,6 @@ TOKENIZER_MAPPING_NAMES = OrderedDict[str, tuple[Optional[str], Optional[str]]](
),
),
("plbart", ("PLBartTokenizer" if is_sentencepiece_available() else None, None)),
("pop2piano", ("Pop2PianoTokenizer", None)),
("prophetnet", ("ProphetNetTokenizer", None)),
("qdqbert", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)),
(
@ -676,7 +658,6 @@ TOKENIZER_MAPPING_NAMES = OrderedDict[str, tuple[Optional[str], Optional[str]]](
),
),
("smollm3", (None, "PreTrainedTokenizerFast" if is_tokenizers_available() else None)),
("smolvlm", (None, "PreTrainedTokenizerFast" if is_tokenizers_available() else None)),
("speech_to_text", ("Speech2TextTokenizer" if is_sentencepiece_available() else None, None)),
("speech_to_text_2", ("Speech2Text2Tokenizer", None)),
("speecht5", ("SpeechT5Tokenizer" if is_sentencepiece_available() else None, None)),
@ -711,7 +692,6 @@ TOKENIZER_MAPPING_NAMES = OrderedDict[str, tuple[Optional[str], Optional[str]]](
("tapas", ("TapasTokenizer", None)),
("tapex", ("TapexTokenizer", None)),
("transfo-xl", ("TransfoXLTokenizer", None)),
("trocr", ("XLMRobertaTokenizer", "XLMRobertaTokenizerFast" if is_tokenizers_available() else None)),
("tvp", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)),
(
"udop",
@ -727,14 +707,9 @@ TOKENIZER_MAPPING_NAMES = OrderedDict[str, tuple[Optional[str], Optional[str]]](
"T5TokenizerFast" if is_tokenizers_available() else None,
),
),
("video_llama_3", ("Qwen2Tokenizer", "Qwen2TokenizerFast" if is_tokenizers_available() else None)),
("video_llava", ("LlamaTokenizer", "LlamaTokenizerFast" if is_tokenizers_available() else None)),
("vilt", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)),
("vipllava", ("LlamaTokenizer", "LlamaTokenizerFast" if is_tokenizers_available() else None)),
(
"vision_text_dual_encoder",
("PreTrainedTokenizer", "PreTrainedTokenizerFast" if is_tokenizers_available() else None),
),
("visual_bert", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)),
("vits", ("VitsTokenizer", None)),
(
@ -750,7 +725,6 @@ TOKENIZER_MAPPING_NAMES = OrderedDict[str, tuple[Optional[str], Optional[str]]](
("wav2vec2-bert", ("Wav2Vec2CTCTokenizer", None)),
("wav2vec2-conformer", ("Wav2Vec2CTCTokenizer", None)),
("wav2vec2_phoneme", ("Wav2Vec2PhonemeCTCTokenizer", None)),
("wav2vec2_with_lm", ("Wav2Vec2CTCTokenizer", None)),
("whisper", ("WhisperTokenizer", "WhisperTokenizerFast" if is_tokenizers_available() else None)),
("xclip", ("CLIPTokenizer", "CLIPTokenizerFast" if is_tokenizers_available() else None)),
(
@ -1186,7 +1160,7 @@ class AutoTokenizer:
The configuration corresponding to the model to register.
slow_tokenizer_class ([`PretrainedTokenizer`], *optional*):
The slow tokenizer to register.
fast_tokenizer_class ([`PreTrainedTokenizerFast`], *optional*):
fast_tokenizer_class ([`PretrainedTokenizerFast`], *optional*):
The fast tokenizer to register.
"""
if slow_tokenizer_class is None and fast_tokenizer_class is None:

View File

@ -60,7 +60,6 @@ else:
("qwen3_vl_moe", "Qwen3VLVideoProcessor"),
("sam2_video", "Sam2VideoVideoProcessor"),
("smolvlm", "SmolVLMVideoProcessor"),
("video_llama_3", "VideoLlama3VideoProcessor"),
("video_llava", "VideoLlavaVideoProcessor"),
("videomae", "VideoMAEVideoProcessor"),
("vjepa2", "VJEPA2VideoProcessor"),
@ -292,7 +291,7 @@ class AutoVideoProcessor:
# Some models have different image processors, e.g. InternVL uses GotOCRImageProcessor
# We cannot use GotOCRVideoProcessor when falling back for BC and should try to infer from config later on
if video_processor_class_from_name(video_processor_class_inferred) is not None:
if video_processor_class_inferred in VIDEO_PROCESSOR_MAPPING_NAMES.values():
video_processor_class = video_processor_class_inferred
if "AutoImageProcessor" in config_dict.get("auto_map", {}):
image_processor_auto_map = config_dict["auto_map"]["AutoImageProcessor"]

