Compare commits

..

22 Commits

Author SHA1 Message Date
4844f55bd3 🤗 stars 2023-05-17 13:44:50 +02:00
39cd33b22d 🤗 stars 2023-05-17 09:19:32 +02:00
6e3aca45cf 🤗 stars 2023-05-17 08:53:54 +02:00
6bd60794e7 🤗 stars 2023-05-17 08:52:13 +02:00
39a4060eb2 🤗 stars 2023-05-17 08:42:15 +02:00
dfbad16079 🤗 stars 2023-05-17 08:41:17 +02:00
d10d8ec447 🤗 stars 2023-05-17 08:38:48 +02:00
b1def680c0 🤗 stars 2023-05-17 08:21:11 +02:00
19636515c4 🤗 stars 2023-05-17 08:04:10 +02:00
b922ec0035 🤗 stars 2023-05-17 07:52:59 +02:00
dc87583edc 🤗 stars 2023-05-17 07:45:16 +02:00
485febe508 🤗 stars 2023-05-17 07:41:29 +02:00
3f490bc686 🤗 stars 2023-05-17 07:38:25 +02:00
0444b61859 🤗 stars 2023-05-17 07:32:31 +02:00
eefdaf8d7f 🤗 stars 2023-05-17 07:30:41 +02:00
6385ece180 🤗 stars 2023-05-17 07:27:42 +02:00
d3760b7b47 🤗 stars 2023-05-17 07:23:17 +02:00
be97928571 🤗 stars 2023-05-17 07:21:56 +02:00
2424ae7fda 🤗 stars 2023-05-17 07:19:42 +02:00
d5a92f9b30 🤗 stars 2023-05-17 07:17:27 +02:00
5cb2bb5329 🤗 stars 2023-05-17 07:13:39 +02:00
f37e077d30 🤗 stars 2023-05-17 07:11:57 +02:00
2404 changed files with 47770 additions and 214788 deletions

View File

@ -30,9 +30,9 @@ jobs:
parallelism: 1
steps:
- checkout
- run: pip install --upgrade --upgrade-strategy eager pip
- run: pip install -U --upgrade-strategy eager GitPython
- run: pip install -U --upgrade-strategy eager .
- run: pip install --upgrade pip
- run: pip install GitPython
- run: pip install .
- run: mkdir -p test_preparation
- run: python utils/tests_fetcher.py | tee tests_fetched_summary.txt
- store_artifacts:
@ -43,18 +43,6 @@ jobs:
else
touch test_preparation/test_list.txt
fi
- run: |
if [ -f examples_test_list.txt ]; then
mv examples_test_list.txt test_preparation/examples_test_list.txt
else
touch test_preparation/examples_test_list.txt
fi
- run: |
if [ -f filtered_test_list_cross_tests.txt ]; then
mv filtered_test_list_cross_tests.txt test_preparation/filtered_test_list_cross_tests.txt
else
touch test_preparation/filtered_test_list_cross_tests.txt
fi
- run: |
if [ -f doctest_list.txt ]; then
cp doctest_list.txt test_preparation/doctest_list.txt
@ -74,6 +62,19 @@ jobs:
else
touch test_preparation/filtered_test_list.txt
fi
- run: python utils/tests_fetcher.py --filters tests examples | tee examples_tests_fetched_summary.txt
- run: |
if [ -f test_list.txt ]; then
mv test_list.txt test_preparation/examples_test_list.txt
else
touch test_preparation/examples_test_list.txt
fi
- run: |
if [ -f filtered_test_list_cross_tests.txt ]; then
mv filtered_test_list_cross_tests.txt test_preparation/filtered_test_list_cross_tests.txt
else
touch test_preparation/filtered_test_list_cross_tests.txt
fi
- store_artifacts:
path: test_preparation/test_list.txt
- store_artifacts:
@ -104,13 +105,13 @@ jobs:
parallelism: 1
steps:
- checkout
- run: pip install --upgrade --upgrade-strategy eager pip
- run: pip install -U --upgrade-strategy eager GitPython
- run: pip install -U --upgrade-strategy eager .
- run: pip install --upgrade pip
- run: pip install GitPython
- run: pip install .
- run: |
mkdir test_preparation
echo -n "tests" > test_preparation/test_list.txt
echo -n "all" > test_preparation/examples_test_list.txt
echo -n "tests" > test_preparation/examples_test_list.txt
echo -n "tests/repo_utils" > test_preparation/test_repo_utils.txt
- run: |
echo -n "tests" > test_list.txt
@ -136,22 +137,14 @@ jobs:
- checkout
- restore_cache:
keys:
- v0.7-code_quality-pip-{{ checksum "setup.py" }}
- v0.7-code-quality-pip
- restore_cache:
keys:
- v0.7-code_quality-site-packages-{{ checksum "setup.py" }}
- v0.7-code-quality-site-packages
- run: pip install --upgrade --upgrade-strategy eager pip
- run: pip install -U --upgrade-strategy eager .[all,quality]
- v0.6-code_quality-{{ checksum "setup.py" }}
- v0.6-code-quality
- run: pip install --upgrade pip
- run: pip install .[all,quality]
- save_cache:
key: v0.7-code_quality-pip-{{ checksum "setup.py" }}
key: v0.5-code_quality-{{ checksum "setup.py" }}
paths:
- '~/.cache/pip'
- save_cache:
key: v0.7-code_quality-site-packages-{{ checksum "setup.py" }}
paths:
- '~/.pyenv/versions/'
- run:
name: Show installed libraries and their versions
command: pip freeze | tee installed.txt
@ -177,22 +170,14 @@ jobs:
- checkout
- restore_cache:
keys:
- v0.7-repository_consistency-pip-{{ checksum "setup.py" }}
- v0.7-repository_consistency-pip
- restore_cache:
keys:
- v0.7-repository_consistency-site-packages-{{ checksum "setup.py" }}
- v0.7-repository_consistency-site-packages
- run: pip install --upgrade --upgrade-strategy eager pip
- run: pip install -U --upgrade-strategy eager .[all,quality]
- v0.6-repository_consistency-{{ checksum "setup.py" }}
- v0.6-repository_consistency
- run: pip install --upgrade pip
- run: pip install .[all,quality]
- save_cache:
key: v0.7-repository_consistency-pip-{{ checksum "setup.py" }}
key: v0.5-repository_consistency-{{ checksum "setup.py" }}
paths:
- '~/.cache/pip'
- save_cache:
key: v0.7-repository_consistency-site-packages-{{ checksum "setup.py" }}
paths:
- '~/.pyenv/versions/'
- run:
name: Show installed libraries and their versions
command: pip freeze | tee installed.txt
@ -209,7 +194,6 @@ jobs:
- run: make deps_table_check_updated
- run: python utils/update_metadata.py --check-only
- run: python utils/check_task_guides.py
- run: python utils/check_docstrings.py
workflows:
version: 2

View File

@ -32,28 +32,16 @@ COMMON_ENV_VARIABLES = {
"RUN_PT_TF_CROSS_TESTS": False,
"RUN_PT_FLAX_CROSS_TESTS": False,
}
# Disable the use of {"s": None} as the output is way too long, causing the navigation on CircleCI impractical
COMMON_PYTEST_OPTIONS = {"max-worker-restart": 0, "dist": "loadfile"}
COMMON_PYTEST_OPTIONS = {"max-worker-restart": 0, "dist": "loadfile", "s": None}
DEFAULT_DOCKER_IMAGE = [{"image": "cimg/python:3.8.12"}]
class EmptyJob:
job_name = "empty"
def to_dict(self):
return {
"working_directory": "~/transformers",
"docker": copy.deepcopy(DEFAULT_DOCKER_IMAGE),
"steps":["checkout"],
}
@dataclass
class CircleCIJob:
name: str
additional_env: Dict[str, Any] = None
cache_name: str = None
cache_version: str = "0.7"
cache_version: str = "0.6"
docker_image: List[Dict[str, str]] = None
install_steps: List[str] = None
marker: Optional[str] = None
@ -87,11 +75,6 @@ class CircleCIJob:
def to_dict(self):
env = COMMON_ENV_VARIABLES.copy()
env.update(self.additional_env)
cache_branch_prefix = os.environ.get("CIRCLE_BRANCH", "pull")
if cache_branch_prefix != "main":
cache_branch_prefix = "pull"
job = {
"working_directory": self.working_directory,
"docker": self.docker_image,
@ -107,44 +90,21 @@ class CircleCIJob:
{
"restore_cache": {
"keys": [
# check the fully-matched cache first
f"v{self.cache_version}-{self.cache_name}-{cache_branch_prefix}-pip-" + '{{ checksum "setup.py" }}',
# try the partially-matched cache from `main`
f"v{self.cache_version}-{self.cache_name}-main-pip-",
# try the general partially-matched cache
f"v{self.cache_version}-{self.cache_name}-{cache_branch_prefix}-pip-",
]
}
},
{
"restore_cache": {
"keys": [
f"v{self.cache_version}-{self.cache_name}-{cache_branch_prefix}-site-packages-" + '{{ checksum "setup.py" }}',
f"v{self.cache_version}-{self.cache_name}-main-site-packages-",
f"v{self.cache_version}-{self.cache_name}-{cache_branch_prefix}-site-packages-",
f"v{self.cache_version}-{self.cache_name}-" + '{{ checksum "setup.py" }}',
f"v{self.cache_version}-{self.cache_name}-",
]
}
},
]
steps.extend([{"run": l} for l in self.install_steps])
steps.extend([{"run": 'pip install "fsspec>=2023.5.0,<2023.10.0"'}])
steps.extend([{"run": "pip install pytest-subtests"}])
steps.append(
{
"save_cache": {
"key": f"v{self.cache_version}-{self.cache_name}-{cache_branch_prefix}-pip-" + '{{ checksum "setup.py" }}',
"key": f"v{self.cache_version}-{self.cache_name}-" + '{{ checksum "setup.py" }}',
"paths": ["~/.cache/pip"],
}
}
)
steps.append(
{
"save_cache": {
"key": f"v{self.cache_version}-{self.cache_name}-{cache_branch_prefix}-site-packages-" + '{{ checksum "setup.py" }}',
"paths": ["~/.pyenv/versions/"],
}
}
)
steps.append({"run": {"name": "Show installed libraries and their versions", "command": "pip freeze | tee installed.txt"}})
steps.append({"store_artifacts": {"path": "~/transformers/installed.txt"}})
@ -153,14 +113,11 @@ class CircleCIJob:
pytest_flags.append(
f"--make-reports={self.name}" if "examples" in self.name else f"--make-reports=tests_{self.name}"
)
steps.append({"run": {"name": "Create `test-results` directory", "command": "mkdir test-results"}})
test_command = ""
if self.command_timeout:
test_command = f"timeout {self.command_timeout} "
test_command += f"python -m pytest --junitxml=test-results/junit.xml -n {self.pytest_num_workers} " + " ".join(pytest_flags)
test_command += f"python -m pytest -n {self.pytest_num_workers} " + " ".join(pytest_flags)
if self.parallelism == 1:
if self.tests_to_run is None:
test_command += " << pipeline.parameters.tests_to_run >>"
@ -228,40 +185,18 @@ class CircleCIJob:
# failure.
test_command = f"({test_command}) || true"
else:
test_command += " || true"
test_command += " | tee tests_output.txt"
steps.append({"run": {"name": "Run tests", "command": test_command}})
# Deal with errors
check_test_command = f'if [ -s reports/{self.job_name}/errors.txt ]; '
check_test_command += 'then echo "Some tests errored out!"; echo ""; '
check_test_command += f'cat reports/{self.job_name}/errors.txt; '
check_test_command += 'echo ""; echo ""; '
py_command = f'import os; fp = open("reports/{self.job_name}/summary_short.txt"); failed = os.linesep.join([x for x in fp.read().split(os.linesep) if x.startswith("ERROR ")]); fp.close(); fp = open("summary_short.txt", "w"); fp.write(failed); fp.close()'
check_test_command += f"$(python3 -c '{py_command}'); "
check_test_command += f'cat summary_short.txt; echo ""; exit -1; '
# Deeal with failed tests
check_test_command += f'elif [ -s reports/{self.job_name}/failures_short.txt ]; '
check_test_command += 'then echo "Some tests failed!"; echo ""; '
check_test_command += f'cat reports/{self.job_name}/failures_short.txt; '
check_test_command += 'echo ""; echo ""; '
py_command = f'import os; fp = open("reports/{self.job_name}/summary_short.txt"); failed = os.linesep.join([x for x in fp.read().split(os.linesep) if x.startswith("FAILED ")]); fp.close(); fp = open("summary_short.txt", "w"); fp.write(failed); fp.close()'
check_test_command += f"$(python3 -c '{py_command}'); "
check_test_command += f'cat summary_short.txt; echo ""; exit -1; '
check_test_command += f'elif [ -s reports/{self.job_name}/stats.txt ]; then echo "All tests pass!"; '
# return code `124` means the previous (pytest run) step is timeout
if self.name == "pr_documentation_tests":
check_test_command += 'elif [ -f 124.txt ]; then echo "doctest timeout!"; '
check_test_command += 'else echo "other fatal error"; echo ""; exit -1; fi;'
steps.append({"run": {"name": "Check test results", "command": check_test_command}})
steps.append({"store_test_results": {"path": "test-results"}})
checkout_doctest_command = 'if [ -s reports/tests_pr_documentation_tests/failures_short.txt ]; '
checkout_doctest_command += 'then echo "some test failed"; '
checkout_doctest_command += 'cat reports/tests_pr_documentation_tests/failures_short.txt; '
checkout_doctest_command += 'cat reports/tests_pr_documentation_tests/summary_short.txt; exit -1; '
checkout_doctest_command += 'elif [ -s reports/tests_pr_documentation_tests/stats.txt ]; then echo "All tests pass!"; '
checkout_doctest_command += 'elif [ -f 124.txt ]; then echo "doctest timeout!"; else echo "other fatal error)"; exit -1; fi;'
steps.append({"run": {"name": "Check doctest results", "command": checkout_doctest_command}})
steps.append({"store_artifacts": {"path": "~/transformers/tests_output.txt"}})
steps.append({"store_artifacts": {"path": "~/transformers/reports"}})
@ -280,10 +215,10 @@ torch_and_tf_job = CircleCIJob(
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng git-lfs cmake",
"git lfs install",
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[sklearn,tf-cpu,torch,testing,sentencepiece,torch-speech,vision]",
"pip install -U --upgrade-strategy eager tensorflow_probability",
"pip install -U --upgrade-strategy eager git+https://github.com/huggingface/accelerate",
"pip install --upgrade pip",
"pip install .[sklearn,tf-cpu,torch,testing,sentencepiece,torch-speech,vision]",
"pip install tensorflow_probability",
"pip install git+https://github.com/huggingface/accelerate",
],
marker="is_pt_tf_cross_test",
pytest_options={"rA": None, "durations": 0},
@ -295,9 +230,9 @@ torch_and_flax_job = CircleCIJob(
additional_env={"RUN_PT_FLAX_CROSS_TESTS": True},
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng",
"pip install -U --upgrade-strategy eager --upgrade pip",
"pip install -U --upgrade-strategy eager .[sklearn,flax,torch,testing,sentencepiece,torch-speech,vision]",
"pip install -U --upgrade-strategy eager git+https://github.com/huggingface/accelerate",
"pip install --upgrade pip",
"pip install .[sklearn,flax,torch,testing,sentencepiece,torch-speech,vision]",
"pip install git+https://github.com/huggingface/accelerate",
],
marker="is_pt_flax_cross_test",
pytest_options={"rA": None, "durations": 0},
@ -308,12 +243,12 @@ torch_job = CircleCIJob(
"torch",
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng time",
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[sklearn,torch,testing,sentencepiece,torch-speech,vision,timm]",
"pip install -U --upgrade-strategy eager git+https://github.com/huggingface/accelerate",
"pip install --upgrade pip",
"pip install .[sklearn,torch,testing,sentencepiece,torch-speech,vision,timm]",
"pip install git+https://github.com/huggingface/accelerate",
],
parallelism=1,
pytest_num_workers=6,
pytest_num_workers=3,
)
@ -321,11 +256,12 @@ tf_job = CircleCIJob(
"tf",
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng cmake",
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[sklearn,tf-cpu,testing,sentencepiece,tf-speech,vision]",
"pip install -U --upgrade-strategy eager tensorflow_probability",
"pip install --upgrade pip",
"pip install .[sklearn,tf-cpu,testing,sentencepiece,tf-speech,vision]",
"pip install tensorflow_probability",
],
parallelism=1,
pytest_options={"rA": None},
)
@ -333,10 +269,11 @@ flax_job = CircleCIJob(
"flax",
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng",
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[flax,testing,sentencepiece,flax-speech,vision]",
"pip install --upgrade pip",
"pip install .[flax,testing,sentencepiece,flax-speech,vision]",
],
parallelism=1,
pytest_options={"rA": None},
)
@ -345,11 +282,11 @@ pipelines_torch_job = CircleCIJob(
additional_env={"RUN_PIPELINE_TESTS": True},
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng",
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[sklearn,torch,testing,sentencepiece,torch-speech,vision,timm,video]",
"pip install --upgrade pip",
"pip install .[sklearn,torch,testing,sentencepiece,torch-speech,vision,timm,video]",
],
pytest_options={"rA": None},
marker="is_pipeline_test",
pytest_num_workers=6,
)
@ -358,10 +295,11 @@ pipelines_tf_job = CircleCIJob(
additional_env={"RUN_PIPELINE_TESTS": True},
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y cmake",
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[sklearn,tf-cpu,testing,sentencepiece,vision]",
"pip install -U --upgrade-strategy eager tensorflow_probability",
"pip install --upgrade pip",
"pip install .[sklearn,tf-cpu,testing,sentencepiece,vision]",
"pip install tensorflow_probability",
],
pytest_options={"rA": None},
marker="is_pipeline_test",
)
@ -381,8 +319,8 @@ custom_tokenizers_job = CircleCIJob(
"sudo cmake .. -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=/usr/local\n"
"sudo make install\n",
},
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[ja,testing,sentencepiece,jieba,spacy,ftfy,rjieba]",
"pip install --upgrade pip",
"pip install .[ja,testing,sentencepiece,jieba,spacy,ftfy,rjieba]",
"python -m unidic download",
],
parallelism=None,
@ -400,10 +338,11 @@ examples_torch_job = CircleCIJob(
cache_name="torch_examples",
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng",
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[sklearn,torch,sentencepiece,testing,torch-speech]",
"pip install -U --upgrade-strategy eager -r examples/pytorch/_tests_requirements.txt",
"pip install --upgrade pip",
"pip install .[sklearn,torch,sentencepiece,testing,torch-speech]",
"pip install -r examples/pytorch/_tests_requirements.txt",
],
tests_to_run="./examples/pytorch/",
)
@ -412,10 +351,11 @@ examples_tensorflow_job = CircleCIJob(
cache_name="tensorflow_examples",
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y cmake",
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[sklearn,tensorflow,sentencepiece,testing]",
"pip install -U --upgrade-strategy eager -r examples/tensorflow/_tests_requirements.txt",
"pip install --upgrade pip",
"pip install .[sklearn,tensorflow,sentencepiece,testing]",
"pip install -r examples/tensorflow/_tests_requirements.txt",
],
tests_to_run="./examples/tensorflow/",
)
@ -423,22 +363,22 @@ examples_flax_job = CircleCIJob(
"examples_flax",
cache_name="flax_examples",
install_steps=[
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[flax,testing,sentencepiece]",
"pip install -U --upgrade-strategy eager -r examples/flax/_tests_requirements.txt",
"pip install --upgrade pip",
"pip install .[flax,testing,sentencepiece]",
"pip install -r examples/flax/_tests_requirements.txt",
],
tests_to_run="./examples/flax/",
)
hub_job = CircleCIJob(
"hub",
additional_env={"HUGGINGFACE_CO_STAGING": True},
install_steps=[
"sudo apt-get -y update && sudo apt-get install git-lfs",
'git config --global user.email "ci@dummy.com"',
'git config --global user.name "ci"',
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[torch,sentencepiece,testing,vision]",
"pip install --upgrade pip",
"pip install .[torch,sentencepiece,testing]",
],
marker="is_staging_test",
pytest_num_workers=1,
@ -449,8 +389,8 @@ onnx_job = CircleCIJob(
"onnx",
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y cmake",
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[torch,tf,testing,sentencepiece,onnxruntime,vision,rjieba]",
"pip install --upgrade pip",
"pip install .[torch,tf,testing,sentencepiece,onnxruntime,vision,rjieba]",
],
pytest_options={"k onnx": None},
pytest_num_workers=1,
@ -461,23 +401,19 @@ exotic_models_job = CircleCIJob(
"exotic_models",
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev",
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[torch,testing,vision]",
"pip install -U --upgrade-strategy eager torchvision",
"pip install -U --upgrade-strategy eager scipy",
"pip install -U --upgrade-strategy eager 'git+https://github.com/facebookresearch/detectron2.git'",
"pip install --upgrade pip",
"pip install .[torch,testing,vision]",
"pip install torchvision",
"pip install scipy",
"pip install 'git+https://github.com/facebookresearch/detectron2.git'",
"sudo apt install tesseract-ocr",
"pip install -U --upgrade-strategy eager pytesseract",
"pip install -U --upgrade-strategy eager natten",
"pip install -U --upgrade-strategy eager python-Levenshtein",
"pip install -U --upgrade-strategy eager opencv-python",
"pip install -U --upgrade-strategy eager nltk",
"pip install pytesseract",
"pip install natten",
],
tests_to_run=[
"tests/models/*layoutlmv*",
"tests/models/*nat",
"tests/models/deta",
"tests/models/nougat",
],
pytest_num_workers=1,
pytest_options={"durations": 100},
@ -487,8 +423,8 @@ exotic_models_job = CircleCIJob(
repo_utils_job = CircleCIJob(
"repo_utils",
install_steps=[
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[quality,testing,torch]",
"pip install --upgrade pip",
"pip install .[quality,testing,torch]",
],
parallelism=None,
pytest_num_workers=1,
@ -507,12 +443,11 @@ doc_test_job = CircleCIJob(
"pr_documentation_tests",
additional_env={"TRANSFORMERS_VERBOSITY": "error", "DATASETS_VERBOSITY": "error", "SKIP_CUDA_DOCTEST": "1"},
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng time ffmpeg",
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager -e .[dev]",
"pip install -U --upgrade-strategy eager git+https://github.com/huggingface/accelerate",
"pip install --upgrade --upgrade-strategy eager pytest pytest-sugar",
"pip install -U --upgrade-strategy eager natten",
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng time",
"pip install --upgrade pip",
"pip install -e .[dev]",
"pip install git+https://github.com/huggingface/accelerate",
"pip install --upgrade pytest pytest-sugar",
"find -name __pycache__ -delete",
"find . -name \*.pyc -delete",
# Add an empty file to keep the test step running correctly even no file is selected to be tested.
@ -533,7 +468,7 @@ doc_test_job = CircleCIJob(
},
],
tests_to_run="$(cat pr_documentation_tests.txt)", # noqa
pytest_options={"-doctest-modules": None, "doctest-glob": "*.md", "dist": "loadfile", "rvsA": None},
pytest_options={"-doctest-modules": None, "doctest-glob": "*.mdx", "dist": "loadfile", "rvsA": None},
command_timeout=1200, # test cannot run longer than 1200 seconds
pytest_num_workers=1,
)
@ -616,17 +551,7 @@ def create_circleci_config(folder=None):
example_file = os.path.join(folder, "examples_test_list.txt")
if os.path.exists(example_file) and os.path.getsize(example_file) > 0:
with open(example_file, "r", encoding="utf-8") as f:
example_tests = f.read()
for job in EXAMPLES_TESTS:
framework = job.name.replace("examples_", "").replace("torch", "pytorch")
if example_tests == "all":
job.tests_to_run = [f"examples/{framework}"]
else:
job.tests_to_run = [f for f in example_tests.split(" ") if f.startswith(f"examples/{framework}")]
if len(job.tests_to_run) > 0:
jobs.append(job)
jobs.extend(EXAMPLES_TESTS)
doctest_file = os.path.join(folder, "doctest_list.txt")
if os.path.exists(doctest_file):
@ -641,18 +566,17 @@ def create_circleci_config(folder=None):
if os.path.exists(repo_util_file) and os.path.getsize(repo_util_file) > 0:
jobs.extend(REPO_UTIL_TESTS)
if len(jobs) == 0:
jobs = [EmptyJob()]
config = {"version": "2.1"}
config["parameters"] = {
# Only used to accept the parameters from the trigger
"nightly": {"type": "boolean", "default": False},
"tests_to_run": {"type": "string", "default": test_list},
}
config["jobs"] = {j.job_name: j.to_dict() for j in jobs}
config["workflows"] = {"version": 2, "run_tests": {"jobs": [j.job_name for j in jobs]}}
with open(os.path.join(folder, "generated_config.yml"), "w") as f:
f.write(yaml.dump(config, indent=2, width=1000000, sort_keys=False))
if len(jobs) > 0:
config = {"version": "2.1"}
config["parameters"] = {
# Only used to accept the parameters from the trigger
"nightly": {"type": "boolean", "default": False},
"tests_to_run": {"type": "string", "default": test_list},
}
config["jobs"] = {j.job_name: j.to_dict() for j in jobs}
config["workflows"] = {"version": 2, "run_tests": {"jobs": [j.job_name for j in jobs]}}
with open(os.path.join(folder, "generated_config.yml"), "w") as f:
f.write(yaml.dump(config, indent=2, width=1000000, sort_keys=False))
if __name__ == "__main__":

View File

@ -37,16 +37,15 @@ body:
- pipelines: @Narsil
- tensorflow: @gante and @Rocketknight1
- tokenizers: @ArthurZucker
- trainer: @muellerzr and @pacman100
- trainer: @sgugger
Integrations:
- deepspeed: HF Trainer/Accelerate: @pacman100
- deepspeed: HF Trainer: @stas00, Accelerate: @pacman100
- ray/raytune: @richardliaw, @amogkam
- Big Model Inference: @SunMarc
- quantization (bitsandbytes, autogpt): @SunMarc and @younesbelkada
- Big Model Inference: @sgugger @muellerzr
Documentation: @stevhliu and @MKhalusova
Documentation: @sgugger, @stevhliu and @MKhalusova
Model hub:
@ -62,7 +61,7 @@ body:
Maintained examples (not research project or legacy):
- Flax: @sanchit-gandhi
- PyTorch: See Models above and tag the person corresponding to the modality of the example.
- PyTorch: @sgugger
- TensorFlow: @Rocketknight1
Research projects are not maintained and should be taken as is.

View File

@ -23,23 +23,23 @@ Some notes:
* Please translate in a gender-neutral way.
* Add your translations to the folder called `<languageCode>` inside the [source folder](https://github.com/huggingface/transformers/tree/main/docs/source).
* Register your translation in `<languageCode>/_toctree.yml`; please follow the order of the [English version](https://github.com/huggingface/transformers/blob/main/docs/source/en/_toctree.yml).
* Once you're finished, open a pull request and tag this issue by including #issue-number in the description, where issue-number is the number of this issue. Please ping @stevhliu and @MKhalusova for review.
* Once you're finished, open a pull request and tag this issue by including #issue-number in the description, where issue-number is the number of this issue. Please ping @ArthurZucker, @sgugger for review.
* 🙋 If you'd like others to help you with the translation, you can also post in the 🤗 [forums](https://discuss.huggingface.co/).
## Get Started section
- [ ] [index.md](https://github.com/huggingface/transformers/blob/main/docs/source/en/index.md) https://github.com/huggingface/transformers/pull/20180
- [ ] [quicktour.md](https://github.com/huggingface/transformers/blob/main/docs/source/en/quicktour.md) (waiting for initial PR to go through)
- [ ] [installation.md](https://github.com/huggingface/transformers/blob/main/docs/source/en/installation.md).
- [ ] [index.mdx](https://github.com/huggingface/transformers/blob/main/docs/source/en/index.mdx) https://github.com/huggingface/transformers/pull/20180
- [ ] [quicktour.mdx](https://github.com/huggingface/transformers/blob/main/docs/source/en/quicktour.mdx) (waiting for initial PR to go through)
- [ ] [installation.mdx](https://github.com/huggingface/transformers/blob/main/docs/source/en/installation.mdx).
## Tutorial section
- [ ] [pipeline_tutorial.md](https://github.com/huggingface/transformers/blob/main/docs/source/en/pipeline_tutorial.md)
- [ ] [autoclass_tutorial.md](https://github.com/huggingface/transformers/blob/master/docs/source/autoclass_tutorial.md)
- [ ] [preprocessing.md](https://github.com/huggingface/transformers/blob/main/docs/source/en/preprocessing.md)
- [ ] [training.md](https://github.com/huggingface/transformers/blob/main/docs/source/en/training.md)
- [ ] [accelerate.md](https://github.com/huggingface/transformers/blob/main/docs/source/en/accelerate.md)
- [ ] [model_sharing.md](https://github.com/huggingface/transformers/blob/main/docs/source/en/model_sharing.md)
- [ ] [multilingual.md](https://github.com/huggingface/transformers/blob/main/docs/source/en/multilingual.md)
- [ ] [pipeline_tutorial.mdx](https://github.com/huggingface/transformers/blob/main/docs/source/en/pipeline_tutorial.mdx)
- [ ] [autoclass_tutorial.mdx](https://github.com/huggingface/transformers/blob/master/docs/source/autoclass_tutorial.mdx)
- [ ] [preprocessing.mdx](https://github.com/huggingface/transformers/blob/main/docs/source/en/preprocessing.mdx)
- [ ] [training.mdx](https://github.com/huggingface/transformers/blob/main/docs/source/en/training.mdx)
- [ ] [accelerate.mdx](https://github.com/huggingface/transformers/blob/main/docs/source/en/accelerate.mdx)
- [ ] [model_sharing.mdx](https://github.com/huggingface/transformers/blob/main/docs/source/en/model_sharing.mdx)
- [ ] [multilingual.mdx](https://github.com/huggingface/transformers/blob/main/docs/source/en/multilingual.mdx)
<!--
Keep on adding more as you go 🔥

View File

@ -51,16 +51,14 @@ Library:
- pipelines: @Narsil
- tensorflow: @gante and @Rocketknight1
- tokenizers: @ArthurZucker
- trainer: @muellerzr and @pacman100
- trainer: @sgugger
Integrations:
- deepspeed: HF Trainer/Accelerate: @pacman100
- deepspeed: HF Trainer: @stas00, Accelerate: @pacman100
- ray/raytune: @richardliaw, @amogkam
- Big Model Inference: @SunMarc
- quantization (bitsandbytes, autogpt): @SunMarc and @younesbelkada
Documentation: @stevhliu and @MKhalusova
Documentation: @sgugger, @stevhliu and @MKhalusova
HF projects:
@ -72,7 +70,7 @@ HF projects:
Maintained examples (not research project or legacy):
- Flax: @sanchit-gandhi
- PyTorch: See Models above and tag the person corresponding to the modality of the example.
- PyTorch: @sgugger
- TensorFlow: @Rocketknight1
-->

View File

@ -16,6 +16,7 @@ requirements:
- pip
- numpy >=1.17
- dataclasses
- importlib_metadata
- huggingface_hub
- packaging
- filelock
@ -30,6 +31,7 @@ requirements:
- python
- numpy >=1.17
- dataclasses
- importlib_metadata
- huggingface_hub
- packaging
- filelock

View File

@ -3,13 +3,13 @@ name: Add model like runner
on:
push:
branches:
- none # put main here when this is fixed
#pull_request:
# paths:
# - "src/**"
# - "tests/**"
# - ".github/**"
# types: [opened, synchronize, reopened]
- main
pull_request:
paths:
- "src/**"
- "tests/**"
- ".github/**"
types: [opened, synchronize, reopened]
jobs:
run_tests_templates_like:

View File

@ -34,19 +34,19 @@ jobs:
sudo du -sh /usr/share/
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
uses: docker/setup-buildx-action@v2
-
name: Check out code
uses: actions/checkout@v3
-
name: Login to DockerHub
uses: docker/login-action@v3
uses: docker/login-action@v2
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
-
name: Build and push
uses: docker/build-push-action@v5
uses: docker/build-push-action@v3
with:
context: ./docker/transformers-all-latest-gpu
build-args: |
@ -59,7 +59,7 @@ jobs:
# This condition allows `schedule` events, or `push` events that trigger this workflow NOT via `workflow_call`.
# The later case is useful for manual image building for debugging purpose. Use another tag in this case!
if: inputs.image_postfix != '-push-ci'
uses: docker/build-push-action@v5
uses: docker/build-push-action@v3
with:
context: ./docker/transformers-all-latest-gpu
build-args: |
@ -71,31 +71,21 @@ jobs:
name: "Latest PyTorch + DeepSpeed"
runs-on: ubuntu-latest
steps:
- name: Cleanup disk
run: |
sudo ls -l /usr/local/lib/
sudo ls -l /usr/share/
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
sudo rm -rf /usr/local/lib/android
sudo rm -rf /usr/share/dotnet
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
uses: docker/setup-buildx-action@v2
-
name: Check out code
uses: actions/checkout@v3
-
name: Login to DockerHub
uses: docker/login-action@v3
uses: docker/login-action@v2
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
-
name: Build and push
uses: docker/build-push-action@v5
uses: docker/build-push-action@v3
with:
context: ./docker/transformers-pytorch-deepspeed-latest-gpu
build-args: |
@ -108,25 +98,15 @@ jobs:
name: "Latest PyTorch + DeepSpeed (Push CI - Daily Build)"
runs-on: ubuntu-latest
steps:
- name: Cleanup disk
run: |
sudo ls -l /usr/local/lib/
sudo ls -l /usr/share/
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
sudo rm -rf /usr/local/lib/android
sudo rm -rf /usr/share/dotnet
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
uses: docker/setup-buildx-action@v2
-
name: Check out code
uses: actions/checkout@v3
-
name: Login to DockerHub
uses: docker/login-action@v3
uses: docker/login-action@v2
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
@ -136,7 +116,7 @@ jobs:
# This condition allows `schedule` events, or `push` events that trigger this workflow NOT via `workflow_call`.
# The later case is useful for manual image building for debugging purpose. Use another tag in this case!
if: inputs.image_postfix != '-push-ci'
uses: docker/build-push-action@v5
uses: docker/build-push-action@v3
with:
context: ./docker/transformers-pytorch-deepspeed-latest-gpu
build-args: |
@ -152,19 +132,19 @@ jobs:
steps:
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
uses: docker/setup-buildx-action@v2
-
name: Check out code
uses: actions/checkout@v3
-
name: Login to DockerHub
uses: docker/login-action@v3
uses: docker/login-action@v2
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
-
name: Build and push
uses: docker/build-push-action@v5
uses: docker/build-push-action@v3
with:
context: ./docker/transformers-doc-builder
push: true
@ -176,31 +156,21 @@ jobs:
if: inputs.image_postfix != '-push-ci'
runs-on: ubuntu-latest
steps:
- name: Cleanup disk
run: |
sudo ls -l /usr/local/lib/
sudo ls -l /usr/share/
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
sudo rm -rf /usr/local/lib/android
sudo rm -rf /usr/share/dotnet
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
uses: docker/setup-buildx-action@v2
-
name: Check out code
uses: actions/checkout@v3
-
name: Login to DockerHub
uses: docker/login-action@v3
uses: docker/login-action@v2
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
-
name: Build and push
uses: docker/build-push-action@v5
uses: docker/build-push-action@v3
with:
context: ./docker/transformers-pytorch-gpu
build-args: |
@ -208,41 +178,6 @@ jobs:
push: true
tags: huggingface/transformers-pytorch-gpu
latest-pytorch-amd:
name: "Latest PyTorch (AMD) [dev]"
runs-on: [self-hosted, docker-gpu, amd-gpu, single-gpu, mi210]
steps:
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Check out code
uses: actions/checkout@v3
- name: Login to DockerHub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
- name: Build and push
uses: docker/build-push-action@v5
with:
context: ./docker/transformers-pytorch-amd-gpu
build-args: |
REF=main
push: true
tags: huggingface/transformers-pytorch-amd-gpu${{ inputs.image_postfix }}
# Push CI images still need to be re-built daily
-
name: Build and push (for Push CI) in a daily basis
# This condition allows `schedule` events, or `push` events that trigger this workflow NOT via `workflow_call`.
# The later case is useful for manual image building for debugging purpose. Use another tag in this case!
if: inputs.image_postfix != '-push-ci'
uses: docker/build-push-action@v5
with:
context: ./docker/transformers-pytorch-amd-gpu
build-args: |
REF=main
push: true
tags: huggingface/transformers-pytorch-amd-gpu-push-ci
latest-tensorflow:
name: "Latest TensorFlow [dev]"
# Push CI doesn't need this image
@ -251,19 +186,19 @@ jobs:
steps:
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
uses: docker/setup-buildx-action@v2
-
name: Check out code
uses: actions/checkout@v3
-
name: Login to DockerHub
uses: docker/login-action@v3
uses: docker/login-action@v2
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
-
name: Build and push
uses: docker/build-push-action@v5
uses: docker/build-push-action@v3
with:
context: ./docker/transformers-tensorflow-gpu
build-args: |

View File

@ -52,16 +52,6 @@ jobs:
name: "Nightly PyTorch + DeepSpeed"
runs-on: ubuntu-latest
steps:
- name: Cleanup disk
run: |
sudo ls -l /usr/local/lib/
sudo ls -l /usr/share/
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
sudo rm -rf /usr/local/lib/android
sudo rm -rf /usr/share/dotnet
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v2

View File

@ -15,7 +15,7 @@ jobs:
strategy:
fail-fast: false
matrix:
version: ["1.13", "1.12", "1.11", "1.10"]
version: ["1.13", "1.12", "1.11", "1.10", "1.9"]
runs-on: ubuntu-latest
steps:
-

View File

@ -15,7 +15,6 @@ jobs:
commit_sha: ${{ github.sha }}
package: transformers
notebook_folder: transformers_doc
languages: de en es fr hi it ko pt zh ja te
languages: de en es fr it ko pt zh
secrets:
token: ${{ secrets.HUGGINGFACE_PUSH }}
hf_token: ${{ secrets.HF_DOC_BUILD_PUSH }}

View File

@ -14,4 +14,4 @@ jobs:
commit_sha: ${{ github.event.pull_request.head.sha }}
pr_number: ${{ github.event.number }}
package: transformers
languages: de en es fr hi it ko pt zh ja te
languages: de en es fr it ko pt zh

29
.github/workflows/count_stars.yml vendored Normal file
View File

@ -0,0 +1,29 @@
name: Count 🤗 stars ⭐
on:
push:
branches:
- fire
env:
HF_HOME: /mnt/cache
TRANSFORMERS_IS_CI: yes
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
RUN_SLOW: yes
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
TF_FORCE_GPU_ALLOW_GROWTH: true
RUN_PT_TF_CROSS_TESTS: 1
jobs:
send_results:
name: Send results to webhook
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Count 🤗 stars ⭐
env:
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
shell: bash
run: |
python -u count_stars.py

View File

@ -1,14 +1,13 @@
name: Delete doc comment
name: Delete dev documentation
on:
workflow_run:
workflows: ["Delete doc comment trigger"]
types:
- completed
pull_request:
types: [ closed ]
jobs:
delete:
uses: huggingface/doc-builder/.github/workflows/delete_doc_comment.yml@main
secrets:
comment_bot_token: ${{ secrets.COMMENT_BOT_TOKEN }}
with:
pr_number: ${{ github.event.number }}
package: transformers

View File

@ -1,12 +0,0 @@
name: Delete doc comment trigger
on:
pull_request:
types: [ closed ]
jobs:
delete:
uses: huggingface/doc-builder/.github/workflows/delete_doc_comment_trigger.yml@main
with:
pr_number: ${{ github.event.number }}

View File

@ -20,7 +20,7 @@ env:
jobs:
run_doctests:
runs-on: [single-gpu, nvidia-gpu, t4, doctest-ci]
runs-on: [self-hosted, doc-tests-gpu]
container:
image: huggingface/transformers-all-latest-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
@ -34,7 +34,7 @@ jobs:
nvidia-smi
- name: Install transformers in edit mode
run: python3 -m pip install -e .[flax]
run: python3 -m pip install -e .
- name: GPU visibility
run: |
@ -43,13 +43,9 @@ jobs:
- name: Show installed libraries and their versions
run: pip freeze
- name: Get doctest files
run: |
$(python3 -c 'from utils.tests_fetcher import get_all_doctest_files; to_test = get_all_doctest_files(); to_test = " ".join(to_test); fp = open("doc_tests.txt", "w"); fp.write(to_test); fp.close()')
- name: Run doctests
run: |
python3 -m pytest -v --make-reports doc_tests_gpu --doctest-modules $(cat doc_tests.txt) -sv --doctest-continue-on-failure --doctest-glob="*.md"
python3 -m pytest -v --make-reports doc_tests_gpu --doctest-modules $(cat utils/documentation_tests.txt) -sv --doctest-continue-on-failure --doctest-glob="*.mdx"
- name: Failure short reports
if: ${{ failure() }}

View File

@ -67,10 +67,21 @@ jobs:
sha: ${{ github.sha }}
secrets: inherit
run_past_ci_pytorch_1-9:
name: PyTorch 1.9
if: (cancelled() != true) && ((github.event_name == 'schedule') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci')))
needs: [run_past_ci_pytorch_1-10]
uses: ./.github/workflows/self-past.yml
with:
framework: pytorch
version: "1.9"
sha: ${{ github.sha }}
secrets: inherit
run_past_ci_tensorflow_2-11:
name: TensorFlow 2.11
if: (cancelled() != true) && ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci'))
needs: [run_past_ci_pytorch_1-10]
needs: [run_past_ci_pytorch_1-9]
uses: ./.github/workflows/self-past.yml
with:
framework: tensorflow

View File

@ -21,12 +21,40 @@ env:
RUN_PT_TF_CROSS_TESTS: 1
jobs:
setup:
name: Setup
check_runner_status:
name: Check Runner Status
runs-on: ubuntu-latest
steps:
- name: Checkout transformers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Check Runner Status
run: python utils/check_self_hosted_runner.py --target_runners single-gpu-past-ci-runner-docker,multi-gpu-past-ci-runner-docker --token ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
check_runners:
name: Check Runners
needs: check_runner_status
strategy:
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, past-ci]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker-past-ci') }}
container:
image: huggingface/transformers-all-latest-torch-nightly-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: NVIDIA-SMI
run: |
nvidia-smi
setup:
name: Setup
needs: check_runners
strategy:
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker-past-ci') }}
container:
image: huggingface/transformers-all-latest-torch-nightly-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
@ -66,7 +94,7 @@ jobs:
matrix:
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
machine_type: [single-gpu]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, past-ci]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker-past-ci') }}
container:
image: huggingface/transformers-all-latest-torch-nightly-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
@ -87,10 +115,6 @@ jobs:
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: NVIDIA-SMI
run: |
nvidia-smi
@ -127,7 +151,7 @@ jobs:
matrix:
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
machine_type: [multi-gpu]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, past-ci]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker-past-ci') }}
container:
image: huggingface/transformers-all-latest-torch-nightly-gpu
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
@ -148,10 +172,6 @@ jobs:
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: NVIDIA-SMI
run: |
nvidia-smi
@ -187,7 +207,7 @@ jobs:
fail-fast: false
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, past-ci]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker-past-ci') }}
needs: setup
container:
image: huggingface/transformers-pytorch-deepspeed-nightly-gpu
@ -197,10 +217,6 @@ jobs:
working-directory: /workspace/transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /workspace/transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Remove cached torch extensions
run: rm -rf /github/home/.cache/torch_extensions/
@ -248,6 +264,8 @@ jobs:
runs-on: ubuntu-latest
if: always()
needs: [
check_runner_status,
check_runners,
setup,
run_tests_single_gpu,
run_tests_multi_gpu,
@ -258,6 +276,8 @@ jobs:
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
echo "Runner availability: ${{ needs.check_runner_status.result }}"
echo "Runner status: ${{ needs.check_runners.result }}"
echo "Setup status: ${{ needs.setup.result }}"
- uses: actions/checkout@v3
@ -271,6 +291,8 @@ jobs:
CI_SLACK_REPORT_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID_PAST_FUTURE }}
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
CI_EVENT: Nightly CI
RUNNER_STATUS: ${{ needs.check_runner_status.result }}
RUNNER_ENV_STATUS: ${{ needs.check_runners.result }}
SETUP_STATUS: ${{ needs.setup.result }}
# We pass `needs.setup.outputs.matrix` as the argument. A processing in `notification_service.py` to change
# `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`.

View File

@ -32,12 +32,40 @@ env:
RUN_PT_TF_CROSS_TESTS: 1
jobs:
setup:
name: Setup
check_runner_status:
name: Check Runner Status
runs-on: ubuntu-latest
steps:
- name: Checkout transformers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Check Runner Status
run: python utils/check_self_hosted_runner.py --target_runners single-gpu-past-ci-runner-docker,multi-gpu-past-ci-runner-docker --token ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
check_runners:
name: Check Runners
needs: check_runner_status
strategy:
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, past-ci]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker-past-ci') }}
container:
image: huggingface/transformers-${{ inputs.framework }}-past-${{ inputs.version }}-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: NVIDIA-SMI
run: |
nvidia-smi
setup:
name: Setup
needs: check_runners
strategy:
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker-past-ci') }}
container:
image: huggingface/transformers-${{ inputs.framework }}-past-${{ inputs.version }}-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
@ -73,7 +101,7 @@ jobs:
matrix:
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
machine_type: [single-gpu]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, past-ci]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker-past-ci') }}
container:
image: huggingface/transformers-${{ inputs.framework }}-past-${{ inputs.version }}-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
@ -83,10 +111,6 @@ jobs:
working-directory: /transformers
run: git fetch && git checkout ${{ inputs.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
@ -149,7 +173,7 @@ jobs:
matrix:
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
machine_type: [multi-gpu]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, past-ci]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker-past-ci') }}
container:
image: huggingface/transformers-${{ inputs.framework }}-past-${{ inputs.version }}-gpu
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
@ -159,10 +183,6 @@ jobs:
working-directory: /transformers
run: git fetch && git checkout ${{ inputs.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
@ -225,7 +245,7 @@ jobs:
fail-fast: false
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, past-ci]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker-past-ci') }}
needs: setup
container:
image: huggingface/transformers-${{ inputs.framework }}-past-${{ inputs.version }}-gpu
@ -235,10 +255,6 @@ jobs:
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Install
working-directory: /transformers
run: |
@ -291,6 +307,8 @@ jobs:
runs-on: ubuntu-latest
if: always()
needs: [
check_runner_status,
check_runners,
setup,
run_tests_single_gpu,
run_tests_multi_gpu,
@ -301,6 +319,8 @@ jobs:
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
echo "Runner availability: ${{ needs.check_runner_status.result }}"
echo "Runner status: ${{ needs.check_runners.result }}"
echo "Setup status: ${{ needs.setup.result }}"
- uses: actions/checkout@v3
@ -319,6 +339,8 @@ jobs:
CI_SLACK_REPORT_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID_PAST_FUTURE }}
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
CI_EVENT: Past CI - ${{ inputs.framework }}-${{ inputs.version }}
RUNNER_STATUS: ${{ needs.check_runner_status.result }}
RUNNER_ENV_STATUS: ${{ needs.check_runners.result }}
SETUP_STATUS: ${{ needs.setup.result }}
# We pass `needs.setup.outputs.matrix` as the argument. A processing in `notification_service.py` to change
# `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`.

View File

@ -1,25 +0,0 @@
name: Self-hosted runner (AMD mi210 CI caller)
on:
workflow_run:
workflows: ["Self-hosted runner (push-caller)"]
branches: ["main"]
types: [completed]
push:
branches:
- run_amd_push_ci_caller*
paths:
- "src/**"
- "tests/**"
- ".github/**"
- "templates/**"
- "utils/**"
jobs:
run_amd_ci:
name: AMD mi210
if: (cancelled() != true) && ((github.event_name != 'schedule') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_amd_push_ci_caller')))
uses: ./.github/workflows/self-push-amd.yml
with:
gpu_flavor: mi210
secrets: inherit

View File

@ -1,25 +0,0 @@
name: Self-hosted runner (AMD mi250 CI caller)
on:
workflow_run:
workflows: ["Self-hosted runner (push-caller)"]
branches: ["main"]
types: [completed]
push:
branches:
- run_amd_push_ci_caller*
paths:
- "src/**"
- "tests/**"
- ".github/**"
- "templates/**"
- "utils/**"
jobs:
run_amd_ci:
name: AMD mi250
if: (cancelled() != true) && ((github.event_name != 'schedule') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_amd_push_ci_caller')))
uses: ./.github/workflows/self-push-amd.yml
with:
gpu_flavor: mi250
secrets: inherit

View File

@ -1,324 +0,0 @@
name: Self-hosted runner AMD GPU (push)
on:
workflow_call:
inputs:
gpu_flavor:
required: true
type: string
env:
HF_HOME: /mnt/cache
TRANSFORMERS_IS_CI: yes
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
PYTEST_TIMEOUT: 60
TF_FORCE_GPU_ALLOW_GROWTH: true
RUN_PT_TF_CROSS_TESTS: 1
jobs:
check_runner_status:
name: Check Runner Status
runs-on: ubuntu-latest
steps:
- name: Checkout transformers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Check Runner Status
run: python utils/check_self_hosted_runner.py --target_runners amd-mi210-single-gpu-ci-runner-docker --token ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
check_runners:
name: Check Runners
needs: check_runner_status
strategy:
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: [self-hosted, docker-gpu, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
container:
image: huggingface/transformers-pytorch-amd-gpu-push-ci # <--- We test only for PyTorch for now
options: --device /dev/kfd --device /dev/dri --env HIP_VISIBLE_DEVICES --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: ROCM-SMI
run: |
rocminfo | grep "Agent" -A 14
- name: Show HIP environment
run: |
echo "HIP: $HIP_VISIBLE_DEVICES"
echo "ROCR: $ROCR_VISIBLE_DEVICES"
setup_gpu:
name: Setup
needs: check_runners
strategy:
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: [self-hosted, docker-gpu, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
container:
image: huggingface/transformers-pytorch-amd-gpu-push-ci # <--- We test only for PyTorch for now
options: --device /dev/kfd --device /dev/dri --env HIP_VISIBLE_DEVICES --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
outputs:
matrix: ${{ steps.set-matrix.outputs.matrix }}
test_map: ${{ steps.set-matrix.outputs.test_map }}
steps:
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
# We also take into account the `push` event (we might want to test some changes in a branch)
- name: Prepare custom environment variables
shell: bash
# `CI_BRANCH_PUSH`: The branch name from the push event
# `CI_BRANCH_WORKFLOW_RUN`: The name of the branch on which this workflow is triggered by `workflow_run` event
# `CI_BRANCH`: The non-empty branch name from the above two (one and only one of them is empty)
# `CI_SHA_PUSH`: The commit SHA from the push event
# `CI_SHA_WORKFLOW_RUN`: The commit SHA that triggers this workflow by `workflow_run` event
# `CI_SHA`: The non-empty commit SHA from the above two (one and only one of them is empty)
run: |
CI_BRANCH_PUSH=${{ github.event.ref }}
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
CI_BRANCH_WORKFLOW_RUN=${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH=${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN=${{ github.event.workflow_run.head_sha }}
echo $CI_BRANCH_PUSH
echo $CI_BRANCH_WORKFLOW_RUN
echo $CI_SHA_PUSH
echo $CI_SHA_WORKFLOW_RUN
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
- name: print environment variables
run: |
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
echo "env.CI_SHA = ${{ env.CI_SHA }}"
- name: Update clone using environment variables
working-directory: /transformers
run: |
echo "original branch = $(git branch --show-current)"
git fetch && git checkout ${{ env.CI_BRANCH }}
echo "updated branch = $(git branch --show-current)"
git checkout ${{ env.CI_SHA }}
echo "log = $(git log -n 1)"
- name: Cleanup
working-directory: /transformers
run: |
rm -rf tests/__pycache__
rm -rf tests/models/__pycache__
rm -rf reports
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Fetch the tests to run
working-directory: /transformers
# TODO: add `git-python` in the docker images
run: |
pip install --upgrade git-python
python3 utils/tests_fetcher.py --diff_with_last_commit | tee test_preparation.txt
- name: Report fetched tests
uses: actions/upload-artifact@v3
with:
name: test_fetched
path: /transformers/test_preparation.txt
- id: set-matrix
name: Organize tests into models
working-directory: /transformers
# The `keys` is used as GitHub actions matrix for jobs, i.e. `models/bert`, `tokenization`, `pipeline`, etc.
# The `test_map` is used to get the actual identified test files under each key.
# If no test to run (so no `test_map.json` file), create a dummy map (empty matrix will fail)
run: |
if [ -f test_map.json ]; then
keys=$(python3 -c 'import json; fp = open("test_map.json"); test_map = json.load(fp); fp.close(); d = list(test_map.keys()); print(d)')
test_map=$(python3 -c 'import json; fp = open("test_map.json"); test_map = json.load(fp); fp.close(); print(test_map)')
else
keys=$(python3 -c 'keys = ["dummy"]; print(keys)')
test_map=$(python3 -c 'test_map = {"dummy": []}; print(test_map)')
fi
echo $keys
echo $test_map
echo "matrix=$keys" >> $GITHUB_OUTPUT
echo "test_map=$test_map" >> $GITHUB_OUTPUT
run_tests_amdgpu:
name: Model tests
needs: setup_gpu
# `dummy` means there is no test to run
if: contains(fromJson(needs.setup_gpu.outputs.matrix), 'dummy') != true
strategy:
fail-fast: false
matrix:
folders: ${{ fromJson(needs.setup_gpu.outputs.matrix) }}
machine_type: [single-gpu, multi-gpu]
runs-on: [self-hosted, docker-gpu, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
container:
image: huggingface/transformers-pytorch-amd-gpu-push-ci # <--- We test only for PyTorch for now
options: --device /dev/kfd --device /dev/dri --env HIP_VISIBLE_DEVICES --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
# We also take into account the `push` event (we might want to test some changes in a branch)
- name: Prepare custom environment variables
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
CI_BRANCH_PUSH=${{ github.event.ref }}
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
CI_BRANCH_WORKFLOW_RUN=${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH=${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN=${{ github.event.workflow_run.head_sha }}
echo $CI_BRANCH_PUSH
echo $CI_BRANCH_WORKFLOW_RUN
echo $CI_SHA_PUSH
echo $CI_SHA_WORKFLOW_RUN
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
- name: print environment variables
run: |
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
echo "env.CI_SHA = ${{ env.CI_SHA }}"
- name: Update clone using environment variables
working-directory: /transformers
run: |
echo "original branch = $(git branch --show-current)"
git fetch && git checkout ${{ env.CI_BRANCH }}
echo "updated branch = $(git branch --show-current)"
git checkout ${{ env.CI_SHA }}
echo "log = $(git log -n 1)"
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
# set the artifact folder names (because the character `/` is not allowed).
run: |
echo "${{ matrix.folders }}"
echo "${{ fromJson(needs.setup_gpu.outputs.test_map)[matrix.folders] }}"
matrix_folders=${{ matrix.folders }}
matrix_folders=${matrix_folders/'models/'/'models_'}
echo "$matrix_folders"
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
- name: ROCM-SMI
run: |
rocminfo | grep "Agent" -A 14
- name: Show HIP environment
run: |
echo "HIP: $HIP_VISIBLE_DEVICES"
echo "ROCR: $ROCR_VISIBLE_DEVICES"
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run all non-slow selected tests on GPU
working-directory: /transformers
run: |
python3 -m pytest -n 2 --dist=loadfile -v --make-reports=${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} ${{ fromJson(needs.setup_gpu.outputs.test_map)[matrix.folders] }}
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v3
with:
name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}
send_results:
name: Send results to webhook
runs-on: ubuntu-latest
if: always()
needs: [
check_runner_status,
check_runners,
setup_gpu,
run_tests_amdgpu,
# run_tests_torch_cuda_extensions_single_gpu,
# run_tests_torch_cuda_extensions_multi_gpu
]
steps:
- name: Preliminary job status
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
echo "Runner availability: ${{ needs.check_runner_status.result }}"
echo "Setup status: ${{ needs.setup_gpu.result }}"
echo "Runner status: ${{ needs.check_runners.result }}"
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
# We also take into account the `push` event (we might want to test some changes in a branch)
- name: Prepare custom environment variables
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
CI_BRANCH_PUSH=${{ github.event.ref }}
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
CI_BRANCH_WORKFLOW_RUN=${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH=${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN=${{ github.event.workflow_run.head_sha }}
echo $CI_BRANCH_PUSH
echo $CI_BRANCH_WORKFLOW_RUN
echo $CI_SHA_PUSH
echo $CI_SHA_WORKFLOW_RUN
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
- name: print environment variables
run: |
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
echo "env.CI_SHA = ${{ env.CI_SHA }}"
- uses: actions/checkout@v3
# To avoid failure when multiple commits are merged into `main` in a short period of time.
# Checking out to an old commit beyond the fetch depth will get an error `fatal: reference is not a tree: ...
# (Only required for `workflow_run` event, where we get the latest HEAD on `main` instead of the event commit)
with:
fetch-depth: 20
- name: Update clone using environment variables
run: |
echo "original branch = $(git branch --show-current)"
git fetch && git checkout ${{ env.CI_BRANCH }}
echo "updated branch = $(git branch --show-current)"
git checkout ${{ env.CI_SHA }}
echo "log = $(git log -n 1)"
- uses: actions/download-artifact@v3
- name: Send message to Slack
env:
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
CI_SLACK_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID }}
CI_SLACK_CHANNEL_ID_DAILY: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY }}
CI_SLACK_CHANNEL_ID_AMD: ${{ secrets.CI_SLACK_CHANNEL_ID_AMD }}
CI_SLACK_CHANNEL_DUMMY_TESTS: ${{ secrets.CI_SLACK_CHANNEL_DUMMY_TESTS }}
CI_SLACK_REPORT_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID_AMD }}
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
CI_EVENT: Push CI (AMD) - ${{ inputs.gpu_flavor }}
CI_TITLE_PUSH: ${{ github.event.head_commit.message }}
CI_TITLE_WORKFLOW_RUN: ${{ github.event.workflow_run.head_commit.message }}
CI_SHA: ${{ env.CI_SHA }}
RUNNER_STATUS: ${{ needs.check_runner_status.result }}
RUNNER_ENV_STATUS: ${{ needs.check_runners.result }}
SETUP_STATUS: ${{ needs.setup_gpu.result }}
# We pass `needs.setup_gpu.outputs.matrix` as the argument. A processing in `notification_service.py` to change
# `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`.
run: |
pip install slack_sdk
pip show slack_sdk
python utils/notification_service.py "${{ needs.setup_gpu.outputs.matrix }}"

View File

@ -27,12 +27,40 @@ env:
RUN_PT_TF_CROSS_TESTS: 1
jobs:
setup:
name: Setup
check_runner_status:
name: Check Runner Status
runs-on: ubuntu-latest
steps:
- name: Checkout transformers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Check Runner Status
run: python utils/check_self_hosted_runner.py --target_runners single-gpu-ci-runner-docker,multi-gpu-ci-runner-docker --token ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
check_runners:
name: Check Runners
needs: check_runner_status
strategy:
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, push-ci]
runs-on: [self-hosted, docker-gpu, '${{ matrix.machine_type }}']
container:
image: huggingface/transformers-all-latest-gpu-push-ci
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: NVIDIA-SMI
run: |
nvidia-smi
setup:
name: Setup
needs: check_runners
strategy:
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: [self-hosted, docker-gpu, '${{ matrix.machine_type }}']
container:
image: huggingface/transformers-all-latest-gpu-push-ci
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
@ -130,7 +158,7 @@ jobs:
matrix:
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
machine_type: [single-gpu]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, push-ci]
runs-on: [self-hosted, docker-gpu, '${{ matrix.machine_type }}']
container:
image: huggingface/transformers-all-latest-gpu-push-ci
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
@ -167,10 +195,6 @@ jobs:
git checkout ${{ env.CI_SHA }}
echo "log = $(git log -n 1)"
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
@ -223,7 +247,7 @@ jobs:
matrix:
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
machine_type: [multi-gpu]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, push-ci]
runs-on: [self-hosted, docker-gpu, '${{ matrix.machine_type }}']
container:
image: huggingface/transformers-all-latest-gpu-push-ci
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
@ -260,10 +284,6 @@ jobs:
git checkout ${{ env.CI_SHA }}
echo "log = $(git log -n 1)"
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
@ -316,7 +336,7 @@ jobs:
fail-fast: false
matrix:
machine_type: [single-gpu]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, push-ci]
runs-on: [self-hosted, docker-gpu, '${{ matrix.machine_type }}']
container:
image: huggingface/transformers-pytorch-deepspeed-latest-gpu-push-ci
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
@ -353,10 +373,6 @@ jobs:
git checkout ${{ env.CI_SHA }}
echo "log = $(git log -n 1)"
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /workspace/transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Remove cached torch extensions
run: rm -rf /github/home/.cache/torch_extensions/
@ -406,7 +422,7 @@ jobs:
fail-fast: false
matrix:
machine_type: [multi-gpu]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, push-ci]
runs-on: [self-hosted, docker-gpu, '${{ matrix.machine_type }}']
container:
image: huggingface/transformers-pytorch-deepspeed-latest-gpu-push-ci
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
@ -443,10 +459,6 @@ jobs:
git checkout ${{ env.CI_SHA }}
echo "log = $(git log -n 1)"
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /workspace/transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Remove cached torch extensions
run: rm -rf /github/home/.cache/torch_extensions/
@ -493,6 +505,8 @@ jobs:
runs-on: ubuntu-latest
if: always()
needs: [
check_runner_status,
check_runners,
setup,
run_tests_single_gpu,
run_tests_multi_gpu,
@ -504,7 +518,9 @@ jobs:
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
echo "Runner availability: ${{ needs.check_runner_status.result }}"
echo "Setup status: ${{ needs.setup.result }}"
echo "Runner status: ${{ needs.check_runners.result }}"
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
# We also take into account the `push` event (we might want to test some changes in a branch)
@ -557,6 +573,8 @@ jobs:
CI_TITLE_PUSH: ${{ github.event.head_commit.message }}
CI_TITLE_WORKFLOW_RUN: ${{ github.event.workflow_run.head_commit.message }}
CI_SHA: ${{ env.CI_SHA }}
RUNNER_STATUS: ${{ needs.check_runner_status.result }}
RUNNER_ENV_STATUS: ${{ needs.check_runners.result }}
SETUP_STATUS: ${{ needs.setup.result }}
# We pass `needs.setup.outputs.matrix` as the argument. A processing in `notification_service.py` to change

View File

@ -25,12 +25,40 @@ env:
RUN_PT_TF_CROSS_TESTS: 1
jobs:
setup:
name: Setup
check_runner_status:
name: Check Runner Status
runs-on: ubuntu-latest
steps:
- name: Checkout transformers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Check Runner Status
run: python utils/check_self_hosted_runner.py --target_runners single-gpu-scheduled-ci-runner-docker,multi-gpu-scheduled-ci-runner-docker --token ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
check_runners:
name: Check Runners
needs: check_runner_status
strategy:
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, daily-ci]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker') }}
container:
image: huggingface/transformers-all-latest-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: NVIDIA-SMI
run: |
nvidia-smi
setup:
name: Setup
needs: check_runners
strategy:
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker') }}
container:
image: huggingface/transformers-all-latest-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
@ -70,7 +98,7 @@ jobs:
matrix:
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
machine_type: [single-gpu]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, daily-ci]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker') }}
container:
image: huggingface/transformers-all-latest-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
@ -91,10 +119,6 @@ jobs:
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: NVIDIA-SMI
run: |
nvidia-smi
@ -131,7 +155,7 @@ jobs:
matrix:
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
machine_type: [multi-gpu]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, daily-ci]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker') }}
container:
image: huggingface/transformers-all-latest-gpu
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
@ -152,10 +176,6 @@ jobs:
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: NVIDIA-SMI
run: |
nvidia-smi
@ -191,7 +211,7 @@ jobs:
fail-fast: false
matrix:
machine_type: [single-gpu]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, daily-ci]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker') }}
container:
image: huggingface/transformers-all-latest-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
@ -201,10 +221,6 @@ jobs:
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: NVIDIA-SMI
run: |
nvidia-smi
@ -242,7 +258,7 @@ jobs:
fail-fast: false
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, daily-ci]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker') }}
container:
image: huggingface/transformers-pytorch-gpu
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
@ -252,10 +268,6 @@ jobs:
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: NVIDIA-SMI
run: |
nvidia-smi
@ -292,7 +304,7 @@ jobs:
fail-fast: false
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, daily-ci]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker') }}
container:
image: huggingface/transformers-tensorflow-gpu
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
@ -303,10 +315,6 @@ jobs:
run: |
git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: NVIDIA-SMI
run: |
nvidia-smi
@ -343,7 +351,7 @@ jobs:
fail-fast: false
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, daily-ci]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker') }}
needs: setup
container:
image: huggingface/transformers-pytorch-deepspeed-latest-gpu
@ -353,10 +361,6 @@ jobs:
working-directory: /workspace/transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /workspace/transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Remove cached torch extensions
run: rm -rf /github/home/.cache/torch_extensions/
@ -402,6 +406,8 @@ jobs:
runs-on: ubuntu-latest
if: always()
needs: [
check_runner_status,
check_runners,
setup,
run_tests_single_gpu,
run_tests_multi_gpu,
@ -450,6 +456,8 @@ jobs:
runs-on: ubuntu-latest
if: always()
needs: [
check_runner_status,
check_runners,
setup,
run_tests_single_gpu,
run_tests_multi_gpu,
@ -464,6 +472,8 @@ jobs:
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
echo "Runner availability: ${{ needs.check_runner_status.result }}"
echo "Runner status: ${{ needs.check_runners.result }}"
echo "Setup status: ${{ needs.setup.result }}"
- uses: actions/checkout@v3
@ -479,6 +489,8 @@ jobs:
CI_EVENT: scheduled
CI_SHA: ${{ github.sha }}
CI_WORKFLOW_REF: ${{ github.workflow_ref }}
RUNNER_STATUS: ${{ needs.check_runner_status.result }}
RUNNER_ENV_STATUS: ${{ needs.check_runners.result }}
SETUP_STATUS: ${{ needs.setup.result }}
# We pass `needs.setup.outputs.matrix` as the argument. A processing in `notification_service.py` to change
# `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`.

View File

@ -2,7 +2,7 @@ name: Stale Bot
on:
schedule:
- cron: "0 8 * * *"
- cron: "0 15 * * *"
jobs:
close_stale_issues:
@ -17,7 +17,7 @@ jobs:
- name: Setup Python
uses: actions/setup-python@v4
with:
python-version: 3.8
python-version: 3.7
- name: Install requirements
run: |

View File

@ -19,9 +19,9 @@ jobs:
- name: Setup environment
run: |
pip install --upgrade pip
pip install datasets pandas==2.0.3
pip install datasets pandas
pip install .[torch,tf,flax]
- name: Update metadata
run: |
python utils/update_metadata.py --token ${{ secrets.LYSANDRE_HF_TOKEN }} --commit_sha ${{ github.sha }}
python utils/update_metadata.py --token ${{ secrets.SYLVAIN_HF_TOKEN }} --commit_sha ${{ github.sha }}

View File

@ -1,16 +0,0 @@
name: Upload PR Documentation
on:
workflow_run:
workflows: ["Build PR Documentation"]
types:
- completed
jobs:
build:
uses: huggingface/doc-builder/.github/workflows/upload_pr_documentation.yml@main
with:
package_name: transformers
secrets:
hf_token: ${{ secrets.HF_DOC_BUILD_PUSH }}
comment_bot_token: ${{ secrets.COMMENT_BOT_TOKEN }}

2
.gitignore vendored
View File

@ -166,4 +166,4 @@ tags
.DS_Store
# ruff
.ruff_cache
.ruff_cache

View File

@ -40,8 +40,8 @@ There are several ways you can contribute to 🤗 Transformers:
If you don't know where to start, there is a special [Good First
Issue](https://github.com/huggingface/transformers/contribute) listing. It will give you a list of
open issues that are beginner-friendly and help you start contributing to open-source. Just comment on the issue that you'd like to work
on.
open issues that are beginner-friendly and help you start contributing to open-source. Just comment in the issue that you'd like to work
on it.
For something slightly more challenging, you can also take a look at the [Good Second Issue](https://github.com/huggingface/transformers/labels/Good%20Second%20Issue) list. In general though, if you feel like you know what you're doing, go for it and we'll help you get there! 🚀
@ -62,7 +62,7 @@ feedback.
The 🤗 Transformers library is robust and reliable thanks to users who report the problems they encounter.
Before you report an issue, we would really appreciate it if you could **make sure the bug was not
already reported** (use the search bar on GitHub under Issues). Your issue should also be related to bugs in the library itself, and not your code. If you're unsure whether the bug is in your code or the library, please ask in the [forum](https://discuss.huggingface.co/) first. This helps us respond quicker to fixing issues related to the library versus general questions.
already reported** (use the search bar on GitHub under Issues). Your issue should also be related to bugs in the library itself, and not your code. If you're unsure whether the bug is in your code or the library, please ask on the [forum](https://discuss.huggingface.co/) first. This helps us respond quicker to fixing issues related to the library versus general questions.
Once you've confirmed the bug hasn't already been reported, please include the following information in your issue so we can quickly resolve it:
@ -105,7 +105,7 @@ We have added [templates](https://github.com/huggingface/transformers/tree/main/
New models are constantly released and if you want to implement a new model, please provide the following information
* A short description of the model and a link to the paper.
* A short description of the model and link to the paper.
* Link to the implementation if it is open-sourced.
* Link to the model weights if they are available.
@ -130,7 +130,7 @@ You will need basic `git` proficiency to contribute to
manual. Type `git --help` in a shell and enjoy! If you prefer books, [Pro
Git](https://git-scm.com/book/en/v2) is a very good reference.
You'll need **[Python 3.8]((https://github.com/huggingface/transformers/blob/main/setup.py#L426))** or above to contribute to 🤗 Transformers. Follow the steps below to start contributing:
You'll need **[Python 3.7]((https://github.com/huggingface/transformers/blob/main/setup.py#L426))** or above to contribute to 🤗 Transformers. Follow the steps below to start contributing:
1. Fork the [repository](https://github.com/huggingface/transformers) by
clicking on the **[Fork](https://github.com/huggingface/transformers/fork)** button on the repository's page. This creates a copy of the code
@ -172,7 +172,7 @@ You'll need **[Python 3.8]((https://github.com/huggingface/transformers/blob/mai
which should be enough for most use cases.
5. Develop the features in your branch.
5. Develop the features on your branch.
As you work on your code, you should make sure the test suite
passes. Run the tests impacted by your changes like this:
@ -208,7 +208,7 @@ You'll need **[Python 3.8]((https://github.com/huggingface/transformers/blob/mai
make quality
```
Finally, we have a lot of scripts to make sure we don't forget to update
Finally, we have a lot of scripts to make sure we didn't forget to update
some files when adding a new model. You can run these scripts with:
```bash
@ -218,7 +218,7 @@ You'll need **[Python 3.8]((https://github.com/huggingface/transformers/blob/mai
To learn more about those checks and how to fix any issues with them, check out the
[Checks on a Pull Request](https://huggingface.co/docs/transformers/pr_checks) guide.
If you're modifying documents under the `docs/source` directory, make sure the documentation can still be built. This check will also run in the CI when you open a pull request. To run a local check
If you're modifying documents under `docs/source` directory, make sure the documentation can still be built. This check will also run in the CI when you open a pull request. To run a local check
make sure you install the documentation builder:
```bash
@ -234,7 +234,7 @@ You'll need **[Python 3.8]((https://github.com/huggingface/transformers/blob/mai
This will build the documentation in the `~/tmp/test-build` folder where you can inspect the generated
Markdown files with your favorite editor. You can also preview the docs on GitHub when you open a pull request.
Once you're happy with your changes, add the changed files with `git add` and
Once you're happy with your changes, add changed files with `git add` and
record your changes locally with `git commit`:
```bash
@ -261,7 +261,7 @@ You'll need **[Python 3.8]((https://github.com/huggingface/transformers/blob/mai
If you've already opened a pull request, you'll need to force push with the `--force` flag. Otherwise, if the pull request hasn't been opened yet, you can just push your changes normally.
6. Now you can go to your fork of the repository on GitHub and click on **Pull Request** to open a pull request. Make sure you tick off all the boxes on our [checklist](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md/#pull-request-checklist) below. When you're ready, you can send your changes to the project maintainers for review.
6. Now you can go to your fork of the repository on GitHub and click on **Pull request** to open a pull request. Make sure you tick off all the boxes in our [checklist](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md/#pull-request-checklist) below. When you're ready, you can send your changes to the project maintainers for review.
7. It's ok if maintainers request changes, it happens to our core contributors
too! So everyone can see the changes in the pull request, work in your local
@ -275,7 +275,7 @@ You'll need **[Python 3.8]((https://github.com/huggingface/transformers/blob/mai
request description to make sure they are linked (and people viewing the issue know you
are working on it).<br>
☐ To indicate a work in progress please prefix the title with `[WIP]`. These are
useful to avoid duplicated work, and to differentiate it from PRs ready to be merged.<br>
useful to avoid duplicated work, and to differentiate it from PRs ready to be merged.
☐ Make sure existing tests pass.<br>
☐ If adding a new feature, also add tests for it.<br>
- If you are adding a new model, make sure you use
@ -284,7 +284,7 @@ useful to avoid duplicated work, and to differentiate it from PRs ready to be me
`RUN_SLOW=1 python -m pytest tests/models/my_new_model/test_my_new_model.py`.
- If you are adding a new tokenizer, write tests and make sure
`RUN_SLOW=1 python -m pytest tests/models/{your_model_name}/test_tokenization_{your_model_name}.py` passes.
- CircleCI does not run the slow tests, but GitHub Actions does every night!<br>
CircleCI does not run the slow tests, but GitHub Actions does every night!<br>
☐ All public methods must have informative docstrings (see
[`modeling_bert.py`](https://github.com/huggingface/transformers/blob/main/src/transformers/models/bert/modeling_bert.py)