View File

@ -24,7 +24,6 @@ import numpy as np
import torch
from torch import nn
from ... import initialization as init
from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache, EncoderDecoderCache
from ...modeling_attn_mask_utils import (
@ -827,22 +826,21 @@ class AutoformerPreTrainedModel(PreTrainedModel):
main_input_name = "past_values"
supports_gradient_checkpointing = True
@torch.no_grad()
def _init_weights(self, module: nn.Module):
std = self.config.init_std
if isinstance(module, (nn.Linear, nn.Conv1d)):
init.normal_(module.weight, mean=0.0, std=std)
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
init.zeros_(module.bias)
module.bias.data.zero_()
elif isinstance(module, AutoformerSinusoidalPositionalEmbedding):
module._init_weight()
elif isinstance(module, nn.Embedding):
init.normal_(module.weight, mean=0.0, std=std)
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
init.zeros_(module.weight[module.padding_idx])
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
init.ones_(module.weight)
init.zeros_(module.bias)
module.weight.data.fill_(1.0)
module.bias.data.zero_()
# copied from transformers.models.bart.modeling_bart.BartPreTrainedModel._update_full_mask
def _update_full_mask(

View File

@ -338,7 +338,7 @@ class AyaVisionForConditionalGeneration(AyaVisionPreTrainedModel, GenerationMixi
"^multi_modal_projector": "model.multi_modal_projector",
"^language_model.lm_head": "lm_head",
}
_tied_weights_keys = {"lm_head.weight": "model.language_model.embed_tokens.weight"}
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config: AyaVisionConfig):
super().__init__(config)

View File

@ -70,6 +70,10 @@ class AyaVisionProcessor(ProcessorMixin):
in a chat into a tokenizable string.
"""
attributes = ["image_processor", "tokenizer"]
image_processor_class = "AutoImageProcessor"
tokenizer_class = "AutoTokenizer"
def __init__(
self,
image_processor=None,

View File

@ -32,7 +32,6 @@ from torch import nn
from transformers.activations import ACT2FN
from ... import initialization as init
from ...cache_utils import Cache
from ...generation import GenerationMixin
from ...integrations import use_kernel_forward_from_hub
@ -1127,13 +1126,12 @@ class BambaPreTrainedModel(PreTrainedModel):
# Note: only supports HybridMambaAttentionDynamicCache
_is_stateful = True
@torch.no_grad()
def _init_weights(self, module):
super()._init_weights(module)
if isinstance(module, BambaMixer):
init.ones_(module.dt_bias)
init.copy_(module.A_log, torch.log(torch.arange(1, module.num_heads + 1)))
init.ones_(module.D)
module.dt_bias.data.fill_(1.0)
module.A_log.data = torch.log(torch.arange(1, module.num_heads + 1))
module.D.data.fill_(1.0)
@auto_docstring
@ -1385,7 +1383,7 @@ class BambaModel(BambaPreTrainedModel):
@auto_docstring
class BambaForCausalLM(BambaPreTrainedModel, GenerationMixin):
_tied_weights_keys = {"lm_head.weight": "model.embed_tokens.weight"}
_tied_weights_keys = ["lm_head.weight"]
_tp_plan = {"lm_head": "colwise_rep"}
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}

View File

@ -42,7 +42,6 @@ from transformers.models.mamba2.modeling_mamba2 import (
segment_sum,
)
from ... import initialization as init
from ...modeling_attn_mask_utils import AttentionMaskConverter
from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
from ...modeling_utils import PreTrainedModel
@ -801,13 +800,12 @@ class BambaPreTrainedModel(PreTrainedModel):
# Note: only supports HybridMambaAttentionDynamicCache
_is_stateful = True
@torch.no_grad()
def _init_weights(self, module):
super()._init_weights(module)
if isinstance(module, BambaMixer):
init.ones_(module.dt_bias)
init.copy_(module.A_log, torch.log(torch.arange(1, module.num_heads + 1)))
init.ones_(module.D)
module.dt_bias.data.fill_(1.0)
module.A_log.data = torch.log(torch.arange(1, module.num_heads + 1))
module.D.data.fill_(1.0)
@auto_docstring

View File

@ -329,6 +329,23 @@ class BarkPreTrainedModel(PreTrainedModel):
supports_gradient_checkpointing = False
_supports_flash_attn = True
def _init_weights(self, module):
"""Initialize the weights."""
if isinstance(module, (nn.Linear,)):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
def __init__(self, *inputs, **kwargs):
super().__init__(*inputs, **kwargs)
@property
def device(self) -> torch.device:
"""
@ -893,9 +910,6 @@ class BarkFineModel(BarkPreTrainedModel):
# non-causal gpt-like model with one embedding layer and one lm_head for each codebook of Encodec
super().__init__(config)
self.config = config
self._tied_weights_keys = {}
for i in range(self.config.n_codes_total - self.config.n_codes_given):
self._tied_weights_keys[f"lm_heads.{i}.weight"] = f"input_embeds_layers.{i + 1}.weight"
# initialize a modified non causal GPT-like model
# note that for there is one embedding layer and one lm_head for each codebook of Encodec
@ -1011,6 +1025,25 @@ class BarkFineModel(BarkPreTrainedModel):
return model_embeds
def _tie_weights(self):
if getattr(self.config, "tie_word_embeddings", True):
self._tied_weights_keys = []
output_embeddings = self.get_output_embeddings()
input_embeddings = self.get_input_embeddings()
for i in range(self.config.n_codes_total - self.config.n_codes_given):
# self.input_embeds_layers[i + 1].weight = self.lm_heads[i].weight
self._tie_embedding_weights(output_embeddings[i], input_embeddings[i + 1])
self._tied_weights_keys.append(f"lm_heads.{i}.weight")
def tie_weights(self):
"""
Tie the weights between the input embeddings list and the output embeddings list.
"""
for module in self.modules():
if hasattr(module, "_tie_weights"):
module._tie_weights()
@auto_docstring
def forward(
self,
@ -1547,6 +1580,14 @@ class BarkModel(BarkPreTrainedModel, GenerationMixin):
return audio
def tie_weights(self):
"""
Tie the weights between the input embeddings list and the output embeddings list.
"""
for module in self.modules():
if hasattr(module, "_tie_weights"):
module._tie_weights()
__all__ = [
"BarkFineModel",

View File

@ -49,6 +49,9 @@ class BarkProcessor(ProcessorMixin):
"""
tokenizer_class = "AutoTokenizer"
attributes = ["tokenizer"]
preset_shape = {
"semantic_prompt": 1, # 1D array of shape (X,)
"coarse_prompt": 2, # 2D array of shape (2,X)

View File

@ -164,7 +164,7 @@ class BartConfig(PreTrainedConfig):
forced_eos_token_id=forced_eos_token_id,
**kwargs,
)
self.tie_encoder_decoder = True
# ensure backward compatibility for BART CNN models
if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated", False):
self.forced_bos_token_id = self.bos_token_id