View File

@ -158,7 +158,7 @@ You are not required to read the following guidelines before opening an issue. H
--do_train --n_train 500 --num_train_epochs 1 \
--per_device_train_batch_size 1 --freeze_embeds \
--src_lang en_XX --tgt_lang ro_RO --task translation \
--fp16
--fp16 --sharded_ddp
```
If you don't break it up, one has to scroll horizontally which often makes it quite difficult to quickly see what's happening.

View File

@ -43,7 +43,6 @@ repo-consistency:
python utils/check_doctest_list.py
python utils/update_metadata.py --check-only
python utils/check_task_guides.py
python utils/check_docstrings.py
# this target runs checks on all files
@ -81,9 +80,7 @@ fix-copies:
python utils/check_copies.py --fix_and_overwrite
python utils/check_table.py --fix_and_overwrite
python utils/check_dummies.py --fix_and_overwrite
python utils/check_doctest_list.py --fix_and_overwrite
python utils/check_task_guides.py --fix_and_overwrite
python utils/check_docstrings.py --fix_and_overwrite
# Run tests for the library

View File

@ -51,11 +51,8 @@ limitations under the License.
<a href="https://github.com/huggingface/transformers/blob/main/README_ko.md">한국어</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_es.md">Español</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ja.md">日本語</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_hd.md">हिन्दी</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ru.md">Русский</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_pt-br.md">Рortuguês</a> |
<a href="https://github.com/huggingface/transformers//blob/main/README_te.md">తెలుగు</a> |
</p>
<a href="https://github.com/huggingface/transformers/blob/main/README_hd.md">हिन्दी</a>
<p>
</h4>
<h3 align="center">
@ -70,7 +67,7 @@ limitations under the License.
These models can be applied on:
* 📝 Text, for tasks like text classification, information extraction, question answering, summarization, translation, and text generation, in over 100 languages.
* 📝 Text, for tasks like text classification, information extraction, question answering, summarization, translation, text generation, in over 100 languages.
* 🖼️ Images, for tasks like image classification, object detection, and segmentation.
* 🗣️ Audio, for tasks like speech recognition and audio classification.
@ -116,18 +113,7 @@ In Multimodal tasks:
- [Document Question Answering with LayoutLM](https://huggingface.co/impira/layoutlm-document-qa)
- [Zero-shot Video Classification with X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)
## 100 projects using Transformers
Transformers is more than a toolkit to use pretrained models: it's a community of projects built around it and the
Hugging Face Hub. We want Transformers to enable developers, researchers, students, professors, engineers, and anyone
else to build their dream projects.
In order to celebrate the 100,000 stars of transformers, we have decided to put the spotlight on the
community, and we have created the [awesome-transformers](./awesome-transformers.md) page which lists 100
incredible projects built in the vicinity of transformers.
If you own or use a project that you believe should be part of the list, please open a PR to add it!
**[Write With Transformer](https://transformer.huggingface.co)**, built by the Hugging Face team, is the official demo of this repos text generation capabilities.
## If you are looking for custom support from the Hugging Face team
@ -148,7 +134,7 @@ To immediately use a model on a given input (text, image, audio, ...), we provid
[{'label': 'POSITIVE', 'score': 0.9996980428695679}]
```
The second line of code downloads and caches the pretrained model used by the pipeline, while the third evaluates it on the given text. Here, the answer is "positive" with a confidence of 99.97%.
The second line of code downloads and caches the pretrained model used by the pipeline, while the third evaluates it on the given text. Here the answer is "positive" with a confidence of 99.97%.
Many tasks have a pre-trained `pipeline` ready to go, in NLP but also in computer vision and speech. For example, we can easily extract detected objects in an image:
@ -182,7 +168,7 @@ Many tasks have a pre-trained `pipeline` ready to go, in NLP but also in compute
'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}]
```
Here, we get a list of objects detected in the image, with a box surrounding the object and a confidence score. Here is the original image on the left, with the predictions displayed on the right:
Here we get a list of objects detected in the image, with a box surrounding the object and a confidence score. Here is the original image on the left, with the predictions displayed on the right:
<h3 align="center">
<a><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample.png" width="400"></a>
@ -213,7 +199,7 @@ And here is the equivalent code for TensorFlow:
>>> outputs = model(**inputs)
```
The tokenizer is responsible for all the preprocessing the pretrained model expects and can be called directly on a single string (as in the above examples) or a list. It will output a dictionary that you can use in downstream code or simply directly pass to your model using the ** argument unpacking operator.
The tokenizer is responsible for all the preprocessing the pretrained model expects, and can be called directly on a single string (as in the above examples) or a list. It will output a dictionary that you can use in downstream code or simply directly pass to your model using the ** argument unpacking operator.
The model itself is a regular [Pytorch `nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) or a [TensorFlow `tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) (depending on your backend) which you can use as usual. [This tutorial](https://huggingface.co/docs/transformers/training) explains how to integrate such a model into a classic PyTorch or TensorFlow training loop, or how to use our `Trainer` API to quickly fine-tune on a new dataset.
@ -233,7 +219,7 @@ The model itself is a regular [Pytorch `nn.Module`](https://pytorch.org/docs/sta
1. Choose the right framework for every part of a model's lifetime:
- Train state-of-the-art models in 3 lines of code.
- Move a single model between TF2.0/PyTorch/JAX frameworks at will.
- Seamlessly pick the right framework for training, evaluation, and production.
- Seamlessly pick the right framework for training, evaluation and production.
1. Easily customize a model or an example to your needs:
- We provide examples for each architecture to reproduce the results published by its original authors.
@ -244,19 +230,19 @@ The model itself is a regular [Pytorch `nn.Module`](https://pytorch.org/docs/sta
- This library is not a modular toolbox of building blocks for neural nets. The code in the model files is not refactored with additional abstractions on purpose, so that researchers can quickly iterate on each of the models without diving into additional abstractions/files.
- The training API is not intended to work on any model but is optimized to work with the models provided by the library. For generic machine learning loops, you should use another library (possibly, [Accelerate](https://huggingface.co/docs/accelerate)).
- While we strive to present as many use cases as possible, the scripts in our [examples folder](https://github.com/huggingface/transformers/tree/main/examples) are just that: examples. It is expected that they won't work out-of-the-box on your specific problem and that you will be required to change a few lines of code to adapt them to your needs.
- While we strive to present as many use cases as possible, the scripts in our [examples folder](https://github.com/huggingface/transformers/tree/main/examples) are just that: examples. It is expected that they won't work out-of-the box on your specific problem and that you will be required to change a few lines of code to adapt them to your needs.
## Installation
### With pip
This repository is tested on Python 3.8+, Flax 0.4.1+, PyTorch 1.10+, and TensorFlow 2.6+.
This repository is tested on Python 3.6+, Flax 0.3.2+, PyTorch 1.3.1+ and TensorFlow 2.3+.
You should install 🤗 Transformers in a [virtual environment](https://docs.python.org/3/library/venv.html). If you're unfamiliar with Python virtual environments, check out the [user guide](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/).
First, create a virtual environment with the version of Python you're going to use and activate it.
Then, you will need to install at least one of Flax, PyTorch, or TensorFlow.
Then, you will need to install at least one of Flax, PyTorch or TensorFlow.
Please refer to [TensorFlow installation page](https://www.tensorflow.org/install/), [PyTorch installation page](https://pytorch.org/get-started/locally/#start-locally) and/or [Flax](https://github.com/google/flax#quick-install) and [Jax](https://github.com/google/jax#installation) installation pages regarding the specific installation command for your platform.
When one of those backends has been installed, 🤗 Transformers can be installed using pip as follows:
@ -283,7 +269,7 @@ Follow the installation pages of Flax, PyTorch or TensorFlow to see how to insta
## Model architectures
**[All the model checkpoints](https://huggingface.co/models)** provided by 🤗 Transformers are seamlessly integrated from the huggingface.co [model hub](https://huggingface.co/models), where they are uploaded directly by [users](https://huggingface.co/users) and [organizations](https://huggingface.co/organizations).
**[All the model checkpoints](https://huggingface.co/models)** provided by 🤗 Transformers are seamlessly integrated from the huggingface.co [model hub](https://huggingface.co/models) where they are uploaded directly by [users](https://huggingface.co/users) and [organizations](https://huggingface.co/organizations).
Current number of checkpoints: ![](https://img.shields.io/endpoint?url=https://huggingface.co/api/shields/models&color=brightgreen)
@ -293,13 +279,11 @@ Current number of checkpoints: ![](https://img.shields.io/endpoint?url=https://h
1. **[ALIGN](https://huggingface.co/docs/transformers/model_doc/align)** (from Google Research) released with the paper [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918) by Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig.
1. **[AltCLIP](https://huggingface.co/docs/transformers/model_doc/altclip)** (from BAAI) released with the paper [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) by Chen, Zhongzhi and Liu, Guang and Zhang, Bo-Wen and Ye, Fulong and Yang, Qinghong and Wu, Ledell.
1. **[Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer)** (from MIT) released with the paper [AST: Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778) by Yuan Gong, Yu-An Chung, James Glass.
1. **[Autoformer](https://huggingface.co/docs/transformers/model_doc/autoformer)** (from Tsinghua University) released with the paper [Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://arxiv.org/abs/2106.13008) by Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long.
1. **[Bark](https://huggingface.co/docs/transformers/model_doc/bark)** (from Suno) released in the repository [suno-ai/bark](https://github.com/suno-ai/bark) by Suno AI team.
1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (from Facebook) released with the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov, and Luke Zettlemoyer.
1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (from Facebook) released with the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer.
1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (from École polytechnique) released with the paper [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis.
1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (from VinAI Research) released with the paper [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen.
1. **[BEiT](https://huggingface.co/docs/transformers/model_doc/beit)** (from Microsoft) released with the paper [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) by Hangbo Bao, Li Dong, Furu Wei.
1. **[BERT](https://huggingface.co/docs/transformers/model_doc/bert)** (from Google) released with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
1. **[BERT](https://huggingface.co/docs/transformers/model_doc/bert)** (from Google) released with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova.
1. **[BERT For Sequence Generation](https://huggingface.co/docs/transformers/model_doc/bert-generation)** (from Google) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[BERTweet](https://huggingface.co/docs/transformers/model_doc/bertweet)** (from VinAI Research) released with the paper [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) by Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen.
1. **[BigBird-Pegasus](https://huggingface.co/docs/transformers/model_doc/bigbird_pegasus)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
@ -313,7 +297,6 @@ Current number of checkpoints: ![](https://img.shields.io/endpoint?url=https://h
1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (from BigScience workshop) released by the [BigScience Workshop](https://bigscience.huggingface.co/).
1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (from Alexa) released with the paper [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) by Adrian de Wynter and Daniel J. Perry.
1. **[BridgeTower](https://huggingface.co/docs/transformers/model_doc/bridgetower)** (from Harbin Institute of Technology/Microsoft Research Asia/Intel Labs) released with the paper [BridgeTower: Building Bridges Between Encoders in Vision-Language Representation Learning](https://arxiv.org/abs/2206.08657) by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan.
1. **[BROS](https://huggingface.co/docs/transformers/model_doc/bros)** (from NAVER CLOVA) released with the paper [BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents](https://arxiv.org/abs/2108.04539) by Teakgyu Hong, Donghyun Kim, Mingi Ji, Wonseok Hwang, Daehyun Nam, Sungrae Park.
1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (from Google Research) released with the paper [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel.
1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (from Inria/Facebook/Sorbonne) released with the paper [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (from Google Research) released with the paper [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting.
@ -322,7 +305,6 @@ Current number of checkpoints: ![](https://img.shields.io/endpoint?url=https://h
1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (from OpenAI) released with the paper [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever.
1. **[CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)** (from University of Göttingen) released with the paper [Image Segmentation Using Text and Image Prompts](https://arxiv.org/abs/2112.10003) by Timo Lüddecke and Alexander Ecker.
1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (from Salesforce) released with the paper [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong.
1. **[CodeLlama](https://huggingface.co/docs/transformers/model_doc/llama_code)** (from MetaAI) released with the paper [Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/) by Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, Gabriel Synnaeve.
1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (from Microsoft Research Asia) released with the paper [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) by Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang.
1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (from YituTech) released with the paper [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan.
1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (from Facebook AI) released with the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie.
@ -342,7 +324,6 @@ Current number of checkpoints: ![](https://img.shields.io/endpoint?url=https://h
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (from Facebook) released with the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (from Microsoft Research) released with the paper [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
1. **[DiNAT](https://huggingface.co/docs/transformers/model_doc/dinat)** (from SHI Labs) released with the paper [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) by Ali Hassani and Humphrey Shi.
1. **[DINOv2](https://huggingface.co/docs/transformers/model_doc/dinov2)** (from Meta AI) released with the paper [DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193) by Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, Piotr Bojanowski.
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation) and a German version of DistilBERT.
1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (from Microsoft Research) released with the paper [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) by Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei.
1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (from NAVER), released together with the paper [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) by Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park.
@ -351,12 +332,10 @@ Current number of checkpoints: ![](https://img.shields.io/endpoint?url=https://h
1. **[EfficientFormer](https://huggingface.co/docs/transformers/model_doc/efficientformer)** (from Snap Research) released with the paper [EfficientFormer: Vision Transformers at MobileNetSpeed](https://arxiv.org/abs/2206.01191) by Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren.
1. **[EfficientNet](https://huggingface.co/docs/transformers/model_doc/efficientnet)** (from Google Brain) released with the paper [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan, Quoc V. Le.
1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
1. **[EnCodec](https://huggingface.co/docs/transformers/model_doc/encodec)** (from Meta AI) released with the paper [High Fidelity Neural Audio Compression](https://arxiv.org/abs/2210.13438) by Alexandre Défossez, Jade Copet, Gabriel Synnaeve, Yossi Adi.
1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (from Google Research) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)** (from Baidu) released with the paper [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) by Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu.
1. **[ErnieM](https://huggingface.co/docs/transformers/model_doc/ernie_m)** (from Baidu) released with the paper [ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora](https://arxiv.org/abs/2012.15674) by Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang.
1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (from Meta AI) are transformer protein language models. **ESM-1b** was released with the paper [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. **ESM-1v** was released with the paper [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648) by Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives. **ESM-2 and ESMFold** were released with the paper [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902) by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives.
1. **[Falcon](https://huggingface.co/docs/transformers/model_doc/falcon)** (from Technology Innovation Institute) by Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme.
1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FLAN-UL2](https://huggingface.co/docs/transformers/model_doc/flan-ul2)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-ul2-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
@ -364,29 +343,24 @@ Current number of checkpoints: ![](https://img.shields.io/endpoint?url=https://h
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
1. **[FocalNet](https://huggingface.co/docs/transformers/model_doc/focalnet)** (from Microsoft Research) released with the paper [Focal Modulation Networks](https://arxiv.org/abs/2203.11926) by Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao.
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
1. **[Fuyu](https://huggingface.co/docs/transformers/model_doc/fuyu)** (from ADEPT) Rohan Bavishi, Erich Elsen, Curtis Hawthorne, Maxwell Nye, Augustus Odena, Arushi Somani, Sağnak Taşırlar. Released with the paper [blog post](https://www.adept.ai/blog/fuyu-8b)
1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (from Microsoft Research) released with the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang.
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (from KAIST) released with the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim.
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://openai.com/research/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (from EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy.
1. **[GPT NeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox)** (from EleutherAI) released with the paper [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) by Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach
1. **[GPT NeoX Japanese](https://huggingface.co/docs/transformers/model_doc/gpt_neox_japanese)** (from ABEJA) released by Shinya Otani, Takayoshi Makabe, Anuj Arora, and Kyo Hattori.
1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (from OpenAI) released with the paper [Language Models are Unsupervised Multitask Learners](https://openai.com/research/better-language-models/) by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**.
1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (from OpenAI) released with the paper [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/) by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**.
1. **[GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj)** (from EleutherAI) released in the repository [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) by Ben Wang and Aran Komatsuzaki.
1. **[GPT-Sw3](https://huggingface.co/docs/transformers/model_doc/gpt-sw3)** (from AI-Sweden) released with the paper [Lessons Learned from GPT-SW3: Building the First Large-Scale Generative Language Model for Swedish](http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.376.pdf) by Ariel Ekgren, Amaru Cuba Gyllensten, Evangelia Gogoulou, Alice Heiman, Severine Verlinden, Joey Öhman, Fredrik Carlsson, Magnus Sahlgren.
1. **[GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode)** (from BigCode) released with the paper [SantaCoder: don't reach for the stars!](https://arxiv.org/abs/2301.03988) by Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, Logesh Kumar Umapathi, Carolyn Jane Anderson, Yangtian Zi, Joel Lamy Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry Abulkhanov, Manuel Romero, Michael Lappert, Francesco De Toni, Bernardo García del Río, Qian Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab Mangrulkar, David Lansky, Huu Nguyen, Danish Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau, Yacine Jernite, Sean Hughes, Daniel Fried, Arjun Guha, Harm de Vries, Leandro von Werra.
1. **[GPTSAN-japanese](https://huggingface.co/docs/transformers/model_doc/gptsan-japanese)** released in the repository [tanreinama/GPTSAN](https://github.com/tanreinama/GPTSAN/blob/main/report/model.md) by Toshiyuki Sakamoto(tanreinama).
1. **[Graphormer](https://huggingface.co/docs/transformers/model_doc/graphormer)** (from Microsoft) released with the paper [Do Transformers Really Perform Bad for Graph Representation?](https://arxiv.org/abs/2106.05234) by Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu.
1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (from UCSD, NVIDIA) released with the paper [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) by Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang.
1. **[HerBERT](https://huggingface.co/docs/transformers/model_doc/herbert)** (from Allegro.pl, AGH University of Science and Technology) released with the paper [KLEJ: Comprehensive Benchmark for Polish Language Understanding](https://www.aclweb.org/anthology/2020.acl-main.111.pdf) by Piotr Rybak, Robert Mroczkowski, Janusz Tracz, Ireneusz Gawlik.
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (from Facebook) released with the paper [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed.
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (from Berkeley) released with the paper [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer.
1. **[IDEFICS](https://huggingface.co/docs/transformers/model_doc/idefics)** (from HuggingFace) released with the paper [OBELICS: An Open Web-Scale Filtered Dataset of Interleaved Image-Text Documents](https://huggingface.co/papers/2306.16527) by Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov, Thomas Wang, Siddharth Karamcheti, Alexander M. Rush, Douwe Kiela, Matthieu Cord, Victor Sanh.
1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (from OpenAI) released with the paper [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever.
1. **[Informer](https://huggingface.co/docs/transformers/model_doc/informer)** (from Beihang University, UC Berkeley, Rutgers University, SEDD Company) released with the paper [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting](https://arxiv.org/abs/2012.07436) by Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
1. **[InstructBLIP](https://huggingface.co/docs/transformers/model_doc/instructblip)** (from Salesforce) released with the paper [InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning](https://arxiv.org/abs/2305.06500) by Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, Steven Hoi.
1. **[Jukebox](https://huggingface.co/docs/transformers/model_doc/jukebox)** (from OpenAI) released with the paper [Jukebox: A Generative Model for Music](https://arxiv.org/pdf/2005.00341.pdf) by Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever.
1. **[KOSMOS-2](https://huggingface.co/docs/transformers/main/model_doc/kosmos-2)** (from Microsoft Research Asia) released with the paper [Kosmos-2: Grounding Multimodal Large Language Models to the World](https://arxiv.org/abs/2306.14824) by Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan Huang, Shuming Ma, Furu Wei.
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou.
1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (from Microsoft Research Asia) released with the paper [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) by Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei.
@ -395,7 +369,6 @@ Current number of checkpoints: ![](https://img.shields.io/endpoint?url=https://h
1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (from Meta AI) released with the paper [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) by Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze.
1. **[LiLT](https://huggingface.co/docs/transformers/model_doc/lilt)** (from South China University of Technology) released with the paper [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669) by Jiapeng Wang, Lianwen Jin, Kai Ding.
1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (from The FAIR team of Meta AI) released with the paper [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971) by Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample.
1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (from The FAIR team of Meta AI) released with the paper [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/) by Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom.
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (from Google AI) released with the paper [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang.
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (from Studio Ousia) released with the paper [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.
@ -409,46 +382,35 @@ Current number of checkpoints: ![](https://img.shields.io/endpoint?url=https://h
1. **[MatCha](https://huggingface.co/docs/transformers/model_doc/matcha)** (from Google AI) released with the paper [MatCha: Enhancing Visual Language Pretraining with Math Reasoning and Chart Derendering](https://arxiv.org/abs/2212.09662) by Fangyu Liu, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Yasemin Altun, Nigel Collier, Julian Martin Eisenschlos.
1. **[mBART](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
1. **[mBART-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan.
1. **[MEGA](https://huggingface.co/docs/transformers/model_doc/mega)** (from Meta/USC/CMU/SJTU) released with the paper [Mega: Moving Average Equipped Gated Attention](https://arxiv.org/abs/2209.10655) by Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and Luke Zettlemoyer.
1. **[MEGA](https://huggingface.co/docs/transformers/model_doc/mega)** (from Facebook) released with the paper [Mega: Moving Average Equipped Gated Attention](https://arxiv.org/abs/2209.10655) by Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and Luke Zettlemoyer.
1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[MGP-STR](https://huggingface.co/docs/transformers/model_doc/mgp-str)** (from Alibaba Research) released with the paper [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592) by Peng Wang, Cheng Da, and Cong Yao.
1. **[Mistral](https://huggingface.co/docs/transformers/model_doc/mistral)** (from Mistral AI) by The [Mistral AI](https://mistral.ai) team: Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (from Studio Ousia) released with the paper [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka.
1. **[MMS](https://huggingface.co/docs/transformers/model_doc/mms)** (from Facebook) released with the paper [Scaling Speech Technology to 1,000+ Languages](https://arxiv.org/abs/2305.13516) by Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky, Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi, Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning Hsu, Alexis Conneau, Michael Auli.
1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (from CMU/Google Brain) released with the paper [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou.
1. **[MobileNetV1](https://huggingface.co/docs/transformers/model_doc/mobilenet_v1)** (from Google Inc.) released with the paper [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) by Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam.
1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (from Google Inc.) released with the paper [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) by Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen.
1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (from Apple) released with the paper [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari.
1. **[MobileViTV2](https://huggingface.co/docs/transformers/model_doc/mobilevitv2)** (from Apple) released with the paper [Separable Self-attention for Mobile Vision Transformers](https://arxiv.org/abs/2206.02680) by Sachin Mehta and Mohammad Rastegari.
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
1. **[MPT](https://huggingface.co/docs/transformers/model_doc/mpt)** (from MosaiML) released with the repository [llm-foundry](https://github.com/mosaicml/llm-foundry/) by the MosaicML NLP Team.
1. **[MRA](https://huggingface.co/docs/transformers/model_doc/mra)** (from the University of Wisconsin - Madison) released with the paper [Multi Resolution Analysis (MRA) for Approximate Self-Attention](https://arxiv.org/abs/2207.10284) by Zhanpeng Zeng, Sourav Pal, Jeffery Kline, Glenn M Fung, Vikas Singh.
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
1. **[MusicGen](https://huggingface.co/docs/transformers/model_doc/musicgen)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (from RUC AI Box) released with the paper [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen.
1. **[NAT](https://huggingface.co/docs/transformers/model_doc/nat)** (from SHI Labs) released with the paper [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143) by Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi.
1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (from Huawei Noahs Ark Lab) released with the paper [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) by Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu.
1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[Nougat](https://huggingface.co/docs/transformers/model_doc/nougat)** (from Meta AI) released with the paper [Nougat: Neural Optical Understanding for Academic Documents](https://arxiv.org/abs/2308.13418) by Lukas Blecher, Guillem Cucurull, Thomas Scialom, Robert Stojnic.
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (from the University of Wisconsin - Madison) released with the paper [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh.
1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (from SHI Labs) released with the paper [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) by Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi.
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released on GitHub (now removed).
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released in [Open-Llama](https://github.com/s-JoL/Open-Llama).
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al.
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (from Google AI) released with the paper [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby.
1. **[OWLv2](https://huggingface.co/docs/transformers/main/model_doc/owlv2)** (from Google AI) released with the paper [Scaling Open-Vocabulary Object Detection](https://arxiv.org/abs/2306.09683) by Matthias Minderer, Alexey Gritsenko, Neil Houlsby.
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (from Google) released with the paper [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) by Jason Phang, Yao Zhao, and Peter J. Liu.
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (from Deepmind) released with the paper [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) by Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira.
1. **[Persimmon](https://huggingface.co/docs/transformers/model_doc/persimmon)** (from ADEPT) released in a [blog post](https://www.adept.ai/blog/persimmon-8b) by Erich Elsen, Augustus Odena, Maxwell Nye, Sağnak Taşırlar, Tri Dao, Curtis Hawthorne, Deepak Moparthi, Arushi Somani.
1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen.
1. **[Pix2Struct](https://huggingface.co/docs/transformers/model_doc/pix2struct)** (from Google) released with the paper [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding](https://arxiv.org/abs/2210.03347) by Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova.
1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (from UCLA NLP) released with the paper [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) by Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang.
1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (from Sea AI Labs) released with the paper [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) by Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng.
1. **[Pop2Piano](https://huggingface.co/docs/transformers/model_doc/pop2piano)** released with the paper [Pop2Piano : Pop Audio-based Piano Cover Generation](https://arxiv.org/abs/2211.00895) by Jongho Choi and Kyogu Lee.
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[PVT](https://huggingface.co/docs/transformers/model_doc/pvt)** (from Nanjing University, The University of Hong Kong etc.) released with the paper [Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions](https://arxiv.org/pdf/2102.12122.pdf) by Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao.
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (from NVIDIA) released with the paper [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) by Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius.
1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (from Facebook) released with the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) by Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela.
1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (from Google Research) released with the paper [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) by Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang.
@ -461,7 +423,6 @@ Current number of checkpoints: ![](https://img.shields.io/endpoint?url=https://h
1. **[RoCBert](https://huggingface.co/docs/transformers/model_doc/roc_bert)** (from WeChatAI) released with the paper [RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining](https://aclanthology.org/2022.acl-long.65.pdf) by HuiSu, WeiweiShi, XiaoyuShen, XiaoZhou, TuoJi, JiaruiFang, JieZhou.
1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (from ZhuiyiTechnology), released together with the paper [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/abs/2104.09864) by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu.
1. **[RWKV](https://huggingface.co/docs/transformers/model_doc/rwkv)** (from Bo Peng), released on [this repo](https://github.com/BlinkDL/RWKV-LM) by Bo Peng.
1. **[SeamlessM4T](https://huggingface.co/docs/transformers/main/model_doc/seamless_m4t)** (from Meta AI) released with the paper [SeamlessM4T — Massively Multilingual & Multimodal Machine Translation](https://dl.fbaipublicfiles.com/seamless/seamless_m4t_paper.pdf) by the Seamless Communication team.
1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (from NVIDIA) released with the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo.
1. **[Segment Anything](https://huggingface.co/docs/transformers/model_doc/sam)** (from Meta AI) released with the paper [Segment Anything](https://arxiv.org/pdf/2304.02643v1.pdf) by Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alex Berg, Wan-Yen Lo, Piotr Dollar, Ross Girshick.
1. **[SEW](https://huggingface.co/docs/transformers/model_doc/sew)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
@ -471,7 +432,7 @@ Current number of checkpoints: ![](https://img.shields.io/endpoint?url=https://h
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (from Facebook), released together with the paper [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau.
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (from Tel Aviv University), released together with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy.
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (from MBZUAI) released with the paper [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) by Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan.
1. **[SwiftFormer](https://huggingface.co/docs/transformers/main/model_doc/swiftformer)** (from MBZUAI) released with the paper [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) by Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan.
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (from Microsoft) released with the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (from Microsoft) released with the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo.
1. **[Swin2SR](https://huggingface.co/docs/transformers/model_doc/swin2sr)** (from University of Würzburg) released with the paper [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345) by Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte.
@ -488,7 +449,6 @@ Current number of checkpoints: ![](https://img.shields.io/endpoint?url=https://h
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (from Microsoft), released together with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
1. **[TVLT](https://huggingface.co/docs/transformers/model_doc/tvlt)** (from UNC Chapel Hill) released with the paper [TVLT: Textless Vision-Language Transformer](https://arxiv.org/abs/2209.14156) by Zineng Tang, Jaemin Cho, Yixin Nie, Mohit Bansal.
1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
1. **[UMT5](https://huggingface.co/docs/transformers/model_doc/umt5)** (from Google Research) released with the paper [UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining](https://openreview.net/forum?id=kXwdL1cWOAi) by Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, Noah Constant.
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (from Microsoft Research) released with the paper [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (from Microsoft Research) released with the paper [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu.
1. **[UPerNet](https://huggingface.co/docs/transformers/model_doc/upernet)** (from Peking University) released with the paper [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221) by Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun.
@ -498,12 +458,8 @@ Current number of checkpoints: ![](https://img.shields.io/endpoint?url=https://h
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VitDet](https://huggingface.co/docs/transformers/model_doc/vitdet)** (from Meta AI) released with the paper [Exploring Plain Vision Transformer Backbones for Object Detection](https://arxiv.org/abs/2203.16527) by Yanghao Li, Hanzi Mao, Ross Girshick, Kaiming He.
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (from Meta AI) released with the paper [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick.
1. **[ViTMatte](https://huggingface.co/docs/transformers/model_doc/vitmatte)** (from HUST-VL) released with the paper [ViTMatte: Boosting Image Matting with Pretrained Plain Vision Transformers](https://arxiv.org/abs/2305.15272) by Jingfeng Yao, Xinggang Wang, Shusheng Yang, Baoyuan Wang.
1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (from Meta AI) released with the paper [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas.
1. **[VITS](https://huggingface.co/docs/transformers/model_doc/vits)** (from Kakao Enterprise) released with the paper [Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech](https://arxiv.org/abs/2106.06103) by Jaehyeon Kim, Jungil Kong, Juhee Son.
1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (from Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) by Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid.
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (from Facebook AI) released with the paper [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (from Facebook AI) released with the paper [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino.
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (from Facebook AI) released with the paper [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) by Qiantong Xu, Alexei Baevski, Michael Auli.
@ -522,7 +478,7 @@ Current number of checkpoints: ![](https://img.shields.io/endpoint?url=https://h
1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (from Facebook AI) released with the paper [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) by Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli.
1. **[YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos)** (from Huazhong University of Science & Technology) released with the paper [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) by Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu.
1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (from the University of Wisconsin - Madison) released with the paper [You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling](https://arxiv.org/abs/2111.09714) by Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh.
1. Want to contribute a new model? We have added a **detailed guide and templates** to guide you in the process of adding a new model. You can find them in the [`templates`](./templates) folder of the repository. Be sure to check the [contributing guidelines](./CONTRIBUTING.md) and contact the maintainers or open an issue to collect feedback before starting your PR.
1. Want to contribute a new model? We have added a **detailed guide and templates** to guide you in the process of adding a new model. You can find them in the [`templates`](./templates) folder of the repository. Be sure to check the [contributing guidelines](./CONTRIBUTING.md) and contact the maintainers or open an issue to collect feedbacks before starting your PR.
To check if each model has an implementation in Flax, PyTorch or TensorFlow, or has an associated tokenizer backed by the 🤗 Tokenizers library, refer to [this table](https://huggingface.co/docs/transformers/index#supported-frameworks).
@ -539,6 +495,7 @@ These implementations have been tested on several datasets (see the example scri
| [Training and fine-tuning](https://huggingface.co/docs/transformers/training) | Using the models provided by 🤗 Transformers in a PyTorch/TensorFlow training loop and the `Trainer` API |
| [Quick tour: Fine-tuning/usage scripts](https://github.com/huggingface/transformers/tree/main/examples) | Example scripts for fine-tuning models on a wide range of tasks |
| [Model sharing and uploading](https://huggingface.co/docs/transformers/model_sharing) | Upload and share your fine-tuned models with the community |
| [Migration](https://huggingface.co/docs/transformers/migration) | Migrate to 🤗 Transformers from `pytorch-transformers` or `pytorch-pretrained-bert` |
## Citation

View File

@ -18,7 +18,7 @@ limitations under the License.
<br>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers_logo_name.png" width="400"/>
<br>
</p>
<p>
<p align="center">
<a href="https://circleci.com/gh/huggingface/transformers">
<img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/main">
@ -46,9 +46,8 @@ limitations under the License.
<a href="https://github.com/huggingface/transformers/blob/main/README_ko.md">한국어</a> |
<b>Español</b> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ja.md">日本語</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_hd.md">हिन्दी</a> |
<a href="https://github.com/huggingface/transformers//blob/main/README_te.md">తెలుగు</a> |
</p>
<a href="https://github.com/huggingface/transformers/blob/main/README_hd.md">हिन्दी</a>
<p>
</h4>
<h3 align="center">
@ -225,7 +224,7 @@ El modelo en si es un [Pytorch `nn.Module`](https://pytorch.org/docs/stable/nn.h
### Con pip
Este repositorio está probado en Python 3.8+, Flax 0.4.1+, PyTorch 1.10+ y TensorFlow 2.6+.
Este repositorio está probado en Python 3.6+, Flax 0.3.2+, PyTorch 1.3.1+ y TensorFlow 2.3+.
Deberías instalar 🤗 Transformers en un [ambiente virtual](https://docs.python.org/3/library/venv.html). Si no estas familiarizado con los entornos virtuales de Python, consulta la [guía de usuario](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/).
@ -268,8 +267,6 @@ Número actual de puntos de control: ![](https://img.shields.io/endpoint?url=htt
1. **[ALIGN](https://huggingface.co/docs/transformers/model_doc/align)** (from Google Research) released with the paper [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918) by Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig.
1. **[AltCLIP](https://huggingface.co/docs/transformers/model_doc/altclip)** (from BAAI) released with the paper [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) by Chen, Zhongzhi and Liu, Guang and Zhang, Bo-Wen and Ye, Fulong and Yang, Qinghong and Wu, Ledell.
1. **[Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer)** (from MIT) released with the paper [AST: Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778) by Yuan Gong, Yu-An Chung, James Glass.
1. **[Autoformer](https://huggingface.co/docs/transformers/model_doc/autoformer)** (from Tsinghua University) released with the paper [Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://arxiv.org/abs/2106.13008) by Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long.
1. **[Bark](https://huggingface.co/docs/transformers/model_doc/bark)** (from Suno) released in the repository [suno-ai/bark](https://github.com/suno-ai/bark) by Suno AI team.
1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (from Facebook) released with the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer.
1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (from École polytechnique) released with the paper [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis.
1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (from VinAI Research) released with the paper [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen.
@ -288,7 +285,6 @@ Número actual de puntos de control: ![](https://img.shields.io/endpoint?url=htt
1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (from BigScience workshop) released by the [BigScience Workshop](https://bigscience.huggingface.co/).
1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (from Alexa) released with the paper [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) by Adrian de Wynter and Daniel J. Perry.
1. **[BridgeTower](https://huggingface.co/docs/transformers/model_doc/bridgetower)** (from Harbin Institute of Technology/Microsoft Research Asia/Intel Labs) released with the paper [BridgeTower: Building Bridges Between Encoders in Vision-Language Representation Learning](https://arxiv.org/abs/2206.08657) by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan.
1. **[BROS](https://huggingface.co/docs/transformers/model_doc/bros)** (from NAVER CLOVA) released with the paper [BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents](https://arxiv.org/abs/2108.04539) by Teakgyu Hong, Donghyun Kim, Mingi Ji, Wonseok Hwang, Daehyun Nam, Sungrae Park.
1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (from Google Research) released with the paper [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel.
1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (from Inria/Facebook/Sorbonne) released with the paper [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (from Google Research) released with the paper [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting.
@ -297,7 +293,6 @@ Número actual de puntos de control: ![](https://img.shields.io/endpoint?url=htt
1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (from OpenAI) released with the paper [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever.
1. **[CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)** (from University of Göttingen) released with the paper [Image Segmentation Using Text and Image Prompts](https://arxiv.org/abs/2112.10003) by Timo Lüddecke and Alexander Ecker.
1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (from Salesforce) released with the paper [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong.
1. **[CodeLlama](https://huggingface.co/docs/transformers/model_doc/llama_code)** (from MetaAI) released with the paper [Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/) by Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, Gabriel Synnaeve.
1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (from Microsoft Research Asia) released with the paper [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) by Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang.
1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (from YituTech) released with the paper [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan.
1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (from Facebook AI) released with the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie.
@ -317,7 +312,6 @@ Número actual de puntos de control: ![](https://img.shields.io/endpoint?url=htt
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (from Facebook) released with the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (from Microsoft Research) released with the paper [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
1. **[DiNAT](https://huggingface.co/docs/transformers/model_doc/dinat)** (from SHI Labs) released with the paper [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) by Ali Hassani and Humphrey Shi.
1. **[DINOv2](https://huggingface.co/docs/transformers/model_doc/dinov2)** (from Meta AI) released with the paper [DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193) by Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, Piotr Bojanowski.
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation) and a German version of DistilBERT.
1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (from Microsoft Research) released with the paper [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) by Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei.
1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (from NAVER), released together with the paper [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) by Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park.
@ -326,12 +320,10 @@ Número actual de puntos de control: ![](https://img.shields.io/endpoint?url=htt
1. **[EfficientFormer](https://huggingface.co/docs/transformers/model_doc/efficientformer)** (from Snap Research) released with the paper [EfficientFormer: Vision Transformers at MobileNetSpeed](https://arxiv.org/abs/2206.01191) by Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren.
1. **[EfficientNet](https://huggingface.co/docs/transformers/model_doc/efficientnet)** (from Google Brain) released with the paper [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan, Quoc V. Le.
1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
1. **[EnCodec](https://huggingface.co/docs/transformers/model_doc/encodec)** (from Meta AI) released with the paper [High Fidelity Neural Audio Compression](https://arxiv.org/abs/2210.13438) by Alexandre Défossez, Jade Copet, Gabriel Synnaeve, Yossi Adi.
1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (from Google Research) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)** (from Baidu) released with the paper [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) by Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu.
1. **[ErnieM](https://huggingface.co/docs/transformers/model_doc/ernie_m)** (from Baidu) released with the paper [ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora](https://arxiv.org/abs/2012.15674) by Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang.
1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (from Meta AI) are transformer protein language models. **ESM-1b** was released with the paper [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. **ESM-1v** was released with the paper [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648) by Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives. **ESM-2** was released with the paper [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902) by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives.
1. **[Falcon](https://huggingface.co/docs/transformers/model_doc/falcon)** (from Technology Innovation Institute) by Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme.
1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FLAN-UL2](https://huggingface.co/docs/transformers/model_doc/flan-ul2)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-ul2-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
@ -339,7 +331,6 @@ Número actual de puntos de control: ![](https://img.shields.io/endpoint?url=htt
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
1. **[FocalNet](https://huggingface.co/docs/transformers/model_doc/focalnet)** (from Microsoft Research) released with the paper [Focal Modulation Networks](https://arxiv.org/abs/2203.11926) by Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao.
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
1. **[Fuyu](https://huggingface.co/docs/transformers/model_doc/fuyu)** (from ADEPT) Rohan Bavishi, Erich Elsen, Curtis Hawthorne, Maxwell Nye, Augustus Odena, Arushi Somani, Sağnak Taşırlar. Released with the paper [blog post](https://www.adept.ai/blog/fuyu-8b)
1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (from Microsoft Research) released with the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang.
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (from KAIST) released with the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim.
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
@ -353,15 +344,11 @@ Número actual de puntos de control: ![](https://img.shields.io/endpoint?url=htt
1. **[GPTSAN-japanese](https://huggingface.co/docs/transformers/model_doc/gptsan-japanese)** released in the repository [tanreinama/GPTSAN](https://github.com/tanreinama/GPTSAN/blob/main/report/model.md) by Toshiyuki Sakamoto(tanreinama).
1. **[Graphormer](https://huggingface.co/docs/transformers/model_doc/graphormer)** (from Microsoft) released with the paper [Do Transformers Really Perform Bad for Graph Representation?](https://arxiv.org/abs/2106.05234) by Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu.
1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (from UCSD, NVIDIA) released with the paper [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) by Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang.
1. **[HerBERT](https://huggingface.co/docs/transformers/model_doc/herbert)** (from Allegro.pl, AGH University of Science and Technology) released with the paper [KLEJ: Comprehensive Benchmark for Polish Language Understanding](https://www.aclweb.org/anthology/2020.acl-main.111.pdf) by Piotr Rybak, Robert Mroczkowski, Janusz Tracz, Ireneusz Gawlik.
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (from Facebook) released with the paper [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed.
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (from Berkeley) released with the paper [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer.
1. **[IDEFICS](https://huggingface.co/docs/transformers/model_doc/idefics)** (from HuggingFace) released with the paper [OBELICS: An Open Web-Scale Filtered Dataset of Interleaved Image-Text Documents](https://huggingface.co/papers/2306.16527) by Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov, Thomas Wang, Siddharth Karamcheti, Alexander M. Rush, Douwe Kiela, Matthieu Cord, Victor Sanh.
1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (from OpenAI) released with the paper [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever.
1. **[Informer](https://huggingface.co/docs/transformers/model_doc/informer)** (from Beihang University, UC Berkeley, Rutgers University, SEDD Company) released with the paper [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting](https://arxiv.org/abs/2012.07436) by Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
1. **[InstructBLIP](https://huggingface.co/docs/transformers/model_doc/instructblip)** (from Salesforce) released with the paper [InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning](https://arxiv.org/abs/2305.06500) by Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, Steven Hoi.
1. **[Jukebox](https://huggingface.co/docs/transformers/model_doc/jukebox)** (from OpenAI) released with the paper [Jukebox: A Generative Model for Music](https://arxiv.org/pdf/2005.00341.pdf) by Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever.
1. **[KOSMOS-2](https://huggingface.co/docs/transformers/main/model_doc/kosmos-2)** (from Microsoft Research Asia) released with the paper [Kosmos-2: Grounding Multimodal Large Language Models to the World](https://arxiv.org/abs/2306.14824) by Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan Huang, Shuming Ma, Furu Wei.
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou.
1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (from Microsoft Research Asia) released with the paper [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) by Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei.
@ -370,7 +357,6 @@ Número actual de puntos de control: ![](https://img.shields.io/endpoint?url=htt
1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (from Meta AI) released with the paper [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) by Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze.
1. **[LiLT](https://huggingface.co/docs/transformers/model_doc/lilt)** (from South China University of Technology) released with the paper [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669) by Jiapeng Wang, Lianwen Jin, Kai Ding.
1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (from The FAIR team of Meta AI) released with the paper [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971) by Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample.
1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (from The FAIR team of Meta AI) released with the paper [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/XXX) by Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom..
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (from Google AI) released with the paper [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang.
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (from Studio Ousia) released with the paper [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.
@ -388,42 +374,31 @@ Número actual de puntos de control: ![](https://img.shields.io/endpoint?url=htt
1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[MGP-STR](https://huggingface.co/docs/transformers/model_doc/mgp-str)** (from Alibaba Research) released with the paper [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592) by Peng Wang, Cheng Da, and Cong Yao.
1. **[Mistral](https://huggingface.co/docs/transformers/model_doc/mistral)** (from Mistral AI) by The Mistral AI team: Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed..
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (from Studio Ousia) released with the paper [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka.
1. **[MMS](https://huggingface.co/docs/transformers/model_doc/mms)** (from Facebook) released with the paper [Scaling Speech Technology to 1,000+ Languages](https://arxiv.org/abs/2305.13516) by Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky, Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi, Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning Hsu, Alexis Conneau, Michael Auli.
1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (from CMU/Google Brain) released with the paper [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou.
1. **[MobileNetV1](https://huggingface.co/docs/transformers/model_doc/mobilenet_v1)** (from Google Inc.) released with the paper [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) by Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam.
1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (from Google Inc.) released with the paper [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) by Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen.
1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (from Apple) released with the paper [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari.
1. **[MobileViTV2](https://huggingface.co/docs/transformers/model_doc/mobilevitv2)** (from Apple) released with the paper [Separable Self-attention for Mobile Vision Transformers](https://arxiv.org/abs/2206.02680) by Sachin Mehta and Mohammad Rastegari.
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
1. **[MPT](https://huggingface.co/docs/transformers/model_doc/mpt)** (from MosaiML) released with the repository [llm-foundry](https://github.com/mosaicml/llm-foundry/) by the MosaicML NLP Team.
1. **[MRA](https://huggingface.co/docs/transformers/model_doc/mra)** (from the University of Wisconsin - Madison) released with the paper [Multi Resolution Analysis (MRA)](https://arxiv.org/abs/2207.10284) by Zhanpeng Zeng, Sourav Pal, Jeffery Kline, Glenn M Fung, Vikas Singh.
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
1. **[MusicGen](https://huggingface.co/docs/transformers/model_doc/musicgen)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (from RUC AI Box) released with the paper [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen.
1. **[NAT](https://huggingface.co/docs/transformers/model_doc/nat)** (from SHI Labs) released with the paper [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143) by Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi.
1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (from Huawei Noahs Ark Lab) released with the paper [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) by Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu.
1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[Nougat](https://huggingface.co/docs/transformers/model_doc/nougat)** (from Meta AI) released with the paper [Nougat: Neural Optical Understanding for Academic Documents](https://arxiv.org/abs/2308.13418) by Lukas Blecher, Guillem Cucurull, Thomas Scialom, Robert Stojnic.
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (from the University of Wisconsin - Madison) released with the paper [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh.
1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (from SHI Labs) released with the paper [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) by Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi.
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released on GitHub (now removed).
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released in [Open-Llama](https://github.com/s-JoL/Open-Llama).
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al.
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (from Google AI) released with the paper [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby.
1. **[OWLv2](https://huggingface.co/docs/transformers/main/model_doc/owlv2)** (from Google AI) released with the paper [Scaling Open-Vocabulary Object Detection](https://arxiv.org/abs/2306.09683) by Matthias Minderer, Alexey Gritsenko, Neil Houlsby.
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (from Google) released with the paper [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) by Jason Phang, Yao Zhao, and Peter J. Liu.
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (from Deepmind) released with the paper [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) by Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira.
1. **[Persimmon](https://huggingface.co/docs/transformers/model_doc/persimmon)** (from ADEPT) released with the paper [blog post](https://www.adept.ai/blog/persimmon-8b) by Erich Elsen, Augustus Odena, Maxwell Nye, Sağnak Taşırlar, Tri Dao, Curtis Hawthorne, Deepak Moparthi, Arushi Somani.
1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen.
1. **[Pix2Struct](https://huggingface.co/docs/transformers/model_doc/pix2struct)** (from Google) released with the paper [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding](https://arxiv.org/abs/2210.03347) by Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova.
1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (from UCLA NLP) released with the paper [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) by Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang.
1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (from Sea AI Labs) released with the paper [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) by Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng.
1. **[Pop2Piano](https://huggingface.co/docs/transformers/model_doc/pop2piano)** released with the paper [Pop2Piano : Pop Audio-based Piano Cover Generation](https://arxiv.org/abs/2211.00895) by Jongho Choi, Kyogu Lee.
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[PVT](https://huggingface.co/docs/transformers/model_doc/pvt)** (from Nanjing University, The University of Hong Kong etc.) released with the paper [Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions](https://arxiv.org/pdf/2102.12122.pdf) by Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao.
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (from NVIDIA) released with the paper [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) by Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius.
1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (from Facebook) released with the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) by Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela.
1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (from Google Research) released with the paper [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) by Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang.
@ -436,7 +411,6 @@ Número actual de puntos de control: ![](https://img.shields.io/endpoint?url=htt
1. **[RoCBert](https://huggingface.co/docs/transformers/model_doc/roc_bert)** (from WeChatAI) released with the paper [RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining](https://aclanthology.org/2022.acl-long.65.pdf) by HuiSu, WeiweiShi, XiaoyuShen, XiaoZhou, TuoJi, JiaruiFang, JieZhou.
1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (from ZhuiyiTechnology), released together with the paper [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/abs/2104.09864) by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu.
1. **[RWKV](https://huggingface.co/docs/transformers/model_doc/rwkv)** (from Bo Peng) released with the paper [this repo](https://github.com/BlinkDL/RWKV-LM) by Bo Peng.
1. **[SeamlessM4T](https://huggingface.co/docs/transformers/main/model_doc/seamless_m4t)** (from Meta AI) released with the paper [SeamlessM4T — Massively Multilingual & Multimodal Machine Translation](https://dl.fbaipublicfiles.com/seamless/seamless_m4t_paper.pdf) by the Seamless Communication team.
1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (from NVIDIA) released with the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo.
1. **[Segment Anything](https://huggingface.co/docs/transformers/model_doc/sam)** (from Meta AI) released with the paper [Segment Anything](https://arxiv.org/pdf/2304.02643v1.pdf) by Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alex Berg, Wan-Yen Lo, Piotr Dollar, Ross Girshick.
1. **[SEW](https://huggingface.co/docs/transformers/model_doc/sew)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
@ -446,7 +420,7 @@ Número actual de puntos de control: ![](https://img.shields.io/endpoint?url=htt
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (from Facebook), released together with the paper [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau.
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (from Tel Aviv University), released together with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy.
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (from MBZUAI) released with the paper [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) by Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan.
1. **[SwiftFormer](https://huggingface.co/docs/transformers/main/model_doc/swiftformer)** (from MBZUAI) released with the paper [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) by Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan.
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (from Microsoft) released with the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (from Microsoft) released with the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo.
1. **[Swin2SR](https://huggingface.co/docs/transformers/model_doc/swin2sr)** (from University of Würzburg) released with the paper [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345) by Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte.
@ -463,7 +437,6 @@ Número actual de puntos de control: ![](https://img.shields.io/endpoint?url=htt
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (from Microsoft), released together with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
1. **[TVLT](https://huggingface.co/docs/transformers/model_doc/tvlt)** (from UNC Chapel Hill) released with the paper [TVLT: Textless Vision-Language Transformer](https://arxiv.org/abs/2209.14156) by Zineng Tang, Jaemin Cho, Yixin Nie, Mohit Bansal.
1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
1. **[UMT5](https://huggingface.co/docs/transformers/model_doc/umt5)** (from Google Research) released with the paper [UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining](https://openreview.net/forum?id=kXwdL1cWOAi) by Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, Noah Constant.
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (from Microsoft Research) released with the paper [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (from Microsoft Research) released with the paper [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu.
1. **[UPerNet](https://huggingface.co/docs/transformers/model_doc/upernet)** (from Peking University) released with the paper [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221) by Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun.
@ -473,12 +446,8 @@ Número actual de puntos de control: ![](https://img.shields.io/endpoint?url=htt
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VitDet](https://huggingface.co/docs/transformers/model_doc/vitdet)** (from Meta AI) released with the paper [Exploring Plain Vision Transformer Backbones for Object Detection](https://arxiv.org/abs/2203.16527) by Yanghao Li, Hanzi Mao, Ross Girshick, Kaiming He.
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (from Meta AI) released with the paper [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick.
1. **[ViTMatte](https://huggingface.co/docs/transformers/model_doc/vitmatte)** (from HUST-VL) released with the paper [ViTMatte: Boosting Image Matting with Pretrained Plain Vision Transformers](https://arxiv.org/abs/2305.15272) by Jingfeng Yao, Xinggang Wang, Shusheng Yang, Baoyuan Wang.
1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (from Meta AI) released with the paper [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas.
1. **[VITS](https://huggingface.co/docs/transformers/model_doc/vits)** (from Kakao Enterprise) released with the paper [Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech](https://arxiv.org/abs/2106.06103) by Jaehyeon Kim, Jungil Kong, Juhee Son.
1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (from Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) by Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid.
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (from Facebook AI) released with the paper [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (from Facebook AI) released with the paper [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino.
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (from Facebook AI) released with the paper [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) by Qiantong Xu, Alexei Baevski, Michael Auli.

View File

@ -43,7 +43,7 @@ checkpoint: जाँच बिंदु
<br>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers_logo_name.png" width="400"/>
<br>
</p>
<p>
<p align="center">
<a href="https://circleci.com/gh/huggingface/transformers">
<img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/main">
@ -72,8 +72,7 @@ checkpoint: जाँच बिंदु
<a href="https://github.com/huggingface/transformers/blob/main/README_es.md">Español</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ja.md">日本語</a> |
<b>हिन्दी</b> |
<a href="https://github.com/huggingface/transformers//blob/main/README_te.md">తెలుగు</a> |
</p>
<p>
</h4>
<h3 align="center">
@ -86,13 +85,13 @@ checkpoint: जाँच बिंदु
🤗 Transformers 100 से अधिक भाषाओं में पाठ वर्गीकरण, सूचना निष्कर्षण, प्रश्न उत्तर, सारांशीकरण, अनुवाद, पाठ निर्माण का समर्थन करने के लिए हजारों पूर्व-प्रशिक्षित मॉडल प्रदान करता है। इसका उद्देश्य सबसे उन्नत एनएलपी तकनीक को सभी के लिए सुलभ बनाना है।
🤗 Transformers त्वरित डाउनलोड और उपयोग के लिए एक एपीआई प्रदान करता है, जिससे आप किसी दिए गए पाठ पर एक पूर्व-प्रशिक्षित मॉडल ले सकते हैं, इसे अपने डेटासेट पर ठीक कर सकते हैं और इसे [मॉडल हब](https://huggingface.co/models) के माध्यम से समुदाय के साथ साझा कर सकते हैं। इसी समय, प्रत्येक परिभाषित पायथन मॉड्यूल पूरी तरह से स्वतंत्र है, जो संशोधन और तेजी से अनुसंधान प्रयोगों के लिए सुविधाजनक है।
🤗 Transformers त्वरित डाउनलोड और उपयोग के लिए एक एपीआई प्रदान करता है, जिससे आप किसी दिए गए पाठ पर एक पूर्व-प्रशिक्षित मॉडल ले सकते हैं, इसे अपने डेटासेट पर ठीक कर सकते हैं और इसे [मॉडल हब] (https://huggingface.co/models) के माध्यम से समुदाय के साथ साझा कर सकते हैं। ) . इसी समय, प्रत्येक परिभाषित पायथन मॉड्यूल पूरी तरह से स्वतंत्र है, जो संशोधन और तेजी से अनुसंधान प्रयोगों के लिए सुविधाजनक है।
🤗 Transformers तीन सबसे लोकप्रिय गहन शिक्षण पुस्तकालयों का समर्थन करता है: [Jax](https://jax.readthedocs.io/en/latest/), [PyTorch](https://pytorch.org/) and [TensorFlow](https://www.tensorflow.org/) — और इसके साथ निर्बाध रूप से एकीकृत होता है। आप अपने मॉडल को सीधे एक ढांचे के साथ प्रशिक्षित कर सकते हैं और दूसरे के साथ लोड और अनुमान लगा सकते हैं।
## ऑनलाइन डेमो
आप सबसे सीधे मॉडल पृष्ठ पर परीक्षण कर सकते हैं [model hub](https://huggingface.co/models) मॉडल पर। हम [निजी मॉडल होस्टिंग, मॉडल संस्करण, और अनुमान एपीआई](https://huggingface.co/pricing) भी प्रदान करते हैं।
आप सबसे सीधे मॉडल पृष्ठ पर परीक्षण कर सकते हैं [model hub](https://huggingface.co/models) मॉडल पर। हम [निजी मॉडल होस्टिंग, मॉडल संस्करण, और अनुमान एपीआई] भी प्रदान करते हैं।(https://huggingface.co/pricing)
यहाँ कुछ उदाहरण हैं:
- [शब्द को भरने के लिए मास्क के रूप में BERT का प्रयोग करें](https://huggingface.co/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France)
@ -166,7 +165,7 @@ checkpoint: जाँच बिंदु
टोकननाइज़र सभी पूर्व-प्रशिक्षित मॉडलों के लिए प्रीप्रोसेसिंग प्रदान करता है और इसे सीधे एक स्ट्रिंग (जैसे ऊपर दिए गए उदाहरण) या किसी सूची पर बुलाया जा सकता है। यह एक डिक्शनरी (तानाशाही) को आउटपुट करता है जिसे आप डाउनस्ट्रीम कोड में उपयोग कर सकते हैं या `**` अनपैकिंग एक्सप्रेशन के माध्यम से सीधे मॉडल को पास कर सकते हैं।
मॉडल स्वयं एक नियमित [Pytorch `nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) या [TensorFlow `tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) (आपके बैकएंड के आधार पर), जो हो सकता है सामान्य तरीके से उपयोग किया जाता है। [यह ट्यूटोरियल](https://huggingface.co/transformers/training.html) बताता है कि इस तरह के मॉडल को क्लासिक PyTorch या TensorFlow प्रशिक्षण लूप में कैसे एकीकृत किया जाए, या हमारे `ट्रेनर` एपीआई का उपयोग कैसे करें ताकि इसे जल्दी से फ़ाइन ट्यून किया जा सके।एक नया डेटासेट पे।
मॉडल स्वयं एक नियमित [Pytorch `nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) या [TensorFlow `tf.keras.Model`](https ://pytorch.org/docs/stable/nn.html#torch.nn.Module) ://www.tensorflow.org/api_docs/python/tf/keras/Model) (आपके बैकएंड के आधार पर), जो हो सकता है सामान्य तरीके से उपयोग किया जाता है। [यह ट्यूटोरियल](https://huggingface.co/transformers/training.html) बताता है कि इस तरह के मॉडल को क्लासिक PyTorch या TensorFlow प्रशिक्षण लूप में कैसे एकीकृत किया जाए, या हमारे `ट्रेनर` एपीआई का उपयोग कैसे करें ताकि इसे जल्दी से फ़ाइन ट्यून किया जा सके।एक नया डेटासेट पे।
## ट्रांसफार्मर का उपयोग क्यों करें?
@ -195,21 +194,19 @@ checkpoint: जाँच बिंदु
- यह लाइब्रेरी मॉड्यूलर न्यूरल नेटवर्क टूलबॉक्स नहीं है। मॉडल फ़ाइल में कोड जानबूझकर अल्पविकसित है, बिना अतिरिक्त सार इनकैप्सुलेशन के, ताकि शोधकर्ता अमूर्तता और फ़ाइल जंपिंग में शामिल हुए जल्दी से पुनरावृति कर सकें।
- `ट्रेनर` एपीआई किसी भी मॉडल के साथ संगत नहीं है, यह केवल इस पुस्तकालय के मॉडल के लिए अनुकूलित है। यदि आप सामान्य मशीन लर्निंग के लिए उपयुक्त प्रशिक्षण लूप कार्यान्वयन की तलाश में हैं, तो कहीं और देखें।
- हमारे सर्वोत्तम प्रयासों के बावजूद, [उदाहरण निर्देशिका](https://github.com/huggingface/transformers/tree/main/examples) में स्क्रिप्ट केवल उपयोग के मामले हैं। आपकी विशिष्ट समस्या के लिए, वे जरूरी नहीं कि बॉक्स से बाहर काम करें, और आपको कोड की कुछ पंक्तियों को सूट करने की आवश्यकता हो सकती है।
- हमारे सर्वोत्तम प्रयासों के बावजूद, [उदाहरण निर्देशिका] (https://github.com/huggingface/transformers/tree/main/examples) में स्क्रिप्ट केवल उपयोग के मामले हैं। आपकी विशिष्ट समस्या के लिए, वे जरूरी नहीं कि बॉक्स से बाहर काम करें, और आपको कोड की कुछ पंक्तियों को सूट करने की आवश्यकता हो सकती है।
## स्थापित करना
### पिप का उपयोग करना
इस रिपॉजिटरी का परीक्षण Python 3.8+, Flax 0.4.1+, PyTorch 1.10+ और TensorFlow 2.6+ के तहत किया गया है।
इस रिपॉजिटरी का परीक्षण Python 3.6+, Flax 0.3.2+, PyTorch 1.3.1+ और TensorFlow 2.3+ के तहत किया गया है।
आप [वर्चुअल एनवायरनमेंट](https://docs.python.org/3/library/venv.html) में 🤗 ट्रांसफॉर्मर इंस्टॉल कर सकते हैं। यदि आप अभी तक पायथन के वर्चुअल एनवायरनमेंट से परिचित नहीं हैं, तो कृपया इसे [उपयोगकर्ता निर्देश](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/) पढ़ें।
आप [वर्चुअल एनवायरनमेंट] (https://docs.python.org/3/library/venv.html) में 🤗 ट्रांसफॉर्मर इंस्टॉल कर सकते हैं। यदि आप अभी तक पायथन के वर्चुअल एनवायरनमेंट से परिचित नहीं हैं, तो कृपया इसे [उपयोगकर्ता निर्देश] (https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/) पढ़ें।
सबसे पहले, पायथन के उस संस्करण के साथ एक आभासी वातावरण बनाएं जिसका आप उपयोग करने और उसे सक्रिय करने की योजना बना रहे हैं।
फिर, आपको Flax, PyTorch या TensorFlow में से किसी एक को स्थापित करने की आवश्यकता है। अपने प्लेटफ़ॉर्म पर इन फ़्रेमवर्क को स्थापित करने के लिए, [TensorFlow स्थापना पृष्ठ](https://www.tensorflow.org/install/), [PyTorch स्थापना पृष्ठ](https://pytorch.org/get-started/locally)
देखें start-locally या [Flax स्थापना पृष्ठ](https://github.com/google/flax#quick-install).
फिर, आपको Flax, PyTorch या TensorFlow में से किसी एक को स्थापित करने की आवश्यकता है। अपने प्लेटफ़ॉर्म पर इन फ़्रेमवर्क को स्थापित करने के लिए, [TensorFlow स्थापना पृष्ठ](https://www.tensorflow.org/install/), [PyTorch स्थापना पृष्ठ](https://pytorch.org/get-started /locally/# देखें) start-locally) या [Flax स्थापना पृष्ठ](https://github.com/google/flax#quick-install).
जब इनमें से कोई एक बैकएंड सफलतापूर्वक स्थापित हो जाता है, तो ट्रांसफॉर्मर निम्नानुसार स्थापित किए जा सकते हैं:
@ -217,7 +214,7 @@ checkpoint: जाँच बिंदु
pip install transformers
```
यदि आप उपयोग के मामलों को आज़माना चाहते हैं या आधिकारिक रिलीज़ से पहले नवीनतम इन-डेवलपमेंट कोड का उपयोग करना चाहते हैं, तो आपको [सोर्स से इंस्टॉल करना होगा](https://huggingface.co/docs/transformers/installation#installing-from-) स्रोत।
यदि आप उपयोग के मामलों को आज़माना चाहते हैं या आधिकारिक रिलीज़ से पहले नवीनतम इन-डेवलपमेंट कोड का उपयोग करना चाहते हैं, तो आपको [सोर्स से इंस्टॉल करना होगा](https://huggingface.co/docs/transformers/installation#installing-from- स्रोत)
### कोंडा का उपयोग करना
@ -232,7 +229,7 @@ conda install -c huggingface transformers
कोंडा के माध्यम से Flax, PyTorch, या TensorFlow में से किसी एक को स्थापित करने के लिए, निर्देशों के लिए उनके संबंधित स्थापना पृष्ठ देखें।
## मॉडल आर्किटेक्चर
[उपयोगकर्ता](https://huggingface.co/users) और [organization](https://huggingface.co) द्वारा ट्रांसफॉर्मर समर्थित [**सभी मॉडल चौकियों**](https://huggingface.co/models/users) हगिंगफेस.को/ऑर्गनाइजेशन), सभी को बिना किसी बाधा के हगिंगफेस.को [मॉडल हब](https://huggingface.co) के साथ एकीकृत किया गया है।
[उपयोगकर्ता](https://huggingface.co/users) और [organization](https://huggingface.co) द्वारा ट्रांसफॉर्मर समर्थित [**सभी मॉडल चौकियों**](https://huggingface.co/models) /users) हगिंगफेस.को/ऑर्गनाइजेशन), सभी को बिना किसी बाधा के हगिंगफेस.को [मॉडल हब](https://huggingface.co) के साथ एकीकृत किया गया है।
चौकियों की वर्तमान संख्या: ![](https://img.shields.io/endpoint?url=https://huggingface.co/api/shields/models&color=brightgreen)
@ -242,15 +239,13 @@ conda install -c huggingface transformers
1. **[ALIGN](https://huggingface.co/docs/transformers/model_doc/align)** (Google Research से) Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig. द्वाराअनुसंधान पत्र [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918) के साथ जारी किया गया
1. **[AltCLIP](https://huggingface.co/docs/transformers/model_doc/altclip)** (from BAAI) released with the paper [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) by Chen, Zhongzhi and Liu, Guang and Zhang, Bo-Wen and Ye, Fulong and Yang, Qinghong and Wu, Ledell.
1. **[Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer)** (from MIT) released with the paper [AST: Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778) by Yuan Gong, Yu-An Chung, James Glass.
1. **[Autoformer](https://huggingface.co/docs/transformers/model_doc/autoformer)** (from Tsinghua University) released with the paper [Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://arxiv.org/abs/2106.13008) by Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long.
1. **[Bark](https://huggingface.co/docs/transformers/model_doc/bark)** (from Suno) released in the repository [suno-ai/bark](https://github.com/suno-ai/bark) by Suno AI team.
1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (फेसबुक) साथ थीसिस [बार्ट: प्राकृतिक भाषा निर्माण, अनुवाद के लिए अनुक्रम-से-अनुक्रम पूर्व प्रशिक्षण , और समझ](https://arxiv.org/pdf/1910.13461.pdf) पर निर्भर माइक लुईस, यिनहान लियू, नमन गोयल, मार्जन ग़ज़विनिनेजाद, अब्देलरहमान मोहम्मद, ओमर लेवी, वेस स्टोयानोव और ल्यूक ज़ेटलमॉयर
1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (फेसबुक) साथ थीसिस [बार्ट: प्राकृतिक भाषा निर्माण, अनुवाद के लिए अनुक्रम-से-अनुक्रम पूर्व प्रशिक्षण , और समझ] (https://arxiv.org/pdf/1910.13461.pdf) पर निर्भर माइक लुईस, यिनहान लियू, नमन गोयल, मार्जन ग़ज़विनिनेजाद, अब्देलरहमान मोहम्मद, ओमर लेवी, वेस स्टोयानोव और ल्यूक ज़ेटलमॉयर
1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (से École polytechnique) साथ थीसिस [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) पर निर्भर Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis रिहाई।
1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (VinAI Research से) साथ में पेपर [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701)गुयेन लुओंग ट्रान, डुओंग मिन्ह ले और डाट क्वोक गुयेन द्वारा पोस्ट किया गया।
1. **[BEiT](https://huggingface.co/docs/transformers/model_doc/beit)** (Microsoft से) साथ में कागज [BEiT: BERT इमेज ट्रांसफॉर्मर्स का प्री-ट्रेनिंग](https://arxiv.org/abs/2106.08254) Hangbo Bao, Li Dong, Furu Wei द्वारा।
1. **[BERT](https://huggingface.co/docs/transformers/model_doc/bert)** (गूगल से) साथ वाला पेपर [बीईआरटी: प्री-ट्रेनिंग ऑफ डीप बिडायरेक्शनल ट्रांसफॉर्मर्स फॉर लैंग्वेज अंडरस्टैंडिंग](https://arxiv.org/abs/1810.04805) जैकब डेवलिन, मिंग-वेई चांग, ​​केंटन ली और क्रिस्टीना टौटानोवा द्वारा प्रकाशित किया गया था। .
1. **[BERT For Sequence Generation](https://huggingface.co/docs/transformers/model_doc/bert-generation)** (गूगल से) साथ देने वाला पेपर [सीक्वेंस जेनरेशन टास्क के लिए प्री-ट्रेंड चेकपॉइंट का इस्तेमाल करना](https ://arxiv.org/abs/1907.12461) साशा रोठे, शशि नारायण, अलियाक्सि सेवेरिन द्वारा।
1. **[BERTweet](https://huggingface.co/docs/transformers/model_doc/bertweet)** (VinAI Research से) साथ में पेपर [BERTweet: अंग्रेजी ट्वीट्स के लिए एक पूर्व-प्रशिक्षित भाषा मॉडल](https://aclanthology.org/2020.emnlp-demos.2/) डाट क्वोक गुयेन, थान वु और अन्ह तुआन गुयेन द्वारा प्रकाशित।
1. **[BERTweet](https://huggingface.co/docs/transformers/model_doc/bertweet)** (VinAI Research से) साथ में पेपर [BERTweet: अंग्रेजी ट्वीट्स के लिए एक पूर्व-प्रशिक्षित भाषा मॉडल] (https://aclanthology.org/2020.emnlp-demos.2/) डाट क्वोक गुयेन, थान वु और अन्ह तुआन गुयेन द्वारा प्रकाशित।
1. **[BigBird-Pegasus](https://huggingface.co/docs/transformers/model_doc/bigbird_pegasus)** (गूगल रिसर्च से) साथ वाला पेपर [बिग बर्ड: ट्रांसफॉर्मर्स फॉर लॉन्गर सीक्वेंस](https://arxiv .org/abs/2007.14062) मंज़िल ज़हीर, गुरु गुरुगणेश, अविनावा दुबे, जोशुआ आइंस्ली, क्रिस अल्बर्टी, सैंटियागो ओंटानोन, फिलिप फाम, अनिरुद्ध रावुला, किफ़ान वांग, ली यांग, अमर अहमद द्वारा।
1. **[BigBird-RoBERTa](https://huggingface.co/docs/transformers/model_doc/big_bird)** (गूगल रिसर्च से) साथ में पेपर [बिग बर्ड: ट्रांसफॉर्मर्स फॉर लॉन्गर सीक्वेंस](https://arxiv.org/abs/2007.14062) मंज़िल ज़हीर, गुरु गुरुगणेश, अविनावा दुबे, जोशुआ आइंस्ली, क्रिस अल्बर्टी, सैंटियागो ओंटानन, फिलिप फाम द्वारा , अनिरुद्ध रावुला, किफ़ान वांग, ली यांग, अमर अहमद द्वारा पोस्ट किया गया।
1. **[BioGpt](https://huggingface.co/docs/transformers/model_doc/biogpt)** (from Microsoft Research AI4Science) released with the paper [BioGPT: generative pre-trained transformer for biomedical text generation and mining](https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbac409/6713511?guestAccessKey=a66d9b5d-4f83-4017-bb52-405815c907b9) by Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon and Tie-Yan Liu.
@ -262,7 +257,6 @@ conda install -c huggingface transformers
1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (from BigScience workshop) released by the [BigSicence Workshop](https://bigscience.huggingface.co/).
1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (एलेक्सा से) कागज के साथ [बीईआरटी के लिए ऑप्टिमल सबआर्किटेक्चर एक्सट्रैक्शन](https://arxiv.org/abs/ 2010.10499) एड्रियन डी विंटर और डैनियल जे पेरी द्वारा।
1. **[BridgeTower](https://huggingface.co/docs/transformers/model_doc/bridgetower)** (हरबिन इंस्टिट्यूट ऑफ़ टेक्नोलॉजी/माइक्रोसॉफ्ट रिसर्च एशिया/इंटेल लैब्स से) कागज के साथ [ब्रिजटॉवर: विजन-लैंग्वेज रिप्रेजेंटेशन लर्निंग में एनकोडर्स के बीच ब्रिज बनाना](<https://arxiv.org/abs/2206.08657>) by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan.
1. **[BROS](https://huggingface.co/docs/transformers/model_doc/bros)** (NAVER CLOVA से) Teakgyu Hong, Donghyun Kim, Mingi Ji, Wonseok Hwang, Daehyun Nam, Sungrae Park. द्वाराअनुसंधान पत्र [BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents](https://arxiv.org/abs/2108.04539) के साथ जारी किया गया
1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (Google अनुसंधान से) साथ में कागज [ByT5: पूर्व-प्रशिक्षित बाइट-टू-बाइट मॉडल के साथ एक टोकन-मुक्त भविष्य की ओर] (https://arxiv.org/abs/2105.13626) Linting Xue, Aditya Barua, Noah Constant, रामी अल-रफू, शरण नारंग, मिहिर काले, एडम रॉबर्ट्स, कॉलिन रैफेल द्वारा पोस्ट किया गया।
1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (इनरिया/फेसबुक/सोरबोन से) साथ में कागज [CamemBERT: एक टेस्टी फ्रेंच लैंग्वेज मॉडल](https:// arxiv.org/abs/1911.03894) लुई मार्टिन*, बेंजामिन मुलर*, पेड्रो जेवियर ऑर्टिज़ सुआरेज़*, योआन ड्यूपॉन्ट, लॉरेंट रोमरी, एरिक विलेमोन्टे डे ला क्लर्जरी, जैमे सेडाह और बेनोइट सगोट द्वारा।
1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (Google रिसर्च से) साथ में दिया गया पेपर [कैनाइन: प्री-ट्रेनिंग ए एफिशिएंट टोकनाइजेशन-फ्री एनकोडर फॉर लैंग्वेज रिप्रेजेंटेशन]( https://arxiv.org/abs/2103.06874) जोनाथन एच क्लार्क, डैन गैरेट, यूलिया टर्क, जॉन विएटिंग द्वारा।
@ -271,7 +265,6 @@ conda install -c huggingface transformers
1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (OpenAI से) साथ वाला पेपर [लर्निंग ट्रांसफरेबल विजुअल मॉडल फ्रॉम नेचुरल लैंग्वेज सुपरविजन](https://arxiv.org /abs/2103.00020) एलेक रैडफोर्ड, जोंग वूक किम, क्रिस हैलासी, आदित्य रमेश, गेब्रियल गोह, संध्या अग्रवाल, गिरीश शास्त्री, अमांडा एस्केल, पामेला मिश्किन, जैक क्लार्क, ग्रेचेन क्रुएगर, इल्या सुत्स्केवर द्वारा।
1. **[CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)** (from University of Göttingen) released with the paper [Image Segmentation Using Text and Image Prompts](https://arxiv.org/abs/2112.10003) by Timo Lüddecke and Alexander Ecker.
1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (सेल्सफोर्स से) साथ में पेपर [प्रोग्राम सिंथेसिस के लिए एक संवादात्मक प्रतिमान](https://arxiv.org/abs/2203.13474) एरिक निजकैंप, बो पैंग, हिरोआकी हयाशी, लिफू तू, हुआन वांग, यिंगबो झोउ, सिल्वियो सावरेस, कैमिंग जिओंग रिलीज।
1. **[CodeLlama](https://huggingface.co/docs/transformers/model_doc/llama_code)** (MetaAI से) Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, Gabriel Synnaeve. द्वाराअनुसंधान पत्र [Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/) के साथ जारी किया गया
1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (माइक्रोसॉफ्ट रिसर्च एशिया से) कागज के साथ [फास्ट ट्रेनिंग कन्वर्जेंस के लिए सशर्त डीईटीआर](https://arxiv. org/abs/2108.06152) डेपू मेंग, ज़ियाओकांग चेन, ज़ेजिया फैन, गैंग ज़ेंग, होउकियांग ली, युहुई युआन, लेई सन, जिंगडोंग वांग द्वारा।
1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (YituTech से) साथ में कागज [ConvBERT: स्पैन-आधारित डायनेमिक कनवल्शन के साथ BERT में सुधार](https://arxiv .org/abs/2008.02496) जिहांग जियांग, वीहाओ यू, डाकान झोउ, युनपेंग चेन, जियाशी फेंग, शुइचेंग यान द्वारा।
1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (Facebook AI से) साथ वाला पेपर [A ConvNet for the 2020s](https://arxiv.org/abs /2201.03545) ज़ुआंग लियू, हेंज़ी माओ, चाओ-युआन वू, क्रिस्टोफ़ फीचटेनहोफ़र, ट्रेवर डेरेल, सैनिंग ज़ी द्वारा।
@ -291,7 +284,6 @@ conda install -c huggingface transformers
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (फेसबुक से) साथ में कागज [ट्रांसफॉर्मर्स के साथ एंड-टू-एंड ऑब्जेक्ट डिटेक्शन](https://arxiv. org/abs/2005.12872) निकोलस कैरियन, फ़्रांसिस्को मस्सा, गेब्रियल सिनेव, निकोलस उसुनियर, अलेक्जेंडर किरिलोव, सर्गेई ज़ागोरुयको द्वारा।
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (माइक्रोसॉफ्ट रिसर्च से) कागज के साथ [DialoGPT: बड़े पैमाने पर जनरेटिव प्री-ट्रेनिंग फॉर कन्वर्सेशनल रिस्पांस जेनरेशन](https ://arxiv.org/abs/1911.00536) यिज़े झांग, सिकी सन, मिशेल गैली, येन-चुन चेन, क्रिस ब्रोकेट, जियांग गाओ, जियानफेंग गाओ, जिंगजिंग लियू, बिल डोलन द्वारा।
1. **[DiNAT](https://huggingface.co/docs/transformers/model_doc/dinat)** (from SHI Labs) released with the paper [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) by Ali Hassani and Humphrey Shi.
1. **[DINOv2](https://huggingface.co/docs/transformers/model_doc/dinov2)** (Meta AI से) Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, Piotr Bojanowski. द्वाराअनुसंधान पत्र [DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193) के साथ जारी किया गया
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (हगिंगफेस से), साथ में कागज [डिस्टिलबर्ट, बीईआरटी का डिस्टिल्ड वर्जन: छोटा, तेज, सस्ता और हल्का] (https://arxiv.org/abs/1910.01108) विक्टर सनह, लिसांड्रे डेब्यू और थॉमस वुल्फ द्वारा पोस्ट किया गया। यही तरीका GPT-2 को [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERta से [DistilRoBERta](https://github.com) पर कंप्रेस करने के लिए भी लागू किया जाता है। / हगिंगफेस/ट्रांसफॉर्मर्स/ट्री/मेन/उदाहरण/डिस्टिलेशन), बहुभाषी BERT से [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) और डिस्टिलबर्ट का जर्मन संस्करण।
1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (माइक्रोसॉफ्ट रिसर्च से) साथ में पेपर [DiT: सेल्फ सुपरवाइज्ड प्री-ट्रेनिंग फॉर डॉक्यूमेंट इमेज ट्रांसफॉर्मर](https://arxiv.org/abs/2203.02378) जुनलॉन्ग ली, यिहेंग जू, टेंगचाओ लव, लेई कुई, चा झांग द्वारा फुरु वेई द्वारा पोस्ट किया गया।
1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (NAVER से) साथ में कागज [OCR-मुक्त डॉक्यूमेंट अंडरस्टैंडिंग ट्रांसफॉर्मर](https://arxiv.org/abs /2111.15664) गीवूक किम, टीकग्यू होंग, मूनबिन यिम, जियोंग्योन नाम, जिनयॉन्ग पार्क, जिनयॉन्ग यिम, वोनसेओक ह्वांग, सांगडू यूं, डोंगयून हान, सेउंग्युन पार्क द्वारा।
@ -300,12 +292,10 @@ conda install -c huggingface transformers
1. **[EfficientFormer](https://huggingface.co/docs/transformers/model_doc/efficientformer)** (from Snap Research) released with the paper [EfficientFormer: Vision Transformers at MobileNetSpeed](https://arxiv.org/abs/2206.01191) by Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren.
1. **[EfficientNet](https://huggingface.co/docs/transformers/model_doc/efficientnet)** (from Google Brain) released with the paper [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan, Quoc V. Le.
1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (Google रिसर्च/स्टैनफोर्ड यूनिवर्सिटी से) साथ में दिया गया पेपर [इलेक्ट्रा: जेनरेटर के बजाय भेदभाव करने वाले के रूप में टेक्स्ट एन्कोडर्स का पूर्व-प्रशिक्षण] (https://arxiv.org/abs/2003.10555) केविन क्लार्क, मिन्ह-थांग लुओंग, क्वोक वी. ले, क्रिस्टोफर डी. मैनिंग द्वारा पोस्ट किया गया।
1. **[EnCodec](https://huggingface.co/docs/transformers/model_doc/encodec)** (Meta AI से) Alexandre Défossez, Jade Copet, Gabriel Synnaeve, Yossi Adi. द्वाराअनुसंधान पत्र [High Fidelity Neural Audio Compression](https://arxiv.org/abs/2210.13438) के साथ जारी किया गया
1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (Google रिसर्च से) साथ में दिया गया पेपर [सीक्वेंस जेनरेशन टास्क के लिए प्री-ट्रेंड चेकपॉइंट का इस्तेमाल करना](https:/ /arxiv.org/abs/1907.12461) साशा रोठे, शशि नारायण, अलियाक्सि सेवेरिन द्वारा।
1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)**(Baidu से) साथ देने वाला पेपर [ERNIE: एन्हांस्ड रिप्रेजेंटेशन थ्रू नॉलेज इंटीग्रेशन](https://arxiv.org/abs/1904.09223) यू सन, शुओहुआन वांग, युकुन ली, शिकुन फेंग, ज़ुई चेन, हान झांग, शिन तियान, डैनक्सियांग झू, हाओ तियान, हुआ वू द्वारा पोस्ट किया गया।
1. **[ErnieM](https://huggingface.co/docs/transformers/model_doc/ernie_m)** (Baidu से) Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang. द्वाराअनुसंधान पत्र [ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora](https://arxiv.org/abs/2012.15674) के साथ जारी किया गया
1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (मेटा AI से) ट्रांसफॉर्मर प्रोटीन भाषा मॉडल हैं। **ESM-1b** पेपर के साथ जारी किया गया था [ अलेक्जेंडर राइव्स, जोशुआ मेयर, टॉम सर्कु, सिद्धार्थ गोयल, ज़ेमिंग लिन द्वारा जैविक संरचना और कार्य असुरक्षित सीखने को 250 मिलियन प्रोटीन अनुक्रमों तक स्केल करने से उभरता है] (https://www.pnas.org/content/118/15/e2016239118) जेसन लियू, डेमी गुओ, मायल ओट, सी. लॉरेंस ज़िटनिक, जेरी मा और रॉब फर्गस। **ESM-1v** को पेपर के साथ जारी किया गया था [भाषा मॉडल प्रोटीन फ़ंक्शन पर उत्परिवर्तन के प्रभावों की शून्य-शॉट भविष्यवाणी को सक्षम करते हैं] (https://doi.org/10.1101/2021.07.09.450648) जोशुआ मेयर, रोशन राव, रॉबर्ट वेरकुइल, जेसन लियू, टॉम सर्कु और अलेक्जेंडर राइव्स द्वारा। **ESM-2** को पेपर के साथ जारी किया गया था [भाषा मॉडल विकास के पैमाने पर प्रोटीन अनुक्रम सटीक संरचना भविष्यवाणी को सक्षम करते हैं](https://doi.org/10.1101/2022.07.20.500902) ज़ेमिंग लिन, हलील अकिन, रोशन राव, ब्रायन ही, झोंगकाई झू, वेंटिंग लू, ए द्वारा लान डॉस सैंटोस कोस्टा, मरियम फ़ज़ल-ज़रंडी, टॉम सर्कू, साल कैंडिडो, अलेक्जेंडर राइव्स।
1. **[Falcon](https://huggingface.co/docs/transformers/model_doc/falcon)** (from Technology Innovation Institute) by Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme.
1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FLAN-UL2](https://huggingface.co/docs/transformers/model_doc/flan-ul2)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-ul2-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (CNRS से) साथ वाला पेपर [FlauBERT: Unsupervised Language Model Pre-training for फ़्रेंच](https://arxiv .org/abs/1912.05372) Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, बेंजामिन लेकोउटेक्स, अलेक्जेंड्रे अल्लाउज़ेन, बेनोइट क्रैबे, लॉरेंट बेसेसियर, डिडिएर श्वाब द्वारा।
@ -313,7 +303,6 @@ conda install -c huggingface transformers
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (गूगल रिसर्च से) साथ वाला पेपर [FNet: मिक्सिंग टोकन विद फूरियर ट्रांसफॉर्म्स](https://arxiv.org /abs/2105.03824) जेम्स ली-थॉर्प, जोशुआ आइंस्ली, इल्या एकस्टीन, सैंटियागो ओंटानन द्वारा।
1. **[FocalNet](https://huggingface.co/docs/transformers/model_doc/focalnet)** (Microsoft Research से) Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao. द्वाराअनुसंधान पत्र [Focal Modulation Networks](https://arxiv.org/abs/2203.11926) के साथ जारी किया गया
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (सीएमयू/गूगल ब्रेन से) साथ में कागज [फ़नल-ट्रांसफॉर्मर: कुशल भाषा प्रसंस्करण के लिए अनुक्रमिक अतिरेक को छानना](https://arxiv.org/abs/2006.03236) जिहांग दाई, गुओकुन लाई, यिमिंग यांग, क्वोक वी. ले ​​द्वारा रिहाई।
1. **[Fuyu](https://huggingface.co/docs/transformers/model_doc/fuyu)** (ADEPT से) रोहन बाविशी, एरिच एलसेन, कर्टिस हॉथोर्न, मैक्सवेल नी, ऑगस्टस ओडेना, अरुशी सोमानी, सागनाक तासिरलार [blog post](https://www.adept.ai/blog/fuyu-8b)
1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (from Microsoft Research) released with the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang.
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (KAIST से) साथ वाला पेपर [वर्टिकल कटडेप्थ के साथ मोनोकुलर डेप्थ एस्टीमेशन के लिए ग्लोबल-लोकल पाथ नेटवर्क्स](https:/ /arxiv.org/abs/2201.07436) डोयोन किम, वूंगह्युन गा, प्युंगवान आह, डोंगग्यू जू, सेहवान चुन, जुनमो किम द्वारा।
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (OpenAI से) साथ में दिया गया पेपर [जेनरेटिव प्री-ट्रेनिंग द्वारा भाषा की समझ में सुधार](https://blog .openai.com/language-unsupervised/) एलेक रैडफोर्ड, कार्तिक नरसिम्हन, टिम सालिमन्स और इल्या सुत्स्केवर द्वारा।
@ -327,15 +316,11 @@ conda install -c huggingface transformers
1. **[GPTSAN-japanese](https://huggingface.co/docs/transformers/model_doc/gptsan-japanese)** released in the repository [tanreinama/GPTSAN](https://github.com/tanreinama/GPTSAN/blob/main/report/model.md) by Toshiyuki Sakamoto(tanreinama).
1. **[Graphormer](https://huggingface.co/docs/transformers/model_doc/graphormer)** (from Microsoft) released with the paper [Do Transformers Really Perform Bad for Graph Representation?](https://arxiv.org/abs/2106.05234) by Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu.
1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (UCSD, NVIDIA से) साथ में कागज [GroupViT: टेक्स्ट सुपरविजन से सिमेंटिक सेगमेंटेशन इमर्जेस](https://arxiv .org/abs/2202.11094) जियारुई जू, शालिनी डी मेलो, सिफ़ी लियू, वोनमिन बायन, थॉमस ब्रेउएल, जान कौट्ज़, ज़ियाओलोंग वांग द्वारा।
1. **[HerBERT](https://huggingface.co/docs/transformers/model_doc/herbert)** (Allegro.pl, AGH University of Science and Technology से) Piotr Rybak, Robert Mroczkowski, Janusz Tracz, Ireneusz Gawlik. द्वाराअनुसंधान पत्र [KLEJ: Comprehensive Benchmark for Polish Language Understanding](https://www.aclweb.org/anthology/2020.acl-main.111.pdf) के साथ जारी किया गया
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (फेसबुक से) साथ में पेपर [ह्यूबर्ट: सेल्फ सुपरवाइज्ड स्पीच रिप्रेजेंटेशन लर्निंग बाय मास्क्ड प्रेडिक्शन ऑफ हिडन यूनिट्स](https ://arxiv.org/abs/2106.07447) वेई-निंग सू, बेंजामिन बोल्टे, याओ-हंग ह्यूबर्ट त्साई, कुशाल लखोटिया, रुस्लान सालाखुतदीनोव, अब्देलरहमान मोहम्मद द्वारा।
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (बर्कले से) साथ में कागज [I-BERT: Integer-only BERT Quantization](https:// arxiv.org/abs/2101.01321) सेहून किम, अमीर घोलमी, ज़ेवेई याओ, माइकल डब्ल्यू महोनी, कर्ट केटज़र द्वारा।
1. **[IDEFICS](https://huggingface.co/docs/transformers/model_doc/idefics)** (from HuggingFace) released with the paper [OBELICS: An Open Web-Scale Filtered Dataset of Interleaved Image-Text Documents](https://huggingface.co/papers/2306.16527) by Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov, Thomas Wang, Siddharth Karamcheti, Alexander M. Rush, Douwe Kiela, Matthieu Cord, Victor Sanh.
1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (from OpenAI) released with the paper [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever.
1. **[Informer](https://huggingface.co/docs/transformers/model_doc/informer)** (from Beihang University, UC Berkeley, Rutgers University, SEDD Company) released with the paper [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting](https://arxiv.org/abs/2012.07436) by Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
1. **[InstructBLIP](https://huggingface.co/docs/transformers/model_doc/instructblip)** (Salesforce से) Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, Steven Hoi. द्वाराअनुसंधान पत्र [InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning](https://arxiv.org/abs/2305.06500) के साथ जारी किया गया
1. **[Jukebox](https://huggingface.co/docs/transformers/model_doc/jukebox)** (from OpenAI) released with the paper [Jukebox: A Generative Model for Music](https://arxiv.org/pdf/2005.00341.pdf) by Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever.
1. **[KOSMOS-2](https://huggingface.co/docs/transformers/main/model_doc/kosmos-2)** (from Microsoft Research Asia) released with the paper [Kosmos-2: Grounding Multimodal Large Language Models to the World](https://arxiv.org/abs/2306.14824) by Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan Huang, Shuming Ma, Furu Wei.
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou.
1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (माइक्रोसॉफ्ट रिसर्च एशिया से) साथ देने वाला पेपर [लेआउटएलएमवी3: यूनिफाइड टेक्स्ट और इमेज मास्किंग के साथ दस्तावेज़ एआई के लिए पूर्व-प्रशिक्षण](https://arxiv.org/abs/2204.08387) युपन हुआंग, टेंगचाओ लव, लेई कुई, युटोंग लू, फुरु वेई द्वारा पोस्ट किया गया।
@ -344,7 +329,6 @@ conda install -c huggingface transformers
1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (मेटा AI से) साथ वाला पेपर [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https:/ /arxiv.org/abs/2104.01136) बेन ग्राहम, अलाएल्डिन एल-नौबी, ह्यूगो टौवरन, पियरे स्टॉक, आर्मंड जौलिन, हर्वे जेगौ, मैथिज डूज़ द्वारा।
1. **[LiLT](https://huggingface.co/docs/transformers/model_doc/lilt)** (दक्षिण चीन प्रौद्योगिकी विश्वविद्यालय से) साथ में कागज [LiLT: एक सरल लेकिन प्रभावी भाषा-स्वतंत्र लेआउट ट्रांसफार्मर संरचित दस्तावेज़ समझ के लिए](https://arxiv.org/abs/2202.13669) जियापेंग वांग, लियानवेन जिन, काई डिंग द्वारा पोस्ट किया गया।
1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (The FAIR team of Meta AI से) Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample. द्वाराअनुसंधान पत्र [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971) के साथ जारी किया गया
1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (The FAIR team of Meta AI से) Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom.. द्वाराअनुसंधान पत्र [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/XXX) के साथ जारी किया गया
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (मैंडी गुओ, जोशुआ आइंस्ली, डेविड यूथस, सैंटियागो ओंटानन, जियानमो नि, यूं-हुआन सुंग, यिनफेई यांग द्वारा पोस्ट किया गया।
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (स्टूडियो औसिया से) साथ में पेपर [LUKE: डीप कॉन्टेक्स्टुअलाइज्ड एंटिटी रिप्रेजेंटेशन विद एंटिटी-अवेयर सेल्फ-अटेंशन](https ://arxiv.org/abs/2010.01057) Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto द्वारा।
@ -362,42 +346,31 @@ conda install -c huggingface transformers
1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (NVIDIA से) कागज के साथ [Megatron-LM: मॉडल का उपयोग करके बहु-अरब पैरामीटर भाषा मॉडल का प्रशिक्षण Parallelism](https://arxiv.org/abs/1909.08053) मोहम्मद शोएबी, मोस्टोफा पटवारी, राउल पुरी, पैट्रिक लेग्रेस्ले, जेरेड कैस्पर और ब्रायन कैटानज़ारो द्वारा।
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (NVIDIA से) साथ वाला पेपर [Megatron-LM: ट्रेनिंग मल्टी-बिलियन पैरामीटर लैंग्वेज मॉडल्स यूजिंग मॉडल पैरेललिज़्म] (https://arxiv.org/abs/1909.08053) मोहम्मद शोएबी, मोस्टोफा पटवारी, राउल पुरी, पैट्रिक लेग्रेस्ले, जेरेड कैस्पर और ब्रायन कैटानज़ारो द्वारा पोस्ट किया गया।
1. **[MGP-STR](https://huggingface.co/docs/transformers/model_doc/mgp-str)** (Alibaba Research से) Peng Wang, Cheng Da, and Cong Yao. द्वाराअनुसंधान पत्र [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592) के साथ जारी किया गया
1. **[Mistral](https://huggingface.co/docs/transformers/model_doc/mistral)** (from Mistral AI) by The Mistral AI team: Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed..
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (फ्रॉम Studio Ousia) साथ में पेपर [mLUKE: द पावर ऑफ एंटिटी रिप्रेजेंटेशन इन मल्टीलिंगुअल प्रीट्रेन्ड लैंग्वेज मॉडल्स](https://arxiv.org/abs/2110.08151) रयोकन री, इकुया यामाडा, और योशिमासा त्सुरोका द्वारा।
1. **[MMS](https://huggingface.co/docs/transformers/model_doc/mms)** (Facebook से) Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky, Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi, Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning Hsu, Alexis Conneau, Michael Auli. द्वाराअनुसंधान पत्र [Scaling Speech Technology to 1,000+ Languages](https://arxiv.org/abs/2305.13516) के साथ जारी किया गया
1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (सीएमयू/गूगल ब्रेन से) साथ में कागज [मोबाइलबर्ट: संसाधन-सीमित उपकरणों के लिए एक कॉम्पैक्ट टास्क-अज्ञेय बीईआरटी] (https://arxiv.org/abs/2004.02984) Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, और Denny Zhou द्वारा पोस्ट किया गया।
1. **[MobileNetV1](https://huggingface.co/docs/transformers/model_doc/mobilenet_v1)** (from Google Inc.) released with the paper [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) by Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam.
1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (from Google Inc.) released with the paper [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) by Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen.
1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (Apple से) साथ में कागज [MobileViT: लाइट-वेट, जनरल-पर्पस, और मोबाइल-फ्रेंडली विजन ट्रांसफॉर्मर] (https://arxiv.org/abs/2110.02178) सचिन मेहता और मोहम्मद रस्तगरी द्वारा पोस्ट किया गया।
1. **[MobileViTV2](https://huggingface.co/docs/transformers/model_doc/mobilevitv2)** (Apple से) Sachin Mehta and Mohammad Rastegari. द्वाराअनुसंधान पत्र [Separable Self-attention for Mobile Vision Transformers](https://arxiv.org/abs/2206.02680) के साथ जारी किया गया
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
1. **[MPT](https://huggingface.co/docs/transformers/model_doc/mpt)** (MosaiML से) the MosaicML NLP Team. द्वाराअनुसंधान पत्र [llm-foundry](https://github.com/mosaicml/llm-foundry/) के साथ जारी किया गया
1. **[MRA](https://huggingface.co/docs/transformers/model_doc/mra)** (the University of Wisconsin - Madison से) Zhanpeng Zeng, Sourav Pal, Jeffery Kline, Glenn M Fung, Vikas Singh. द्वाराअनुसंधान पत्र [Multi Resolution Analysis (MRA)](https://arxiv.org/abs/2207.10284) के साथ जारी किया गया
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (Google AI से) साथ वाला पेपर [mT5: एक व्यापक बहुभाषी पूर्व-प्रशिक्षित टेक्स्ट-टू-टेक्स्ट ट्रांसफॉर्मर]( https://arxiv.org/abs/2010.11934) लिंटिंग ज़ू, नोआ कॉन्सटेंट, एडम रॉबर्ट्स, मिहिर काले, रामी अल-रफू, आदित्य सिद्धांत, आदित्य बरुआ, कॉलिन रैफेल द्वारा पोस्ट किया गया।
1. **[MusicGen](https://huggingface.co/docs/transformers/model_doc/musicgen)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (from RUC AI Box) released with the paper [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen.
1. **[NAT](https://huggingface.co/docs/transformers/model_doc/nat)** (from SHI Labs) released with the paper [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143) by Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi.
1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (हुआवेई नूह के आर्क लैब से) साथ में कागज़ [NEZHA: चीनी भाषा समझ के लिए तंत्रिका प्रासंगिक प्रतिनिधित्व](https :/ /arxiv.org/abs/1909.00204) जुन्किउ वेई, ज़ियाओज़े रेन, ज़िआओगुआंग ली, वेनयोंग हुआंग, यी लियाओ, याशेंग वांग, जियाशू लिन, शिन जियांग, जिओ चेन और कुन लियू द्वारा।
1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (फ्रॉम मेटा) साथ में पेपर [नो लैंग्वेज लेफ्ट बिहाइंड: स्केलिंग ह्यूमन-सेंटेड मशीन ट्रांसलेशन] (https://arxiv.org/abs/2207.04672) एनएलएलबी टीम द्वारा प्रकाशित।
1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (Meta से) the NLLB team. द्वाराअनुसंधान पत्र [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) के साथ जारी किया गया
1. **[Nougat](https://huggingface.co/docs/transformers/model_doc/nougat)** (Meta AI से) Lukas Blecher, Guillem Cucurull, Thomas Scialom, Robert Stojnic. द्वाराअनुसंधान पत्र [Nougat: Neural Optical Understanding for Academic Documents](https://arxiv.org/abs/2308.13418) के साथ जारी किया गया
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (विस्कॉन्सिन विश्वविद्यालय - मैडिसन से) साथ में कागज [Nyströmformer: A Nyström- आधारित एल्गोरिथम आत्म-ध्यान का अनुमान लगाने के लिए ](https://arxiv.org/abs/2102.03902) युनयांग ज़िओंग, झानपेंग ज़ेंग, रुद्रसिस चक्रवर्ती, मिंगक्सिंग टैन, ग्लेन फंग, यिन ली, विकास सिंह द्वारा पोस्ट किया गया।
1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (SHI Labs से) पेपर [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) जितेश जैन, जिआचेन ली, मांगटिक चिउ, अली हसनी, निकिता ओरलोव, हम्फ्री शि के द्वारा जारी किया गया है।
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released on GitHub (now removed).
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released in [Open-Llama](https://github.com/s-JoL/Open-Llama).
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al.
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (Google AI से) साथ में कागज [विज़न ट्रांसफॉर्मर्स के साथ सिंपल ओपन-वोकैबुलरी ऑब्जेक्ट डिटेक्शन](https:/ /arxiv.org/abs/2205.06230) मैथियास मिंडरर, एलेक्सी ग्रिट्सेंको, ऑस्टिन स्टोन, मैक्सिम न्यूमैन, डिर्क वीसेनबोर्न, एलेक्सी डोसोवित्स्की, अरविंद महेंद्रन, अनुराग अर्नब, मुस्तफा देहघानी, ज़ुओरन शेन, जिओ वांग, ज़ियाओहुआ झाई, थॉमस किफ़, और नील हॉल्सबी द्वारा पोस्ट किया गया।
1. **[OWLv2](https://huggingface.co/docs/transformers/main/model_doc/owlv2)** (Google AI से) Matthias Minderer, Alexey Gritsenko, Neil Houlsby. द्वाराअनुसंधान पत्र [Scaling Open-Vocabulary Object Detection](https://arxiv.org/abs/2306.09683) के साथ जारी किया गया
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (Google की ओर से) साथ में दिया गया पेपर [लंबे इनपुट सारांश के लिए ट्रांसफ़ॉर्मरों को बेहतर तरीके से एक्सटेंड करना](https://arxiv .org/abs/2208.04347) जेसन फांग, याओ झाओ, पीटर जे लियू द्वारा।
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (दीपमाइंड से) साथ में पेपर [पर्सीवर आईओ: संरचित इनपुट और आउटपुट के लिए एक सामान्य वास्तुकला] (https://arxiv.org/abs/2107.14795) एंड्रयू जेगल, सेबेस्टियन बोरग्यूड, जीन-बैप्टिस्ट अलायराक, कार्ल डोर्श, कैटलिन इओनेस्कु, डेविड द्वारा डिंग, स्कंद कोप्पुला, डैनियल ज़ोरान, एंड्रयू ब्रॉक, इवान शेलहैमर, ओलिवियर हेनाफ, मैथ्यू एम। बोट्विनिक, एंड्रयू ज़िसरमैन, ओरिओल विनियल्स, जोआओ कैरेरा द्वारा पोस्ट किया गया।
1. **[Persimmon](https://huggingface.co/docs/transformers/model_doc/persimmon)** (ADEPT से) Erich Elsen, Augustus Odena, Maxwell Nye, Sağnak Taşırlar, Tri Dao, Curtis Hawthorne, Deepak Moparthi, Arushi Somani. द्वाराअनुसंधान पत्र [blog post](https://www.adept.ai/blog/persimmon-8b) के साथ जारी किया गया
1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (VinAI Research से) कागज के साथ [PhoBERT: वियतनामी के लिए पूर्व-प्रशिक्षित भाषा मॉडल](https://www .aclweb.org/anthology/2020.findings-emnlp.92/) डैट क्वोक गुयेन और अन्ह तुआन गुयेन द्वारा पोस्ट किया गया।
1. **[Pix2Struct](https://huggingface.co/docs/transformers/model_doc/pix2struct)** (Google से) Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova. द्वाराअनुसंधान पत्र [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding](https://arxiv.org/abs/2210.03347) के साथ जारी किया गया
1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (UCLA NLP से) साथ वाला पेपर [प्रोग्राम अंडरस्टैंडिंग एंड जेनरेशन के लिए यूनिफाइड प्री-ट्रेनिंग](https://arxiv .org/abs/2103.06333) वसी उद्दीन अहमद, सैकत चक्रवर्ती, बैशाखी रे, काई-वेई चांग द्वारा।
1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (from Sea AI Labs) released with the paper [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) by Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng.
1. **[Pop2Piano](https://huggingface.co/docs/transformers/model_doc/pop2piano)** released with the paper [Pop2Piano : Pop Audio-based Piano Cover Generation](https://arxiv.org/abs/2211.00895) by Jongho Choi, Kyogu Lee.
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (माइक्रोसॉफ्ट रिसर्च से) साथ में पेपर [ProphetNet: प्रेडिक्टिंग फ्यूचर एन-ग्राम फॉर सीक्वेंस-टू-सीक्वेंस प्री-ट्रेनिंग ](https://arxiv.org/abs/2001.04063) यू यान, वीज़ेन क्यूई, येयुन गोंग, दयाहेंग लियू, नान डुआन, जिउशेंग चेन, रुओफ़ेई झांग और मिंग झोउ द्वारा पोस्ट किया गया।
1. **[PVT](https://huggingface.co/docs/transformers/model_doc/pvt)** (Nanjing University, The University of Hong Kong etc. से) Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao. द्वाराअनुसंधान पत्र [Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions](https://arxiv.org/pdf/2102.12122.pdf) के साथ जारी किया गया
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (NVIDIA से) साथ वाला पेपर [डीप लर्निंग इंफ़ेक्शन के लिए इंटीजर क्वांटिज़ेशन: प्रिंसिपल्स एंड एम्पिरिकल इवैल्यूएशन](https:// arxiv.org/abs/2004.09602) हाओ वू, पैट्रिक जुड, जिआओजी झांग, मिखाइल इसेव और पॉलियस माइकेविसियस द्वारा।
1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (फेसबुक से) साथ में कागज [रिट्रीवल-ऑगमेंटेड जेनरेशन फॉर नॉलेज-इंटेंसिव एनएलपी टास्क](https://arxiv .org/abs/2005.11401) पैट्रिक लुईस, एथन पेरेज़, अलेक्जेंड्रा पिक्टस, फैबियो पेट्रोनी, व्लादिमीर कारपुखिन, नमन गोयल, हेनरिक कुटलर, माइक लुईस, वेन-ताउ यिह, टिम रॉकटाशेल, सेबस्टियन रिडेल, डौवे कीला द्वारा।
1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (Google अनुसंधान से) केल्विन गु, केंटन ली, ज़ोरा तुंग, पानुपोंग पसुपत और मिंग-वेई चांग द्वारा साथ में दिया गया पेपर [REALM: रिट्रीवल-ऑगमेंटेड लैंग्वेज मॉडल प्री-ट्रेनिंग](https://arxiv.org/abs/2002.08909)।
@ -410,7 +383,6 @@ conda install -c huggingface transformers
1. **[RoCBert](https://huggingface.co/docs/transformers/model_doc/roc_bert)** (from WeChatAI) released with the paper [RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining](https://aclanthology.org/2022.acl-long.65.pdf) by HuiSu, WeiweiShi, XiaoyuShen, XiaoZhou, TuoJi, JiaruiFang, JieZhou.
1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (झुईई टेक्नोलॉजी से), साथ में पेपर [रोफॉर्मर: रोटरी पोजिशन एंबेडिंग के साथ एन्हांस्ड ट्रांसफॉर्मर] (https://arxiv.org/pdf/2104.09864v1.pdf) जियानलिन सु और यू लू और शेंगफेंग पैन और बो वेन और युनफेंग लियू द्वारा प्रकाशित।
1. **[RWKV](https://huggingface.co/docs/transformers/model_doc/rwkv)** (Bo Peng से) Bo Peng. द्वाराअनुसंधान पत्र [this repo](https://github.com/BlinkDL/RWKV-LM) के साथ जारी किया गया
1. **[SeamlessM4T](https://huggingface.co/docs/transformers/main/model_doc/seamless_m4t)** (from Meta AI) released with the paper [SeamlessM4T — Massively Multilingual & Multimodal Machine Translation](https://dl.fbaipublicfiles.com/seamless/seamless_m4t_paper.pdf) by the Seamless Communication team.
1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (from NVIDIA) released with the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo.
1. **[Segment Anything](https://huggingface.co/docs/transformers/model_doc/sam)** (Meta AI से) Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alex Berg, Wan-Yen Lo, Piotr Dollar, Ross Girshick. द्वाराअनुसंधान पत्र [Segment Anything](https://arxiv.org/pdf/2304.02643v1.pdf) के साथ जारी किया गया
1. **[SEW](https://huggingface.co/docs/transformers/model_doc/sew)** (ASAPP से) साथ देने वाला पेपर [भाषण पहचान के लिए अनसुपरवाइज्ड प्री-ट्रेनिंग में परफॉर्मेंस-एफिशिएंसी ट्रेड-ऑफ्स](https ://arxiv.org/abs/2109.06870) फेलिक्स वू, क्वांगयुन किम, जिंग पैन, क्यू हान, किलियन क्यू. वेनबर्गर, योव आर्टज़ी द्वारा।
@ -420,7 +392,7 @@ conda install -c huggingface transformers
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (फेसबुक से) साथ में पेपर [लार्ज-स्केल सेल्फ- एंड सेमी-सुपरवाइज्ड लर्निंग फॉर स्पीच ट्रांसलेशन](https://arxiv.org/abs/2104.06678) चांगहान वांग, ऐनी वू, जुआन पिनो, एलेक्सी बेवस्की, माइकल औली, एलेक्सिस द्वारा Conneau द्वारा पोस्ट किया गया।
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (तेल अवीव यूनिवर्सिटी से) साथ में पेपर [स्पैन सिलेक्शन को प्री-ट्रेनिंग करके कुछ-शॉट क्वेश्चन आंसरिंग](https:// arxiv.org/abs/2101.00438) ओरि राम, युवल कर्स्टन, जोनाथन बेरेंट, अमीर ग्लोबर्सन, ओमर लेवी द्वारा।
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (बर्कले से) कागज के साथ [SqueezeBERT: कुशल तंत्रिका नेटवर्क के बारे में NLP को कंप्यूटर विज़न क्या सिखा सकता है?](https: //arxiv.org/abs/2006.11316) फॉरेस्ट एन. इनडोला, अल्बर्ट ई. शॉ, रवि कृष्णा, और कर्ट डब्ल्यू. केटज़र द्वारा।
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (MBZUAI से) Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan. द्वाराअनुसंधान पत्र [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) के साथ जारी किया गया
1. **[SwiftFormer](https://huggingface.co/docs/transformers/main/model_doc/swiftformer)** (MBZUAI से) Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan. द्वाराअनुसंधान पत्र [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) के साथ जारी किया गया
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (माइक्रोसॉफ्ट से) साथ में कागज [स्वाइन ट्रांसफॉर्मर: शिफ्टेड विंडोज का उपयोग कर पदानुक्रमित विजन ट्रांसफॉर्मर](https://arxiv .org/abs/2103.14030) ज़ी लियू, युटोंग लिन, यू काओ, हान हू, यिक्सुआन वेई, झेंग झांग, स्टीफन लिन, बैनिंग गुओ द्वारा।
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (Microsoft से) साथ वाला पेपर [Swin Transformer V2: स्केलिंग अप कैपेसिटी एंड रेजोल्यूशन](https:// ज़ी लियू, हान हू, युटोंग लिन, ज़ुलिआंग याओ, ज़ेंडा ज़ी, यिक्सुआन वेई, जिया निंग, यू काओ, झेंग झांग, ली डोंग, फुरु वेई, बैनिंग गुओ द्वारा arxiv.org/abs/2111.09883।
1. **[Swin2SR](https://huggingface.co/docs/transformers/model_doc/swin2sr)** (from University of Würzburg) released with the paper [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345) by Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte.
@ -437,7 +409,6 @@ conda install -c huggingface transformers
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (from Microsoft) released with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
1. **[TVLT](https://huggingface.co/docs/transformers/model_doc/tvlt)** (from UNC Chapel Hill) released with the paper [TVLT: Textless Vision-Language Transformer](https://arxiv.org/abs/2209.14156) by Zineng Tang, Jaemin Cho, Yixin Nie, Mohit Bansal.
1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
1. **[UMT5](https://huggingface.co/docs/transformers/model_doc/umt5)** (Google Research से) Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, Noah Constant. द्वाराअनुसंधान पत्र [UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining](https://openreview.net/forum?id=kXwdL1cWOAi) के साथ जारी किया गया
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (माइक्रोसॉफ्ट रिसर्च से) साथ में दिया गया पेपर [UniSpeech: यूनिफाइड स्पीच रिप्रेजेंटेशन लर्निंग विद लेबलेड एंड अनलेबल्ड डेटा](https:/ /arxiv.org/abs/2101.07597) चेंगई वांग, यू वू, याओ कियान, केनिची कुमातानी, शुजी लियू, फुरु वेई, माइकल ज़ेंग, ज़ुएदोंग हुआंग द्वारा।
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (माइक्रोसॉफ्ट रिसर्च से) कागज के साथ [UNISPEECH-SAT: यूनिवर्सल स्पीच रिप्रेजेंटेशन लर्निंग विद स्पीकर अवेयर प्री-ट्रेनिंग ](https://arxiv.org/abs/2110.05752) सानयुआन चेन, यू वू, चेंग्यी वांग, झेंगयांग चेन, झूओ चेन, शुजी लियू, जियान वू, याओ कियान, फुरु वेई, जिन्यु ली, जियांगज़ान यू द्वारा पोस्ट किया गया।
1. **[UPerNet](https://huggingface.co/docs/transformers/model_doc/upernet)** (from Peking University) released with the paper [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221) by Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun.
@ -447,18 +418,14 @@ conda install -c huggingface transformers
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (गूगल एआई से) कागज के साथ [एक इमेज इज़ वर्थ 16x16 वर्ड्स: ट्रांसफॉर्मर्स फॉर इमेज रिकॉग्निशन एट स्केल](https://arxiv.org/abs/2010.11929) एलेक्सी डोसोवित्स्की, लुकास बेयर, अलेक्जेंडर कोलेसनिकोव, डिर्क वीसेनबोर्न, शियाओहुआ झाई, थॉमस अनटरथिनर, मुस्तफा देहघानी, मैथियास मिंडरर, जॉर्ज हेगोल्ड, सिल्वेन गेली, जैकब उस्ज़कोरेइट द्वारा हॉल्सबी द्वारा पोस्ट किया गया।
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (UCLA NLP से) साथ वाला पेपर [VisualBERT: A Simple and Performant Baseline for Vision and Language](https:/ /arxiv.org/pdf/1908.03557) लियुनियन हेरोल्ड ली, मार्क यात्स्कर, दा यिन, चो-जुई हसीह, काई-वेई चांग द्वारा।
1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VitDet](https://huggingface.co/docs/transformers/model_doc/vitdet)** (Meta AI से) Yanghao Li, Hanzi Mao, Ross Girshick, Kaiming He. द्वाराअनुसंधान पत्र [Exploring Plain Vision Transformer Backbones for Object Detection](https://arxiv.org/abs/2203.16527) के साथ जारी किया गया
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (मेटा एआई से) साथ में कागज [मास्कड ऑटोएन्कोडर स्केलेबल विजन लर्नर्स हैं](https://arxiv.org/ एब्स/2111.06377) कैमिंग हे, ज़िनेली चेन, सेनिंग ज़ी, यांगहो ली, पिओट्र डॉलर, रॉस गिर्शिक द्वारा।
1. **[ViTMatte](https://huggingface.co/docs/transformers/model_doc/vitmatte)** (HUST-VL से) Jingfeng Yao, Xinggang Wang, Shusheng Yang, Baoyuan Wang. द्वाराअनुसंधान पत्र [ViTMatte: Boosting Image Matting with Pretrained Plain Vision Transformers](https://arxiv.org/abs/2305.15272) के साथ जारी किया गया
1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (मेटा एआई से) साथ में कागज [लेबल-कुशल सीखने के लिए मास्क्ड स्याम देश के नेटवर्क](https://arxiv. org/abs/2204.07141) महमूद असरान, मथिल्डे कैरन, ईशान मिश्रा, पियोट्र बोजानोवस्की, फ्लोरियन बोर्डेस, पास्कल विंसेंट, आर्मंड जौलिन, माइकल रब्बत, निकोलस बल्लास द्वारा।
1. **[VITS](https://huggingface.co/docs/transformers/model_doc/vits)** (Kakao Enterprise से) Jaehyeon Kim, Jungil Kong, Juhee Son. द्वाराअनुसंधान पत्र [Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech](https://arxiv.org/abs/2106.06103) के साथ जारी किया गया
1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (from Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) by Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid.
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (फेसबुक एआई से) साथ में पेपर [wav2vec 2.0: ए फ्रेमवर्क फॉर सेल्फ-सुपरवाइज्ड लर्निंग ऑफ स्पीच रिप्रेजेंटेशन](https://arxiv.org/abs/2006.11477) एलेक्सी बेवस्की, हेनरी झोउ, अब्देलरहमान मोहम्मद, माइकल औली द्वारा।
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (फेसबुक एआई से) साथ में पेपर [wav2vec 2.0: ए फ्रेमवर्क फॉर सेल्फ-सुपरवाइज्ड लर्निंग ऑफ स्पीच रिप्रेजेंटेशन] (https://arxiv.org/abs/2006.11477) एलेक्सी बेवस्की, हेनरी झोउ, अब्देलरहमान मोहम्मद, माइकल औली द्वारा।
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (Facebook AI से) साथ वाला पेपर [FAIRSEQ S2T: FAIRSEQ के साथ फास्ट स्पीच-टू-टेक्स्ट मॉडलिंग ](https://arxiv.org/abs/2010.05171) चांगहान वांग, यूं तांग, जुताई मा, ऐनी वू, सरव्या पोपुरी, दिमित्रो ओखोनको, जुआन पिनो द्वारा पोस्ट किया गया।
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (Facebook AI से) साथ वाला पेपर [सरल और प्रभावी जीरो-शॉट क्रॉस-लिंगुअल फोनेम रिकॉग्निशन](https://arxiv.org/abs/2109.11680) कियानटोंग जू, एलेक्सी बाएव्स्की, माइकल औली द्वारा।
1. **[WavLM](https://huggingface.co/docs/transformers/model_doc/wavlm)** (माइक्रोसॉफ्ट रिसर्च से) पेपर के साथ जारी किया गया [WavLM: फुल स्टैक के लिए बड़े पैमाने पर स्व-पर्यवेक्षित पूर्व-प्रशिक्षण स्पीच प्रोसेसिंग](https://arxiv.org/abs/2110.13900) सानयुआन चेन, चेंगयी वांग, झेंगयांग चेन, यू वू, शुजी लियू, ज़ुओ चेन, जिन्यु ली, नाओयुकी कांडा, ताकुया योशियोका, ज़िओंग जिओ, जियान वू, लॉन्ग झोउ, शुओ रेन, यानमिन कियान, याओ कियान, जियान वू, माइकल ज़ेंग, फुरु वेई।
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (Facebook AI से) साथ वाला पेपर [सरल और प्रभावी जीरो-शॉट क्रॉस-लिंगुअल फोनेम रिकॉग्निशन](https:/ /arxiv.org/abs/2109.11680) कियानटोंग जू, एलेक्सी बाएव्स्की, माइकल औली द्वारा।
1. **[WavLM](https://huggingface.co/docs/transformers/model_doc/wavlm)** (माइक्रोसॉफ्ट रिसर्च से) पेपर के साथ जारी किया गया [WavLM: फुल स्टैक के लिए बड़े पैमाने पर स्व-पर्यवेक्षित पूर्व-प्रशिक्षण स्पीच प्रोसेसिंग] (https://arxiv.org/abs/2110.13900) सानयुआन चेन, चेंगयी वांग, झेंगयांग चेन, यू वू, शुजी लियू, ज़ुओ चेन, जिन्यु ली, नाओयुकी कांडा, ताकुया योशियोका, ज़िओंग जिओ, जियान वू, लॉन्ग झोउ, शुओ रेन, यानमिन कियान, याओ कियान, जियान वू, माइकल ज़ेंग, फुरु वेई।
1. **[Whisper](https://huggingface.co/docs/transformers/model_doc/whisper)** (OpenAI से) साथ में कागज [बड़े पैमाने पर कमजोर पर्यवेक्षण के माध्यम से मजबूत भाषण पहचान](https://cdn. openai.com/papers/whisper.pdf) एलेक रैडफोर्ड, जोंग वूक किम, ताओ जू, ग्रेग ब्रॉकमैन, क्रिस्टीन मैकलीवे, इल्या सुत्स्केवर द्वारा।
1. **[X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)** (माइक्रोसॉफ्ट रिसर्च से) कागज के साथ [एक्सपैंडिंग लैंग्वेज-इमेज प्रीट्रेन्ड मॉडल फॉर जनरल वीडियो रिकग्निशन](https://arxiv.org/abs/2208.02816) बोलिन नी, होउवेन पेंग, मिंगाओ चेन, सोंगयांग झांग, गाओफेंग मेंग, जियानलोंग फू, शिमिंग जियांग, हैबिन लिंग द्वारा।
1. **[X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)** (माइक्रोसॉफ्ट रिसर्च से) कागज के साथ [एक्सपैंडिंग लैंग्वेज-इमेज प्रीट्रेन्ड मॉडल फॉर जनरल वीडियो रिकग्निशन](https: //arxiv.org/abs/2208.02816) बोलिन नी, होउवेन पेंग, मिंगाओ चेन, सोंगयांग झांग, गाओफेंग मेंग, जियानलोंग फू, शिमिंग जियांग, हैबिन लिंग द्वारा।
1. **[X-MOD](https://huggingface.co/docs/transformers/model_doc/xmod)** (Meta AI से) Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James Cross, Sebastian Riedel, Mikel Artetxe. द्वाराअनुसंधान पत्र [Lifting the Curse of Multilinguality by Pre-training Modular Transformers](http://dx.doi.org/10.18653/v1/2022.naacl-main.255) के साथ जारी किया गया
1. **[XGLM](https://huggingface.co/docs/transformers/model_doc/xglm)** (From Facebook AI) released with the paper [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li.
1. **[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (फेसबुक से) साथ में पेपर [क्रॉस-लिंगुअल लैंग्वेज मॉडल प्रीट्रेनिंग] (https://arxiv.org/abs/1901.07291) गिलाउम लैम्पल और एलेक्सिस कोनो द्वारा।
@ -471,9 +438,9 @@ conda install -c huggingface transformers
1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (फेसबुक एआई से) साथ में पेपर [अनसुपरवाइज्ड क्रॉस-लिंगुअल रिप्रेजेंटेशन लर्निंग फॉर स्पीच रिकग्निशन] (https://arxiv.org/abs/2006.13979) एलेक्सिस कोन्यू, एलेक्सी बेवस्की, रोनन कोलोबर्ट, अब्देलरहमान मोहम्मद, माइकल औली द्वारा।
1. **[YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos)** (हुआझोंग यूनिवर्सिटी ऑफ साइंस एंड टेक्नोलॉजी से) साथ में पेपर [यू ओनली लुक एट वन सीक्वेंस: रीथिंकिंग ट्रांसफॉर्मर इन विज़न थ्रू ऑब्जेक्ट डिटेक्शन](https://arxiv.org/abs/2106.00666) युक्सिन फेंग, बेनचेंग लियाओ, जिंगगैंग वांग, जेमिन फेंग, जियांग क्यूई, रुई वू, जियानवेई नीयू, वेन्यू लियू द्वारा पोस्ट किया गया।
1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (विस्कॉन्सिन विश्वविद्यालय - मैडिसन से) साथ में पेपर [यू ओनली सैंपल (लगभग) ज़ानपेंग ज़ेंग, युनयांग ज़िओंग द्वारा , सत्य एन. रवि, शैलेश आचार्य, ग्लेन फंग, विकास सिंह द्वारा पोस्ट किया गया।
1. एक नए मॉडल में योगदान देना चाहते हैं? नए मॉडल जोड़ने में आपका मार्गदर्शन करने के लिए हमारे पास एक **विस्तृत मार्गदर्शिका और टेम्प्लेट** है। आप उन्हें [`टेम्पलेट्स`](./templates) निर्देशिका में पा सकते हैं। पीआर शुरू करने से पहले [योगदान दिशानिर्देश](./CONTRIBUTING.md) देखना और अनुरक्षकों से संपर्क करना या प्रतिक्रिया प्राप्त करने के लिए एक नया मुद्दा खोलना याद रखें।
1. एक नए मॉडल में योगदान देना चाहते हैं? नए मॉडल जोड़ने में आपका मार्गदर्शन करने के लिए हमारे पास एक **विस्तृत मार्गदर्शिका और टेम्प्लेट** है। आप उन्हें [`टेम्पलेट्स`](./templates) निर्देशिका में पा सकते हैं। पीआर शुरू करने से पहले [योगदान दिशानिर्देश] (./CONTRIBUTING.md) देखना और अनुरक्षकों से संपर्क करना या प्रतिक्रिया प्राप्त करने के लिए एक नया मुद्दा खोलना याद रखें।
यह जांचने के लिए कि क्या किसी मॉडल में पहले से ही Flax, PyTorch या TensorFlow का कार्यान्वयन है, या यदि उसके पास Tokenizers लाइब्रेरी में संबंधित टोकन है, तो [यह तालिका](https://huggingface.co/docs/transformers/index#supported) देखें। -फ्रेमवर्क)।
यह जांचने के लिए कि क्या किसी मॉडल में पहले से ही Flax, PyTorch या TensorFlow का कार्यान्वयन है, या यदि उसके पास Tokenizers लाइब्रेरी में संबंधित टोकन है, तो [यह तालिका] (https://huggingface.co/ docs/transformers/index#supported) देखें। -फ्रेमवर्क)।
इन कार्यान्वयनों का परीक्षण कई डेटासेट पर किया गया है (देखें केस स्क्रिप्ट का उपयोग करें) और वैनिला कार्यान्वयन के लिए तुलनात्मक रूप से प्रदर्शन करना चाहिए। आप उपयोग के मामले के दस्तावेज़ [इस अनुभाग](https://huggingface.co/docs/transformers/examples) में व्यवहार का विवरण पढ़ सकते हैं।

View File

@ -53,7 +53,7 @@ user: ユーザ
<br>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers_logo_name.png" width="400"/>
<br>
</p>
<p>
<p align="center">
<a href="https://circleci.com/gh/huggingface/transformers">
<img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/main">
@ -82,8 +82,7 @@ user: ユーザ
<a href="https://github.com/huggingface/transformers/blob/main/README_es.md">Español</a> |
<b>日本語</b> |
<a href="https://github.com/huggingface/transformers/blob/main/README_hd.md">हिन्दी</a>
<a href="https://github.com/huggingface/transformers//blob/main/README_te.md">తెలుగు</a> |
</p>
<p>
</h4>
<h3 align="center">
@ -211,7 +210,7 @@ Hugging Faceチームによって作られた **[トランスフォーマーを
>>> outputs = model(**inputs)
```
そしてこちらはTensorFlowと同等のコードとなります:
And here is the equivalent code for TensorFlow:
```python
>>> from transformers import AutoTokenizer, TFAutoModel
@ -259,7 +258,7 @@ Hugging Faceチームによって作られた **[トランスフォーマーを
### pipにて
このリポジトリは、Python 3.8+, Flax 0.4.1+, PyTorch 1.10+, TensorFlow 2.6+ でテストされています。
このリポジトリは、Python 3.6+, Flax 0.3.2+, PyTorch 1.3.1+, TensorFlow 2.3+ でテストされています。
🤗Transformersは[仮想環境](https://docs.python.org/3/library/venv.html)にインストールする必要があります。Pythonの仮想環境に慣れていない場合は、[ユーザーガイド](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/)を確認してください。
@ -302,8 +301,6 @@ Flax、PyTorch、TensorFlowをcondaでインストールする方法は、それ
1. **[ALIGN](https://huggingface.co/docs/transformers/model_doc/align)** (Google Research から) Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig. から公開された研究論文 [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918)
1. **[AltCLIP](https://huggingface.co/docs/transformers/model_doc/altclip)** (BAAI から) Chen, Zhongzhi and Liu, Guang and Zhang, Bo-Wen and Ye, Fulong and Yang, Qinghong and Wu, Ledell から公開された研究論文: [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679)
1. **[Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer)** (MIT から) Yuan Gong, Yu-An Chung, James Glass から公開された研究論文: [AST: Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778)
1. **[Autoformer](https://huggingface.co/docs/transformers/model_doc/autoformer)** (from Tsinghua University) released with the paper [Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://arxiv.org/abs/2106.13008) by Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long.
1. **[Bark](https://huggingface.co/docs/transformers/model_doc/bark)** (from Suno) released in the repository [suno-ai/bark](https://github.com/suno-ai/bark) by Suno AI team.
1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (Facebook から) Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer から公開された研究論文: [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461)
1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (École polytechnique から) Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis から公開された研究論文: [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321)
1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (VinAI Research から) Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen から公開された研究論文: [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701)
@ -322,7 +319,6 @@ Flax、PyTorch、TensorFlowをcondaでインストールする方法は、それ
1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (BigScience workshop から) [BigScience Workshop](https://bigscience.huggingface.co/) から公開されました.
1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (Alexa から) Adrian de Wynter and Daniel J. Perry から公開された研究論文: [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499)
1. **[BridgeTower](https://huggingface.co/docs/transformers/model_doc/bridgetower)** (Harbin Institute of Technology/Microsoft Research Asia/Intel Labs から) released with the paper [BridgeTower: Building Bridges Between Encoders in Vision-Language Representation Learning](https://arxiv.org/abs/2206.08657) by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan.
1. **[BROS](https://huggingface.co/docs/transformers/model_doc/bros)** (NAVER CLOVA から) Teakgyu Hong, Donghyun Kim, Mingi Ji, Wonseok Hwang, Daehyun Nam, Sungrae Park. から公開された研究論文 [BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents](https://arxiv.org/abs/2108.04539)
1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (Google Research から) Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel から公開された研究論文: [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626)
1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (Inria/Facebook/Sorbonne から) Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot から公開された研究論文: [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894)
1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (Google Research から) Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting から公開された研究論文: [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874)
@ -331,7 +327,6 @@ Flax、PyTorch、TensorFlowをcondaでインストールする方法は、それ
1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (OpenAI から) Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever から公開された研究論文: [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020)
1. **[CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)** (University of Göttingen から) Timo Lüddecke and Alexander Ecker から公開された研究論文: [Image Segmentation Using Text and Image Prompts](https://arxiv.org/abs/2112.10003)
1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (Salesforce から) Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong から公開された研究論文: [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474)
1. **[CodeLlama](https://huggingface.co/docs/transformers/model_doc/llama_code)** (MetaAI から) Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, Gabriel Synnaeve. から公開された研究論文 [Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/)
1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (Microsoft Research Asia から) Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang から公開された研究論文: [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152)
1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (YituTech から) Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan から公開された研究論文: [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496)
1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (Facebook AI から) Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie から公開された研究論文: [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545)
@ -351,7 +346,6 @@ Flax、PyTorch、TensorFlowをcondaでインストールする方法は、それ
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (Facebook から) Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko から公開された研究論文: [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872)
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (Microsoft Research から) Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan から公開された研究論文: [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536)
1. **[DiNAT](https://huggingface.co/docs/transformers/model_doc/dinat)** (SHI Labs から) Ali Hassani and Humphrey Shi から公開された研究論文: [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001)
1. **[DINOv2](https://huggingface.co/docs/transformers/model_doc/dinov2)** (Meta AI から) Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, Piotr Bojanowski. から公開された研究論文 [DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193)
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (HuggingFace から), Victor Sanh, Lysandre Debut and Thomas Wolf. 同じ手法で GPT2, RoBERTa と Multilingual BERT の圧縮を行いました.圧縮されたモデルはそれぞれ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation)、[DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation)、[DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation) と名付けられました. 公開された研究論文: [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108)
1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (Microsoft Research から) Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei から公開された研究論文: [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378)
1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (NAVER から), Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park から公開された研究論文: [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664)
@ -360,12 +354,10 @@ Flax、PyTorch、TensorFlowをcondaでインストールする方法は、それ
1. **[EfficientFormer](https://huggingface.co/docs/transformers/model_doc/efficientformer)** (Snap Research から) Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren. から公開された研究論文 [EfficientFormer: Vision Transformers at MobileNetSpeed](https://arxiv.org/abs/2206.01191)
1. **[EfficientNet](https://huggingface.co/docs/transformers/model_doc/efficientnet)** (from Google Brain) released with the paper [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan, Quoc V. Le.
1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (Google Research/Stanford University から) Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning から公開された研究論文: [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555)
1. **[EnCodec](https://huggingface.co/docs/transformers/model_doc/encodec)** (Meta AI から) Alexandre Défossez, Jade Copet, Gabriel Synnaeve, Yossi Adi. から公開された研究論文 [High Fidelity Neural Audio Compression](https://arxiv.org/abs/2210.13438)
1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (Google Research から) Sascha Rothe, Shashi Narayan, Aliaksei Severyn から公開された研究論文: [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461)
1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)** (Baidu から) Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu から公開された研究論文: [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223)
1. **[ErnieM](https://huggingface.co/docs/transformers/model_doc/ernie_m)** (Baidu から) Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang. から公開された研究論文 [ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora](https://arxiv.org/abs/2012.15674)
1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (Meta AI から) はトランスフォーマープロテイン言語モデルです. **ESM-1b** は Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus から公開された研究論文: [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118). **ESM-1v** は Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives から公開された研究論文: [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648). **ESM-2** と **ESMFold** は Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives から公開された研究論文: [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902)
1. **[Falcon](https://huggingface.co/docs/transformers/model_doc/falcon)** (from Technology Innovation Institute) by Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme.
1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (Google AI から) Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V から公開されたレポジトリー [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) Le, and Jason Wei
1. **[FLAN-UL2](https://huggingface.co/docs/transformers/model_doc/flan-ul2)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-ul2-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (CNRS から) Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab から公開された研究論文: [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372)
@ -373,7 +365,6 @@ Flax、PyTorch、TensorFlowをcondaでインストールする方法は、それ
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (Google Research から) James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon から公開された研究論文: [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824)
1. **[FocalNet](https://huggingface.co/docs/transformers/model_doc/focalnet)** (Microsoft Research から) Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao. から公開された研究論文 [Focal Modulation Networks](https://arxiv.org/abs/2203.11926)
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (CMU/Google Brain から) Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le から公開された研究論文: [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236)
1. **[Fuyu](https://huggingface.co/docs/transformers/model_doc/fuyu)** (ADEPT から) Rohan Bavishi, Erich Elsen, Curtis Hawthorne, Maxwell Nye, Augustus Odena, Arushi Somani, Sağnak Taşırlar. から公開された研究論文 [blog post](https://www.adept.ai/blog/fuyu-8b)
1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (Microsoft Research から) Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang. から公開された研究論文 [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100)
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (KAIST から) Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim から公開された研究論文: [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436)
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (OpenAI から) Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever から公開された研究論文: [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/)
@ -387,15 +378,11 @@ Flax、PyTorch、TensorFlowをcondaでインストールする方法は、それ
1. **[GPTSAN-japanese](https://huggingface.co/docs/transformers/model_doc/gptsan-japanese)** [tanreinama/GPTSAN](https://github.com/tanreinama/GPTSAN/blob/main/report/model.md) 坂本俊之(tanreinama)からリリースされました.
1. **[Graphormer](https://huggingface.co/docs/transformers/model_doc/graphormer)** (Microsoft から) Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu から公開された研究論文: [Do Transformers Really Perform Bad for Graph Representation?](https://arxiv.org/abs/2106.05234).
1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (UCSD, NVIDIA から) Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang から公開された研究論文: [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094)
1. **[HerBERT](https://huggingface.co/docs/transformers/model_doc/herbert)** (Allegro.pl, AGH University of Science and Technology から) Piotr Rybak, Robert Mroczkowski, Janusz Tracz, Ireneusz Gawlik. から公開された研究論文 [KLEJ: Comprehensive Benchmark for Polish Language Understanding](https://www.aclweb.org/anthology/2020.acl-main.111.pdf)
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (Facebook から) Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed から公開された研究論文: [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447)
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (Berkeley から) Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer から公開された研究論文: [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321)
1. **[IDEFICS](https://huggingface.co/docs/transformers/model_doc/idefics)** (from HuggingFace) released with the paper [OBELICS: An Open Web-Scale Filtered Dataset of Interleaved Image-Text Documents](https://huggingface.co/papers/2306.16527) by Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov, Thomas Wang, Siddharth Karamcheti, Alexander M. Rush, Douwe Kiela, Matthieu Cord, Victor Sanh.
1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (OpenAI から) Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever から公開された研究論文: [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/)
1. **[Informer](https://huggingface.co/docs/transformers/model_doc/informer)** (from Beihang University, UC Berkeley, Rutgers University, SEDD Company) released with the paper [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting](https://arxiv.org/abs/2012.07436) by Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
1. **[InstructBLIP](https://huggingface.co/docs/transformers/model_doc/instructblip)** (Salesforce から) Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, Steven Hoi. から公開された研究論文 [InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning](https://arxiv.org/abs/2305.06500)
1. **[Jukebox](https://huggingface.co/docs/transformers/model_doc/jukebox)** (OpenAI から) Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever から公開された研究論文: [Jukebox: A Generative Model for Music](https://arxiv.org/pdf/2005.00341.pdf)
1. **[KOSMOS-2](https://huggingface.co/docs/transformers/main/model_doc/kosmos-2)** (from Microsoft Research Asia) released with the paper [Kosmos-2: Grounding Multimodal Large Language Models to the World](https://arxiv.org/abs/2306.14824) by Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan Huang, Shuming Ma, Furu Wei.
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (Microsoft Research Asia から) Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou から公開された研究論文: [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318)
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (Microsoft Research Asia から) Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou から公開された研究論文: [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740)
1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (Microsoft Research Asia から) Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei から公開された研究論文: [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387)
@ -404,7 +391,6 @@ Flax、PyTorch、TensorFlowをcondaでインストールする方法は、それ
1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (Meta AI から) Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze から公開された研究論文: [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136)
1. **[LiLT](https://huggingface.co/docs/transformers/model_doc/lilt)** (South China University of Technology から) Jiapeng Wang, Lianwen Jin, Kai Ding から公開された研究論文: [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669)
1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (The FAIR team of Meta AI から) Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample. から公開された研究論文 [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971)
1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (The FAIR team of Meta AI から) Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom.. から公開された研究論文 [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/XXX)
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (AllenAI から) Iz Beltagy, Matthew E. Peters, Arman Cohan から公開された研究論文: [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150)
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (Google AI から) Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang から公開された研究論文: [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916)
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (Studio Ousia から) Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto から公開された研究論文: [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057)
@ -422,42 +408,31 @@ Flax、PyTorch、TensorFlowをcondaでインストールする方法は、それ
1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (NVIDIA から) Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro から公開された研究論文: [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053)
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (NVIDIA から) Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro から公開された研究論文: [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053)
1. **[MGP-STR](https://huggingface.co/docs/transformers/model_doc/mgp-str)** (Alibaba Research から) Peng Wang, Cheng Da, and Cong Yao. から公開された研究論文 [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592)
1. **[Mistral](https://huggingface.co/docs/transformers/model_doc/mistral)** (from Mistral AI) by The Mistral AI team: Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed..
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (Studio Ousia から) Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka から公開された研究論文: [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151)
1. **[MMS](https://huggingface.co/docs/transformers/model_doc/mms)** (Facebook から) Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky, Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi, Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning Hsu, Alexis Conneau, Michael Auli. から公開された研究論文 [Scaling Speech Technology to 1,000+ Languages](https://arxiv.org/abs/2305.13516)
1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (CMU/Google Brain から) Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou から公開された研究論文: [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984)
1. **[MobileNetV1](https://huggingface.co/docs/transformers/model_doc/mobilenet_v1)** (Google Inc. から) Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam から公開された研究論文: [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861)
1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (Google Inc. から) Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen から公開された研究論文: [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381)
1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (Apple から) Sachin Mehta and Mohammad Rastegari から公開された研究論文: [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178)
1. **[MobileViTV2](https://huggingface.co/docs/transformers/model_doc/mobilevitv2)** (Apple から) Sachin Mehta and Mohammad Rastegari. から公開された研究論文 [Separable Self-attention for Mobile Vision Transformers](https://arxiv.org/abs/2206.02680)
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (Microsoft Research から) Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu から公開された研究論文: [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297)
1. **[MPT](https://huggingface.co/docs/transformers/model_doc/mpt)** (MosaiML から) the MosaicML NLP Team. から公開された研究論文 [llm-foundry](https://github.com/mosaicml/llm-foundry/)
1. **[MRA](https://huggingface.co/docs/transformers/model_doc/mra)** (the University of Wisconsin - Madison から) Zhanpeng Zeng, Sourav Pal, Jeffery Kline, Glenn M Fung, Vikas Singh. から公開された研究論文 [Multi Resolution Analysis (MRA)](https://arxiv.org/abs/2207.10284)
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (Google AI から) Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel から公開された研究論文: [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934)
1. **[MusicGen](https://huggingface.co/docs/transformers/model_doc/musicgen)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (RUC AI Box から) Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen から公開された研究論文: [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131)
1. **[NAT](https://huggingface.co/docs/transformers/model_doc/nat)** (SHI Labs から) Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi から公開された研究論文: [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143)
1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (Huawei Noahs Ark Lab から) Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu から公開された研究論文: [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204)
1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (Meta から) the NLLB team から公開された研究論文: [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672)
1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (Meta から) the NLLB team. から公開された研究論文 [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672)
1. **[Nougat](https://huggingface.co/docs/transformers/model_doc/nougat)** (Meta AI から) Lukas Blecher, Guillem Cucurull, Thomas Scialom, Robert Stojnic. から公開された研究論文 [Nougat: Neural Optical Understanding for Academic Documents](https://arxiv.org/abs/2308.13418)
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (the University of Wisconsin - Madison から) Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh から公開された研究論文: [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902)
1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (SHI Labs から) Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi から公開された研究論文: [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220)
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released on GitHub (now removed).
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released in [Open-Llama](https://github.com/s-JoL/Open-Llama).
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (Meta AI から) Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al から公開された研究論文: [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068)
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (Google AI から) Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby から公開された研究論文: [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230)
1. **[OWLv2](https://huggingface.co/docs/transformers/main/model_doc/owlv2)** (Google AI から) Matthias Minderer, Alexey Gritsenko, Neil Houlsby. から公開された研究論文 [Scaling Open-Vocabulary Object Detection](https://arxiv.org/abs/2306.09683)
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (Google から) Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu から公開された研究論文: [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777)
1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (Google から) Jason Phang, Yao Zhao, and Peter J. Liu から公開された研究論文: [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347)
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (Deepmind から) Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira から公開された研究論文: [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795)
1. **[Persimmon](https://huggingface.co/docs/transformers/model_doc/persimmon)** (ADEPT から) Erich Elsen, Augustus Odena, Maxwell Nye, Sağnak Taşırlar, Tri Dao, Curtis Hawthorne, Deepak Moparthi, Arushi Somani. から公開された研究論文 [blog post](https://www.adept.ai/blog/persimmon-8b)
1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (VinAI Research から) Dat Quoc Nguyen and Anh Tuan Nguyen から公開された研究論文: [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/)
1. **[Pix2Struct](https://huggingface.co/docs/transformers/model_doc/pix2struct)** (Google から) Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova. から公開された研究論文 [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding](https://arxiv.org/abs/2210.03347)
1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (UCLA NLP から) Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang から公開された研究論文: [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333)
1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (Sea AI Labs から) Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng から公開された研究論文: [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418)
1. **[Pop2Piano](https://huggingface.co/docs/transformers/model_doc/pop2piano)** released with the paper [Pop2Piano : Pop Audio-based Piano Cover Generation](https://arxiv.org/abs/2211.00895) by Jongho Choi, Kyogu Lee.
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (Microsoft Research から) Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou から公開された研究論文: [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063)
1. **[PVT](https://huggingface.co/docs/transformers/model_doc/pvt)** (Nanjing University, The University of Hong Kong etc. から) Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao. から公開された研究論文 [Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions](https://arxiv.org/pdf/2102.12122.pdf)
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (NVIDIA から) Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius から公開された研究論文: [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602)
1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (Facebook から) Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela から公開された研究論文: [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401)
1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (Google Research から) Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang から公開された研究論文: [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909)
@ -470,7 +445,6 @@ Flax、PyTorch、TensorFlowをcondaでインストールする方法は、それ
1. **[RoCBert](https://huggingface.co/docs/transformers/model_doc/roc_bert)** (WeChatAI から) HuiSu, WeiweiShi, XiaoyuShen, XiaoZhou, TuoJi, JiaruiFang, JieZhou から公開された研究論文: [RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining](https://aclanthology.org/2022.acl-long.65.pdf)
1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (ZhuiyiTechnology から), Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu から公開された研究論文: [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/abs/2104.09864)
1. **[RWKV](https://huggingface.co/docs/transformers/model_doc/rwkv)** (Bo Peng から) Bo Peng. から公開された研究論文 [this repo](https://github.com/BlinkDL/RWKV-LM)
1. **[SeamlessM4T](https://huggingface.co/docs/transformers/main/model_doc/seamless_m4t)** (from Meta AI) released with the paper [SeamlessM4T — Massively Multilingual & Multimodal Machine Translation](https://dl.fbaipublicfiles.com/seamless/seamless_m4t_paper.pdf) by the Seamless Communication team.
1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (NVIDIA から) Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo から公開された研究論文: [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203)
1. **[Segment Anything](https://huggingface.co/docs/transformers/model_doc/sam)** (Meta AI から) Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alex Berg, Wan-Yen Lo, Piotr Dollar, Ross Girshick. から公開された研究論文 [Segment Anything](https://arxiv.org/pdf/2304.02643v1.pdf)
1. **[SEW](https://huggingface.co/docs/transformers/model_doc/sew)** (ASAPP から) Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi から公開された研究論文: [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870)
@ -480,7 +454,7 @@ Flax、PyTorch、TensorFlowをcondaでインストールする方法は、それ
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (Facebook から), Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau から公開された研究論文: [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678)
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (Tel Aviv University から), Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy から公開された研究論文: [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438)
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (Berkeley から) Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer から公開された研究論文: [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316)
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (MBZUAI から) Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan. から公開された研究論文 [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446)
1. **[SwiftFormer](https://huggingface.co/docs/transformers/main/model_doc/swiftformer)** (MBZUAI から) Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan. から公開された研究論文 [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446)
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (Microsoft から) Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo から公開された研究論文: [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030)
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (Microsoft から) Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo から公開された研究論文: [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883)
1. **[Swin2SR](https://huggingface.co/docs/transformers/model_doc/swin2sr)** (University of Würzburg から) Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte から公開された研究論文: [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345)
@ -497,7 +471,6 @@ Flax、PyTorch、TensorFlowをcondaでインストールする方法は、それ
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (Microsoft から), Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei から公開された研究論文: [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282)
1. **[TVLT](https://huggingface.co/docs/transformers/model_doc/tvlt)** (from UNC Chapel Hill から), Zineng Tang, Jaemin Cho, Yixin Nie, Mohit Bansal から公開された研究論文: [TVLT: Textless Vision-Language Transformer](https://arxiv.org/abs/2209.14156)
1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (Google Research から) Yi Tay, Mostafa Dehghani, Vinh Q から公開された研究論文: [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
1. **[UMT5](https://huggingface.co/docs/transformers/model_doc/umt5)** (Google Research から) Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, Noah Constant. から公開された研究論文 [UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining](https://openreview.net/forum?id=kXwdL1cWOAi)
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (Microsoft Research から) Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang から公開された研究論文: [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597)
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (Microsoft Research から) Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu から公開された研究論文: [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752)
1. **[UPerNet](https://huggingface.co/docs/transformers/model_doc/upernet)** (Peking University から) Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun. から公開された研究論文 [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221)
@ -507,12 +480,8 @@ Flax、PyTorch、TensorFlowをcondaでインストールする方法は、それ
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (Google AI から) Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby から公開された研究論文: [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929)
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (UCLA NLP から) Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang から公開された研究論文: [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557)
1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (Google AI から) Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby から公開された研究論文: [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929)
1. **[VitDet](https://huggingface.co/docs/transformers/model_doc/vitdet)** (Meta AI から) Yanghao Li, Hanzi Mao, Ross Girshick, Kaiming He. から公開された研究論文 [Exploring Plain Vision Transformer Backbones for Object Detection](https://arxiv.org/abs/2203.16527)
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (Meta AI から) Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick から公開された研究論文: [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377)
1. **[ViTMatte](https://huggingface.co/docs/transformers/model_doc/vitmatte)** (HUST-VL から) Jingfeng Yao, Xinggang Wang, Shusheng Yang, Baoyuan Wang. から公開された研究論文 [ViTMatte: Boosting Image Matting with Pretrained Plain Vision Transformers](https://arxiv.org/abs/2305.15272)
1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (Meta AI から) Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas から公開された研究論文: [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141)
1. **[VITS](https://huggingface.co/docs/transformers/model_doc/vits)** (Kakao Enterprise から) Jaehyeon Kim, Jungil Kong, Juhee Son. から公開された研究論文 [Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech](https://arxiv.org/abs/2106.06103)
1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (from Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) by Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid.
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (Facebook AI から) Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli から公開された研究論文: [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477)
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (Facebook AI から) Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino から公開された研究論文: [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171)
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (Facebook AI から) Qiantong Xu, Alexei Baevski, Michael Auli から公開された研究論文: [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680)

View File

@ -18,7 +18,7 @@ limitations under the License.
<br>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers_logo_name.png" width="400"/>
<br>
</p>
<p>
<p align="center">
<a href="https://circleci.com/gh/huggingface/transformers">
<img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/main">
@ -47,8 +47,7 @@ limitations under the License.
<a href="https://github.com/huggingface/transformers/blob/main/README_es.md">Español</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ja.md">日本語</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_hd.md">हिन्दी</a>
<a href="https://github.com/huggingface/transformers//blob/main/README_te.md">తెలుగు</a> |
</p>
<p>
</h4>
<h3 align="center">
@ -176,7 +175,7 @@ limitations under the License.
### pip로 설치하기
이 저장소는 Python 3.8+, Flax 0.4.1+, PyTorch 1.10+, TensorFlow 2.6+에서 테스트 되었습니다.
이 저장소는 Python 3.6+, Flax 0.3.2+, PyTorch 1.3.1+, TensorFlow 2.3+에서 테스트 되었습니다.
[가상 환경](https://docs.python.org/3/library/venv.html)에 🤗 Transformers를 설치하세요. Python 가상 환경에 익숙하지 않다면, [사용자 가이드](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/)를 확인하세요.
@ -217,8 +216,6 @@ Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는
1. **[ALIGN](https://huggingface.co/docs/transformers/model_doc/align)** (Google Research 에서 제공)은 Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig.의 [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918)논문과 함께 발표했습니다.
1. **[AltCLIP](https://huggingface.co/docs/transformers/model_doc/altclip)** (from BAAI) released with the paper [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) by Chen, Zhongzhi and Liu, Guang and Zhang, Bo-Wen and Ye, Fulong and Yang, Qinghong and Wu, Ledell.
1. **[Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer)** (from MIT) released with the paper [AST: Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778) by Yuan Gong, Yu-An Chung, James Glass.
1. **[Autoformer](https://huggingface.co/docs/transformers/model_doc/autoformer)** (from Tsinghua University) released with the paper [Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://arxiv.org/abs/2106.13008) by Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long.
1. **[Bark](https://huggingface.co/docs/transformers/model_doc/bark)** (from Suno) released in the repository [suno-ai/bark](https://github.com/suno-ai/bark) by Suno AI team.
1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (from Facebook) released with the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/pdf/1910.13461.pdf) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer.
1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (from École polytechnique) released with the paper [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis.
1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (from VinAI Research) released with the paper [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen.
@ -237,7 +234,6 @@ Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는
1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (from BigScience workshop) released by the [BigScience Workshop](https://bigscience.huggingface.co/).
1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (Alexa 에서) Adrian de Wynter and Daniel J. Perry 의 [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) 논문과 함께 발표했습니다.
1. **[BridgeTower](https://huggingface.co/docs/transformers/model_doc/bridgetower)** (from Harbin Institute of Technology/Microsoft Research Asia/Intel Labs) released with the paper [BridgeTower: Building Bridges Between Encoders in Vision-Language Representation Learning](https://arxiv.org/abs/2206.08657) by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan.
1. **[BROS](https://huggingface.co/docs/transformers/model_doc/bros)** (NAVER CLOVA 에서 제공)은 Teakgyu Hong, Donghyun Kim, Mingi Ji, Wonseok Hwang, Daehyun Nam, Sungrae Park.의 [BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents](https://arxiv.org/abs/2108.04539)논문과 함께 발표했습니다.
1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (Google Research 에서) Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel 의 [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) 논문과 함께 발표했습니다.
1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (Inria/Facebook/Sorbonne 에서) Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot 의 [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) 논문과 함께 발표했습니다.
1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (Google Research 에서) Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting 의 [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) 논문과 함께 발표했습니다.
@ -246,7 +242,6 @@ Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는
1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (OpenAI 에서) Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever 의 [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) 논문과 함께 발표했습니다.
1. **[CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)** (University of Göttingen 에서) Timo Lüddecke and Alexander Ecker 의 [Image Segmentation Using Text and Image Prompts](https://arxiv.org/abs/2112.10003) 논문과 함께 발표했습니다.
1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (Salesforce 에서) Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong 의 [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) 논문과 함께 발표했습니다.
1. **[CodeLlama](https://huggingface.co/docs/transformers/model_doc/llama_code)** (MetaAI 에서 제공)은 Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, Gabriel Synnaeve.의 [Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/)논문과 함께 발표했습니다.
1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (Microsoft Research Asia 에서) Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang 의 [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) 논문과 함께 발표했습니다.
1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (YituTech 에서) Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan 의 [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) 논문과 함께 발표했습니다.
1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (Facebook AI 에서) Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie 의 [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) 논문과 함께 발표했습니다.
@ -266,7 +261,6 @@ Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (Facebook 에서) Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko 의 [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) 논문과 함께 발표했습니다.
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (Microsoft Research 에서) Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan 의 [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) 논문과 함께 발표했습니다.
1. **[DiNAT](https://huggingface.co/docs/transformers/model_doc/dinat)** (SHI Labs 에서) Ali Hassani and Humphrey Shi 의 [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) 논문과 함께 발표했습니다.
1. **[DINOv2](https://huggingface.co/docs/transformers/model_doc/dinov2)** (Meta AI 에서 제공)은 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, Piotr Bojanowski.의 [DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193)논문과 함께 발표했습니다.
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (HuggingFace 에서) Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German version of DistilBERT 의 [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) 논문과 함께 발표했습니다.
1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (Microsoft Research 에서) Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei 의 [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) 논문과 함께 발표했습니다.
1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (NAVER 에서) Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park 의 [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) 논문과 함께 발표했습니다.
@ -275,12 +269,10 @@ Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는
1. **[EfficientFormer](https://huggingface.co/docs/transformers/model_doc/efficientformer)** (from Snap Research) released with the paper [EfficientFormer: Vision Transformers at MobileNetSpeed](https://arxiv.org/abs/2206.01191) by Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren.
1. **[EfficientNet](https://huggingface.co/docs/transformers/model_doc/efficientnet)** (from Google Brain) released with the paper [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan, Quoc V. Le.
1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (Google Research/Stanford University 에서) Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning 의 [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) 논문과 함께 발표했습니다.
1. **[EnCodec](https://huggingface.co/docs/transformers/model_doc/encodec)** (Meta AI 에서 제공)은 Alexandre Défossez, Jade Copet, Gabriel Synnaeve, Yossi Adi.의 [High Fidelity Neural Audio Compression](https://arxiv.org/abs/2210.13438)논문과 함께 발표했습니다.
1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (Google Research 에서) Sascha Rothe, Shashi Narayan, Aliaksei Severyn 의 [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) 논문과 함께 발표했습니다.
1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)** (Baidu 에서) Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu 의 [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) 논문과 함께 발표했습니다.
1. **[ErnieM](https://huggingface.co/docs/transformers/model_doc/ernie_m)** (Baidu 에서 제공)은 Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang.의 [ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora](https://arxiv.org/abs/2012.15674)논문과 함께 발표했습니다.
1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (from Meta AI) are transformer protein language models. **ESM-1b** was released with the paper [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. **ESM-1v** was released with the paper [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648) by Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives. **ESM-2** was released with the paper [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902) by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives.
1. **[Falcon](https://huggingface.co/docs/transformers/model_doc/falcon)** (from Technology Innovation Institute) by Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme.
1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FLAN-UL2](https://huggingface.co/docs/transformers/model_doc/flan-ul2)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-ul2-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
@ -288,7 +280,6 @@ Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
1. **[FocalNet](https://huggingface.co/docs/transformers/model_doc/focalnet)** (from Microsoft Research) released with the paper [Focal Modulation Networks](https://arxiv.org/abs/2203.11926) by Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao.
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
1. **[Fuyu](https://huggingface.co/docs/transformers/model_doc/fuyu)** (from ADEPT) Rohan Bavishi, Erich Elsen, Curtis Hawthorne, Maxwell Nye, Augustus Odena, Arushi Somani, Sağnak Taşırlar. 논문과 함께 공개 [blog post](https://www.adept.ai/blog/fuyu-8b)
1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (from Microsoft Research) released with the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang.
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (from KAIST) released with the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim.
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
@ -302,15 +293,11 @@ Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는
1. **[GPTSAN-japanese](https://huggingface.co/docs/transformers/model_doc/gptsan-japanese)** released in the repository [tanreinama/GPTSAN](https://github.com/tanreinama/GPTSAN/blob/main/report/model.md) by Toshiyuki Sakamoto(tanreinama).
1. **[Graphormer](https://huggingface.co/docs/transformers/model_doc/graphormer)** (from Microsoft) Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu 의 [Do Transformers Really Perform Bad for Graph Representation?](https://arxiv.org/abs/2106.05234) 논문과 함께 발표했습니다.
1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (UCSD, NVIDIA 에서) Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang 의 [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) 논문과 함께 발표했습니다.
1. **[HerBERT](https://huggingface.co/docs/transformers/model_doc/herbert)** (Allegro.pl, AGH University of Science and Technology 에서 제공)은 Piotr Rybak, Robert Mroczkowski, Janusz Tracz, Ireneusz Gawlik.의 [KLEJ: Comprehensive Benchmark for Polish Language Understanding](https://www.aclweb.org/anthology/2020.acl-main.111.pdf)논문과 함께 발표했습니다.
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (Facebook 에서) Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed 의 [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) 논문과 함께 발표했습니다.
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (Berkeley 에서) Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer 의 [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) 논문과 함께 발표했습니다.
1. **[IDEFICS](https://huggingface.co/docs/transformers/model_doc/idefics)** (from HuggingFace) released with the paper [OBELICS: An Open Web-Scale Filtered Dataset of Interleaved Image-Text Documents](https://huggingface.co/papers/2306.16527) by Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov, Thomas Wang, Siddharth Karamcheti, Alexander M. Rush, Douwe Kiela, Matthieu Cord, Victor Sanh.
1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (OpenAI 에서) Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever 의 [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) 논문과 함께 발표했습니다.
1. **[Informer](https://huggingface.co/docs/transformers/model_doc/informer)** (from Beihang University, UC Berkeley, Rutgers University, SEDD Company) released with the paper [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting](https://arxiv.org/abs/2012.07436) by Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
1. **[InstructBLIP](https://huggingface.co/docs/transformers/model_doc/instructblip)** (Salesforce 에서 제공)은 Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, Steven Hoi.의 [InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning](https://arxiv.org/abs/2305.06500)논문과 함께 발표했습니다.
1. **[Jukebox](https://huggingface.co/docs/transformers/model_doc/jukebox)** (OpenAI 에서) Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever 의 [Jukebox: A Generative Model for Music](https://arxiv.org/pdf/2005.00341.pdf) 논문과 함께 발표했습니다.
1. **[KOSMOS-2](https://huggingface.co/docs/transformers/main/model_doc/kosmos-2)** (from Microsoft Research Asia) released with the paper [Kosmos-2: Grounding Multimodal Large Language Models to the World](https://arxiv.org/abs/2306.14824) by Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan Huang, Shuming Ma, Furu Wei.
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (Microsoft Research Asia 에서) Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou 의 [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) 논문과 함께 발표했습니다.
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (Microsoft Research Asia 에서) Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou 의 [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) 논문과 함께 발표했습니다.
1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (Microsoft Research Asia 에서) Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei 의 [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) 논문과 함께 발표했습니다.
@ -319,7 +306,6 @@ Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는
1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (Meta AI 에서) Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze 의 [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) 논문과 함께 발표했습니다.
1. **[LiLT](https://huggingface.co/docs/transformers/model_doc/lilt)** (South China University of Technology 에서) Jiapeng Wang, Lianwen Jin, Kai Ding 의 [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669) 논문과 함께 발표했습니다.
1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (The FAIR team of Meta AI 에서 제공)은 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample.의 [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971)논문과 함께 발표했습니다.
1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (The FAIR team of Meta AI 에서 제공)은 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom..의 [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/XXX)논문과 함께 발표했습니다.
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (AllenAI 에서) Iz Beltagy, Matthew E. Peters, Arman Cohan 의 [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) 논문과 함께 발표했습니다.
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (Google AI 에서) Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang 의 [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) 논문과 함께 발표했습니다.
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (Studio Ousia 에서) Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto 의 [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) 논문과 함께 발표했습니다.
@ -337,42 +323,31 @@ Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는
1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (NVIDIA 에서) Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro 의 [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) 논문과 함께 발표했습니다.
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (NVIDIA 에서) Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro 의 [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) 논문과 함께 발표했습니다.
1. **[MGP-STR](https://huggingface.co/docs/transformers/model_doc/mgp-str)** (Alibaba Research 에서 제공)은 Peng Wang, Cheng Da, and Cong Yao.의 [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592)논문과 함께 발표했습니다.
1. **[Mistral](https://huggingface.co/docs/transformers/model_doc/mistral)** (from Mistral AI) by The Mistral AI team: Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed..
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (Studio Ousia 에서) Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka 의 [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) 논문과 함께 발표했습니다.
1. **[MMS](https://huggingface.co/docs/transformers/model_doc/mms)** (Facebook 에서 제공)은 Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky, Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi, Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning Hsu, Alexis Conneau, Michael Auli.의 [Scaling Speech Technology to 1,000+ Languages](https://arxiv.org/abs/2305.13516)논문과 함께 발표했습니다.
1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (CMU/Google Brain 에서) Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou 의 [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) 논문과 함께 발표했습니다.
1. **[MobileNetV1](https://huggingface.co/docs/transformers/model_doc/mobilenet_v1)** (Google Inc. 에서) Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam 의 [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) 논문과 함께 발표했습니다.
1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (Google Inc. 에서) Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen 의 [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) 논문과 함께 발표했습니다.
1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (Apple 에서) Sachin Mehta and Mohammad Rastegari 의 [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) 논문과 함께 발표했습니다.
1. **[MobileViTV2](https://huggingface.co/docs/transformers/model_doc/mobilevitv2)** (Apple 에서 제공)은 Sachin Mehta and Mohammad Rastegari.의 [Separable Self-attention for Mobile Vision Transformers](https://arxiv.org/abs/2206.02680)논문과 함께 발표했습니다.
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (Microsoft Research 에서) Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu 의 [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) 논문과 함께 발표했습니다.
1. **[MPT](https://huggingface.co/docs/transformers/model_doc/mpt)** (MosaiML 에서 제공)은 the MosaicML NLP Team.의 [llm-foundry](https://github.com/mosaicml/llm-foundry/)논문과 함께 발표했습니다.
1. **[MRA](https://huggingface.co/docs/transformers/model_doc/mra)** (the University of Wisconsin - Madison 에서 제공)은 Zhanpeng Zeng, Sourav Pal, Jeffery Kline, Glenn M Fung, Vikas Singh.의 [Multi Resolution Analysis (MRA)](https://arxiv.org/abs/2207.10284) 논문과 함께 발표했습니다.
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (Google AI 에서) Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel 의 [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) 논문과 함께 발표했습니다.
1. **[MusicGen](https://huggingface.co/docs/transformers/model_doc/musicgen)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (RUC AI Box 에서) Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen 의 [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) 논문과 함께 발표했습니다.
1. **[NAT](https://huggingface.co/docs/transformers/model_doc/nat)** (SHI Labs 에서) Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi 의 [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143) 논문과 함께 발표했습니다.
1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (Huawei Noahs Ark Lab 에서) Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu 의 [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) 논문과 함께 발표했습니다.
1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (Meta 에서) the NLLB team 의 [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) 논문과 함께 발표했습니다.
1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (Meta 에서 제공)은 the NLLB team.의 [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672)논문과 함께 발표했습니다.
1. **[Nougat](https://huggingface.co/docs/transformers/model_doc/nougat)** (Meta AI 에서 제공)은 Lukas Blecher, Guillem Cucurull, Thomas Scialom, Robert Stojnic.의 [Nougat: Neural Optical Understanding for Academic Documents](https://arxiv.org/abs/2308.13418)논문과 함께 발표했습니다.
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (the University of Wisconsin - Madison 에서) Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh 의 [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) 논문과 함께 발표했습니다.
1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (SHI Labs 에서) Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi 의 [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) 논문과 함께 발표했습니다.
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released on GitHub (now removed).
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released in [Open-Llama](https://github.com/s-JoL/Open-Llama).
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (Meta AI 에서) Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al 의 [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) 논문과 함께 발표했습니다.
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (Google AI 에서) Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby 의 [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) 논문과 함께 발표했습니다.
1. **[OWLv2](https://huggingface.co/docs/transformers/main/model_doc/owlv2)** (Google AI 에서 제공)은 Matthias Minderer, Alexey Gritsenko, Neil Houlsby.의 [Scaling Open-Vocabulary Object Detection](https://arxiv.org/abs/2306.09683)논문과 함께 발표했습니다.
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (Google 에서) Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu 의 [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) 논문과 함께 발표했습니다.
1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (Google 에서) Jason Phang, Yao Zhao, Peter J. Liu 의 [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) 논문과 함께 발표했습니다.
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (Deepmind 에서) Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira 의 [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) 논문과 함께 발표했습니다.
1. **[Persimmon](https://huggingface.co/docs/transformers/model_doc/persimmon)** (ADEPT 에서 제공)은 Erich Elsen, Augustus Odena, Maxwell Nye, Sağnak Taşırlar, Tri Dao, Curtis Hawthorne, Deepak Moparthi, Arushi Somani.의 [blog post](https://www.adept.ai/blog/persimmon-8b)논문과 함께 발표했습니다.
1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (VinAI Research 에서) Dat Quoc Nguyen and Anh Tuan Nguyen 의 [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) 논문과 함께 발표했습니다.
1. **[Pix2Struct](https://huggingface.co/docs/transformers/model_doc/pix2struct)** (Google 에서 제공)은 Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova.의 [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding](https://arxiv.org/abs/2210.03347)논문과 함께 발표했습니다.
1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (UCLA NLP 에서) Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang 의 [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) 논문과 함께 발표했습니다.
1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (Sea AI Labs 에서) Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng 의 [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) 논문과 함께 발표했습니다.
1. **[Pop2Piano](https://huggingface.co/docs/transformers/model_doc/pop2piano)** released with the paper [Pop2Piano : Pop Audio-based Piano Cover Generation](https://arxiv.org/abs/2211.00895) by Jongho Choi, Kyogu Lee.
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (Microsoft Research 에서) Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou 의 [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) 논문과 함께 발표했습니다.
1. **[PVT](https://huggingface.co/docs/transformers/model_doc/pvt)** (Nanjing University, The University of Hong Kong etc. 에서 제공)은 Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao.의 [Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions](https://arxiv.org/pdf/2102.12122.pdf)논문과 함께 발표했습니다.
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (NVIDIA 에서) Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius 의 [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) 논문과 함께 발표했습니다.
1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (Facebook 에서) Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela 의 [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) 논문과 함께 발표했습니다.
1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (Google Research 에서) Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang 의 [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) 논문과 함께 발표했습니다.
@ -385,7 +360,6 @@ Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는
1. **[RoCBert](https://huggingface.co/docs/transformers/model_doc/roc_bert)** (WeChatAI 에서) HuiSu, WeiweiShi, XiaoyuShen, XiaoZhou, TuoJi, JiaruiFang, JieZhou 의 [RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining](https://aclanthology.org/2022.acl-long.65.pdf) 논문과 함께 발표했습니다.
1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (ZhuiyiTechnology 에서) Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu 의 a [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/pdf/2104.09864v1.pdf) 논문과 함께 발표했습니다.
1. **[RWKV](https://huggingface.co/docs/transformers/model_doc/rwkv)** (Bo Peng 에서 제공)은 Bo Peng.의 [this repo](https://github.com/BlinkDL/RWKV-LM)논문과 함께 발표했습니다.
1. **[SeamlessM4T](https://huggingface.co/docs/transformers/main/model_doc/seamless_m4t)** (from Meta AI) released with the paper [SeamlessM4T — Massively Multilingual & Multimodal Machine Translation](https://dl.fbaipublicfiles.com/seamless/seamless_m4t_paper.pdf) by the Seamless Communication team.
1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (NVIDIA 에서) Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo 의 [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) 논문과 함께 발표했습니다.
1. **[Segment Anything](https://huggingface.co/docs/transformers/model_doc/sam)** (Meta AI 에서 제공)은 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alex Berg, Wan-Yen Lo, Piotr Dollar, Ross Girshick.의 [Segment Anything](https://arxiv.org/pdf/2304.02643v1.pdf)논문과 함께 발표했습니다.
1. **[SEW](https://huggingface.co/docs/transformers/model_doc/sew)** (ASAPP 에서) Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi 의 [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) 논문과 함께 발표했습니다.
@ -395,7 +369,7 @@ Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (Facebook 에서) Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau 의 [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) 논문과 함께 발표했습니다.
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (Tel Aviv University 에서) Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy 의 [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) 논문과 함께 발표했습니다.
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (Berkeley 에서) Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer 의 [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) 논문과 함께 발표했습니다.
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (MBZUAI 에서 제공)은 Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan.의 [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446)논문과 함께 발표했습니다.
1. **[SwiftFormer](https://huggingface.co/docs/transformers/main/model_doc/swiftformer)** (MBZUAI 에서 제공)은 Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan.의 [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446)논문과 함께 발표했습니다.
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (Microsoft 에서) Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo 의 [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) 논문과 함께 발표했습니다.
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (Microsoft 에서) Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo 의 [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) 논문과 함께 발표했습니다.
1. **[Swin2SR](https://huggingface.co/docs/transformers/model_doc/swin2sr)** (University of Würzburg 에서) Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte 의 [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345) 논문과 함께 발표했습니다.
@ -412,7 +386,6 @@ Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (Microsoft 에서) Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei 의 [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) 논문과 함께 발표했습니다.
1. **[TVLT](https://huggingface.co/docs/transformers/model_doc/tvlt)** (from UNC Chapel Hill 에서) Zineng Tang, Jaemin Cho, Yixin Nie, Mohit Bansal 의 [TVLT: Textless Vision-Language Transformer](https://arxiv.org/abs/2209.14156) 논문과 함께 발표했습니다.
1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (Google Research 에서) Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzle 의 [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) 논문과 함께 발표했습니다.
1. **[UMT5](https://huggingface.co/docs/transformers/model_doc/umt5)** (Google Research 에서 제공)은 Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, Noah Constant.의 [UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining](https://openreview.net/forum?id=kXwdL1cWOAi)논문과 함께 발표했습니다.
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (Microsoft Research 에서) Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang 의 [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) 논문과 함께 발표했습니다.
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (Microsoft Research 에서) Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu 의 [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) 논문과 함께 발표했습니다.
1. **[UPerNet](https://huggingface.co/docs/transformers/model_doc/upernet)** (Peking University 에서 제공)은 Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun.의 [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221)논문과 함께 발표했습니다.
@ -422,12 +395,8 @@ Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (Google AI 에서) Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby 의 [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) 논문과 함께 발표했습니다.
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (UCLA NLP 에서) Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang 의 [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) 논문과 함께 발표했습니다.
1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (Google AI 에서) Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby 의 [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) 논문과 함께 발표했습니다.
1. **[VitDet](https://huggingface.co/docs/transformers/model_doc/vitdet)** (Meta AI 에서 제공)은 Yanghao Li, Hanzi Mao, Ross Girshick, Kaiming He.의 [Exploring Plain Vision Transformer Backbones for Object Detection](https://arxiv.org/abs/2203.16527)논문과 함께 발표했습니다.
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (Meta AI 에서) Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick 의 [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) 논문과 함께 발표했습니다.
1. **[ViTMatte](https://huggingface.co/docs/transformers/model_doc/vitmatte)** (HUST-VL 에서 제공)은 Jingfeng Yao, Xinggang Wang, Shusheng Yang, Baoyuan Wang.의 [ViTMatte: Boosting Image Matting with Pretrained Plain Vision Transformers](https://arxiv.org/abs/2305.15272)논문과 함께 발표했습니다.
1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (Meta AI 에서) Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas 의 [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) 논문과 함께 발표했습니다.
1. **[VITS](https://huggingface.co/docs/transformers/model_doc/vits)** (Kakao Enterprise 에서 제공)은 Jaehyeon Kim, Jungil Kong, Juhee Son.의 [Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech](https://arxiv.org/abs/2106.06103)논문과 함께 발표했습니다.
1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (from Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) by Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid.
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (Facebook AI 에서) Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli 의 [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) 논문과 함께 발표했습니다.