View File

@ -476,6 +476,20 @@ class BartPreTrainedModel(PreTrainedModel):
_can_compile_fullgraph = True
def _init_weights(self, module):
std = self.config.init_std
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.weight.data.fill_(1.0)
module.bias.data.zero_()
@property
def dummy_inputs(self):
pad_token = self.config.pad_token_id
@ -513,7 +527,7 @@ class BartEncoder(BartPreTrainedModel):
embed_tokens (nn.Embedding): output embedding
"""
def __init__(self, config: BartConfig):
def __init__(self, config: BartConfig, embed_tokens: Optional[nn.Embedding] = None):
super().__init__(config)
self.dropout = config.dropout
@ -524,9 +538,12 @@ class BartEncoder(BartPreTrainedModel):
self.max_source_positions = config.max_position_embeddings
embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
self.embed_tokens = BartScaledWordEmbedding(
config.vocab_size, embed_dim, self.padding_idx, embed_scale=embed_scale
)
if embed_tokens is not None:
self.embed_tokens = embed_tokens
else:
self.embed_tokens = BartScaledWordEmbedding(
config.vocab_size, embed_dim, self.padding_idx, embed_scale=embed_scale
)
self.embed_positions = BartLearnedPositionalEmbedding(
config.max_position_embeddings,
@ -657,7 +674,7 @@ class BartDecoder(BartPreTrainedModel):
embed_tokens (nn.Embedding): output embedding
"""
def __init__(self, config: BartConfig):
def __init__(self, config: BartConfig, embed_tokens: Optional[nn.Embedding] = None):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.decoder_layerdrop
@ -665,9 +682,12 @@ class BartDecoder(BartPreTrainedModel):
self.max_target_positions = config.max_position_embeddings
embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
self.embed_tokens = BartScaledWordEmbedding(
config.vocab_size, config.d_model, self.padding_idx, embed_scale=embed_scale
)
if embed_tokens is not None:
self.embed_tokens = embed_tokens
else:
self.embed_tokens = BartScaledWordEmbedding(
config.vocab_size, config.d_model, self.padding_idx, embed_scale=embed_scale
)
self.embed_positions = BartLearnedPositionalEmbedding(
config.max_position_embeddings,
@ -879,10 +899,7 @@ class BartDecoder(BartPreTrainedModel):
@auto_docstring
class BartModel(BartPreTrainedModel):
_tied_weights_keys = {
"decoder.embed_tokens.weight": "shared.weight",
"encoder.embed_tokens.weight": "shared.weight",
}
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
def __init__(self, config: BartConfig):
super().__init__(config)
@ -891,12 +908,24 @@ class BartModel(BartPreTrainedModel):
embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
self.shared = BartScaledWordEmbedding(vocab_size, config.d_model, padding_idx, embed_scale=embed_scale)
self.encoder = BartEncoder(config)
self.decoder = BartDecoder(config)
self.encoder = BartEncoder(config, self.shared)
self.decoder = BartDecoder(config, self.shared)
# Initialize weights and apply final processing
self.post_init()
def _tie_weights(self):
if self.config.tie_word_embeddings:
# Some model checkpoints like "facebook/bart-large-cnn"'s embedding weight is in decoder.embed_tokens, need check here, see issue #36247
if self.shared.weight.device == torch.device(
"meta"
) and self.decoder.embed_tokens.weight.device != torch.device("meta"):
self._tie_embedding_weights(self.encoder.embed_tokens, self.decoder.embed_tokens)
self._tie_embedding_weights(self.shared, self.decoder.embed_tokens)
else:
self._tie_embedding_weights(self.encoder.embed_tokens, self.shared)
self._tie_embedding_weights(self.decoder.embed_tokens, self.shared)
def get_input_embeddings(self):
return self.shared
@ -1023,9 +1052,7 @@ class BartModel(BartPreTrainedModel):
)
class BartForConditionalGeneration(BartPreTrainedModel, GenerationMixin):
base_model_prefix = "model"
_tied_weights_keys = {
"lm_head.weight": "model.shared.weight",
}
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight", "lm_head.weight"]
_keys_to_ignore_on_load_missing = ["final_logits_bias"]
def __init__(self, config: BartConfig):
@ -1059,6 +1086,11 @@ class BartForConditionalGeneration(BartPreTrainedModel, GenerationMixin):
new_bias = torch.cat([self.final_logits_bias, extra_bias], dim=1)
self.register_buffer("final_logits_bias", new_bias)
def _tie_weights(self):
if self.config.tie_word_embeddings:
self.model._tie_weights()
self._tie_embedding_weights(self.lm_head, self.model.shared)
@auto_docstring
def forward(
self,
@ -1208,6 +1240,8 @@ class BartForConditionalGeneration(BartPreTrainedModel, GenerationMixin):
"""
)
class BartForSequenceClassification(BartPreTrainedModel):
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
def __init__(self, config: BartConfig, **kwargs):
super().__init__(config, **kwargs)
self.model = BartModel(config)
@ -1340,6 +1374,8 @@ class BartForSequenceClassification(BartPreTrainedModel):
@auto_docstring
class BartForQuestionAnswering(BartPreTrainedModel):
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
def __init__(self, config):
super().__init__(config)
@ -1477,9 +1513,7 @@ class BartDecoderWrapper(BartPreTrainedModel):
"""
)
class BartForCausalLM(BartPreTrainedModel, GenerationMixin):
_tied_weights_keys = {
"lm_head.weight": "model.decoder.embed_tokens.weight",
}
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
config.is_decoder = True