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (Facebook AI 에서) Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino 의 [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) 논문과 함께 발표했습니다.
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (Facebook AI 에서) Qiantong Xu, Alexei Baevski, Michael Auli 의 [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) 논문과 함께 발표했습니다.
@ -445,7 +414,7 @@ Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는
1. **[XLS-R](https://huggingface.co/docs/transformers/model_doc/xls_r)** (Facebook AI 에서) Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli 의 [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) 논문과 함께 발표했습니다.
1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (Facebook AI 에서) Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli 의 [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) 논문과 함께 발표했습니다.
1. **[YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos)** (Huazhong University of Science & Technology 에서) Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu 의 [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) 논문과 함께 발표했습니다.
1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (the University of Wisconsin - Madison 에서) Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh 의 [You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling](https://arxiv.org/abs/2111.09714) 논문과 함께 발표했습니다.
1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (the University of Wisconsin - Madison 에서) Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh 의 [You Only Sample (Almost) 논문과 함께 발표했습니다.
1. 새로운 모델을 올리고 싶나요? 우리가 **상세한 가이드와 템플릿** 으로 새로운 모델을 올리도록 도와드릴게요. 가이드와 템플릿은 이 저장소의 [`templates`](./templates) 폴더에서 확인하실 수 있습니다. [컨트리뷰션 가이드라인](./CONTRIBUTING.md)을 꼭 확인해주시고, PR을 올리기 전에 메인테이너에게 연락하거나 이슈를 오픈해 피드백을 받으시길 바랍니다.
각 모델이 Flax, PyTorch, TensorFlow으로 구현되었는지 또는 🤗 Tokenizers 라이브러리가 지원하는 토크나이저를 사용하는지 확인하려면, [이 표](https://huggingface.co/docs/transformers/index#supported-frameworks)를 확인하세요.

View File

@ -1,565 +0,0 @@
<!---
Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
<p align="center">
<picture>
<source media="(prefers-color-scheme: dark)" srcset="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-dark.svg">
<source media="(prefers-color-scheme: light)" srcset="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-light.svg">
<img alt="Hugging Face Transformers Library" src="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-light.svg" width="352" height="59" style="max-width: 100%;">
</picture>
<br/>
<br/>
</p>
<p align="center">
<a href="https://circleci.com/gh/huggingface/transformers">
<img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/main">
</a>
<a href="https://github.com/huggingface/transformers/blob/main/LICENSE">
<img alt="GitHub" src="https://img.shields.io/github/license/huggingface/transformers.svg?color=blue">
</a>
<a href="https://huggingface.co/docs/transformers/index">
<img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/docs/transformers/index.svg?down_color=red&down_message=offline&up_message=online">
</a>
<a href="https://github.com/huggingface/transformers/releases">
<img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/transformers.svg">
</a>
<a href="https://github.com/huggingface/transformers/blob/main/CODE_OF_CONDUCT.md">
<img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg">
</a>
<a href="https://zenodo.org/badge/latestdoi/155220641"><img src="https://zenodo.org/badge/155220641.svg" alt="DOI"></a>
</p>
<h4 align="center">
<p>
<b>English</b> |
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hans.md">简体中文</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hant.md">繁體中文</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ko.md">한국어</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_es.md">Español</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ja.md">日本語</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_hd.md">हिन्दी</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ru.md">Русский</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_pt-br.md">Рortuguês</a> |
<a href="https://github.com/huggingface/transformers//blob/main/README_te.md">తెలుగు</a> |
</p>
</h4>
<h3 align="center">
<p>Aprendizado de máquina de última geração para JAX, PyTorch e TensorFlow</p>
</h3>
<h3 align="center">
<a href="https://hf.co/course"><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/course_banner.png"></a>
</h3>
A biblioteca 🤗 Transformers oferece milhares de modelos pré-treinados para executar tarefas em diferentes modalidades, como texto, visão e áudio.
Esses modelos podem ser aplicados a:
* 📝 Texto, para tarefas como classificação de texto, extração de informações, resposta a perguntas, sumarização, tradução, geração de texto, em mais de 100 idiomas.
* 🖼️ Imagens, para tarefas como classificação de imagens, detecção de objetos e segmentação.
* 🗣️ Áudio, para tarefas como reconhecimento de fala e classificação de áudio.
Os modelos Transformer também podem executar tarefas em diversas modalidades combinadas, como responder a perguntas em tabelas, reconhecimento óptico de caracteres, extração de informações de documentos digitalizados, classificação de vídeo e resposta a perguntas visuais.
A biblioteca 🤗 Transformers oferece APIs para baixar e usar rapidamente esses modelos pré-treinados em um texto específico, ajustá-los em seus próprios conjuntos de dados e, em seguida, compartilhá-los com a comunidade em nosso [model hub](https://huggingface.co/models). Ao mesmo tempo, cada módulo Python que define uma arquitetura é totalmente independente e pode ser modificado para permitir experimentos de pesquisa rápidos.
A biblioteca 🤗 Transformers é respaldada pelas três bibliotecas de aprendizado profundo mais populares — [Jax](https://jax.readthedocs.io/en/latest/), [PyTorch](https://pytorch.org/) e [TensorFlow](https://www.tensorflow.org/) — com uma integração perfeita entre elas. É simples treinar seus modelos com uma delas antes de carregá-los para inferência com a outra
## Demonstração Online
Você pode testar a maioria de nossos modelos diretamente em suas páginas a partir do [model hub](https://huggingface.co/models). Também oferecemos [hospedagem de modelos privados, versionamento e uma API de inferência](https://huggingface.co/pricing)
para modelos públicos e privados.
Aqui estão alguns exemplos:
Em Processamento de Linguagem Natural:
- [Completar palavra mascarada com BERT](https://huggingface.co/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France)
- [Reconhecimento de Entidades Nomeadas com Electra](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city)
- [Geração de texto com GPT-2](https://huggingface.co/gpt2?text=A+long+time+ago%2C)
- [Inferência de Linguagem Natural com RoBERTa](https://huggingface.co/roberta-large-mnli?text=The+dog+was+lost.+Nobody+lost+any+animal)
- [Sumarização com BART](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct)
- [Resposta a perguntas com DistilBERT](https://huggingface.co/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species)
- [Tradução com T5](https://huggingface.co/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin)
Em Visão Computacional:
- [Classificação de Imagens com ViT](https://huggingface.co/google/vit-base-patch16-224)
- [Detecção de Objetos com DETR](https://huggingface.co/facebook/detr-resnet-50)
- [Segmentação Semântica com SegFormer](https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512)
- [Segmentação Panóptica com MaskFormer](https://huggingface.co/facebook/maskformer-swin-small-coco)
- [Estimativa de Profundidade com DPT](https://huggingface.co/docs/transformers/model_doc/dpt)
- [Classificação de Vídeo com VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)
- [Segmentação Universal com OneFormer](https://huggingface.co/shi-labs/oneformer_ade20k_dinat_large)
Em Áudio:
- [Reconhecimento Automático de Fala com Wav2Vec2](https://huggingface.co/facebook/wav2vec2-base-960h)
- [Detecção de Palavras-Chave com Wav2Vec2](https://huggingface.co/superb/wav2vec2-base-superb-ks)
- [Classificação de Áudio com Transformer de Espectrograma de Áudio](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593)
Em Tarefas Multimodais:
- [Respostas de Perguntas em Tabelas com TAPAS](https://huggingface.co/google/tapas-base-finetuned-wtq)
- [Respostas de Perguntas Visuais com ViLT](https://huggingface.co/dandelin/vilt-b32-finetuned-vqa)
- [Classificação de Imagens sem Anotação com CLIP](https://huggingface.co/openai/clip-vit-large-patch14)
- [Respostas de Perguntas em Documentos com LayoutLM](https://huggingface.co/impira/layoutlm-document-qa)
- [Classificação de Vídeo sem Anotação com X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)
## 100 Projetos Usando Transformers
Transformers é mais do que um conjunto de ferramentas para usar modelos pré-treinados: é uma comunidade de projetos construídos ao seu redor e o Hugging Face Hub. Queremos que o Transformers permita que desenvolvedores, pesquisadores, estudantes, professores, engenheiros e qualquer outra pessoa construa seus projetos dos sonhos.
Para celebrar as 100.000 estrelas do Transformers, decidimos destacar a comunidade e criamos a página [awesome-transformers](./awesome-transformers.md), que lista 100 projetos incríveis construídos nas proximidades dos Transformers.
Se você possui ou utiliza um projeto que acredita que deveria fazer parte da lista, abra um PR para adicioná-lo!
## Se você está procurando suporte personalizado da equipe Hugging Face
<a target="_blank" href="https://huggingface.co/support">
<img alt="HuggingFace Expert Acceleration Program" src="https://cdn-media.huggingface.co/marketing/transformers/new-support-improved.png" style="max-width: 600px; border: 1px solid #eee; border-radius: 4px; box-shadow: 0 1px 2px 0 rgba(0, 0, 0, 0.05);">
</a><br>
## Tour Rápido
Para usar imediatamente um modelo em uma entrada específica (texto, imagem, áudio, ...), oferecemos a API `pipeline`. Os pipelines agrupam um modelo pré-treinado com o pré-processamento que foi usado durante o treinamento desse modelo. Aqui está como usar rapidamente um pipeline para classificar textos como positivos ou negativos:
```python
from transformers import pipeline
# Carregue o pipeline de classificação de texto
>>> classifier = pipeline("sentiment-analysis")
# Classifique o texto como positivo ou negativo
>>> classifier("Estamos muito felizes em apresentar o pipeline no repositório dos transformers.")
[{'label': 'POSITIVE', 'score': 0.9996980428695679}]
```
A segunda linha de código baixa e armazena em cache o modelo pré-treinado usado pelo pipeline, enquanto a terceira linha o avalia no texto fornecido. Neste exemplo, a resposta é "positiva" com uma confiança de 99,97%.
Muitas tarefas têm um `pipeline` pré-treinado pronto para uso, não apenas em PNL, mas também em visão computacional e processamento de áudio. Por exemplo, podemos facilmente extrair objetos detectados em uma imagem:
``` python
>>> import requests
>>> from PIL import Image
>>> from transformers import pipeline
# Download an image with cute cats
>>> url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample.png"
>>> image_data = requests.get(url, stream=True).raw
>>> image = Image.open(image_data)
# Allocate a pipeline for object detection
>>> object_detector = pipeline('object-detection')
>>> object_detector(image)
[{'score': 0.9982201457023621,
'label': 'remote',
'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
{'score': 0.9960021376609802,
'label': 'remote',
'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
{'score': 0.9954745173454285,
'label': 'couch',
'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
{'score': 0.9988006353378296,
'label': 'cat',
'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9986783862113953,
'label': 'cat',
'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}]
```
Aqui obtemos uma lista de objetos detectados na imagem, com uma caixa envolvendo o objeto e uma pontuação de confiança. Aqui está a imagem original à esquerda, com as previsões exibidas à direita:
<h3 align="center">
<a><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample.png" width="400"></a>
<a><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample_post_processed.png" width="400"></a>
</h3>
Você pode aprender mais sobre as tarefas suportadas pela API `pipeline` em [este tutorial](https://huggingface.co/docs/transformers/task_summary).
Além do `pipeline`, para baixar e usar qualquer um dos modelos pré-treinados em sua tarefa específica, tudo o que é necessário são três linhas de código. Aqui está a versão em PyTorch:
```python
>>> from transformers import AutoTokenizer, AutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = AutoModel.from_pretrained("bert-base-uncased")
>>> inputs = tokenizer("Hello world!", return_tensors="pt")
>>> outputs = model(**inputs)
```
E aqui está o código equivalente para TensorFlow:
```python
>>> from transformers import AutoTokenizer, TFAutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = TFAutoModel.from_pretrained("bert-base-uncased")
>>> inputs = tokenizer("Hello world!", return_tensors="tf")
>>> outputs = model(**inputs)
```
O tokenizador é responsável por todo o pré-processamento que o modelo pré-treinado espera, e pode ser chamado diretamente em uma única string (como nos exemplos acima) ou em uma lista. Ele produzirá um dicionário que você pode usar no código subsequente ou simplesmente passar diretamente para o seu modelo usando o operador de descompactação de argumentos **.
O modelo em si é um [Pytorch `nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) ou um [TensorFlow `tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model)(dependendo do seu back-end) que você pode usar como de costume. [Este tutorial](https://huggingface.co/docs/transformers/training) explica como integrar esse modelo em um ciclo de treinamento clássico do PyTorch ou TensorFlow, ou como usar nossa API `Trainer` para ajuste fino rápido em um novo conjunto de dados.
## Por que devo usar transformers?
1. Modelos state-of-the-art fáceis de usar:
- Alto desempenho em compreensão e geração de linguagem natural, visão computacional e tarefas de áudio.
- Barreira de entrada baixa para educadores e profissionais.
- Poucas abstrações visíveis para o usuário, com apenas três classes para aprender.
- Uma API unificada para usar todos os nossos modelos pré-treinados.
1. Menores custos de computação, menor pegada de carbono:
- Pesquisadores podem compartilhar modelos treinados em vez de treinar sempre do zero.
- Profissionais podem reduzir o tempo de computação e os custos de produção.
- Dezenas de arquiteturas com mais de 60.000 modelos pré-treinados em todas as modalidades.
1. Escolha o framework certo para cada parte da vida de um modelo:
- Treine modelos state-of-the-art em 3 linhas de código.
- Mova um único modelo entre frameworks TF2.0/PyTorch/JAX à vontade.
- Escolha o framework certo de forma contínua para treinamento, avaliação e produção.
1. Personalize facilmente um modelo ou um exemplo para atender às suas necessidades:
- Fornecemos exemplos para cada arquitetura para reproduzir os resultados publicados pelos autores originais.
- Os detalhes internos do modelo são expostos de maneira consistente.
- Os arquivos do modelo podem ser usados de forma independente da biblioteca para experimentos rápidos.
## Por que não devo usar transformers?
- Esta biblioteca não é uma caixa de ferramentas modular para construir redes neurais. O código nos arquivos do modelo não é refatorado com abstrações adicionais de propósito, para que os pesquisadores possam iterar rapidamente em cada um dos modelos sem se aprofundar em abstrações/arquivos adicionais.
- A API de treinamento não é projetada para funcionar com qualquer modelo, mas é otimizada para funcionar com os modelos fornecidos pela biblioteca. Para loops de aprendizado de máquina genéricos, você deve usar outra biblioteca (possivelmente, [Accelerate](https://huggingface.co/docs/accelerate)).
- Embora nos esforcemos para apresentar o maior número possível de casos de uso, os scripts em nossa [pasta de exemplos](https://github.com/huggingface/transformers/tree/main/examples) são apenas isso: exemplos. É esperado que eles não funcionem prontos para uso em seu problema específico e que seja necessário modificar algumas linhas de código para adaptá-los às suas necessidades.
### Com pip
Este repositório é testado no Python 3.8+, Flax 0.4.1+, PyTorch 1.10+ e TensorFlow 2.6+.
Você deve instalar o 🤗 Transformers em um [ambiente virtual](https://docs.python.org/3/library/venv.html). Se você não está familiarizado com ambientes virtuais em Python, confira o [guia do usuário](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/).
Primeiro, crie um ambiente virtual com a versão do Python que você vai usar e ative-o.
Em seguida, você precisará instalar pelo menos um dos back-ends Flax, PyTorch ou TensorFlow.
Consulte a [página de instalação do TensorFlow](https://www.tensorflow.org/install/), a [página de instalação do PyTorch](https://pytorch.org/get-started/locally/#start-locally) e/ou [Flax](https://github.com/google/flax#quick-install) e [Jax](https://github.com/google/jax#installation) páginas de instalação para obter o comando de instalação específico para a sua plataforma.
Quando um desses back-ends estiver instalado, o 🤗 Transformers pode ser instalado usando pip da seguinte forma:
```bash
pip install transformers
```
Se você deseja experimentar com os exemplos ou precisa da versão mais recente do código e não pode esperar por um novo lançamento, você deve instalar a [biblioteca a partir do código-fonte](https://huggingface.co/docs/transformers/installation#installing-from-source).
### Com conda
Desde a versão v4.0.0 do Transformers, agora temos um canal conda: `huggingface`.
O 🤗 Transformers pode ser instalado com conda da seguinte forma:
```bash
conda install -c huggingface transformers
```
Siga as páginas de instalação do Flax, PyTorch ou TensorFlow para ver como instalá-los com conda.
Siga as páginas de instalação do Flax, PyTorch ou TensorFlow para ver como instalá-los com o conda.
> **_NOTA:_** No Windows, você pode ser solicitado a ativar o Modo de Desenvolvedor para aproveitar o cache. Se isso não for uma opção para você, por favor nos avise [neste problema](https://github.com/huggingface/huggingface_hub/issues/1062).
## Arquiteturas de Modelos
**[Todos os pontos de verificação de modelo](https://huggingface.co/models)** fornecidos pelo 🤗 Transformers são integrados de forma transparente do [model hub](https://huggingface.co/models) do huggingface.co, onde são carregados diretamente por [usuários](https://huggingface.co/users) e [organizações](https://huggingface.co/organizations).
Número atual de pontos de verificação: ![](https://img.shields.io/endpoint?url=https://huggingface.co/api/shields/models&color=brightgreen)
🤗 Transformers atualmente fornece as seguintes arquiteturas (veja [aqui](https://huggingface.co/docs/transformers/model_summary) para um resumo de alto nível de cada uma delas):
1. **[ALBERT](https://huggingface.co/docs/transformers/model_doc/albert)** (from Google Research and the Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.
1. **[ALIGN](https://huggingface.co/docs/transformers/model_doc/align)** (from Google Research) released with the paper [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918) by Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig.
1. **[AltCLIP](https://huggingface.co/docs/transformers/model_doc/altclip)** (from BAAI) released with the paper [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) by Chen, Zhongzhi and Liu, Guang and Zhang, Bo-Wen and Ye, Fulong and Yang, Qinghong and Wu, Ledell.
1. **[Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer)** (from MIT) released with the paper [AST: Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778) by Yuan Gong, Yu-An Chung, James Glass.
1. **[Autoformer](https://huggingface.co/docs/transformers/model_doc/autoformer)** (from Tsinghua University) released with the paper [Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://arxiv.org/abs/2106.13008) by Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long.
1. **[Bark](https://huggingface.co/docs/transformers/model_doc/bark)** (from Suno) released in the repository [suno-ai/bark](https://github.com/suno-ai/bark) by Suno AI team.
1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (from Facebook) released with the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer.
1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (from École polytechnique) released with the paper [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis.
1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (from VinAI Research) released with the paper [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen.
1. **[BEiT](https://huggingface.co/docs/transformers/model_doc/beit)** (from Microsoft) released with the paper [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) by Hangbo Bao, Li Dong, Furu Wei.
1. **[BERT](https://huggingface.co/docs/transformers/model_doc/bert)** (from Google) released with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova.
1. **[BERT For Sequence Generation](https://huggingface.co/docs/transformers/model_doc/bert-generation)** (from Google) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[BERTweet](https://huggingface.co/docs/transformers/model_doc/bertweet)** (from VinAI Research) released with the paper [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) by Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen.
1. **[BigBird-Pegasus](https://huggingface.co/docs/transformers/model_doc/bigbird_pegasus)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[BigBird-RoBERTa](https://huggingface.co/docs/transformers/model_doc/big_bird)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[BioGpt](https://huggingface.co/docs/transformers/model_doc/biogpt)** (from Microsoft Research AI4Science) released with the paper [BioGPT: generative pre-trained transformer for biomedical text generation and mining](https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbac409/6713511?guestAccessKey=a66d9b5d-4f83-4017-bb52-405815c907b9) by Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon and Tie-Yan Liu.
1. **[BiT](https://huggingface.co/docs/transformers/model_doc/bit)** (from Google AI) released with the paper [Big Transfer (BiT): General Visual Representation Learning](https://arxiv.org/abs/1912.11370) by Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil Houlsby.
1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BLIP](https://huggingface.co/docs/transformers/model_doc/blip)** (from Salesforce) released with the paper [BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation](https://arxiv.org/abs/2201.12086) by Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi.
1. **[BLIP-2](https://huggingface.co/docs/transformers/model_doc/blip-2)** (from Salesforce) released with the paper [BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models](https://arxiv.org/abs/2301.12597) by Junnan Li, Dongxu Li, Silvio Savarese, Steven Hoi.
1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (from BigScience workshop) released by the [BigScience Workshop](https://bigscience.huggingface.co/).
1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (from Alexa) released with the paper [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) by Adrian de Wynter and Daniel J. Perry.
1. **[BridgeTower](https://huggingface.co/docs/transformers/model_doc/bridgetower)** (from Harbin Institute of Technology/Microsoft Research Asia/Intel Labs) released with the paper [BridgeTower: Building Bridges Between Encoders in Vision-Language Representation Learning](https://arxiv.org/abs/2206.08657) by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan.
1. **[BROS](https://huggingface.co/docs/transformers/model_doc/bros)** (from NAVER CLOVA) released with the paper [BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents](https://arxiv.org/abs/2108.04539) by Teakgyu Hong, Donghyun Kim, Mingi Ji, Wonseok Hwang, Daehyun Nam, Sungrae Park.
1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (from Google Research) released with the paper [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel.
1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (from Inria/Facebook/Sorbonne) released with the paper [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (from Google Research) released with the paper [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting.
1. **[Chinese-CLIP](https://huggingface.co/docs/transformers/model_doc/chinese_clip)** (from OFA-Sys) released with the paper [Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese](https://arxiv.org/abs/2211.01335) by An Yang, Junshu Pan, Junyang Lin, Rui Men, Yichang Zhang, Jingren Zhou, Chang Zhou.
1. **[CLAP](https://huggingface.co/docs/transformers/model_doc/clap)** (from LAION-AI) released with the paper [Large-scale Contrastive Language-Audio Pretraining with Feature Fusion and Keyword-to-Caption Augmentation](https://arxiv.org/abs/2211.06687) by Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, Shlomo Dubnov.
1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (from OpenAI) released with the paper [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever.
1. **[CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)** (from University of Göttingen) released with the paper [Image Segmentation Using Text and Image Prompts](https://arxiv.org/abs/2112.10003) by Timo Lüddecke and Alexander Ecker.
1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (from Salesforce) released with the paper [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong.
1. **[CodeLlama](https://huggingface.co/docs/transformers/model_doc/llama_code)** (from MetaAI) released with the paper [Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/) by Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, Gabriel Synnaeve.
1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (from Microsoft Research Asia) released with the paper [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) by Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang.
1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (from YituTech) released with the paper [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan.
1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (from Facebook AI) released with the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie.
1. **[ConvNeXTV2](https://huggingface.co/docs/transformers/model_doc/convnextv2)** (from Facebook AI) released with the paper [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://arxiv.org/abs/2301.00808) by Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, Saining Xie.
1. **[CPM](https://huggingface.co/docs/transformers/model_doc/cpm)** (from Tsinghua University) released with the paper [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) by Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun.
1. **[CPM-Ant](https://huggingface.co/docs/transformers/model_doc/cpmant)** (from OpenBMB) released by the [OpenBMB](https://www.openbmb.org/).
1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (from Microsoft) released with the paper [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang.
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (from Facebook) released with the paper [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli.
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (from Berkeley/Facebook/Google) released with the paper [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch.
1. **[Deformable DETR](https://huggingface.co/docs/transformers/model_doc/deformable_detr)** (from SenseTime Research) released with the paper [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159) by Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai.
1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (from Facebook) released with the paper [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou.
1. **[DePlot](https://huggingface.co/docs/transformers/model_doc/deplot)** (from Google AI) released with the paper [DePlot: One-shot visual language reasoning by plot-to-table translation](https://arxiv.org/abs/2212.10505) by Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, Yasemin Altun.
1. **[DETA](https://huggingface.co/docs/transformers/model_doc/deta)** (from The University of Texas at Austin) released with the paper [NMS Strikes Back](https://arxiv.org/abs/2212.06137) by Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, Philipp Krähenbühl.
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (from Facebook) released with the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (from Microsoft Research) released with the paper [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
1. **[DiNAT](https://huggingface.co/docs/transformers/model_doc/dinat)** (from SHI Labs) released with the paper [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) by Ali Hassani and Humphrey Shi.
1. **[DINOv2](https://huggingface.co/docs/transformers/model_doc/dinov2)** (from Meta AI) released with the paper [DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193) by Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, Piotr Bojanowski.
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation) and a German version of DistilBERT.
1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (from Microsoft Research) released with the paper [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) by Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei.
1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (from NAVER), released together with the paper [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) by Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park.
1. **[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (from Facebook) released with the paper [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) by Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
1. **[DPT](https://huggingface.co/docs/transformers/master/model_doc/dpt)** (from Intel Labs) released with the paper [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) by René Ranftl, Alexey Bochkovskiy, Vladlen Koltun.
1. **[EfficientFormer](https://huggingface.co/docs/transformers/model_doc/efficientformer)** (from Snap Research) released with the paper [EfficientFormer: Vision Transformers at MobileNetSpeed](https://arxiv.org/abs/2206.01191) by Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren.
1. **[EfficientNet](https://huggingface.co/docs/transformers/model_doc/efficientnet)** (from Google Brain) released with the paper [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan, Quoc V. Le.
1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
1. **[EnCodec](https://huggingface.co/docs/transformers/model_doc/encodec)** (from Meta AI) released with the paper [High Fidelity Neural Audio Compression](https://arxiv.org/abs/2210.13438) by Alexandre Défossez, Jade Copet, Gabriel Synnaeve, Yossi Adi.
1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (from Google Research) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)** (from Baidu) released with the paper [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) by Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu.
1. **[ErnieM](https://huggingface.co/docs/transformers/model_doc/ernie_m)** (from Baidu) released with the paper [ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora](https://arxiv.org/abs/2012.15674) by Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang.
1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (from Meta AI) are transformer protein language models. **ESM-1b** was released with the paper [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. **ESM-1v** was released with the paper [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648) by Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives. **ESM-2 and ESMFold** were released with the paper [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902) by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives.
1. **[Falcon](https://huggingface.co/docs/transformers/model_doc/falcon)** (from Technology Innovation Institute) by Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme.
1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FLAN-UL2](https://huggingface.co/docs/transformers/model_doc/flan-ul2)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-ul2-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (from Facebook AI) released with the paper [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela.
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
1. **[FocalNet](https://huggingface.co/docs/transformers/model_doc/focalnet)** (from Microsoft Research) released with the paper [Focal Modulation Networks](https://arxiv.org/abs/2203.11926) by Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao.
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (from Microsoft Research) released with the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang.
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (from KAIST) released with the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim.
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://openai.com/research/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (from EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy.
1. **[GPT NeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox)** (from EleutherAI) released with the paper [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) by Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach
1. **[GPT NeoX Japanese](https://huggingface.co/docs/transformers/model_doc/gpt_neox_japanese)** (from ABEJA) released by Shinya Otani, Takayoshi Makabe, Anuj Arora, and Kyo Hattori.
1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (from OpenAI) released with the paper [Language Models are Unsupervised Multitask Learners](https://openai.com/research/better-language-models/) by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**.
1. **[GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj)** (from EleutherAI) released in the repository [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) by Ben Wang and Aran Komatsuzaki.
1. **[GPT-Sw3](https://huggingface.co/docs/transformers/model_doc/gpt-sw3)** (from AI-Sweden) released with the paper [Lessons Learned from GPT-SW3: Building the First Large-Scale Generative Language Model for Swedish](http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.376.pdf) by Ariel Ekgren, Amaru Cuba Gyllensten, Evangelia Gogoulou, Alice Heiman, Severine Verlinden, Joey Öhman, Fredrik Carlsson, Magnus Sahlgren.
1. **[GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode)** (from BigCode) released with the paper [SantaCoder: don't reach for the stars!](https://arxiv.org/abs/2301.03988) by Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, Logesh Kumar Umapathi, Carolyn Jane Anderson, Yangtian Zi, Joel Lamy Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry Abulkhanov, Manuel Romero, Michael Lappert, Francesco De Toni, Bernardo García del Río, Qian Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab Mangrulkar, David Lansky, Huu Nguyen, Danish Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau, Yacine Jernite, Sean Hughes, Daniel Fried, Arjun Guha, Harm de Vries, Leandro von Werra.
1. **[GPTSAN-japanese](https://huggingface.co/docs/transformers/model_doc/gptsan-japanese)** released in the repository [tanreinama/GPTSAN](https://github.com/tanreinama/GPTSAN/blob/main/report/model.md) by Toshiyuki Sakamoto(tanreinama).
1. **[Graphormer](https://huggingface.co/docs/transformers/model_doc/graphormer)** (from Microsoft) released with the paper [Do Transformers Really Perform Bad for Graph Representation?](https://arxiv.org/abs/2106.05234) by Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu.
1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (from UCSD, NVIDIA) released with the paper [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) by Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang.
1. **[HerBERT](https://huggingface.co/docs/transformers/model_doc/herbert)** (from Allegro.pl, AGH University of Science and Technology) released with the paper [KLEJ: Comprehensive Benchmark for Polish Language Understanding](https://www.aclweb.org/anthology/2020.acl-main.111.pdf) by Piotr Rybak, Robert Mroczkowski, Janusz Tracz, Ireneusz Gawlik.
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (from Facebook) released with the paper [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed.
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (from Berkeley) released with the paper [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer.
1. **[IDEFICS](https://huggingface.co/docs/transformers/model_doc/idefics)** (from HuggingFace) released with the paper [OBELICS: An Open Web-Scale Filtered Dataset of Interleaved Image-Text Documents](https://huggingface.co/papers/2306.16527) by Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov, Thomas Wang, Siddharth Karamcheti, Alexander M. Rush, Douwe Kiela, Matthieu Cord, Victor Sanh.
1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (from OpenAI) released with the paper [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever.
1. **[Informer](https://huggingface.co/docs/transformers/model_doc/informer)** (from Beihang University, UC Berkeley, Rutgers University, SEDD Company) released with the paper [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting](https://arxiv.org/abs/2012.07436) by Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
1. **[InstructBLIP](https://huggingface.co/docs/transformers/model_doc/instructblip)** (from Salesforce) released with the paper [InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning](https://arxiv.org/abs/2305.06500) by Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, Steven Hoi.
1. **[Jukebox](https://huggingface.co/docs/transformers/model_doc/jukebox)** (from OpenAI) released with the paper [Jukebox: A Generative Model for Music](https://arxiv.org/pdf/2005.00341.pdf) by Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever.
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou.
1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (from Microsoft Research Asia) released with the paper [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) by Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei.
1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutxlm)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (from Meta AI) released with the paper [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) by Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze.
1. **[LiLT](https://huggingface.co/docs/transformers/model_doc/lilt)** (from South China University of Technology) released with the paper [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669) by Jiapeng Wang, Lianwen Jin, Kai Ding.
1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (from The FAIR team of Meta AI) released with the paper [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971) by Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample.
1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (from The FAIR team of Meta AI) released with the paper [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/) by Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom.
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (from Google AI) released with the paper [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang.
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (from Studio Ousia) released with the paper [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.
1. **[LXMERT](https://huggingface.co/docs/transformers/model_doc/lxmert)** (from UNC Chapel Hill) released with the paper [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal.
1. **[M-CTC-T](https://huggingface.co/docs/transformers/model_doc/mctct)** (from Facebook) released with the paper [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) by Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert.
1. **[M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100)** (from Facebook) released with the paper [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) by Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin.
1. **[MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)** Machine translation models trained using [OPUS](http://opus.nlpl.eu/) data by Jörg Tiedemann. The [Marian Framework](https://marian-nmt.github.io/) is being developed by the Microsoft Translator Team.
1. **[MarkupLM](https://huggingface.co/docs/transformers/model_doc/markuplm)** (from Microsoft Research Asia) released with the paper [MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document Understanding](https://arxiv.org/abs/2110.08518) by Junlong Li, Yiheng Xu, Lei Cui, Furu Wei.
1. **[Mask2Former](https://huggingface.co/docs/transformers/model_doc/mask2former)** (from FAIR and UIUC) released with the paper [Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527) by Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Rohit Girdhar.
1. **[MaskFormer](https://huggingface.co/docs/transformers/model_doc/maskformer)** (from Meta and UIUC) released with the paper [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) by Bowen Cheng, Alexander G. Schwing, Alexander Kirillov.
1. **[MatCha](https://huggingface.co/docs/transformers/model_doc/matcha)** (from Google AI) released with the paper [MatCha: Enhancing Visual Language Pretraining with Math Reasoning and Chart Derendering](https://arxiv.org/abs/2212.09662) by Fangyu Liu, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Yasemin Altun, Nigel Collier, Julian Martin Eisenschlos.
1. **[mBART](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
1. **[mBART-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan.
1. **[MEGA](https://huggingface.co/docs/transformers/model_doc/mega)** (from Meta/USC/CMU/SJTU) released with the paper [Mega: Moving Average Equipped Gated Attention](https://arxiv.org/abs/2209.10655) by Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and Luke Zettlemoyer.
1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[MGP-STR](https://huggingface.co/docs/transformers/model_doc/mgp-str)** (from Alibaba Research) released with the paper [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592) by Peng Wang, Cheng Da, and Cong Yao.
1. **[Mistral](https://huggingface.co/docs/transformers/model_doc/mistral)** (from Mistral AI) by The [Mistral AI](https://mistral.ai) team: Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (from Studio Ousia) released with the paper [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka.
1. **[MMS](https://huggingface.co/docs/transformers/model_doc/mms)** (from Facebook) released with the paper [Scaling Speech Technology to 1,000+ Languages](https://arxiv.org/abs/2305.13516) by Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky, Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi, Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning Hsu, Alexis Conneau, Michael Auli.
1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (from CMU/Google Brain) released with the paper [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou.
1. **[MobileNetV1](https://huggingface.co/docs/transformers/model_doc/mobilenet_v1)** (from Google Inc.) released with the paper [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) by Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam.
1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (from Google Inc.) released with the paper [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) by Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen.
1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (from Apple) released with the paper [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari.
1. **[MobileViTV2](https://huggingface.co/docs/transformers/model_doc/mobilevitv2)** (from Apple) released with the paper [Separable Self-attention for Mobile Vision Transformers](https://arxiv.org/abs/2206.02680) by Sachin Mehta and Mohammad Rastegari.
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
1. **[MPT](https://huggingface.co/docs/transformers/model_doc/mpt)** (from MosaiML) released with the repository [llm-foundry](https://github.com/mosaicml/llm-foundry/) by the MosaicML NLP Team.
1. **[MRA](https://huggingface.co/docs/transformers/model_doc/mra)** (from the University of Wisconsin - Madison) released with the paper [Multi Resolution Analysis (MRA) for Approximate Self-Attention](https://arxiv.org/abs/2207.10284) by Zhanpeng Zeng, Sourav Pal, Jeffery Kline, Glenn M Fung, Vikas Singh.
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
1. **[MusicGen](https://huggingface.co/docs/transformers/model_doc/musicgen)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (from RUC AI Box) released with the paper [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen.
1. **[NAT](https://huggingface.co/docs/transformers/model_doc/nat)** (from SHI Labs) released with the paper [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143) by Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi.
1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (from Huawei Noahs Ark Lab) released with the paper [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) by Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu.
1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[Nougat](https://huggingface.co/docs/transformers/model_doc/nougat)** (from Meta AI) released with the paper [Nougat: Neural Optical Understanding for Academic Documents](https://arxiv.org/abs/2308.13418) by Lukas Blecher, Guillem Cucurull, Thomas Scialom, Robert Stojnic.
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (from the University of Wisconsin - Madison) released with the paper [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh.
1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (from SHI Labs) released with the paper [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) by Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi.
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released on GitHub (now removed).
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al.
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (from Google AI) released with the paper [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby.
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (from Google) released with the paper [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) by Jason Phang, Yao Zhao, and Peter J. Liu.
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (from Deepmind) released with the paper [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) by Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira.
1. **[Persimmon](https://huggingface.co/docs/transformers/model_doc/persimmon)** (from ADEPT) released in a [blog post](https://www.adept.ai/blog/persimmon-8b) by Erich Elsen, Augustus Odena, Maxwell Nye, Sağnak Taşırlar, Tri Dao, Curtis Hawthorne, Deepak Moparthi, Arushi Somani.
1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen.
1. **[Pix2Struct](https://huggingface.co/docs/transformers/model_doc/pix2struct)** (from Google) released with the paper [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding](https://arxiv.org/abs/2210.03347) by Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova.
1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (from UCLA NLP) released with the paper [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) by Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang.
1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (from Sea AI Labs) released with the paper [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) by Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng.
1. **[Pop2Piano](https://huggingface.co/docs/transformers/model_doc/pop2piano)** released with the paper [Pop2Piano : Pop Audio-based Piano Cover Generation](https://arxiv.org/abs/2211.00895) by Jongho Choi and Kyogu Lee.
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[PVT](https://huggingface.co/docs/transformers/model_doc/pvt)** (from Nanjing University, The University of Hong Kong etc.) released with the paper [Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions](https://arxiv.org/pdf/2102.12122.pdf) by Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao.
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (from NVIDIA) released with the paper [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) by Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius.
1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (from Facebook) released with the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) by Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela.
1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (from Google Research) released with the paper [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) by Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang.
1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (from Google Research) released with the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
1. **[RegNet](https://huggingface.co/docs/transformers/model_doc/regnet)** (from META Platforms) released with the paper [Designing Network Design Space](https://arxiv.org/abs/2003.13678) by Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár.
1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (from Google Research) released with the paper [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/abs/2010.12821) by Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder.
1. **[ResNet](https://huggingface.co/docs/transformers/model_doc/resnet)** (from Microsoft Research) released with the paper [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) by Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun.
1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (from Facebook), released together with the paper [RoBERTa: A Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
1. **[RoBERTa-PreLayerNorm](https://huggingface.co/docs/transformers/model_doc/roberta-prelayernorm)** (from Facebook) released with the paper [fairseq: A Fast, Extensible Toolkit for Sequence Modeling](https://arxiv.org/abs/1904.01038) by Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli.
1. **[RoCBert](https://huggingface.co/docs/transformers/model_doc/roc_bert)** (from WeChatAI) released with the paper [RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining](https://aclanthology.org/2022.acl-long.65.pdf) by HuiSu, WeiweiShi, XiaoyuShen, XiaoZhou, TuoJi, JiaruiFang, JieZhou.
1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (from ZhuiyiTechnology), released together with the paper [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/abs/2104.09864) by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu.
1. **[RWKV](https://huggingface.co/docs/transformers/model_doc/rwkv)** (from Bo Peng), released on [this repo](https://github.com/BlinkDL/RWKV-LM) by Bo Peng.
1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (from NVIDIA) released with the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo.
1. **[Segment Anything](https://huggingface.co/docs/transformers/model_doc/sam)** (from Meta AI) released with the paper [Segment Anything](https://arxiv.org/pdf/2304.02643v1.pdf) by Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alex Berg, Wan-Yen Lo, Piotr Dollar, Ross Girshick.
1. **[SEW](https://huggingface.co/docs/transformers/model_doc/sew)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SEW-D](https://huggingface.co/docs/transformers/model_doc/sew_d)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SpeechT5](https://huggingface.co/docs/transformers/model_doc/speecht5)** (from Microsoft Research) released with the paper [SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing](https://arxiv.org/abs/2110.07205) by Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li, Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, Furu Wei.
1. **[SpeechToTextTransformer](https://huggingface.co/docs/transformers/model_doc/speech_to_text)** (from Facebook), released together with the paper [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino.
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (from Facebook), released together with the paper [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau.
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (from Tel Aviv University), released together with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy.
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (from MBZUAI) released with the paper [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) by Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan.
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (from Microsoft) released with the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (from Microsoft) released with the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo.
1. **[Swin2SR](https://huggingface.co/docs/transformers/model_doc/swin2sr)** (from University of Würzburg) released with the paper [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345) by Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte.
1. **[SwitchTransformers](https://huggingface.co/docs/transformers/model_doc/switch_transformers)** (from Google) released with the paper [Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity](https://arxiv.org/abs/2101.03961) by William Fedus, Barret Zoph, Noam Shazeer.
1. **[T5](https://huggingface.co/docs/transformers/model_doc/t5)** (from Google AI) released with the paper [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (from Google AI) released in the repository [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[Table Transformer](https://huggingface.co/docs/transformers/model_doc/table-transformer)** (from Microsoft Research) released with the paper [PubTables-1M: Towards Comprehensive Table Extraction From Unstructured Documents](https://arxiv.org/abs/2110.00061) by Brandon Smock, Rohith Pesala, Robin Abraham.
1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (from Google AI) released with the paper [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos.
1. **[TAPEX](https://huggingface.co/docs/transformers/model_doc/tapex)** (from Microsoft Research) released with the paper [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou.
1. **[Time Series Transformer](https://huggingface.co/docs/transformers/model_doc/time_series_transformer)** (from HuggingFace).
1. **[TimeSformer](https://huggingface.co/docs/transformers/model_doc/timesformer)** (from Facebook) released with the paper [Is Space-Time Attention All You Need for Video Understanding?](https://arxiv.org/abs/2102.05095) by Gedas Bertasius, Heng Wang, Lorenzo Torresani.
1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/model_doc/trajectory_transformers)** (from the University of California at Berkeley) released with the paper [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine
1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (from Microsoft), released together with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
1. **[TVLT](https://huggingface.co/docs/transformers/model_doc/tvlt)** (from UNC Chapel Hill) released with the paper [TVLT: Textless Vision-Language Transformer](https://arxiv.org/abs/2209.14156) by Zineng Tang, Jaemin Cho, Yixin Nie, Mohit Bansal.
1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
1. **[UMT5](https://huggingface.co/docs/transformers/model_doc/umt5)** (from Google Research) released with the paper [UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining](https://openreview.net/forum?id=kXwdL1cWOAi) by Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, Noah Constant.
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (from Microsoft Research) released with the paper [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (from Microsoft Research) released with the paper [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu.
1. **[UPerNet](https://huggingface.co/docs/transformers/model_doc/upernet)** (from Peking University) released with the paper [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221) by Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun.
1. **[VAN](https://huggingface.co/docs/transformers/model_doc/van)** (from Tsinghua University and Nankai University) released with the paper [Visual Attention Network](https://arxiv.org/abs/2202.09741) by Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu.
1. **[VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)** (from Multimedia Computing Group, Nanjing University) released with the paper [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602) by Zhan Tong, Yibing Song, Jue Wang, Limin Wang.
1. **[ViLT](https://huggingface.co/docs/transformers/model_doc/vilt)** (from NAVER AI Lab/Kakao Enterprise/Kakao Brain) released with the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Wonjae Kim, Bokyung Son, Ildoo Kim.
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VitDet](https://huggingface.co/docs/transformers/model_doc/vitdet)** (from Meta AI) released with the paper [Exploring Plain Vision Transformer Backbones for Object Detection](https://arxiv.org/abs/2203.16527) by Yanghao Li, Hanzi Mao, Ross Girshick, Kaiming He.
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (from Meta AI) released with the paper [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick.
1. **[ViTMatte](https://huggingface.co/docs/transformers/model_doc/vitmatte)** (from HUST-VL) rreleased with the paper [ViTMatte: Boosting Image Matting with Pretrained Plain Vision Transformers](https://arxiv.org/abs/2305.15272) by Jingfeng Yao, Xinggang Wang, Shusheng Yang, Baoyuan Wang.
1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (from Meta AI) released with the paper [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas.
1. **[VITS](https://huggingface.co/docs/transformers/model_doc/vits)** (from Kakao Enterprise) released with the paper [Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech](https://arxiv.org/abs/2106.06103) by Jaehyeon Kim, Jungil Kong, Juhee Son.
1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (from Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) by Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid.
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (from Facebook AI) released with the paper [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (from Facebook AI) released with the paper [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino.
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (from Facebook AI) released with the paper [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) by Qiantong Xu, Alexei Baevski, Michael Auli.
1. **[WavLM](https://huggingface.co/docs/transformers/model_doc/wavlm)** (from Microsoft Research) released with the paper [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei.
1. **[Whisper](https://huggingface.co/docs/transformers/model_doc/whisper)** (from OpenAI) released with the paper [Robust Speech Recognition via Large-Scale Weak Supervision](https://cdn.openai.com/papers/whisper.pdf) by Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, Ilya Sutskever.
1. **[X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)** (from Microsoft Research) released with the paper [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816) by Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang, Gaofeng Meng, Jianlong Fu, Shiming Xiang, Haibin Ling.
1. **[X-MOD](https://huggingface.co/docs/transformers/model_doc/xmod)** (from Meta AI) released with the paper [Lifting the Curse of Multilinguality by Pre-training Modular Transformers](http://dx.doi.org/10.18653/v1/2022.naacl-main.255) by Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James Cross, Sebastian Riedel, Mikel Artetxe.
1. **[XGLM](https://huggingface.co/docs/transformers/model_doc/xglm)** (From Facebook AI) released with the paper [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li.
1. **[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (from Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau.
1. **[XLM-ProphetNet](https://huggingface.co/docs/transformers/model_doc/xlm-prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[XLM-RoBERTa](https://huggingface.co/docs/transformers/model_doc/xlm-roberta)** (from Facebook AI), released together with the paper [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov.
1. **[XLM-RoBERTa-XL](https://huggingface.co/docs/transformers/model_doc/xlm-roberta-xl)** (from Facebook AI), released together with the paper [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) by Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau.
1. **[XLM-V](https://huggingface.co/docs/transformers/model_doc/xlm-v)** (from Meta AI) released with the paper [XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models](https://arxiv.org/abs/2301.10472) by Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Naman Goyal, Marjan Ghazvininejad, Luke Zettlemoyer, Madian Khabsa.
1. **[XLNet](https://huggingface.co/docs/transformers/model_doc/xlnet)** (from Google/CMU) released with the paper [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
1. **[XLS-R](https://huggingface.co/docs/transformers/model_doc/xls_r)** (from Facebook AI) released with the paper [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) by Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli.
1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (from Facebook AI) released with the paper [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) by Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli.
1. **[YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos)** (from Huazhong University of Science & Technology) released with the paper [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) by Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu.
1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (from the University of Wisconsin - Madison) released with the paper [You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling](https://arxiv.org/abs/2111.09714) by Zhanpeng Zeng,
Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh.
1. Quer contribuir com um novo modelo? Adicionamos um **guia detalhado e modelos de exemplo** para orientar você no processo de adição de um novo modelo. Você pode encontrá-los na pasta [`templates`](./templates) do repositório. Certifique-se de verificar as [diretrizes de contribuição](./CONTRIBUTING.md) e entrar em contato com os mantenedores ou abrir uma issue para coletar feedback antes de iniciar sua PR.
Para verificar se cada modelo tem uma implementação em Flax, PyTorch ou TensorFlow, ou possui um tokenizador associado com a biblioteca 🤗 Tokenizers, consulte [esta tabela](https://huggingface.co/docs/transformers/index#supported-frameworks).
Essas implementações foram testadas em vários conjuntos de dados (veja os scripts de exemplo) e devem corresponder ao desempenho das implementações originais. Você pode encontrar mais detalhes sobre o desempenho na seção de Exemplos da [documentação](https://github.com/huggingface/transformers/tree/main/examples).
## Saiba mais
| Seção | Descrição |
|-|-|
| [Documentação](https://huggingface.co/docs/transformers/) | Documentação completa da API e tutoriais |
| [Resumo de Tarefas](https://huggingface.co/docs/transformers/task_summary) | Tarefas suportadas pelo 🤗 Transformers |
| [Tutorial de Pré-processamento](https://huggingface.co/docs/transformers/preprocessing) | Usando a classe `Tokenizer` para preparar dados para os modelos |
| [Treinamento e Ajuste Fino](https://huggingface.co/docs/transformers/training) | Usando os modelos fornecidos pelo 🤗 Transformers em um loop de treinamento PyTorch/TensorFlow e a API `Trainer` |
| [Tour Rápido: Scripts de Ajuste Fino/Utilização](https://github.com/huggingface/transformers/tree/main/examples) | Scripts de exemplo para ajuste fino de modelos em uma ampla gama de tarefas |
| [Compartilhamento e Envio de Modelos](https://huggingface.co/docs/transformers/model_sharing) | Envie e compartilhe seus modelos ajustados com a comunidade |
## Citação
Agora temos um [artigo](https://www.aclweb.org/anthology/2020.emnlp-demos.6/) que você pode citar para a biblioteca 🤗 Transformers:
```bibtex
@inproceedings{wolf-etal-2020-transformers,
title = "Transformers: State-of-the-Art Natural Language Processing",
author = "Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and Rémi Louf and Morgan Funtowicz and Joe Davison and Sam Shleifer and Patrick von Platen and Clara Ma and Yacine Jernite and Julien Plu and Canwen Xu and Teven Le Scao and Sylvain Gugger and Mariama Drame and Quentin Lhoest and Alexander M. Rush",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = out,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.emnlp-demos.6",
pages = "38--45"
}
```

View File

@ -1,551 +0,0 @@
<!---
Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
<p align="center">
<picture>
<source media="(prefers-color-scheme: dark)" srcset="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-dark.svg">
<source media="(prefers-color-scheme: light)" srcset="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-light.svg">
<img alt="Hugging Face Transformers Library" src="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-light.svg" width="352" height="59" style="max-width: 100%;">
</picture>
<br/>
<br/>
</p>
<p align="center">
<a href="https://circleci.com/gh/huggingface/transformers">
<img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/main">
</a>
<a href="https://github.com/huggingface/transformers/blob/main/LICENSE">
<img alt="GitHub" src="https://img.shields.io/github/license/huggingface/transformers.svg?color=blue">
</a>
<a href="https://huggingface.co/docs/transformers/index">
<img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/docs/transformers/index.svg?down_color=red&down_message=offline&up_message=online">
</a>
<a href="https://github.com/huggingface/transformers/releases">
<img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/transformers.svg">
</a>
<a href="https://github.com/huggingface/transformers/blob/main/CODE_OF_CONDUCT.md">
<img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg">
</a>
<a href="https://zenodo.org/badge/latestdoi/155220641"><img src="https://zenodo.org/badge/155220641.svg" alt="DOI"></a>
</p>
<h4 align="center">
<p>
<a href="https://github.com/huggingface/transformers/blob/main/README.md">English</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hans.md">简体中文</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hant.md">繁體中文</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ko.md">한국어</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_es.md">Español</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ja.md">日本語</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_hd.md">हिन्दी</a> |
<b>Русский</b>
<a href="https://github.com/huggingface/transformers//blob/main/README_te.md">తెలుగు</a> |
<p>
</h4>
<h3 align="center">
<p>Современное машинное обучение для JAX, PyTorch и TensorFlow</p>
</h3>
<h3 align="center">
<a href="https://hf.co/course"><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/course_banner.png"></a>
</h3>
🤗 Transformers предоставляет тысячи предварительно обученных моделей для выполнения различных задач, таких как текст, зрение и аудио.
Эти модели могут быть применены к:
* 📝 Тексту для таких задач, как классификация текстов, извлечение информации, ответы на вопросы, обобщение, перевод, генерация текстов на более чем 100 языках.
* 🖼️ Изображениям для задач классификации изображений, обнаружения объектов и сегментации.
* 🗣️ Аудио для задач распознавания речи и классификации аудио.
Модели transformers также могут выполнять несколько задач, такие как ответы на табличные вопросы, распознавание оптических символов, извлечение информации из отсканированных документов, классификация видео и ответы на визуальные вопросы.
🤗 Transformers предоставляет API для быстрой загрузки и использования предварительно обученных моделей, их тонкой настройки на собственных датасетах и последующего взаимодействия ими с сообществом на нашем [сайте](https://huggingface.co/models). В то же время каждый python модуль, определяющий архитектуру, полностью автономен и может быть модифицирован для проведения быстрых исследовательских экспериментов.
🤗 Transformers опирается на три самые популярные библиотеки глубокого обучения - [Jax](https://jax.readthedocs.io/en/latest/), [PyTorch](https://pytorch.org/) и [TensorFlow](https://www.tensorflow.org/) - и легко интегрируется между ними. Это позволяет легко обучать модели с помощью одной из них, а затем загружать их для выводов с помощью другой.
## Онлайн демонстрация
Большинство наших моделей можно протестировать непосредственно на их страницах с [сайта](https://huggingface.co/models). Мы также предлагаем [привтаный хостинг моделей, контроль версий и API для выводов](https://huggingface.co/pricing) для публичных и частных моделей.
Вот несколько примеров:
В области NLP ( Обработка текстов на естественном языке ):
- [Маскированное заполнение слов с помощью BERT](https://huggingface.co/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France)
- [Распознавание сущностей с помощью Electra](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city)
- [Генерация текста с помощью GPT-2](https://huggingface.co/gpt2?text=A+long+time+ago%2C+)
- [Выводы на естественном языке с помощью RoBERTa](https://huggingface.co/roberta-large-mnli?text=The+dog+was+lost.+Nobody+lost+any+animal)
- [Обобщение с помощью BART](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct)
- [Ответы на вопросы с помощью DistilBERT](https://huggingface.co/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species)
- [Перевод с помощью T5](https://huggingface.co/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin)
В области компьютерного зрения:
- [Классификация изображений с помощью ViT](https://huggingface.co/google/vit-base-patch16-224)
- [Обнаружение объектов с помощью DETR](https://huggingface.co/facebook/detr-resnet-50)
- [Семантическая сегментация с помощью SegFormer](https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512)
- [Сегментация паноптикума с помощью MaskFormer](https://huggingface.co/facebook/maskformer-swin-small-coco)
- [Оценка глубины с помощью DPT](https://huggingface.co/docs/transformers/model_doc/dpt)
- [Классификация видео с помощью VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)
- [Универсальная сегментация с помощью OneFormer](https://huggingface.co/shi-labs/oneformer_ade20k_dinat_large)
В области звука:
- [Автоматическое распознавание речи с помощью Wav2Vec2](https://huggingface.co/facebook/wav2vec2-base-960h)
- [Поиск ключевых слов с помощью Wav2Vec2](https://huggingface.co/superb/wav2vec2-base-superb-ks)
- [Классификация аудиоданных с помощью траснформера аудиоспектрограмм](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593)
В мультимодальных задачах:
- [Ответы на вопросы по таблице с помощью TAPAS](https://huggingface.co/google/tapas-base-finetuned-wtq)
- [Визуальные ответы на вопросы с помощью ViLT](https://huggingface.co/dandelin/vilt-b32-finetuned-vqa)
- [Zero-shot классификация изображений с помощью CLIP](https://huggingface.co/openai/clip-vit-large-patch14)
- [Ответы на вопросы по документам с помощью LayoutLM](https://huggingface.co/impira/layoutlm-document-qa)
- [Zero-shot классификация видео с помощью X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)
## 100 проектов, использующих Transformers
Transformers - это не просто набор инструментов для использования предварительно обученных моделей: это сообщество проектов, созданное на его основе, и
Hugging Face Hub. Мы хотим, чтобы Transformers позволил разработчикам, исследователям, студентам, профессорам, инженерам и всем желающим
создавать проекты своей мечты.
Чтобы отпраздновать 100 тысяч звезд Transformers, мы решили сделать акцент на сообществе, и создали страницу [awesome-transformers](./awesome-transformers.md), на которой перечислены 100
невероятных проектов, созданных с помощью transformers.
Если вы являетесь владельцем или пользователем проекта, который, по вашему мнению, должен быть включен в этот список, пожалуйста, откройте PR для его добавления!
## Если вы хотите получить индивидуальную поддержку от команды Hugging Face
<a target="_blank" href="https://huggingface.co/support">
<img alt="HuggingFace Expert Acceleration Program" src="https://cdn-media.huggingface.co/marketing/transformers/new-support-improved.png" style="max-width: 600px; border: 1px solid #eee; border-radius: 4px; box-shadow: 0 1px 2px 0 rgba(0, 0, 0, 0.05);">
</a><br>
## Быстрый гайд
Для использования модели на заданном входе (текст, изображение, звук, ...) мы предоставляем API `pipeline`. Конвейеры объединяют предварительно обученную модель с препроцессингом, который использовался при ее обучении. Вот как можно быстро использовать конвейер для классификации положительных и отрицательных текстов:
```python
>>> from transformers import pipeline
# Выделение конвейера для анализа настроений
>>> classifier = pipeline('sentiment-analysis')
>>> classifier('Мы очень рады представить конвейер в transformers.')
[{'label': 'POSITIVE', 'score': 0.9996980428695679}]
```
Вторая строка кода загружает и кэширует предварительно обученную модель, используемую конвейером, а третья оценивает ее на заданном тексте. Здесь ответ "POSITIVE" с уверенностью 99,97%.
Во многих задачах, как в НЛП, так и в компьютерном зрении и речи, уже есть готовый `pipeline`. Например, мы можем легко извлечь обнаруженные объекты на изображении:
``` python
>>> import requests
>>> from PIL import Image
>>> from transformers import pipeline
# Скачиваем изображение с милыми котиками
>>> url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample.png"
>>> image_data = requests.get(url, stream=True).raw
>>> image = Image.open(image_data)
# Выделение конвейера для обнаружения объектов
>>> object_detector = pipeline('object-detection')
>>> object_detector(image)
[{'score': 0.9982201457023621,
'label': 'remote',
'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
{'score': 0.9960021376609802,
'label': 'remote',
'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
{'score': 0.9954745173454285,
'label': 'couch',
'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
{'score': 0.9988006353378296,
'label': 'cat',
'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9986783862113953,
'label': 'cat',
'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}]
```
Здесь мы получаем список объектов, обнаруженных на изображении, с рамкой вокруг объекта и оценкой достоверности. Слева - исходное изображение, справа прогнозы:
<h3 align="center">
<a><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample.png" width="400"></a>
<a><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample_post_processed.png" width="400"></a>
</h3>
Подробнее о задачах, поддерживаемых API `pipeline`, можно узнать в [этом учебном пособии](https://huggingface.co/docs/transformers/task_sum)
В дополнение к `pipeline`, для загрузки и использования любой из предварительно обученных моделей в заданной задаче достаточно трех строк кода. Вот версия для PyTorch:
```python
>>> from transformers import AutoTokenizer, AutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = AutoModel.from_pretrained("bert-base-uncased")
>>> inputs = tokenizer("Привет мир!", return_tensors="pt")
>>> outputs = model(**inputs)
```
А вот эквивалентный код для TensorFlow:
```python
>>> from transformers import AutoTokenizer, TFAutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = TFAutoModel.from_pretrained("bert-base-uncased")
>>> inputs = tokenizer("Привет мир!", return_tensors="tf")
>>> outputs = model(**inputs)
```
Токенизатор отвечает за всю предварительную обработку, которую ожидает предварительно обученная модель, и может быть вызван непосредственно с помощью одной строки (как в приведенных выше примерах) или на списке. В результате будет получен словарь, который можно использовать в последующем коде или просто напрямую передать в модель с помощью оператора распаковки аргументов **.
Сама модель представляет собой обычный [Pytorch `nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) или [TensorFlow `tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) (в зависимости от используемого бэкенда), который можно использовать как обычно. [В этом руководстве](https://huggingface.co/docs/transformers/training) рассказывается, как интегрировать такую модель в классический цикл обучения PyTorch или TensorFlow, или как использовать наш API `Trainer` для быстрой тонкой настройки на новом датасете.
## Почему необходимо использовать transformers?
1. Простые в использовании современные модели:
- Высокая производительность в задачах понимания и генерации естественного языка, компьютерного зрения и аудио.
- Низкий входной барьер для преподавателей и практиков.
- Небольшое количество абстракций для пользователя и всего три класса для изучения.
- Единый API для использования всех наших предварительно обученных моделей.
1. Более низкие вычислительные затраты, меньший "углеродный след":
- Исследователи могут обмениваться обученными моделями вместо того, чтобы постоянно их переобучать.
- Практики могут сократить время вычислений и производственные затраты.
- Десятки архитектур с более чем 60 000 предварительно обученных моделей для всех модальностей.
1. Выбор подходящего фреймворка для каждого этапа жизни модели:
- Обучение самых современных моделей за 3 строки кода.
- Перемещайте одну модель между фреймворками TF2.0/PyTorch/JAX по своему усмотрению.
- Беспрепятственный выбор подходящего фреймворка для обучения, оценки и производства.
1. Легко настроить модель или пример под свои нужды:
- Мы предоставляем примеры для каждой архитектуры, чтобы воспроизвести результаты, опубликованные их авторами.
- Внутренние компоненты модели раскрываются максимально последовательно.
- Файлы моделей можно использовать независимо от библиотеки для проведения быстрых экспериментов.
## Почему я не должен использовать transformers?
- Данная библиотека не является модульным набором строительных блоков для нейронных сетей. Код в файлах моделей специально не рефакторится дополнительными абстракциями, чтобы исследователи могли быстро итеративно работать с каждой из моделей, не погружаясь в дополнительные абстракции/файлы.
- API обучения не предназначен для работы с любой моделью, а оптимизирован для работы с моделями, предоставляемыми библиотекой. Для работы с общими циклами машинного обучения следует использовать другую библиотеку (возможно, [Accelerate](https://huggingface.co/docs/accelerate)).
- Несмотря на то, что мы стремимся представить как можно больше примеров использования, скрипты в нашей папке [примеров](https://github.com/huggingface/transformers/tree/main/examples) являются именно примерами. Предполагается, что они не будут работать "из коробки" для решения вашей конкретной задачи, и вам придется изменить несколько строк кода, чтобы адаптировать их под свои нужды.
## Установка
### С помощью pip
Данный репозиторий протестирован на Python 3.8+, Flax 0.4.1+, PyTorch 1.10+ и TensorFlow 2.6+.
Устанавливать 🤗 Transformers следует в [виртуальной среде](https://docs.python.org/3/library/venv.html). Если вы не знакомы с виртуальными средами Python, ознакомьтесь с [руководством пользователя](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/).
Сначала создайте виртуальную среду с той версией Python, которую вы собираетесь использовать, и активируйте ее.
Затем необходимо установить хотя бы один бекенд из Flax, PyTorch или TensorFlow.
Пожалуйста, обратитесь к страницам [TensorFlow установочная страница](https://www.tensorflow.org/install/), [PyTorch установочная страница](https://pytorch.org/get-started/locally/#start-locally) и/или [Flax](https://github.com/google/flax#quick-install) и [Jax](https://github.com/google/jax#installation), где описаны команды установки для вашей платформы.
После установки одного из этих бэкендов 🤗 Transformers может быть установлен с помощью pip следующим образом:
```bash
pip install transformers
```
Если вы хотите поиграть с примерами или вам нужен самый современный код и вы не можете ждать нового релиза, вы должны [установить библиотеку из исходного кода](https://huggingface.co/docs/transformers/installation#installing-from-source).
### С помощью conda
Начиная с версии Transformers v4.0.0, у нас появилсась поддержка conda: `huggingface`.
Установить Transformers с помощью conda можно следующим образом:
```bash
conda install -c huggingface transformers
```
О том, как установить Flax, PyTorch или TensorFlow с помощью conda, читайте на страницах, посвященных их установке.
> **_ЗАМЕТКА:_** В операционной системе Windows вам может быть предложено активировать режим разработчика, чтобы воспользоваться преимуществами кэширования. Если для вас это невозможно, сообщите нам об этом [здесь](https://github.com/huggingface/huggingface_hub/issues/1062).
## Модельные архитектуры
**[Все контрольные точки моделей](https://huggingface.co/models)**, предоставляемые 🤗 Transformers, беспрепятственно интегрируются с huggingface.co [model hub](https://huggingface.co/models), куда они загружаются непосредственно [пользователями](https://huggingface.co/users) и [организациями](https://huggingface.co/organizations).
Текущее количество контрольных точек: ![](https://img.shields.io/endpoint?url=https://huggingface.co/api/shields/models&color=brightgreen)
🤗 В настоящее время Transformers предоставляет следующие архитектуры (подробное описание каждой из них см. [здесь](https://huggingface.co/docs/transformers/model_summary)):
1. **[ALBERT](https://huggingface.co/docs/transformers/model_doc/albert)** (from Google Research and the Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.
1. **[ALIGN](https://huggingface.co/docs/transformers/model_doc/align)** (from Google Research) released with the paper [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918) by Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig.
1. **[AltCLIP](https://huggingface.co/docs/transformers/model_doc/altclip)** (from BAAI) released with the paper [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) by Chen, Zhongzhi and Liu, Guang and Zhang, Bo-Wen and Ye, Fulong and Yang, Qinghong and Wu, Ledell.
1. **[Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer)** (from MIT) released with the paper [AST: Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778) by Yuan Gong, Yu-An Chung, James Glass.
1. **[Autoformer](https://huggingface.co/docs/transformers/model_doc/autoformer)** (from Tsinghua University) released with the paper [Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://arxiv.org/abs/2106.13008) by Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long.
1. **[Bark](https://huggingface.co/docs/transformers/model_doc/bark)** (from Suno) released in the repository [suno-ai/bark](https://github.com/suno-ai/bark) by Suno AI team.
1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (from Facebook) released with the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer.
1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (from École polytechnique) released with the paper [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis.
1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (from VinAI Research) released with the paper [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen.
1. **[BEiT](https://huggingface.co/docs/transformers/model_doc/beit)** (from Microsoft) released with the paper [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) by Hangbo Bao, Li Dong, Furu Wei.
1. **[BERT](https://huggingface.co/docs/transformers/model_doc/bert)** (from Google) released with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova.
1. **[BERT For Sequence Generation](https://huggingface.co/docs/transformers/model_doc/bert-generation)** (from Google) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[BERTweet](https://huggingface.co/docs/transformers/model_doc/bertweet)** (from VinAI Research) released with the paper [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) by Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen.
1. **[BigBird-Pegasus](https://huggingface.co/docs/transformers/model_doc/bigbird_pegasus)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[BigBird-RoBERTa](https://huggingface.co/docs/transformers/model_doc/big_bird)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[BioGpt](https://huggingface.co/docs/transformers/model_doc/biogpt)** (from Microsoft Research AI4Science) released with the paper [BioGPT: generative pre-trained transformer for biomedical text generation and mining](https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbac409/6713511?guestAccessKey=a66d9b5d-4f83-4017-bb52-405815c907b9) by Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon and Tie-Yan Liu.
1. **[BiT](https://huggingface.co/docs/transformers/model_doc/bit)** (from Google AI) released with the paper [Big Transfer (BiT): General Visual Representation Learning](https://arxiv.org/abs/1912.11370) by Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil Houlsby.
1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BLIP](https://huggingface.co/docs/transformers/model_doc/blip)** (from Salesforce) released with the paper [BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation](https://arxiv.org/abs/2201.12086) by Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi.
1. **[BLIP-2](https://huggingface.co/docs/transformers/model_doc/blip-2)** (from Salesforce) released with the paper [BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models](https://arxiv.org/abs/2301.12597) by Junnan Li, Dongxu Li, Silvio Savarese, Steven Hoi.
1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (from BigScience workshop) released by the [BigScience Workshop](https://bigscience.huggingface.co/).
1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (from Alexa) released with the paper [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) by Adrian de Wynter and Daniel J. Perry.
1. **[BridgeTower](https://huggingface.co/docs/transformers/model_doc/bridgetower)** (from Harbin Institute of Technology/Microsoft Research Asia/Intel Labs) released with the paper [BridgeTower: Building Bridges Between Encoders in Vision-Language Representation Learning](https://arxiv.org/abs/2206.08657) by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan.
1. **[BROS](https://huggingface.co/docs/transformers/model_doc/bros)** (from NAVER CLOVA) released with the paper [BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents](https://arxiv.org/abs/2108.04539) by Teakgyu Hong, Donghyun Kim, Mingi Ji, Wonseok Hwang, Daehyun Nam, Sungrae Park.
1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (from Google Research) released with the paper [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel.
1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (from Inria/Facebook/Sorbonne) released with the paper [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (from Google Research) released with the paper [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting.
1. **[Chinese-CLIP](https://huggingface.co/docs/transformers/model_doc/chinese_clip)** (from OFA-Sys) released with the paper [Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese](https://arxiv.org/abs/2211.01335) by An Yang, Junshu Pan, Junyang Lin, Rui Men, Yichang Zhang, Jingren Zhou, Chang Zhou.
1. **[CLAP](https://huggingface.co/docs/transformers/model_doc/clap)** (from LAION-AI) released with the paper [Large-scale Contrastive Language-Audio Pretraining with Feature Fusion and Keyword-to-Caption Augmentation](https://arxiv.org/abs/2211.06687) by Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, Shlomo Dubnov.
1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (from OpenAI) released with the paper [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever.
1. **[CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)** (from University of Göttingen) released with the paper [Image Segmentation Using Text and Image Prompts](https://arxiv.org/abs/2112.10003) by Timo Lüddecke and Alexander Ecker.
1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (from Salesforce) released with the paper [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong.
1. **[CodeLlama](https://huggingface.co/docs/transformers/model_doc/llama_code)** (from MetaAI) released with the paper [Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/) by Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, Gabriel Synnaeve.
1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (from Microsoft Research Asia) released with the paper [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) by Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang.
1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (from YituTech) released with the paper [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan.
1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (from Facebook AI) released with the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie.
1. **[ConvNeXTV2](https://huggingface.co/docs/transformers/model_doc/convnextv2)** (from Facebook AI) released with the paper [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://arxiv.org/abs/2301.00808) by Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, Saining Xie.
1. **[CPM](https://huggingface.co/docs/transformers/model_doc/cpm)** (from Tsinghua University) released with the paper [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) by Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun.
1. **[CPM-Ant](https://huggingface.co/docs/transformers/model_doc/cpmant)** (from OpenBMB) released by the [OpenBMB](https://www.openbmb.org/).
1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (from Microsoft) released with the paper [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang.
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (from Facebook) released with the paper [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli.
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (from Berkeley/Facebook/Google) released with the paper [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch.
1. **[Deformable DETR](https://huggingface.co/docs/transformers/model_doc/deformable_detr)** (from SenseTime Research) released with the paper [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159) by Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai.
1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (from Facebook) released with the paper [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou.
1. **[DePlot](https://huggingface.co/docs/transformers/model_doc/deplot)** (from Google AI) released with the paper [DePlot: One-shot visual language reasoning by plot-to-table translation](https://arxiv.org/abs/2212.10505) by Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, Yasemin Altun.
1. **[DETA](https://huggingface.co/docs/transformers/model_doc/deta)** (from The University of Texas at Austin) released with the paper [NMS Strikes Back](https://arxiv.org/abs/2212.06137) by Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, Philipp Krähenbühl.
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (from Facebook) released with the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (from Microsoft Research) released with the paper [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
1. **[DiNAT](https://huggingface.co/docs/transformers/model_doc/dinat)** (from SHI Labs) released with the paper [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) by Ali Hassani and Humphrey Shi.
1. **[DINOv2](https://huggingface.co/docs/transformers/model_doc/dinov2)** (from Meta AI) released with the paper [DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193) by Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, Piotr Bojanowski.
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation) and a German version of DistilBERT.
1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (from Microsoft Research) released with the paper [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) by Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei.
1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (from NAVER), released together with the paper [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) by Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park.
1. **[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (from Facebook) released with the paper [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) by Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
1. **[DPT](https://huggingface.co/docs/transformers/master/model_doc/dpt)** (from Intel Labs) released with the paper [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) by René Ranftl, Alexey Bochkovskiy, Vladlen Koltun.
1. **[EfficientFormer](https://huggingface.co/docs/transformers/model_doc/efficientformer)** (from Snap Research) released with the paper [EfficientFormer: Vision Transformers at MobileNetSpeed](https://arxiv.org/abs/2206.01191) by Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren.
1. **[EfficientNet](https://huggingface.co/docs/transformers/model_doc/efficientnet)** (from Google Brain) released with the paper [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan, Quoc V. Le.
1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
1. **[EnCodec](https://huggingface.co/docs/transformers/model_doc/encodec)** (from Meta AI) released with the paper [High Fidelity Neural Audio Compression](https://arxiv.org/abs/2210.13438) by Alexandre Défossez, Jade Copet, Gabriel Synnaeve, Yossi Adi.
1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (from Google Research) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)** (from Baidu) released with the paper [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) by Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu.
1. **[ErnieM](https://huggingface.co/docs/transformers/model_doc/ernie_m)** (from Baidu) released with the paper [ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora](https://arxiv.org/abs/2012.15674) by Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang.
1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (from Meta AI) are transformer protein language models. **ESM-1b** was released with the paper [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. **ESM-1v** was released with the paper [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648) by Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives. **ESM-2 and ESMFold** were released with the paper [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902) by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives.
1. **[Falcon](https://huggingface.co/docs/transformers/model_doc/falcon)** (from Technology Innovation Institute) by Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme.
1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FLAN-UL2](https://huggingface.co/docs/transformers/model_doc/flan-ul2)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-ul2-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (from Facebook AI) released with the paper [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela.
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
1. **[FocalNet](https://huggingface.co/docs/transformers/model_doc/focalnet)** (from Microsoft Research) released with the paper [Focal Modulation Networks](https://arxiv.org/abs/2203.11926) by Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao.
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
1. **[Fuyu](https://huggingface.co/docs/transformers/model_doc/fuyu)** (from ADEPT) Rohan Bavishi, Erich Elsen, Curtis Hawthorne, Maxwell Nye, Augustus Odena, Arushi Somani, Sağnak Taşırlar. Released with the paper [blog post](https://www.adept.ai/blog/fuyu-8b)
1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (from Microsoft Research) released with the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang.
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (from KAIST) released with the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim.
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (from EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy.
1. **[GPT NeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox)** (from EleutherAI) released with the paper [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) by Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach
1. **[GPT NeoX Japanese](https://huggingface.co/docs/transformers/model_doc/gpt_neox_japanese)** (from ABEJA) released by Shinya Otani, Takayoshi Makabe, Anuj Arora, and Kyo Hattori.
1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (from OpenAI) released with the paper [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/) by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**.
1. **[GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj)** (from EleutherAI) released in the repository [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) by Ben Wang and Aran Komatsuzaki.
1. **[GPT-Sw3](https://huggingface.co/docs/transformers/model_doc/gpt-sw3)** (from AI-Sweden) released with the paper [Lessons Learned from GPT-SW3: Building the First Large-Scale Generative Language Model for Swedish](http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.376.pdf) by Ariel Ekgren, Amaru Cuba Gyllensten, Evangelia Gogoulou, Alice Heiman, Severine Verlinden, Joey Öhman, Fredrik Carlsson, Magnus Sahlgren.
1. **[GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode)** (from BigCode) released with the paper [SantaCoder: don't reach for the stars!](https://arxiv.org/abs/2301.03988) by Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, Logesh Kumar Umapathi, Carolyn Jane Anderson, Yangtian Zi, Joel Lamy Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry Abulkhanov, Manuel Romero, Michael Lappert, Francesco De Toni, Bernardo García del Río, Qian Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab Mangrulkar, David Lansky, Huu Nguyen, Danish Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau, Yacine Jernite, Sean Hughes, Daniel Fried, Arjun Guha, Harm de Vries, Leandro von Werra.
1. **[GPTSAN-japanese](https://huggingface.co/docs/transformers/model_doc/gptsan-japanese)** released in the repository [tanreinama/GPTSAN](https://github.com/tanreinama/GPTSAN/blob/main/report/model.md) by Toshiyuki Sakamoto(tanreinama).
1. **[Graphormer](https://huggingface.co/docs/transformers/model_doc/graphormer)** (from Microsoft) released with the paper [Do Transformers Really Perform Bad for Graph Representation?](https://arxiv.org/abs/2106.05234) by Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu.
1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (from UCSD, NVIDIA) released with the paper [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) by Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang.
1. **[HerBERT](https://huggingface.co/docs/transformers/model_doc/herbert)** (from Allegro.pl, AGH University of Science and Technology) released with the paper [KLEJ: Comprehensive Benchmark for Polish Language Understanding](https://www.aclweb.org/anthology/2020.acl-main.111.pdf) by Piotr Rybak, Robert Mroczkowski, Janusz Tracz, Ireneusz Gawlik.
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (from Facebook) released with the paper [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed.
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (from Berkeley) released with the paper [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer.
1. **[IDEFICS](https://huggingface.co/docs/transformers/model_doc/idefics)** (from HuggingFace) released with the paper [OBELICS: An Open Web-Scale Filtered Dataset of Interleaved Image-Text Documents](https://huggingface.co/papers/2306.16527) by Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov, Thomas Wang, Siddharth Karamcheti, Alexander M. Rush, Douwe Kiela, Matthieu Cord, Victor Sanh.
1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (from OpenAI) released with the paper [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever.
1. **[Informer](https://huggingface.co/docs/transformers/model_doc/informer)** (from Beihang University, UC Berkeley, Rutgers University, SEDD Company) released with the paper [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting](https://arxiv.org/abs/2012.07436) by Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
1. **[InstructBLIP](https://huggingface.co/docs/transformers/model_doc/instructblip)** (from Salesforce) released with the paper [InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning](https://arxiv.org/abs/2305.06500) by Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, Steven Hoi.
1. **[Jukebox](https://huggingface.co/docs/transformers/model_doc/jukebox)** (from OpenAI) released with the paper [Jukebox: A Generative Model for Music](https://arxiv.org/pdf/2005.00341.pdf) by Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever.
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou.
1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (from Microsoft Research Asia) released with the paper [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) by Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei.
1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutxlm)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (from Meta AI) released with the paper [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) by Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze.
1. **[LiLT](https://huggingface.co/docs/transformers/model_doc/lilt)** (from South China University of Technology) released with the paper [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669) by Jiapeng Wang, Lianwen Jin, Kai Ding.
1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (from The FAIR team of Meta AI) released with the paper [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971) by Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample.
1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (from The FAIR team of Meta AI) released with the paper [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/XXX) by Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom.
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (from Google AI) released with the paper [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang.
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (from Studio Ousia) released with the paper [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.
1. **[LXMERT](https://huggingface.co/docs/transformers/model_doc/lxmert)** (from UNC Chapel Hill) released with the paper [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal.
1. **[M-CTC-T](https://huggingface.co/docs/transformers/model_doc/mctct)** (from Facebook) released with the paper [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) by Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert.
1. **[M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100)** (from Facebook) released with the paper [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) by Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin.
1. **[MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)** Machine translation models trained using [OPUS](http://opus.nlpl.eu/) data by Jörg Tiedemann. The [Marian Framework](https://marian-nmt.github.io/) is being developed by the Microsoft Translator Team.
1. **[MarkupLM](https://huggingface.co/docs/transformers/model_doc/markuplm)** (from Microsoft Research Asia) released with the paper [MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document Understanding](https://arxiv.org/abs/2110.08518) by Junlong Li, Yiheng Xu, Lei Cui, Furu Wei.
1. **[Mask2Former](https://huggingface.co/docs/transformers/model_doc/mask2former)** (from FAIR and UIUC) released with the paper [Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527) by Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Rohit Girdhar.
1. **[MaskFormer](https://huggingface.co/docs/transformers/model_doc/maskformer)** (from Meta and UIUC) released with the paper [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) by Bowen Cheng, Alexander G. Schwing, Alexander Kirillov.
1. **[MatCha](https://huggingface.co/docs/transformers/model_doc/matcha)** (from Google AI) released with the paper [MatCha: Enhancing Visual Language Pretraining with Math Reasoning and Chart Derendering](https://arxiv.org/abs/2212.09662) by Fangyu Liu, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Yasemin Altun, Nigel Collier, Julian Martin Eisenschlos.
1. **[mBART](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
1. **[mBART-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan.
1. **[MEGA](https://huggingface.co/docs/transformers/model_doc/mega)** (from Meta/USC/CMU/SJTU) released with the paper [Mega: Moving Average Equipped Gated Attention](https://arxiv.org/abs/2209.10655) by Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and Luke Zettlemoyer.
1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[MGP-STR](https://huggingface.co/docs/transformers/model_doc/mgp-str)** (from Alibaba Research) released with the paper [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592) by Peng Wang, Cheng Da, and Cong Yao.
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (from Studio Ousia) released with the paper [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka.
1. **[MMS](https://huggingface.co/docs/transformers/model_doc/mms)** (from Facebook) released with the paper [Scaling Speech Technology to 1,000+ Languages](https://arxiv.org/abs/2305.13516) by Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky, Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi, Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning Hsu, Alexis Conneau, Michael Auli.
1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (from CMU/Google Brain) released with the paper [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou.
1. **[MobileNetV1](https://huggingface.co/docs/transformers/model_doc/mobilenet_v1)** (from Google Inc.) released with the paper [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) by Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam.
1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (from Google Inc.) released with the paper [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) by Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen.
1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (from Apple) released with the paper [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari.
1. **[MobileViTV2](https://huggingface.co/docs/transformers/model_doc/mobilevitv2)** (from Apple) released with the paper [Separable Self-attention for Mobile Vision Transformers](https://arxiv.org/abs/2206.02680) by Sachin Mehta and Mohammad Rastegari.
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
1. **[MPT](https://huggingface.co/docs/transformers/model_doc/mpt)** (from MosaiML) released with the repository [llm-foundry](https://github.com/mosaicml/llm-foundry/) by the MosaicML NLP Team.
1. **[MRA](https://huggingface.co/docs/transformers/model_doc/mra)** (from the University of Wisconsin - Madison) released with the paper [Multi Resolution Analysis (MRA) for Approximate Self-Attention](https://arxiv.org/abs/2207.10284) by Zhanpeng Zeng, Sourav Pal, Jeffery Kline, Glenn M Fung, Vikas Singh.
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
1. **[MusicGen](https://huggingface.co/docs/transformers/model_doc/musicgen)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (from RUC AI Box) released with the paper [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen.
1. **[NAT](https://huggingface.co/docs/transformers/model_doc/nat)** (from SHI Labs) released with the paper [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143) by Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi.
1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (from Huawei Noahs Ark Lab) released with the paper [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) by Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu.
1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (from the University of Wisconsin - Madison) released with the paper [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh.
1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (from SHI Labs) released with the paper [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) by Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi.
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released on GitHub (now removed).
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al.
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (from Google AI) released with the paper [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby.
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (from Google) released with the paper [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) by Jason Phang, Yao Zhao, and Peter J. Liu.
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (from Deepmind) released with the paper [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) by Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira.
1. **[Persimmon](https://huggingface.co/docs/transformers/main/model_doc/persimmon)** (from ADEPT) released in a [blog post](https://www.adept.ai/blog/persimmon-8b) by Erich Elsen, Augustus Odena, Maxwell Nye, Sağnak Taşırlar, Tri Dao, Curtis Hawthorne, Deepak Moparthi, Arushi Somani.
1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen.
1. **[Pix2Struct](https://huggingface.co/docs/transformers/model_doc/pix2struct)** (from Google) released with the paper [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding](https://arxiv.org/abs/2210.03347) by Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova.
1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (from UCLA NLP) released with the paper [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) by Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang.
1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (from Sea AI Labs) released with the paper [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) by Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng.
1. **[Pop2Piano](https://huggingface.co/docs/transformers/model_doc/pop2piano)** released with the paper [Pop2Piano : Pop Audio-based Piano Cover Generation](https://arxiv.org/abs/2211.00895) by Jongho Choi and Kyogu Lee.
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[PVT](https://huggingface.co/docs/transformers/model_doc/pvt)** (from Nanjing University, The University of Hong Kong etc.) released with the paper [Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions](https://arxiv.org/pdf/2102.12122.pdf) by Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao.
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (from NVIDIA) released with the paper [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) by Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius.
1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (from Facebook) released with the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) by Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela.
1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (from Google Research) released with the paper [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) by Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang.
1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (from Google Research) released with the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
1. **[RegNet](https://huggingface.co/docs/transformers/model_doc/regnet)** (from META Platforms) released with the paper [Designing Network Design Space](https://arxiv.org/abs/2003.13678) by Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár.
1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (from Google Research) released with the paper [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/abs/2010.12821) by Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder.
1. **[ResNet](https://huggingface.co/docs/transformers/model_doc/resnet)** (from Microsoft Research) released with the paper [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) by Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun.
1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (from Facebook), released together with the paper [RoBERTa: A Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
1. **[RoBERTa-PreLayerNorm](https://huggingface.co/docs/transformers/model_doc/roberta-prelayernorm)** (from Facebook) released with the paper [fairseq: A Fast, Extensible Toolkit for Sequence Modeling](https://arxiv.org/abs/1904.01038) by Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli.
1. **[RoCBert](https://huggingface.co/docs/transformers/model_doc/roc_bert)** (from WeChatAI) released with the paper [RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining](https://aclanthology.org/2022.acl-long.65.pdf) by HuiSu, WeiweiShi, XiaoyuShen, XiaoZhou, TuoJi, JiaruiFang, JieZhou.
1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (from ZhuiyiTechnology), released together with the paper [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/abs/2104.09864) by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu.
1. **[RWKV](https://huggingface.co/docs/transformers/model_doc/rwkv)** (from Bo Peng), released on [this repo](https://github.com/BlinkDL/RWKV-LM) by Bo Peng.
1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (from NVIDIA) released with the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo.
1. **[Segment Anything](https://huggingface.co/docs/transformers/model_doc/sam)** (from Meta AI) released with the paper [Segment Anything](https://arxiv.org/pdf/2304.02643v1.pdf) by Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alex Berg, Wan-Yen Lo, Piotr Dollar, Ross Girshick.
1. **[SEW](https://huggingface.co/docs/transformers/model_doc/sew)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SEW-D](https://huggingface.co/docs/transformers/model_doc/sew_d)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SpeechT5](https://huggingface.co/docs/transformers/model_doc/speecht5)** (from Microsoft Research) released with the paper [SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing](https://arxiv.org/abs/2110.07205) by Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li, Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, Furu Wei.
1. **[SpeechToTextTransformer](https://huggingface.co/docs/transformers/model_doc/speech_to_text)** (from Facebook), released together with the paper [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino.
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (from Facebook), released together with the paper [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau.
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (from Tel Aviv University), released together with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy.
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (from MBZUAI) released with the paper [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) by Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan.
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (from Microsoft) released with the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (from Microsoft) released with the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo.
1. **[Swin2SR](https://huggingface.co/docs/transformers/model_doc/swin2sr)** (from University of Würzburg) released with the paper [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345) by Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte.
1. **[SwitchTransformers](https://huggingface.co/docs/transformers/model_doc/switch_transformers)** (from Google) released with the paper [Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity](https://arxiv.org/abs/2101.03961) by William Fedus, Barret Zoph, Noam Shazeer.
1. **[T5](https://huggingface.co/docs/transformers/model_doc/t5)** (from Google AI) released with the paper [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (from Google AI) released in the repository [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[Table Transformer](https://huggingface.co/docs/transformers/model_doc/table-transformer)** (from Microsoft Research) released with the paper [PubTables-1M: Towards Comprehensive Table Extraction From Unstructured Documents](https://arxiv.org/abs/2110.00061) by Brandon Smock, Rohith Pesala, Robin Abraham.
1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (from Google AI) released with the paper [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos.
1. **[TAPEX](https://huggingface.co/docs/transformers/model_doc/tapex)** (from Microsoft Research) released with the paper [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou.
1. **[Time Series Transformer](https://huggingface.co/docs/transformers/model_doc/time_series_transformer)** (from HuggingFace).
1. **[TimeSformer](https://huggingface.co/docs/transformers/model_doc/timesformer)** (from Facebook) released with the paper [Is Space-Time Attention All You Need for Video Understanding?](https://arxiv.org/abs/2102.05095) by Gedas Bertasius, Heng Wang, Lorenzo Torresani.
1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/model_doc/trajectory_transformers)** (from the University of California at Berkeley) released with the paper [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine
1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (from Microsoft), released together with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
1. **[TVLT](https://huggingface.co/docs/transformers/model_doc/tvlt)** (from UNC Chapel Hill) released with the paper [TVLT: Textless Vision-Language Transformer](https://arxiv.org/abs/2209.14156) by Zineng Tang, Jaemin Cho, Yixin Nie, Mohit Bansal.
1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
1. **[UMT5](https://huggingface.co/docs/transformers/model_doc/umt5)** (from Google Research) released with the paper [UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining](https://openreview.net/forum?id=kXwdL1cWOAi) by Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, Noah Constant.
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (from Microsoft Research) released with the paper [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (from Microsoft Research) released with the paper [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu.
1. **[UPerNet](https://huggingface.co/docs/transformers/model_doc/upernet)** (from Peking University) released with the paper [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221) by Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun.
1. **[VAN](https://huggingface.co/docs/transformers/model_doc/van)** (from Tsinghua University and Nankai University) released with the paper [Visual Attention Network](https://arxiv.org/abs/2202.09741) by Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu.
1. **[VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)** (from Multimedia Computing Group, Nanjing University) released with the paper [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602) by Zhan Tong, Yibing Song, Jue Wang, Limin Wang.
1. **[ViLT](https://huggingface.co/docs/transformers/model_doc/vilt)** (from NAVER AI Lab/Kakao Enterprise/Kakao Brain) released with the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Wonjae Kim, Bokyung Son, Ildoo Kim.
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VitDet](https://huggingface.co/docs/transformers/model_doc/vitdet)** (from Meta AI) released with the paper [Exploring Plain Vision Transformer Backbones for Object Detection](https://arxiv.org/abs/2203.16527) by Yanghao Li, Hanzi Mao, Ross Girshick, Kaiming He.
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (from Meta AI) released with the paper [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick.
1. **[ViTMatte](https://huggingface.co/docs/transformers/main/model_doc/vitmatte)** (from HUST-VL) rreleased with the paper [ViTMatte: Boosting Image Matting with Pretrained Plain Vision Transformers](https://arxiv.org/abs/2305.15272) by Jingfeng Yao, Xinggang Wang, Shusheng Yang, Baoyuan Wang.
1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (from Meta AI) released with the paper [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas.
1. **[VITS](https://huggingface.co/docs/transformers/model_doc/vits)** (from Kakao Enterprise) released with the paper [Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech](https://arxiv.org/abs/2106.06103) by Jaehyeon Kim, Jungil Kong, Juhee Son.
1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (from Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) by Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid.
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (from Facebook AI) released with the paper [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (from Facebook AI) released with the paper [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino.
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (from Facebook AI) released with the paper [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) by Qiantong Xu, Alexei Baevski, Michael Auli.
1. **[WavLM](https://huggingface.co/docs/transformers/model_doc/wavlm)** (from Microsoft Research) released with the paper [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei.
1. **[Whisper](https://huggingface.co/docs/transformers/model_doc/whisper)** (from OpenAI) released with the paper [Robust Speech Recognition via Large-Scale Weak Supervision](https://cdn.openai.com/papers/whisper.pdf) by Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, Ilya Sutskever.
1. **[X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)** (from Microsoft Research) released with the paper [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816) by Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang, Gaofeng Meng, Jianlong Fu, Shiming Xiang, Haibin Ling.
1. **[X-MOD](https://huggingface.co/docs/transformers/model_doc/xmod)** (from Meta AI) released with the paper [Lifting the Curse of Multilinguality by Pre-training Modular Transformers](http://dx.doi.org/10.18653/v1/2022.naacl-main.255) by Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James Cross, Sebastian Riedel, Mikel Artetxe.
1. **[XGLM](https://huggingface.co/docs/transformers/model_doc/xglm)** (From Facebook AI) released with the paper [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li.
1. **[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (from Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau.
1. **[XLM-ProphetNet](https://huggingface.co/docs/transformers/model_doc/xlm-prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[XLM-RoBERTa](https://huggingface.co/docs/transformers/model_doc/xlm-roberta)** (from Facebook AI), released together with the paper [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov.
1. **[XLM-RoBERTa-XL](https://huggingface.co/docs/transformers/model_doc/xlm-roberta-xl)** (from Facebook AI), released together with the paper [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) by Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau.
1. **[XLM-V](https://huggingface.co/docs/transformers/model_doc/xlm-v)** (from Meta AI) released with the paper [XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models](https://arxiv.org/abs/2301.10472) by Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Naman Goyal, Marjan Ghazvininejad, Luke Zettlemoyer, Madian Khabsa.
1. **[XLNet](https://huggingface.co/docs/transformers/model_doc/xlnet)** (from Google/CMU) released with the paper [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
1. **[XLS-R](https://huggingface.co/docs/transformers/model_doc/xls_r)** (from Facebook AI) released with the paper [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) by Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli.
1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (from Facebook AI) released with the paper [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) by Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli.
1. **[YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos)** (from Huazhong University of Science & Technology) released with the paper [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) by Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu.
1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (from the University of Wisconsin - Madison) released with the paper [You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling](https://arxiv.org/abs/2111.09714) by Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh.
1. Want to contribute a new model? We have added a **detailed guide and templates** to guide you in the process of adding a new model. You can find them in the [`templates`](./templates) folder of the repository. Be sure to check the [contributing guidelines](./CONTRIBUTING.md) and contact the maintainers or open an issue to collect feedbacks before starting your PR.
Чтобы проверить, есть ли у каждой модели реализация на Flax, PyTorch или TensorFlow, или связанный с ней токенизатор, поддерживаемый библиотекой 🤗 Tokenizers, обратитесь к [этой таблице](https://huggingface.co/docs/transformers/index#supported-frameworks).
Эти реализации были протестированы на нескольких наборах данных (см. примеры скриптов) и должны соответствовать производительности оригинальных реализаций. Более подробную информацию о производительности можно найти в разделе "Примеры" [документации](https://github.com/huggingface/transformers/tree/main/examples).
## Изучи больше
| Секция | Описание |
|-|-|
| [Документация](https://huggingface.co/docs/transformers/) | Полная документация по API и гайды |
| [Краткие описания задач](https://huggingface.co/docs/transformers/task_summary) | Задачи поддерживаются 🤗 Transformers |
| [Пособие по предварительной обработке](https://huggingface.co/docs/transformers/preprocessing) | Использование класса `Tokenizer` для подготовки данных для моделей |
| [Обучение и доработка](https://huggingface.co/docs/transformers/training) | Использование моделей, предоставляемых 🤗 Transformers, в цикле обучения PyTorch/TensorFlow и API `Trainer`. |
| [Быстрый тур: Тонкая настройка/скрипты использования](https://github.com/huggingface/transformers/tree/main/examples) | Примеры скриптов для тонкой настройки моделей на широком спектре задач |
| [Совместное использование и загрузка моделей](https://huggingface.co/docs/transformers/model_sharing) | Загружайте и делитесь с сообществом своими доработанными моделями |
## Цитирование
Теперь у нас есть [статья](https://www.aclweb.org/anthology/2020.emnlp-demos.6/), которую можно цитировать для библиотеки 🤗 Transformers:
```bibtex
@inproceedings{wolf-etal-2020-transformers,
title = "Transformers: State-of-the-Art Natural Language Processing",
author = "Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and Rémi Louf and Morgan Funtowicz and Joe Davison and Sam Shleifer and Patrick von Platen and Clara Ma and Yacine Jernite and Julien Plu and Canwen Xu and Teven Le Scao and Sylvain Gugger and Mariama Drame and Quentin Lhoest and Alexander M. Rush",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = oct,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.emnlp-demos.6",
pages = "38--45"
}
```

View File

@ -1,557 +0,0 @@
<!---
Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
<p align="center">
<picture>
<source media="(prefers-color-scheme: dark)" srcset="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-dark.svg">
<source media="(prefers-color-scheme: light)" srcset="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-light.svg">
<img alt="Hugging Face Transformers Library" src="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-light.svg" width="352" height="59" style="max-width: 100%;">
</picture>
<br/>
<br/>
</p>
<p align="center">
<a href="https://circleci.com/gh/huggingface/transformers">
<img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/main">
</a>
<a href="https://github.com/huggingface/transformers/blob/main/LICENSE">
<img alt="GitHub" src="https://img.shields.io/github/license/huggingface/transformers.svg?color=blue">
</a>
<a href="https://huggingface.co/docs/transformers/index">
<img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/docs/transformers/index.svg?down_color=red&down_message=offline&up_message=online">
</a>
<a href="https://github.com/huggingface/transformers/releases">
<img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/transformers.svg">
</a>
<a href="https://github.com/huggingface/transformers/blob/main/CODE_OF_CONDUCT.md">
<img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg">
</a>
<a href="https://zenodo.org/badge/latestdoi/155220641"><img src="https://zenodo.org/badge/155220641.svg" alt="DOI"></a>
</p>
<h4 align="center">
<p>
<a href="https://github.com/huggingface/transformers/">English</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hans.md">简体中文</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hant.md">繁體中文</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ko.md">한국어</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_es.md">Español</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ja.md">日本語</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_hd.md">हिन्दी</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ru.md">Русский</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_pt-br.md">Рortuguês</a> |
<b>తెలుగు</b> |
</p>
</h4>
<h3 align="center">
<p>JAX, PyTorch మరియు TensorFlow కోసం అత్యాధునిక యంత్ర అభ్యాసం</p>
</h3>
<h3 align="center">
<a href="https://hf.co/course"><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/course_banner.png"></a>
</h3>
🤗 ట్రాన్స్‌ఫార్మర్లు టెక్స్ట్, విజన్ మరియు ఆడియో వంటి విభిన్న పద్ధతులపై టాస్క్‌లను నిర్వహించడానికి వేలాది ముందుగా శిక్షణ పొందిన మోడల్‌లను అందిస్తాయి.
ఈ నమూనాలు వర్తించవచ్చు:
* 📝 టెక్స్ట్, 100కి పైగా భాషల్లో టెక్స్ట్ క్లాసిఫికేషన్, ఇన్ఫర్మేషన్ ఎక్స్‌ట్రాక్షన్, ప్రశ్నలకు సమాధానాలు, సారాంశం, అనువాదం, టెక్స్ట్ జనరేషన్ వంటి పనుల కోసం.
* 🖼️ ఇమేజ్‌లు, ఇమేజ్ వర్గీకరణ, ఆబ్జెక్ట్ డిటెక్షన్ మరియు సెగ్మెంటేషన్ వంటి పనుల కోసం.
* 🗣️ ఆడియో, స్పీచ్ రికగ్నిషన్ మరియు ఆడియో వర్గీకరణ వంటి పనుల కోసం.
ట్రాన్స్‌ఫార్మర్ మోడల్‌లు టేబుల్ క్వశ్చన్ ఆన్సర్ చేయడం, ఆప్టికల్ క్యారెక్టర్ రికగ్నిషన్, స్కాన్ చేసిన డాక్యుమెంట్‌ల నుండి ఇన్ఫర్మేషన్ ఎక్స్‌ట్రాక్షన్, వీడియో క్లాసిఫికేషన్ మరియు విజువల్ క్వశ్చన్ ఆన్సర్ చేయడం వంటి **అనేక పద్ధతులతో కలిపి** పనులను కూడా చేయగలవు.
🤗 ట్రాన్స్‌ఫార్మర్లు అందించిన టెక్స్ట్‌లో ప్రీట్రైన్డ్ మోడల్‌లను త్వరగా డౌన్‌లోడ్ చేయడానికి మరియు ఉపయోగించడానికి, వాటిని మీ స్వంత డేటాసెట్‌లలో ఫైన్-ట్యూన్ చేయడానికి మరియు వాటిని మా [మోడల్ హబ్](https://huggingface.co/models)లో సంఘంతో భాగస్వామ్యం చేయడానికి API లను అందిస్తుంది. అదే సమయంలో, ఆర్కిటెక్చర్‌ని నిర్వచించే ప్రతి పైథాన్ మాడ్యూల్ పూర్తిగా స్వతంత్రంగా ఉంటుంది మరియు త్వరిత పరిశోధన ప్రయోగాలను ప్రారంభించడానికి సవరించవచ్చు.
🤗 ట్రాన్స్‌ఫార్మర్‌లకు మూడు అత్యంత ప్రజాదరణ పొందిన డీప్ లెర్నింగ్ లైబ్రరీలు ఉన్నాయి — [Jax](https://jax.readthedocs.io/en/latest/), [PyTorch](https://pytorch.org/) మరియు [TensorFlow](https://www.tensorflow.org/) — వాటి మధ్య అతుకులు లేని ఏకీకరణతో. మీ మోడల్‌లను ఒకదానితో మరొకదానితో అనుమితి కోసం లోడ్ చేసే ముందు వాటికి శిక్షణ ఇవ్వడం చాలా సులభం.
## ఆన్‌లైన్ డెమోలు
మీరు [మోడల్ హబ్](https://huggingface.co/models) నుండి మా మోడళ్లలో చాలా వరకు వాటి పేజీలలో నేరుగా పరీక్షించవచ్చు. మేము పబ్లిక్ మరియు ప్రైవేట్ మోడల్‌ల కోసం [ప్రైవేట్ మోడల్ హోస్టింగ్, సంస్కరణ & అనుమితి API](https://huggingface.co/pricing)ని కూడా అందిస్తాము.
ఇక్కడ కొన్ని ఉదాహరణలు ఉన్నాయి:
సహజ భాషా ప్రాసెసింగ్‌లో:
- [BERT తో మాస్క్‌డ్ వర్డ్ కంప్లీషన్](https://huggingface.co/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France)
- [Electra తో పేరు ఎంటిటీ గుర్తింపు](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city)
- [GPT-2 తో టెక్స్ట్ జనరేషన్](https://huggingface.co/gpt2?text=A+long+time+ago%2C+)
- [RoBERTa తో సహజ భాషా అనుమితి](https://huggingface.co/roberta-large-mnli?text=The+dog+was+Lost.+Nobody+lost+any+animal)
- [BART తో సారాంశం](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct)
- [DistilBERT తో ప్రశ్న సమాధానం](https://huggingface.co/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species)
- [T5 తో అనువాదం](https://huggingface.co/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin)
కంప్యూటర్ దృష్టిలో:
- [VIT తో చిత్ర వర్గీకరణ](https://huggingface.co/google/vit-base-patch16-224)
- [DETR తో ఆబ్జెక్ట్ డిటెక్షన్](https://huggingface.co/facebook/detr-resnet-50)
- [SegFormer తో సెమాంటిక్ సెగ్మెంటేషన్](https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512)
- [MaskFormer తో పానోప్టిక్ సెగ్మెంటేషన్](https://huggingface.co/facebook/maskformer-swin-small-coco)
- [DPT తో లోతు అంచనా](https://huggingface.co/docs/transformers/model_doc/dpt)
- [VideoMAE తో వీడియో వర్గీకరణ](https://huggingface.co/docs/transformers/model_doc/videomae)
- [OneFormer తో యూనివర్సల్ సెగ్మెంటేషన్](https://huggingface.co/shi-labs/oneformer_ade20k_dinat_large)
ఆడియోలో:
- [Wav2Vec2 తో ఆటోమేటిక్ స్పీచ్ రికగ్నిషన్](https://huggingface.co/facebook/wav2vec2-base-960h)
- [Wav2Vec2 తో కీవర్డ్ స్పాటింగ్](https://huggingface.co/superb/wav2vec2-base-superb-ks)
- [ఆడియో స్పెక్ట్రోగ్రామ్ ట్రాన్స్‌ఫార్మర్‌తో ఆడియో వర్గీకరణ](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593)
మల్టీమోడల్ టాస్క్‌లలో:
- [TAPAS తో టేబుల్ ప్రశ్న సమాధానాలు](https://huggingface.co/google/tapas-base-finetuned-wtq)
- [ViLT తో దృశ్యమాన ప్రశ్నకు సమాధానం](https://huggingface.co/dandelin/vilt-b32-finetuned-vqa)
- [CLIP తో జీరో-షాట్ ఇమేజ్ వర్గీకరణ](https://huggingface.co/openai/clip-vit-large-patch14)
- [LayoutLM తో డాక్యుమెంట్ ప్రశ్నకు సమాధానం](https://huggingface.co/impira/layoutlm-document-qa)
- [X-CLIP తో జీరో-షాట్ వీడియో వర్గీకరణ](https://huggingface.co/docs/transformers/model_doc/xclip)
## ట్రాన్స్‌ఫార్మర్‌లను ఉపయోగించి 100 ప్రాజెక్టులు
ట్రాన్స్‌ఫార్మర్లు ప్రీట్రైన్డ్ మోడల్‌లను ఉపయోగించడానికి టూల్‌కిట్ కంటే ఎక్కువ: ఇది దాని చుట్టూ నిర్మించిన ప్రాజెక్ట్‌ల సంఘం మరియు
హగ్గింగ్ ఫేస్ హబ్. డెవలపర్‌లు, పరిశోధకులు, విద్యార్థులు, ప్రొఫెసర్‌లు, ఇంజనీర్లు మరియు ఎవరినైనా అనుమతించేలా ట్రాన్స్‌ఫార్మర్‌లను మేము కోరుకుంటున్నాము
వారి కలల ప్రాజెక్టులను నిర్మించడానికి.
ట్రాన్స్‌ఫార్మర్‌ల 100,000 నక్షత్రాలను జరుపుకోవడానికి, మేము స్పాట్‌లైట్‌ని ఉంచాలని నిర్ణయించుకున్నాము
సంఘం, మరియు మేము 100 జాబితాలను కలిగి ఉన్న [awesome-transformers](./awesome-transformers.md) పేజీని సృష్టించాము.
ట్రాన్స్‌ఫార్మర్ల పరిసరాల్లో అద్భుతమైన ప్రాజెక్టులు నిర్మించబడ్డాయి.
జాబితాలో భాగమని మీరు విశ్వసించే ప్రాజెక్ట్‌ను మీరు కలిగి ఉంటే లేదా ఉపయోగిస్తుంటే, దయచేసి దానిని జోడించడానికి PRని తెరవండి!
## మీరు హగ్గింగ్ ఫేస్ టీమ్ నుండి అనుకూల మద్దతు కోసం చూస్తున్నట్లయితే
<a target="_blank" href="https://huggingface.co/support">
<img alt="HuggingFace Expert Acceleration Program" src="https://cdn-media.huggingface.co/marketing/transformers/new-support-improved.png" style="max-width: 600px; border: 1px solid #eee; border-radius: 4px; box-shadow: 0 1px 2px 0 rgba(0, 0, 0, 0.05);">
</a><br>
## త్వరిత పర్యటన
ఇచ్చిన ఇన్‌పుట్ (టెక్స్ట్, ఇమేజ్, ఆడియో, ...)పై తక్షణమే మోడల్‌ను ఉపయోగించడానికి, మేము `pipeline` API ని అందిస్తాము. పైప్‌లైన్‌లు ఆ మోడల్ శిక్షణ సమయంలో ఉపయోగించిన ప్రీప్రాసెసింగ్‌తో కూడిన ప్రీట్రైన్డ్ మోడల్‌ను సమూహపరుస్తాయి. సానుకూల మరియు ప్రతికూల పాఠాలను వర్గీకరించడానికి పైప్‌లైన్‌ను త్వరగా ఎలా ఉపయోగించాలో ఇక్కడ ఉంది:
```python
>>> from transformers import pipeline
# Allocate a pipeline for sentiment-analysis
>>> classifier = pipeline('sentiment-analysis')
>>> classifier('We are very happy to introduce pipeline to the transformers repository.')
[{'label': 'POSITIVE', 'score': 0.9996980428695679}]
```
రెండవ లైన్ కోడ్ డౌన్‌లోడ్ మరియు పైప్‌లైన్ ఉపయోగించే ప్రీట్రైన్డ్ మోడల్‌ను కాష్ చేస్తుంది, మూడవది ఇచ్చిన టెక్స్ట్‌పై మూల్యాంకనం చేస్తుంది. ఇక్కడ సమాధానం 99.97% విశ్వాసంతో "పాజిటివ్".
చాలా పనులు NLPలో కానీ కంప్యూటర్ విజన్ మరియు స్పీచ్‌లో కూడా ముందుగా శిక్షణ పొందిన `pipeline` సిద్ధంగా ఉన్నాయి. ఉదాహరణకు, మనం చిత్రంలో గుర్తించిన వస్తువులను సులభంగా సంగ్రహించవచ్చు:
``` python
>>> import requests
>>> from PIL import Image
>>> from transformers import pipeline
# Download an image with cute cats
>>> url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample.png"
>>> image_data = requests.get(url, stream=True).raw
>>> image = Image.open(image_data)
# Allocate a pipeline for object detection
>>> object_detector = pipeline('object-detection')
>>> object_detector(image)
[{'score': 0.9982201457023621,
'label': 'remote',
'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
{'score': 0.9960021376609802,
'label': 'remote',
'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
{'score': 0.9954745173454285,
'label': 'couch',
'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
{'score': 0.9988006353378296,
'label': 'cat',
'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9986783862113953,
'label': 'cat',
'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}]
```
ఇక్కడ మనం ఆబ్జెక్ట్ చుట్టూ ఉన్న బాక్స్ మరియు కాన్ఫిడెన్స్ స్కోర్‌తో చిత్రంలో గుర్తించబడిన వస్తువుల జాబితాను పొందుతాము. ఇక్కడ ఎడమవైపున ఉన్న అసలు చిత్రం, కుడివైపున అంచనాలు ప్రదర్శించబడతాయి:
<h3 align="center">
<a><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample.png" width="400"></a>
<a><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample_post_processed.png" width="400"></a>
</h3>
మీరు [ఈ ట్యుటోరియల్](https://huggingface.co/docs/transformers/task_summary)లో `pipeline` API ద్వారా సపోర్ట్ చేసే టాస్క్‌ల గురించి మరింత తెలుసుకోవచ్చు.
`pipeline`తో పాటు, మీరు ఇచ్చిన టాస్క్‌లో ఏదైనా ప్రీట్రైన్డ్ మోడల్‌లను డౌన్‌లోడ్ చేయడానికి మరియు ఉపయోగించడానికి, దీనికి మూడు లైన్ల కోడ్ సరిపోతుంది. ఇక్కడ PyTorch వెర్షన్ ఉంది:
```python
>>> from transformers import AutoTokenizer, AutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = AutoModel.from_pretrained("bert-base-uncased")
>>> inputs = tokenizer("Hello world!", return_tensors="pt")
>>> outputs = model(**inputs)
```
మరియు TensorFlow కి సమానమైన కోడ్ ఇక్కడ ఉంది:
```python
>>> from transformers import AutoTokenizer, TFAutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = TFAutoModel.from_pretrained("bert-base-uncased")
>>> inputs = tokenizer("Hello world!", return_tensors="tf")
>>> outputs = model(**inputs)
```
ప్రిట్రైన్డ్ మోడల్ ఆశించే అన్ని ప్రీప్రాసెసింగ్‌లకు టోకెనైజర్ బాధ్యత వహిస్తుంది మరియు నేరుగా ఒకే స్ట్రింగ్ (పై ఉదాహరణలలో వలె) లేదా జాబితాపై కాల్ చేయవచ్చు. ఇది మీరు డౌన్‌స్ట్రీమ్ కోడ్‌లో ఉపయోగించగల నిఘంటువుని అవుట్‌పుట్ చేస్తుంది లేదా ** ఆర్గ్యుమెంట్ అన్‌ప్యాకింగ్ ఆపరేటర్‌ని ఉపయోగించి నేరుగా మీ మోడల్‌కి పంపుతుంది.
మోడల్ కూడా సాధారణ [Pytorch `nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) లేదా [TensorFlow `tf.keras.Model`]( https://www.tensorflow.org/api_docs/python/tf/keras/Model) (మీ బ్యాకెండ్‌ని బట్టి) మీరు మామూలుగా ఉపయోగించవచ్చు. [ఈ ట్యుటోరియల్](https://huggingface.co/docs/transformers/training) అటువంటి మోడల్‌ని క్లాసిక్ PyTorch లేదా TensorFlow ట్రైనింగ్ లూప్‌లో ఎలా ఇంటిగ్రేట్ చేయాలో లేదా మా `Trainer` API ని ఎలా ఉపయోగించాలో వివరిస్తుంది కొత్త డేటాసెట్.
## నేను ట్రాన్స్‌ఫార్మర్‌లను ఎందుకు ఉపయోగించాలి?
1. ఉపయోగించడానికి సులభమైన స్టేట్ ఆఫ్ ది ఆర్ట్ మోడల్‌లు:
- సహజ భాషా అవగాహన & ఉత్పత్తి, కంప్యూటర్ దృష్టి మరియు ఆడియో పనులపై అధిక పనితీరు.
- విద్యావేత్తలు మరియు అభ్యాసకుల ప్రవేశానికి తక్కువ అవరోధం.
- తెలుసుకోవడానికి కేవలం మూడు తరగతులతో కొన్ని వినియోగదారు-ముఖ సంగ్రహణలు.
- మా అన్ని ప్రీట్రైన్డ్ మోడల్‌లను ఉపయోగించడం కోసం ఏకీకృత API.
2. తక్కువ గణన ఖర్చులు, చిన్న కార్బన్ పాదముద్ర:
- పరిశోధకులు ఎల్లప్పుడూ మళ్లీ శిక్షణ పొందే బదులు శిక్షణ పొందిన నమూనాలను పంచుకోవచ్చు.
- అభ్యాసకులు గణన సమయాన్ని మరియు ఉత్పత్తి ఖర్చులను తగ్గించగలరు.
- అన్ని పద్ధతుల్లో 60,000 కంటే ఎక్కువ ప్రీట్రైన్డ్ మోడల్‌లతో డజన్ల కొద్దీ ఆర్కిటెక్చర్‌లు.
3. మోడల్ జీవితకాలంలో ప్రతి భాగానికి సరైన ఫ్రేమ్‌వర్క్‌ను ఎంచుకోండి:
- 3 లైన్ల కోడ్‌లో స్టేట్ ఆఫ్ ది ఆర్ట్ మోడల్‌లకు శిక్షణ ఇవ్వండి.
- TF2.0/PyTorch/JAX ఫ్రేమ్‌వర్క్‌ల మధ్య ఒకే మోడల్‌ను ఇష్టానుసారంగా తరలించండి.
- శిక్షణ, మూల్యాంకనం మరియు ఉత్పత్తి కోసం సరైన ఫ్రేమ్‌వర్క్‌ను సజావుగా ఎంచుకోండి.
4. మీ అవసరాలకు అనుగుణంగా మోడల్ లేదా ఉదాహరణను సులభంగా అనుకూలీకరించండి:
- ప్రతి ఆర్కిటెక్చర్ దాని అసలు రచయితలు ప్రచురించిన ఫలితాలను పునరుత్పత్తి చేయడానికి మేము ఉదాహరణలను అందిస్తాము.
- మోడల్ ఇంటర్నల్‌లు వీలైనంత స్థిరంగా బహిర్గతమవుతాయి.
- శీఘ్ర ప్రయోగాల కోసం లైబ్రరీ నుండి స్వతంత్రంగా మోడల్ ఫైల్‌లను ఉపయోగించవచ్చు.
## నేను ట్రాన్స్‌ఫార్మర్‌లను ఎందుకు ఉపయోగించకూడదు?
- ఈ లైబ్రరీ న్యూరల్ నెట్‌ల కోసం బిల్డింగ్ బ్లాక్‌ల మాడ్యులర్ టూల్‌బాక్స్ కాదు. మోడల్ ఫైల్‌లలోని కోడ్ ఉద్దేశపూర్వకంగా అదనపు సంగ్రహణలతో రీఫ్యాక్టరింగ్ చేయబడదు, తద్వారా పరిశోధకులు అదనపు సంగ్రహణలు/ఫైళ్లలోకి ప్రవేశించకుండా ప్రతి మోడల్‌పై త్వరగా మళ్లించగలరు.
- శిక్షణ API ఏ మోడల్‌లో పని చేయడానికి ఉద్దేశించబడలేదు కానీ లైబ్రరీ అందించిన మోడల్‌లతో పని చేయడానికి ఆప్టిమైజ్ చేయబడింది. సాధారణ మెషిన్ లెర్నింగ్ లూప్‌ల కోసం, మీరు మరొక లైబ్రరీని ఉపయోగించాలి (బహుశా, [Accelerate](https://huggingface.co/docs/accelerate)).
- మేము వీలైనన్ని ఎక్కువ వినియోగ సందర్భాలను ప్రదర్శించడానికి ప్రయత్నిస్తున్నప్పుడు, మా [ఉదాహరణల ఫోల్డర్](https://github.com/huggingface/transformers/tree/main/examples)లోని స్క్రిప్ట్‌లు కేవలం: ఉదాహరణలు. మీ నిర్దిష్ట సమస్యపై అవి పని చేయవు మరియు వాటిని మీ అవసరాలకు అనుగుణంగా మార్చుకోవడానికి మీరు కొన్ని కోడ్ లైన్‌లను మార్చవలసి ఉంటుంది.
## సంస్థాపన
### పిప్ తో
ఈ రిపోజిటరీ పైథాన్ 3.8+, ఫ్లాక్స్ 0.4.1+, PyTorch 1.10+ మరియు TensorFlow 2.6+లో పరీక్షించబడింది.
మీరు [వర్చువల్ వాతావరణం](https://docs.python.org/3/library/venv.html)లో 🤗 ట్రాన్స్‌ఫార్మర్‌లను ఇన్‌స్టాల్ చేయాలి. మీకు పైథాన్ వర్చువల్ పరిసరాల గురించి తెలియకుంటే, [యూజర్ గైడ్](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/) చూడండి.
ముందుగా, మీరు ఉపయోగించబోతున్న పైథాన్ వెర్షన్‌తో వర్చువల్ వాతావరణాన్ని సృష్టించండి మరియు దానిని సక్రియం చేయండి.
అప్పుడు, మీరు ఫ్లాక్స్, పైటార్చ్ లేదా టెన్సర్‌ఫ్లోలో కనీసం ఒకదానిని ఇన్‌స్టాల్ చేయాలి.
దయచేసి [TensorFlow ఇన్‌స్టాలేషన్ పేజీ](https://www.tensorflow.org/install/), [PyTorch ఇన్‌స్టాలేషన్ పేజీ](https://pytorch.org/get-started/locally/#start-locally) మరియు/ని చూడండి లేదా మీ ప్లాట్‌ఫారమ్ కోసం నిర్దిష్ట ఇన్‌స్టాలేషన్ కమాండ్‌కు సంబంధించి [Flax](https://github.com/google/flax#quick-install) మరియు [Jax](https://github.com/google/jax#installation) ఇన్‌స్టాలేషన్ పేజీలు .
ఆ బ్యాకెండ్‌లలో ఒకటి ఇన్‌స్టాల్ చేయబడినప్పుడు, 🤗 ట్రాన్స్‌ఫార్మర్‌లను ఈ క్రింది విధంగా పిప్‌ని ఉపయోగించి ఇన్‌స్టాల్ చేయవచ్చు:
```bash
pip install transformers
```
మీరు ఉదాహరణలతో ప్లే చేయాలనుకుంటే లేదా కోడ్ యొక్క బ్లీడింగ్ ఎడ్జ్ అవసరం మరియు కొత్త విడుదల కోసం వేచి ఉండలేకపోతే, మీరు తప్పనిసరిగా [మూలం నుండి లైబ్రరీని ఇన్‌స్టాల్ చేయాలి](https://huggingface.co/docs/transformers/installation#installing-from-source).
### కొండా తో
ట్రాన్స్‌ఫార్మర్స్ వెర్షన్ v4.0.0 నుండి, మేము ఇప్పుడు కొండా ఛానెల్‌ని కలిగి ఉన్నాము: `huggingface`.
🤗 కింది విధంగా కొండా ఉపయోగించి ట్రాన్స్‌ఫార్మర్‌లను ఇన్‌స్టాల్ చేయవచ్చు:
```shell script
conda install -c huggingface transformers
```
Flax, PyTorch లేదా TensorFlow యొక్క ఇన్‌స్టాలేషన్ పేజీలను కొండాతో ఎలా ఇన్‌స్టాల్ చేయాలో చూడటానికి వాటిని అనుసరించండి.
> **_గమనిక:_** Windowsలో, కాషింగ్ నుండి ప్రయోజనం పొందేందుకు మీరు డెవలపర్ మోడ్‌ని సక్రియం చేయమని ప్రాంప్ట్ చేయబడవచ్చు. ఇది మీకు ఎంపిక కాకపోతే, దయచేసి [ఈ సంచిక](https://github.com/huggingface/huggingface_hub/issues/1062)లో మాకు తెలియజేయండి.
## మోడల్ ఆర్కిటెక్చర్లు
**[అన్ని మోడల్ చెక్‌పాయింట్‌లు](https://huggingface.co/models)** 🤗 అందించిన ట్రాన్స్‌ఫార్మర్లు huggingface.co [model hub](https://huggingface.co/models) నుండి సజావుగా ఏకీకృతం చేయబడ్డాయి [users](https://huggingface.co/users) మరియు [organizations](https://huggingface.co/organizations) ద్వారా నేరుగా అప్‌లోడ్ చేయబడతాయి.
ప్రస్తుత తనిఖీ కేంద్రాల సంఖ్య: ![](https://img.shields.io/endpoint?url=https://huggingface.co/api/shields/models&color=brightgreen)
🤗 ట్రాన్స్‌ఫార్మర్లు ప్రస్తుతం కింది ఆర్కిటెక్చర్‌లను అందజేస్తున్నాయి (వాటిలో ప్రతి ఒక్కటి ఉన్నత స్థాయి సారాంశం కోసం [ఇక్కడ](https://huggingface.co/docs/transformers/model_summary) చూడండి):
1. **[ALBERT](https://huggingface.co/docs/transformers/model_doc/albert)** (from Google Research and the Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.
1. **[ALIGN](https://huggingface.co/docs/transformers/model_doc/align)** (from Google Research) released with the paper [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918) by Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig.
1. **[AltCLIP](https://huggingface.co/docs/transformers/model_doc/altclip)** (from BAAI) released with the paper [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) by Chen, Zhongzhi and Liu, Guang and Zhang, Bo-Wen and Ye, Fulong and Yang, Qinghong and Wu, Ledell.
1. **[Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer)** (from MIT) released with the paper [AST: Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778) by Yuan Gong, Yu-An Chung, James Glass.
1. **[Autoformer](https://huggingface.co/docs/transformers/model_doc/autoformer)** (from Tsinghua University) released with the paper [Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://arxiv.org/abs/2106.13008) by Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long.
1. **[Bark](https://huggingface.co/docs/transformers/model_doc/bark)** (from Suno) released in the repository [suno-ai/bark](https://github.com/suno-ai/bark) by Suno AI team.
1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (from Facebook) released with the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov, and Luke Zettlemoyer.
1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (from École polytechnique) released with the paper [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis.
1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (from VinAI Research) released with the paper [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen.
1. **[BEiT](https://huggingface.co/docs/transformers/model_doc/beit)** (from Microsoft) released with the paper [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) by Hangbo Bao, Li Dong, Furu Wei.
1. **[BERT](https://huggingface.co/docs/transformers/model_doc/bert)** (from Google) released with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
1. **[BERT For Sequence Generation](https://huggingface.co/docs/transformers/model_doc/bert-generation)** (from Google) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[BERTweet](https://huggingface.co/docs/transformers/model_doc/bertweet)** (from VinAI Research) released with the paper [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) by Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen.
1. **[BigBird-Pegasus](https://huggingface.co/docs/transformers/model_doc/bigbird_pegasus)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[BigBird-RoBERTa](https://huggingface.co/docs/transformers/model_doc/big_bird)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[BioGpt](https://huggingface.co/docs/transformers/model_doc/biogpt)** (from Microsoft Research AI4Science) released with the paper [BioGPT: generative pre-trained transformer for biomedical text generation and mining](https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbac409/6713511?guestAccessKey=a66d9b5d-4f83-4017-bb52-405815c907b9) by Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon and Tie-Yan Liu.
1. **[BiT](https://huggingface.co/docs/transformers/model_doc/bit)** (from Google AI) released with the paper [Big Transfer (BiT): General Visual Representation Learning](https://arxiv.org/abs/1912.11370) by Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil Houlsby.
1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BLIP](https://huggingface.co/docs/transformers/model_doc/blip)** (from Salesforce) released with the paper [BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation](https://arxiv.org/abs/2201.12086) by Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi.
1. **[BLIP-2](https://huggingface.co/docs/transformers/model_doc/blip-2)** (from Salesforce) released with the paper [BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models](https://arxiv.org/abs/2301.12597) by Junnan Li, Dongxu Li, Silvio Savarese, Steven Hoi.
1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (from BigScience workshop) released by the [BigScience Workshop](https://bigscience.huggingface.co/).
1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (from Alexa) released with the paper [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) by Adrian de Wynter and Daniel J. Perry.
1. **[BridgeTower](https://huggingface.co/docs/transformers/model_doc/bridgetower)** (from Harbin Institute of Technology/Microsoft Research Asia/Intel Labs) released with the paper [BridgeTower: Building Bridges Between Encoders in Vision-Language Representation Learning](https://arxiv.org/abs/2206.08657) by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan.
1. **[BROS](https://huggingface.co/docs/transformers/model_doc/bros)** (from NAVER CLOVA) released with the paper [BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents](https://arxiv.org/abs/2108.04539) by Teakgyu Hong, Donghyun Kim, Mingi Ji, Wonseok Hwang, Daehyun Nam, Sungrae Park.
1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (from Google Research) released with the paper [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel.
1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (from Inria/Facebook/Sorbonne) released with the paper [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (from Google Research) released with the paper [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting.
1. **[Chinese-CLIP](https://huggingface.co/docs/transformers/model_doc/chinese_clip)** (from OFA-Sys) released with the paper [Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese](https://arxiv.org/abs/2211.01335) by An Yang, Junshu Pan, Junyang Lin, Rui Men, Yichang Zhang, Jingren Zhou, Chang Zhou.
1. **[CLAP](https://huggingface.co/docs/transformers/model_doc/clap)** (from LAION-AI) released with the paper [Large-scale Contrastive Language-Audio Pretraining with Feature Fusion and Keyword-to-Caption Augmentation](https://arxiv.org/abs/2211.06687) by Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, Shlomo Dubnov.
1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (from OpenAI) released with the paper [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever.
1. **[CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)** (from University of Göttingen) released with the paper [Image Segmentation Using Text and Image Prompts](https://arxiv.org/abs/2112.10003) by Timo Lüddecke and Alexander Ecker.
1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (from Salesforce) released with the paper [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong.
1. **[CodeLlama](https://huggingface.co/docs/transformers/model_doc/llama_code)** (from MetaAI) released with the paper [Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/) by Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, Gabriel Synnaeve.
1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (from Microsoft Research Asia) released with the paper [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) by Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang.
1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (from YituTech) released with the paper [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan.
1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (from Facebook AI) released with the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie.
1. **[ConvNeXTV2](https://huggingface.co/docs/transformers/model_doc/convnextv2)** (from Facebook AI) released with the paper [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://arxiv.org/abs/2301.00808) by Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, Saining Xie.
1. **[CPM](https://huggingface.co/docs/transformers/model_doc/cpm)** (from Tsinghua University) released with the paper [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) by Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun.
1. **[CPM-Ant](https://huggingface.co/docs/transformers/model_doc/cpmant)** (from OpenBMB) released by the [OpenBMB](https://www.openbmb.org/).
1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (from Microsoft) released with the paper [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang.
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (from Facebook) released with the paper [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli.
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (from Berkeley/Facebook/Google) released with the paper [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch.
1. **[Deformable DETR](https://huggingface.co/docs/transformers/model_doc/deformable_detr)** (from SenseTime Research) released with the paper [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159) by Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai.
1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (from Facebook) released with the paper [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou.
1. **[DePlot](https://huggingface.co/docs/transformers/model_doc/deplot)** (from Google AI) released with the paper [DePlot: One-shot visual language reasoning by plot-to-table translation](https://arxiv.org/abs/2212.10505) by Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, Yasemin Altun.
1. **[DETA](https://huggingface.co/docs/transformers/model_doc/deta)** (from The University of Texas at Austin) released with the paper [NMS Strikes Back](https://arxiv.org/abs/2212.06137) by Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, Philipp Krähenbühl.
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (from Facebook) released with the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (from Microsoft Research) released with the paper [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
1. **[DiNAT](https://huggingface.co/docs/transformers/model_doc/dinat)** (from SHI Labs) released with the paper [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) by Ali Hassani and Humphrey Shi.
1. **[DINOv2](https://huggingface.co/docs/transformers/model_doc/dinov2)** (from Meta AI) released with the paper [DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193) by Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, Piotr Bojanowski.
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation) and a German version of DistilBERT.
1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (from Microsoft Research) released with the paper [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) by Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei.
1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (from NAVER), released together with the paper [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) by Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park.
1. **[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (from Facebook) released with the paper [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) by Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
1. **[DPT](https://huggingface.co/docs/transformers/master/model_doc/dpt)** (from Intel Labs) released with the paper [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) by René Ranftl, Alexey Bochkovskiy, Vladlen Koltun.
1. **[EfficientFormer](https://huggingface.co/docs/transformers/model_doc/efficientformer)** (from Snap Research) released with the paper [EfficientFormer: Vision Transformers at MobileNetSpeed](https://arxiv.org/abs/2206.01191) by Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren.
1. **[EfficientNet](https://huggingface.co/docs/transformers/model_doc/efficientnet)** (from Google Brain) released with the paper [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan, Quoc V. Le.
1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
1. **[EnCodec](https://huggingface.co/docs/transformers/model_doc/encodec)** (from Meta AI) released with the paper [High Fidelity Neural Audio Compression](https://arxiv.org/abs/2210.13438) by Alexandre Défossez, Jade Copet, Gabriel Synnaeve, Yossi Adi.
1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (from Google Research) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)** (from Baidu) released with the paper [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) by Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu.
1. **[ErnieM](https://huggingface.co/docs/transformers/model_doc/ernie_m)** (from Baidu) released with the paper [ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora](https://arxiv.org/abs/2012.15674) by Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang.
1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (from Meta AI) are transformer protein language models. **ESM-1b** was released with the paper [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. **ESM-1v** was released with the paper [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648) by Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives. **ESM-2 and ESMFold** were released with the paper [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902) by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives.
1. **[Falcon](https://huggingface.co/docs/transformers/model_doc/falcon)** (from Technology Innovation Institute) by Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme.
1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FLAN-UL2](https://huggingface.co/docs/transformers/model_doc/flan-ul2)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-ul2-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (from Facebook AI) released with the paper [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela.
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
1. **[FocalNet](https://huggingface.co/docs/transformers/model_doc/focalnet)** (from Microsoft Research) released with the paper [Focal Modulation Networks](https://arxiv.org/abs/2203.11926) by Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao.
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
1. **[Fuyu](https://huggingface.co/docs/transformers/model_doc/fuyu)** (from ADEPT) Rohan Bavishi, Erich Elsen, Curtis Hawthorne, Maxwell Nye, Augustus Odena, Arushi Somani, Sağnak Taşırlar. Released with the paper [blog post](https://www.adept.ai/blog/fuyu-8b)
1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (from Microsoft Research) released with the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang.
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (from KAIST) released with the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim.
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://openai.com/research/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (from EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy.
1. **[GPT NeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox)** (from EleutherAI) released with the paper [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) by Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach
1. **[GPT NeoX Japanese](https://huggingface.co/docs/transformers/model_doc/gpt_neox_japanese)** (from ABEJA) released by Shinya Otani, Takayoshi Makabe, Anuj Arora, and Kyo Hattori.
1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (from OpenAI) released with the paper [Language Models are Unsupervised Multitask Learners](https://openai.com/research/better-language-models/) by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**.
1. **[GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj)** (from EleutherAI) released in the repository [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) by Ben Wang and Aran Komatsuzaki.
1. **[GPT-Sw3](https://huggingface.co/docs/transformers/model_doc/gpt-sw3)** (from AI-Sweden) released with the paper [Lessons Learned from GPT-SW3: Building the First Large-Scale Generative Language Model for Swedish](http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.376.pdf) by Ariel Ekgren, Amaru Cuba Gyllensten, Evangelia Gogoulou, Alice Heiman, Severine Verlinden, Joey Öhman, Fredrik Carlsson, Magnus Sahlgren.
1. **[GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode)** (from BigCode) released with the paper [SantaCoder: don't reach for the stars!](https://arxiv.org/abs/2301.03988) by Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, Logesh Kumar Umapathi, Carolyn Jane Anderson, Yangtian Zi, Joel Lamy Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry Abulkhanov, Manuel Romero, Michael Lappert, Francesco De Toni, Bernardo García del Río, Qian Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab Mangrulkar, David Lansky, Huu Nguyen, Danish Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau, Yacine Jernite, Sean Hughes, Daniel Fried, Arjun Guha, Harm de Vries, Leandro von Werra.
1. **[GPTSAN-japanese](https://huggingface.co/docs/transformers/model_doc/gptsan-japanese)** released in the repository [tanreinama/GPTSAN](https://github.com/tanreinama/GPTSAN/blob/main/report/model.md) by Toshiyuki Sakamoto(tanreinama).
1. **[Graphormer](https://huggingface.co/docs/transformers/model_doc/graphormer)** (from Microsoft) released with the paper [Do Transformers Really Perform Bad for Graph Representation?](https://arxiv.org/abs/2106.05234) by Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu.
1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (from UCSD, NVIDIA) released with the paper [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) by Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang.
1. **[HerBERT](https://huggingface.co/docs/transformers/model_doc/herbert)** (from Allegro.pl, AGH University of Science and Technology) released with the paper [KLEJ: Comprehensive Benchmark for Polish Language Understanding](https://www.aclweb.org/anthology/2020.acl-main.111.pdf) by Piotr Rybak, Robert Mroczkowski, Janusz Tracz, Ireneusz Gawlik.
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (from Facebook) released with the paper [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed.
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (from Berkeley) released with the paper [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer.
1. **[IDEFICS](https://huggingface.co/docs/transformers/model_doc/idefics)** (from HuggingFace) released with the paper [OBELICS: An Open Web-Scale Filtered Dataset of Interleaved Image-Text Documents](https://huggingface.co/papers/2306.16527) by Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov, Thomas Wang, Siddharth Karamcheti, Alexander M. Rush, Douwe Kiela, Matthieu Cord, Victor Sanh.
1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (from OpenAI) released with the paper [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever.
1. **[Informer](https://huggingface.co/docs/transformers/model_doc/informer)** (from Beihang University, UC Berkeley, Rutgers University, SEDD Company) released with the paper [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting](https://arxiv.org/abs/2012.07436) by Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
1. **[InstructBLIP](https://huggingface.co/docs/transformers/model_doc/instructblip)** (from Salesforce) released with the paper [InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning](https://arxiv.org/abs/2305.06500) by Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, Steven Hoi.
1. **[Jukebox](https://huggingface.co/docs/transformers/model_doc/jukebox)** (from OpenAI) released with the paper [Jukebox: A Generative Model for Music](https://arxiv.org/pdf/2005.00341.pdf) by Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever.
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou.
1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (from Microsoft Research Asia) released with the paper [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) by Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei.
1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutxlm)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (from Meta AI) released with the paper [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) by Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze.
1. **[LiLT](https://huggingface.co/docs/transformers/model_doc/lilt)** (from South China University of Technology) released with the paper [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669) by Jiapeng Wang, Lianwen Jin, Kai Ding.
1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (from The FAIR team of Meta AI) released with the paper [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971) by Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample.
1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (from The FAIR team of Meta AI) released with the paper [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/) by Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom.
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (from Google AI) released with the paper [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang.
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (from Studio Ousia) released with the paper [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.
1. **[LXMERT](https://huggingface.co/docs/transformers/model_doc/lxmert)** (from UNC Chapel Hill) released with the paper [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal.
1. **[M-CTC-T](https://huggingface.co/docs/transformers/model_doc/mctct)** (from Facebook) released with the paper [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) by Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert.
1. **[M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100)** (from Facebook) released with the paper [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) by Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin.
1. **[MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)** Machine translation models trained using [OPUS](http://opus.nlpl.eu/) data by Jörg Tiedemann. The [Marian Framework](https://marian-nmt.github.io/) is being developed by the Microsoft Translator Team.
1. **[MarkupLM](https://huggingface.co/docs/transformers/model_doc/markuplm)** (from Microsoft Research Asia) released with the paper [MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document Understanding](https://arxiv.org/abs/2110.08518) by Junlong Li, Yiheng Xu, Lei Cui, Furu Wei.
1. **[Mask2Former](https://huggingface.co/docs/transformers/model_doc/mask2former)** (from FAIR and UIUC) released with the paper [Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527) by Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Rohit Girdhar.
1. **[MaskFormer](https://huggingface.co/docs/transformers/model_doc/maskformer)** (from Meta and UIUC) released with the paper [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) by Bowen Cheng, Alexander G. Schwing, Alexander Kirillov.
1. **[MatCha](https://huggingface.co/docs/transformers/model_doc/matcha)** (from Google AI) released with the paper [MatCha: Enhancing Visual Language Pretraining with Math Reasoning and Chart Derendering](https://arxiv.org/abs/2212.09662) by Fangyu Liu, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Yasemin Altun, Nigel Collier, Julian Martin Eisenschlos.
1. **[mBART](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
1. **[mBART-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan.
1. **[MEGA](https://huggingface.co/docs/transformers/model_doc/mega)** (from Meta/USC/CMU/SJTU) released with the paper [Mega: Moving Average Equipped Gated Attention](https://arxiv.org/abs/2209.10655) by Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and Luke Zettlemoyer.
1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[MGP-STR](https://huggingface.co/docs/transformers/model_doc/mgp-str)** (from Alibaba Research) released with the paper [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592) by Peng Wang, Cheng Da, and Cong Yao.
1. **[Mistral](https://huggingface.co/docs/transformers/model_doc/mistral)** (from Mistral AI) by The [Mistral AI](https://mistral.ai) team: Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (from Studio Ousia) released with the paper [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka.
1. **[MMS](https://huggingface.co/docs/transformers/model_doc/mms)** (from Facebook) released with the paper [Scaling Speech Technology to 1,000+ Languages](https://arxiv.org/abs/2305.13516) by Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky, Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi, Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning Hsu, Alexis Conneau, Michael Auli.
1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (from CMU/Google Brain) released with the paper [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou.
1. **[MobileNetV1](https://huggingface.co/docs/transformers/model_doc/mobilenet_v1)** (from Google Inc.) released with the paper [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) by Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam.
1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (from Google Inc.) released with the paper [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) by Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen.
1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (from Apple) released with the paper [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari.
1. **[MobileViTV2](https://huggingface.co/docs/transformers/model_doc/mobilevitv2)** (from Apple) released with the paper [Separable Self-attention for Mobile Vision Transformers](https://arxiv.org/abs/2206.02680) by Sachin Mehta and Mohammad Rastegari.
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
1. **[MPT](https://huggingface.co/docs/transformers/model_doc/mpt)** (from MosaiML) released with the repository [llm-foundry](https://github.com/mosaicml/llm-foundry/) by the MosaicML NLP Team.
1. **[MRA](https://huggingface.co/docs/transformers/model_doc/mra)** (from the University of Wisconsin - Madison) released with the paper [Multi Resolution Analysis (MRA) for Approximate Self-Attention](https://arxiv.org/abs/2207.10284) by Zhanpeng Zeng, Sourav Pal, Jeffery Kline, Glenn M Fung, Vikas Singh.
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
1. **[MusicGen](https://huggingface.co/docs/transformers/model_doc/musicgen)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (from RUC AI Box) released with the paper [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen.
1. **[NAT](https://huggingface.co/docs/transformers/model_doc/nat)** (from SHI Labs) released with the paper [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143) by Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi.
1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (from Huawei Noahs Ark Lab) released with the paper [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) by Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu.
1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[Nougat](https://huggingface.co/docs/transformers/model_doc/nougat)** (from Meta AI) released with the paper [Nougat: Neural Optical Understanding for Academic Documents](https://arxiv.org/abs/2308.13418) by Lukas Blecher, Guillem Cucurull, Thomas Scialom, Robert Stojnic.
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (from the University of Wisconsin - Madison) released with the paper [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh.
1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (from SHI Labs) released with the paper [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) by Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi.
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released on GitHub (now removed).
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al.
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (from Google AI) released with the paper [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby.
1. **[OWLv2](https://huggingface.co/docs/transformers/main/model_doc/owlv2)** (from Google AI) released with the paper [Scaling Open-Vocabulary Object Detection](https://arxiv.org/abs/2306.09683) by Matthias Minderer, Alexey Gritsenko, Neil Houlsby.
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (from Google) released with the paper [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) by Jason Phang, Yao Zhao, and Peter J. Liu.
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (from Deepmind) released with the paper [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) by Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira.
1. **[Persimmon](https://huggingface.co/docs/transformers/model_doc/persimmon)** (from ADEPT) released in a [blog post](https://www.adept.ai/blog/persimmon-8b) by Erich Elsen, Augustus Odena, Maxwell Nye, Sağnak Taşırlar, Tri Dao, Curtis Hawthorne, Deepak Moparthi, Arushi Somani.
1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen.
1. **[Pix2Struct](https://huggingface.co/docs/transformers/model_doc/pix2struct)** (from Google) released with the paper [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding](https://arxiv.org/abs/2210.03347) by Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova.
1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (from UCLA NLP) released with the paper [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) by Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang.
1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (from Sea AI Labs) released with the paper [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) by Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng.
1. **[Pop2Piano](https://huggingface.co/docs/transformers/model_doc/pop2piano)** released with the paper [Pop2Piano : Pop Audio-based Piano Cover Generation](https://arxiv.org/abs/2211.00895) by Jongho Choi and Kyogu Lee.
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[PVT](https://huggingface.co/docs/transformers/model_doc/pvt)** (from Nanjing University, The University of Hong Kong etc.) released with the paper [Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions](https://arxiv.org/pdf/2102.12122.pdf) by Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao.
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (from NVIDIA) released with the paper [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) by Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius.
1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (from Facebook) released with the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) by Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela.
1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (from Google Research) released with the paper [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) by Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang.
1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (from Google Research) released with the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
1. **[RegNet](https://huggingface.co/docs/transformers/model_doc/regnet)** (from META Platforms) released with the paper [Designing Network Design Space](https://arxiv.org/abs/2003.13678) by Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár.
1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (from Google Research) released with the paper [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/abs/2010.12821) by Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder.
1. **[ResNet](https://huggingface.co/docs/transformers/model_doc/resnet)** (from Microsoft Research) released with the paper [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) by Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun.
1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (from Facebook), released together with the paper [RoBERTa: A Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
1. **[RoBERTa-PreLayerNorm](https://huggingface.co/docs/transformers/model_doc/roberta-prelayernorm)** (from Facebook) released with the paper [fairseq: A Fast, Extensible Toolkit for Sequence Modeling](https://arxiv.org/abs/1904.01038) by Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli.
1. **[RoCBert](https://huggingface.co/docs/transformers/model_doc/roc_bert)** (from WeChatAI) released with the paper [RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining](https://aclanthology.org/2022.acl-long.65.pdf) by HuiSu, WeiweiShi, XiaoyuShen, XiaoZhou, TuoJi, JiaruiFang, JieZhou.
1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (from ZhuiyiTechnology), released together with the paper [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/abs/2104.09864) by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu.
1. **[RWKV](https://huggingface.co/docs/transformers/model_doc/rwkv)** (from Bo Peng), released on [this repo](https://github.com/BlinkDL/RWKV-LM) by Bo Peng.
1. **[SeamlessM4T](https://huggingface.co/docs/transformers/main/model_doc/seamless_m4t)** (from Meta AI) released with the paper [SeamlessM4T — Massively Multilingual & Multimodal Machine Translation](https://dl.fbaipublicfiles.com/seamless/seamless_m4t_paper.pdf) by the Seamless Communication team.
1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (from NVIDIA) released with the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo.
1. **[Segment Anything](https://huggingface.co/docs/transformers/model_doc/sam)** (from Meta AI) released with the paper [Segment Anything](https://arxiv.org/pdf/2304.02643v1.pdf) by Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alex Berg, Wan-Yen Lo, Piotr Dollar, Ross Girshick.
1. **[SEW](https://huggingface.co/docs/transformers/model_doc/sew)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SEW-D](https://huggingface.co/docs/transformers/model_doc/sew_d)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SpeechT5](https://huggingface.co/docs/transformers/model_doc/speecht5)** (from Microsoft Research) released with the paper [SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing](https://arxiv.org/abs/2110.07205) by Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li, Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, Furu Wei.
1. **[SpeechToTextTransformer](https://huggingface.co/docs/transformers/model_doc/speech_to_text)** (from Facebook), released together with the paper [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino.
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (from Facebook), released together with the paper [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau.
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (from Tel Aviv University), released together with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy.
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (from MBZUAI) released with the paper [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) by Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan.
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (from Microsoft) released with the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (from Microsoft) released with the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo.
1. **[Swin2SR](https://huggingface.co/docs/transformers/model_doc/swin2sr)** (from University of Würzburg) released with the paper [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345) by Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte.
1. **[SwitchTransformers](https://huggingface.co/docs/transformers/model_doc/switch_transformers)** (from Google) released with the paper [Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity](https://arxiv.org/abs/2101.03961) by William Fedus, Barret Zoph, Noam Shazeer.
1. **[T5](https://huggingface.co/docs/transformers/model_doc/t5)** (from Google AI) released with the paper [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (from Google AI) released in the repository [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[Table Transformer](https://huggingface.co/docs/transformers/model_doc/table-transformer)** (from Microsoft Research) released with the paper [PubTables-1M: Towards Comprehensive Table Extraction From Unstructured Documents](https://arxiv.org/abs/2110.00061) by Brandon Smock, Rohith Pesala, Robin Abraham.
1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (from Google AI) released with the paper [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos.
1. **[TAPEX](https://huggingface.co/docs/transformers/model_doc/tapex)** (from Microsoft Research) released with the paper [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou.
1. **[Time Series Transformer](https://huggingface.co/docs/transformers/model_doc/time_series_transformer)** (from HuggingFace).
1. **[TimeSformer](https://huggingface.co/docs/transformers/model_doc/timesformer)** (from Facebook) released with the paper [Is Space-Time Attention All You Need for Video Understanding?](https://arxiv.org/abs/2102.05095) by Gedas Bertasius, Heng Wang, Lorenzo Torresani.
1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/model_doc/trajectory_transformers)** (from the University of California at Berkeley) released with the paper [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine
1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (from Microsoft), released together with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
1. **[TVLT](https://huggingface.co/docs/transformers/model_doc/tvlt)** (from UNC Chapel Hill) released with the paper [TVLT: Textless Vision-Language Transformer](https://arxiv.org/abs/2209.14156) by Zineng Tang, Jaemin Cho, Yixin Nie, Mohit Bansal.
1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
1. **[UMT5](https://huggingface.co/docs/transformers/model_doc/umt5)** (from Google Research) released with the paper [UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining](https://openreview.net/forum?id=kXwdL1cWOAi) by Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, Noah Constant.
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (from Microsoft Research) released with the paper [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (from Microsoft Research) released with the paper [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu.
1. **[UPerNet](https://huggingface.co/docs/transformers/model_doc/upernet)** (from Peking University) released with the paper [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221) by Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun.
1. **[VAN](https://huggingface.co/docs/transformers/model_doc/van)** (from Tsinghua University and Nankai University) released with the paper [Visual Attention Network](https://arxiv.org/abs/2202.09741) by Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu.
1. **[VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)** (from Multimedia Computing Group, Nanjing University) released with the paper [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602) by Zhan Tong, Yibing Song, Jue Wang, Limin Wang.
1. **[ViLT](https://huggingface.co/docs/transformers/model_doc/vilt)** (from NAVER AI Lab/Kakao Enterprise/Kakao Brain) released with the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Wonjae Kim, Bokyung Son, Ildoo Kim.
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VitDet](https://huggingface.co/docs/transformers/model_doc/vitdet)** (from Meta AI) released with the paper [Exploring Plain Vision Transformer Backbones for Object Detection](https://arxiv.org/abs/2203.16527) by Yanghao Li, Hanzi Mao, Ross Girshick, Kaiming He.
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (from Meta AI) released with the paper [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick.
1. **[ViTMatte](https://huggingface.co/docs/transformers/model_doc/vitmatte)** (from HUST-VL) released with the paper [ViTMatte: Boosting Image Matting with Pretrained Plain Vision Transformers](https://arxiv.org/abs/2305.15272) by Jingfeng Yao, Xinggang Wang, Shusheng Yang, Baoyuan Wang.
1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (from Meta AI) released with the paper [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas.
1. **[VITS](https://huggingface.co/docs/transformers/model_doc/vits)** (from Kakao Enterprise) released with the paper [Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech](https://arxiv.org/abs/2106.06103) by Jaehyeon Kim, Jungil Kong, Juhee Son.
1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (from Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) by Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid.
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (from Facebook AI) released with the paper [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (from Facebook AI) released with the paper [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino.
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (from Facebook AI) released with the paper [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) by Qiantong Xu, Alexei Baevski, Michael Auli.
1. **[WavLM](https://huggingface.co/docs/transformers/model_doc/wavlm)** (from Microsoft Research) released with the paper [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei.
1. **[Whisper](https://huggingface.co/docs/transformers/model_doc/whisper)** (from OpenAI) released with the paper [Robust Speech Recognition via Large-Scale Weak Supervision](https://cdn.openai.com/papers/whisper.pdf) by Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, Ilya Sutskever.
1. **[X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)** (from Microsoft Research) released with the paper [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816) by Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang, Gaofeng Meng, Jianlong Fu, Shiming Xiang, Haibin Ling.
1. **[X-MOD](https://huggingface.co/docs/transformers/model_doc/xmod)** (from Meta AI) released with the paper [Lifting the Curse of Multilinguality by Pre-training Modular Transformers](http://dx.doi.org/10.18653/v1/2022.naacl-main.255) by Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James Cross, Sebastian Riedel, Mikel Artetxe.
1. **[XGLM](https://huggingface.co/docs/transformers/model_doc/xglm)** (From Facebook AI) released with the paper [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li.
1. **[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (from Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau.
1. **[XLM-ProphetNet](https://huggingface.co/docs/transformers/model_doc/xlm-prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[XLM-RoBERTa](https://huggingface.co/docs/transformers/model_doc/xlm-roberta)** (from Facebook AI), released together with the paper [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov.
1. **[XLM-RoBERTa-XL](https://huggingface.co/docs/transformers/model_doc/xlm-roberta-xl)** (from Facebook AI), released together with the paper [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) by Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau.
1. **[XLM-V](https://huggingface.co/docs/transformers/model_doc/xlm-v)** (from Meta AI) released with the paper [XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models](https://arxiv.org/abs/2301.10472) by Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Naman Goyal, Marjan Ghazvininejad, Luke Zettlemoyer, Madian Khabsa.
1. **[XLNet](https://huggingface.co/docs/transformers/model_doc/xlnet)** (from Google/CMU) released with the paper [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
1. **[XLS-R](https://huggingface.co/docs/transformers/model_doc/xls_r)** (from Facebook AI) released with the paper [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) by Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli.
1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (from Facebook AI) released with the paper [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) by Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli.
1. **[YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos)** (from Huazhong University of Science & Technology) released with the paper [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) by Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu.
1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (from the University of Wisconsin - Madison) released with the paper [You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling](https://arxiv.org/abs/2111.09714) by Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh.
1. కొత్త మోడల్‌ను అందించాలనుకుంటున్నారా? కొత్త మోడల్‌ను జోడించే ప్రక్రియలో మీకు మార్గనిర్దేశం చేసేందుకు మేము **వివరణాత్మక గైడ్ మరియు టెంప్లేట్‌లను** జోడించాము. మీరు వాటిని రిపోజిటరీ యొక్క [`టెంప్లేట్లు`](./టెంప్లేట్లు) ఫోల్డర్‌లో కనుగొనవచ్చు. మీ PRని ప్రారంభించడానికి ముందు [సహకార మార్గదర్శకాలు](./CONTRIBUTING.md)ని తనిఖీ చేసి, నిర్వహణదారులను సంప్రదించండి లేదా అభిప్రాయాన్ని సేకరించడానికి సమస్యను తెరవండి.
ప్రతి మోడల్ ఫ్లాక్స్, పైటార్చ్ లేదా టెన్సర్‌ఫ్లోలో అమలు చేయబడిందా లేదా 🤗 Tokenizers లైబ్రరీ ద్వారా అనుబంధించబడిన టోకెనైజర్‌ని కలిగి ఉందో లేదో తనిఖీ చేయడానికి, [ఈ పట్టిక](https://huggingface.co/docs/transformers/index#supported-frameworks).
ఈ అమలులు అనేక డేటాసెట్‌లలో పరీక్షించబడ్డాయి (ఉదాహరణ స్క్రిప్ట్‌లను చూడండి) మరియు అసలైన అమలుల పనితీరుతో సరిపోలాలి. మీరు [డాక్యుమెంటేషన్](https://github.com/huggingface/transformers/tree/main/examples) యొక్క ఉదాహరణల విభాగంలో పనితీరుపై మరిన్ని వివరాలను కనుగొనవచ్చు.
## ఇంకా నేర్చుకో
| విభాగం | వివరణ |
|-|-|
| [డాక్యుమెంటేషన్](https://huggingface.co/docs/transformers/) | పూర్తి API డాక్యుమెంటేషన్ మరియు ట్యుటోరియల్స్ |
| [టాస్క్ సారాంశం](https://huggingface.co/docs/transformers/task_summary) | 🤗 ట్రాన్స్‌ఫార్మర్‌ల ద్వారా సపోర్ట్ చేయబడిన విధులు |
| [ప్రీప్రాసెసింగ్ ట్యుటోరియల్](https://huggingface.co/docs/transformers/preprocessing) | మోడల్‌ల కోసం డేటాను సిద్ధం చేయడానికి `Tokenizer` క్లాస్‌ని ఉపయోగించడం |
| [ట్రైనింగ్ మరియు ఫైన్-ట్యూనింగ్](https://huggingface.co/docs/transformers/training) | PyTorch/TensorFlow ట్రైనింగ్ లూప్ మరియు `Trainer` APIలో 🤗 ట్రాన్స్‌ఫార్మర్లు అందించిన మోడల్‌లను ఉపయోగించడం |
| [త్వరిత పర్యటన: ఫైన్-ట్యూనింగ్/యూసేజ్ స్క్రిప్ట్‌లు](https://github.com/huggingface/transformers/tree/main/examples) | విస్తృత శ్రేణి టాస్క్‌లపై ఫైన్-ట్యూనింగ్ మోడల్స్ కోసం ఉదాహరణ స్క్రిప్ట్‌లు |
| [మోడల్ భాగస్వామ్యం మరియు అప్‌లోడ్ చేయడం](https://huggingface.co/docs/transformers/model_sharing) | కమ్యూనిటీతో మీ ఫైన్-ట్యూన్డ్ మోడల్‌లను అప్‌లోడ్ చేయండి మరియు భాగస్వామ్యం చేయండి |
## అనులేఖనం
🤗 ట్రాన్స్‌ఫార్మర్స్ లైబ్రరీ కోసం మీరు ఉదహరించగల [పేపర్](https://www.aclweb.org/anthology/2020.emnlp-demos.6/) ఇప్పుడు మా వద్ద ఉంది:
```bibtex
@inproceedings{wolf-etal-2020-transformers,
title = "Transformers: State-of-the-Art Natural Language Processing",
author = "Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and Rémi Louf and Morgan Funtowicz and Joe Davison and Sam Shleifer and Patrick von Platen and Clara Ma and Yacine Jernite and Julien Plu and Canwen Xu and Teven Le Scao and Sylvain Gugger and Mariama Drame and Quentin Lhoest and Alexander M. Rush",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = oct,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.emnlp-demos.6",
pages = "38--45"
}
```

View File

@ -43,7 +43,7 @@ checkpoint: 检查点
<br>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers_logo_name.png" width="400"/>
<br>
</p>
<p>
<p align="center">
<a href="https://circleci.com/gh/huggingface/transformers">
<img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/main">
@ -72,8 +72,7 @@ checkpoint: 检查点
<a href="https://github.com/huggingface/transformers/blob/main/README_es.md">Español</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ja.md">日本語</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_hd.md">हिन्दी</a>
<a href="https://github.com/huggingface/transformers//blob/main/README_te.md">తెలుగు</a> |
</p>
<p>
</h4>
<h3 align="center">
@ -201,7 +200,7 @@ checkpoint: 检查点
### 使用 pip
这个仓库已在 Python 3.8+、Flax 0.4.1+、PyTorch 1.10+ 和 TensorFlow 2.6+ 下经过测试。
这个仓库已在 Python 3.6+、Flax 0.3.2+、PyTorch 1.3.1+ 和 TensorFlow 2.3+ 下经过测试。
你可以在[虚拟环境](https://docs.python.org/3/library/venv.html)中安装 🤗 Transformers。如果你还不熟悉 Python 的虚拟环境,请阅此[用户说明](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/)。
@ -241,8 +240,6 @@ conda install -c huggingface transformers
1. **[ALIGN](https://huggingface.co/docs/transformers/model_doc/align)** (来自 Google Research) 伴随论文 [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918) 由 Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig 发布。
1. **[AltCLIP](https://huggingface.co/docs/transformers/model_doc/altclip)** (来自 BAAI) 伴随论文 [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) 由 Chen, Zhongzhi and Liu, Guang and Zhang, Bo-Wen and Ye, Fulong and Yang, Qinghong and Wu, Ledell 发布。
1. **[Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer)** (来自 MIT) 伴随论文 [AST: Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778) 由 Yuan Gong, Yu-An Chung, James Glass 发布。
1. **[Autoformer](https://huggingface.co/docs/transformers/model_doc/autoformer)** (from Tsinghua University) released with the paper [Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://arxiv.org/abs/2106.13008) by Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long.
1. **[Bark](https://huggingface.co/docs/transformers/model_doc/bark)** (from Suno) released in the repository [suno-ai/bark](https://github.com/suno-ai/bark) by Suno AI team.
1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (来自 Facebook) 伴随论文 [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/pdf/1910.13461.pdf) 由 Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer 发布。
1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (来自 École polytechnique) 伴随论文 [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) 由 Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis 发布。
1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (来自 VinAI Research) 伴随论文 [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) 由 Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen 发布。
@ -261,7 +258,6 @@ conda install -c huggingface transformers
1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (from BigScience workshop) released by the [BigScience Workshop](https://bigscience.huggingface.co/).
1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (来自 Alexa) 伴随论文 [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) 由 Adrian de Wynter and Daniel J. Perry 发布。
1. **[BridgeTower](https://huggingface.co/docs/transformers/model_doc/bridgetower)** (from Harbin Institute of Technology/Microsoft Research Asia/Intel Labs) released with the paper [BridgeTower: Building Bridges Between Encoders in Vision-Language Representation Learning](https://arxiv.org/abs/2206.08657) by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan.
1. **[BROS](https://huggingface.co/docs/transformers/model_doc/bros)** (来自 NAVER CLOVA) 伴随论文 [BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents](https://arxiv.org/abs/2108.04539) 由 Teakgyu Hong, Donghyun Kim, Mingi Ji, Wonseok Hwang, Daehyun Nam, Sungrae Park 发布。
1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (来自 Google Research) 伴随论文 [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) 由 Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel 发布。
1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (来自 Inria/Facebook/Sorbonne) 伴随论文 [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) 由 Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot 发布。
1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (来自 Google Research) 伴随论文 [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) 由 Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting 发布。
@ -270,7 +266,6 @@ conda install -c huggingface transformers
1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (来自 OpenAI) 伴随论文 [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) 由 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever 发布。
1. **[CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)** (来自 University of Göttingen) 伴随论文 [Image Segmentation Using Text and Image Prompts](https://arxiv.org/abs/2112.10003) 由 Timo Lüddecke and Alexander Ecker 发布。
1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (来自 Salesforce) 伴随论文 [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) 由 Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong 发布。
1. **[CodeLlama](https://huggingface.co/docs/transformers/model_doc/llama_code)** (来自 MetaAI) 伴随论文 [Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/) 由 Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, Gabriel Synnaeve 发布。
1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (来自 Microsoft Research Asia) 伴随论文 [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) 由 Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang 发布。
1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (来自 YituTech) 伴随论文 [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) 由 Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan 发布。
1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (来自 Facebook AI) 伴随论文 [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) 由 Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie 发布。
@ -290,7 +285,6 @@ conda install -c huggingface transformers
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (来自 Facebook) 伴随论文 [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) 由 Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko 发布。
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (来自 Microsoft Research) 伴随论文 [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) 由 Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan 发布。
1. **[DiNAT](https://huggingface.co/docs/transformers/model_doc/dinat)** (来自 SHI Labs) 伴随论文 [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) 由 Ali Hassani and Humphrey Shi 发布。
1. **[DINOv2](https://huggingface.co/docs/transformers/model_doc/dinov2)** (来自 Meta AI) 伴随论文 [DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193) 由 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, Piotr Bojanowski 发布。
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (来自 HuggingFace), 伴随论文 [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 同样的方法也应用于压缩 GPT-2 到 [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa 到 [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation), Multilingual BERT 到 [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) 和德语版 DistilBERT。
1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (来自 Microsoft Research) 伴随论文 [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) 由 Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei 发布。
1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (来自 NAVER) 伴随论文 [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) 由 Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park 发布。
@ -299,12 +293,10 @@ conda install -c huggingface transformers
1. **[EfficientFormer](https://huggingface.co/docs/transformers/model_doc/efficientformer)** (来自 Snap Research) 伴随论文 [EfficientFormer: Vision Transformers at MobileNetSpeed](https://arxiv.org/abs/2206.01191) 由 Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren 发布。
1. **[EfficientNet](https://huggingface.co/docs/transformers/model_doc/efficientnet)** (from Google Brain) released with the paper [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan, Quoc V. Le.
1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (来自 Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning 发布。
1. **[EnCodec](https://huggingface.co/docs/transformers/model_doc/encodec)** (来自 Meta AI) 伴随论文 [High Fidelity Neural Audio Compression](https://arxiv.org/abs/2210.13438) 由 Alexandre Défossez, Jade Copet, Gabriel Synnaeve, Yossi Adi 发布。
1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (来自 Google Research) 伴随论文 [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) 由 Sascha Rothe, Shashi Narayan, Aliaksei Severyn 发布。
1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)** (来自 Baidu) 伴随论文 [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) by Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu 发布。
1. **[ErnieM](https://huggingface.co/docs/transformers/model_doc/ernie_m)** (来自 Baidu) 伴随论文 [ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora](https://arxiv.org/abs/2012.15674) 由 Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang 发布。
1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (from Meta AI) are transformer protein language models. **ESM-1b** was released with the paper [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. **ESM-1v** was released with the paper [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648) by Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives. **ESM-2** was released with the paper [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902) by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives.
1. **[Falcon](https://huggingface.co/docs/transformers/model_doc/falcon)** (from Technology Innovation Institute) by Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme.
1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FLAN-UL2](https://huggingface.co/docs/transformers/model_doc/flan-ul2)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-ul2-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (来自 CNRS) 伴随论文 [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) 由 Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab 发布。
@ -312,7 +304,6 @@ conda install -c huggingface transformers
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (来自 Google Research) 伴随论文 [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) 由 James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon 发布。
1. **[FocalNet](https://huggingface.co/docs/transformers/model_doc/focalnet)** (来自 Microsoft Research) 伴随论文 [Focal Modulation Networks](https://arxiv.org/abs/2203.11926) 由 Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao 发布。
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (来自 CMU/Google Brain) 伴随论文 [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) 由 Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le 发布。
1. **[Fuyu](https://huggingface.co/docs/transformers/model_doc/fuyu)** (来自 ADEPT) 伴随论文 [blog post](https://www.adept.ai/blog/fuyu-8b 由 Rohan Bavishi, Erich Elsen, Curtis Hawthorne, Maxwell Nye, Augustus Odena, Arushi Somani, Sağnak Taşırlar 发布。)
1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (来自 Microsoft Research) 伴随论文 [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) 由 Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang 发布。
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (来自 KAIST) 伴随论文 [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) 由 Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim 发布。
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (来自 OpenAI) 伴随论文 [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) 由 Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever 发布。
@ -326,15 +317,11 @@ conda install -c huggingface transformers
1. **[GPTSAN-japanese](https://huggingface.co/docs/transformers/model_doc/gptsan-japanese)** released in the repository [tanreinama/GPTSAN](https://github.com/tanreinama/GPTSAN/blob/main/report/model.md) by 坂本俊之(tanreinama).
1. **[Graphormer](https://huggingface.co/docs/transformers/model_doc/graphormer)** (from Microsoft) released with the paper [Do Transformers Really Perform Bad for Graph Representation?](https://arxiv.org/abs/2106.05234) by Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu.
1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (来自 UCSD, NVIDIA) 伴随论文 [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) 由 Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang 发布。
1. **[HerBERT](https://huggingface.co/docs/transformers/model_doc/herbert)** (来自 Allegro.pl, AGH University of Science and Technology) 伴随论文 [KLEJ: Comprehensive Benchmark for Polish Language Understanding](https://www.aclweb.org/anthology/2020.acl-main.111.pdf) 由 Piotr Rybak, Robert Mroczkowski, Janusz Tracz, Ireneusz Gawlik 发布。
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (来自 Facebook) 伴随论文 [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) 由 Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed 发布。
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (来自 Berkeley) 伴随论文 [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) 由 Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer 发布。
1. **[IDEFICS](https://huggingface.co/docs/transformers/model_doc/idefics)** (from HuggingFace) released with the paper [OBELICS: An Open Web-Scale Filtered Dataset of Interleaved Image-Text Documents](https://huggingface.co/papers/2306.16527) by Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov, Thomas Wang, Siddharth Karamcheti, Alexander M. Rush, Douwe Kiela, Matthieu Cord, Victor Sanh.
1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (来自 OpenAI) 伴随论文 [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) 由 Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever 发布。
1. **[Informer](https://huggingface.co/docs/transformers/model_doc/informer)** (from Beihang University, UC Berkeley, Rutgers University, SEDD Company) released with the paper [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting](https://arxiv.org/abs/2012.07436) by Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
1. **[InstructBLIP](https://huggingface.co/docs/transformers/model_doc/instructblip)** (来自 Salesforce) 伴随论文 [InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning](https://arxiv.org/abs/2305.06500) 由 Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, Steven Hoi 发布。
1. **[Jukebox](https://huggingface.co/docs/transformers/model_doc/jukebox)** (from OpenAI) released with the paper [Jukebox: A Generative Model for Music](https://arxiv.org/pdf/2005.00341.pdf) by Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever.
1. **[KOSMOS-2](https://huggingface.co/docs/transformers/main/model_doc/kosmos-2)** (from Microsoft Research Asia) released with the paper [Kosmos-2: Grounding Multimodal Large Language Models to the World](https://arxiv.org/abs/2306.14824) by Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan Huang, Shuming Ma, Furu Wei.
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (来自 Microsoft Research Asia) 伴随论文 [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) 由 Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou 发布。
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (来自 Microsoft Research Asia) 伴随论文 [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) 由 Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou 发布。
1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (来自 Microsoft Research Asia) 伴随论文 [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) 由 Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei 发布。
@ -343,7 +330,6 @@ conda install -c huggingface transformers
1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (来自 Meta AI) 伴随论文 [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) 由 Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze 发布。
1. **[LiLT](https://huggingface.co/docs/transformers/model_doc/lilt)** (来自 South China University of Technology) 伴随论文 [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669) 由 Jiapeng Wang, Lianwen Jin, Kai Ding 发布。
1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (来自 The FAIR team of Meta AI) 伴随论文 [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971) 由 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample 发布。
1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (来自 The FAIR team of Meta AI) 伴随论文 [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/XXX) 由 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom. 发布。
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (来自 AllenAI) 伴随论文 [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) 由 Iz Beltagy, Matthew E. Peters, Arman Cohan 发布。
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (来自 Google AI) released 伴随论文 [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) 由 Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang 发布。
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (来自 Studio Ousia) 伴随论文 [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) 由 Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto 发布。
@ -361,42 +347,31 @@ conda install -c huggingface transformers
1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (来自 NVIDIA) 伴随论文 [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) 由 Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro 发布。
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (来自 NVIDIA) 伴随论文 [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) 由 Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro 发布。
1. **[MGP-STR](https://huggingface.co/docs/transformers/model_doc/mgp-str)** (来自 Alibaba Research) 伴随论文 [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592) 由 Peng Wang, Cheng Da, and Cong Yao 发布。
1. **[Mistral](https://huggingface.co/docs/transformers/model_doc/mistral)** (from Mistral AI) by The Mistral AI team: Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed..
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (来自 Studio Ousia) 伴随论文 [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) 由 Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka 发布。
1. **[MMS](https://huggingface.co/docs/transformers/model_doc/mms)** (来自 Facebook) 伴随论文 [Scaling Speech Technology to 1,000+ Languages](https://arxiv.org/abs/2305.13516) 由 Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky, Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi, Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning Hsu, Alexis Conneau, Michael Auli 发布。
1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (来自 CMU/Google Brain) 伴随论文 [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) 由 Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou 发布。
1. **[MobileNetV1](https://huggingface.co/docs/transformers/model_doc/mobilenet_v1)** (来自 Google Inc.) 伴随论文 [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) 由 Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam 发布。
1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (来自 Google Inc.) 伴随论文 [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) 由 Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen 发布。
1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (来自 Apple) 伴随论文 [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) 由 Sachin Mehta and Mohammad Rastegari 发布。
1. **[MobileViTV2](https://huggingface.co/docs/transformers/model_doc/mobilevitv2)** (来自 Apple) 伴随论文 [Separable Self-attention for Mobile Vision Transformers](https://arxiv.org/abs/2206.02680) 由 Sachin Mehta and Mohammad Rastegari 发布。
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (来自 Microsoft Research) 伴随论文 [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) 由 Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu 发布。
1. **[MPT](https://huggingface.co/docs/transformers/model_doc/mpt)** (来自 MosaiML) 伴随论文 [llm-foundry](https://github.com/mosaicml/llm-foundry/) 由 the MosaicML NLP Team 发布。
1. **[MRA](https://huggingface.co/docs/transformers/model_doc/mra)** (来自 the University of Wisconsin - Madison) 伴随论文 [Multi Resolution Analysis (MRA)](https://arxiv.org/abs/2207.10284) 由 Zhanpeng Zeng, Sourav Pal, Jeffery Kline, Glenn M Fung, Vikas Singh 发布。
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (来自 Google AI) 伴随论文 [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) 由 Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel 发布。
1. **[MusicGen](https://huggingface.co/docs/transformers/model_doc/musicgen)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (来自 中国人民大学 AI Box) 伴随论文 [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) 由 Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen 发布。
1. **[NAT](https://huggingface.co/docs/transformers/model_doc/nat)** (来自 SHI Labs) 伴随论文 [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143) 由 Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi 发布。
1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (来自华为诺亚方舟实验室) 伴随论文 [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) 由 Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu 发布。
1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (来自 Meta) 伴随论文 [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) 由 the NLLB team 发布。
1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (来自 Meta) 伴随论文 [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) 由 the NLLB team 发布。
1. **[Nougat](https://huggingface.co/docs/transformers/model_doc/nougat)** (来自 Meta AI) 伴随论文 [Nougat: Neural Optical Understanding for Academic Documents](https://arxiv.org/abs/2308.13418) 由 Lukas Blecher, Guillem Cucurull, Thomas Scialom, Robert Stojnic 发布。
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (来自 the University of Wisconsin - Madison) 伴随论文 [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) 由 Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh 发布。
1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (来自 SHI Labs) 伴随论文 [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) 由 Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi 发布。
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (来自 [s-JoL](https://huggingface.co/s-JoL)) 由 GitHub (现已删除).
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (来自 [s-JoL](https://huggingface.co/s-JoL)) 由 [Open-Llama](https://github.com/s-JoL/Open-Llama) 发布.
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (来自 Meta AI) 伴随论文 [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) 由 Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al 发布。
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (来自 Google AI) 伴随论文 [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) 由 Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby 发布。
1. **[OWLv2](https://huggingface.co/docs/transformers/main/model_doc/owlv2)** (来自 Google AI) 伴随论文 [Scaling Open-Vocabulary Object Detection](https://arxiv.org/abs/2306.09683) 由 Matthias Minderer, Alexey Gritsenko, Neil Houlsby 发布。
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (来自 Google) 伴随论文 [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) 由 Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu 发布。
1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (来自 Google) 伴随论文 [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) 由 Jason Phang, Yao Zhao, Peter J. Liu 发布。
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (来自 Deepmind) 伴随论文 [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) 由 Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira 发布。
1. **[Persimmon](https://huggingface.co/docs/transformers/model_doc/persimmon)** (来自 ADEPT) 伴随论文 [blog post](https://www.adept.ai/blog/persimmon-8b) 由 Erich Elsen, Augustus Odena, Maxwell Nye, Sağnak Taşırlar, Tri Dao, Curtis Hawthorne, Deepak Moparthi, Arushi Somani 发布。
1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (来自 VinAI Research) 伴随论文 [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) 由 Dat Quoc Nguyen and Anh Tuan Nguyen 发布。
1. **[Pix2Struct](https://huggingface.co/docs/transformers/model_doc/pix2struct)** (来自 Google) 伴随论文 [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding](https://arxiv.org/abs/2210.03347) 由 Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova 发布。
1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (来自 UCLA NLP) 伴随论文 [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) 由 Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang 发布。
1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (来自 Sea AI Labs) 伴随论文 [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) 由 Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng 发布。
1. **[Pop2Piano](https://huggingface.co/docs/transformers/model_doc/pop2piano)** released with the paper [Pop2Piano : Pop Audio-based Piano Cover Generation](https://arxiv.org/abs/2211.00895) by Jongho Choi, Kyogu Lee.
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (来自 Microsoft Research) 伴随论文 [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) 由 Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou 发布。
1. **[PVT](https://huggingface.co/docs/transformers/model_doc/pvt)** (来自 Nanjing University, The University of Hong Kong etc.) 伴随论文 [Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions](https://arxiv.org/pdf/2102.12122.pdf) 由 Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao 发布。
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (来自 NVIDIA) 伴随论文 [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) 由 Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius 发布。
1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (来自 Facebook) 伴随论文 [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) 由 Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela 发布。
1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (来自 Google Research) 伴随论文 [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) 由 Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang 发布。
@ -409,7 +384,6 @@ conda install -c huggingface transformers
1. **[RoCBert](https://huggingface.co/docs/transformers/model_doc/roc_bert)** (来自 WeChatAI), 伴随论文 [RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining](https://aclanthology.org/2022.acl-long.65.pdf) 由 HuiSu, WeiweiShi, XiaoyuShen, XiaoZhou, TuoJi, JiaruiFang, JieZhou 发布。
1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (来自 ZhuiyiTechnology), 伴随论文 [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/pdf/2104.09864v1.pdf) 由 Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu 发布。
1. **[RWKV](https://huggingface.co/docs/transformers/model_doc/rwkv)** (来自 Bo Peng) 伴随论文 [this repo](https://github.com/BlinkDL/RWKV-LM) 由 Bo Peng 发布。
1. **[SeamlessM4T](https://huggingface.co/docs/transformers/main/model_doc/seamless_m4t)** (from Meta AI) released with the paper [SeamlessM4T — Massively Multilingual & Multimodal Machine Translation](https://dl.fbaipublicfiles.com/seamless/seamless_m4t_paper.pdf) by the Seamless Communication team.
1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (来自 NVIDIA) 伴随论文 [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) 由 Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo 发布。
1. **[Segment Anything](https://huggingface.co/docs/transformers/model_doc/sam)** (来自 Meta AI) 伴随论文 [Segment Anything](https://arxiv.org/pdf/2304.02643v1.pdf) 由 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alex Berg, Wan-Yen Lo, Piotr Dollar, Ross Girshick 发布。
1. **[SEW](https://huggingface.co/docs/transformers/model_doc/sew)** (来自 ASAPP) 伴随论文 [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) 由 Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi 发布。
@ -419,7 +393,7 @@ conda install -c huggingface transformers
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (来自 Facebook) 伴随论文 [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) 由 Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau 发布。
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (来自 Tel Aviv University) 伴随论文 [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) 由 Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy 发布。
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (来自 Berkeley) 伴随论文 [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) 由 Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer 发布。
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (来自 MBZUAI) 伴随论文 [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) 由 Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan 发布。
1. **[SwiftFormer](https://huggingface.co/docs/transformers/main/model_doc/swiftformer)** (来自 MBZUAI) 伴随论文 [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) 由 Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan 发布。
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (来自 Microsoft) 伴随论文 [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) 由 Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo 发布。
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (来自 Microsoft) 伴随论文 [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) 由 Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo 发布。
1. **[Swin2SR](https://huggingface.co/docs/transformers/model_doc/swin2sr)** (来自 University of Würzburg) 伴随论文 [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345) 由 Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte 发布。
@ -436,7 +410,6 @@ conda install -c huggingface transformers
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (来自 Microsoft) 伴随论文 [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) 由 Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei 发布。
1. **[TVLT](https://huggingface.co/docs/transformers/model_doc/tvlt)** (来自 UNC Chapel Hill) 伴随论文 [TVLT: Textless Vision-Language Transformer](https://arxiv.org/abs/2209.14156) 由 Zineng Tang, Jaemin Cho, Yixin Nie, Mohit Bansal 发布。
1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
1. **[UMT5](https://huggingface.co/docs/transformers/model_doc/umt5)** (来自 Google Research) 伴随论文 [UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining](https://openreview.net/forum?id=kXwdL1cWOAi) 由 Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, Noah Constant 发布。
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (来自 Microsoft Research) 伴随论文 [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) 由 Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang 发布。
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (来自 Microsoft Research) 伴随论文 [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) 由 Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu 发布。
1. **[UPerNet](https://huggingface.co/docs/transformers/model_doc/upernet)** (来自 Peking University) 伴随论文 [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221) 由 Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun 发布。
@ -446,12 +419,8 @@ conda install -c huggingface transformers
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (来自 Google AI) 伴随论文 [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) 由 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby 发布。
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (来自 UCLA NLP) 伴随论文 [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) 由 Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang 发布。
1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (来自 Google AI) 伴随论文 [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) 由 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby 发布。
1. **[VitDet](https://huggingface.co/docs/transformers/model_doc/vitdet)** (来自 Meta AI) 伴随论文 [Exploring Plain Vision Transformer Backbones for Object Detection](https://arxiv.org/abs/2203.16527) 由 Yanghao Li, Hanzi Mao, Ross Girshick, Kaiming He 发布。
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (来自 Meta AI) 伴随论文 [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) 由 Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick 发布。
1. **[ViTMatte](https://huggingface.co/docs/transformers/model_doc/vitmatte)** (来自 HUST-VL) 伴随论文 [ViTMatte: Boosting Image Matting with Pretrained Plain Vision Transformers](https://arxiv.org/abs/2305.15272) 由 Jingfeng Yao, Xinggang Wang, Shusheng Yang, Baoyuan Wang 发布。
1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (来自 Meta AI) 伴随论文 [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas 发布.
1. **[VITS](https://huggingface.co/docs/transformers/model_doc/vits)** (来自 Kakao Enterprise) 伴随论文 [Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech](https://arxiv.org/abs/2106.06103) 由 Jaehyeon Kim, Jungil Kong, Juhee Son 发布。
1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (来自 Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) 由 Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid.
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (来自 Facebook AI) 伴随论文 [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) 由 Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli 发布。
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (来自 Facebook AI) 伴随论文 [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) 由 Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino 发布。
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (来自 Facebook AI) 伴随论文 [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) 由 Qiantong Xu, Alexei Baevski, Michael Auli 发布。
@ -469,7 +438,7 @@ conda install -c huggingface transformers
1. **[XLS-R](https://huggingface.co/docs/transformers/model_doc/xls_r)** (来自 Facebook AI) 伴随论文 [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) 由 Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli 发布。
1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (来自 Facebook AI) 伴随论文 [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) 由 Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli 发布。
1. **[YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos)** (来自 Huazhong University of Science & Technology) 伴随论文 [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) 由 Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu 发布。
1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (来自 the University of Wisconsin - Madison) 伴随论文 [You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling](https://arxiv.org/abs/2111.09714) 由 Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh 发布。
1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (来自 the University of Wisconsin - Madison) 伴随论文 [You Only Sample (Almost) 由 Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh 发布。
1. 想要贡献新的模型?我们这里有一份**详细指引和模板**来引导你添加新的模型。你可以在 [`templates`](./templates) 目录中找到他们。记得查看 [贡献指南](./CONTRIBUTING.md) 并在开始写 PR 前联系维护人员或开一个新的 issue 来获得反馈。
要检查某个模型是否已有 Flax、PyTorch 或 TensorFlow 的实现,或其是否在 🤗 Tokenizers 库中有对应词符化器tokenizer敬请参阅[此表](https://huggingface.co/docs/transformers/index#supported-frameworks)。
@ -481,7 +450,7 @@ conda install -c huggingface transformers
| 章节 | 描述 |
|-|-|
| [文档](https://huggingface.co/docs/transformers/) | 完整的 API 文档和教程 |
| [文档](https://huggingface.co/transformers/) | 完整的 API 文档和教程 |
| [任务总结](https://huggingface.co/docs/transformers/task_summary) | 🤗 Transformers 支持的任务 |
| [预处理教程](https://huggingface.co/docs/transformers/preprocessing) | 使用 `Tokenizer` 来为模型准备数据 |
| [训练和微调](https://huggingface.co/docs/transformers/training) | 在 PyTorch/TensorFlow 的训练循环或 `Trainer` API 中使用 🤗 Transformers 提供的模型 |

View File

@ -55,7 +55,7 @@ user: 使用者
<br>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers_logo_name.png" width="400"/>
<br>
</p>
<p>
<p align="center">
<a href="https://circleci.com/gh/huggingface/transformers">
<img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/main">
@ -84,8 +84,7 @@ user: 使用者
<a href="https://github.com/huggingface/transformers/blob/main/README_es.md">Español</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ja.md">日本語</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_hd.md">हिन्दी</a>
<a href="https://github.com/huggingface/transformers//blob/main/README_te.md">తెలుగు</a> |
</p>
<p>
</h4>
<h3 align="center">
@ -213,7 +212,7 @@ Tokenizer 為所有的預訓練模型提供了預處理,並可以直接轉換
### 使用 pip
這個 Repository 已在 Python 3.8+、Flax 0.4.1+、PyTorch 1.10+ 和 TensorFlow 2.6+ 下經過測試。
這個 Repository 已在 Python 3.6+、Flax 0.3.2+、PyTorch 1.3.1+ 和 TensorFlow 2.3+ 下經過測試。
你可以在[虛擬環境](https://docs.python.org/3/library/venv.html)中安裝 🤗 Transformers。如果你還不熟悉 Python 的虛擬環境,請閱此[使用者指引](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/)。
@ -253,8 +252,6 @@ conda install -c huggingface transformers
1. **[ALIGN](https://huggingface.co/docs/transformers/model_doc/align)** (from Google Research) released with the paper [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918) by Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig.
1. **[AltCLIP](https://huggingface.co/docs/transformers/model_doc/altclip)** (from BAAI) released with the paper [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) by Chen, Zhongzhi and Liu, Guang and Zhang, Bo-Wen and Ye, Fulong and Yang, Qinghong and Wu, Ledell.
1. **[Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer)** (from MIT) released with the paper [AST: Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778) by Yuan Gong, Yu-An Chung, James Glass.
1. **[Autoformer](https://huggingface.co/docs/transformers/model_doc/autoformer)** (from Tsinghua University) released with the paper [Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://arxiv.org/abs/2106.13008) by Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long.
1. **[Bark](https://huggingface.co/docs/transformers/model_doc/bark)** (from Suno) released in the repository [suno-ai/bark](https://github.com/suno-ai/bark) by Suno AI team.
1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (from Facebook) released with the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/pdf/1910.13461.pdf) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer.
1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (from École polytechnique) released with the paper [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis.
1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (from VinAI Research) released with the paper [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen.
@ -273,7 +270,6 @@ conda install -c huggingface transformers
1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (from BigScience workshop) released by the [BigScience Workshop](https://bigscience.huggingface.co/).
1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (from Alexa) released with the paper [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) by Adrian de Wynter and Daniel J. Perry.
1. **[BridgeTower](https://huggingface.co/docs/transformers/model_doc/bridgetower)** (from Harbin Institute of Technology/Microsoft Research Asia/Intel Labs) released with the paper [BridgeTower: Building Bridges Between Encoders in Vision-Language Representation Learning](https://arxiv.org/abs/2206.08657) by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan.
1. **[BROS](https://huggingface.co/docs/transformers/model_doc/bros)** (from NAVER CLOVA) released with the paper [BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents](https://arxiv.org/abs/2108.04539) by Teakgyu Hong, Donghyun Kim, Mingi Ji, Wonseok Hwang, Daehyun Nam, Sungrae Park.
1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (from Google Research) released with the paper [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel.
1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (from Inria/Facebook/Sorbonne) released with the paper [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (from Google Research) released with the paper [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting.
@ -282,7 +278,6 @@ conda install -c huggingface transformers
1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (from OpenAI) released with the paper [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever.
1. **[CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)** (from University of Göttingen) released with the paper [Image Segmentation Using Text and Image Prompts](https://arxiv.org/abs/2112.10003) by Timo Lüddecke and Alexander Ecker.
1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (from Salesforce) released with the paper [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong.
1. **[CodeLlama](https://huggingface.co/docs/transformers/model_doc/llama_code)** (from MetaAI) released with the paper [Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/) by Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, Gabriel Synnaeve.
1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (from Microsoft Research Asia) released with the paper [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) by Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang.
1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (from YituTech) released with the paper [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan.
1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (from Facebook AI) released with the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie.
@ -302,7 +297,6 @@ conda install -c huggingface transformers
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (from Facebook) released with the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (from Microsoft Research) released with the paper [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
1. **[DiNAT](https://huggingface.co/docs/transformers/model_doc/dinat)** (from SHI Labs) released with the paper [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) by Ali Hassani and Humphrey Shi.
1. **[DINOv2](https://huggingface.co/docs/transformers/model_doc/dinov2)** (from Meta AI) released with the paper [DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193) by Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, Piotr Bojanowski.
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German version of DistilBERT.
1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (from Microsoft Research) released with the paper [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) by Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei.
1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (from NAVER) released with the paper [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) by Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park.
@ -311,12 +305,10 @@ conda install -c huggingface transformers
1. **[EfficientFormer](https://huggingface.co/docs/transformers/model_doc/efficientformer)** (from Snap Research) released with the paper [EfficientFormer: Vision Transformers at MobileNetSpeed](https://arxiv.org/abs/2206.01191) by Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren.
1. **[EfficientNet](https://huggingface.co/docs/transformers/model_doc/efficientnet)** (from Google Brain) released with the paper [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan, Quoc V. Le.
1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
1. **[EnCodec](https://huggingface.co/docs/transformers/model_doc/encodec)** (from Meta AI) released with the paper [High Fidelity Neural Audio Compression](https://arxiv.org/abs/2210.13438) by Alexandre Défossez, Jade Copet, Gabriel Synnaeve, Yossi Adi.
1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (from Google Research) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)** (from Baidu) released with the paper [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) by Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu.
1. **[ErnieM](https://huggingface.co/docs/transformers/model_doc/ernie_m)** (from Baidu) released with the paper [ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora](https://arxiv.org/abs/2012.15674) by Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang.
1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (from Meta AI) are transformer protein language models. **ESM-1b** was released with the paper [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. **ESM-1v** was released with the paper [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648) by Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives. **ESM-2** was released with the paper [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902) by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives.
1. **[Falcon](https://huggingface.co/docs/transformers/model_doc/falcon)** (from Technology Innovation Institute) by Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme.
1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FLAN-UL2](https://huggingface.co/docs/transformers/model_doc/flan-ul2)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-ul2-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
@ -324,7 +316,6 @@ conda install -c huggingface transformers
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
1. **[FocalNet](https://huggingface.co/docs/transformers/model_doc/focalnet)** (from Microsoft Research) released with the paper [Focal Modulation Networks](https://arxiv.org/abs/2203.11926) by Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao.
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
1. **[Fuyu](https://huggingface.co/docs/transformers/model_doc/fuyu)** (from ADEPT) Rohan Bavishi, Erich Elsen, Curtis Hawthorne, Maxwell Nye, Augustus Odena, Arushi Somani, Sağnak Taşırlar. Released with the paper [blog post](https://www.adept.ai/blog/fuyu-8b)
1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (from Microsoft Research) released with the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang.
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (from KAIST) released with the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim.
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
@ -338,15 +329,11 @@ conda install -c huggingface transformers
1. **[GPTSAN-japanese](https://huggingface.co/docs/transformers/model_doc/gptsan-japanese)** released in the repository [tanreinama/GPTSAN](https://github.com/tanreinama/GPTSAN/blob/main/report/model.md) by 坂本俊之(tanreinama).
1. **[Graphormer](https://huggingface.co/docs/transformers/model_doc/graphormer)** (from Microsoft) released with the paper [Do Transformers Really Perform Bad for Graph Representation?](https://arxiv.org/abs/2106.05234) by Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu.
1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (from UCSD, NVIDIA) released with the paper [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) by Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang.
1. **[HerBERT](https://huggingface.co/docs/transformers/model_doc/herbert)** (from Allegro.pl, AGH University of Science and Technology) released with the paper [KLEJ: Comprehensive Benchmark for Polish Language Understanding](https://www.aclweb.org/anthology/2020.acl-main.111.pdf) by Piotr Rybak, Robert Mroczkowski, Janusz Tracz, Ireneusz Gawlik.
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (from Facebook) released with the paper [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed.
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (from Berkeley) released with the paper [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer.
1. **[IDEFICS](https://huggingface.co/docs/transformers/model_doc/idefics)** (from HuggingFace) released with the paper [OBELICS: An Open Web-Scale Filtered Dataset of Interleaved Image-Text Documents](https://huggingface.co/papers/2306.16527) by Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov, Thomas Wang, Siddharth Karamcheti, Alexander M. Rush, Douwe Kiela, Matthieu Cord, Victor Sanh.
1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (from OpenAI) released with the paper [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever.
1. **[Informer](https://huggingface.co/docs/transformers/model_doc/informer)** (from Beihang University, UC Berkeley, Rutgers University, SEDD Company) released with the paper [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting](https://arxiv.org/abs/2012.07436) by Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
1. **[InstructBLIP](https://huggingface.co/docs/transformers/model_doc/instructblip)** (from Salesforce) released with the paper [InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning](https://arxiv.org/abs/2305.06500) by Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, Steven Hoi.
1. **[Jukebox](https://huggingface.co/docs/transformers/model_doc/jukebox)** (from OpenAI) released with the paper [Jukebox: A Generative Model for Music](https://arxiv.org/pdf/2005.00341.pdf) by Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever.
1. **[KOSMOS-2](https://huggingface.co/docs/transformers/main/model_doc/kosmos-2)** (from Microsoft Research Asia) released with the paper [Kosmos-2: Grounding Multimodal Large Language Models to the World](https://arxiv.org/abs/2306.14824) by Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan Huang, Shuming Ma, Furu Wei.
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou.
1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (from Microsoft Research Asia) released with the paper [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) by Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei.
@ -355,7 +342,6 @@ conda install -c huggingface transformers
1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (from Meta AI) released with the paper [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) by Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze.
1. **[LiLT](https://huggingface.co/docs/transformers/model_doc/lilt)** (from South China University of Technology) released with the paper [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669) by Jiapeng Wang, Lianwen Jin, Kai Ding.
1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (from The FAIR team of Meta AI) released with the paper [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971) by Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample.
1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (from The FAIR team of Meta AI) released with the paper [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/XXX) by Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom..
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (from Google AI) released with the paper [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang.
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (from Studio Ousia) released with the paper [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.
@ -373,42 +359,31 @@ conda install -c huggingface transformers
1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[MGP-STR](https://huggingface.co/docs/transformers/model_doc/mgp-str)** (from Alibaba Research) released with the paper [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592) by Peng Wang, Cheng Da, and Cong Yao.
1. **[Mistral](https://huggingface.co/docs/transformers/model_doc/mistral)** (from Mistral AI) by The Mistral AI team: Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed..
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (from Studio Ousia) released with the paper [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka.
1. **[MMS](https://huggingface.co/docs/transformers/model_doc/mms)** (from Facebook) released with the paper [Scaling Speech Technology to 1,000+ Languages](https://arxiv.org/abs/2305.13516) by Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky, Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi, Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning Hsu, Alexis Conneau, Michael Auli.
1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (from CMU/Google Brain) released with the paper [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou.
1. **[MobileNetV1](https://huggingface.co/docs/transformers/model_doc/mobilenet_v1)** (from Google Inc.) released with the paper [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) by Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam.
1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (from Google Inc.) released with the paper [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) by Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen.
1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (from Apple) released with the paper [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari.
1. **[MobileViTV2](https://huggingface.co/docs/transformers/model_doc/mobilevitv2)** (from Apple) released with the paper [Separable Self-attention for Mobile Vision Transformers](https://arxiv.org/abs/2206.02680) by Sachin Mehta and Mohammad Rastegari.
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
1. **[MPT](https://huggingface.co/docs/transformers/model_doc/mpt)** (from MosaiML) released with the paper [llm-foundry](https://github.com/mosaicml/llm-foundry/) by the MosaicML NLP Team.
1. **[MRA](https://huggingface.co/docs/transformers/model_doc/mra)** (from the University of Wisconsin - Madison) released with the paper [Multi Resolution Analysis (MRA)](https://arxiv.org/abs/2207.10284) by Zhanpeng Zeng, Sourav Pal, Jeffery Kline, Glenn M Fung, Vikas Singh.
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
1. **[MusicGen](https://huggingface.co/docs/transformers/model_doc/musicgen)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (from RUC AI Box) released with the paper [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen.
1. **[NAT](https://huggingface.co/docs/transformers/model_doc/nat)** (from SHI Labs) released with the paper [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143) by Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi.
1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (from Huawei Noahs Ark Lab) released with the paper [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) by Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu.
1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[Nougat](https://huggingface.co/docs/transformers/model_doc/nougat)** (from Meta AI) released with the paper [Nougat: Neural Optical Understanding for Academic Documents](https://arxiv.org/abs/2308.13418) by Lukas Blecher, Guillem Cucurull, Thomas Scialom, Robert Stojnic.