View File

@ -24,7 +24,6 @@ import torch
from torch import Tensor, nn
from torch.nn import CrossEntropyLoss
from ... import initialization as init
from ...activations import ACT2FN
from ...modeling_layers import GradientCheckpointingLayer
from ...modeling_outputs import (
@ -693,22 +692,31 @@ class BeitPreTrainedModel(PreTrainedModel):
_keys_to_ignore_on_load_unexpected = [r".*relative_position_index.*"]
_supports_sdpa = True
@torch.no_grad()
def _init_weights(self, module):
"""Initialize the weights"""
super()._init_weights(module)
if isinstance(module, BeitEmbeddings):
init.zeros_(module.cls_token)
if isinstance(module, (nn.Linear, nn.Conv2d, nn.ConvTranspose2d)):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, BeitEmbeddings):
module.cls_token.data.zero_()
if module.mask_token is not None:
init.zeros_(module.mask_token)
module.mask_token.data.zero_()
if module.position_embeddings is not None:
init.zeros_(module.position_embeddings)
module.position_embeddings.data.zero_()
elif isinstance(module, BeitRelativePositionBias):
init.zeros_(module.relative_position_bias_table)
module.relative_position_bias_table.data.zero_()
elif isinstance(module, BeitLayer):
if module.lambda_1 is not None:
init.constant_(module.lambda_1, self.config.layer_scale_init_value)
init.constant_(module.lambda_2, self.config.layer_scale_init_value)
module.lambda_1.data.fill_(self.config.layer_scale_init_value)
module.lambda_2.data.fill_(self.config.layer_scale_init_value)
@auto_docstring

View File

@ -24,7 +24,6 @@ import torch
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ... import initialization as init
from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache, EncoderDecoderCache
from ...generation import GenerationMixin
@ -507,9 +506,16 @@ class BertLMPredictionHead(nn.Module):
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=True)
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
self.decoder.bias = self.bias
def _tie_weights(self):
self.decoder.bias = self.bias
def forward(self, hidden_states):
hidden_states = self.transform(hidden_states)
hidden_states = self.decoder(hidden_states)
@ -563,12 +569,21 @@ class BertPreTrainedModel(PreTrainedModel):
"cross_attentions": BertCrossAttention,
}
@torch.no_grad()
def _init_weights(self, module):
"""Initialize the weights"""
super()._init_weights(module)
if isinstance(module, BertLMPredictionHead):
init.zeros_(module.bias)
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, BertLMPredictionHead):
module.bias.data.zero_()
@dataclass
@ -755,10 +770,7 @@ class BertModel(BertPreTrainedModel):
"""
)
class BertForPreTraining(BertPreTrainedModel):
_tied_weights_keys = {
"cls.predictions.decoder.weight": "bert.embeddings.word_embeddings.weight",
"cls.predictions.decoder.bias": "cls.predictions.bias",
}
_tied_weights_keys = ["predictions.decoder.bias", "cls.predictions.decoder.weight"]
def __init__(self, config):
super().__init__(config)
@ -852,10 +864,7 @@ class BertForPreTraining(BertPreTrainedModel):
"""
)
class BertLMHeadModel(BertPreTrainedModel, GenerationMixin):
_tied_weights_keys = {
"cls.predictions.decoder.weight": "bert.embeddings.word_embeddings.weight",
"cls.predictions.decoder.bias": "cls.predictions.bias",
}
_tied_weights_keys = ["cls.predictions.decoder.bias", "cls.predictions.decoder.weight"]
def __init__(self, config):
super().__init__(config)
@ -939,10 +948,7 @@ class BertLMHeadModel(BertPreTrainedModel, GenerationMixin):
@auto_docstring
class BertForMaskedLM(BertPreTrainedModel):
_tied_weights_keys = {
"cls.predictions.decoder.weight": "bert.embeddings.word_embeddings.weight",
"cls.predictions.decoder.bias": "cls.predictions.bias",
}
_tied_weights_keys = ["predictions.decoder.bias", "cls.predictions.decoder.weight"]
def __init__(self, config):
super().__init__(config)