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (from the University of Wisconsin - Madison) released with the paper [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh.
1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (from SHI Labs) released with the paper [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) by Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi.
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released on GitHub (now removed).
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released in [Open-Llama](https://github.com/s-JoL/Open-Llama).
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al.
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (from Google AI) released with the paper [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby.
1. **[OWLv2](https://huggingface.co/docs/transformers/main/model_doc/owlv2)** (from Google AI) released with the paper [Scaling Open-Vocabulary Object Detection](https://arxiv.org/abs/2306.09683) by Matthias Minderer, Alexey Gritsenko, Neil Houlsby.
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (from Google) released with the paper [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) by Jason Phang, Yao Zhao, Peter J. Liu.
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (from Deepmind) released with the paper [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) by Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira.
1. **[Persimmon](https://huggingface.co/docs/transformers/model_doc/persimmon)** (from ADEPT) released with the paper [blog post](https://www.adept.ai/blog/persimmon-8b) by Erich Elsen, Augustus Odena, Maxwell Nye, Sağnak Taşırlar, Tri Dao, Curtis Hawthorne, Deepak Moparthi, Arushi Somani.
1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen.
1. **[Pix2Struct](https://huggingface.co/docs/transformers/model_doc/pix2struct)** (from Google) released with the paper [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding](https://arxiv.org/abs/2210.03347) by Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova.
1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (from UCLA NLP) released with the paper [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) by Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang.
1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (from Sea AI Labs) released with the paper [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) by Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng.
1. **[Pop2Piano](https://huggingface.co/docs/transformers/model_doc/pop2piano)** released with the paper [Pop2Piano : Pop Audio-based Piano Cover Generation](https://arxiv.org/abs/2211.00895) by Jongho Choi, Kyogu Lee.
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[PVT](https://huggingface.co/docs/transformers/model_doc/pvt)** (from Nanjing University, The University of Hong Kong etc.) released with the paper [Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions](https://arxiv.org/pdf/2102.12122.pdf) by Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao.
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (from NVIDIA) released with the paper [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) by Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius.
1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (from Facebook) released with the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) by Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela.
1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (from Google Research) released with the paper [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) by Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang.
@ -421,7 +396,6 @@ conda install -c huggingface transformers
1. **[RoCBert](https://huggingface.co/docs/transformers/model_doc/roc_bert)** (from WeChatAI) released with the paper [RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining](https://aclanthology.org/2022.acl-long.65.pdf) by HuiSu, WeiweiShi, XiaoyuShen, XiaoZhou, TuoJi, JiaruiFang, JieZhou.
1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (from ZhuiyiTechnology), released together with the paper a [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/pdf/2104.09864v1.pdf) by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu.
1. **[RWKV](https://huggingface.co/docs/transformers/model_doc/rwkv)** (from Bo Peng) released with the paper [this repo](https://github.com/BlinkDL/RWKV-LM) by Bo Peng.
1. **[SeamlessM4T](https://huggingface.co/docs/transformers/main/model_doc/seamless_m4t)** (from Meta AI) released with the paper [SeamlessM4T — Massively Multilingual & Multimodal Machine Translation](https://dl.fbaipublicfiles.com/seamless/seamless_m4t_paper.pdf) by the Seamless Communication team.
1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (from NVIDIA) released with the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo.
1. **[Segment Anything](https://huggingface.co/docs/transformers/model_doc/sam)** (from Meta AI) released with the paper [Segment Anything](https://arxiv.org/pdf/2304.02643v1.pdf) by Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alex Berg, Wan-Yen Lo, Piotr Dollar, Ross Girshick.
1. **[SEW](https://huggingface.co/docs/transformers/model_doc/sew)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
@ -431,7 +405,7 @@ conda install -c huggingface transformers
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (from Facebook) released with the paper [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau.
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (from Tel Aviv University) released with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy.
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (from MBZUAI) released with the paper [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) by Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan.
1. **[SwiftFormer](https://huggingface.co/docs/transformers/main/model_doc/swiftformer)** (from MBZUAI) released with the paper [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) by Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan.
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (from Microsoft) released with the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (from Microsoft) released with the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo.
1. **[Swin2SR](https://huggingface.co/docs/transformers/model_doc/swin2sr)** (from University of Würzburg) released with the paper [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345) by Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte.
@ -448,7 +422,6 @@ conda install -c huggingface transformers
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (from Microsoft) released with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
1. **[TVLT](https://huggingface.co/docs/transformers/model_doc/tvlt)** (from UNC Chapel Hill) released with the paper [TVLT: Textless Vision-Language Transformer](https://arxiv.org/abs/2209.14156) by Zineng Tang, Jaemin Cho, Yixin Nie, Mohit Bansal.
1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
1. **[UMT5](https://huggingface.co/docs/transformers/model_doc/umt5)** (from Google Research) released with the paper [UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining](https://openreview.net/forum?id=kXwdL1cWOAi) by Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, Noah Constant.
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (from Microsoft Research) released with the paper [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (from Microsoft Research) released with the paper [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu.
1. **[UPerNet](https://huggingface.co/docs/transformers/model_doc/upernet)** (from Peking University) released with the paper [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221) by Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun.
@ -458,12 +431,8 @@ conda install -c huggingface transformers
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VitDet](https://huggingface.co/docs/transformers/model_doc/vitdet)** (from Meta AI) released with the paper [Exploring Plain Vision Transformer Backbones for Object Detection](https://arxiv.org/abs/2203.16527) by Yanghao Li, Hanzi Mao, Ross Girshick, Kaiming He.
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (from Meta AI) released with the paper [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick.
1. **[ViTMatte](https://huggingface.co/docs/transformers/model_doc/vitmatte)** (from HUST-VL) released with the paper [ViTMatte: Boosting Image Matting with Pretrained Plain Vision Transformers](https://arxiv.org/abs/2305.15272) by Jingfeng Yao, Xinggang Wang, Shusheng Yang, Baoyuan Wang.
1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (from Meta AI) released with the paper [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas.
1. **[VITS](https://huggingface.co/docs/transformers/model_doc/vits)** (from Kakao Enterprise) released with the paper [Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech](https://arxiv.org/abs/2106.06103) by Jaehyeon Kim, Jungil Kong, Juhee Son.
1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (from Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) by Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid.
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (from Facebook AI) released with the paper [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (from Facebook AI) released with the paper [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino.
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (from Facebook AI) released with the paper [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) by Qiantong Xu, Alexei Baevski, Michael Auli.
@ -481,7 +450,7 @@ conda install -c huggingface transformers
1. **[XLS-R](https://huggingface.co/docs/transformers/model_doc/xls_r)** (from Facebook AI) released with the paper [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) by Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli.
1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (from Facebook AI) released with the paper [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) by Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli.
1. **[YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos)** (from Huazhong University of Science & Technology) released with the paper [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) by Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu.
1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (from the University of Wisconsin - Madison) released with the paper [You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling](https://arxiv.org/abs/2111.09714) by Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh.
1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (from the University of Wisconsin - Madison) released with the paper [You Only Sample (Almost) by Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh.
1. 想要貢獻新的模型?我們這裡有一份**詳細指引和模板**來引導你加入新的模型。你可以在 [`templates`](./templates) 目錄中找到它們。記得查看[貢獻指引](./CONTRIBUTING.md)並在開始寫 PR 前聯繫維護人員或開一個新的 issue 來獲得 feedbacks。
要檢查某個模型是否已有 Flax、PyTorch 或 TensorFlow 的實作,或其是否在🤗 Tokenizers 函式庫中有對應的 tokenizer敬請參閱[此表](https://huggingface.co/docs/transformers/index#supported-frameworks)。

View File

@ -1,6 +0,0 @@
# Security Policy
## Reporting a Vulnerability
🤗 We have our bug bounty program set up with HackerOne. Please feel free to submit vulnerability reports to our private program at https://hackerone.com/hugging_face.
Note that you'll need to be invited to our program, so send us a quick email at security@huggingface.co if you've found a vulnerability.

View File

@ -1,609 +0,0 @@
# Awesome projects built with Transformers
This page lists awesome projects built on top of Transformers. Transformers is more than a toolkit to use pretrained
models: it's a community of projects built around it and the Hugging Face Hub. We want Transformers to enable
developers, researchers, students, professors, engineers, and anyone else to build their dream projects.
In this list, we showcase incredibly impactful and novel projects that have pushed the field forward. We celebrate
100 of these projects as we reach the milestone of 100k stars as a community; but we're very open to pull requests
adding other projects to the list. If you believe a project should be here and it's not, then please, open a PR
to add it.
## [gpt4all](https://github.com/nomic-ai/gpt4all)
[gpt4all](https://github.com/nomic-ai/gpt4all) is an ecosystem of open-source chatbots trained on massive collections of clean assistant data including code, stories and dialogue. It offers open-source, large language models such as LLaMA and GPT-J trained in an assistant-style.
Keywords: Open-source, LLaMa, GPT-J, instruction, assistant
## [recommenders](https://github.com/microsoft/recommenders)
This repository contains examples and best practices for building recommendation systems, provided as Jupyter notebooks. It goes over several aspects required to build efficient recommendation systems: data preparation, modeling, evaluation, model selection & optimization, as well as operationalization
Keywords: Recommender systems, AzureML
## [lama-cleaner](https://github.com/Sanster/lama-cleaner)
Image inpainting tool powered by Stable Diffusion. Remove any unwanted object, defect, people from your pictures or erase and replace anything on your pictures.
Keywords: inpainting, SD, Stable Diffusion
## [flair](https://github.com/flairNLP/flair)
FLAIR is a powerful PyTorch NLP framework, convering several important tasks: NER, sentiment-analysis, part-of-speech tagging, text and document embeddings, among other things.
Keywords: NLP, text embedding, document embedding, biomedical, NER, PoS, sentiment-analysis
## [mindsdb](https://github.com/mindsdb/mindsdb)
MindsDB is a low-code ML platform, which automates and integrates several ML frameworks into the data stack as "AI Tables" to streamline the integration of AI into applications, making it accessible to developers of all skill levels.
Keywords: Database, low-code, AI table
## [langchain](https://github.com/hwchase17/langchain)
[langchain](https://github.com/hwchase17/langchain) is aimed at assisting in the development of apps merging both LLMs and other sources of knowledge. The library allows chaining calls to applications, creating a sequence across many tools.
Keywords: LLMs, Large Language Models, Agents, Chains
## [LlamaIndex](https://github.com/jerryjliu/llama_index)
[LlamaIndex](https://github.com/jerryjliu/llama_index) is a project that provides a central interface to connect your LLM's with external data. It provides various kinds of indices and retreival mechanisms to perform different LLM tasks and obtain knowledge-augmented results.
Keywords: LLMs, Large Language Models, Data Retrieval, Indices, Knowledge Augmentation
## [ParlAI](https://github.com/facebookresearch/ParlAI)
[ParlAI](https://github.com/facebookresearch/ParlAI) is a python framework for sharing, training and testing dialogue models, from open-domain chitchat, to task-oriented dialogue, to visual question answering. It provides more than 100 datasets under the same API, a large zoo of pretrained models, a set of agents, and has several integrations.
Keywords: Dialogue, Chatbots, VQA, Datasets, Agents
## [sentence-transformers](https://github.com/UKPLab/sentence-transformers)
This framework provides an easy method to compute dense vector representations for sentences, paragraphs, and images. The models are based on transformer networks like BERT / RoBERTa / XLM-RoBERTa etc. and achieve state-of-the-art performance in various task. Text is embedding in vector space such that similar text is close and can efficiently be found using cosine similarity.
Keywords: Dense vector representations, Text embeddings, Sentence embeddings
## [ludwig](https://github.com/ludwig-ai/ludwig)
Ludwig is a declarative machine learning framework that makes it easy to define machine learning pipelines using a simple and flexible data-driven configuration system. Ludwig is targeted at a wide variety of AI tasks. It provides a data-driven configuration system, training, prediction, and evaluation scripts, as well as a programmatic API.
Keywords: Declarative, Data-driven, ML Framework
## [InvokeAI](https://github.com/invoke-ai/InvokeAI)
[InvokeAI](https://github.com/invoke-ai/InvokeAI) is an engine for Stable Diffusion models, aimed at professionals, artists, and enthusiasts. It leverages the latest AI-driven technologies through CLI as well as a WebUI.
Keywords: Stable-Diffusion, WebUI, CLI
## [PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP)
[PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP) is an easy-to-use and powerful NLP library particularly targeted at the Chinese languages. It has support for multiple pre-trained model zoos, and supports a wide-range of NLP tasks from research to industrial applications.
Keywords: NLP, Chinese, Research, Industry
## [stanza](https://github.com/stanfordnlp/stanza)
The Stanford NLP Group's official Python NLP library. It contains support for running various accurate natural language processing tools on 60+ languages and for accessing the Java Stanford CoreNLP software from Python.
Keywords: NLP, Multilingual, CoreNLP
## [DeepPavlov](https://github.com/deeppavlov/DeepPavlov)
[DeepPavlov](https://github.com/deeppavlov/DeepPavlov) is an open-source conversational AI library. It is designed for the development of production ready chat-bots and complex conversational systems, as well as research in the area of NLP and, particularly, of dialog systems.
Keywords: Conversational, Chatbot, Dialog
## [alpaca-lora](https://github.com/tloen/alpaca-lora)
Alpaca-lora contains code for reproducing the Stanford Alpaca results using low-rank adaptation (LoRA). The repository provides training (fine-tuning) as well as generation scripts.
Keywords: LoRA, Parameter-efficient fine-tuning
## [imagen-pytorch](https://github.com/lucidrains/imagen-pytorch)
An open-source Implementation of Imagen, Google's closed-source Text-to-Image Neural Network that beats DALL-E2. As of release, it is the new SOTA for text-to-image synthesis.
Keywords: Imagen, Text-to-image
## [adapter-transformers](https://github.com/adapter-hub/adapter-transformers)
[adapter-transformers](https://github.com/adapter-hub/adapter-transformers) is an extension of HuggingFace's Transformers library, integrating adapters into state-of-the-art language models by incorporating AdapterHub, a central repository for pre-trained adapter modules. It is a drop-in replacement for transformers, which is regularly updated to stay up-to-date with the developments of transformers.
Keywords: Adapters, LoRA, Parameter-efficient fine-tuning, Hub
## [NeMo](https://github.com/NVIDIA/NeMo)
NVIDIA [NeMo](https://github.com/NVIDIA/NeMo) is a conversational AI toolkit built for researchers working on automatic speech recognition (ASR), text-to-speech synthesis (TTS), large language models (LLMs), and natural language processing (NLP). The primary objective of [NeMo](https://github.com/NVIDIA/NeMo) is to help researchers from industry and academia to reuse prior work (code and pretrained models) and make it easier to create new https://developer.nvidia.com/conversational-ai#started.
Keywords: Conversational, ASR, TTS, LLMs, NLP
## [Runhouse](https://github.com/run-house/runhouse)
[Runhouse](https://github.com/run-house/runhouse) allows to send code and data to any of your compute or data infra, all in Python, and continue to interact with them normally from your existing code and environment. Runhouse developers mention:
> Think of it as an expansion pack to your Python interpreter that lets it take detours to remote machines or manipulate remote data.
Keywords: MLOps, Infrastructure, Data storage, Modeling
## [MONAI](https://github.com/Project-MONAI/MONAI)
[MONAI](https://github.com/Project-MONAI/MONAI) is a PyTorch-based, open-source framework for deep learning in healthcare imaging, part of PyTorch Ecosystem. Its ambitions are:
- developing a community of academic, industrial and clinical researchers collaborating on a common foundation;
- creating state-of-the-art, end-to-end training workflows for healthcare imaging;
- providing researchers with the optimized and standardized way to create and evaluate deep learning models.
Keywords: Healthcare imaging, Training, Evaluation
## [simpletransformers](https://github.com/ThilinaRajapakse/simpletransformers)
Simple Transformers lets you quickly train and evaluate Transformer models. Only 3 lines of code are needed to initialize, train, and evaluate a model. It supports a wide variety of NLP tasks.
Keywords: Framework, simplicity, NLP
## [JARVIS](https://github.com/microsoft/JARVIS)
[JARVIS](https://github.com/microsoft/JARVIS) is a system attempting to merge LLMs such as GPT-4 with the rest of the open-source ML community: leveraging up to 60 downstream models in order to perform tasks identified by the LLM.
Keywords: LLM, Agents, HF Hub
## [transformers.js](https://xenova.github.io/transformers.js/)
[transformers.js](https://xenova.github.io/transformers.js/) is a JavaScript library targeted at running models from transformers directly within the browser.
Keywords: Transformers, JavaScript, browser
## [bumblebee](https://github.com/elixir-nx/bumblebee)
Bumblebee provides pre-trained Neural Network models on top of Axon, a neural networks library for the Elixir language. It includes integration with 🤗 Models, allowing anyone to download and perform Machine Learning tasks with few lines of code.
Keywords: Elixir, Axon
## [argilla](https://github.com/argilla-io/argilla)
Argilla is an open-source platform providing advanced NLP labeling, monitoring, and workspaces. It is compatible with many open source ecosystems such as Hugging Face, Stanza, FLAIR, and others.
Keywords: NLP, Labeling, Monitoring, Workspaces
## [haystack](https://github.com/deepset-ai/haystack)
Haystack is an open source NLP framework to interact with your data using Transformer models and LLMs. It offers production-ready tools to quickly build complex decision making, question answering, semantic search, text generation applications, and more.
Keywords: NLP, Framework, LLM
## [spaCy](https://github.com/explosion/spaCy)
[spaCy](https://github.com/explosion/spaCy) is a library for advanced Natural Language Processing in Python and Cython. It's built on the very latest research, and was designed from day one to be used in real products. It offers support for transformers models through its third party package, spacy-transformers.
Keywords: NLP, Framework
## [speechbrain](https://github.com/speechbrain/speechbrain)
SpeechBrain is an open-source and all-in-one conversational AI toolkit based on PyTorch.
The goal is to create a single, flexible, and user-friendly toolkit that can be used to easily develop state-of-the-art speech technologies, including systems for speech recognition, speaker recognition, speech enhancement, speech separation, language identification, multi-microphone signal processing, and many others.
Keywords: Conversational, Speech
## [skorch](https://github.com/skorch-dev/skorch)
Skorch is a scikit-learn compatible neural network library that wraps PyTorch. It has support for models within transformers, and tokenizers from tokenizers.
Keywords: Scikit-Learn, PyTorch
## [bertviz](https://github.com/jessevig/bertviz)
BertViz is an interactive tool for visualizing attention in Transformer language models such as BERT, GPT2, or T5. It can be run inside a Jupyter or Colab notebook through a simple Python API that supports most Huggingface models.
Keywords: Visualization, Transformers
## [mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax)
[mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax) is a haiku library using the xmap/pjit operators in JAX for model parallelism of transformers. This library is designed for scalability up to approximately 40B parameters on TPUv3s. It was the library used to train the GPT-J model.
Keywords: Haiku, Model parallelism, LLM, TPU
## [deepchem](https://github.com/deepchem/deepchem)
DeepChem aims to provide a high quality open-source toolchain that democratizes the use of deep-learning in drug discovery, materials science, quantum chemistry, and biology.
Keywords: Drug discovery, Materials Science, Quantum Chemistry, Biology
## [OpenNRE](https://github.com/thunlp/OpenNRE)
An Open-Source Package for Neural Relation Extraction (NRE). It is targeted at a wide range of users, from newcomers to relation extraction, to developers, researchers, or students.
Keywords: Neural Relation Extraction, Framework
## [pycorrector](https://github.com/shibing624/pycorrector)
PyCorrector is a Chinese Text Error Correction Tool. It uses a language model to detect errors, pinyin feature and shape feature to correct Chinese text errors. it can be used for Chinese Pinyin and stroke input method.
Keywords: Chinese, Error correction tool, Language model, Pinyin
## [nlpaug](https://github.com/makcedward/nlpaug)
This python library helps you with augmenting nlp for machine learning projects. It is a lightweight library featuring synthetic data generation for improving model performance, support for audio and text, and compatibility with several ecosystems (scikit-learn, pytorch, tensorflow).
Keywords: Data augmentation, Synthetic data generation, Audio, NLP
## [dream-textures](https://github.com/carson-katri/dream-textures)
[dream-textures](https://github.com/carson-katri/dream-textures) is a library targeted at bringing stable-diffusion support within Blender. It supports several use-cases, such as image generation, texture projection, inpainting/outpainting, ControlNet, and upscaling.
Keywords: Stable-Diffusion, Blender
## [seldon-core](https://github.com/SeldonIO/seldon-core)
Seldon core converts your ML models (Tensorflow, Pytorch, H2o, etc.) or language wrappers (Python, Java, etc.) into production REST/GRPC microservices.
Seldon handles scaling to thousands of production machine learning models and provides advanced machine learning capabilities out of the box including Advanced Metrics, Request Logging, Explainers, Outlier Detectors, A/B Tests, Canaries and more.
Keywords: Microservices, Modeling, Language wrappers
## [open_model_zoo](https://github.com/openvinotoolkit/open_model_zoo)
This repository includes optimized deep learning models and a set of demos to expedite development of high-performance deep learning inference applications. Use these free pre-trained models instead of training your own models to speed-up the development and production deployment process.
Keywords: Optimized models, Demos
## [ml-stable-diffusion](https://github.com/apple/ml-stable-diffusion)
ML-Stable-Diffusion is a repository by Apple bringing Stable Diffusion support to Core ML, on Apple Silicon devices. It supports stable diffusion checkpoints hosted on the Hugging Face Hub.
Keywords: Stable Diffusion, Apple Silicon, Core ML
## [stable-dreamfusion](https://github.com/ashawkey/stable-dreamfusion)
Stable-Dreamfusion is a pytorch implementation of the text-to-3D model Dreamfusion, powered by the Stable Diffusion text-to-2D model.
Keywords: Text-to-3D, Stable Diffusion
## [txtai](https://github.com/neuml/txtai)
[txtai](https://github.com/neuml/txtai) is an open-source platform for semantic search and workflows powered by language models. txtai builds embeddings databases, which are a union of vector indexes and relational databases enabling similarity search with SQL. Semantic workflows connect language models together into unified applications.
Keywords: Semantic search, LLM
## [djl](https://github.com/deepjavalibrary/djl)
Deep Java Library (DJL) is an open-source, high-level, engine-agnostic Java framework for deep learning. DJL is designed to be easy to get started with and simple to use for developers. DJL provides a native Java development experience and functions like any other regular Java library. DJL offers [a Java binding](https://github.com/deepjavalibrary/djl/tree/master/extensions/tokenizers) for HuggingFace Tokenizers and easy conversion toolkit for HuggingFace model to deploy in Java.
Keywords: Java, Framework
## [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/)
This project provides a unified framework to test generative language models on a large number of different evaluation tasks. It has support for more than 200 tasks, and supports different ecosystems: HF Transformers, GPT-NeoX, DeepSpeed, as well as the OpenAI API.
Keywords: LLM, Evaluation, Few-shot
## [gpt-neox](https://github.com/EleutherAI/gpt-neox)
This repository records EleutherAI's library for training large-scale language models on GPUs. The framework is based on NVIDIA's Megatron Language Model and has been augmented with techniques from DeepSpeed as well as some novel optimizations. It is focused on training multi-billion-parameter models.
Keywords: Training, LLM, Megatron, DeepSpeed
## [muzic](https://github.com/microsoft/muzic)
Muzic is a research project on AI music that empowers music understanding and generation with deep learning and artificial intelligence. Muzic was created by researchers from Microsoft Research Asia.
Keywords: Music understanding, Music generation
## [dalle-flow](https://github.com/jina-ai/dalle-flow)
DALL·E Flow is an interactive workflow for generating high-definition images from a text prompt. Itt leverages DALL·E-Mega, GLID-3 XL, and Stable Diffusion to generate image candidates, and then calls CLIP-as-service to rank the candidates w.r.t. the prompt.
The preferred candidate is fed to GLID-3 XL for diffusion, which often enriches the texture and background. Finally, the candidate is upscaled to 1024x1024 via SwinIR.
Keywords: High-definition image generation, Stable Diffusion, DALL-E Mega, GLID-3 XL, CLIP, SwinIR
## [lightseq](https://github.com/bytedance/lightseq)
LightSeq is a high performance training and inference library for sequence processing and generation implemented in CUDA. It enables highly efficient computation of modern NLP and CV models such as BERT, GPT, Transformer, etc. It is therefore best useful for machine translation, text generation, image classification, and other sequence related tasks.
Keywords: Training, Inference, Sequence Processing, Sequence Generation
## [LaTeX-OCR](https://github.com/lukas-blecher/LaTeX-OCR)
The goal of this project is to create a learning based system that takes an image of a math formula and returns corresponding LaTeX code.
Keywords: OCR, LaTeX, Math formula
## [open_clip](https://github.com/mlfoundations/open_clip)
OpenCLIP is an open source implementation of OpenAI's CLIP.
The goal of this repository is to enable training models with contrastive image-text supervision, and to investigate their properties such as robustness to distribution shift.
The starting point is an implementation of CLIP that matches the accuracy of the original CLIP models when trained on the same dataset.
Specifically, a ResNet-50 model trained with this codebase on OpenAI's 15 million image subset of YFCC achieves 32.7% top-1 accuracy on ImageNet.
Keywords: CLIP, Open-source, Contrastive, Image-text
## [dalle-playground](https://github.com/saharmor/dalle-playground)
A playground to generate images from any text prompt using Stable Diffusion and Dall-E mini.
Keywords: WebUI, Stable Diffusion, Dall-E mini
## [FedML](https://github.com/FedML-AI/FedML)
[FedML](https://github.com/FedML-AI/FedML) is a federated learning and analytics library enabling secure and collaborative machine learning on decentralized data anywhere at any scale.
It supports large-scale cross-silo federated learning, and cross-device federated learning on smartphones/IoTs, and research simulation.
Keywords: Federated Learning, Analytics, Collaborative ML, Decentralized
## [gpt-code-clippy](https://github.com/CodedotAl/gpt-code-clippy)
GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot, a language model -- based on GPT-3, called GPT-Codex -- that is fine-tuned on publicly available code from GitHub.
Keywords: LLM, Code
## [TextAttack](https://github.com/QData/TextAttack)
[TextAttack](https://github.com/QData/TextAttack) 🐙 is a Python framework for adversarial attacks, data augmentation, and model training in NLP.
Keywords: Adversarial attacks, Data augmentation, NLP
## [OpenPrompt](https://github.com/thunlp/OpenPrompt)
Prompt-learning is a paradigm to adapt pre-trained language models (PLMs) to downstream NLP tasks, which modify the input text with a textual template and directly uses PLMs to conduct pre-trained tasks. This library provides a standard, flexible and extensible framework to deploy the prompt-learning pipeline. [OpenPrompt](https://github.com/thunlp/OpenPrompt) supports loading PLMs directly from https://github.com/huggingface/transformers.
## [text-generation-webui](https://github.com/oobabooga/text-generation-webui/)
[text-generation-webui](https://github.com/oobabooga/text-generation-webui/) is a Gradio Web UI for running Large Language Models like LLaMA, llama.cpp, GPT-J, Pythia, OPT, and GALACTICA.
Keywords: LLM, WebUI
## [libra](https://github.com/Palashio/libra)
An ergonomic machine learning [libra](https://github.com/Palashio/libra)ry for non-technical users. It focuses on ergonomics and on ensuring that training a model is as simple as it can be.
Keywords: Ergonomic, Non-technical
## [alibi](https://github.com/SeldonIO/alibi)
Alibi is an open source Python library aimed at machine learning model inspection and interpretation. The focus of the library is to provide high-quality implementations of black-box, white-box, local and global explanation methods for classification and regression models.
Keywords: Model inspection, Model interpretation, Black-box, White-box
## [tortoise-tts](https://github.com/neonbjb/tortoise-tts)
Tortoise is a text-to-speech program built with the following priorities: strong multi-voice capabilities, and highly realistic prosody and intonation.
Keywords: Text-to-speech
## [flower](https://github.com/adap/flower)
Flower (flwr) is a framework for building federated learning systems. The design of Flower is based on a few guiding principles: customizability, extendability, framework agnosticity, and ease-of-use.
Keywords: Federated learning systems, Customizable, Extendable, Framework-agnostic, Simplicity
## [fast-bert](https://github.com/utterworks/fast-bert)
Fast-Bert is a deep learning library that allows developers and data scientists to train and deploy BERT and XLNet based models for natural language processing tasks beginning with Text Classification. It is aimed at simplicity.
Keywords: Deployment, BERT, XLNet
## [towhee](https://github.com/towhee-io/towhee)
Towhee makes it easy to build neural data processing pipelines for AI applications. We provide hundreds of models, algorithms, and transformations that can be used as standard pipeline building blocks. Users can use Towhee's Pythonic API to build a prototype of their pipeline and automatically optimize it for production-ready environments.
Keywords: Data processing pipeline, Optimization
## [alibi-detect](https://github.com/SeldonIO/alibi-detect)
Alibi Detect is an open source Python library focused on outlier, adversarial and drift detection. The package aims to cover both online and offline detectors for tabular data, text, images and time series. Both TensorFlow and PyTorch backends are supported for drift detection.
Keywords: Adversarial, Outlier, Drift detection
## [FARM](https://github.com/deepset-ai/FARM)
[FARM](https://github.com/deepset-ai/FARM) makes Transfer Learning with BERT & Co simple, fast and enterprise-ready. It's built upon transformers and provides additional features to simplify the life of developers: Parallelized preprocessing, highly modular design, multi-task learning, experiment tracking, easy debugging and close integration with AWS SageMaker.
Keywords: Transfer Learning, Modular design, Multi-task learning, Experiment tracking
## [aitextgen](https://github.com/minimaxir/aitextgen)
A robust Python tool for text-based AI training and generation using OpenAI's GPT-2 and EleutherAI's GPT Neo/GPT-3 architecture.
[aitextgen](https://github.com/minimaxir/aitextgen) is a Python package that leverages PyTorch, Hugging Face Transformers and pytorch-lightning with specific optimizations for text generation using GPT-2, plus many added features.
Keywords: Training, Generation
## [diffgram](https://github.com/diffgram/diffgram)
Diffgram aims to integrate human supervision into platforms. We support your team programmatically changing the UI (Schema, layout, etc.) like in Streamlit. This means that you can collect and annotate timely data from users. In other words, we are the platform behind your platform, an integrated part of your application, to ship new & better AI products faster.
Keywords: Human supervision, Platform
## [ecco](https://github.com/jalammar/ecco)
Explain, analyze, and visualize NLP language models. Ecco creates interactive visualizations directly in Jupyter notebooks explaining the behavior of Transformer-based language models (like GPT2, BERT, RoBERTA, T5, and T0).
Keywords: Model explainability
## [s3prl](https://github.com/s3prl/s3prl)
[s3prl](https://github.com/s3prl/s3prl) stands for Self-Supervised Speech Pre-training and Representation Learning. Self-supervised speech pre-trained models are called upstream in this toolkit, and are utilized in various downstream tasks.
Keywords: Speech, Training
## [ru-dalle](https://github.com/ai-forever/ru-dalle)
RuDALL-E aims to be similar to DALL-E, targeted to Russian.
Keywords: DALL-E, Russian
## [DeepKE](https://github.com/zjunlp/DeepKE)
[DeepKE](https://github.com/zjunlp/DeepKE) is a knowledge extraction toolkit for knowledge graph construction supporting cnSchemalow-resource, document-level and multimodal scenarios for entity, relation and attribute extraction.
Keywords: Knowledge Extraction, Knowledge Graphs
## [Nebuly](https://github.com/nebuly-ai/nebuly)
Nebuly is the next-generation platform to monitor and optimize your AI costs in one place. The platform connects to all your AI cost sources (compute, API providers, AI software licenses, etc) and centralizes them in one place to give you full visibility on a model basis. The platform also provides optimization recommendations and a co-pilot model that can guide during the optimization process. The platform builds on top of the open-source tools allowing you to optimize the different steps of your AI stack to squeeze out the best possible cost performances.
Keywords: Optimization, Performance, Monitoring
## [imaginAIry](https://github.com/brycedrennan/imaginAIry)
Offers a CLI and a Python API to generate images with Stable Diffusion. It has support for many tools, like image structure control (controlnet), instruction-based image edits (InstructPix2Pix), prompt-based masking (clipseg), among others.
Keywords: Stable Diffusion, CLI, Python API
## [sparseml](https://github.com/neuralmagic/sparseml)
SparseML is an open-source model optimization toolkit that enables you to create inference-optimized sparse models using pruning, quantization, and distillation algorithms. Models optimized with SparseML can then be exported to the ONNX and deployed with DeepSparse for GPU-class performance on CPU hardware.
Keywords: Model optimization, Pruning, Quantization, Distillation
## [opacus](https://github.com/pytorch/opacus)
Opacus is a library that enables training PyTorch models with differential privacy. It supports training with minimal code changes required on the client, has little impact on training performance, and allows the client to online track the privacy budget expended at any given moment.
Keywords: Differential privacy
## [LAVIS](https://github.com/salesforce/LAVIS)
[LAVIS](https://github.com/salesforce/LAVIS) is a Python deep learning library for LAnguage-and-VISion intelligence research and applications. This library aims to provide engineers and researchers with a one-stop solution to rapidly develop models for their specific multimodal scenarios, and benchmark them across standard and customized datasets. It features a unified interface design to access
Keywords: Multimodal, NLP, Vision
## [buzz](https://github.com/chidiwilliams/buzz)
Buzz transcribes and translates audio offline on your personal computer. Powered by OpenAI's Whisper.
Keywords: Audio transcription, Translation
## [rust-bert](https://github.com/guillaume-be/rust-bert)
Rust-native state-of-the-art Natural Language Processing models and pipelines. Port of Hugging Face's Transformers library, using the tch-rs crate and pre-processing from rust-tokenizers. Supports multi-threaded tokenization and GPU inference. This repository exposes the model base architecture, task-specific heads and ready-to-use pipelines.
Keywords: Rust, BERT, Inference
## [EasyNLP](https://github.com/alibaba/EasyNLP)
[EasyNLP](https://github.com/alibaba/EasyNLP) is an easy-to-use NLP development and application toolkit in PyTorch, first released inside Alibaba in 2021. It is built with scalable distributed training strategies and supports a comprehensive suite of NLP algorithms for various NLP applications. [EasyNLP](https://github.com/alibaba/EasyNLP) integrates knowledge distillation and few-shot learning for landing large pre-trained models, together with various popular multi-modality pre-trained models. It provides a unified framework of model training, inference, and deployment for real-world applications.
Keywords: NLP, Knowledge distillation, Few-shot learning, Multi-modality, Training, Inference, Deployment
## [TurboTransformers](https://github.com/Tencent/TurboTransformers)
A fast and user-friendly runtime for transformer inference (Bert, Albert, GPT2, Decoders, etc) on CPU and GPU.
Keywords: Optimization, Performance
## [hivemind](https://github.com/learning-at-home/hivemind)
Hivemind is a PyTorch library for decentralized deep learning across the Internet. Its intended usage is training one large model on hundreds of computers from different universities, companies, and volunteers.
Keywords: Decentralized training
## [docquery](https://github.com/impira/docquery)
DocQuery is a library and command-line tool that makes it easy to analyze semi-structured and unstructured documents (PDFs, scanned images, etc.) using large language models (LLMs). You simply point DocQuery at one or more documents and specify a question you want to ask. DocQuery is created by the team at Impira.
Keywords: Semi-structured documents, Unstructured documents, LLM, Document Question Answering
## [CodeGeeX](https://github.com/THUDM/CodeGeeX)
[CodeGeeX](https://github.com/THUDM/CodeGeeX) is a large-scale multilingual code generation model with 13 billion parameters, pre-trained on a large code corpus of more than 20 programming languages. It has several unique features:
- Multilingual code generation
- Crosslingual code translation
- Is a customizable programming assistant
Keywords: Code Generation Model
## [ktrain](https://github.com/amaiya/ktrain)
[ktrain](https://github.com/amaiya/ktrain) is a lightweight wrapper for the deep learning library TensorFlow Keras (and other libraries) to help build, train, and deploy neural networks and other machine learning models. Inspired by ML framework extensions like fastai and ludwig, [ktrain](https://github.com/amaiya/ktrain) is designed to make deep learning and AI more accessible and easier to apply for both newcomers and experienced practitioners.
Keywords: Keras wrapper, Model building, Training, Deployment
## [FastDeploy](https://github.com/PaddlePaddle/FastDeploy)
[FastDeploy](https://github.com/PaddlePaddle/FastDeploy) is an Easy-to-use and High Performance AI model deployment toolkit for Cloud, Mobile and Edge with packageout-of-the-box and unified experience, endend-to-end optimization for over fire160+ Text, Vision, Speech and Cross-modal AI models. Including image classification, object detection, OCR, face detection, matting, pp-tracking, NLP, stable diffusion, TTS and other tasks to meet developers' industrial deployment needs for multi-scenario, multi-hardware and multi-platform.
Keywords: Model deployment, CLoud, Mobile, Edge
## [underthesea](https://github.com/undertheseanlp/underthesea)
[underthesea](https://github.com/undertheseanlp/underthesea) is a Vietnamese NLP toolkit. Underthesea is a suite of open source Python modules data sets and tutorials supporting research and development in Vietnamese Natural Language Processing. We provides extremely easy API to quickly apply pretrained NLP models to your Vietnamese text, such as word segmentation, part-of-speech tagging (PoS), named entity recognition (NER), text classification and dependency parsing.
Keywords: Vietnamese, NLP
## [hasktorch](https://github.com/hasktorch/hasktorch)
Hasktorch is a library for tensors and neural networks in Haskell. It is an independent open source community project which leverages the core C++ libraries shared by PyTorch.
Keywords: Haskell, Neural Networks
## [donut](https://github.com/clovaai/donut)
Donut, or Document understanding transformer, is a new method of document understanding that utilizes an OCR-free end-to-end Transformer model.
Donut does not require off-the-shelf OCR engines/APIs, yet it shows state-of-the-art performances on various visual document understanding tasks, such as visual document classification or information extraction (a.k.a. document parsing).
Keywords: Document Understanding
## [transformers-interpret](https://github.com/cdpierse/transformers-interpret)
Transformers Interpret is a model explainability tool designed to work exclusively with the transformers package.
In line with the philosophy of the Transformers package Transformers Interpret allows any transformers model to be explained in just two lines. Explainers are available for both text and computer vision models. Visualizations are also available in notebooks and as savable png and html files
Keywords: Model interpretation, Visualization
## [mlrun](https://github.com/mlrun/mlrun)
MLRun is an open MLOps platform for quickly building and managing continuous ML applications across their lifecycle. MLRun integrates into your development and CI/CD environment and automates the delivery of production data, ML pipelines, and online applications, significantly reducing engineering efforts, time to production, and computation resources. With MLRun, you can choose any IDE on your local machine or on the cloud. MLRun breaks the silos between data, ML, software, and DevOps/MLOps teams, enabling collaboration and fast continuous improvements.
Keywords: MLOps
## [FederatedScope](https://github.com/alibaba/FederatedScope)
[FederatedScope](https://github.com/alibaba/FederatedScope) is a comprehensive federated learning platform that provides convenient usage and flexible customization for various federated learning tasks in both academia and industry. Based on an event-driven architecture, [FederatedScope](https://github.com/alibaba/FederatedScope) integrates rich collections of functionalities to satisfy the burgeoning demands from federated learning, and aims to build up an easy-to-use platform for promoting learning safely and effectively.
Keywords: Federated learning, Event-driven
## [pythainlp](https://github.com/PyThaiNLP/pythainlp)
PyThaiNLP is a Python package for text processing and linguistic analysis, similar to NLTK with focus on Thai language.
Keywords: Thai, NLP, NLTK
## [FlagAI](https://github.com/FlagAI-Open/FlagAI)
[FlagAI](https://github.com/FlagAI-Open/FlagAI) (Fast LArge-scale General AI models) is a fast, easy-to-use and extensible toolkit for large-scale model. Our goal is to support training, fine-tuning, and deployment of large-scale models on various downstream tasks with multi-modality.
Keywords: Large models, Training, Fine-tuning, Deployment, Multi-modal
## [pyserini](https://github.com/castorini/pyserini)
[pyserini](https://github.com/castorini/pyserini) is a Python toolkit for reproducible information retrieval research with sparse and dense representations. Retrieval using sparse representations is provided via integration with the group's Anserini IR toolkit. Retrieval using dense representations is provided via integration with Facebook's Faiss library.
Keywords: IR, Information Retrieval, Dense, Sparse
## [baal](https://github.com/baal-org/baal)
[baal](https://github.com/baal-org/baal) is an active learning library that supports both industrial applications and research usecases. [baal](https://github.com/baal-org/baal) currently supports Monte-Carlo Dropout, MCDropConnect, deep ensembles, and semi-supervised learning.
Keywords: Active Learning, Research, Labeling
## [cleanlab](https://github.com/cleanlab/cleanlab)
[cleanlab](https://github.com/cleanlab/cleanlab) is the standard data-centric AI package for data quality and machine learning with messy, real-world data and labels. For text, image, tabular, audio (among others) datasets, you can use cleanlab to automatically: detect data issues (outliers, label errors, near duplicates, etc), train robust ML models, infer consensus + annotator-quality for multi-annotator data, suggest data to (re)label next (active learning).
Keywords: Data-Centric AI, Data Quality, Noisy Labels, Outlier Detection, Active Learning
## [BentoML](https://github.com/bentoml/BentoML)
[BentoML](https://github.com/bentoml) is the unified framework for for building, shipping, and scaling production-ready AI applications incorporating traditional ML, pre-trained AI models, Generative and Large Language Models.
All Hugging Face models and pipelines can be seamlessly integrated into BentoML applications, enabling the running of models on the most suitable hardware and independent scaling based on usage.
Keywords: BentoML, Framework, Deployment, AI Applications
## [LLaMA-Efficient-Tuning](https://github.com/hiyouga/LLaMA-Efficient-Tuning)
[LLaMA-Efficient-Tuning](https://github.com/hiyouga/LLaMA-Efficient-Tuning) offers a user-friendly fine-tuning framework that incorporates PEFT. The repository includes training(fine-tuning) and inference examples for LLaMA-2, BLOOM, Falcon, Baichuan, Qwen, and other LLMs. A ChatGLM version is also available in [ChatGLM-Efficient-Tuning](https://github.com/hiyouga/ChatGLM-Efficient-Tuning).
Keywords: PEFT, fine-tuning, LLaMA-2, ChatGLM, Qwen

31
count_stars.py Normal file
View File

@ -0,0 +1,31 @@
import os
import time
import requests
from datetime import datetime
def foo(token, old):
headers = None
if token is not None:
headers = {"Accept": "application/vnd.github+json", "Authorization": f"Bearer {token}"}
url = f"https://api.github.com/repos/huggingface/transformers"
result = requests.get(url, headers=headers).json()
count = result["stargazers_count"]
# print(f"⭐: {count}")
now = datetime.today().strftime('%Y-%m-%d %H:%M:%S')
if count != old:
print("-" * 40)
print(f"⭐: {count} | {now}")
return count
if __name__ == "__main__":
old = None
for i in range(20000):
time.sleep(5)
old = foo(token=os.environ["ACCESS_REPO_INFO_TOKEN"], old=old)

View File

@ -9,7 +9,7 @@ SHELL ["sh", "-lc"]
# The following `ARG` are mainly used to specify the versions explicitly & directly in this docker file, and not meant
# to be used as arguments for docker build (so far).
ARG PYTORCH='2.1.0'
ARG PYTORCH='2.0.1'
# (not always a valid torch version)
ARG INTEL_TORCH_EXT='1.11.0'
# Example: `cu102`, `cu113`, etc.
@ -22,6 +22,7 @@ RUN python3 -m pip install --no-cache-dir --upgrade pip
ARG REF=main
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev,onnxruntime]
# TODO: Handle these in a python utility script
RUN [ ${#PYTORCH} -gt 0 -a "$PYTORCH" != "pre" ] && VERSION='torch=='$PYTORCH'.*' || VERSION='torch'; echo "export VERSION='$VERSION'" >> ~/.profile
@ -31,35 +32,21 @@ RUN echo torch=$VERSION
# TODO: We might need to specify proper versions that work with a specific torch version (especially for past CI).
RUN [ "$PYTORCH" != "pre" ] && python3 -m pip install --no-cache-dir -U $VERSION torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/$CUDA || python3 -m pip install --no-cache-dir -U --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/$CUDA
RUN python3 -m pip install --no-cache-dir -U tensorflow==2.13 protobuf==3.20.3 tensorflow_text tensorflow_probability
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev,onnxruntime]
RUN python3 -m pip install --no-cache-dir -U tensorflow==2.12 protobuf==3.20.3 tensorflow_text tensorflow_probability
RUN python3 -m pip uninstall -y flax jax
RUN python3 -m pip install --no-cache-dir intel_extension_for_pytorch==$INTEL_TORCH_EXT+cpu -f https://developer.intel.com/ipex-whl-stable-cpu
RUN python3 -m pip install --no-cache-dir intel_extension_for_pytorch==$INTEL_TORCH_EXT+cpu -f https://software.intel.com/ipex-whl-stable
RUN python3 -m pip install --no-cache-dir git+https://github.com/facebookresearch/detectron2.git pytesseract
RUN python3 -m pip install -U "itsdangerous<2.1.0"
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/peft@main#egg=peft
# Add bitsandbytes for mixed int8 testing
RUN python3 -m pip install --no-cache-dir bitsandbytes
# Add auto-gptq for gtpq quantization testing
RUN python3 -m pip install --no-cache-dir auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/
# Add einops for additional model testing
RUN python3 -m pip install --no-cache-dir einops
# Add autoawq for quantization testing
RUN python3 -m pip install --no-cache-dir autoawq
# For bettertransformer + gptq
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/optimum@main#egg=optimum
# For bettertransformer
RUN python3 -m pip install --no-cache-dir optimum
# For video model testing
RUN python3 -m pip install --no-cache-dir decord av==9.2.0

View File

@ -11,6 +11,7 @@ RUN apt-get -y update && apt-get install -y libsndfile1-dev && apt install -y te
RUN python3 -m pip install --no-cache-dir ./transformers[deepspeed]
RUN python3 -m pip install --no-cache-dir torchvision git+https://github.com/facebookresearch/detectron2.git pytesseract
RUN python3 -m pip install --no-cache-dir pytorch-quantization --extra-index-url https://pypi.ngc.nvidia.com
RUN python3 -m pip install -U "itsdangerous<2.1.0"
# Test if the image could successfully build the doc. before publishing the image

View File

@ -24,7 +24,7 @@ ARG FRAMEWORK
ARG VERSION
# Control `setuptools` version to avoid some issues
RUN [ "$VERSION" != "1.10" ] && python3 -m pip install -U setuptools || python3 -m pip install -U "setuptools<=59.5"
RUN [ "$VERSION" != "1.9" -a "$VERSION" != "1.10" ] && python3 -m pip install -U setuptools || python3 -m pip install -U "setuptools<=59.5"
# Remove all frameworks
RUN python3 -m pip uninstall -y torch torchvision torchaudio tensorflow jax flax

View File

@ -1,31 +0,0 @@
FROM rocm/pytorch:rocm5.6_ubuntu20.04_py3.8_pytorch_2.0.1
LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive
RUN apt update && \
apt install -y --no-install-recommends git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-pip ffmpeg && \
apt clean && \
rm -rf /var/lib/apt/lists/*
RUN python3 -m pip install --no-cache-dir --upgrade pip setuptools ninja git+https://github.com/facebookresearch/detectron2.git pytesseract "itsdangerous<2.1.0"
# If set to nothing, will install the latest version
ARG PYTORCH='2.0.1'
ARG TORCH_VISION='0.15.2'
ARG TORCH_AUDIO='2.0.2'
ARG ROCM='5.6'
RUN git clone --depth 1 --branch v$TORCH_AUDIO https://github.com/pytorch/audio.git
RUN cd audio && USE_ROCM=1 USE_CUDA=0 python setup.py install
ARG REF=main
WORKDIR /
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev-torch,testing,video]
RUN python3 -m pip uninstall -y tensorflow flax
# When installing in editable mode, `transformers` is not recognized as a package.
# this line must be added in order for python to be aware of transformers.
RUN cd transformers && python3 setup.py develop

View File

@ -1,12 +1,12 @@
# https://docs.nvidia.com/deeplearning/frameworks/pytorch-release-notes/rel-22-12.html#rel-22-12
FROM nvcr.io/nvidia/pytorch:22.12-py3
# https://docs.nvidia.com/deeplearning/frameworks/pytorch-release-notes/rel_22-08.html#rel_22-08
FROM nvcr.io/nvidia/pytorch:22.08-py3
LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive
ARG PYTORCH='2.1.0'
ARG PYTORCH='2.0.1'
# Example: `cu102`, `cu113`, etc.
ARG CUDA='cu118'
ARG CUDA='cu117'
RUN apt -y update
RUN apt install -y libaio-dev
@ -15,8 +15,6 @@ RUN python3 -m pip install --no-cache-dir --upgrade pip
ARG REF=main
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
RUN python3 -m pip uninstall -y torch torchvision torchaudio
# Install latest release PyTorch
# (PyTorch must be installed before pre-compiling any DeepSpeed c++/cuda ops.)
# (https://www.deepspeed.ai/tutorials/advanced-install/#pre-install-deepspeed-ops)
@ -26,9 +24,6 @@ RUN python3 -m pip install --no-cache-dir ./transformers[deepspeed-testing]
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate
# Uninstall `transformer-engine` shipped with the base image
RUN python3 -m pip uninstall -y transformer-engine
# Uninstall `torch-tensorrt` shipped with the base image
RUN python3 -m pip uninstall -y torch-tensorrt
@ -36,8 +31,7 @@ RUN python3 -m pip uninstall -y torch-tensorrt
RUN python3 -m pip uninstall -y apex
RUN git clone https://github.com/NVIDIA/apex
# `MAX_JOBS=1` disables parallel building to avoid cpu memory OOM when building image on GitHub Action (standard) runners
# TODO: check if there is alternative way to install latest apex
# RUN cd apex && MAX_JOBS=1 python3 -m pip install --global-option="--cpp_ext" --global-option="--cuda_ext" --no-cache -v --disable-pip-version-check .
RUN cd apex && MAX_JOBS=1 python3 -m pip install --global-option="--cpp_ext" --global-option="--cuda_ext" --no-cache -v --disable-pip-version-check .
# Pre-build **latest** DeepSpeed, so it would be ready for testing (otherwise, the 1st deepspeed test will timeout)
RUN python3 -m pip uninstall -y deepspeed
@ -51,5 +45,5 @@ RUN DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 DS_BUILD_UTILS=1 python3 -m pip in
RUN cd transformers && python3 setup.py develop
# The base image ships with `pydantic==1.8.2` which is not working - i.e. the next command fails
RUN python3 -m pip install -U --no-cache-dir "pydantic<2"
RUN python3 -m pip install -U --no-cache-dir pydantic
RUN python3 -c "from deepspeed.launcher.runner import main"

View File

@ -1,11 +1,11 @@
# https://docs.nvidia.com/deeplearning/frameworks/pytorch-release-notes/rel-22-12.html#rel-22-12
FROM nvcr.io/nvidia/pytorch:22.12-py3
# https://docs.nvidia.com/deeplearning/frameworks/pytorch-release-notes/rel_22-08.html#rel_22-08
FROM nvcr.io/nvidia/pytorch:22.08-py3
LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive
# Example: `cu102`, `cu113`, etc.
ARG CUDA='cu118'
ARG CUDA='cu117'
RUN apt -y update
RUN apt install -y libaio-dev
@ -14,8 +14,6 @@ RUN python3 -m pip install --no-cache-dir --upgrade pip
ARG REF=main
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
RUN python3 -m pip uninstall -y torch torchvision torchaudio
# Install **nightly** release PyTorch (flag `--pre`)
# (PyTorch must be installed before pre-compiling any DeepSpeed c++/cuda ops.)
# (https://www.deepspeed.ai/tutorials/advanced-install/#pre-install-deepspeed-ops)
@ -25,9 +23,6 @@ RUN python3 -m pip install --no-cache-dir ./transformers[deepspeed-testing]
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate
# Uninstall `transformer-engine` shipped with the base image
RUN python3 -m pip uninstall -y transformer-engine
# Uninstall `torch-tensorrt` and `apex` shipped with the base image
RUN python3 -m pip uninstall -y torch-tensorrt apex

View File

@ -1,4 +1,4 @@
FROM nvidia/cuda:11.8.0-cudnn8-devel-ubuntu20.04
FROM nvidia/cuda:11.7.1-cudnn8-devel-ubuntu20.04
LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive
@ -9,20 +9,19 @@ RUN python3 -m pip install --no-cache-dir --upgrade pip
ARG REF=main
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev-torch,testing,video]
# If set to nothing, will install the latest version
ARG PYTORCH='2.1.0'
ARG PYTORCH='2.0.1'
ARG TORCH_VISION=''
ARG TORCH_AUDIO=''
# Example: `cu102`, `cu113`, etc.
ARG CUDA='cu118'
ARG CUDA='cu117'
RUN [ ${#PYTORCH} -gt 0 ] && VERSION='torch=='$PYTORCH'.*' || VERSION='torch'; python3 -m pip install --no-cache-dir -U $VERSION --extra-index-url https://download.pytorch.org/whl/$CUDA
RUN [ ${#TORCH_VISION} -gt 0 ] && VERSION='torchvision=='TORCH_VISION'.*' || VERSION='torchvision'; python3 -m pip install --no-cache-dir -U $VERSION --extra-index-url https://download.pytorch.org/whl/$CUDA
RUN [ ${#TORCH_AUDIO} -gt 0 ] && VERSION='torchaudio=='TORCH_AUDIO'.*' || VERSION='torchaudio'; python3 -m pip install --no-cache-dir -U $VERSION --extra-index-url https://download.pytorch.org/whl/$CUDA
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev-torch,testing,video]
RUN python3 -m pip uninstall -y tensorflow flax
RUN python3 -m pip install --no-cache-dir git+https://github.com/facebookresearch/detectron2.git pytesseract

View File

@ -12,7 +12,7 @@ RUN git clone https://github.com/huggingface/transformers && cd transformers &&
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev-tensorflow,testing]
# If set to nothing, will install the latest version
ARG TENSORFLOW='2.13'
ARG TENSORFLOW='2.12'
RUN [ ${#TENSORFLOW} -gt 0 ] && VERSION='tensorflow=='$TENSORFLOW'.*' || VERSION='tensorflow'; python3 -m pip install --no-cache-dir -U $VERSION
RUN python3 -m pip uninstall -y torch flax

View File

@ -81,10 +81,10 @@ The `preview` command only works with existing doc files. When you add a complet
## Adding a new element to the navigation bar
Accepted files are Markdown (.md).
Accepted files are Markdown (.md or .mdx).
Create a file with its extension and put it in the source directory. You can then link it to the toc-tree by putting
the filename without the extension in the [`_toctree.yml`](https://github.com/huggingface/transformers/blob/main/docs/source/en/_toctree.yml) file.
the filename without the extension in the [`_toctree.yml`](https://github.com/huggingface/transformers/blob/main/docs/source/_toctree.yml) file.
## Renaming section headers and moving sections
@ -109,7 +109,7 @@ Sections that were moved:
Use the relative style to link to the new file so that the versioned docs continue to work.
For an example of a rich moved section set please see the very end of [the Trainer doc](https://github.com/huggingface/transformers/blob/main/docs/source/en/main_classes/trainer.md).
For an example of a rich moved section set please see the very end of [the Trainer doc](https://github.com/huggingface/transformers/blob/main/docs/source/en/main_classes/trainer.mdx).
## Writing Documentation - Specification
@ -138,7 +138,7 @@ When translating, refer to the guide at [./TRANSLATING.md](https://github.com/hu
When adding a new model:
- Create a file `xxx.md` or under `./source/model_doc` (don't hesitate to copy an existing file as template).
- Create a file `xxx.mdx` or under `./source/model_doc` (don't hesitate to copy an existing file as template).
- Link that file in `./source/_toctree.yml`.
- Write a short overview of the model:
- Overview with paper & authors
@ -147,7 +147,7 @@ When adding a new model:
- Add the classes that should be linked in the model. This generally includes the configuration, the tokenizer, and
every model of that class (the base model, alongside models with additional heads), both in PyTorch and TensorFlow.
The order is generally:
- Configuration
- Configuration,
- Tokenizer
- PyTorch base model
- PyTorch head models
@ -364,9 +364,25 @@ We use pytests' [doctest integration](https://docs.pytest.org/doctest.html) to v
For Transformers, the doctests are run on a daily basis via GitHub Actions as can be
seen [here](https://github.com/huggingface/transformers/actions/workflows/doctests.yml).
To include your example in the daily doctests, you need to add the filename that
contains the example docstring to the [documentation_tests.txt](../utils/documentation_tests.txt).
### For Python files
Run all the tests in the docstrings of a given file with the following command, here is how we test the modeling file of Wav2Vec2 for instance:
You will first need to run the following command (from the root of the repository) to prepare the doc file (doc-testing needs to add additional lines that we don't include in the doc source files):
```bash
python utils/prepare_for_doc_test.py src docs
```
If you work on a specific python module, say `modeling_wav2vec2.py`, you can run the command as follows (to avoid the unnecessary temporary changes in irrelevant files):
```bash
python utils/prepare_for_doc_test.py src/transformers/utils/doc.py src/transformers/models/wav2vec2/modeling_wav2vec2.py
```
(`utils/doc.py` should always be included)
Then you can run all the tests in the docstrings of a given file with the following command, here is how we test the modeling file of Wav2Vec2 for instance:
```bash
pytest --doctest-modules src/transformers/models/wav2vec2/modeling_wav2vec2.py -sv --doctest-continue-on-failure
@ -378,12 +394,30 @@ If you want to isolate a specific docstring, just add `::` after the file name t
pytest --doctest-modules src/transformers/models/wav2vec2/modeling_wav2vec2.py::transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForCTC.forward -sv --doctest-continue-on-failure
```
### For Markdown files
You can test locally a given file with this command (here testing the quicktour):
Once you're done, you can run the following command (still from the root of the repository) to undo the changes made by the first command before committing:
```bash
pytest --doctest-modules docs/source/quicktour.md -sv --doctest-continue-on-failure --doctest-glob="*.md"
python utils/prepare_for_doc_test.py src docs --remove_new_line
```
### For Markdown files
You will first need to run the following command (from the root of the repository) to prepare the doc file (doc-testing needs to add additional lines that we don't include in the doc source files):
```bash
python utils/prepare_for_doc_test.py src docs
```
Then you can test locally a given file with this command (here testing the quicktour):
```bash
pytest --doctest-modules docs/source/quicktour.mdx -sv --doctest-continue-on-failure --doctest-glob="*.mdx"
```
Once you're done, you can run the following command (still from the root of the repository) to undo the changes made by the first command before committing:
```bash
python utils/prepare_for_doc_test.py src docs --remove_new_line
```
### Writing doctests

View File

@ -54,4 +54,4 @@ The fields you should add are `local` (with the name of the file containing the
Once you have translated the `_toctree.yml` file, you can start translating the [MDX](https://mdxjs.com/) files associated with your docs chapter.
> 🙋 If you'd like others to help you with the translation, you should [open an issue](https://github.com/huggingface/transformers/issues) and tag @stevhliu and @MKhalusova.
> 🙋 If you'd like others to help you with the translation, you should [open an issue](https://github.com/huggingface/transformers/issues) and tag @sgugger.

View File

@ -15,28 +15,8 @@
title: Vorverarbeiten
- local: training
title: Optimierung eines vortrainierten Modells
- local: run_scripts
title: Trainieren mit einem Skript
- local: accelerate
title: Verteiltes Training mit 🤗 Accelerate
- local: peft
title: Laden und Trainieren von Adaptern mit 🤗 PEFT
- local: model_sharing
title: Ein Modell teilen
- local: transformers_agents
title: Agents
- local: llm_tutorial
title: Generation with LLMs
title: Tutorials
- sections:
- local: add_new_model
title: Wie fügt man ein Modell zu 🤗 Transformers hinzu?
- local: add_tensorflow_model
title: Wie konvertiert man ein 🤗 Transformers-Modell in TensorFlow?
- local: add_new_pipeline
title: Wie fügt man eine Pipeline zu 🤗 Transformers hinzu?
- local: testing
title: Testen
- local: pr_checks
title: Überprüfung einer Pull Request
title: Contribute

View File

@ -8,10 +8,6 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Verteiltes Training mit 🤗 Accelerate

View File

@ -1,895 +0,0 @@
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Wie kann ich ein Modell zu 🤗 Transformers hinzufügen?
Die 🤗 Transformers-Bibliothek ist dank der Beiträge der Community oft in der Lage, neue Modelle anzubieten. Aber das kann ein anspruchsvolles Projekt sein und erfordert eine eingehende Kenntnis der 🤗 Transformers-Bibliothek und des zu implementierenden Modells. Bei Hugging Face versuchen wir, mehr Mitgliedern der Community die Möglichkeit zu geben, aktiv Modelle hinzuzufügen, und wir haben diese Anleitung zusammengestellt, die Sie durch den Prozess des Hinzufügens eines PyTorch-Modells führt (stellen Sie sicher, dass Sie [PyTorch installiert haben](https://pytorch.org/get-started/locally/)).
<Tip>
Wenn Sie daran interessiert sind, ein TensorFlow-Modell zu implementieren, werfen Sie einen Blick in die Anleitung [How to convert a 🤗 Transformers model to TensorFlow](add_tensorflow_model)!
</Tip>
Auf dem Weg dorthin, werden Sie:
- Einblicke in bewährte Open-Source-Verfahren erhalten
- die Konstruktionsprinzipien hinter einer der beliebtesten Deep-Learning-Bibliotheken verstehen
- lernen Sie, wie Sie große Modelle effizient testen können
- lernen Sie, wie Sie Python-Hilfsprogramme wie `black`, `ruff` und `make fix-copies` integrieren, um sauberen und lesbaren Code zu gewährleisten
Ein Mitglied des Hugging Face-Teams wird Ihnen dabei zur Seite stehen, damit Sie nicht alleine sind. 🤗 ❤️
Um loszulegen, öffnen Sie eine [New model addition](https://github.com/huggingface/transformers/issues/new?assignees=&labels=New+model&template=new-model-addition.yml) Ausgabe für das Modell, das Sie in 🤗 Transformers sehen möchten. Wenn Sie nicht besonders wählerisch sind, wenn es darum geht, ein bestimmtes Modell beizusteuern, können Sie nach dem [New model label](https://github.com/huggingface/transformers/labels/New%20model) filtern, um zu sehen, ob es noch unbeanspruchte Modellanfragen gibt, und daran arbeiten.
Sobald Sie eine neue Modellanfrage eröffnet haben, sollten Sie sich zunächst mit 🤗 Transformers vertraut machen, falls Sie das noch nicht sind!
## Allgemeiner Überblick über 🤗 Transformers
Zunächst sollten Sie sich einen allgemeinen Überblick über 🤗 Transformers verschaffen. 🤗 Transformers ist eine sehr meinungsfreudige Bibliothek, es ist also möglich, dass
Es besteht also die Möglichkeit, dass Sie mit einigen der Philosophien oder Designentscheidungen der Bibliothek nicht einverstanden sind. Aus unserer Erfahrung heraus haben wir jedoch
dass die grundlegenden Designentscheidungen und Philosophien der Bibliothek entscheidend sind, um 🤗 Transformers effizient zu skalieren.
Transformatoren zu skalieren und gleichzeitig die Wartungskosten auf einem vernünftigen Niveau zu halten.
Ein guter erster Ansatzpunkt, um die Bibliothek besser zu verstehen, ist die Lektüre der [Dokumentation unserer Philosophie](Philosophie). Als Ergebnis unserer Arbeitsweise gibt es einige Entscheidungen, die wir versuchen, auf alle Modelle anzuwenden:
- Komposition wird im Allgemeinen gegenüber Abstraktion bevorzugt
- Die Duplizierung von Code ist nicht immer schlecht, wenn sie die Lesbarkeit oder Zugänglichkeit eines Modells stark verbessert
- Modelldateien sind so in sich geschlossen wie möglich, so dass Sie, wenn Sie den Code eines bestimmten Modells lesen, idealerweise nur
in die entsprechende Datei `modeling_....py` schauen müssen.
Unserer Meinung nach ist der Code der Bibliothek nicht nur ein Mittel, um ein Produkt bereitzustellen, *z.B.* die Möglichkeit, BERT für
Inferenz zu verwenden, sondern auch als das Produkt selbst, das wir verbessern wollen. Wenn Sie also ein Modell hinzufügen, ist der Benutzer nicht nur die
Person, die Ihr Modell verwenden wird, sondern auch jeder, der Ihren Code liest, zu verstehen versucht und ihn möglicherweise verbessert.
Lassen Sie uns daher ein wenig tiefer in das allgemeine Design der Bibliothek einsteigen.
### Überblick über die Modelle
Um ein Modell erfolgreich hinzuzufügen, ist es wichtig, die Interaktion zwischen Ihrem Modell und seiner Konfiguration zu verstehen,
[`PreTrainedModel`] und [`PretrainedConfig`]. Als Beispiel werden wir
das Modell, das zu 🤗 Transformers hinzugefügt werden soll, `BrandNewBert` nennen.
Schauen wir uns das mal an:
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers_overview.png"/>
Wie Sie sehen, machen wir in 🤗 Transformers von der Vererbung Gebrauch, aber wir beschränken die Abstraktionsebene auf ein absolutes Minimum.
Minimum. Es gibt nie mehr als zwei Abstraktionsebenen für ein Modell in der Bibliothek. `BrandNewBertModel`
erbt von `BrandNewBertPreTrainedModel`, das wiederum von [`PreTrainedModel`] erbt und
das war's. In der Regel wollen wir sicherstellen, dass ein neues Modell nur von
[`PreTrainedModel`] abhängt. Die wichtigen Funktionalitäten, die jedem neuen Modell automatisch zur Verfügung gestellt werden, sind
Modell automatisch bereitgestellt werden, sind [`~PreTrainedModel.from_pretrained`] und
[`~PreTrainedModel.save_pretrained`], die für die Serialisierung und Deserialisierung verwendet werden. Alle
anderen wichtigen Funktionalitäten, wie `BrandNewBertModel.forward` sollten vollständig in der neuen
Skript `modeling_brand_new_bert.py` definiert werden. Als nächstes wollen wir sicherstellen, dass ein Modell mit einer bestimmten Kopfebene, wie z.B.
`BrandNewBertForMaskedLM` nicht von `BrandNewBertModel` erbt, sondern `BrandNewBertModel` verwendet
als Komponente, die im Forward Pass aufgerufen werden kann, um die Abstraktionsebene niedrig zu halten. Jedes neue Modell erfordert eine
Konfigurationsklasse, genannt `BrandNewBertConfig`. Diese Konfiguration wird immer als ein Attribut in
[PreTrainedModel] gespeichert und kann daher über das Attribut `config` für alle Klassen aufgerufen werden
die von `BrandNewBertPreTrainedModel` erben:
```python
model = BrandNewBertModel.from_pretrained("brandy/brand_new_bert")
model.config # model has access to its config
```
Ähnlich wie das Modell erbt die Konfiguration grundlegende Serialisierungs- und Deserialisierungsfunktionalitäten von
[`PretrainedConfig`]. Beachten Sie, dass die Konfiguration und das Modell immer in zwei verschiedene Formate serialisiert werden
unterschiedliche Formate serialisiert werden - das Modell in eine *pytorch_model.bin* Datei und die Konfiguration in eine *config.json* Datei. Aufruf von
[~PreTrainedModel.save_pretrained`] wird automatisch
[~PretrainedConfig.save_pretrained`] auf, so dass sowohl das Modell als auch die Konfiguration gespeichert werden.
### Code-Stil
Wenn Sie Ihr neues Modell kodieren, sollten Sie daran denken, dass Transformers eine Bibliothek mit vielen Meinungen ist und dass wir selbst ein paar Macken haben
wie der Code geschrieben werden sollte :-)
1. Der Vorwärtsdurchlauf Ihres Modells sollte vollständig in die Modellierungsdatei geschrieben werden und dabei völlig unabhängig von anderen
Modellen in der Bibliothek. Wenn Sie einen Block aus einem anderen Modell wiederverwenden möchten, kopieren Sie den Code und fügen ihn mit einem
`# Kopiert von` ein (siehe [hier](https://github.com/huggingface/transformers/blob/v4.17.0/src/transformers/models/roberta/modeling_roberta.py#L160)
für ein gutes Beispiel und [hier](pr_checks#check-copies) für weitere Dokumentation zu Copied from).
2. Der Code sollte vollständig verständlich sein, auch für einen Nicht-Muttersprachler. Das heißt, Sie sollten
beschreibende Variablennamen wählen und Abkürzungen vermeiden. Ein Beispiel: `activation` ist `act` vorzuziehen.
Von Variablennamen mit nur einem Buchstaben wird dringend abgeraten, es sei denn, es handelt sich um einen Index in einer for-Schleife.
3. Generell ziehen wir längeren expliziten Code einem kurzen magischen Code vor.
4. Vermeiden Sie die Unterklassifizierung von `nn.Sequential` in PyTorch, sondern unterklassifizieren Sie `nn.Module` und schreiben Sie den Vorwärtspass, so dass jeder
so dass jeder, der Ihren Code verwendet, ihn schnell debuggen kann, indem er Druckanweisungen oder Haltepunkte hinzufügt.
5. Ihre Funktionssignatur sollte mit einer Typ-Annotation versehen sein. Im Übrigen sind gute Variablennamen viel lesbarer und verständlicher
verständlicher als Typ-Anmerkungen.
### Übersicht der Tokenizer
Noch nicht ganz fertig :-( Dieser Abschnitt wird bald hinzugefügt!
## Schritt-für-Schritt-Rezept zum Hinzufügen eines Modells zu 🤗 Transformers
Jeder hat andere Vorlieben, was die Portierung eines Modells angeht. Daher kann es sehr hilfreich sein, wenn Sie sich Zusammenfassungen ansehen
wie andere Mitwirkende Modelle auf Hugging Face portiert haben. Hier ist eine Liste von Blogbeiträgen aus der Community, wie man ein Modell portiert:
1. [Portierung eines GPT2-Modells](https://medium.com/huggingface/from-tensorflow-to-pytorch-265f40ef2a28) von [Thomas](https://huggingface.co/thomwolf)
2. [Portierung des WMT19 MT-Modells](https://huggingface.co/blog/porting-fsmt) von [Stas](https://huggingface.co/stas)
Aus Erfahrung können wir Ihnen sagen, dass die wichtigsten Dinge, die Sie beim Hinzufügen eines Modells beachten müssen, sind:
- Erfinden Sie das Rad nicht neu! Die meisten Teile des Codes, den Sie für das neue 🤗 Transformers-Modell hinzufügen werden, existieren bereits
irgendwo in 🤗 Transformers. Nehmen Sie sich etwas Zeit, um ähnliche, bereits vorhandene Modelle und Tokenizer zu finden, die Sie kopieren können
von. [grep](https://www.gnu.org/software/grep/) und [rg](https://github.com/BurntSushi/ripgrep) sind Ihre
Freunde. Beachten Sie, dass es sehr gut möglich ist, dass der Tokenizer Ihres Modells auf einer Modellimplementierung basiert und
und der Modellierungscode Ihres Modells auf einer anderen. *Z.B.* Der Modellierungscode von FSMT basiert auf BART, während der Tokenizer-Code von FSMT
auf XLM basiert.
- Es handelt sich eher um eine technische als um eine wissenschaftliche Herausforderung. Sie sollten mehr Zeit auf die Schaffung einer
eine effiziente Debugging-Umgebung zu schaffen, als zu versuchen, alle theoretischen Aspekte des Modells in dem Papier zu verstehen.
- Bitten Sie um Hilfe, wenn Sie nicht weiterkommen! Modelle sind der Kernbestandteil von 🤗 Transformers, so dass wir bei Hugging Face mehr als
mehr als glücklich, Ihnen bei jedem Schritt zu helfen, um Ihr Modell hinzuzufügen. Zögern Sie nicht zu fragen, wenn Sie merken, dass Sie nicht weiterkommen.
Fortschritte machen.
Im Folgenden versuchen wir, Ihnen ein allgemeines Rezept an die Hand zu geben, das uns bei der Portierung eines Modells auf 🤗 Transformers am nützlichsten erschien.
Die folgende Liste ist eine Zusammenfassung all dessen, was getan werden muss, um ein Modell hinzuzufügen und kann von Ihnen als To-Do verwendet werden
Liste verwenden:
☐ (Optional) Verstehen der theoretischen Aspekte des Modells<br>
☐ Vorbereiten der 🤗 Transformers-Entwicklungsumgebung<br>
☐ Debugging-Umgebung des ursprünglichen Repositorys eingerichtet<br>
☐ Skript erstellt, das den Durchlauf `forward()` unter Verwendung des ursprünglichen Repositorys und des Checkpoints erfolgreich durchführt<br>
☐ Erfolgreich das Modellskelett zu 🤗 Transformers hinzugefügt<br>
☐ Erfolgreiche Umwandlung des ursprünglichen Prüfpunkts in den 🤗 Transformers-Prüfpunkt<br>
☐ Erfolgreich den Durchlauf `forward()` in 🤗 Transformers ausgeführt, der eine identische Ausgabe wie der ursprüngliche Prüfpunkt liefert<br>
☐ Modell-Tests in 🤗 Transformers abgeschlossen<br>
☐ Erfolgreich Tokenizer in 🤗 Transformers hinzugefügt<br>
☐ End-to-End-Integrationstests ausgeführt<br>
☐ Docs fertiggestellt<br>
☐ Modellgewichte in den Hub hochgeladen<br>
☐ Die Pull-Anfrage eingereicht<br>
☐ (Optional) Hinzufügen eines Demo-Notizbuchs
Für den Anfang empfehlen wir in der Regel, mit einem guten theoretischen Verständnis von `BrandNewBert` zu beginnen. Wie auch immer,
wenn Sie es vorziehen, die theoretischen Aspekte des Modells *on-the-job* zu verstehen, dann ist es völlig in Ordnung, direkt in die
in die Code-Basis von `BrandNewBert` einzutauchen. Diese Option könnte für Sie besser geeignet sein, wenn Ihre technischen Fähigkeiten besser sind als
als Ihre theoretischen Fähigkeiten, wenn Sie Schwierigkeiten haben, die Arbeit von `BrandNewBert` zu verstehen, oder wenn Sie einfach Spaß am Programmieren
mehr Spaß am Programmieren haben als am Lesen wissenschaftlicher Abhandlungen.
### 1. (Optional) Theoretische Aspekte von BrandNewBert
Sie sollten sich etwas Zeit nehmen, um die Abhandlung von *BrandNewBert* zu lesen, falls eine solche Beschreibung existiert. Möglicherweise gibt es große
Abschnitte des Papiers, die schwer zu verstehen sind. Wenn das der Fall ist, ist das in Ordnung - machen Sie sich keine Sorgen! Das Ziel ist
ist es nicht, ein tiefes theoretisches Verständnis des Papiers zu erlangen, sondern die notwendigen Informationen zu extrahieren, um
das Modell effektiv in 🤗 Transformers zu implementieren. Das heißt, Sie müssen nicht zu viel Zeit auf die
theoretischen Aspekten verbringen, sondern sich lieber auf die praktischen Aspekte konzentrieren, nämlich:
- Welche Art von Modell ist *brand_new_bert*? BERT-ähnliches Modell nur für den Encoder? GPT2-ähnliches reines Decoder-Modell? BART-ähnliches
Encoder-Decoder-Modell? Sehen Sie sich die [model_summary](model_summary) an, wenn Sie mit den Unterschieden zwischen diesen Modellen nicht vertraut sind.
- Was sind die Anwendungen von *brand_new_bert*? Textklassifizierung? Texterzeugung? Seq2Seq-Aufgaben, *z.B.,*
Zusammenfassungen?
- Was ist die neue Eigenschaft des Modells, die es von BERT/GPT-2/BART unterscheidet?
- Welches der bereits existierenden [🤗 Transformers-Modelle](https://huggingface.co/transformers/#contents) ist am ähnlichsten
ähnlich wie *brand_new_bert*?
- Welche Art von Tokenizer wird verwendet? Ein Satzteil-Tokenisierer? Ein Wortstück-Tokenisierer? Ist es derselbe Tokenisierer, der für
für BERT oder BART?
Nachdem Sie das Gefühl haben, einen guten Überblick über die Architektur des Modells erhalten zu haben, können Sie dem
Hugging Face Team schreiben und Ihre Fragen stellen. Dazu können Fragen zur Architektur des Modells gehören,
seiner Aufmerksamkeitsebene usw. Wir werden Ihnen gerne weiterhelfen.
### 2. Bereiten Sie als nächstes Ihre Umgebung vor
1. Forken Sie das [Repository](https://github.com/huggingface/transformers), indem Sie auf der Seite des Repositorys auf die Schaltfläche 'Fork' klicken.
Seite des Repositorys klicken. Dadurch wird eine Kopie des Codes unter Ihrem GitHub-Benutzerkonto erstellt.
2. Klonen Sie Ihren `transformers` Fork auf Ihre lokale Festplatte und fügen Sie das Basis-Repository als Remote hinzu:
```bash
git clone https://github.com/[your Github handle]/transformers.git
cd transformers
git remote add upstream https://github.com/huggingface/transformers.git
```
3. Richten Sie eine Entwicklungsumgebung ein, indem Sie z.B. den folgenden Befehl ausführen:
```bash
python -m venv .env
source .env/bin/activate
pip install -e ".[dev]"
```
Abhängig von Ihrem Betriebssystem und da die Anzahl der optionalen Abhängigkeiten von Transformers wächst, kann es sein, dass Sie bei diesem Befehl einen
Fehler mit diesem Befehl. Stellen Sie in diesem Fall sicher, dass Sie das Deep Learning Framework, mit dem Sie arbeiten, installieren
(PyTorch, TensorFlow und/oder Flax) und führen Sie es aus:
```bash
pip install -e ".[quality]"
```
was für die meisten Anwendungsfälle ausreichend sein sollte. Sie können dann zum übergeordneten Verzeichnis zurückkehren
```bash
cd ..
```
4. Wir empfehlen, die PyTorch-Version von *brand_new_bert* zu Transformers hinzuzufügen. Um PyTorch zu installieren, folgen Sie bitte den
Anweisungen auf https://pytorch.org/get-started/locally/.
**Anmerkung:** Sie müssen CUDA nicht installiert haben. Es reicht aus, das neue Modell auf der CPU zum Laufen zu bringen.
5. Um *brand_new_bert* zu portieren, benötigen Sie außerdem Zugriff auf das Original-Repository:
```bash
git clone https://github.com/org_that_created_brand_new_bert_org/brand_new_bert.git
cd brand_new_bert
pip install -e .
```
Jetzt haben Sie eine Entwicklungsumgebung eingerichtet, um *brand_new_bert* auf 🤗 Transformers zu portieren.
### 3.-4. Führen Sie einen Pre-Training-Checkpoint mit dem Original-Repository durch
Zunächst werden Sie mit dem ursprünglichen *brand_new_bert* Repository arbeiten. Oft ist die ursprüngliche Implementierung sehr
"forschungslastig". Das bedeutet, dass es an Dokumentation mangeln kann und der Code schwer zu verstehen sein kann. Aber das sollte
genau Ihre Motivation sein, *brand_new_bert* neu zu implementieren. Eines unserer Hauptziele bei Hugging Face ist es, *die Menschen dazu zu bringen
auf den Schultern von Giganten zu stehen*, was sich hier sehr gut darin ausdrückt, dass wir ein funktionierendes Modell nehmen und es umschreiben, um es so
es so **zugänglich, benutzerfreundlich und schön** wie möglich zu machen. Dies ist die wichtigste Motivation für die Neuimplementierung von
Modelle in 🤗 Transformers umzuwandeln - der Versuch, komplexe neue NLP-Technologie für **jeden** zugänglich zu machen.
Sie sollten damit beginnen, indem Sie in das Original-Repository eintauchen.
Die erfolgreiche Ausführung des offiziellen Pre-Trainingsmodells im Original-Repository ist oft **der schwierigste** Schritt.
Unserer Erfahrung nach ist es sehr wichtig, dass Sie einige Zeit damit verbringen, sich mit der ursprünglichen Code-Basis vertraut zu machen. Sie müssen
das Folgende herausfinden:
- Wo finden Sie die vortrainierten Gewichte?
- Wie lädt man die vorab trainierten Gewichte in das entsprechende Modell?
- Wie kann der Tokenizer unabhängig vom Modell ausgeführt werden?
- Verfolgen Sie einen Forward Pass, damit Sie wissen, welche Klassen und Funktionen für einen einfachen Forward Pass erforderlich sind. Normalerweise,
müssen Sie nur diese Funktionen reimplementieren.
- Sie müssen in der Lage sein, die wichtigen Komponenten des Modells zu finden: Wo befindet sich die Klasse des Modells? Gibt es Unterklassen des Modells,
*z.B.* EncoderModel, DecoderModel? Wo befindet sich die Selbstaufmerksamkeitsschicht? Gibt es mehrere verschiedene Aufmerksamkeitsebenen,
*z.B.* *Selbstaufmerksamkeit*, *Kreuzaufmerksamkeit*...?
- Wie können Sie das Modell in der ursprünglichen Umgebung des Repo debuggen? Müssen Sie *print* Anweisungen hinzufügen, können Sie
mit einem interaktiven Debugger wie *ipdb* arbeiten oder sollten Sie eine effiziente IDE zum Debuggen des Modells verwenden, wie z.B. PyCharm?
Es ist sehr wichtig, dass Sie, bevor Sie mit der Portierung beginnen, den Code im Original-Repository **effizient** debuggen können
Repository können! Denken Sie auch daran, dass Sie mit einer Open-Source-Bibliothek arbeiten, also zögern Sie nicht, ein Problem oder
oder sogar eine Pull-Anfrage im Original-Repository zu stellen. Die Betreuer dieses Repositorys sind wahrscheinlich sehr froh darüber
dass jemand in ihren Code schaut!
An diesem Punkt liegt es wirklich an Ihnen, welche Debugging-Umgebung und Strategie Sie zum Debuggen des ursprünglichen
Modell zu debuggen. Wir raten dringend davon ab, eine kostspielige GPU-Umgebung einzurichten, sondern arbeiten Sie einfach auf einer CPU, sowohl wenn Sie mit dem
in das ursprüngliche Repository einzutauchen und auch, wenn Sie beginnen, die 🤗 Transformers-Implementierung des Modells zu schreiben. Nur
ganz am Ende, wenn das Modell bereits erfolgreich auf 🤗 Transformers portiert wurde, sollte man überprüfen, ob das
Modell auch auf der GPU wie erwartet funktioniert.
Im Allgemeinen gibt es zwei mögliche Debugging-Umgebungen für die Ausführung des Originalmodells
- [Jupyter notebooks](https://jupyter.org/) / [google colab](https://colab.research.google.com/notebooks/intro.ipynb)
- Lokale Python-Skripte.
Jupyter-Notebooks haben den Vorteil, dass sie eine zellenweise Ausführung ermöglichen, was hilfreich sein kann, um logische Komponenten besser voneinander zu trennen und
logische Komponenten voneinander zu trennen und schnellere Debugging-Zyklen zu haben, da Zwischenergebnisse gespeichert werden können. Außerdem,
Außerdem lassen sich Notebooks oft leichter mit anderen Mitwirkenden teilen, was sehr hilfreich sein kann, wenn Sie das Hugging Face Team um Hilfe bitten möchten.
Face Team um Hilfe bitten. Wenn Sie mit Jupyter-Notizbüchern vertraut sind, empfehlen wir Ihnen dringend, mit ihnen zu arbeiten.
Der offensichtliche Nachteil von Jupyter-Notizbüchern ist, dass Sie, wenn Sie nicht daran gewöhnt sind, mit ihnen zu arbeiten, einige Zeit damit verbringen müssen
einige Zeit damit verbringen müssen, sich an die neue Programmierumgebung zu gewöhnen, und dass Sie möglicherweise Ihre bekannten Debugging-Tools nicht mehr verwenden können
wie z.B. `ipdb` nicht mehr verwenden können.
Für jede Codebasis ist es immer ein guter erster Schritt, einen **kleinen** vortrainierten Checkpoint zu laden und in der Lage zu sein, einen
einzelnen Vorwärtsdurchlauf mit einem Dummy-Integer-Vektor von Eingabe-IDs als Eingabe zu reproduzieren. Ein solches Skript könnte wie folgt aussehen (in
Pseudocode):
```python
model = BrandNewBertModel.load_pretrained_checkpoint("/path/to/checkpoint/")
input_ids = [0, 4, 5, 2, 3, 7, 9] # vector of input ids
original_output = model.predict(input_ids)
```
Was die Debugging-Strategie anbelangt, so können Sie im Allgemeinen aus mehreren Strategien wählen:
- Zerlegen Sie das ursprüngliche Modell in viele kleine testbare Komponenten und führen Sie für jede dieser Komponenten einen Vorwärtsdurchlauf zur
Überprüfung
- Zerlegen Sie das ursprüngliche Modell nur in den ursprünglichen *Tokenizer* und das ursprüngliche *Modell*, führen Sie einen Vorwärtsdurchlauf für diese Komponenten durch
und verwenden Sie dazwischenliegende Druckanweisungen oder Haltepunkte zur Überprüfung.
Auch hier bleibt es Ihnen überlassen, welche Strategie Sie wählen. Oft ist die eine oder die andere Strategie vorteilhaft, je nach der ursprünglichen Codebasis
Basis.
Wenn die ursprüngliche Codebasis es Ihnen erlaubt, das Modell in kleinere Teilkomponenten zu zerlegen, *z.B.* wenn die ursprüngliche
Code-Basis problemlos im Eager-Modus ausgeführt werden kann, lohnt es sich in der Regel, dies zu tun. Es gibt einige wichtige Vorteile
am Anfang den schwierigeren Weg zu gehen:
- Wenn Sie später das ursprüngliche Modell mit der Hugging Face-Implementierung vergleichen, können Sie automatisch überprüfen, ob
für jede Komponente einzeln überprüfen, ob die entsprechende Komponente der 🤗 Transformers-Implementierung übereinstimmt, anstatt sich auf
anstatt sich auf den visuellen Vergleich über Druckanweisungen zu verlassen
- können Sie das große Problem der Portierung eines Modells in kleinere Probleme der Portierung einzelner Komponenten zerlegen
einzelnen Komponenten zu zerlegen und so Ihre Arbeit besser zu strukturieren
- Die Aufteilung des Modells in logisch sinnvolle Komponenten hilft Ihnen, einen besseren Überblick über das Design des Modells zu bekommen
und somit das Modell besser zu verstehen
- In einem späteren Stadium helfen Ihnen diese komponentenweisen Tests dabei, sicherzustellen, dass keine Regressionen auftreten, während Sie fortfahren
Ihren Code ändern
[Lysandre's](https://gist.github.com/LysandreJik/db4c948f6b4483960de5cbac598ad4ed) Integrationstests für ELECTRA
gibt ein schönes Beispiel dafür, wie dies geschehen kann.
Wenn die ursprüngliche Codebasis jedoch sehr komplex ist oder nur die Ausführung von Zwischenkomponenten in einem kompilierten Modus erlaubt,
könnte es zu zeitaufwändig oder sogar unmöglich sein, das Modell in kleinere testbare Teilkomponenten zu zerlegen. Ein gutes
Beispiel ist die [T5's MeshTensorFlow](https://github.com/tensorflow/mesh/tree/master/mesh_tensorflow) Bibliothek, die sehr komplex ist
sehr komplex ist und keine einfache Möglichkeit bietet, das Modell in seine Unterkomponenten zu zerlegen. Bei solchen Bibliotheken ist man
oft auf die Überprüfung von Druckanweisungen angewiesen.
Unabhängig davon, welche Strategie Sie wählen, ist die empfohlene Vorgehensweise oft die gleiche, nämlich dass Sie mit der Fehlersuche in den
die Anfangsebenen zuerst und die Endebenen zuletzt debuggen.
Es wird empfohlen, dass Sie die Ausgaben der folgenden Ebenen abrufen, entweder durch Druckanweisungen oder Unterkomponentenfunktionen
Schichten in der folgenden Reihenfolge abrufen:
1. Rufen Sie die Eingabe-IDs ab, die an das Modell übergeben wurden
2. Rufen Sie die Worteinbettungen ab
3. Rufen Sie die Eingabe der ersten Transformer-Schicht ab
4. Rufen Sie die Ausgabe der ersten Transformer-Schicht ab
5. Rufen Sie die Ausgabe der folgenden n - 1 Transformer-Schichten ab
6. Rufen Sie die Ausgabe des gesamten BrandNewBert Modells ab
Die Eingabe-IDs sollten dabei aus einem Array von Ganzzahlen bestehen, *z.B.* `input_ids = [0, 4, 4, 3, 2, 4, 1, 7, 19]`
Die Ausgaben der folgenden Schichten bestehen oft aus mehrdimensionalen Float-Arrays und können wie folgt aussehen:
```
[[
[-0.1465, -0.6501, 0.1993, ..., 0.1451, 0.3430, 0.6024],
[-0.4417, -0.5920, 0.3450, ..., -0.3062, 0.6182, 0.7132],
[-0.5009, -0.7122, 0.4548, ..., -0.3662, 0.6091, 0.7648],
...,
[-0.5613, -0.6332, 0.4324, ..., -0.3792, 0.7372, 0.9288],
[-0.5416, -0.6345, 0.4180, ..., -0.3564, 0.6992, 0.9191],
[-0.5334, -0.6403, 0.4271, ..., -0.3339, 0.6533, 0.8694]]],
```
Wir erwarten, dass jedes zu 🤗 Transformers hinzugefügte Modell eine Reihe von Integrationstests besteht, was bedeutet, dass das ursprüngliche
Modell und die neu implementierte Version in 🤗 Transformers exakt dieselbe Ausgabe liefern müssen, und zwar mit einer Genauigkeit von 0,001!
Da es normal ist, dass das exakt gleiche Modell, das in verschiedenen Bibliotheken geschrieben wurde, je nach Bibliotheksrahmen eine leicht unterschiedliche Ausgabe liefern kann
eine leicht unterschiedliche Ausgabe liefern kann, akzeptieren wir eine Fehlertoleranz von 1e-3 (0,001). Es reicht nicht aus, wenn das Modell
fast das gleiche Ergebnis liefert, sie müssen fast identisch sein. Daher werden Sie sicherlich die Zwischenergebnisse
Zwischenergebnisse der 🤗 Transformers-Version mehrfach mit den Zwischenergebnissen der ursprünglichen Implementierung von
*brand_new_bert* vergleichen. In diesem Fall ist eine **effiziente** Debugging-Umgebung des ursprünglichen Repositorys absolut
wichtig ist. Hier sind einige Ratschläge, um Ihre Debugging-Umgebung so effizient wie möglich zu gestalten.
- Finden Sie den besten Weg, um Zwischenergebnisse zu debuggen. Ist das ursprüngliche Repository in PyTorch geschrieben? Dann sollten Sie
dann sollten Sie sich wahrscheinlich die Zeit nehmen, ein längeres Skript zu schreiben, das das ursprüngliche Modell in kleinere Unterkomponenten zerlegt, um
Zwischenwerte abzurufen. Ist das ursprüngliche Repository in Tensorflow 1 geschrieben? Dann müssen Sie sich möglicherweise auf die
TensorFlow Druckoperationen wie [tf.print](https://www.tensorflow.org/api_docs/python/tf/print) verlassen, um die
Zwischenwerte auszugeben. Ist das ursprüngliche Repository in Jax geschrieben? Dann stellen Sie sicher, dass das Modell **nicht jitted** ist, wenn
wenn Sie den Vorwärtsdurchlauf ausführen, *z.B.* schauen Sie sich [dieser Link](https://github.com/google/jax/issues/196) an.
- Verwenden Sie den kleinsten vortrainierten Prüfpunkt, den Sie finden können. Je kleiner der Prüfpunkt ist, desto schneller wird Ihr Debugging-Zyklus
wird. Es ist nicht effizient, wenn Ihr vorab trainiertes Modell so groß ist, dass Ihr Vorwärtsdurchlauf mehr als 10 Sekunden dauert.
Falls nur sehr große Checkpoints verfügbar sind, kann es sinnvoller sein, ein Dummy-Modell in der neuen
Umgebung mit zufällig initialisierten Gewichten zu erstellen und diese Gewichte zum Vergleich mit der 🤗 Transformers-Version
Ihres Modells
- Vergewissern Sie sich, dass Sie den einfachsten Weg wählen, um einen Forward Pass im ursprünglichen Repository aufzurufen. Idealerweise sollten Sie
die Funktion im originalen Repository finden, die **nur** einen einzigen Vorwärtspass aufruft, *d.h.* die oft aufgerufen wird
Vorhersagen", "Auswerten", "Vorwärts" oder "Aufruf" genannt wird. Sie wollen keine Funktion debuggen, die `forward` aufruft
mehrfach aufruft, *z.B.* um Text zu erzeugen, wie `autoregressive_sample`, `generate`.
- Versuchen Sie, die Tokenisierung vom *Forward*-Pass des Modells zu trennen. Wenn das Original-Repository Beispiele zeigt, bei denen
Sie eine Zeichenkette eingeben müssen, dann versuchen Sie herauszufinden, an welcher Stelle im Vorwärtsaufruf die Zeichenketteneingabe in Eingabe-IDs geändert wird
geändert wird und beginnen Sie an dieser Stelle. Das könnte bedeuten, dass Sie möglicherweise selbst ein kleines Skript schreiben oder den
Originalcode so ändern müssen, dass Sie die ids direkt eingeben können, anstatt eine Zeichenkette einzugeben.
- Vergewissern Sie sich, dass sich das Modell in Ihrem Debugging-Setup **nicht** im Trainingsmodus befindet, der oft dazu führt, dass das Modell
Dies führt häufig zu zufälligen Ergebnissen, da das Modell mehrere Dropout-Schichten enthält. Stellen Sie sicher, dass der Vorwärtsdurchlauf in Ihrer Debugging
Umgebung **deterministisch** ist, damit die Dropout-Schichten nicht verwendet werden. Oder verwenden Sie *transformers.utils.set_seed*.
wenn sich die alte und die neue Implementierung im selben Framework befinden.
Im folgenden Abschnitt finden Sie genauere Details/Tipps, wie Sie dies für *brand_new_bert* tun können.
### 5.-14. Portierung von BrandNewBert auf 🤗 Transformatoren
Als nächstes können Sie endlich damit beginnen, neuen Code zu 🤗 Transformers hinzuzufügen. Gehen Sie in den Klon Ihres 🤗 Transformers Forks:
```bash
cd transformers
```
In dem speziellen Fall, dass Sie ein Modell hinzufügen, dessen Architektur genau mit der Modellarchitektur eines
Modells übereinstimmt, müssen Sie nur ein Konvertierungsskript hinzufügen, wie in [diesem Abschnitt](#write-a-conversion-script) beschrieben.
In diesem Fall können Sie einfach die gesamte Modellarchitektur des bereits vorhandenen Modells wiederverwenden.
Andernfalls beginnen wir mit der Erstellung eines neuen Modells. Sie haben hier zwei Möglichkeiten:
- `transformers-cli add-new-model-like`, um ein neues Modell wie ein bestehendes hinzuzufügen
- `transformers-cli add-new-model`, um ein neues Modell aus unserer Vorlage hinzuzufügen (sieht dann aus wie BERT oder Bart, je nachdem, welche Art von Modell Sie wählen)
In beiden Fällen werden Sie mit einem Fragebogen aufgefordert, die grundlegenden Informationen zu Ihrem Modell auszufüllen. Für den zweiten Befehl müssen Sie `cookiecutter` installieren, weitere Informationen dazu finden Sie [hier](https://github.com/huggingface/transformers/tree/main/templates/adding_a_new_model).
**Eröffnen Sie einen Pull Request auf dem Haupt-Repositorium huggingface/transformers**
Bevor Sie mit der Anpassung des automatisch generierten Codes beginnen, ist es nun an der Zeit, einen "Work in progress (WIP)" Pull
Anfrage, *z.B.* "[WIP] Add *brand_new_bert*", in 🤗 Transformers zu öffnen, damit Sie und das Hugging Face Team
Seite an Seite an der Integration des Modells in 🤗 Transformers arbeiten können.
Sie sollten Folgendes tun:
1. Erstellen Sie eine Verzweigung mit einem beschreibenden Namen von Ihrer Hauptverzweigung
```bash
git checkout -b add_brand_new_bert
```
2. Bestätigen Sie den automatisch generierten Code:
```bash
git add .
git commit
```
3. Abrufen und zurücksetzen auf die aktuelle Haupt
```bash
git fetch upstream
git rebase upstream/main
```
4. Übertragen Sie die Änderungen auf Ihr Konto mit:
```bash
git push -u origin a-descriptive-name-for-my-changes
```
5. Wenn Sie zufrieden sind, gehen Sie auf die Webseite Ihrer Abspaltung auf GitHub. Klicken Sie auf "Pull request". Stellen Sie sicher, dass Sie das
GitHub-Handle einiger Mitglieder des Hugging Face-Teams als Reviewer hinzuzufügen, damit das Hugging Face-Team über zukünftige Änderungen informiert wird.
zukünftige Änderungen benachrichtigt wird.
6. Ändern Sie den PR in einen Entwurf, indem Sie auf der rechten Seite der GitHub-Pull-Request-Webseite auf "In Entwurf umwandeln" klicken.
Vergessen Sie im Folgenden nicht, wenn Sie Fortschritte gemacht haben, Ihre Arbeit zu committen und in Ihr Konto zu pushen, damit sie in der Pull-Anfrage erscheint.
damit sie in der Pull-Anfrage angezeigt wird. Außerdem sollten Sie darauf achten, dass Sie Ihre Arbeit von Zeit zu Zeit mit dem aktuellen main
von Zeit zu Zeit zu aktualisieren, indem Sie dies tun:
```bash
git fetch upstream
git merge upstream/main
```
Generell sollten Sie alle Fragen, die Sie in Bezug auf das Modell oder Ihre Implementierung haben, in Ihrem PR stellen und
in der PR diskutiert/gelöst werden. Auf diese Weise wird das Hugging Face Team immer benachrichtigt, wenn Sie neuen Code einreichen oder
wenn Sie eine Frage haben. Es ist oft sehr hilfreich, das Hugging Face-Team auf Ihren hinzugefügten Code hinzuweisen, damit das Hugging Face-Team Ihr Problem oder Ihre Frage besser verstehen kann.
Face-Team Ihr Problem oder Ihre Frage besser verstehen kann.
Gehen Sie dazu auf die Registerkarte "Geänderte Dateien", auf der Sie alle Ihre Änderungen sehen, gehen Sie zu einer Zeile, zu der Sie eine Frage stellen möchten
eine Frage stellen möchten, und klicken Sie auf das "+"-Symbol, um einen Kommentar hinzuzufügen. Wenn eine Frage oder ein Problem gelöst wurde,
können Sie auf die Schaltfläche "Lösen" des erstellten Kommentars klicken.
Auf dieselbe Weise wird das Hugging Face-Team Kommentare öffnen, wenn es Ihren Code überprüft. Wir empfehlen, die meisten Fragen
auf GitHub in Ihrem PR zu stellen. Für einige sehr allgemeine Fragen, die für die Öffentlichkeit nicht sehr nützlich sind, können Sie das
Hugging Face Team per Slack oder E-Mail zu stellen.
**5. Passen Sie den Code der generierten Modelle für brand_new_bert** an.
Zunächst werden wir uns nur auf das Modell selbst konzentrieren und uns nicht um den Tokenizer kümmern. Den gesamten relevanten Code sollten Sie
finden Sie in den generierten Dateien `src/transformers/models/brand_new_bert/modeling_brand_new_bert.py` und
`src/transformers/models/brand_new_bert/configuration_brand_new_bert.py`.
Jetzt können Sie endlich mit dem Programmieren beginnen :). Der generierte Code in
`src/transformers/models/brand_new_bert/modeling_brand_new_bert.py` wird entweder die gleiche Architektur wie BERT haben, wenn
wenn es sich um ein reines Encoder-Modell handelt oder BART, wenn es sich um ein Encoder-Decoder-Modell handelt. An diesem Punkt sollten Sie sich daran erinnern, was
was Sie am Anfang über die theoretischen Aspekte des Modells gelernt haben: *Wie unterscheidet sich das Modell von BERT oder
BART?*". Implementieren Sie diese Änderungen, was oft bedeutet, dass Sie die *Selbstaufmerksamkeitsschicht*, die Reihenfolge der Normalisierungsschicht usw. ändern müssen.
Schicht usw... Auch hier ist es oft nützlich, sich die ähnliche Architektur bereits bestehender Modelle in Transformers anzusehen, um ein besseres Gefühl dafür zu bekommen
ein besseres Gefühl dafür zu bekommen, wie Ihr Modell implementiert werden sollte.
**Beachten Sie**, dass Sie an diesem Punkt nicht sehr sicher sein müssen, dass Ihr Code völlig korrekt oder sauber ist. Vielmehr ist es
Sie sollten vielmehr eine erste *unbereinigte*, kopierte Version des ursprünglichen Codes in
src/transformers/models/brand_new_bert/modeling_brand_new_bert.py" hinzuzufügen, bis Sie das Gefühl haben, dass der gesamte notwendige Code
hinzugefügt wurde. Unserer Erfahrung nach ist es viel effizienter, schnell eine erste Version des erforderlichen Codes hinzuzufügen und
den Code iterativ mit dem Konvertierungsskript zu verbessern/korrigieren, wie im nächsten Abschnitt beschrieben. Das einzige, was
zu diesem Zeitpunkt funktionieren muss, ist, dass Sie die 🤗 Transformers-Implementierung von *brand_new_bert* instanziieren können, *d.h.* der
folgende Befehl sollte funktionieren:
```python
from transformers import BrandNewBertModel, BrandNewBertConfig
model = BrandNewBertModel(BrandNewBertConfig())
```
Der obige Befehl erstellt ein Modell gemäß den Standardparametern, die in `BrandNewBertConfig()` definiert sind, mit
zufälligen Gewichten und stellt damit sicher, dass die `init()` Methoden aller Komponenten funktionieren.
Beachten Sie, dass alle zufälligen Initialisierungen in der Methode `_init_weights` Ihres `BrandnewBertPreTrainedModel` stattfinden sollten.
Klasse erfolgen sollte. Sie sollte alle Blattmodule in Abhängigkeit von den Variablen der Konfiguration initialisieren. Hier ist ein Beispiel mit der
BERT `_init_weights` Methode:
```py
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
```
Sie können weitere benutzerdefinierte Schemata verwenden, wenn Sie eine spezielle Initialisierung für einige Module benötigen. Zum Beispiel in
`Wav2Vec2ForPreTraining` müssen die letzten beiden linearen Schichten die Initialisierung des regulären PyTorch `nn.Linear` haben.
aber alle anderen sollten eine Initialisierung wie oben verwenden. Dies ist wie folgt kodiert:
```py
def _init_weights(self, module):
"""Initialize the weights"""
if isinstnace(module, Wav2Vec2ForPreTraining):
module.project_hid.reset_parameters()
module.project_q.reset_parameters()
module.project_hid._is_hf_initialized = True
module.project_q._is_hf_initialized = True
elif isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
```
Das Flag `_is_hf_initialized` wird intern verwendet, um sicherzustellen, dass wir ein Submodul nur einmal initialisieren. Wenn Sie es auf
True` für `module.project_q` und `module.project_hid` setzen, stellen wir sicher, dass die benutzerdefinierte Initialisierung, die wir vorgenommen haben, später nicht überschrieben wird,
die Funktion `_init_weights` nicht auf sie angewendet wird.
**6. Schreiben Sie ein Konvertierungsskript**
Als nächstes sollten Sie ein Konvertierungsskript schreiben, mit dem Sie den Checkpoint, den Sie zum Debuggen von *brand_new_bert* im
im ursprünglichen Repository in einen Prüfpunkt konvertieren, der mit Ihrer gerade erstellten 🤗 Transformers-Implementierung von
*brand_new_bert*. Es ist nicht ratsam, das Konvertierungsskript von Grund auf neu zu schreiben, sondern die bereits
bestehenden Konvertierungsskripten in 🤗 Transformers nach einem Skript zu suchen, das für die Konvertierung eines ähnlichen Modells verwendet wurde, das im
demselben Framework wie *brand_new_bert* geschrieben wurde. Normalerweise reicht es aus, ein bereits vorhandenes Konvertierungsskript zu kopieren und
es für Ihren Anwendungsfall leicht anzupassen. Zögern Sie nicht, das Hugging Face Team zu bitten, Sie auf ein ähnliches, bereits vorhandenes
Konvertierungsskript für Ihr Modell zu finden.
- Wenn Sie ein Modell von TensorFlow nach PyTorch portieren, ist ein guter Ausgangspunkt das Konvertierungsskript von BERT [hier] (https://github.com/huggingface/transformers/blob/7acfa95afb8194f8f9c1f4d2c6028224dbed35a2/src/transformers/models/bert/modeling_bert.py#L91)
- Wenn Sie ein Modell von PyTorch nach PyTorch portieren, ist ein guter Ausgangspunkt das Konvertierungsskript von BART [hier](https://github.com/huggingface/transformers/blob/main/src/transformers/models/bart/convert_bart_original_pytorch_checkpoint_to_pytorch.py)
Im Folgenden werden wir kurz erklären, wie PyTorch-Modelle Ebenengewichte speichern und Ebenennamen definieren. In PyTorch wird der
Name einer Ebene durch den Namen des Klassenattributs definiert, das Sie der Ebene geben. Lassen Sie uns ein Dummy-Modell in
PyTorch, das wir `SimpleModel` nennen, wie folgt:
```python
from torch import nn
class SimpleModel(nn.Module):
def __init__(self):
super().__init__()
self.dense = nn.Linear(10, 10)
self.intermediate = nn.Linear(10, 10)
self.layer_norm = nn.LayerNorm(10)
```
Jetzt können wir eine Instanz dieser Modelldefinition erstellen, die alle Gewichte ausfüllt: `dense`, `intermediate`,
`layer_norm` mit zufälligen Gewichten. Wir können das Modell ausdrucken, um seine Architektur zu sehen
```python
model = SimpleModel()
print(model)
```
Dies gibt folgendes aus:
```
SimpleModel(
(dense): Linear(in_features=10, out_features=10, bias=True)
(intermediate): Linear(in_features=10, out_features=10, bias=True)
(layer_norm): LayerNorm((10,), eps=1e-05, elementwise_affine=True)
)
```
Wir können sehen, dass die Ebenennamen durch den Namen des Klassenattributs in PyTorch definiert sind. Sie können die Gewichtswerte
Werte einer bestimmten Ebene anzeigen lassen:
```python
print(model.dense.weight.data)
```
um zu sehen, dass die Gewichte zufällig initialisiert wurden
```
tensor([[-0.0818, 0.2207, -0.0749, -0.0030, 0.0045, -0.1569, -0.1598, 0.0212,
-0.2077, 0.2157],
[ 0.1044, 0.0201, 0.0990, 0.2482, 0.3116, 0.2509, 0.2866, -0.2190,
0.2166, -0.0212],
[-0.2000, 0.1107, -0.1999, -0.3119, 0.1559, 0.0993, 0.1776, -0.1950,
-0.1023, -0.0447],
[-0.0888, -0.1092, 0.2281, 0.0336, 0.1817, -0.0115, 0.2096, 0.1415,
-0.1876, -0.2467],
[ 0.2208, -0.2352, -0.1426, -0.2636, -0.2889, -0.2061, -0.2849, -0.0465,
0.2577, 0.0402],
[ 0.1502, 0.2465, 0.2566, 0.0693, 0.2352, -0.0530, 0.1859, -0.0604,
0.2132, 0.1680],
[ 0.1733, -0.2407, -0.1721, 0.1484, 0.0358, -0.0633, -0.0721, -0.0090,
0.2707, -0.2509],
[-0.1173, 0.1561, 0.2945, 0.0595, -0.1996, 0.2988, -0.0802, 0.0407,
0.1829, -0.1568],
[-0.1164, -0.2228, -0.0403, 0.0428, 0.1339, 0.0047, 0.1967, 0.2923,
0.0333, -0.0536],
[-0.1492, -0.1616, 0.1057, 0.1950, -0.2807, -0.2710, -0.1586, 0.0739,
0.2220, 0.2358]]).
```
Im Konvertierungsskript sollten Sie diese zufällig initialisierten Gewichte mit den genauen Gewichten der
entsprechenden Ebene im Kontrollpunkt. *Z.B.*
```python
# retrieve matching layer weights, e.g. by
# recursive algorithm
layer_name = "dense"
pretrained_weight = array_of_dense_layer
model_pointer = getattr(model, "dense")
model_pointer.weight.data = torch.from_numpy(pretrained_weight)
```
Dabei müssen Sie sicherstellen, dass jedes zufällig initialisierte Gewicht Ihres PyTorch-Modells und sein entsprechendes
Checkpoint-Gewicht in **Form und Name** genau übereinstimmen. Zu diesem Zweck ist es **notwendig**, assert
Anweisungen für die Form hinzuzufügen und die Namen der Checkpoint-Gewichte auszugeben. Sie sollten z.B. Anweisungen hinzufügen wie:
```python
assert (
model_pointer.weight.shape == pretrained_weight.shape
), f"Pointer shape of random weight {model_pointer.shape} and array shape of checkpoint weight {pretrained_weight.shape} mismatched"
```
Außerdem sollten Sie die Namen der beiden Gewichte ausdrucken, um sicherzustellen, dass sie übereinstimmen, *z.B.*.
```python
logger.info(f"Initialize PyTorch weight {layer_name} from {pretrained_weight.name}")
```
Wenn entweder die Form oder der Name nicht übereinstimmt, haben Sie wahrscheinlich das falsche Kontrollpunktgewicht einer zufällig
Ebene der 🤗 Transformers-Implementierung zugewiesen.
Eine falsche Form ist höchstwahrscheinlich auf eine falsche Einstellung der Konfigurationsparameter in `BrandNewBertConfig()` zurückzuführen, die
nicht genau mit denen übereinstimmen, die für den zu konvertierenden Prüfpunkt verwendet wurden. Es könnte aber auch sein, dass
die PyTorch-Implementierung eines Layers erfordert, dass das Gewicht vorher transponiert wird.
Schließlich sollten Sie auch überprüfen, ob **alle** erforderlichen Gewichte initialisiert sind und alle Checkpoint-Gewichte ausgeben, die
die nicht zur Initialisierung verwendet wurden, um sicherzustellen, dass das Modell korrekt konvertiert wurde. Es ist völlig normal, dass die
Konvertierungsversuche entweder mit einer falschen Shape-Anweisung oder einer falschen Namenszuweisung fehlschlagen. Das liegt höchstwahrscheinlich daran, dass entweder
Sie haben falsche Parameter in `BrandNewBertConfig()` verwendet, haben eine falsche Architektur in der 🤗 Transformers
Implementierung, Sie haben einen Fehler in den `init()` Funktionen einer der Komponenten der 🤗 Transformers
Implementierung oder Sie müssen eine der Kontrollpunktgewichte transponieren.
Dieser Schritt sollte mit dem vorherigen Schritt wiederholt werden, bis alle Gewichte des Kontrollpunkts korrekt in das
Transformers-Modell geladen sind. Nachdem Sie den Prüfpunkt korrekt in die 🤗 Transformers-Implementierung geladen haben, können Sie das Modell
das Modell unter einem Ordner Ihrer Wahl `/path/to/converted/checkpoint/folder` speichern, der dann sowohl ein
Datei `pytorch_model.bin` und eine Datei `config.json` enthalten sollte:
```python
model.save_pretrained("/path/to/converted/checkpoint/folder")
```
**7. Implementieren Sie den Vorwärtspass**
Nachdem es Ihnen gelungen ist, die trainierten Gewichte korrekt in die 🤗 Transformers-Implementierung zu laden, sollten Sie nun dafür sorgen
sicherstellen, dass der Forward Pass korrekt implementiert ist. In [Machen Sie sich mit dem ursprünglichen Repository vertraut](#34-run-a-pretrained-checkpoint-using-the-original-repository) haben Sie bereits ein Skript erstellt, das einen Forward Pass
Durchlauf des Modells unter Verwendung des Original-Repositorys durchführt. Jetzt sollten Sie ein analoges Skript schreiben, das die 🤗 Transformers
Implementierung anstelle der Originalimplementierung verwenden. Es sollte wie folgt aussehen:
```python
model = BrandNewBertModel.from_pretrained("/path/to/converted/checkpoint/folder")
input_ids = [0, 4, 4, 3, 2, 4, 1, 7, 19]
output = model(input_ids).last_hidden_states
```
Es ist sehr wahrscheinlich, dass die 🤗 Transformers-Implementierung und die ursprüngliche Modell-Implementierung nicht genau die gleiche Ausgabe liefern.
beim ersten Mal nicht die gleiche Ausgabe liefern oder dass der Vorwärtsdurchlauf einen Fehler auslöst. Seien Sie nicht enttäuscht - das ist zu erwarten! Erstens,
sollten Sie sicherstellen, dass der Vorwärtsdurchlauf keine Fehler auslöst. Es passiert oft, dass die falschen Dimensionen verwendet werden
verwendet werden, was zu einem *Dimensionality mismatch* Fehler führt oder dass der falsche Datentyp verwendet wird, *z.B.* `torch.long`
anstelle von `torch.float32`. Zögern Sie nicht, das Hugging Face Team um Hilfe zu bitten, wenn Sie bestimmte Fehler nicht lösen können.
bestimmte Fehler nicht lösen können.
Um sicherzustellen, dass die Implementierung von 🤗 Transformers korrekt funktioniert, müssen Sie sicherstellen, dass die Ausgaben
einer Genauigkeit von `1e-3` entsprechen. Zunächst sollten Sie sicherstellen, dass die Ausgabeformen identisch sind, *d.h.*.
Die Ausgabeform *outputs.shape* sollte für das Skript der 🤗 Transformers-Implementierung und die ursprüngliche
Implementierung ergeben. Als nächstes sollten Sie sicherstellen, dass auch die Ausgabewerte identisch sind. Dies ist einer der schwierigsten
Teile des Hinzufügens eines neuen Modells. Häufige Fehler, warum die Ausgaben nicht identisch sind, sind:
- Einige Ebenen wurden nicht hinzugefügt, *d.h.* eine *Aktivierungsebene* wurde nicht hinzugefügt, oder die Restverbindung wurde vergessen
- Die Worteinbettungsmatrix wurde nicht gebunden
- Es werden die falschen Positionseinbettungen verwendet, da die ursprüngliche Implementierung einen Offset verwendet
- Dropout wird während des Vorwärtsdurchlaufs angewendet. Um dies zu beheben, stellen Sie sicher, dass *model.training auf False* steht und dass keine Dropout
Schicht während des Vorwärtsdurchlaufs fälschlicherweise aktiviert wird, *d.h.* übergeben Sie *self.training* an [PyTorch's functional dropout](https://pytorch.org/docs/stable/nn.functional.html?highlight=dropout#torch.nn.functional.dropout)
Der beste Weg, das Problem zu beheben, besteht normalerweise darin, sich den Vorwärtsdurchlauf der ursprünglichen Implementierung und die 🤗
Transformers-Implementierung nebeneinander zu sehen und zu prüfen, ob es Unterschiede gibt. Idealerweise sollten Sie die
Zwischenergebnisse beider Implementierungen des Vorwärtsdurchlaufs debuggen/ausdrucken, um die genaue Position im Netzwerk zu finden, an der die 🤗
Transformers-Implementierung eine andere Ausgabe zeigt als die ursprüngliche Implementierung. Stellen Sie zunächst sicher, dass die
hartcodierten `input_ids` in beiden Skripten identisch sind. Überprüfen Sie dann, ob die Ausgaben der ersten Transformation von
der `input_ids` (normalerweise die Worteinbettungen) identisch sind. Und dann arbeiten Sie sich bis zur allerletzten Schicht des
Netzwerks. Irgendwann werden Sie einen Unterschied zwischen den beiden Implementierungen feststellen, der Sie auf den Fehler
in der Implementierung von 🤗 Transformers hinweist. Unserer Erfahrung nach ist ein einfacher und effizienter Weg, viele Druckanweisungen hinzuzufügen
sowohl in der Original-Implementierung als auch in der 🤗 Transformers-Implementierung an den gleichen Stellen im Netzwerk
hinzuzufügen und nacheinander Druckanweisungen zu entfernen, die dieselben Werte für Zwischenpräsentationen anzeigen.
Wenn Sie sicher sind, dass beide Implementierungen die gleiche Ausgabe liefern, überprüfen Sie die Ausgaben mit
`torch.allclose(original_output, output, atol=1e-3)` überprüfen, haben Sie den schwierigsten Teil hinter sich! Herzlichen Glückwunsch - die
Arbeit, die noch zu erledigen ist, sollte ein Kinderspiel sein 😊.
**8. Hinzufügen aller notwendigen Modelltests**
An diesem Punkt haben Sie erfolgreich ein neues Modell hinzugefügt. Es ist jedoch sehr gut möglich, dass das Modell noch nicht
noch nicht vollständig mit dem erforderlichen Design übereinstimmt. Um sicherzustellen, dass die Implementierung vollständig kompatibel mit 🤗 Transformers ist, sollten alle
gemeinsamen Tests bestehen. Der Cookiecutter sollte automatisch eine Testdatei für Ihr Modell hinzugefügt haben, wahrscheinlich unter
demselben `tests/models/brand_new_bert/test_modeling_brand_new_bert.py`. Führen Sie diese Testdatei aus, um zu überprüfen, ob alle gängigen
Tests bestehen:
```bash
pytest tests/models/brand_new_bert/test_modeling_brand_new_bert.py
```
Nachdem Sie alle allgemeinen Tests festgelegt haben, müssen Sie nun sicherstellen, dass all die schöne Arbeit, die Sie geleistet haben, gut getestet ist, damit
- a) die Community Ihre Arbeit leicht nachvollziehen kann, indem sie sich spezifische Tests von *brand_new_bert* ansieht
- b) zukünftige Änderungen an Ihrem Modell keine wichtigen Funktionen des Modells zerstören.
Als erstes sollten Sie Integrationstests hinzufügen. Diese Integrationstests tun im Wesentlichen dasselbe wie die Debugging-Skripte
die Sie zuvor zur Implementierung des Modells in 🤗 Transformers verwendet haben. Eine Vorlage für diese Modelltests wurde bereits von dem
Cookiecutter hinzugefügt, die `BrandNewBertModelIntegrationTests` heißt und nur noch von Ihnen ausgefüllt werden muss. Um sicherzustellen, dass diese
Tests erfolgreich sind, führen Sie
```bash
RUN_SLOW=1 pytest -sv tests/models/brand_new_bert/test_modeling_brand_new_bert.py::BrandNewBertModelIntegrationTests
```
<Tip>
Falls Sie Windows verwenden, sollten Sie `RUN_SLOW=1` durch `SET RUN_SLOW=1` ersetzen.
</Tip>
Zweitens sollten alle Funktionen, die speziell für *brand_new_bert* sind, zusätzlich in einem separaten Test getestet werden unter
`BrandNewBertModelTester`/``BrandNewBertModelTest`. Dieser Teil wird oft vergessen, ist aber in zweierlei Hinsicht äußerst nützlich
Weise:
- Er hilft dabei, das Wissen, das Sie während der Modellerweiterung erworben haben, an die Community weiterzugeben, indem er zeigt, wie die
speziellen Funktionen von *brand_new_bert* funktionieren sollten.
- Künftige Mitwirkende können Änderungen am Modell schnell testen, indem sie diese speziellen Tests ausführen.
**9. Implementieren Sie den Tokenizer**
Als nächstes sollten wir den Tokenizer von *brand_new_bert* hinzufügen. Normalerweise ist der Tokenizer äquivalent oder sehr ähnlich zu einem
bereits vorhandenen Tokenizer von 🤗 Transformers.
Es ist sehr wichtig, die ursprüngliche Tokenizer-Datei zu finden/extrahieren und es zu schaffen, diese Datei in die 🤗
Transformers Implementierung des Tokenizers zu laden.
Um sicherzustellen, dass der Tokenizer korrekt funktioniert, empfiehlt es sich, zunächst ein Skript im ursprünglichen Repository zu erstellen
zu erstellen, das eine Zeichenkette eingibt und die `input_ids` zurückgibt. Es könnte etwa so aussehen (in Pseudocode):
```python
input_str = "This is a long example input string containing special characters .$?-, numbers 2872 234 12 and words."
model = BrandNewBertModel.load_pretrained_checkpoint("/path/to/checkpoint/")
input_ids = model.tokenize(input_str)
```
Möglicherweise müssen Sie noch einmal einen Blick in das ursprüngliche Repository werfen, um die richtige Tokenizer-Funktion zu finden, oder Sie müssen
Sie müssen vielleicht sogar Änderungen an Ihrem Klon des Original-Repositorys vornehmen, um nur die `input_ids` auszugeben. Nach dem Schreiben
ein funktionierendes Tokenisierungsskript geschrieben, das das ursprüngliche Repository verwendet, sollten Sie ein analoges Skript für 🤗 Transformers
erstellt werden. Es sollte ähnlich wie dieses aussehen:
```python
from transformers import BrandNewBertTokenizer
input_str = "This is a long example input string containing special characters .$?-, numbers 2872 234 12 and words."
tokenizer = BrandNewBertTokenizer.from_pretrained("/path/to/tokenizer/folder/")
input_ids = tokenizer(input_str).input_ids
```
Wenn beide `input_ids` die gleichen Werte ergeben, sollte als letzter Schritt auch eine Tokenizer-Testdatei hinzugefügt werden.
Analog zu den Modellierungstestdateien von *brand_new_bert* sollten auch die Tokenisierungs-Testdateien von *brand_new_bert*
eine Reihe von fest kodierten Integrationstests enthalten.
**10. Führen Sie End-to-End-Integrationstests aus**
Nachdem Sie den Tokenizer hinzugefügt haben, sollten Sie auch ein paar End-to-End-Integrationstests, die sowohl das Modell als auch den
Tokenizer zu `tests/models/brand_new_bert/test_modeling_brand_new_bert.py` in 🤗 Transformers.
Ein solcher Test sollte bei einem aussagekräftigen
Text-zu-Text-Beispiel zeigen, dass die Implementierung von 🤗 Transformers wie erwartet funktioniert. Ein aussagekräftiges Text-zu-Text-Beispiel kann
z.B. *ein Quell-zu-Ziel-Übersetzungspaar, ein Artikel-zu-Zusammenfassung-Paar, ein Frage-zu-Antwort-Paar, usw... Wenn keiner der
der portierten Prüfpunkte in einer nachgelagerten Aufgabe feinabgestimmt wurde, genügt es, sich einfach auf die Modelltests zu verlassen. In einem
letzten Schritt, um sicherzustellen, dass das Modell voll funktionsfähig ist, sollten Sie alle Tests auch auf der GPU durchführen. Es kann
Es kann vorkommen, dass Sie vergessen haben, einige `.to(self.device)` Anweisungen zu internen Tensoren des Modells hinzuzufügen, was in einem solchen
Test zu einem Fehler führen würde. Falls Sie keinen Zugang zu einem Grafikprozessor haben, kann das Hugging Face Team diese Tests für Sie durchführen.
Tests für Sie übernehmen.
**11. Docstring hinzufügen**
Nun sind alle notwendigen Funktionen für *brand_new_bert* hinzugefügt - Sie sind fast fertig! Das Einzige, was Sie noch hinzufügen müssen, ist
ein schöner Docstring und eine Doku-Seite. Der Cookiecutter sollte eine Vorlagendatei namens
`docs/source/model_doc/brand_new_bert.md` hinzugefügt haben, die Sie ausfüllen sollten. Die Benutzer Ihres Modells werden in der Regel zuerst einen Blick auf
diese Seite ansehen, bevor sie Ihr Modell verwenden. Daher muss die Dokumentation verständlich und prägnant sein. Es ist sehr nützlich für
die Gemeinschaft, einige *Tipps* hinzuzufügen, um zu zeigen, wie das Modell verwendet werden sollte. Zögern Sie nicht, das Hugging Face-Team anzupingen
bezüglich der Docstrings.
Stellen Sie als nächstes sicher, dass der zu `src/transformers/models/brand_new_bert/modeling_brand_new_bert.py` hinzugefügte docstring
korrekt ist und alle erforderlichen Eingaben und Ausgaben enthält. Wir haben eine ausführliche Anleitung zum Schreiben von Dokumentationen und unserem Docstring-Format [hier](writing-documentation). Es ist immer gut, sich daran zu erinnern, dass die Dokumentation
mindestens so sorgfältig behandelt werden sollte wie der Code in 🤗 Transformers, denn die Dokumentation ist in der Regel der erste Kontaktpunkt der
Berührungspunkt der Community mit dem Modell ist.
**Code refactor**
Großartig, jetzt haben Sie den gesamten erforderlichen Code für *brand_new_bert* hinzugefügt. An diesem Punkt sollten Sie einige mögliche
falschen Codestil korrigieren, indem Sie ausführen:
```bash
make style
```
und überprüfen Sie, ob Ihr Kodierungsstil die Qualitätsprüfung besteht:
```bash
make quality
```
Es gibt noch ein paar andere sehr strenge Designtests in 🤗 Transformers, die möglicherweise noch fehlschlagen, was sich in den
den Tests Ihres Pull Requests. Dies liegt oft an fehlenden Informationen im Docstring oder an einer falschen
Benennung. Das Hugging Face Team wird Ihnen sicherlich helfen, wenn Sie hier nicht weiterkommen.
Und schließlich ist es immer eine gute Idee, den eigenen Code zu refaktorisieren, nachdem man sichergestellt hat, dass er korrekt funktioniert. Wenn alle
Tests bestanden haben, ist es nun an der Zeit, den hinzugefügten Code noch einmal durchzugehen und einige Überarbeitungen vorzunehmen.
Sie haben nun den Codierungsteil abgeschlossen, herzlichen Glückwunsch! 🎉 Sie sind großartig! 😎
**12. Laden Sie die Modelle in den Model Hub hoch**
In diesem letzten Teil sollten Sie alle Checkpoints konvertieren und in den Modell-Hub hochladen und eine Modellkarte für jeden
hochgeladenen Modell-Kontrollpunkt. Sie können sich mit den Hub-Funktionen vertraut machen, indem Sie unsere [Model sharing and uploading Page](model_sharing) lesen. Hier sollten Sie mit dem Hugging Face-Team zusammenarbeiten, um einen passenden Namen für jeden
Checkpoint festzulegen und die erforderlichen Zugriffsrechte zu erhalten, um das Modell unter der Organisation des Autors *brand_new_bert* hochladen zu können.
*brand_new_bert*. Die Methode `push_to_hub`, die in allen Modellen in `transformers` vorhanden ist, ist ein schneller und effizienter Weg, Ihren Checkpoint in den Hub zu pushen. Ein kleines Snippet ist unten eingefügt:
```python
brand_new_bert.push_to_hub("brand_new_bert")
# Uncomment the following line to push to an organization.
# brand_new_bert.push_to_hub("<organization>/brand_new_bert")
```
Es lohnt sich, etwas Zeit darauf zu verwenden, für jeden Kontrollpunkt passende Musterkarten zu erstellen. Die Modellkarten sollten die
spezifischen Merkmale dieses bestimmten Prüfpunkts hervorheben, * z.B.* auf welchem Datensatz wurde der Prüfpunkt
vortrainiert/abgestimmt? Für welche nachgelagerte Aufgabe sollte das Modell verwendet werden? Und fügen Sie auch etwas Code bei, wie Sie
wie das Modell korrekt verwendet wird.
**13. (Optional) Notizbuch hinzufügen**
Es ist sehr hilfreich, ein Notizbuch hinzuzufügen, in dem im Detail gezeigt wird, wie *brand_new_bert* für Schlussfolgerungen verwendet werden kann und/oder
bei einer nachgelagerten Aufgabe feinabgestimmt wird. Dies ist nicht zwingend erforderlich, um Ihren PR zusammenzuführen, aber sehr nützlich für die Gemeinschaft.
**14. Reichen Sie Ihren fertigen PR ein**
Sie sind jetzt mit der Programmierung fertig und können zum letzten Schritt übergehen, nämlich der Zusammenführung Ihres PR mit main. Normalerweise hat das
Hugging Face Team Ihnen an diesem Punkt bereits geholfen haben, aber es lohnt sich, sich etwas Zeit zu nehmen, um Ihrem fertigen
PR eine schöne Beschreibung zu geben und eventuell Kommentare zu Ihrem Code hinzuzufügen, wenn Sie Ihren Gutachter auf bestimmte Designentscheidungen hinweisen wollen.
Gutachter hinweisen wollen.
### Teilen Sie Ihre Arbeit!!
Jetzt ist es an der Zeit, von der Community Anerkennung für Ihre Arbeit zu bekommen! Die Fertigstellung einer Modellergänzung ist ein wichtiger
Beitrag zu Transformers und der gesamten NLP-Gemeinschaft. Ihr Code und die portierten vortrainierten Modelle werden sicherlich
von Hunderten und vielleicht sogar Tausenden von Entwicklern und Forschern genutzt werden. Sie sollten stolz auf Ihre Arbeit sein und Ihre
Ihre Leistung mit der Gemeinschaft teilen.
**Sie haben ein weiteres Modell erstellt, das für jeden in der Community super einfach zugänglich ist! 🤯**

View File

@ -1,258 +0,0 @@
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Wie erstellt man eine benutzerdefinierte Pipeline?
In dieser Anleitung sehen wir uns an, wie Sie eine benutzerdefinierte Pipeline erstellen und sie auf dem [Hub](hf.co/models) freigeben oder sie der
🤗 Transformers-Bibliothek hinzufügen.
Zuallererst müssen Sie entscheiden, welche Roheingaben die Pipeline verarbeiten kann. Es kann sich um Strings, rohe Bytes,
Dictionaries oder was auch immer die wahrscheinlichste gewünschte Eingabe ist. Versuchen Sie, diese Eingaben so rein wie möglich in Python zu halten
denn das macht die Kompatibilität einfacher (auch mit anderen Sprachen über JSON). Dies werden die Eingaben der
Pipeline (`Vorverarbeitung`).
Definieren Sie dann die `Outputs`. Dieselbe Richtlinie wie für die Eingänge. Je einfacher, desto besser. Dies werden die Ausgaben der
Methode `Postprocess`.
Beginnen Sie damit, die Basisklasse `Pipeline` mit den 4 Methoden zu erben, die für die Implementierung von `preprocess` benötigt werden,
Weiterleiten", "Nachbearbeitung" und "Parameter säubern".
```python
from transformers import Pipeline
class MyPipeline(Pipeline):
def _sanitize_parameters(self, **kwargs):
preprocess_kwargs = {}
if "maybe_arg" in kwargs:
preprocess_kwargs["maybe_arg"] = kwargs["maybe_arg"]
return preprocess_kwargs, {}, {}
def preprocess(self, inputs, maybe_arg=2):
model_input = Tensor(inputs["input_ids"])
return {"model_input": model_input}
def _forward(self, model_inputs):
# model_inputs == {"model_input": model_input}
outputs = self.model(**model_inputs)
# Maybe {"logits": Tensor(...)}
return outputs
def postprocess(self, model_outputs):
best_class = model_outputs["logits"].softmax(-1)
return best_class
```
Die Struktur dieser Aufteilung soll eine relativ nahtlose Unterstützung für CPU/GPU ermöglichen und gleichzeitig die Durchführung von
Vor-/Nachbearbeitung auf der CPU in verschiedenen Threads
Preprocess" nimmt die ursprünglich definierten Eingaben und wandelt sie in etwas um, das in das Modell eingespeist werden kann. Es kann
mehr Informationen enthalten und ist normalerweise ein `Dict`.
`_forward` ist das Implementierungsdetail und ist nicht dafür gedacht, direkt aufgerufen zu werden. Weiterleiten" ist die bevorzugte
aufgerufene Methode, da sie Sicherheitsvorkehrungen enthält, die sicherstellen, dass alles auf dem erwarteten Gerät funktioniert. Wenn etwas
mit einem realen Modell verknüpft ist, gehört es in die Methode `_forward`, alles andere gehört in die Methoden preprocess/postprocess.
Die Methode `Postprocess` nimmt die Ausgabe von `_forward` und verwandelt sie in die endgültige Ausgabe, die zuvor festgelegt wurde.
zuvor entschieden wurde.
Die Methode `_sanitize_parameters` ermöglicht es dem Benutzer, beliebige Parameter zu übergeben, wann immer er möchte, sei es bei der Initialisierung
Zeit `pipeline(...., maybe_arg=4)` oder zur Aufrufzeit `pipe = pipeline(...); output = pipe(...., maybe_arg=4)`.
Die Rückgabe von `_sanitize_parameters` sind die 3 Dicts von kwargs, die direkt an `preprocess` übergeben werden,
`_forward` und `postprocess` übergeben werden. Füllen Sie nichts aus, wenn der Aufrufer keinen zusätzlichen Parameter angegeben hat. Das
erlaubt es, die Standardargumente in der Funktionsdefinition beizubehalten, was immer "natürlicher" ist.
Ein klassisches Beispiel wäre das Argument `top_k` in der Nachbearbeitung bei Klassifizierungsaufgaben.
```python
>>> pipe = pipeline("my-new-task")
>>> pipe("This is a test")
[{"label": "1-star", "score": 0.8}, {"label": "2-star", "score": 0.1}, {"label": "3-star", "score": 0.05}
{"label": "4-star", "score": 0.025}, {"label": "5-star", "score": 0.025}]
>>> pipe("This is a test", top_k=2)
[{"label": "1-star", "score": 0.8}, {"label": "2-star", "score": 0.1}]
```
In order to achieve that, we'll update our `postprocess` method with a default parameter to `5`. and edit
`_sanitize_parameters` to allow this new parameter.
```python
def postprocess(self, model_outputs, top_k=5):
best_class = model_outputs["logits"].softmax(-1)
# Add logic to handle top_k
return best_class
def _sanitize_parameters(self, **kwargs):
preprocess_kwargs = {}
if "maybe_arg" in kwargs:
preprocess_kwargs["maybe_arg"] = kwargs["maybe_arg"]
postprocess_kwargs = {}
if "top_k" in kwargs:
postprocess_kwargs["top_k"] = kwargs["top_k"]
return preprocess_kwargs, {}, postprocess_kwargs
```
Versuchen Sie, die Eingaben/Ausgaben sehr einfach und idealerweise JSON-serialisierbar zu halten, da dies die Verwendung der Pipeline sehr einfach macht
ohne dass die Benutzer neue Arten von Objekten verstehen müssen. Es ist auch relativ üblich, viele verschiedene Arten von Argumenten zu unterstützen
von Argumenten zu unterstützen (Audiodateien, die Dateinamen, URLs oder reine Bytes sein können).
## Hinzufügen zur Liste der unterstützten Aufgaben
Um Ihre `neue Aufgabe` in die Liste der unterstützten Aufgaben aufzunehmen, müssen Sie sie zur `PIPELINE_REGISTRY` hinzufügen:
```python
from transformers.pipelines import PIPELINE_REGISTRY
PIPELINE_REGISTRY.register_pipeline(
"new-task",
pipeline_class=MyPipeline,
pt_model=AutoModelForSequenceClassification,
)
```
Wenn Sie möchten, können Sie ein Standardmodell angeben. In diesem Fall sollte es mit einer bestimmten Revision (die der Name einer Verzweigung oder ein Commit-Hash sein kann, hier haben wir `"abcdef"` genommen) sowie mit dem Typ versehen sein:
```python
PIPELINE_REGISTRY.register_pipeline(
"new-task",
pipeline_class=MyPipeline,
pt_model=AutoModelForSequenceClassification,
default={"pt": ("user/awesome_model", "abcdef")},
type="text", # current support type: text, audio, image, multimodal
)
```
## Teilen Sie Ihre Pipeline auf dem Hub
Um Ihre benutzerdefinierte Pipeline auf dem Hub freizugeben, müssen Sie lediglich den benutzerdefinierten Code Ihrer `Pipeline`-Unterklasse in einer
Python-Datei speichern. Nehmen wir zum Beispiel an, Sie möchten eine benutzerdefinierte Pipeline für die Klassifizierung von Satzpaaren wie folgt verwenden:
```py
import numpy as np
from transformers import Pipeline
def softmax(outputs):
maxes = np.max(outputs, axis=-1, keepdims=True)
shifted_exp = np.exp(outputs - maxes)
return shifted_exp / shifted_exp.sum(axis=-1, keepdims=True)
class PairClassificationPipeline(Pipeline):
def _sanitize_parameters(self, **kwargs):
preprocess_kwargs = {}
if "second_text" in kwargs:
preprocess_kwargs["second_text"] = kwargs["second_text"]
return preprocess_kwargs, {}, {}
def preprocess(self, text, second_text=None):
return self.tokenizer(text, text_pair=second_text, return_tensors=self.framework)
def _forward(self, model_inputs):
return self.model(**model_inputs)
def postprocess(self, model_outputs):
logits = model_outputs.logits[0].numpy()
probabilities = softmax(logits)
best_class = np.argmax(probabilities)
label = self.model.config.id2label[best_class]
score = probabilities[best_class].item()
logits = logits.tolist()
return {"label": label, "score": score, "logits": logits}
```
Die Implementierung ist Framework-unabhängig und funktioniert für PyTorch- und TensorFlow-Modelle. Wenn wir dies in einer Datei
einer Datei namens `pair_classification.py` gespeichert haben, können wir sie importieren und wie folgt registrieren:
```py
from pair_classification import PairClassificationPipeline
from transformers.pipelines import PIPELINE_REGISTRY
from transformers import AutoModelForSequenceClassification, TFAutoModelForSequenceClassification
PIPELINE_REGISTRY.register_pipeline(
"pair-classification",
pipeline_class=PairClassificationPipeline,
pt_model=AutoModelForSequenceClassification,
tf_model=TFAutoModelForSequenceClassification,
)
```
Sobald dies geschehen ist, können wir es mit einem vortrainierten Modell verwenden. Zum Beispiel wurde `sgugger/finetuned-bert-mrpc` auf den
auf den MRPC-Datensatz abgestimmt, der Satzpaare als Paraphrasen oder nicht klassifiziert.
```py
from transformers import pipeline
classifier = pipeline("pair-classification", model="sgugger/finetuned-bert-mrpc")
```
Dann können wir sie auf dem Hub mit der Methode `save_pretrained` in einem `Repository` freigeben:
```py
from huggingface_hub import Repository
repo = Repository("test-dynamic-pipeline", clone_from="{your_username}/test-dynamic-pipeline")
classifier.save_pretrained("test-dynamic-pipeline")
repo.push_to_hub()
```
Dadurch wird die Datei, in der Sie `PairClassificationPipeline` definiert haben, in den Ordner `"test-dynamic-pipeline"` kopiert,
und speichert das Modell und den Tokenizer der Pipeline, bevor Sie alles in das Repository verschieben
`{Ihr_Benutzername}/test-dynamic-pipeline`. Danach kann jeder die Pipeline verwenden, solange er die Option
`trust_remote_code=True` angeben:
```py
from transformers import pipeline
classifier = pipeline(model="{your_username}/test-dynamic-pipeline", trust_remote_code=True)
```
## Hinzufügen der Pipeline zu 🤗 Transformers
Wenn Sie Ihre Pipeline zu 🤗 Transformers beitragen möchten, müssen Sie ein neues Modul im Untermodul `pipelines` hinzufügen
mit dem Code Ihrer Pipeline hinzufügen. Fügen Sie es dann der Liste der in `pipelines/__init__.py` definierten Aufgaben hinzu.
Dann müssen Sie noch Tests hinzufügen. Erstellen Sie eine neue Datei `tests/test_pipelines_MY_PIPELINE.py` mit Beispielen für die anderen Tests.
Die Funktion `run_pipeline_test` ist sehr allgemein gehalten und läuft auf kleinen Zufallsmodellen auf jeder möglichen
Architektur, wie durch `model_mapping` und `tf_model_mapping` definiert.
Dies ist sehr wichtig, um die zukünftige Kompatibilität zu testen, d.h. wenn jemand ein neues Modell für
`XXXForQuestionAnswering` hinzufügt, wird der Pipeline-Test versuchen, mit diesem Modell zu arbeiten. Da die Modelle zufällig sind, ist es
ist es unmöglich, die tatsächlichen Werte zu überprüfen. Deshalb gibt es eine Hilfsfunktion `ANY`, die einfach versucht, die
Ausgabe der Pipeline TYPE.
Außerdem *müssen* Sie 2 (idealerweise 4) Tests implementieren.
- test_small_model_pt` : Definieren Sie 1 kleines Modell für diese Pipeline (es spielt keine Rolle, ob die Ergebnisse keinen Sinn ergeben)
und testen Sie die Ausgaben der Pipeline. Die Ergebnisse sollten die gleichen sein wie bei `test_small_model_tf`.
- test_small_model_tf : Definieren Sie 1 kleines Modell für diese Pipeline (es spielt keine Rolle, ob die Ergebnisse keinen Sinn ergeben)
und testen Sie die Ausgaben der Pipeline. Die Ergebnisse sollten die gleichen sein wie bei `test_small_model_pt`.
- test_large_model_pt` (`optional`): Testet die Pipeline an einer echten Pipeline, bei der die Ergebnisse
Sinn machen. Diese Tests sind langsam und sollten als solche gekennzeichnet werden. Hier geht es darum, die Pipeline zu präsentieren und sicherzustellen
sicherzustellen, dass es in zukünftigen Versionen keine Abweichungen gibt.
- test_large_model_tf` (`optional`): Testet die Pipeline an einer echten Pipeline, bei der die Ergebnisse
Sinn machen. Diese Tests sind langsam und sollten als solche gekennzeichnet werden. Hier geht es darum, die Pipeline zu präsentieren und sicherzustellen
sicherzustellen, dass es in zukünftigen Versionen keine Abweichungen gibt.

View File

@ -1,356 +0,0 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Wie konvertiert man ein 🤗 Transformers-Modell in TensorFlow?
Die Tatsache, dass mehrere Frameworks für die Verwendung mit 🤗 Transformers zur Verfügung stehen, gibt Ihnen die Flexibilität, deren Stärken beim Entwurf Ihrer Anwendung auszuspielen.
Ihre Anwendung zu entwerfen, aber das bedeutet auch, dass die Kompatibilität für jedes Modell einzeln hinzugefügt werden muss. Die gute Nachricht ist, dass
das Hinzufügen von TensorFlow-Kompatibilität zu einem bestehenden Modell einfacher ist als [das Hinzufügen eines neuen Modells von Grund auf](add_new_model)!
Ob Sie ein tieferes Verständnis für große TensorFlow-Modelle haben möchten, einen wichtigen Open-Source-Beitrag leisten oder
TensorFlow für das Modell Ihrer Wahl aktivieren wollen, dieser Leitfaden ist für Sie.
Dieser Leitfaden befähigt Sie, ein Mitglied unserer Gemeinschaft, TensorFlow-Modellgewichte und/oder
Architekturen beizusteuern, die in 🤗 Transformers verwendet werden sollen, und zwar mit minimaler Betreuung durch das Hugging Face Team. Das Schreiben eines neuen Modells
ist keine Kleinigkeit, aber ich hoffe, dass dieser Leitfaden dazu beiträgt, dass es weniger eine Achterbahnfahrt 🎢 und mehr ein Spaziergang im Park 🚶 ist.
Die Nutzung unserer kollektiven Erfahrungen ist absolut entscheidend, um diesen Prozess immer einfacher zu machen, und deshalb möchten wir
ermutigen Sie daher, Verbesserungsvorschläge für diesen Leitfaden zu machen!
Bevor Sie tiefer eintauchen, empfehlen wir Ihnen, die folgenden Ressourcen zu lesen, wenn Sie neu in 🤗 Transformers sind:
- [Allgemeiner Überblick über 🤗 Transformers](add_new_model#general-overview-of-transformers)
- [Die TensorFlow-Philosophie von Hugging Face](https://huggingface.co/blog/tensorflow-philosophy)
Im Rest dieses Leitfadens werden Sie lernen, was nötig ist, um eine neue TensorFlow Modellarchitektur hinzuzufügen, die
Verfahren zur Konvertierung von PyTorch in TensorFlow-Modellgewichte und wie Sie Unstimmigkeiten zwischen ML
Frameworks. Legen Sie los!
<Tip>
Sind Sie unsicher, ob das Modell, das Sie verwenden möchten, bereits eine entsprechende TensorFlow-Architektur hat?
&nbsp;
Überprüfen Sie das Feld `model_type` in der `config.json` des Modells Ihrer Wahl
([Beispiel](https://huggingface.co/bert-base-uncased/blob/main/config.json#L14)). Wenn der entsprechende Modellordner in
🤗 Transformers eine Datei hat, deren Name mit "modeling_tf" beginnt, bedeutet dies, dass es eine entsprechende TensorFlow
Architektur hat ([Beispiel](https://github.com/huggingface/transformers/tree/main/src/transformers/models/bert)).
</Tip>
## Schritt-für-Schritt-Anleitung zum Hinzufügen von TensorFlow-Modellarchitektur-Code
Es gibt viele Möglichkeiten, eine große Modellarchitektur zu entwerfen, und viele Möglichkeiten, diesen Entwurf zu implementieren. Wie auch immer,
Sie erinnern sich vielleicht an unseren [allgemeinen Überblick über 🤗 Transformers](add_new_model#general-overview-of-transformers)
wissen, dass wir ein meinungsfreudiger Haufen sind - die Benutzerfreundlichkeit von 🤗 Transformers hängt von konsistenten Designentscheidungen ab. Aus
Erfahrung können wir Ihnen ein paar wichtige Dinge über das Hinzufügen von TensorFlow-Modellen sagen:
- Erfinden Sie das Rad nicht neu! In den meisten Fällen gibt es mindestens zwei Referenzimplementierungen, die Sie überprüfen sollten: das
PyTorch-Äquivalent des Modells, das Sie implementieren, und andere TensorFlow-Modelle für dieselbe Klasse von Problemen.
- Gute Modellimplementierungen überleben den Test der Zeit. Dies geschieht nicht, weil der Code hübsch ist, sondern eher
sondern weil der Code klar, einfach zu debuggen und darauf aufzubauen ist. Wenn Sie den Maintainern das Leben mit Ihrer
TensorFlow-Implementierung leicht machen, indem Sie die gleichen Muster wie in anderen TensorFlow-Modellen nachbilden und die Abweichung
zur PyTorch-Implementierung minimieren, stellen Sie sicher, dass Ihr Beitrag lange Bestand haben wird.
- Bitten Sie um Hilfe, wenn Sie nicht weiterkommen! Das 🤗 Transformers-Team ist da, um zu helfen, und wir haben wahrscheinlich Lösungen für die gleichen
Probleme gefunden, vor denen Sie stehen.
Hier finden Sie einen Überblick über die Schritte, die zum Hinzufügen einer TensorFlow-Modellarchitektur erforderlich sind:
1. Wählen Sie das Modell, das Sie konvertieren möchten
2. Bereiten Sie die Transformers-Entwicklungsumgebung vor.
3. (Optional) Verstehen Sie die theoretischen Aspekte und die bestehende Implementierung
4. Implementieren Sie die Modellarchitektur
5. Implementieren Sie Modelltests
6. Reichen Sie den Pull-Antrag ein
7. (Optional) Erstellen Sie Demos und teilen Sie diese mit der Welt
### 1.-3. Bereiten Sie Ihren Modellbeitrag vor
**1. Wählen Sie das Modell, das Sie konvertieren möchten**
Beginnen wir mit den Grundlagen: Als erstes müssen Sie die Architektur kennen, die Sie konvertieren möchten. Wenn Sie
Sie sich nicht auf eine bestimmte Architektur festgelegt haben, ist es eine gute Möglichkeit, das 🤗 Transformers-Team um Vorschläge zu bitten.
Wir werden Sie zu den wichtigsten Architekturen führen, die auf der TensorFlow-Seite noch fehlen.
Seite fehlen. Wenn das spezifische Modell, das Sie mit TensorFlow verwenden möchten, bereits eine Implementierung der TensorFlow-Architektur in
🤗 Transformers, aber es fehlen Gewichte, können Sie direkt in den
Abschnitt [Gewichtskonvertierung](#adding-tensorflow-weights-to-hub)
auf dieser Seite.
Der Einfachheit halber wird im Rest dieser Anleitung davon ausgegangen, dass Sie sich entschieden haben, mit der TensorFlow-Version von
*BrandNewBert* (dasselbe Beispiel wie in der [Anleitung](add_new_model), um ein neues Modell von Grund auf hinzuzufügen).
<Tip>
Bevor Sie mit der Arbeit an einer TensorFlow-Modellarchitektur beginnen, sollten Sie sich vergewissern, dass es keine laufenden Bemühungen in dieser Richtung gibt.
Sie können nach `BrandNewBert` auf der
[pull request GitHub page](https://github.com/huggingface/transformers/pulls?q=is%3Apr), um zu bestätigen, dass es keine
TensorFlow-bezogene Pull-Anfrage gibt.
</Tip>
**2. Transformers-Entwicklungsumgebung vorbereiten**
Nachdem Sie die Modellarchitektur ausgewählt haben, öffnen Sie einen PR-Entwurf, um Ihre Absicht zu signalisieren, daran zu arbeiten. Folgen Sie den
Anweisungen, um Ihre Umgebung einzurichten und einen PR-Entwurf zu öffnen.
1. Forken Sie das [repository](https://github.com/huggingface/transformers), indem Sie auf der Seite des Repositorys auf die Schaltfläche 'Fork' klicken.
Seite des Repositorys klicken. Dadurch wird eine Kopie des Codes unter Ihrem GitHub-Benutzerkonto erstellt.
2. Klonen Sie Ihren `transformers` Fork auf Ihre lokale Festplatte und fügen Sie das Basis-Repository als Remote hinzu:
```bash
git clone https://github.com/[your Github handle]/transformers.git
cd transformers
git remote add upstream https://github.com/huggingface/transformers.git
```
3. Richten Sie eine Entwicklungsumgebung ein, indem Sie z.B. den folgenden Befehl ausführen:
```bash
python -m venv .env
source .env/bin/activate
pip install -e ".[dev]"
```
Abhängig von Ihrem Betriebssystem und da die Anzahl der optionalen Abhängigkeiten von Transformers wächst, kann es sein, dass Sie bei diesem Befehl einen
Fehler mit diesem Befehl erhalten. Wenn das der Fall ist, stellen Sie sicher, dass Sie TensorFlow installieren und dann ausführen:
```bash
pip install -e ".[quality]"
```
**Hinweis:** Sie müssen CUDA nicht installiert haben. Es reicht aus, das neue Modell auf der CPU laufen zu lassen.
4. Erstellen Sie eine Verzweigung mit einem beschreibenden Namen von Ihrer Hauptverzweigung
```bash
git checkout -b add_tf_brand_new_bert
```
5. Abrufen und zurücksetzen auf die aktuelle Hauptversion
```bash
git fetch upstream
git rebase upstream/main
```
6. Fügen Sie eine leere `.py` Datei in `transformers/src/models/brandnewbert/` mit dem Namen `modeling_tf_brandnewbert.py` hinzu. Dies wird
Ihre TensorFlow-Modelldatei sein.
7. Übertragen Sie die Änderungen auf Ihr Konto mit:
```bash
git add .
git commit -m "initial commit"
git push -u origin add_tf_brand_new_bert
```
8. Wenn Sie zufrieden sind, gehen Sie auf die Webseite Ihrer Abspaltung auf GitHub. Klicken Sie auf "Pull request". Stellen Sie sicher, dass Sie das
GitHub-Handle einiger Mitglieder des Hugging Face-Teams als Reviewer hinzuzufügen, damit das Hugging Face-Team über zukünftige Änderungen informiert wird.
zukünftige Änderungen benachrichtigt wird.
9. Ändern Sie den PR in einen Entwurf, indem Sie auf der rechten Seite der GitHub-Pull-Request-Webseite auf "In Entwurf umwandeln" klicken.
Jetzt haben Sie eine Entwicklungsumgebung eingerichtet, um *BrandNewBert* nach TensorFlow in 🤗 Transformers zu portieren.
**3. (Optional) Verstehen Sie die theoretischen Aspekte und die bestehende Implementierung**
Sie sollten sich etwas Zeit nehmen, um die Arbeit von *BrandNewBert* zu lesen, falls eine solche Beschreibung existiert. Möglicherweise gibt es große
Abschnitte des Papiers, die schwer zu verstehen sind. Wenn das der Fall ist, ist das in Ordnung - machen Sie sich keine Sorgen! Das Ziel ist
ist es nicht, ein tiefes theoretisches Verständnis des Papiers zu erlangen, sondern die notwendigen Informationen zu extrahieren, um
das Modell mit Hilfe von TensorFlow effektiv in 🤗 Transformers neu zu implementieren. Das heißt, Sie müssen nicht zu viel Zeit auf die
viel Zeit auf die theoretischen Aspekte verwenden, sondern sich lieber auf die praktischen Aspekte konzentrieren, nämlich auf die bestehende Modelldokumentation
Seite (z.B. [model docs for BERT](model_doc/bert)).
Nachdem Sie die Grundlagen der Modelle, die Sie implementieren wollen, verstanden haben, ist es wichtig, die bestehende
Implementierung zu verstehen. Dies ist eine gute Gelegenheit, sich zu vergewissern, dass eine funktionierende Implementierung mit Ihren Erwartungen an das
Modell entspricht, und um technische Herausforderungen auf der TensorFlow-Seite vorauszusehen.
Es ist ganz natürlich, dass Sie sich von der Menge an Informationen, die Sie gerade aufgesogen haben, überwältigt fühlen. Es ist
Es ist definitiv nicht erforderlich, dass Sie in dieser Phase alle Facetten des Modells verstehen. Dennoch empfehlen wir Ihnen dringend
ermutigen wir Sie, alle dringenden Fragen in unserem [Forum](https://discuss.huggingface.co/) zu klären.
### 4. Implementierung des Modells
Jetzt ist es an der Zeit, endlich mit dem Programmieren zu beginnen. Als Ausgangspunkt empfehlen wir die PyTorch-Datei selbst: Kopieren Sie den Inhalt von
modeling_brand_new_bert.py` in `src/transformers/models/brand_new_bert/` nach
modeling_tf_brand_new_bert.py`. Das Ziel dieses Abschnitts ist es, die Datei zu ändern und die Importstruktur von
🤗 Transformers zu aktualisieren, so dass Sie `TFBrandNewBert` und
`TFBrandNewBert.from_pretrained(model_repo, from_pt=True)` erfolgreich ein funktionierendes TensorFlow *BrandNewBert* Modell lädt.
Leider gibt es kein Rezept, um ein PyTorch-Modell in TensorFlow zu konvertieren. Sie können jedoch unsere Auswahl an
Tipps befolgen, um den Prozess so reibungslos wie möglich zu gestalten:
- Stellen Sie `TF` dem Namen aller Klassen voran (z.B. wird `BrandNewBert` zu `TFBrandNewBert`).
- Die meisten PyTorch-Operationen haben einen direkten TensorFlow-Ersatz. Zum Beispiel entspricht `torch.nn.Linear` der Klasse
`tf.keras.layers.Dense`, `torch.nn.Dropout` entspricht `tf.keras.layers.Dropout`, usw. Wenn Sie sich nicht sicher sind
über eine bestimmte Operation nicht sicher sind, können Sie die [TensorFlow-Dokumentation](https://www.tensorflow.org/api_docs/python/tf)
oder die [PyTorch-Dokumentation](https://pytorch.org/docs/stable/).
- Suchen Sie nach Mustern in der Codebasis von 🤗 Transformers. Wenn Sie auf eine bestimmte Operation stoßen, für die es keinen direkten Ersatz gibt
Ersatz hat, stehen die Chancen gut, dass jemand anderes bereits das gleiche Problem hatte.
- Behalten Sie standardmäßig die gleichen Variablennamen und die gleiche Struktur wie in PyTorch bei. Dies erleichtert die Fehlersuche, die Verfolgung von
Probleme zu verfolgen und spätere Korrekturen vorzunehmen.
- Einige Ebenen haben in jedem Framework unterschiedliche Standardwerte. Ein bemerkenswertes Beispiel ist die Schicht für die Batch-Normalisierung
epsilon (`1e-5` in [PyTorch](https://pytorch.org/docs/stable/generated/torch.nn.BatchNorm2d.html#torch.nn.BatchNorm2d)
und `1e-3` in [TensorFlow](https://www.tensorflow.org/api_docs/python/tf/keras/layers/BatchNormalization)).
Prüfen Sie die Dokumentation genau!
- Die Variablen `nn.Parameter` von PyTorch müssen in der Regel innerhalb von TF Layer's `build()` initialisiert werden. Siehe das folgende
Beispiel: [PyTorch](https://github.com/huggingface/transformers/blob/655f72a6896c0533b1bdee519ed65a059c2425ac/src/transformers/models/vit_mae/modeling_vit_mae.py#L212) /
[TensorFlow](https://github.com/huggingface/transformers/blob/655f72a6896c0533b1bdee519ed65a059c2425ac/src/transformers/models/vit_mae/modeling_tf_vit_mae.py#L220)
- Wenn das PyTorch-Modell ein `#copied from ...` am Anfang einer Funktion hat, stehen die Chancen gut, dass Ihr TensorFlow-Modell diese Funktion auch
diese Funktion von der Architektur ausleihen kann, von der sie kopiert wurde, vorausgesetzt, es hat eine TensorFlow-Architektur.
- Die korrekte Zuweisung des Attributs `name` in TensorFlow-Funktionen ist entscheidend, um das `from_pt=True` Gewicht zu erreichen
Cross-Loading. Name" ist fast immer der Name der entsprechenden Variablen im PyTorch-Code. Wenn `name` nicht
nicht richtig gesetzt ist, sehen Sie dies in der Fehlermeldung beim Laden der Modellgewichte.
- Die Logik der Basismodellklasse, `BrandNewBertModel`, befindet sich in `TFBrandNewBertMainLayer`, einer Keras
Schicht-Unterklasse ([Beispiel](https://github.com/huggingface/transformers/blob/4fd32a1f499e45f009c2c0dea4d81c321cba7e02/src/transformers/models/bert/modeling_tf_bert.py#L719)).
TFBrandNewBertModel" ist lediglich ein Wrapper für diese Schicht.
- Keras-Modelle müssen erstellt werden, um die vorher trainierten Gewichte zu laden. Aus diesem Grund muss `TFBrandNewBertPreTrainedModel`
ein Beispiel für die Eingaben in das Modell enthalten, die `dummy_inputs`
([Beispiel](https://github.com/huggingface/transformers/blob/4fd32a1f499e45f009c2c0dea4d81c321cba7e02/src/transformers/models/bert/modeling_tf_bert.py#L916)).
- Wenn Sie nicht weiterkommen, fragen Sie nach Hilfe - wir sind für Sie da! 🤗
Neben der Modelldatei selbst müssen Sie auch die Verweise auf die Modellklassen und die zugehörigen
Dokumentationsseiten hinzufügen. Sie können diesen Teil ganz nach den Mustern in anderen PRs erledigen
([Beispiel](https://github.com/huggingface/transformers/pull/18020/files)). Hier ist eine Liste der erforderlichen manuellen
Änderungen:
- Fügen Sie alle öffentlichen Klassen von *BrandNewBert* in `src/transformers/__init__.py` ein.
- Fügen Sie *BrandNewBert* Klassen zu den entsprechenden Auto Klassen in `src/transformers/models/auto/modeling_tf_auto.py` hinzu.
- Fügen Sie die *BrandNewBert* zugehörigen Klassen für träges Laden in `src/transformers/utils/dummy_tf_objects.py` hinzu.
- Aktualisieren Sie die Importstrukturen für die öffentlichen Klassen in `src/transformers/models/brand_new_bert/__init__.py`.
- Fügen Sie die Dokumentationszeiger auf die öffentlichen Methoden von *BrandNewBert* in `docs/source/de/model_doc/brand_new_bert.md` hinzu.
- Fügen Sie sich selbst zur Liste der Mitwirkenden an *BrandNewBert* in `docs/source/de/model_doc/brand_new_bert.md` hinzu.
- Fügen Sie schließlich ein grünes Häkchen ✅ in der TensorFlow-Spalte von *BrandNewBert* in `docs/source/de/index.md` hinzu.
Wenn Sie mit Ihrer Implementierung zufrieden sind, führen Sie die folgende Checkliste aus, um zu bestätigen, dass Ihre Modellarchitektur
fertig ist:
1. Alle Schichten, die sich zur Trainingszeit anders verhalten (z.B. Dropout), werden mit einem `Training` Argument aufgerufen, das
von den Top-Level-Klassen weitergegeben wird
2. Sie haben `#copied from ...` verwendet, wann immer es möglich war.
3. Die Funktion `TFBrandNewBertMainLayer` und alle Klassen, die sie verwenden, haben ihre Funktion `call` mit `@unpack_inputs` dekoriert
4. TFBrandNewBertMainLayer` ist mit `@keras_serializable` dekoriert
5. Ein TensorFlow-Modell kann aus PyTorch-Gewichten mit `TFBrandNewBert.from_pretrained(model_repo, from_pt=True)` geladen werden.
6. Sie können das TensorFlow Modell mit dem erwarteten Eingabeformat aufrufen
### 5. Modell-Tests hinzufügen
Hurra, Sie haben ein TensorFlow-Modell implementiert! Jetzt ist es an der Zeit, Tests hinzuzufügen, um sicherzustellen, dass sich Ihr Modell wie erwartet verhält.
erwartet. Wie im vorigen Abschnitt schlagen wir vor, dass Sie zunächst die Datei `test_modeling_brand_new_bert.py` in
`tests/models/brand_new_bert/` in die Datei `test_modeling_tf_brand_new_bert.py` zu kopieren und dann die notwendigen
TensorFlow-Ersetzungen vornehmen. Für den Moment sollten Sie in allen Aufrufen von `.from_pretrained()` das Flag `from_pt=True` verwenden, um die
die vorhandenen PyTorch-Gewichte zu laden.
Wenn Sie damit fertig sind, kommt der Moment der Wahrheit: Führen Sie die Tests durch! 😬
```bash
NVIDIA_TF32_OVERRIDE=0 RUN_SLOW=1 RUN_PT_TF_CROSS_TESTS=1 \
py.test -vv tests/models/brand_new_bert/test_modeling_tf_brand_new_bert.py
```
Das wahrscheinlichste Ergebnis ist, dass Sie eine Reihe von Fehlern sehen werden. Machen Sie sich keine Sorgen, das ist zu erwarten! Das Debuggen von ML-Modellen ist
notorisch schwierig, und der Schlüssel zum Erfolg ist Geduld (und `breakpoint()`). Nach unserer Erfahrung sind die schwierigsten
Probleme aus subtilen Unstimmigkeiten zwischen ML-Frameworks, zu denen wir am Ende dieses Leitfadens ein paar Hinweise geben.
In anderen Fällen kann es sein, dass ein allgemeiner Test nicht direkt auf Ihr Modell anwendbar ist; in diesem Fall empfehlen wir eine Überschreibung
auf der Ebene der Modelltestklasse. Zögern Sie nicht, in Ihrem Entwurf einer Pull-Anfrage um Hilfe zu bitten, wenn
Sie nicht weiterkommen.
Wenn alle Tests erfolgreich waren, können Sie Ihr Modell in die 🤗 Transformers-Bibliothek aufnehmen! 🎉
### 6.-7. Stellen Sie sicher, dass jeder Ihr Modell verwenden kann
**6. Reichen Sie den Pull Request ein**
Sobald Sie mit der Implementierung und den Tests fertig sind, ist es an der Zeit, eine Pull-Anfrage einzureichen. Bevor Sie Ihren Code einreichen,
führen Sie unser Dienstprogramm zur Codeformatierung, `make fixup` 🪄, aus. Damit werden automatisch alle Formatierungsfehler behoben, die dazu führen würden, dass
unsere automatischen Prüfungen fehlschlagen würden.
Nun ist es an der Zeit, Ihren Entwurf einer Pull-Anfrage in eine echte Pull-Anfrage umzuwandeln. Klicken Sie dazu auf die Schaltfläche "Bereit für
Review" und fügen Sie Joao (`@gante`) und Matt (`@Rocketknight1`) als Reviewer hinzu. Eine Modell-Pull-Anfrage benötigt
mindestens 3 Reviewer, aber sie werden sich darum kümmern, geeignete zusätzliche Reviewer für Ihr Modell zu finden.
Nachdem alle Gutachter mit dem Stand Ihres PR zufrieden sind, entfernen Sie als letzten Aktionspunkt das Flag `from_pt=True` in
.from_pretrained()-Aufrufen zu entfernen. Da es keine TensorFlow-Gewichte gibt, müssen Sie sie hinzufügen! Lesen Sie den Abschnitt
unten, um zu erfahren, wie Sie dies tun können.
Wenn schließlich die TensorFlow-Gewichte zusammengeführt werden, Sie mindestens 3 Genehmigungen von Prüfern haben und alle CI-Checks grün sind
grün sind, überprüfen Sie die Tests ein letztes Mal lokal
```bash
NVIDIA_TF32_OVERRIDE=0 RUN_SLOW=1 RUN_PT_TF_CROSS_TESTS=1 \
py.test -vv tests/models/brand_new_bert/test_modeling_tf_brand_new_bert.py
```
und wir werden Ihren PR zusammenführen! Herzlichen Glückwunsch zu dem Meilenstein 🎉.
**7. (Optional) Erstellen Sie Demos und teilen Sie sie mit der Welt**
Eine der schwierigsten Aufgaben bei Open-Source ist die Entdeckung. Wie können die anderen Benutzer von der Existenz Ihres
fabelhaften TensorFlow-Beitrags erfahren? Mit der richtigen Kommunikation, natürlich! 📣
Es gibt vor allem zwei Möglichkeiten, Ihr Modell mit der Community zu teilen:
- Erstellen Sie Demos. Dazu gehören Gradio-Demos, Notebooks und andere unterhaltsame Möglichkeiten, Ihr Modell vorzuführen. Wir raten Ihnen
ermutigen Sie, ein Notizbuch zu unseren [community-driven demos](https://huggingface.co/docs/transformers/community) hinzuzufügen.
- Teilen Sie Geschichten in sozialen Medien wie Twitter und LinkedIn. Sie sollten stolz auf Ihre Arbeit sein und sie mit der
Ihre Leistung mit der Community teilen - Ihr Modell kann nun von Tausenden von Ingenieuren und Forschern auf der ganzen Welt genutzt werden
der Welt genutzt werden 🌍! Wir werden Ihre Beiträge gerne retweeten und Ihnen helfen, Ihre Arbeit mit der Community zu teilen.
## Hinzufügen von TensorFlow-Gewichten zum 🤗 Hub
Unter der Annahme, dass die TensorFlow-Modellarchitektur in 🤗 Transformers verfügbar ist, ist die Umwandlung von PyTorch-Gewichten in
TensorFlow-Gewichte ist ein Kinderspiel!
Hier sehen Sie, wie es geht:
1. Stellen Sie sicher, dass Sie in Ihrem Terminal bei Ihrem Hugging Face Konto angemeldet sind. Sie können sich mit dem folgenden Befehl anmelden
`huggingface-cli login` (Ihre Zugangstoken finden Sie [hier](https://huggingface.co/settings/tokens))
2. Führen Sie `transformers-cli pt-to-tf --model-name foo/bar` aus, wobei `foo/bar` der Name des Modell-Repositorys ist
ist, das die PyTorch-Gewichte enthält, die Sie konvertieren möchten.
3. Markieren Sie `@joaogante` und `@Rocketknight1` in dem 🤗 Hub PR, den der obige Befehl gerade erstellt hat
Das war's! 🎉
## Fehlersuche in verschiedenen ML-Frameworks 🐛
Irgendwann, wenn Sie eine neue Architektur hinzufügen oder TensorFlow-Gewichte für eine bestehende Architektur erstellen, werden Sie
stoßen Sie vielleicht auf Fehler, die sich über Unstimmigkeiten zwischen PyTorch und TensorFlow beschweren. Sie könnten sich sogar dazu entschließen, den
Modellarchitektur-Code für die beiden Frameworks zu öffnen, und stellen fest, dass sie identisch aussehen. Was ist denn da los? 🤔
Lassen Sie uns zunächst darüber sprechen, warum es wichtig ist, diese Diskrepanzen zu verstehen. Viele Community-Mitglieder werden 🤗
Transformers-Modelle und vertrauen darauf, dass sich unsere Modelle wie erwartet verhalten. Wenn es eine große Diskrepanz gibt
zwischen den beiden Frameworks auftritt, bedeutet dies, dass das Modell nicht der Referenzimplementierung für mindestens eines der Frameworks folgt.
der Frameworks folgt. Dies kann zu stillen Fehlern führen, bei denen das Modell zwar läuft, aber eine schlechte Leistung aufweist. Dies ist
wohl schlimmer als ein Modell, das überhaupt nicht läuft! Aus diesem Grund streben wir an, dass die Abweichung zwischen den Frameworks kleiner als
1e-5" in allen Phasen des Modells.
Wie bei anderen numerischen Problemen auch, steckt der Teufel im Detail. Und wie bei jedem detailorientierten Handwerk ist die geheime
Zutat hier Geduld. Hier ist unser Vorschlag für den Arbeitsablauf, wenn Sie auf diese Art von Problemen stoßen:
1. Lokalisieren Sie die Quelle der Abweichungen. Das Modell, das Sie konvertieren, hat wahrscheinlich bis zu einem gewissen Punkt nahezu identische innere Variablen.
bestimmten Punkt. Platzieren Sie `Breakpoint()`-Anweisungen in den Architekturen der beiden Frameworks und vergleichen Sie die Werte der
numerischen Variablen von oben nach unten, bis Sie die Quelle der Probleme gefunden haben.
2. Nachdem Sie nun die Ursache des Problems gefunden haben, setzen Sie sich mit dem 🤗 Transformers-Team in Verbindung. Es ist möglich
dass wir ein ähnliches Problem schon einmal gesehen haben und umgehend eine Lösung anbieten können. Als Ausweichmöglichkeit können Sie beliebte Seiten
wie StackOverflow und GitHub-Probleme.
3. Wenn keine Lösung in Sicht ist, bedeutet das, dass Sie tiefer gehen müssen. Die gute Nachricht ist, dass Sie das Problem gefunden haben.
Problem ausfindig gemacht haben, so dass Sie sich auf die problematische Anweisung konzentrieren und den Rest des Modells ausblenden können! Die schlechte Nachricht ist
dass Sie sich in die Quellimplementierung der besagten Anweisung einarbeiten müssen. In manchen Fällen finden Sie vielleicht ein
Problem mit einer Referenzimplementierung - verzichten Sie nicht darauf, ein Problem im Upstream-Repository zu öffnen.
In einigen Fällen können wir nach Rücksprache mit dem 🤗 Transformers-Team zu dem Schluss kommen, dass die Behebung der Abweichung nicht machbar ist.
Wenn die Abweichung in den Ausgabeschichten des Modells sehr klein ist (aber möglicherweise groß in den versteckten Zuständen), können wir
könnten wir beschließen, sie zu ignorieren und das Modell zu verteilen. Die oben erwähnte CLI `pt-to-tf` hat ein `--max-error`
Flag, um die Fehlermeldung bei der Gewichtskonvertierung zu überschreiben.

View File

@ -8,10 +8,6 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Vortrainierte Instanzen mit einer AutoClass laden

View File

@ -8,10 +8,6 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# 🤗 Transformers
@ -173,7 +169,6 @@ Die Bibliothek enthält derzeit JAX-, PyTorch- und TensorFlow-Implementierungen,
1. **[Transformer-XL](model_doc/transfo-xl)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
1. **[TrOCR](model_doc/trocr)** (from Microsoft), released together with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
1. **[UL2](model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
1. **[UMT5](model_doc/umt5)** (from Google Research) released with the paper [UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining](https://openreview.net/forum?id=kXwdL1cWOAi) by Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, Noah Constant.
1. **[UniSpeech](model_doc/unispeech)** (from Microsoft Research) released with the paper [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.
1. **[UniSpeechSat](model_doc/unispeech-sat)** (from Microsoft Research) released with the paper [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu.
1. **[VAN](model_doc/van)** (from Tsinghua University and Nankai University) released with the paper [Visual Attention Network](https://arxiv.org/abs/2202.09741) by Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu.
@ -218,7 +213,7 @@ Flax), PyTorch, und/oder TensorFlow haben.
| BigBird-Pegasus | ❌ | ❌ | ✅ | ❌ | ❌ |
| Blenderbot | ✅ | ✅ | ✅ | ✅ | ✅ |
| BlenderbotSmall | ✅ | ✅ | ✅ | ✅ | ✅ |
| BLOOM | ❌ | ✅ | ✅ | ❌ | |
| BLOOM | ❌ | ✅ | ✅ | ❌ | |
| CamemBERT | ✅ | ✅ | ✅ | ✅ | ❌ |
| CANINE | ✅ | ❌ | ✅ | ❌ | ❌ |
| CLIP | ✅ | ✅ | ✅ | ✅ | ✅ |

View File

@ -12,10 +12,6 @@ distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Installation

View File

@ -1,221 +0,0 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Generation with LLMs
[[open-in-colab]]
LLMs (Large Language Models) sind die Schlüsselkomponente bei der Texterstellung. Kurz gesagt, bestehen sie aus großen, vortrainierten Transformationsmodellen, die darauf trainiert sind, das nächste Wort (oder genauer gesagt Token) aus einem Eingabetext vorherzusagen. Da sie jeweils ein Token vorhersagen, müssen Sie etwas Aufwändigeres tun, um neue Sätze zu generieren, als nur das Modell aufzurufen - Sie müssen eine autoregressive Generierung durchführen.
Die autoregressive Generierung ist ein Verfahren zur Inferenzzeit, bei dem ein Modell mit seinen eigenen generierten Ausgaben iterativ aufgerufen wird, wenn einige anfängliche Eingaben vorliegen. In 🤗 Transformers wird dies von der Methode [`~generation.GenerationMixin.generate`] übernommen, die allen Modellen mit generativen Fähigkeiten zur Verfügung steht.
Dieses Tutorial zeigt Ihnen, wie Sie:
* Text mit einem LLM generieren
* Vermeiden Sie häufige Fallstricke
* Nächste Schritte, damit Sie das Beste aus Ihrem LLM herausholen können
Bevor Sie beginnen, stellen Sie sicher, dass Sie alle erforderlichen Bibliotheken installiert haben:
```bash
pip install transformers bitsandbytes>=0.39.0 -q
```
## Text generieren
Ein Sprachmodell, das für [causal language modeling](tasks/language_modeling) trainiert wurde, nimmt eine Folge von Text-Token als Eingabe und gibt die Wahrscheinlichkeitsverteilung für das nächste Token zurück.
<!-- [GIF 1 -- FWD PASS] -->
<figure class="image table text-center m-0 w-full">
<video
style="max-width: 90%; margin: auto;"
autoplay loop muted playsinline
src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/blog/assisted-generation/gif_1_1080p.mov"
></video>
<figcaption>"Forward pass of an LLM"</figcaption>
</figure>
Ein wichtiger Aspekt der autoregressiven Generierung mit LLMs ist die Auswahl des nächsten Tokens aus dieser Wahrscheinlichkeitsverteilung. In diesem Schritt ist alles möglich, solange Sie am Ende ein Token für die nächste Iteration haben. Das heißt, es kann so einfach sein wie die Auswahl des wahrscheinlichsten Tokens aus der Wahrscheinlichkeitsverteilung oder so komplex wie die Anwendung von einem Dutzend Transformationen vor der Stichprobenziehung aus der resultierenden Verteilung.
<!-- [GIF 2 -- TEXT GENERATION] -->
<figure class="image table text-center m-0 w-full">
<video
style="max-width: 90%; margin: auto;"
autoplay loop muted playsinline
src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/blog/assisted-generation/gif_2_1080p.mov"
></video>
<figcaption>"Die autoregressive Generierung wählt iterativ das nächste Token aus einer Wahrscheinlichkeitsverteilung aus, um Text zu erzeugen"</figcaption>
</figure>
Der oben dargestellte Prozess wird iterativ wiederholt, bis eine bestimmte Abbruchbedingung erreicht ist. Im Idealfall wird die Abbruchbedingung vom Modell vorgegeben, das lernen sollte, wann es ein Ende-der-Sequenz-Token (EOS) ausgeben muss. Ist dies nicht der Fall, stoppt die Generierung, wenn eine vordefinierte Maximallänge erreicht ist.
Damit sich Ihr Modell so verhält, wie Sie es für Ihre Aufgabe erwarten, müssen Sie den Schritt der Token-Auswahl und die Abbruchbedingung richtig einstellen. Aus diesem Grund haben wir zu jedem Modell eine [`~generation.GenerationConfig`]-Datei, die eine gute generative Standardparametrisierung enthält und zusammen mit Ihrem Modell geladen wird.
Lassen Sie uns über Code sprechen!
<Tip>
Wenn Sie an der grundlegenden Verwendung von LLMs interessiert sind, ist unsere High-Level-Schnittstelle [`Pipeline`](pipeline_tutorial) ein guter Ausgangspunkt. LLMs erfordern jedoch oft fortgeschrittene Funktionen wie Quantisierung und Feinsteuerung des Token-Auswahlschritts, was am besten über [`~generation.GenerationMixin.generate`] erfolgt. Die autoregressive Generierung mit LLMs ist ebenfalls ressourcenintensiv und sollte für einen angemessenen Durchsatz auf einer GPU ausgeführt werden.
</Tip>
<!-- TODO: update example to llama 2 (or a newer popular baseline) when it becomes ungated -->
Zunächst müssen Sie das Modell laden.
```py
>>> from transformers import AutoModelForCausalLM
>>> model = AutoModelForCausalLM.from_pretrained(
... "openlm-research/open_llama_7b", device_map="auto", load_in_4bit=True
... )
```
Sie werden zwei Flags in dem Aufruf `from_pretrained` bemerken:
- `device_map` stellt sicher, dass das Modell auf Ihre GPU(s) übertragen wird
- `load_in_4bit` wendet [dynamische 4-Bit-Quantisierung](main_classes/quantization) an, um die Ressourcenanforderungen massiv zu reduzieren
Es gibt noch andere Möglichkeiten, ein Modell zu initialisieren, aber dies ist eine gute Grundlage, um mit einem LLM zu beginnen.
Als nächstes müssen Sie Ihre Texteingabe mit einem [tokenizer](tokenizer_summary) vorverarbeiten.
```py
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("openlm-research/open_llama_7b")
>>> model_inputs = tokenizer(["A list of colors: red, blue"], return_tensors="pt").to("cuda")
```
Die Variable `model_inputs` enthält die tokenisierte Texteingabe sowie die Aufmerksamkeitsmaske. Obwohl [`~generation.GenerationMixin.generate`] sein Bestes tut, um die Aufmerksamkeitsmaske abzuleiten, wenn sie nicht übergeben wird, empfehlen wir, sie für optimale Ergebnisse wann immer möglich zu übergeben.
Rufen Sie schließlich die Methode [~generation.GenerationMixin.generate] auf, um die generierten Token zurückzugeben, die vor dem Drucken in Text umgewandelt werden sollten.
```py
>>> generated_ids = model.generate(**model_inputs)
>>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
'A list of colors: red, blue, green, yellow, black, white, and brown'
```
Und das war's! Mit ein paar Zeilen Code können Sie sich die Macht eines LLM zunutze machen.
## Häufige Fallstricke
Es gibt viele [Generierungsstrategien](generation_strategies), und manchmal sind die Standardwerte für Ihren Anwendungsfall vielleicht nicht geeignet. Wenn Ihre Ausgaben nicht mit dem übereinstimmen, was Sie erwarten, haben wir eine Liste der häufigsten Fallstricke erstellt und wie Sie diese vermeiden können.
```py
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("openlm-research/open_llama_7b")
>>> tokenizer.pad_token = tokenizer.eos_token # Llama has no pad token by default
>>> model = AutoModelForCausalLM.from_pretrained(
... "openlm-research/open_llama_7b", device_map="auto", load_in_4bit=True
... )
```
### Generierte Ausgabe ist zu kurz/lang
Wenn in der Datei [~generation.GenerationConfig`] nichts angegeben ist, gibt `generate` standardmäßig bis zu 20 Token zurück. Wir empfehlen dringend, `max_new_tokens` in Ihrem `generate`-Aufruf manuell zu setzen, um die maximale Anzahl neuer Token zu kontrollieren, die zurückgegeben werden können. Beachten Sie, dass LLMs (genauer gesagt, [decoder-only models](https://huggingface.co/learn/nlp-course/chapter1/6?fw=pt)) auch die Eingabeaufforderung als Teil der Ausgabe zurückgeben.
```py
>>> model_inputs = tokenizer(["A sequence of numbers: 1, 2"], return_tensors="pt").to("cuda")
>>> # By default, the output will contain up to 20 tokens
>>> generated_ids = model.generate(**model_inputs)
>>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
'A sequence of numbers: 1, 2, 3, 4, 5'
>>> # Setting `max_new_tokens` allows you to control the maximum length
>>> generated_ids = model.generate(**model_inputs, max_new_tokens=50)
>>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
'A sequence of numbers: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,'
```
### Falscher Generierungsmodus
Standardmäßig und sofern nicht in der Datei [~generation.GenerationConfig`] angegeben, wählt `generate` bei jeder Iteration das wahrscheinlichste Token aus (gierige Dekodierung). Je nach Aufgabe kann dies unerwünscht sein; kreative Aufgaben wie Chatbots oder das Schreiben eines Aufsatzes profitieren vom Sampling. Andererseits profitieren Aufgaben, bei denen es auf die Eingabe ankommt, wie z.B. Audiotranskription oder Übersetzung, von der gierigen Dekodierung. Aktivieren Sie das Sampling mit `do_sample=True`. Mehr zu diesem Thema erfahren Sie in diesem [Blogbeitrag] (https://huggingface.co/blog/how-to-generate).
```py
>>> # Set seed or reproducibility -- you don't need this unless you want full reproducibility
>>> from transformers import set_seed
>>> set_seed(0)
>>> model_inputs = tokenizer(["I am a cat."], return_tensors="pt").to("cuda")
>>> # LLM + greedy decoding = repetitive, boring output
>>> generated_ids = model.generate(**model_inputs)
>>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
'I am a cat. I am a cat. I am a cat. I am a cat'
>>> # With sampling, the output becomes more creative!
>>> generated_ids = model.generate(**model_inputs, do_sample=True)
>>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
'I am a cat.\nI just need to be. I am always.\nEvery time'
```
### Falsche Auffüllseite
LLMs sind [decoder-only](https://huggingface.co/learn/nlp-course/chapter1/6?fw=pt)-Architekturen, d.h. sie iterieren weiter über Ihre Eingabeaufforderung. Wenn Ihre Eingaben nicht die gleiche Länge haben, müssen sie aufgefüllt werden. Da LLMs nicht darauf trainiert sind, mit aufgefüllten Token fortzufahren, muss Ihre Eingabe links aufgefüllt werden. Vergessen Sie auch nicht, die Aufmerksamkeitsmaske an generate zu übergeben!
```py
>>> # The tokenizer initialized above has right-padding active by default: the 1st sequence,
>>> # which is shorter, has padding on the right side. Generation fails.
>>> model_inputs = tokenizer(
... ["1, 2, 3", "A, B, C, D, E"], padding=True, return_tensors="pt"
... ).to("cuda")
>>> generated_ids = model.generate(**model_inputs)
>>> tokenizer.batch_decode(generated_ids[0], skip_special_tokens=True)[0]
''
>>> # With left-padding, it works as expected!
>>> tokenizer = AutoTokenizer.from_pretrained("openlm-research/open_llama_7b", padding_side="left")
>>> tokenizer.pad_token = tokenizer.eos_token # Llama has no pad token by default
>>> model_inputs = tokenizer(
... ["1, 2, 3", "A, B, C, D, E"], padding=True, return_tensors="pt"
... ).to("cuda")
>>> generated_ids = model.generate(**model_inputs)
>>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
'1, 2, 3, 4, 5, 6,'
```
<!-- TODO: when the prompting guide is ready, mention the importance of setting the right prompt in this section -->
## Weitere Ressourcen
Während der Prozess der autoregressiven Generierung relativ einfach ist, kann die optimale Nutzung Ihres LLM ein schwieriges Unterfangen sein, da es viele bewegliche Teile gibt. Für Ihre nächsten Schritte, die Ihnen helfen, tiefer in die LLM-Nutzung und das Verständnis einzutauchen:
<!-- TODO: mit neuen Anleitungen vervollständigen -->
### Fortgeschrittene Nutzung generieren
1. [Leitfaden](generation_strategies) zur Steuerung verschiedener Generierungsmethoden, zur Einrichtung der Generierungskonfigurationsdatei und zum Streaming der Ausgabe;
2. API-Referenz zu [`~generation.GenerationConfig`], [`~generation.GenerationMixin.generate`] und [generate-bezogene Klassen](internal/generation_utils).
### LLM-Ranglisten
1. [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard), das sich auf die Qualität der Open-Source-Modelle konzentriert;
2. [Open LLM-Perf Leaderboard](https://huggingface.co/spaces/optimum/llm-perf-leaderboard), das sich auf den LLM-Durchsatz konzentriert.
### Latenz und Durchsatz
1. [Leitfaden](main_classes/quantization) zur dynamischen Quantisierung, der Ihnen zeigt, wie Sie Ihren Speicherbedarf drastisch reduzieren können.
### Verwandte Bibliotheken
1. [text-generation-inference](https://github.com/huggingface/text-generation-inference), ein produktionsreifer Server für LLMs;
2. [`optimum`](https://github.com/huggingface/optimum), eine Erweiterung von 🤗 Transformers, die für bestimmte Hardware-Geräte optimiert.

View File

@ -8,10 +8,6 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Ein Modell teilen

View File

@ -1,216 +0,0 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Adapter mit 🤗 PEFT laden
[[open-in-colab]]
Die [Parameter-Efficient Fine Tuning (PEFT)](https://huggingface.co/blog/peft) Methoden frieren die vorab trainierten Modellparameter während der Feinabstimmung ein und fügen eine kleine Anzahl trainierbarer Parameter (die Adapter) hinzu. Die Adapter werden trainiert, um aufgabenspezifische Informationen zu lernen. Es hat sich gezeigt, dass dieser Ansatz sehr speichereffizient ist und weniger Rechenleistung beansprucht, während die Ergebnisse mit denen eines vollständig feinabgestimmten Modells vergleichbar sind.
Adapter, die mit PEFT trainiert wurden, sind in der Regel um eine Größenordnung kleiner als das vollständige Modell, so dass sie bequem gemeinsam genutzt, gespeichert und geladen werden können.
<div class="flex flex-col justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/peft/PEFT-hub-screenshot.png"/>
<figcaption class="text-center">Die Adaptergewichte für ein OPTForCausalLM-Modell, die auf dem Hub gespeichert sind, sind nur ~6MB groß, verglichen mit der vollen Größe der Modellgewichte, die ~700MB betragen können.</figcaption>
</div>
Wenn Sie mehr über die 🤗 PEFT-Bibliothek erfahren möchten, sehen Sie sich die [Dokumentation](https://huggingface.co/docs/peft/index) an.
## Setup
Starten Sie mit der Installation von 🤗 PEFT:
```bash
pip install peft
```
Wenn Sie die brandneuen Funktionen ausprobieren möchten, sollten Sie die Bibliothek aus dem Quellcode installieren:
```bash
pip install git+https://github.com/huggingface/peft.git
```
## Unterstützte PEFT-Modelle
Transformers unterstützt nativ einige PEFT-Methoden, d.h. Sie können lokal oder auf dem Hub gespeicherte Adaptergewichte laden und sie mit wenigen Zeilen Code einfach ausführen oder trainieren. Die folgenden Methoden werden unterstützt:
- [Low Rank Adapters](https://huggingface.co/docs/peft/conceptual_guides/lora)
- [IA3](https://huggingface.co/docs/peft/conceptual_guides/ia3)
- [AdaLoRA](https://arxiv.org/abs/2303.10512)
Wenn Sie andere PEFT-Methoden, wie z.B. Prompt Learning oder Prompt Tuning, verwenden möchten, oder über die 🤗 PEFT-Bibliothek im Allgemeinen, lesen Sie bitte die [Dokumentation](https://huggingface.co/docs/peft/index).
## Laden Sie einen PEFT-Adapter
Um ein PEFT-Adaptermodell von 🤗 Transformers zu laden und zu verwenden, stellen Sie sicher, dass das Hub-Repository oder das lokale Verzeichnis eine `adapter_config.json`-Datei und die Adaptergewichte enthält, wie im obigen Beispielbild gezeigt. Dann können Sie das PEFT-Adaptermodell mit der Klasse `AutoModelFor` laden. Um zum Beispiel ein PEFT-Adaptermodell für die kausale Sprachmodellierung zu laden:
1. Geben Sie die PEFT-Modell-ID an.
2. übergeben Sie es an die Klasse [`AutoModelForCausalLM`].
```py
from transformers import AutoModelForCausalLM, AutoTokenizer
peft_model_id = "ybelkada/opt-350m-lora"
model = AutoModelForCausalLM.from_pretrained(peft_model_id)
```
<Tip>
Sie können einen PEFT-Adapter entweder mit einer `AutoModelFor`-Klasse oder der Basismodellklasse wie `OPTForCausalLM` oder `LlamaForCausalLM` laden.
</Tip>
Sie können einen PEFT-Adapter auch laden, indem Sie die Methode `load_adapter` aufrufen:
```py
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "facebook/opt-350m"
peft_model_id = "ybelkada/opt-350m-lora"
model = AutoModelForCausalLM.from_pretrained(model_id)
model.load_adapter(peft_model_id)
```
## Laden in 8bit oder 4bit
Die `bitsandbytes`-Integration unterstützt Datentypen mit 8bit und 4bit Genauigkeit, was für das Laden großer Modelle nützlich ist, weil es Speicher spart (lesen Sie den `bitsandbytes`-Integrations [guide](./quantization#bitsandbytes-integration), um mehr zu erfahren). Fügen Sie die Parameter `load_in_8bit` oder `load_in_4bit` zu [`~PreTrainedModel.from_pretrained`] hinzu und setzen Sie `device_map="auto"`, um das Modell effektiv auf Ihre Hardware zu verteilen:
```py
from transformers import AutoModelForCausalLM, AutoTokenizer
peft_model_id = "ybelkada/opt-350m-lora"
model = AutoModelForCausalLM.from_pretrained(peft_model_id, device_map="auto", load_in_8bit=True)
```
## Einen neuen Adapter hinzufügen
Sie können [`~peft.PeftModel.add_adapter`] verwenden, um einen neuen Adapter zu einem Modell mit einem bestehenden Adapter hinzuzufügen, solange der neue Adapter vom gleichen Typ ist wie der aktuelle Adapter. Wenn Sie zum Beispiel einen bestehenden LoRA-Adapter an ein Modell angehängt haben:
```py
from transformers import AutoModelForCausalLM, OPTForCausalLM, AutoTokenizer
from peft import PeftConfig
model_id = "facebook/opt-350m"
model = AutoModelForCausalLM.from_pretrained(model_id)
lora_config = LoraConfig(
target_modules=["q_proj", "k_proj"],
init_lora_weights=False
)
model.add_adapter(lora_config, adapter_name="adapter_1")
```
Um einen neuen Adapter hinzuzufügen:
```py
# attach new adapter with same config
model.add_adapter(lora_config, adapter_name="adapter_2")
```
Jetzt können Sie mit [`~peft.PeftModel.set_adapter`] festlegen, welcher Adapter verwendet werden soll:
```py
# use adapter_1
model.set_adapter("adapter_1")
output = model.generate(**inputs)
print(tokenizer.decode(output_disabled[0], skip_special_tokens=True))
# use adapter_2
model.set_adapter("adapter_2")
output_enabled = model.generate(**inputs)
print(tokenizer.decode(output_enabled[0], skip_special_tokens=True))
```
## Aktivieren und Deaktivieren von Adaptern
Sobald Sie einen Adapter zu einem Modell hinzugefügt haben, können Sie das Adaptermodul aktivieren oder deaktivieren. So aktivieren Sie das Adaptermodul:
```py
from transformers import AutoModelForCausalLM, OPTForCausalLM, AutoTokenizer
from peft import PeftConfig
model_id = "facebook/opt-350m"
adapter_model_id = "ybelkada/opt-350m-lora"
tokenizer = AutoTokenizer.from_pretrained(model_id)
text = "Hello"
inputs = tokenizer(text, return_tensors="pt")
model = AutoModelForCausalLM.from_pretrained(model_id)
peft_config = PeftConfig.from_pretrained(adapter_model_id)
# to initiate with random weights
peft_config.init_lora_weights = False
model.add_adapter(peft_config)
model.enable_adapters()
output = model.generate(**inputs)
```
So deaktivieren Sie das Adaptermodul:
```py
model.disable_adapters()
output = model.generate(**inputs)
```
## PEFT-Adapter trainieren
PEFT-Adapter werden von der Klasse [`Trainer`] unterstützt, so dass Sie einen Adapter für Ihren speziellen Anwendungsfall trainieren können. Dazu müssen Sie nur ein paar weitere Codezeilen hinzufügen. Zum Beispiel, um einen LoRA-Adapter zu trainieren:
<Tip>
Wenn Sie mit der Feinabstimmung eines Modells mit [`Trainer`] noch nicht vertraut sind, werfen Sie einen Blick auf das Tutorial [Feinabstimmung eines vortrainierten Modells](Training).
</Tip>
1. Definieren Sie Ihre Adapterkonfiguration mit dem Aufgabentyp und den Hyperparametern (siehe [`~peft.LoraConfig`] für weitere Details darüber, was die Hyperparameter tun).
```py
from peft import LoraConfig
peft_config = LoraConfig(
lora_alpha=16,
lora_dropout=0.1,
r=64,
bias="none",
task_type="CAUSAL_LM",
)
```
2. Fügen Sie dem Modell einen Adapter hinzu.
```py
model.add_adapter(peft_config)
```
3. Jetzt können Sie das Modell an [`Trainer`] übergeben!
```py
trainer = Trainer(model=model, ...)
trainer.train()
```
So speichern Sie Ihren trainierten Adapter und laden ihn wieder:
```py
model.save_pretrained(save_dir)
model = AutoModelForCausalLM.from_pretrained(save_dir)
```
<!--
TODO: (@younesbelkada @stevhliu)
- Link to PEFT docs for further details
- Trainer
- 8-bit / 4-bit examples ?
-->

View File

@ -8,10 +8,6 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Pipelines für Inferenzen

View File

@ -1,199 +0,0 @@
<!---
Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Überprüfungen bei einer Pull-Anfrage
Wenn Sie eine Pull-Anfrage für 🤗 Transformers öffnen, wird eine ganze Reihe von Prüfungen durchgeführt, um sicherzustellen, dass der Patch, den Sie hinzufügen, nichts Bestehendes zerstört. Es gibt vier Arten von Prüfungen:
- reguläre Tests
- Erstellung der Dokumentation
- Stil von Code und Dokumentation
- allgemeine Konsistenz des Repository
In diesem Dokument werden wir versuchen zu erklären, worum es sich bei diesen verschiedenen Prüfungen handelt und wie Sie sie lokal debuggen können, wenn eine der Prüfungen in Ihrer PR fehlschlägt.
Beachten Sie, dass Sie im Idealfall eine Dev-Installation benötigen:
```bash
pip install transformers[dev]
```
oder für eine bearbeitbare Installation:
```bash
pip install -e .[dev]
```
innerhalb des Transformers Repo. Da die Anzahl der optionalen Abhängigkeiten von Transformers stark zugenommen hat, ist es möglich, dass Sie nicht alle davon bekommen können. Wenn die Dev-Installation fehlschlägt, stellen Sie sicher, dass Sie das Deep Learning-Framework, mit dem Sie arbeiten, installieren (PyTorch, TensorFlow und/oder Flax).
```bash
pip install transformers[quality]
```
oder für eine bearbeitbare Installation:
```bash
pip install -e .[quality]
```
## Tests
Alle Jobs, die mit `ci/circleci: run_tests_` beginnen, führen Teile der Transformers-Testsuite aus. Jeder dieser Jobs konzentriert sich auf einen Teil der Bibliothek in einer bestimmten Umgebung: `ci/circleci: run_tests_pipelines_tf` zum Beispiel führt den Pipelines-Test in einer Umgebung aus, in der nur TensorFlow installiert ist.
Beachten Sie, dass nur ein Teil der Testsuite jedes Mal ausgeführt wird, um zu vermeiden, dass Tests ausgeführt werden, wenn es keine wirkliche Änderung in den Modulen gibt, die sie testen: ein Dienstprogramm wird ausgeführt, um die Unterschiede in der Bibliothek zwischen vor und nach dem PR zu ermitteln (was GitHub Ihnen auf der Registerkarte "Files changes" anzeigt) und die Tests auszuwählen, die von diesem Unterschied betroffen sind. Dieses Dienstprogramm kann lokal mit ausgeführt werden:
```bash
python utils/tests_fetcher.py
```
aus dem Stammverzeichnis des Transformers-Repositoriums. Es wird:
1. Überprüfen Sie für jede Datei im Diff, ob die Änderungen im Code oder nur in Kommentaren oder Docstrings enthalten sind. Nur die Dateien mit echten Codeänderungen werden beibehalten.
2. Erstellen Sie eine interne Map, die für jede Datei des Quellcodes der Bibliothek alle Dateien angibt, auf die sie rekursiv Einfluss nimmt. Von Modul A wird gesagt, dass es sich auf Modul B auswirkt, wenn Modul B Modul A importiert. Für die rekursive Auswirkung benötigen wir eine Kette von Modulen, die von Modul A zu Modul B führt und in der jedes Modul das vorherige importiert.
3. Wenden Sie diese Zuordnung auf die in Schritt 1 gesammelten Dateien an. So erhalten wir die Liste der Modelldateien, die von der PR betroffen sind.
4. Ordnen Sie jede dieser Dateien der/den entsprechenden Testdatei(en) zu und erhalten Sie die Liste der auszuführenden Tests.
Wenn Sie das Skript lokal ausführen, sollten Sie die Ergebnisse von Schritt 1, 3 und 4 ausgegeben bekommen und somit wissen, welche Tests ausgeführt werden. Das Skript erstellt außerdem eine Datei namens `test_list.txt`, die die Liste der auszuführenden Tests enthält, die Sie mit dem folgenden Befehl lokal ausführen können:
```bash
python -m pytest -n 8 --dist=loadfile -rA -s $(cat test_list.txt)
```
Für den Fall, dass Ihnen etwas entgangen ist, wird die komplette Testreihe ebenfalls täglich ausgeführt.
## Dokumentation erstellen
Der Job `build_pr_documentation` erstellt und generiert eine Vorschau der Dokumentation, um sicherzustellen, dass alles in Ordnung ist, wenn Ihr PR zusammengeführt wird. Ein Bot fügt einen Link zur Vorschau der Dokumentation zu Ihrem PR hinzu. Alle Änderungen, die Sie an dem PR vornehmen, werden automatisch in der Vorschau aktualisiert. Wenn die Dokumentation nicht erstellt werden kann, klicken Sie auf **Details** neben dem fehlgeschlagenen Auftrag, um zu sehen, wo der Fehler liegt. Oft ist der Fehler so einfach wie eine fehlende Datei im `toctree`.
Wenn Sie daran interessiert sind, die Dokumentation lokal zu erstellen oder in der Vorschau anzusehen, werfen Sie einen Blick in die [`README.md`](https://github.com/huggingface/transformers/tree/main/docs) im Ordner docs.
## Code und Dokumentationsstil
Die Formatierung des Codes erfolgt für alle Quelldateien, die Beispiele und die Tests mit `black` und `ruff`. Wir haben auch ein benutzerdefiniertes Tool, das sich um die Formatierung von docstrings und `rst`-Dateien kümmert (`utils/style_doc.py`), sowie um die Reihenfolge der Lazy-Importe, die in den Transformers `__init__.py`-Dateien durchgeführt werden (`utils/custom_init_isort.py`). All dies können Sie starten, indem Sie Folgendes ausführen
```bash
make style
```
Das CI prüft, ob diese innerhalb der Prüfung `ci/circleci: check_code_quality` angewendet wurden. Es führt auch `ruff` aus, das einen grundlegenden Blick auf Ihren Code wirft und sich beschwert, wenn es eine undefinierte Variable findet oder eine, die nicht verwendet wird. Um diese Prüfung lokal auszuführen, verwenden Sie
```bash
make quality
```
Dies kann sehr viel Zeit in Anspruch nehmen. Um dasselbe nur für die Dateien zu tun, die Sie im aktuellen Zweig geändert haben, führen Sie
```bash
make fixup
```
Dieser letzte Befehl führt auch alle zusätzlichen Prüfungen für die Konsistenz des Repositorys durch. Schauen wir uns diese an.
## Repository-Konsistenz
Dies fasst alle Tests zusammen, die sicherstellen, dass Ihr PR das Repository in einem guten Zustand verlässt. Sie können diese Prüfung lokal durchführen, indem Sie Folgendes ausführen:
```bash
make repo-consistency
```
Dies überprüft, ob:
- Alle zum Init hinzugefügten Objekte sind dokumentiert (ausgeführt von `utils/check_repo.py`)
- Alle `__init__.py`-Dateien haben in ihren beiden Abschnitten den gleichen Inhalt (ausgeführt von `utils/check_inits.py`)
- Der gesamte Code, der als Kopie eines anderen Moduls identifiziert wurde, stimmt mit dem Original überein (ausgeführt von `utils/check_copies.py`)
- Alle Konfigurationsklassen haben mindestens einen gültigen Prüfpunkt, der in ihren Dokumentationen erwähnt wird (ausgeführt von `utils/check_config_docstrings.py`)
- Alle Konfigurationsklassen enthalten nur Attribute, die in den entsprechenden Modellierungsdateien verwendet werden (ausgeführt von `utils/check_config_attributes.py`)
- Die Übersetzungen der READMEs und der Index des Dokuments haben die gleiche Modellliste wie die Haupt-README (durchgeführt von `utils/check_copies.py`)
- Die automatisch generierten Tabellen in der Dokumentation sind auf dem neuesten Stand (ausgeführt von `utils/check_table.py`)
- Die Bibliothek verfügt über alle Objekte, auch wenn nicht alle optionalen Abhängigkeiten installiert sind (ausgeführt von `utils/check_dummies.py`)
Sollte diese Prüfung fehlschlagen, müssen die ersten beiden Punkte manuell korrigiert werden, die letzten vier können automatisch für Sie korrigiert werden, indem Sie den Befehl
```bash
make fix-copies
```
Zusätzliche Prüfungen betreffen PRs, die neue Modelle hinzufügen, vor allem, dass:
- Alle hinzugefügten Modelle befinden sich in einer Auto-Zuordnung (durchgeführt von `utils/check_repo.py`)
<!-- TODO Sylvain, add a check that makes sure the common tests are implemented.-->
- Alle Modelle werden ordnungsgemäß getestet (ausgeführt von `utils/check_repo.py`)
<!-- TODO Sylvain, add the following
- All models are added to the main README, inside the main doc
- All checkpoints used actually exist on the Hub
-->
### Kopien prüfen
Da die Transformers-Bibliothek in Bezug auf den Modellcode sehr eigenwillig ist und jedes Modell vollständig in einer einzigen Datei implementiert sein sollte, ohne sich auf andere Modelle zu stützen, haben wir einen Mechanismus hinzugefügt, der überprüft, ob eine Kopie des Codes einer Ebene eines bestimmten Modells mit dem Original übereinstimmt. Auf diese Weise können wir bei einer Fehlerbehebung alle anderen betroffenen Modelle sehen und entscheiden, ob wir die Änderung weitergeben oder die Kopie zerstören.
<Tip>
Wenn eine Datei eine vollständige Kopie einer anderen Datei ist, sollten Sie sie in der Konstante `FULL_COPIES` von `utils/check_copies.py` registrieren.
</Tip>
Dieser Mechanismus stützt sich auf Kommentare der Form `# Kopiert von xxx`. Das `xxx` sollte den gesamten Pfad zu der Klasse der Funktion enthalten, die darunter kopiert wird. Zum Beispiel ist `RobertaSelfOutput` eine direkte Kopie der Klasse `BertSelfOutput`. Sie können also [hier](https://github.com/huggingface/transformers/blob/2bd7a27a671fd1d98059124024f580f8f5c0f3b5/src/transformers/models/roberta/modeling_roberta.py#L289) sehen, dass sie einen Kommentar hat:
```py
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput
```
Beachten Sie, dass Sie dies nicht auf eine ganze Klasse anwenden, sondern auf die entsprechenden Methoden, von denen kopiert wird. Zum Beispiel [hier](https://github.com/huggingface/transformers/blob/2bd7a27a671fd1d98059124024f580f8f5c0f3b5/src/transformers/models/roberta/modeling_roberta.py#L598) können Sie sehen, wie `RobertaPreTrainedModel._init_weights` von der gleichen Methode in `BertPreTrainedModel` mit dem Kommentar kopiert wird:
```py
# Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights
```
Manchmal ist die Kopie bis auf die Namen genau gleich: zum Beispiel verwenden wir in `RobertaAttention` `RobertaSelfAttention` anstelle von `BertSelfAttention`, aber ansonsten ist der Code genau derselbe. Aus diesem Grund unterstützt `#Copied from` einfache String-Ersetzungen mit der folgenden Syntax: `Kopiert von xxx mit foo->bar`. Das bedeutet, dass der Code kopiert wird, wobei alle Instanzen von "foo" durch "bar" ersetzt werden. Sie können sehen, wie es [hier](https://github.com/huggingface/transformers/blob/2bd7a27a671fd1d98059124024f580f8f5c0f3b5/src/transformers/models/roberta/modeling_roberta.py#L304C1-L304C86) in `RobertaAttention` mit dem Kommentar verwendet wird:
```py
# Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->Roberta
```
Beachten Sie, dass um den Pfeil herum keine Leerzeichen stehen sollten (es sei denn, das Leerzeichen ist Teil des zu ersetzenden Musters, natürlich).
Sie können mehrere Muster durch ein Komma getrennt hinzufügen. Zum Beispiel ist hier `CamemberForMaskedLM` eine direkte Kopie von `RobertaForMaskedLM` mit zwei Ersetzungen: `Roberta` zu `Camembert` und `ROBERTA` zu `CAMEMBERT`. Sie können [hier](https://github.com/huggingface/transformers/blob/15082a9dc6950ecae63a0d3e5060b2fc7f15050a/src/transformers/models/camembert/modeling_camembert.py#L929) sehen, wie dies mit dem Kommentar gemacht wird:
```py
# Copied from transformers.models.roberta.modeling_roberta.RobertaForMaskedLM with Roberta->Camembert, ROBERTA->CAMEMBERT
```
Wenn die Reihenfolge eine Rolle spielt (weil eine der Ersetzungen mit einer vorherigen in Konflikt geraten könnte), werden die Ersetzungen von links nach rechts ausgeführt.
<Tip>
Wenn die Ersetzungen die Formatierung ändern (wenn Sie z.B. einen kurzen Namen durch einen sehr langen Namen ersetzen), wird die Kopie nach Anwendung des automatischen Formats überprüft.
</Tip>
Eine andere Möglichkeit, wenn es sich bei den Mustern nur um verschiedene Umschreibungen derselben Ersetzung handelt (mit einer groß- und einer kleingeschriebenen Variante), besteht darin, die Option `all-casing` hinzuzufügen. [Hier](https://github.com/huggingface/transformers/blob/15082a9dc6950ecae63a0d3e5060b2fc7f15050a/src/transformers/models/mobilebert/modeling_mobilebert.py#L1237) ist ein Beispiel in `MobileBertForSequenceClassification` mit dem Kommentar:
```py
# Copied from transformers.models.bert.modeling_bert.BertForSequenceClassification with Bert->MobileBert all-casing
```
In diesem Fall wird der Code von `BertForSequenceClassification` kopiert, indem er ersetzt wird:
- `Bert` durch `MobileBert` (zum Beispiel bei der Verwendung von `MobileBertModel` in der Init)
- `bert` durch `mobilebert` (zum Beispiel bei der Definition von `self.mobilebert`)
- `BERT` durch `MOBILEBERT` (in der Konstante `MOBILEBERT_INPUTS_DOCSTRING`)

View File

@ -8,10 +8,6 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Vorverarbeiten
@ -354,12 +350,12 @@ Als Nächstes sehen Sie sich das Bild mit dem Merkmal 🤗 Datensätze [Bild] (h
### Merkmalsextraktor
Laden Sie den Merkmalsextraktor mit [`AutoImageProcessor.from_pretrained`]:
Laden Sie den Merkmalsextraktor mit [`AutoFeatureExtractor.from_pretrained`]:
```py
>>> from transformers import AutoImageProcessor
>>> from transformers import AutoFeatureExtractor
>>> image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224")
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("google/vit-base-patch16-224")
```
### Datenerweiterung
@ -371,9 +367,9 @@ Bei Bildverarbeitungsaufgaben ist es üblich, den Bildern als Teil der Vorverarb
```py
>>> from torchvision.transforms import Compose, Normalize, RandomResizedCrop, ColorJitter, ToTensor
>>> normalize = Normalize(mean=image_processor.image_mean, std=image_processor.image_std)
>>> normalize = Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std)
>>> _transforms = Compose(
... [RandomResizedCrop(image_processor.size["height"]), ColorJitter(brightness=0.5, hue=0.5), ToTensor(), normalize]
... [RandomResizedCrop(feature_extractor.size), ColorJitter(brightness=0.5, hue=0.5), ToTensor(), normalize]
... )
```

View File

@ -8,10 +8,6 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Schnellstart
@ -68,13 +64,11 @@ Installieren Sie die folgenden Abhängigkeiten, falls Sie dies nicht bereits get
<frameworkcontent>
<pt>
```bash
pip install torch
```
</pt>
<tf>
```bash
pip install tensorflow
```
@ -228,7 +222,6 @@ Genau wie die [`pipeline`] akzeptiert der Tokenizer eine Liste von Eingaben. Dar
<frameworkcontent>
<pt>
```py
>>> pt_batch = tokenizer(
... ["We are very happy to show you the 🤗 Transformers library.", "We hope you don't hate it."],
@ -240,7 +233,6 @@ Genau wie die [`pipeline`] akzeptiert der Tokenizer eine Liste von Eingaben. Dar
```
</pt>
<tf>
```py
>>> tf_batch = tokenizer(
... ["We are very happy to show you the 🤗 Transformers library.", "We hope you don't hate it."],
@ -379,7 +371,6 @@ Ein besonders cooles 🤗 Transformers-Feature ist die Möglichkeit, ein Modell
<frameworkcontent>
<pt>
```py
>>> from transformers import AutoModel
@ -388,7 +379,6 @@ Ein besonders cooles 🤗 Transformers-Feature ist die Möglichkeit, ein Modell
```
</pt>
<tf>
```py
>>> from transformers import TFAutoModel

View File

@ -1,351 +0,0 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Trainieren mit einem Skript
Neben den 🤗 Transformers [notebooks](./noteboks/README) gibt es auch Beispielskripte, die zeigen, wie man ein Modell für eine Aufgabe mit [PyTorch](https://github.com/huggingface/transformers/tree/main/examples/pytorch), [TensorFlow](https://github.com/huggingface/transformers/tree/main/examples/tensorflow) oder [JAX/Flax](https://github.com/huggingface/transformers/tree/main/examples/flax) trainiert.
Sie werden auch Skripte finden, die wir in unseren [Forschungsprojekten](https://github.com/huggingface/transformers/tree/main/examples/research_projects) und [Legacy-Beispielen](https://github.com/huggingface/transformers/tree/main/examples/legacy) verwendet haben und die größtenteils von der Community stammen. Diese Skripte werden nicht aktiv gepflegt und erfordern eine bestimmte Version von 🤗 Transformers, die höchstwahrscheinlich nicht mit der neuesten Version der Bibliothek kompatibel ist.
Es wird nicht erwartet, dass die Beispielskripte bei jedem Problem sofort funktionieren. Möglicherweise müssen Sie das Skript an das Problem anpassen, das Sie zu lösen versuchen. Um Ihnen dabei zu helfen, legen die meisten Skripte vollständig offen, wie die Daten vorverarbeitet werden, so dass Sie sie nach Bedarf für Ihren Anwendungsfall bearbeiten können.
Für jede Funktion, die Sie in einem Beispielskript implementieren möchten, diskutieren Sie bitte im [Forum] (https://discuss.huggingface.co/) oder in einem [issue] (https://github.com/huggingface/transformers/issues), bevor Sie einen Pull Request einreichen. Wir freuen uns zwar über Fehlerkorrekturen, aber es ist unwahrscheinlich, dass wir einen Pull Request zusammenführen, der mehr Funktionalität auf Kosten der Lesbarkeit hinzufügt.
Diese Anleitung zeigt Ihnen, wie Sie ein Beispiel für ein Trainingsskript zur Zusammenfassung in [PyTorch](https://github.com/huggingface/transformers/tree/main/examples/pytorch/summarization) und [TensorFlow](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/summarization) ausführen können. Sofern nicht anders angegeben, sollten alle Beispiele mit beiden Frameworks funktionieren.
## Einrichtung
Um die neueste Version der Beispielskripte erfolgreich auszuführen, **müssen Sie 🤗 Transformers aus dem Quellcode** in einer neuen virtuellen Umgebung installieren:
```bash
git clone https://github.com/huggingface/transformers
cd transformers
pip install .
```
Für ältere Versionen der Beispielskripte klicken Sie auf die Umschalttaste unten:
<details>
<summary>Beispiele für ältere Versionen von 🤗 Transformers</summary>
<ul>
<li><a href="https://github.com/huggingface/transformers/tree/v4.5.1/examples">v4.5.1</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v4.4.2/examples">v4.4.2</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v4.3.3/examples">v4.3.3</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v4.2.2/examples">v4.2.2</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v4.1.1/examples">v4.1.1</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v4.0.1/examples">v4.0.1</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v3.5.1/examples">v3.5.1</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v3.4.0/examples">v3.4.0</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v3.3.1/examples">v3.3.1</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v3.2.0/examples">v3.2.0</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v3.1.0/examples">v3.1.0</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v3.0.2/examples">v3.0.2</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v2.11.0/examples">v2.11.0</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v2.10.0/examples">v2.10.0</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v2.9.1/examples">v2.9.1</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v2.8.0/examples">v2.8.0</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v2.7.0/examples">v2.7.0</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v2.6.0/examples">v2.6.0</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v2.5.1/examples">v2.5.1</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v2.4.0/examples">v2.4.0</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v2.3.0/examples">v2.3.0</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v2.2.0/examples">v2.2.0</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v2.1.0/examples">v2.1.1</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v2.0.0/examples">v2.0.0</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v1.2.0/examples">v1.2.0</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v1.1.0/examples">v1.1.0</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v1.0.0/examples">v1.0.0</a></li>
</ul>
</details>
Dann stellen Sie Ihren aktuellen Klon von 🤗 Transformers auf eine bestimmte Version um, z.B. v3.5.1:
```bash
git checkout tags/v3.5.1
```
Nachdem Sie die richtige Bibliotheksversion eingerichtet haben, navigieren Sie zu dem Beispielordner Ihrer Wahl und installieren die beispielspezifischen Anforderungen:
```bash
pip install -r requirements.txt
```
## Ein Skript ausführen
<frameworkcontent>
<pt>
Das Beispielskript lädt einen Datensatz aus der 🤗 [Datasets](https://huggingface.co/docs/datasets/) Bibliothek herunter und verarbeitet ihn vor. Dann nimmt das Skript eine Feinabstimmung eines Datensatzes mit dem [Trainer](https://huggingface.co/docs/transformers/main_classes/trainer) auf einer Architektur vor, die eine Zusammenfassung unterstützt. Das folgende Beispiel zeigt, wie die Feinabstimmung von [T5-small](https://huggingface.co/t5-small) auf dem Datensatz [CNN/DailyMail](https://huggingface.co/datasets/cnn_dailymail) durchgeführt wird. Das T5-Modell benötigt aufgrund der Art und Weise, wie es trainiert wurde, ein zusätzliches Argument `source_prefix`. Mit dieser Eingabeaufforderung weiß T5, dass es sich um eine Zusammenfassungsaufgabe handelt.
```bash
python examples/pytorch/summarization/run_summarization.py \
--model_name_or_path t5-small \
--do_train \
--do_eval \
--dataset_name cnn_dailymail \
--dataset_config "3.0.0" \
--source_prefix "summarize: " \
--output_dir /tmp/tst-summarization \
--per_device_train_batch_size=4 \
--per_device_eval_batch_size=4 \
--overwrite_output_dir \
--predict_with_generate
```
</pt>
<tf>
Das Beispielskript lädt einen Datensatz aus der 🤗 [Datasets](https://huggingface.co/docs/datasets/) Bibliothek herunter und verarbeitet ihn vor. Anschließend nimmt das Skript die Feinabstimmung eines Datensatzes mit Keras auf einer Architektur vor, die die Zusammenfassung unterstützt. Das folgende Beispiel zeigt, wie die Feinabstimmung von [T5-small](https://huggingface.co/t5-small) auf dem [CNN/DailyMail](https://huggingface.co/datasets/cnn_dailymail) Datensatz durchgeführt wird. Das T5-Modell benötigt aufgrund der Art und Weise, wie es trainiert wurde, ein zusätzliches Argument `source_prefix`. Mit dieser Eingabeaufforderung weiß T5, dass es sich um eine Zusammenfassungsaufgabe handelt.
```bash
python examples/tensorflow/summarization/run_summarization.py \
--model_name_or_path t5-small \
--dataset_name cnn_dailymail \
--dataset_config "3.0.0" \
--output_dir /tmp/tst-summarization \
--per_device_train_batch_size 8 \
--per_device_eval_batch_size 16 \
--num_train_epochs 3 \
--do_train \
--do_eval
```
</tf>
</frameworkcontent>
## Verteiltes Training und gemischte Präzision
Der [Trainer](https://huggingface.co/docs/transformers/main_classes/trainer) unterstützt verteiltes Training und gemischte Präzision, d.h. Sie können ihn auch in einem Skript verwenden. So aktivieren Sie diese beiden Funktionen:
- Fügen Sie das Argument `fp16` hinzu, um gemischte Genauigkeit zu aktivieren.
- Legen Sie die Anzahl der zu verwendenden GPUs mit dem Argument `nproc_per_node` fest.
```bash
python -m torch.distributed.launch \
--nproc_per_node 8 pytorch/summarization/run_summarization.py \
--fp16 \
--model_name_or_path t5-small \
--do_train \
--do_eval \
--dataset_name cnn_dailymail \
--dataset_config "3.0.0" \
--source_prefix "summarize: " \
--output_dir /tmp/tst-summarization \
--per_device_train_batch_size=4 \
--per_device_eval_batch_size=4 \
--overwrite_output_dir \
--predict_with_generate
```
TensorFlow-Skripte verwenden eine [`MirroredStrategy`](https://www.tensorflow.org/guide/distributed_training#mirroredstrategy) für verteiltes Training, und Sie müssen dem Trainingsskript keine zusätzlichen Argumente hinzufügen. Das TensorFlow-Skript verwendet standardmäßig mehrere GPUs, wenn diese verfügbar sind.
## Ein Skript auf einer TPU ausführen
<frameworkcontent>
<pt>
Tensor Processing Units (TPUs) sind speziell für die Beschleunigung der Leistung konzipiert. PyTorch unterstützt TPUs mit dem [XLA](https://www.tensorflow.org/xla) Deep Learning Compiler (siehe [hier](https://github.com/pytorch/xla/blob/master/README.md) für weitere Details). Um eine TPU zu verwenden, starten Sie das Skript `xla_spawn.py` und verwenden das Argument `num_cores`, um die Anzahl der TPU-Kerne festzulegen, die Sie verwenden möchten.
```bash
python xla_spawn.py --num_cores 8 \
summarization/run_summarization.py \
--model_name_or_path t5-small \
--do_train \
--do_eval \
--dataset_name cnn_dailymail \
--dataset_config "3.0.0" \
--source_prefix "summarize: " \
--output_dir /tmp/tst-summarization \
--per_device_train_batch_size=4 \
--per_device_eval_batch_size=4 \
--overwrite_output_dir \
--predict_with_generate
```
</pt>
<tf>
Tensor Processing Units (TPUs) sind speziell für die Beschleunigung der Leistung konzipiert. TensorFlow Skripte verwenden eine [`TPUStrategy`](https://www.tensorflow.org/guide/distributed_training#tpustrategy) für das Training auf TPUs. Um eine TPU zu verwenden, übergeben Sie den Namen der TPU-Ressource an das Argument `tpu`.
```bash
python run_summarization.py \
--tpu name_of_tpu_resource \
--model_name_or_path t5-small \
--dataset_name cnn_dailymail \
--dataset_config "3.0.0" \
--output_dir /tmp/tst-summarization \
--per_device_train_batch_size 8 \
--per_device_eval_batch_size 16 \
--num_train_epochs 3 \
--do_train \
--do_eval
```
</tf>
</frameworkcontent>
## Führen Sie ein Skript mit 🤗 Accelerate aus.
🤗 [Accelerate](https://huggingface.co/docs/accelerate) ist eine reine PyTorch-Bibliothek, die eine einheitliche Methode für das Training eines Modells auf verschiedenen Arten von Setups (nur CPU, mehrere GPUs, TPUs) bietet und dabei die vollständige Transparenz der PyTorch-Trainingsschleife beibehält. Stellen Sie sicher, dass Sie 🤗 Accelerate installiert haben, wenn Sie es nicht bereits haben:
> Hinweis: Da Accelerate schnell weiterentwickelt wird, muss die Git-Version von Accelerate installiert sein, um die Skripte auszuführen.
```bash
pip install git+https://github.com/huggingface/accelerate
```
Anstelle des Skripts `run_summarization.py` müssen Sie das Skript `run_summarization_no_trainer.py` verwenden. Die von Accelerate unterstützten Skripte haben eine Datei `task_no_trainer.py` im Ordner. Beginnen Sie mit dem folgenden Befehl, um eine Konfigurationsdatei zu erstellen und zu speichern:
```bash
accelerate config
```
Testen Sie Ihre Einrichtung, um sicherzustellen, dass sie korrekt konfiguriert ist:
```bash
accelerate test
```
Jetzt sind Sie bereit, das Training zu starten:
```bash
accelerate launch run_summarization_no_trainer.py \
--model_name_or_path t5-small \
--dataset_name cnn_dailymail \
--dataset_config "3.0.0" \
--source_prefix "summarize: " \
--output_dir ~/tmp/tst-summarization
```
## Verwenden Sie einen benutzerdefinierten Datensatz
Das Verdichtungsskript unterstützt benutzerdefinierte Datensätze, solange es sich um eine CSV- oder JSON-Line-Datei handelt. Wenn Sie Ihren eigenen Datensatz verwenden, müssen Sie mehrere zusätzliche Argumente angeben:
- `train_file` und `validation_file` geben den Pfad zu Ihren Trainings- und Validierungsdateien an.
- text_column` ist der Eingabetext, der zusammengefasst werden soll.
- Summary_column" ist der auszugebende Zieltext.
Ein Zusammenfassungsskript, das einen benutzerdefinierten Datensatz verwendet, würde wie folgt aussehen:
```bash
python examples/pytorch/summarization/run_summarization.py \
--model_name_or_path t5-small \
--do_train \
--do_eval \
--train_file path_to_csv_or_jsonlines_file \
--validation_file path_to_csv_or_jsonlines_file \
--text_column text_column_name \
--summary_column summary_column_name \
--source_prefix "summarize: " \
--output_dir /tmp/tst-summarization \
--overwrite_output_dir \
--per_device_train_batch_size=4 \
--per_device_eval_batch_size=4 \
--predict_with_generate
```
## Testen Sie ein Skript
Es ist oft eine gute Idee, Ihr Skript an einer kleineren Anzahl von Beispielen für Datensätze auszuführen, um sicherzustellen, dass alles wie erwartet funktioniert, bevor Sie sich auf einen ganzen Datensatz festlegen, dessen Fertigstellung Stunden dauern kann. Verwenden Sie die folgenden Argumente, um den Datensatz auf eine maximale Anzahl von Stichproben zu beschränken:
- `max_train_samples`
- `max_eval_samples`
- `max_predict_samples`
```bash
python examples/pytorch/summarization/run_summarization.py \
--model_name_or_path t5-small \
--max_train_samples 50 \
--max_eval_samples 50 \
--max_predict_samples 50 \
--do_train \
--do_eval \
--dataset_name cnn_dailymail \
--dataset_config "3.0.0" \
--source_prefix "summarize: " \
--output_dir /tmp/tst-summarization \
--per_device_train_batch_size=4 \
--per_device_eval_batch_size=4 \
--overwrite_output_dir \
--predict_with_generate
```
Nicht alle Beispielskripte unterstützen das Argument `max_predict_samples`. Wenn Sie sich nicht sicher sind, ob Ihr Skript dieses Argument unterstützt, fügen Sie das Argument `-h` hinzu, um dies zu überprüfen:
```bash
examples/pytorch/summarization/run_summarization.py -h
```
## Training vom Kontrollpunkt fortsetzen
Eine weitere hilfreiche Option, die Sie aktivieren können, ist die Wiederaufnahme des Trainings von einem früheren Kontrollpunkt aus. Auf diese Weise können Sie im Falle einer Unterbrechung Ihres Trainings dort weitermachen, wo Sie aufgehört haben, ohne von vorne beginnen zu müssen. Es gibt zwei Methoden, um das Training von einem Kontrollpunkt aus wieder aufzunehmen.
Die erste Methode verwendet das Argument `output_dir previous_output_dir`, um das Training ab dem letzten in `output_dir` gespeicherten Kontrollpunkt wieder aufzunehmen. In diesem Fall sollten Sie `overwrite_output_dir` entfernen:
```bash
python examples/pytorch/summarization/run_summarization.py
--model_name_or_path t5-small \
--do_train \
--do_eval \
--dataset_name cnn_dailymail \
--dataset_config "3.0.0" \
--source_prefix "summarize: " \
--output_dir /tmp/tst-summarization \
--per_device_train_batch_size=4 \
--per_device_eval_batch_size=4 \
--output_dir previous_output_dir \
--predict_with_generate
```
Die zweite Methode verwendet das Argument `Resume_from_checkpoint path_to_specific_checkpoint`, um das Training ab einem bestimmten Checkpoint-Ordner wieder aufzunehmen.
```bash
python examples/pytorch/summarization/run_summarization.py
--model_name_or_path t5-small \
--do_train \
--do_eval \
--dataset_name cnn_dailymail \
--dataset_config "3.0.0" \
--source_prefix "summarize: " \
--output_dir /tmp/tst-summarization \
--per_device_train_batch_size=4 \
--per_device_eval_batch_size=4 \
--overwrite_output_dir \
--resume_from_checkpoint path_to_specific_checkpoint \
--predict_with_generate
```
## Teilen Sie Ihr Modell
Alle Skripte können Ihr endgültiges Modell in den [Model Hub](https://huggingface.co/models) hochladen. Stellen Sie sicher, dass Sie bei Hugging Face angemeldet sind, bevor Sie beginnen:
```bash
huggingface-cli login
```
Dann fügen Sie dem Skript das Argument `push_to_hub` hinzu. Mit diesem Argument wird ein Repository mit Ihrem Hugging Face-Benutzernamen und dem in `output_dir` angegebenen Ordnernamen erstellt.
Wenn Sie Ihrem Repository einen bestimmten Namen geben möchten, fügen Sie ihn mit dem Argument `push_to_hub_model_id` hinzu. Das Repository wird automatisch unter Ihrem Namensraum aufgeführt.
Das folgende Beispiel zeigt, wie Sie ein Modell mit einem bestimmten Repository-Namen hochladen können:
```bash
python examples/pytorch/summarization/run_summarization.py
--model_name_or_path t5-small \
--do_train \
--do_eval \
--dataset_name cnn_dailymail \
--dataset_config "3.0.0" \
--source_prefix "summarize: " \
--push_to_hub \
--push_to_hub_model_id finetuned-t5-cnn_dailymail \
--output_dir /tmp/tst-summarization \
--per_device_train_batch_size=4 \
--per_device_eval_batch_size=4 \
--overwrite_output_dir \
--predict_with_generate
```

File diff suppressed because it is too large Load Diff

View File

@ -8,10 +8,6 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Optimierung eines vortrainierten Modells

View File

@ -1,323 +0,0 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Transformers Agents
<Tip warning={true}>
Transformers Agents ist eine experimentelle API, die jederzeit geändert werden kann. Die von den Agenten zurückgegebenen Ergebnisse
zurückgegeben werden, können variieren, da sich die APIs oder die zugrunde liegenden Modelle ändern können.
</Tip>
Transformers Version v4.29.0, die auf dem Konzept von *Tools* und *Agenten* aufbaut. Sie können damit spielen in
[dieses Colab](https://colab.research.google.com/drive/1c7MHD-T1forUPGcC_jlwsIptOzpG3hSj).
Kurz gesagt, es bietet eine API für natürliche Sprache auf der Grundlage von Transformers: Wir definieren eine Reihe von kuratierten Tools und entwerfen einen
Agenten, um natürliche Sprache zu interpretieren und diese Werkzeuge zu verwenden. Es ist von vornherein erweiterbar; wir haben einige relevante Tools kuratiert,
aber wir werden Ihnen zeigen, wie das System einfach erweitert werden kann, um jedes von der Community entwickelte Tool zu verwenden.
Beginnen wir mit einigen Beispielen dafür, was mit dieser neuen API erreicht werden kann. Sie ist besonders leistungsfähig, wenn es um
Sie ist besonders leistungsstark, wenn es um multimodale Aufgaben geht. Lassen Sie uns also eine Runde drehen, um Bilder zu erzeugen und Text vorzulesen.
```py
agent.run("Caption the following image", image=image)
```
| **Input** | **Output** |
|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/beaver.png" width=200> | A beaver is swimming in the water |
---
```py
agent.run("Read the following text out loud", text=text)
```
| **Input** | **Output** |
|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| A beaver is swimming in the water | <audio controls><source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tts_example.wav" type="audio/wav"> your browser does not support the audio element. </audio>
---
```py
agent.run(
"In the following `document`, where will the TRRF Scientific Advisory Council Meeting take place?",
document=document,
)
```
| **Input** | **Output** |
|-----------------------------------------------------------------------------------------------------------------------------|----------------|
| <img src="https://datasets-server.huggingface.co/assets/hf-internal-testing/example-documents/--/hf-internal-testing--example-documents/test/0/image/image.jpg" width=200> | ballroom foyer |
## Schnellstart
Bevor Sie `agent.run` verwenden können, müssen Sie einen Agenten instanziieren, der ein großes Sprachmodell (LLM) ist.
Wir bieten Unterstützung für openAI-Modelle sowie für OpenSource-Alternativen von BigCode und OpenAssistant. Die openAI
Modelle sind leistungsfähiger (erfordern aber einen openAI-API-Schlüssel, können also nicht kostenlos verwendet werden); Hugging Face
bietet kostenlosen Zugang zu Endpunkten für BigCode- und OpenAssistant-Modelle.
To start with, please install the `agents` extras in order to install all default dependencies.
```bash
pip install transformers[agents]
```
Um openAI-Modelle zu verwenden, instanziieren Sie einen [`OpenAiAgent`], nachdem Sie die `openai`-Abhängigkeit installiert haben:
```bash
pip install openai
```
```py
from transformers import OpenAiAgent
agent = OpenAiAgent(model="text-davinci-003", api_key="<your_api_key>")
```
Um BigCode oder OpenAssistant zu verwenden, melden Sie sich zunächst an, um Zugriff auf die Inference API zu erhalten:
```py
from huggingface_hub import login
login("<YOUR_TOKEN>")
```
Dann instanziieren Sie den Agenten
```py
from transformers import HfAgent
# Starcoder
agent = HfAgent("https://api-inference.huggingface.co/models/bigcode/starcoder")
# StarcoderBase
# agent = HfAgent("https://api-inference.huggingface.co/models/bigcode/starcoderbase")
# OpenAssistant
# agent = HfAgent(url_endpoint="https://api-inference.huggingface.co/models/OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5")
```
Dies geschieht mit der Inferenz-API, die Hugging Face derzeit kostenlos zur Verfügung stellt. Wenn Sie Ihren eigenen Inferenz
Endpunkt für dieses Modell (oder einen anderen) haben, können Sie die obige URL durch Ihren URL-Endpunkt ersetzen.
<Tip>
StarCoder und OpenAssistant sind kostenlos und leisten bei einfachen Aufgaben bewundernswert gute Arbeit. Allerdings halten die Kontrollpunkte
nicht, wenn es um komplexere Aufforderungen geht. Wenn Sie mit einem solchen Problem konfrontiert sind, empfehlen wir Ihnen, das OpenAI
Modell auszuprobieren, das zwar leider nicht quelloffen ist, aber zur Zeit eine bessere Leistung erbringt.
</Tip>
Sie sind jetzt startklar! Lassen Sie uns in die beiden APIs eintauchen, die Ihnen jetzt zur Verfügung stehen.
### Einzelne Ausführung (run)
Die Methode der einmaligen Ausführung ist die Verwendung der [`~Agent.run`] Methode des Agenten:
```py
agent.run("Draw me a picture of rivers and lakes.")
```
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rivers_and_lakes.png" width=200>
Es wählt automatisch das (oder die) Werkzeug(e) aus, das (die) für die von Ihnen gewünschte Aufgabe geeignet ist (sind) und führt es (sie) entsprechend aus. Es
kann eine oder mehrere Aufgaben in der gleichen Anweisung ausführen (je komplexer Ihre Anweisung ist, desto wahrscheinlicher ist ein
der Agent scheitern).
```py
agent.run("Draw me a picture of the sea then transform the picture to add an island")
```
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/sea_and_island.png" width=200>
<br/>
Jede [`~Agent.run`] Operation ist unabhängig, so dass Sie sie mehrmals hintereinander mit unterschiedlichen Aufgaben ausführen können.
Beachten Sie, dass Ihr `Agent` nur ein großsprachiges Modell ist, so dass kleine Variationen in Ihrer Eingabeaufforderung völlig unterschiedliche Ergebnisse liefern können.
unterschiedliche Ergebnisse liefern. Es ist wichtig, dass Sie die Aufgabe, die Sie ausführen möchten, so genau wie möglich erklären. Wir gehen noch weiter ins Detail
wie man gute Prompts schreibt [hier](custom_tools#writing-good-user-inputs).
Wenn Sie einen Status über Ausführungszeiten hinweg beibehalten oder dem Agenten Nicht-Text-Objekte übergeben möchten, können Sie dies tun, indem Sie
Variablen, die der Agent verwenden soll. Sie könnten zum Beispiel das erste Bild von Flüssen und Seen erzeugen,
und das Modell bitten, dieses Bild zu aktualisieren und eine Insel hinzuzufügen, indem Sie Folgendes tun:
```python
picture = agent.run("Generate a picture of rivers and lakes.")
updated_picture = agent.run("Transform the image in `picture` to add an island to it.", picture=picture)
```
<Tip>
Dies kann hilfreich sein, wenn das Modell Ihre Anfrage nicht verstehen kann und die Werkzeuge verwechselt. Ein Beispiel wäre:
```py
agent.run("Draw me the picture of a capybara swimming in the sea")
```
Hier könnte das Modell auf zwei Arten interpretieren:
- Die Funktion `Text-zu-Bild` erzeugt ein Wasserschwein, das im Meer schwimmt.
- Oder Sie lassen das `Text-zu-Bild` ein Wasserschwein erzeugen und verwenden dann das Werkzeug `Bildtransformation`, um es im Meer schwimmen zu lassen.
Falls Sie das erste Szenario erzwingen möchten, können Sie dies tun, indem Sie die Eingabeaufforderung als Argument übergeben:
```py
agent.run("Draw me a picture of the `prompt`", prompt="a capybara swimming in the sea")
```
</Tip>
### Chat-basierte Ausführung (Chat)
Der Agent verfügt auch über einen Chat-basierten Ansatz, der die Methode [`~Agent.chat`] verwendet:
```py
agent.chat("Generate a picture of rivers and lakes")
```
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rivers_and_lakes.png" width=200>
```py
agent.chat("Transform the picture so that there is a rock in there")
```
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rivers_and_lakes_and_beaver.png" width=200>
<br/>
Dies ist ein interessanter Ansatz, wenn Sie den Zustand über Anweisungen hinweg beibehalten möchten. Er ist besser für Experimente geeignet,
eignet sich aber eher für einzelne Anweisungen als für komplexe Anweisungen (die die [`~Agent.run`]
Methode besser verarbeiten kann).
Diese Methode kann auch Argumente entgegennehmen, wenn Sie Nicht-Text-Typen oder bestimmte Aufforderungen übergeben möchten.
### ⚠️ Fernausführung
Zu Demonstrationszwecken und damit es mit allen Setups verwendet werden kann, haben wir Remote-Executors für mehrere
der Standard-Tools erstellt, auf die der Agent in dieser Version Zugriff hat. Diese werden erstellt mit
[inference endpoints](https://huggingface.co/inference-endpoints).
Wir haben diese vorerst deaktiviert, aber um zu sehen, wie Sie selbst Remote Executors Tools einrichten können,
empfehlen wir die Lektüre des [custom tool guide](./custom_tools).
### Was passiert hier? Was sind Tools und was sind Agenten?
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/diagram.png">
#### Agenten
Der "Agent" ist hier ein großes Sprachmodell, das wir auffordern, Zugang zu einem bestimmten Satz von Tools zu erhalten.
LLMs sind ziemlich gut darin, kleine Codeproben zu erzeugen. Diese API macht sich das zunutze, indem sie das
LLM ein kleines Codebeispiel gibt, das eine Aufgabe mit einer Reihe von Werkzeugen ausführt. Diese Aufforderung wird dann ergänzt durch die
Aufgabe, die Sie Ihrem Agenten geben, und die Beschreibung der Werkzeuge, die Sie ihm geben. Auf diese Weise erhält er Zugriff auf die Dokumentation der
Tools, insbesondere die erwarteten Eingaben und Ausgaben, und kann den entsprechenden Code generieren.
#### Tools
Tools sind sehr einfach: Sie bestehen aus einer einzigen Funktion mit einem Namen und einer Beschreibung. Wir verwenden dann die Beschreibungen dieser Tools
um den Agenten aufzufordern. Anhand der Eingabeaufforderung zeigen wir dem Agenten, wie er die Tools nutzen kann, um das zu tun, was in der
in der Abfrage angefordert wurde.
Dies geschieht mit brandneuen Tools und nicht mit Pipelines, denn der Agent schreibt besseren Code mit sehr atomaren Tools.
Pipelines sind stärker refaktorisiert und fassen oft mehrere Aufgaben in einer einzigen zusammen. Tools sind dafür gedacht, sich auf
eine einzige, sehr einfache Aufgabe konzentrieren.
#### Code-Ausführung?!
Dieser Code wird dann mit unserem kleinen Python-Interpreter auf den mit Ihren Tools übergebenen Eingaben ausgeführt.
Wir hören Sie schon schreien "Willkürliche Codeausführung!", aber lassen Sie uns erklären, warum das nicht der Fall ist.
Die einzigen Funktionen, die aufgerufen werden können, sind die von Ihnen zur Verfügung gestellten Tools und die Druckfunktion, so dass Sie bereits eingeschränkt sind
eingeschränkt, was ausgeführt werden kann. Sie sollten sicher sein, wenn es sich auf die Werkzeuge für das Umarmungsgesicht beschränkt.
Dann lassen wir keine Attributsuche oder Importe zu (die ohnehin nicht benötigt werden, um die
Inputs/Outputs an eine kleine Gruppe von Funktionen), so dass alle offensichtlichen Angriffe (und Sie müssten den LLM
dazu auffordern, sie auszugeben) kein Problem darstellen sollten. Wenn Sie auf Nummer sicher gehen wollen, können Sie die
run()-Methode mit dem zusätzlichen Argument return_code=True ausführen. In diesem Fall gibt der Agent nur den auszuführenden Code
zur Ausführung zurück und Sie können entscheiden, ob Sie ihn ausführen möchten oder nicht.
Die Ausführung bricht bei jeder Zeile ab, in der versucht wird, eine illegale Operation auszuführen, oder wenn ein regulärer Python-Fehler
mit dem vom Agenten generierten Code.
### Ein kuratierter Satz von Tools
Wir haben eine Reihe von Tools identifiziert, die solche Agenten unterstützen können. Hier ist eine aktualisierte Liste der Tools, die wir integriert haben
in `transformers` integriert haben:
- **Beantwortung von Fragen zu Dokumenten**: Beantworten Sie anhand eines Dokuments (z.B. PDF) im Bildformat eine Frage zu diesem Dokument ([Donut](./model_doc/donut))
- Beantworten von Textfragen**: Geben Sie einen langen Text und eine Frage an, beantworten Sie die Frage im Text ([Flan-T5](./model_doc/flan-t5))
- **Unbedingte Bildunterschriften**: Beschriften Sie das Bild! ([BLIP](./model_doc/blip))
- **Bildfragebeantwortung**: Beantworten Sie bei einem Bild eine Frage zu diesem Bild ([VILT](./model_doc/vilt))
- **Bildsegmentierung**: Geben Sie ein Bild und einen Prompt an und geben Sie die Segmentierungsmaske dieses Prompts aus ([CLIPSeg](./model_doc/clipseg))
- **Sprache in Text**: Geben Sie eine Audioaufnahme einer sprechenden Person an und transkribieren Sie die Sprache in Text ([Whisper](./model_doc/whisper))
- **Text in Sprache**: wandelt Text in Sprache um ([SpeechT5](./model_doc/speecht5))
- **Zero-Shot-Textklassifizierung**: Ermitteln Sie anhand eines Textes und einer Liste von Bezeichnungen, welcher Bezeichnung der Text am ehesten entspricht ([BART](./model_doc/bart))
- **Textzusammenfassung**: fassen Sie einen langen Text in einem oder wenigen Sätzen zusammen ([BART](./model_doc/bart))
- **Übersetzung**: Übersetzen des Textes in eine bestimmte Sprache ([NLLB](./model_doc/nllb))
Diese Tools sind in Transformatoren integriert und können auch manuell verwendet werden, zum Beispiel:
```py
from transformers import load_tool
tool = load_tool("text-to-speech")
audio = tool("This is a text to speech tool")
```
### Benutzerdefinierte Tools
Wir haben zwar eine Reihe von Tools identifiziert, sind aber der festen Überzeugung, dass der Hauptwert dieser Implementierung darin besteht
die Möglichkeit, benutzerdefinierte Tools schnell zu erstellen und weiterzugeben.
Indem Sie den Code eines Tools in einen Hugging Face Space oder ein Modell-Repository stellen, können Sie das Tool
direkt mit dem Agenten nutzen. Wir haben ein paar neue Funktionen hinzugefügt
**transformers-agnostic** Tools zur [`huggingface-tools` Organisation](https://huggingface.co/huggingface-tools) hinzugefügt:
- **Text-Downloader**: zum Herunterladen eines Textes von einer Web-URL
- **Text zu Bild**: erzeugt ein Bild nach einer Eingabeaufforderung und nutzt dabei stabile Diffusion
- **Bildtransformation**: verändert ein Bild anhand eines Ausgangsbildes und einer Eingabeaufforderung, unter Ausnutzung der stabilen pix2pix-Diffusion
- **Text zu Video**: Erzeugen eines kleinen Videos nach einer Eingabeaufforderung, unter Verwendung von damo-vilab
Das Text-zu-Bild-Tool, das wir von Anfang an verwendet haben, ist ein Remote-Tool, das sich in
[*huggingface-tools/text-to-image*](https://huggingface.co/spaces/huggingface-tools/text-to-image)! Wir werden
weiterhin solche Tools für diese und andere Organisationen veröffentlichen, um diese Implementierung weiter zu verbessern.
Die Agenten haben standardmäßig Zugriff auf die Tools, die sich auf [*huggingface-tools*](https://huggingface.co/huggingface-tools) befinden.
Wie Sie Ihre eigenen Tools schreiben und freigeben können und wie Sie jedes benutzerdefinierte Tool, das sich auf dem Hub befindet, nutzen können, erklären wir in [folgender Anleitung](custom_tools).
### Code-Erzeugung
Bisher haben wir gezeigt, wie Sie die Agenten nutzen können, um Aktionen für Sie durchzuführen. Der Agent generiert jedoch nur Code
den wir dann mit einem sehr eingeschränkten Python-Interpreter ausführen. Falls Sie den generierten Code in einer anderen Umgebung verwenden möchten
einer anderen Umgebung verwenden möchten, können Sie den Agenten auffordern, den Code zusammen mit einer Tooldefinition und genauen Importen zurückzugeben.
Zum Beispiel die folgende Anweisung
```python
agent.run("Draw me a picture of rivers and lakes", return_code=True)
```
gibt den folgenden Code zurück
```python
from transformers import load_tool
image_generator = load_tool("huggingface-tools/text-to-image")
image = image_generator(prompt="rivers and lakes")
```
die Sie dann selbst ändern und ausführen können.

View File

@ -1,3 +0,0 @@
# Optimizing inference
perf_infer_gpu_many: perf_infer_gpu_one

View File

@ -19,169 +19,144 @@
title: Train with a script
- local: accelerate
title: Set up distributed training with 🤗 Accelerate
- local: peft
title: Load and train adapters with 🤗 PEFT
- local: model_sharing
title: Share your model
- local: transformers_agents
title: Agents
- local: llm_tutorial
title: Generation with LLMs
title: Tutorials
- sections:
- isExpanded: false
sections:
- local: tasks/sequence_classification
title: Text classification
- local: tasks/token_classification
title: Token classification
- local: tasks/question_answering
title: Question answering
- local: tasks/language_modeling
title: Causal language modeling
- local: tasks/masked_language_modeling
title: Masked language modeling
- local: tasks/translation
title: Translation
- local: tasks/summarization
title: Summarization
- local: tasks/multiple_choice
title: Multiple choice
- sections:
- local: tasks/sequence_classification
title: Text classification
- local: tasks/token_classification
title: Token classification
- local: tasks/question_answering
title: Question answering
- local: tasks/language_modeling
title: Causal language modeling
- local: tasks/masked_language_modeling
title: Masked language modeling
- local: tasks/translation
title: Translation
- local: tasks/summarization
title: Summarization
- local: tasks/multiple_choice
title: Multiple choice
title: Natural Language Processing
- isExpanded: false
sections:
- local: tasks/audio_classification
title: Audio classification
- local: tasks/asr
title: Automatic speech recognition
isExpanded: false
- sections:
- local: tasks/audio_classification
title: Audio classification
- local: tasks/asr
title: Automatic speech recognition
title: Audio
- isExpanded: false
sections:
- local: tasks/image_classification
title: Image classification
- local: tasks/semantic_segmentation
title: Semantic segmentation
- local: tasks/video_classification
title: Video classification
- local: tasks/object_detection
title: Object detection
- local: tasks/zero_shot_object_detection
title: Zero-shot object detection
- local: tasks/zero_shot_image_classification
title: Zero-shot image classification
- local: tasks/monocular_depth_estimation
title: Depth estimation
- local: tasks/image_to_image
title: Image-to-Image
- local: tasks/knowledge_distillation_for_image_classification
title: Knowledge Distillation for Computer Vision
isExpanded: false
- sections:
- local: tasks/image_classification
title: Image classification
- local: tasks/semantic_segmentation
title: Semantic segmentation
- local: tasks/video_classification
title: Video classification
- local: tasks/object_detection
title: Object detection
- local: tasks/zero_shot_object_detection
title: Zero-shot object detection
- local: tasks/zero_shot_image_classification
title: Zero-shot image classification
- local: tasks/monocular_depth_estimation
title: Depth estimation
title: Computer Vision
- isExpanded: false
sections:
- local: tasks/image_captioning
title: Image captioning
- local: tasks/document_question_answering
title: Document Question Answering
- local: tasks/visual_question_answering
title: Visual Question Answering
- local: tasks/text-to-speech
title: Text to speech
isExpanded: false
- sections:
- local: tasks/image_captioning
title: Image captioning
- local: tasks/document_question_answering
title: Document Question Answering
- local: tasks/text-to-speech
title: Text to speech
title: Multimodal
- isExpanded: false
sections:
- local: generation_strategies
title: Customize the generation strategy
title: Generation
- isExpanded: false
sections:
- local: tasks/idefics
title: Image tasks with IDEFICS
- local: tasks/prompting
title: LLM prompting guide
title: Prompting
isExpanded: false
title: Task Guides
- sections:
- local: fast_tokenizers
title: Use fast tokenizers from 🤗 Tokenizers
- local: multilingual
title: Run inference with multilingual models
- local: create_a_model
title: Use model-specific APIs
- local: custom_models
title: Share a custom model
- local: chat_templating
title: Templates for chat models
- local: sagemaker
title: Run training on Amazon SageMaker
- local: serialization
title: Export to ONNX
- local: tflite
title: Export to TFLite
- local: torchscript
title: Export to TorchScript
- local: benchmarks
title: Benchmarks
- local: notebooks
title: Notebooks with examples
- local: community
title: Community resources
- local: custom_tools
title: Custom Tools and Prompts
- local: troubleshooting
title: Troubleshoot
- local: fast_tokenizers
title: Use fast tokenizers from 🤗 Tokenizers
- local: multilingual
title: Run inference with multilingual models
- local: generation_strategies
title: Customize text generation strategy
- local: create_a_model
title: Use model-specific APIs
- local: custom_models
title: Share a custom model
- local: sagemaker
title: Run training on Amazon SageMaker
- local: serialization
title: Export to ONNX
- local: torchscript
title: Export to TorchScript
- local: benchmarks
title: Benchmarks
- local: notebooks
title: Notebooks with examples
- local: community
title: Community resources
- local: custom_tools
title: Custom Tools and Prompts
- local: troubleshooting
title: Troubleshoot
title: Developer guides
- sections:
- local: performance
title: Overview
- sections:
- local: performance
title: Overview
- local: perf_train_gpu_one
title: Methods and tools for efficient training on a single GPU
title: Training on one GPU
- local: perf_train_gpu_many
title: Multiple GPUs and parallelism
title: Training on many GPUs
- local: perf_train_cpu
title: Efficient training on CPU
title: Training on CPU
- local: perf_train_cpu_many
title: Distributed CPU training
title: Training on many CPUs
- local: perf_train_tpu
title: Training on TPUs
- local: perf_train_tpu_tf
title: Training on TPU with TensorFlow
- local: perf_train_special
title: Training on Specialized Hardware
- local: perf_infer_cpu
title: Inference on CPU
- local: perf_infer_gpu_one
title: Inference on one GPU
- local: perf_infer_gpu_many
title: Inference on many GPUs
- local: perf_infer_special
title: Inference on Specialized Hardware
- local: perf_hardware
title: Custom hardware for training
- local: big_models
title: Instantiating a big model
- local: debugging
title: Debugging
- local: hpo_train
title: Hyperparameter Search using Trainer API
title: Efficient training techniques
- sections:
- local: perf_infer_cpu
title: CPU inference
- local: perf_infer_gpu_one
title: GPU inference
title: Optimizing inference
- local: big_models
title: Instantiating a big model
- local: debugging
title: Troubleshooting
- local: tf_xla
title: XLA Integration for TensorFlow Models
- local: perf_torch_compile
title: Optimize inference using `torch.compile()`
- local: tf_xla
title: XLA Integration for TensorFlow Models
title: Performance and scalability
- sections:
- local: contributing
title: How to contribute to transformers?
- local: add_new_model
title: How to add a model to 🤗 Transformers?
- local: add_tensorflow_model
title: How to convert a 🤗 Transformers model to TensorFlow?
- local: add_new_pipeline
title: How to add a pipeline to 🤗 Transformers?
- local: testing
title: Testing
- local: pr_checks
title: Checks on a Pull Request
- local: contributing
title: How to contribute to transformers?
- local: add_new_model
title: How to add a model to 🤗 Transformers?
- local: add_tensorflow_model
title: How to convert a 🤗 Transformers model to TensorFlow?
- local: add_new_pipeline
title: How to add a pipeline to 🤗 Transformers?
- local: testing
title: Testing
- local: pr_checks
title: Checks on a Pull Request
title: Contribute
- sections:
- local: philosophy
title: Philosophy
@ -205,10 +180,6 @@
title: Perplexity of fixed-length models
- local: pipeline_webserver
title: Pipelines for webserver inference
- local: model_memory_anatomy
title: Model training anatomy
- local: llm_tutorial_optimization
title: Getting the most out of LLMs
title: Conceptual guides
- sections:
- sections:
@ -294,8 +265,6 @@
title: CANINE
- local: model_doc/codegen
title: CodeGen
- local: model_doc/code_llama
title: CodeLlama
- local: model_doc/convbert
title: ConvBERT
- local: model_doc/cpm
@ -324,8 +293,6 @@
title: ErnieM
- local: model_doc/esm
title: ESM
- local: model_doc/falcon
title: Falcon
- local: model_doc/flan-t5
title: FLAN-T5
- local: model_doc/flan-ul2
@ -338,8 +305,6 @@
title: FSMT
- local: model_doc/funnel
title: Funnel Transformer
- local: model_doc/fuyu
title: Fuyu
- local: model_doc/openai-gpt
title: GPT
- local: model_doc/gpt_neo
@ -368,8 +333,6 @@
title: LED
- local: model_doc/llama
title: LLaMA
- local: model_doc/llama2
title: Llama2
- local: model_doc/longformer
title: Longformer
- local: model_doc/longt5
@ -390,18 +353,12 @@
title: MegatronBERT
- local: model_doc/megatron_gpt2
title: MegatronGPT2
- local: model_doc/mistral
title: Mistral
- local: model_doc/mluke
title: mLUKE
- local: model_doc/mobilebert
title: MobileBERT
- local: model_doc/mpnet
title: MPNet
- local: model_doc/mpt
title: MPT
- local: model_doc/mra
title: MRA
- local: model_doc/mt5
title: MT5
- local: model_doc/mvp
@ -422,8 +379,6 @@
title: Pegasus
- local: model_doc/pegasus_x
title: PEGASUS-X
- local: model_doc/persimmon
title: Persimmon
- local: model_doc/phobert
title: PhoBERT
- local: model_doc/plbart
@ -468,8 +423,6 @@
title: Transformer XL
- local: model_doc/ul2
title: UL2
- local: model_doc/umt5
title: UMT5
- local: model_doc/xmod
title: X-MOD
- local: model_doc/xglm
@ -513,8 +466,6 @@
title: DETR
- local: model_doc/dinat
title: DiNAT
- local: model_doc/dinov2
title: DINOV2
- local: model_doc/dit
title: DiT
- local: model_doc/dpt
@ -541,14 +492,10 @@
title: MobileNetV2
- local: model_doc/mobilevit
title: MobileViT
- local: model_doc/mobilevitv2
title: MobileViTV2
- local: model_doc/nat
title: NAT
- local: model_doc/poolformer
title: PoolFormer
- local: model_doc/pvt
title: Pyramid Vision Transformer (PVT)
- local: model_doc/regnet
title: RegNet
- local: model_doc/resnet
@ -577,16 +524,10 @@
title: Vision Transformer (ViT)
- local: model_doc/vit_hybrid
title: ViT Hybrid
- local: model_doc/vitdet
title: ViTDet
- local: model_doc/vit_mae
title: ViTMAE
- local: model_doc/vitmatte
title: ViTMatte
- local: model_doc/vit_msn
title: ViTMSN
- local: model_doc/vivit
title: ViViT
- local: model_doc/yolos
title: YOLOS
title: Vision models
@ -594,24 +535,12 @@
sections:
- local: model_doc/audio-spectrogram-transformer
title: Audio Spectrogram Transformer
- local: model_doc/bark
title: Bark
- local: model_doc/clap
title: CLAP
- local: model_doc/encodec
title: EnCodec
- local: model_doc/hubert
title: Hubert
- local: model_doc/mctct
title: MCTCT
- local: model_doc/mms
title: MMS
- local: model_doc/musicgen
title: MusicGen
- local: model_doc/pop2piano
title: Pop2Piano
- local: model_doc/seamless_m4t
title: Seamless-M4T
- local: model_doc/sew
title: SEW
- local: model_doc/sew-d
@ -626,8 +555,6 @@
title: UniSpeech
- local: model_doc/unispeech-sat
title: UniSpeech-SAT
- local: model_doc/vits
title: VITS
- local: model_doc/wav2vec2
title: Wav2Vec2
- local: model_doc/wav2vec2-conformer
@ -655,8 +582,6 @@
title: BLIP-2
- local: model_doc/bridgetower
title: BridgeTower
- local: model_doc/bros
title: BROS
- local: model_doc/chinese_clip
title: Chinese-CLIP
- local: model_doc/clip
@ -675,12 +600,6 @@
title: GIT
- local: model_doc/groupvit
title: GroupViT
- local: model_doc/idefics
title: IDEFICS
- local: model_doc/instructblip
title: InstructBLIP
- local: model_doc/kosmos-2
title: KOSMOS-2
- local: model_doc/layoutlm
title: LayoutLM
- local: model_doc/layoutlmv2
@ -697,14 +616,10 @@
title: MatCha
- local: model_doc/mgp-str
title: MGP-STR
- local: model_doc/nougat
title: Nougat
- local: model_doc/oneformer
title: OneFormer
- local: model_doc/owlvit
title: OWL-ViT
- local: model_doc/owlv2
title: OWLv2
- local: model_doc/perceiver
title: Perceiver
- local: model_doc/pix2struct
@ -739,8 +654,6 @@
title: Reinforcement learning models
- isExpanded: false
sections:
- local: model_doc/autoformer
title: Autoformer
- local: model_doc/informer
title: Informer
- local: model_doc/time_series_transformer

View File

@ -8,10 +8,6 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Distributed training with 🤗 Accelerate
@ -133,4 +129,4 @@ accelerate launch train.py
>>> notebook_launcher(training_function)
```
For more information about 🤗 Accelerate and its rich features, refer to the [documentation](https://huggingface.co/docs/accelerate).
For more information about 🤗 Accelerate and it's rich features, refer to the [documentation](https://huggingface.co/docs/accelerate).