View File

@ -20,7 +20,6 @@ from typing import Optional, Union
import torch
from torch import nn
from ... import initialization as init
from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache, EncoderDecoderCache
from ...generation import GenerationMixin
@ -457,12 +456,21 @@ class BertGenerationPreTrainedModel(PreTrainedModel):
"cross_attentions": BertGenerationCrossAttention,
}
@torch.no_grad()
def _init_weights(self, module):
"""Initialize the weights"""
super()._init_weights(module)
if isinstance(module, BertGenerationOnlyLMHead):
init.zeros_(module.bias)
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, BertGenerationOnlyLMHead):
module.bias.data.zero_()
@auto_docstring(
@ -621,11 +629,20 @@ class BertGenerationOnlyLMHead(nn.Module):
super().__init__()
self.decoder = nn.Linear(config.hidden_size, config.vocab_size)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
self.decoder.bias = self.bias
def forward(self, hidden_states):
logits = self.decoder(hidden_states)
return logits
def _tie_weights(self):
# For accelerate compatibility and to not break backward compatibility
if self.decoder.bias.device.type == "meta":
self.decoder.bias = self.bias
else:
# To tie those two weights if they get disconnected (on TPU or when the bias is resized)
self.bias = self.decoder.bias
@auto_docstring(
custom_intro="""
@ -633,10 +650,7 @@ class BertGenerationOnlyLMHead(nn.Module):
"""
)
class BertGenerationDecoder(BertGenerationPreTrainedModel, GenerationMixin):
_tied_weights_keys = {
"lm_head.decoder.weight": "bert.embeddings.word_embeddings.weight",
"lm_head.decoder.bias": "lm_head.bias",
}
_tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"]
def __init__(self, config):
super().__init__(config)

View File

@ -23,7 +23,6 @@ import torch
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ... import initialization as init
from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache
from ...generation import GenerationMixin
@ -1465,9 +1464,16 @@ class BigBirdLMPredictionHead(nn.Module):
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=True)
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
self.decoder.bias = self.bias
def _tie_weights(self):
self.decoder.bias = self.bias
def forward(self, hidden_states):
hidden_states = self.transform(hidden_states)
hidden_states = self.decoder(hidden_states)
@ -1515,12 +1521,21 @@ class BigBirdPreTrainedModel(PreTrainedModel):
base_model_prefix = "bert"
supports_gradient_checkpointing = True
@torch.no_grad()
def _init_weights(self, module):
"""Initialize the weights"""
super()._init_weights(module)
if isinstance(module, BigBirdLMPredictionHead):
init.zeros_(module.bias)
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, BigBirdLMPredictionHead):
module.bias.data.zero_()
@dataclass
@ -1884,10 +1899,7 @@ class BigBirdModel(BigBirdPreTrainedModel):
class BigBirdForPreTraining(BigBirdPreTrainedModel):
_tied_weights_keys = {
"cls.predictions.decoder.bias": "cls.predictions.bias",
"cls.predictions.decoder.weight": "bert.embeddings.word_embeddings.weight",
}
_tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"]
def __init__(self, config):
super().__init__(config)
@ -1987,10 +1999,7 @@ class BigBirdForPreTraining(BigBirdPreTrainedModel):
@auto_docstring
class BigBirdForMaskedLM(BigBirdPreTrainedModel):
_tied_weights_keys = {
"cls.predictions.decoder.bias": "cls.predictions.bias",
"cls.predictions.decoder.weight": "bert.embeddings.word_embeddings.weight",
}
_tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"]
def __init__(self, config):
super().__init__(config)
@ -2132,10 +2141,7 @@ class BigBirdForMaskedLM(BigBirdPreTrainedModel):
"""
)
class BigBirdForCausalLM(BigBirdPreTrainedModel, GenerationMixin):
_tied_weights_keys = {
"cls.predictions.decoder.bias": "cls.predictions.bias",
"cls.predictions.decoder.weight": "bert.embeddings.word_embeddings.weight",
}
_tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"]
def __init__(self, config):
super().__init__(config)

View File

@ -1539,6 +1539,20 @@ class BigBirdPegasusPreTrainedModel(PreTrainedModel):
_can_compile_fullgraph = True
def _init_weights(self, module):
std = self.config.init_std
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.weight.data.fill_(1.0)
module.bias.data.zero_()
@property
def dummy_inputs(self):
pad_token = self.config.pad_token_id
@ -1560,7 +1574,7 @@ class BigBirdPegasusEncoder(BigBirdPegasusPreTrainedModel):
embed_tokens (nn.Embedding): output embedding
"""
def __init__(self, config: BigBirdPegasusConfig):
def __init__(self, config: BigBirdPegasusConfig, embed_tokens: Optional[nn.Embedding] = None):
super().__init__(config)
self.attention_type = config.attention_type
@ -1578,6 +1592,9 @@ class BigBirdPegasusEncoder(BigBirdPegasusPreTrainedModel):
config.vocab_size, embed_dim, self.padding_idx, embed_scale=embed_scale
)
if embed_tokens is not None:
self.embed_tokens.weight = embed_tokens.weight
self.embed_positions = BigBirdPegasusLearnedPositionalEmbedding(
config.max_position_embeddings,
embed_dim,
@ -1832,7 +1849,7 @@ class BigBirdPegasusDecoder(BigBirdPegasusPreTrainedModel):
embed_tokens (nn.Embedding): output embedding
"""
def __init__(self, config: BigBirdPegasusConfig):
def __init__(self, config: BigBirdPegasusConfig, embed_tokens: Optional[nn.Embedding] = None):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.decoder_layerdrop
@ -1844,6 +1861,9 @@ class BigBirdPegasusDecoder(BigBirdPegasusPreTrainedModel):
config.vocab_size, config.d_model, self.padding_idx, embed_scale=embed_scale
)
if embed_tokens is not None:
self.embed_tokens.weight = embed_tokens.weight
self.embed_positions = BigBirdPegasusLearnedPositionalEmbedding(
config.max_position_embeddings,
config.d_model,
@ -2055,10 +2075,7 @@ class BigBirdPegasusDecoder(BigBirdPegasusPreTrainedModel):
@auto_docstring
class BigBirdPegasusModel(BigBirdPegasusPreTrainedModel):
_tied_weights_keys = {
"encoder.embed_tokens.weight": "shared.weight",
"decoder.embed_tokens.weight": "shared.weight",
}
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
def __init__(self, config: BigBirdPegasusConfig):
super().__init__(config)
@ -2069,8 +2086,8 @@ class BigBirdPegasusModel(BigBirdPegasusPreTrainedModel):
vocab_size, config.d_model, padding_idx, embed_scale=embed_scale
)
self.encoder = BigBirdPegasusEncoder(config)
self.decoder = BigBirdPegasusDecoder(config)
self.encoder = BigBirdPegasusEncoder(config, self.shared)
self.decoder = BigBirdPegasusDecoder(config, self.shared)
# Initialize weights and apply final processing
self.post_init()
@ -2083,6 +2100,11 @@ class BigBirdPegasusModel(BigBirdPegasusPreTrainedModel):
self.encoder.embed_tokens = self.shared
self.decoder.embed_tokens = self.shared
def _tie_weights(self):
if self.config.tie_word_embeddings:
self._tie_embedding_weights(self.encoder.embed_tokens, self.shared)
self._tie_embedding_weights(self.decoder.embed_tokens, self.shared)
def get_encoder(self):
return self.encoder
@ -2191,9 +2213,7 @@ class BigBirdPegasusModel(BigBirdPegasusPreTrainedModel):
# Copied from transformers.models.bart.modeling_bart.BartForConditionalGeneration with Bart->BigBirdPegasus, BART->BIGBIRD_PEGASUS
class BigBirdPegasusForConditionalGeneration(BigBirdPegasusPreTrainedModel, GenerationMixin):
base_model_prefix = "model"
_tied_weights_keys = {
"lm_head.weight": "model.shared.weight",
}
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight", "lm_head.weight"]
_keys_to_ignore_on_load_missing = ["final_logits_bias"]
def __init__(self, config: BigBirdPegasusConfig):
@ -2227,6 +2247,11 @@ class BigBirdPegasusForConditionalGeneration(BigBirdPegasusPreTrainedModel, Gene
new_bias = torch.cat([self.final_logits_bias, extra_bias], dim=1)
self.register_buffer("final_logits_bias", new_bias)
def _tie_weights(self):
if self.config.tie_word_embeddings:
self.model._tie_weights()
self._tie_embedding_weights(self.lm_head, self.model.shared)
@auto_docstring
# Ignore copy
def forward(
@ -2349,6 +2374,8 @@ class BigBirdPegasusForConditionalGeneration(BigBirdPegasusPreTrainedModel, Gene
"""
)
class BigBirdPegasusForSequenceClassification(BigBirdPegasusPreTrainedModel):
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
def __init__(self, config: BigBirdPegasusConfig, **kwargs):
super().__init__(config, **kwargs)
self.model = BigBirdPegasusModel(config)
@ -2470,6 +2497,8 @@ class BigBirdPegasusForSequenceClassification(BigBirdPegasusPreTrainedModel):
@auto_docstring
class BigBirdPegasusForQuestionAnswering(BigBirdPegasusPreTrainedModel):
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
def __init__(self, config):
super().__init__(config)
@ -2592,6 +2621,8 @@ class BigBirdPegasusDecoderWrapper(BigBirdPegasusPreTrainedModel):
class BigBirdPegasusForCausalLM(BigBirdPegasusPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
config.is_decoder = True
config.is_encoder_decoder = False

View File

@ -510,7 +510,7 @@ class BioGptModel(BioGptPreTrainedModel):
"""
)
class BioGptForCausalLM(BioGptPreTrainedModel, GenerationMixin):
_tied_weights_keys = {"output_projection.weight": "biogpt.embed_tokens.weight"}
_tied_weights_keys = ["output_projection.weight"]
def __init__(self, config):
super().__init__(config)

View File

@ -332,7 +332,7 @@ class BioGptModel(BioGptPreTrainedModel):
"""
)
class BioGptForCausalLM(BioGptPreTrainedModel, GenerationMixin):
_tied_weights_keys = {"output_projection.weight": "biogpt.embed_tokens.weight"}
_tied_weights_keys = ["output_projection.weight"]
def __init__(self, config):
super().__init__(config)

View File

@ -22,7 +22,6 @@ import numpy as np
import torch
from torch import Tensor, nn
from ... import initialization as init
from ...activations import ACT2FN
from ...modeling_outputs import (
BackboneOutput,
@ -629,20 +628,19 @@ class BitPreTrainedModel(PreTrainedModel):
main_input_name = "pixel_values"
_no_split_modules = ["BitEmbeddings"]
@torch.no_grad()
def _init_weights(self, module):
if isinstance(module, nn.Conv2d):
init.kaiming_normal_(module.weight, mode="fan_out", nonlinearity="relu")
nn.init.kaiming_normal_(module.weight, mode="fan_out", nonlinearity="relu")
# copied from the `reset_parameters` method of `class Linear(Module)` in `torch`.
elif isinstance(module, nn.Linear):
init.kaiming_uniform_(module.weight, a=math.sqrt(5))
nn.init.kaiming_uniform_(module.weight, a=math.sqrt(5))
if module.bias is not None:
fan_in, _ = init._calculate_fan_in_and_fan_out(module.weight)
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(module.weight)
bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0
init.uniform_(module.bias, -bound, bound)
nn.init.uniform_(module.bias, -bound, bound)
elif isinstance(module, (nn.BatchNorm2d, nn.GroupNorm)):
init.constant_(module.weight, 1)
init.constant_(module.bias, 0)
nn.init.constant_(module.weight, 1)
nn.init.constant_(module.bias, 0)
@auto_docstring

View File

@ -433,7 +433,7 @@ class BitNetModel(BitNetPreTrainedModel):
@auto_docstring
class BitNetForCausalLM(BitNetPreTrainedModel, GenerationMixin):
_tied_weights_keys = {"lm_head.weight": "model.embed_tokens.weight"}
_tied_weights_keys = ["lm_head.weight"]
_tp_plan = None
_pp_plan = None

Some files were not shown because too many files have changed in this diff Show More