View File

@ -7,10 +7,6 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# How to add a model to 🤗 Transformers?
@ -52,7 +48,7 @@ A good first starting point to better understand the library is to read the [doc
In our opinion, the library's code is not just a means to provide a product, *e.g.* the ability to use BERT for
inference, but also as the very product that we want to improve. Hence, when adding a model, the user is not only the
person who will use your model, but also everybody who will read, try to understand, and possibly tweak your code.
person that will use your model, but also everybody that will read, try to understand, and possibly tweak your code.
With this in mind, let's go a bit deeper into the general library design.
@ -101,7 +97,7 @@ own regarding how code should be written :-)
1. The forward pass of your model should be fully written in the modeling file while being fully independent of other
models in the library. If you want to reuse a block from another model, copy the code and paste it with a
`# Copied from` comment on top (see [here](https://github.com/huggingface/transformers/blob/v4.17.0/src/transformers/models/roberta/modeling_roberta.py#L160)
for a good example and [there](pr_checks#check-copies) for more documentation on Copied from).
for a good example).
2. The code should be fully understandable, even by a non-native English speaker. This means you should pick
descriptive variable names and avoid abbreviations. As an example, `activation` is preferred to `act`.
One-letter variable names are strongly discouraged unless it's an index in a for loop.
@ -131,9 +127,9 @@ From experience, we can tell you that the most important things to keep in mind
friends. Note that it might very well happen that your model's tokenizer is based on one model implementation, and
your model's modeling code on another one. *E.g.* FSMT's modeling code is based on BART, while FSMT's tokenizer code
is based on XLM.
- It's more of an engineering challenge than a scientific challenge. You should spend more time creating an
efficient debugging environment rather than trying to understand all theoretical aspects of the model in the paper.
- Ask for help, when you're stuck! Models are the core component of 🤗 Transformers so we at Hugging Face are more
- It's more of an engineering challenge than a scientific challenge. You should spend more time on creating an
efficient debugging environment than trying to understand all theoretical aspects of the model in the paper.
- Ask for help, when you're stuck! Models are the core component of 🤗 Transformers so that we at Hugging Face are more
than happy to help you at every step to add your model. Don't hesitate to ask if you notice you are not making
progress.
@ -157,9 +153,9 @@ List:
☐ Submitted the pull request<br>
☐ (Optional) Added a demo notebook
To begin with, we usually recommend starting by getting a good theoretical understanding of `BrandNewBert`. However,
To begin with, we usually recommend to start by getting a good theoretical understanding of `BrandNewBert`. However,
if you prefer to understand the theoretical aspects of the model *on-the-job*, then it is totally fine to directly dive
into the `BrandNewBert`'s code-base. This option might suit you better if your engineering skills are better than
into the `BrandNewBert`'s code-base. This option might suit you better, if your engineering skills are better than
your theoretical skill, if you have trouble understanding `BrandNewBert`'s paper, or if you just enjoy programming
much more than reading scientific papers.
@ -175,7 +171,7 @@ theoretical aspects, but rather focus on the practical ones, namely:
encoder-decoder model? Look at the [model_summary](model_summary) if you're not familiar with the differences between those.
- What are the applications of *brand_new_bert*? Text classification? Text generation? Seq2Seq tasks, *e.g.,*
summarization?
- What is the novel feature of the model that makes it different from BERT/GPT-2/BART?
- What is the novel feature of the model making it different from BERT/GPT-2/BART?
- Which of the already existing [🤗 Transformers models](https://huggingface.co/transformers/#contents) is most
similar to *brand_new_bert*?
- What type of tokenizer is used? A sentencepiece tokenizer? Word piece tokenizer? Is it the same tokenizer as used
@ -261,7 +257,7 @@ figure out the following:
- How can you debug the model in the original environment of the repo? Do you have to add *print* statements, can you
work with an interactive debugger like *ipdb*, or should you use an efficient IDE to debug the model, like PyCharm?
It is very important that before you start the porting process, you can **efficiently** debug code in the original
It is very important that before you start the porting process, that you can **efficiently** debug code in the original
repository! Also, remember that you are working with an open-source library, so do not hesitate to open an issue, or
even a pull request in the original repository. The maintainers of this repository are most likely very happy about
someone looking into their code!
@ -280,10 +276,10 @@ In general, there are two possible debugging environments for running the origin
Jupyter notebooks have the advantage that they allow for cell-by-cell execution which can be helpful to better split
logical components from one another and to have faster debugging cycles as intermediate results can be stored. Also,
notebooks are often easier to share with other contributors, which might be very helpful if you want to ask the Hugging
Face team for help. If you are familiar with Jupyter notebooks, we strongly recommend you work with them.
Face team for help. If you are familiar with Jupyter notebooks, we strongly recommend you to work with them.
The obvious disadvantage of Jupyter notebooks is that if you are not used to working with them you will have to spend
some time adjusting to the new programming environment and you might not be able to use your known debugging tools
some time adjusting to the new programming environment and that you might not be able to use your known debugging tools
anymore, like `ipdb`.
For each code-base, a good first step is always to load a **small** pretrained checkpoint and to be able to reproduce a
@ -329,7 +325,7 @@ example is [T5's MeshTensorFlow](https://github.com/tensorflow/mesh/tree/master/
very complex and does not offer a simple way to decompose the model into its sub-components. For such libraries, one
often relies on verifying print statements.
No matter which strategy you choose, the recommended procedure is often the same that you should start to debug the
No matter which strategy you choose, the recommended procedure is often the same in that you should start to debug the
starting layers first and the ending layers last.
It is recommended that you retrieve the output, either by print statements or sub-component functions, of the following
@ -361,10 +357,10 @@ We expect that every model added to 🤗 Transformers passes a couple of integra
model and the reimplemented version in 🤗 Transformers have to give the exact same output up to a precision of 0.001!
Since it is normal that the exact same model written in different libraries can give a slightly different output
depending on the library framework, we accept an error tolerance of 1e-3 (0.001). It is not enough if the model gives
nearly the same output, they have to be almost identical. Therefore, you will certainly compare the intermediate
nearly the same output, they have to be the almost identical. Therefore, you will certainly compare the intermediate
outputs of the 🤗 Transformers version multiple times against the intermediate outputs of the original implementation of
*brand_new_bert* in which case an **efficient** debugging environment of the original repository is absolutely
important. Here is some advice to make your debugging environment as efficient as possible.
important. Here is some advice is to make your debugging environment as efficient as possible.
- Find the best way of debugging intermediate results. Is the original repository written in PyTorch? Then you should
probably take the time to write a longer script that decomposes the original model into smaller sub-components to
@ -409,7 +405,7 @@ Otherwise, let's start generating a new model. You have two choices here:
- `transformers-cli add-new-model-like` to add a new model like an existing one
- `transformers-cli add-new-model` to add a new model from our template (will look like BERT or Bart depending on the type of model you select)
In both cases, you will be prompted with a questionnaire to fill in the basic information of your model. The second command requires to install `cookiecutter`, you can find more information on it [here](https://github.com/huggingface/transformers/tree/main/templates/adding_a_new_model).
In both cases, you will be prompted with a questionnaire to fill the basic information of your model. The second command requires to install `cookiecutter`, you can find more information on it [here](https://github.com/huggingface/transformers/tree/main/templates/adding_a_new_model).
**Open a Pull Request on the main huggingface/transformers repo**
@ -451,7 +447,7 @@ git push -u origin a-descriptive-name-for-my-changes
6. Change the PR into a draft by clicking on “Convert to draft” on the right of the GitHub pull request web page.
In the following, whenever you have made some progress, don't forget to commit your work and push it to your account so
In the following, whenever you have done some progress, don't forget to commit your work and push it to your account so
that it shows in the pull request. Additionally, you should make sure to update your work with the current main from
time to time by doing:
@ -483,7 +479,7 @@ Now you can finally start coding :). The generated code in
`src/transformers/models/brand_new_bert/modeling_brand_new_bert.py` will either have the same architecture as BERT if
it's an encoder-only model or BART if it's an encoder-decoder model. At this point, you should remind yourself what
you've learned in the beginning about the theoretical aspects of the model: *How is the model different from BERT or
BART?*". Implement those changes which often means changing the *self-attention* layer, the order of the normalization
BART?*". Implement those changes which often means to change the *self-attention* layer, the order of the normalization
layer, etc… Again, it is often useful to look at the similar architecture of already existing models in Transformers to
get a better feeling of how your model should be implemented.
@ -665,7 +661,7 @@ PyTorch's implementation of a layer requires the weight to be transposed beforeh
Finally, you should also check that **all** required weights are initialized and print out all checkpoint weights that
were not used for initialization to make sure the model is correctly converted. It is completely normal, that the
conversion trials fail with either a wrong shape statement or a wrong name assignment. This is most likely because either
conversion trials fail with either a wrong shape statement or wrong name assignment. This is most likely because either
you used incorrect parameters in `BrandNewBertConfig()`, have a wrong architecture in the 🤗 Transformers
implementation, you have a bug in the `init()` functions of one of the components of the 🤗 Transformers
implementation or you need to transpose one of the checkpoint weights.
@ -722,7 +718,7 @@ in the 🤗 Transformers implementation. From our experience, a simple and effic
in both the original implementation and 🤗 Transformers implementation, at the same positions in the network
respectively, and to successively remove print statements showing the same values for intermediate presentations.
When you're confident that both implementations yield the same output, verify the outputs with
When you're confident that both implementations yield the same output, verifying the outputs with
`torch.allclose(original_output, output, atol=1e-3)`, you're done with the most difficult part! Congratulations - the
work left to be done should be a cakewalk 😊.
@ -744,7 +740,7 @@ Having fixed all common tests, it is now crucial to ensure that all the nice wor
- b) Future changes to your model will not break any important feature of the model.
At first, integration tests should be added. Those integration tests essentially do the same as the debugging scripts
you used earlier to implement the model to 🤗 Transformers. A template of those model tests has already added by the
you used earlier to implement the model to 🤗 Transformers. A template of those model tests is already added by the
Cookiecutter, called `BrandNewBertModelIntegrationTests` and only has to be filled out by you. To ensure that those
tests are passing, run
@ -769,7 +765,7 @@ ways:
**9. Implement the tokenizer**
Next, we should add the tokenizer of *brand_new_bert*. Usually, the tokenizer is equivalent to or very similar to an
Next, we should add the tokenizer of *brand_new_bert*. Usually, the tokenizer is equivalent or very similar to an
already existing tokenizer of 🤗 Transformers.
It is very important to find/extract the original tokenizer file and to manage to load this file into the 🤗
@ -821,7 +817,7 @@ tests for you.
Now, all the necessary functionality for *brand_new_bert* is added - you're almost done! The only thing left to add is
a nice docstring and a doc page. The Cookiecutter should have added a template file called
`docs/source/model_doc/brand_new_bert.md` that you should fill out. Users of your model will usually first look at
`docs/source/model_doc/brand_new_bert.mdx` that you should fill out. Users of your model will usually first look at
this page before using your model. Hence, the documentation must be understandable and concise. It is very useful for
the community to add some *Tips* to show how the model should be used. Don't hesitate to ping the Hugging Face team
regarding the docstrings.
@ -890,6 +886,6 @@ reviewer.
Now, it's time to get some credit from the community for your work! Having completed a model addition is a major
contribution to Transformers and the whole NLP community. Your code and the ported pre-trained models will certainly be
used by hundreds and possibly even thousands of developers and researchers. You should be proud of your work and share
your achievements with the community.
your achievement with the community.
**You have made another model that is super easy to access for everyone in the community! 🤯**

View File

@ -7,10 +7,6 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# How to create a custom pipeline?
@ -111,8 +107,8 @@ def _sanitize_parameters(self, **kwargs):
```
Try to keep the inputs/outputs very simple and ideally JSON-serializable as it makes the pipeline usage very easy
without requiring users to understand new kinds of objects. It's also relatively common to support many different types
of arguments for ease of use (audio files, which can be filenames, URLs or pure bytes)
without requiring users to understand new kind of objects. It's also relatively common to support many different types
of arguments for ease of use (audio files, can be filenames, URLs or pure bytes)
@ -219,8 +215,8 @@ repo.push_to_hub()
```
This will copy the file where you defined `PairClassificationPipeline` inside the folder `"test-dynamic-pipeline"`,
along with saving the model and tokenizer of the pipeline, before pushing everything into the repository
`{your_username}/test-dynamic-pipeline`. After that, anyone can use it as long as they provide the option
along with saving the model and tokenizer of the pipeline, before pushing everything in the repository
`{your_username}/test-dynamic-pipeline`. After that anyone can use it as long as they provide the option
`trust_remote_code=True`:
```py
@ -232,9 +228,9 @@ classifier = pipeline(model="{your_username}/test-dynamic-pipeline", trust_remot
## Add the pipeline to 🤗 Transformers
If you want to contribute your pipeline to 🤗 Transformers, you will need to add a new module in the `pipelines` submodule
with the code of your pipeline, then add it to the list of tasks defined in `pipelines/__init__.py`.
with the code of your pipeline, then add it in the list of tasks defined in `pipelines/__init__.py`.
Then you will need to add tests. Create a new file `tests/test_pipelines_MY_PIPELINE.py` with examples of the other tests.
Then you will need to add tests. Create a new file `tests/test_pipelines_MY_PIPELINE.py` with example with the other tests.
The `run_pipeline_test` function will be very generic and run on small random models on every possible
architecture as defined by `model_mapping` and `tf_model_mapping`.

View File

@ -7,10 +7,6 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# How to convert a 🤗 Transformers model to TensorFlow?
@ -56,7 +52,7 @@ you might recall from our [general overview of 🤗 Transformers](add_new_model#
that we are an opinionated bunch - the ease of use of 🤗 Transformers relies on consistent design choices. From
experience, we can tell you a few important things about adding TensorFlow models:
- Don't reinvent the wheel! More often than not, there are at least two reference implementations you should check: the
- Don't reinvent the wheel! More often that not, there are at least two reference implementations you should check: the
PyTorch equivalent of the model you are implementing and other TensorFlow models for the same class of problems.
- Great model implementations survive the test of time. This doesn't happen because the code is pretty, but rather
because the code is clear, easy to debug and build upon. If you make the life of the maintainers easy with your
@ -101,7 +97,7 @@ TensorFlow-related pull request.
**2. Prepare transformers dev environment**
Having selected the model architecture, open a draft PR to signal your intention to work on it. Follow the
Having selected the model architecture, open an draft PR to signal your intention to work on it. Follow the
instructions below to set up your environment and open a draft PR.
1. Fork the [repository](https://github.com/huggingface/transformers) by clicking on the 'Fork' button on the
@ -229,11 +225,12 @@ documentation pages. You can complete this part entirely following the patterns
changes:
- Include all public classes of *BrandNewBert* in `src/transformers/__init__.py`
- Add *BrandNewBert* classes to the corresponding Auto classes in `src/transformers/models/auto/modeling_tf_auto.py`
- Include the modeling file in the documentation test file list in `utils/documentation_tests.txt`
- Add the lazy loading classes related to *BrandNewBert* in `src/transformers/utils/dummy_tf_objects.py`
- Update the import structures for the public classes in `src/transformers/models/brand_new_bert/__init__.py`
- Add the documentation pointers to the public methods of *BrandNewBert* in `docs/source/en/model_doc/brand_new_bert.md`
- Add yourself to the list of contributors to *BrandNewBert* in `docs/source/en/model_doc/brand_new_bert.md`
- Finally, add a green tick ✅ to the TensorFlow column of *BrandNewBert* in `docs/source/en/index.md`
- Add the documentation pointers to the public methods of *BrandNewBert* in `docs/source/en/model_doc/brand_new_bert.mdx`
- Add yourself to the list of contributors to *BrandNewBert* in `docs/source/en/model_doc/brand_new_bert.mdx`
- Finally, add a green tick ✅ to the TensorFlow column of *BrandNewBert* in `docs/source/en/index.mdx`
When you're happy with your implementation, run the following checklist to confirm that your model architecture is
ready:
@ -327,7 +324,7 @@ That's it! 🎉
## Debugging mismatches across ML frameworks 🐛
At some point, when adding a new architecture or when creating TensorFlow weights for an existing architecture, you
might come across errors complaining about mismatches between PyTorch and TensorFlow. You might even decide to open the
might come across errors compaining about mismatches between PyTorch and TensorFlow. You might even decide to open the
model architecture code for the two frameworks, and find that they look identical. What's going on? 🤔
First of all, let's talk about why understanding these mismatches matters. Many community members will use 🤗
@ -350,7 +347,7 @@ ingredient here is patience. Here is our suggested workflow for when you come ac
that you'll have to venture into the source implementation of said instruction. In some cases, you might find an
issue with a reference implementation - don't abstain from opening an issue in the upstream repository.
In some cases, in discussion with the 🤗 Transformers team, we might find that fixing the mismatch is infeasible.
In some cases, in dicussion with the 🤗 Transformers team, we might find that the fixing the mismatch is infeasible.
When the mismatch is very small in the output layers of the model (but potentially large in the hidden states), we
might decide to ignore it in favor of distributing the model. The `pt-to-tf` CLI mentioned above has a `--max-error`
flag to override the error message at weight conversion time.

View File

@ -8,10 +8,6 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Attention mechanisms

View File

@ -8,15 +8,11 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Load pretrained instances with an AutoClass
With so many different Transformer architectures, it can be challenging to create one for your checkpoint. As a part of 🤗 Transformers core philosophy to make the library easy, simple and flexible to use, an `AutoClass` automatically infers and loads the correct architecture from a given checkpoint. The `from_pretrained()` method lets you quickly load a pretrained model for any architecture so you don't have to devote time and resources to train a model from scratch. Producing this type of checkpoint-agnostic code means if your code works for one checkpoint, it will work with another checkpoint - as long as it was trained for a similar task - even if the architecture is different.
With so many different Transformer architectures, it can be challenging to create one for your checkpoint. As a part of 🤗 Transformers core philosophy to make the library easy, simple and flexible to use, an `AutoClass` automatically infer and load the correct architecture from a given checkpoint. The `from_pretrained()` method lets you quickly load a pretrained model for any architecture so you don't have to devote time and resources to train a model from scratch. Producing this type of checkpoint-agnostic code means if your code works for one checkpoint, it will work with another checkpoint - as long as it was trained for a similar task - even if the architecture is different.
<Tip>

View File

@ -8,10 +8,6 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Benchmarks

View File

@ -8,10 +8,6 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# BERTology

View File

@ -8,10 +8,6 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Instantiating a big model
@ -23,11 +19,11 @@ from PyTorch is:
2. Load your pretrained weights.
3. Put those pretrained weights in your random model.
Step 1 and 2 both require a full version of the model in memory, which is not a problem in most cases, but if your model starts weighing several GigaBytes, those two copies can make you get out of RAM. Even worse, if you are using `torch.distributed` to launch a distributed training, each process will load the pretrained model and store these two copies in RAM.
Step 1 and 2 both require a full version of the model in memory, which is not a problem in most cases, but if your model starts weighing several GigaBytes, those two copies can make you got our of RAM. Even worse, if you are using `torch.distributed` to launch a distributed training, each process will load the pretrained model and store these two copies in RAM.
<Tip>
Note that the randomly created model is initialized with "empty" tensors, which take the space in memory without filling it (thus the random values are whatever was in this chunk of memory at a given time). The random initialization following the appropriate distribution for the kind of model/parameters instantiated (like a normal distribution for instance) is only performed after step 3 on the non-initialized weights, to be as fast as possible!
Note that the randomly created model is initialized with "empty" tensors, which take the space in memory without filling it (thus the random values are whatever was in this chunk of memory at a given time). The random initialization following the appropriate distribution for the kind of model/parameters instatiated (like a normal distribution for instance) is only performed after step 3 on the non-initialized weights, to be as fast as possible!
</Tip>
@ -120,4 +116,4 @@ If you want to directly load such a sharded checkpoint inside a model without us
Sharded checkpoints reduce the memory usage during step 2 of the workflow mentioned above, but in order to use that model in a low memory setting, we recommend leveraging our tools based on the Accelerate library.
Please read the following guide for more information: [Large model loading using Accelerate](./main_classes/model#large-model-loading)
Please read the following guide for more information: [Large model loading using Accelerate](./main_classes/model#large-model-loading)

View File

@ -1,367 +0,0 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Templates for Chat Models
## Introduction
An increasingly common use case for LLMs is **chat**. In a chat context, rather than continuing a single string
of text (as is the case with a standard language model), the model instead continues a conversation that consists
of one or more **messages**, each of which includes a **role** as well as message text.
Most commonly, these roles are "user" for messages sent by the user, and "assistant" for messages sent by the model.
Some models also support a "system" role. System messages are usually sent at the beginning of the conversation
and include directives about how the model should behave in the subsequent chat.
All language models, including models fine-tuned for chat, operate on linear sequences of tokens and do not intrinsically
have special handling for roles. This means that role information is usually injected by adding control tokens
between messages, to indicate both the message boundary and the relevant roles.
Unfortunately, there isn't (yet!) a standard for which tokens to use, and so different models have been trained
with wildly different formatting and control tokens for chat. This can be a real problem for users - if you use the
wrong format, then the model will be confused by your input, and your performance will be a lot worse than it should be.
This is the problem that **chat templates** aim to resolve.
Chat conversations are typically represented as a list of dictionaries, where each dictionary contains `role`
and `content` keys, and represents a single chat message. Chat templates are strings containing a Jinja template that
specifies how to format a conversation for a given model into a single tokenizable sequence. By storing this information
with the tokenizer, we can ensure that models get input data in the format they expect.
Let's make this concrete with a quick example using the `BlenderBot` model. BlenderBot has an extremely simple default
template, which mostly just adds whitespace between rounds of dialogue:
```python
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill")
>>> chat = [
... {"role": "user", "content": "Hello, how are you?"},
... {"role": "assistant", "content": "I'm doing great. How can I help you today?"},
... {"role": "user", "content": "I'd like to show off how chat templating works!"},
... ]
>>> tokenizer.apply_chat_template(chat, tokenize=False)
" Hello, how are you? I'm doing great. How can I help you today? I'd like to show off how chat templating works!</s>"
```
Notice how the entire chat is condensed into a single string. If we use `tokenize=True`, which is the default setting,
that string will also be tokenized for us. To see a more complex template in action, though, let's use the
`meta-llama/Llama-2-7b-chat-hf` model. Note that this model has gated access, so you will have to
[request access on the repo](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) if you want to run this code yourself:
```python
>> from transformers import AutoTokenizer
>> tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf")
>> chat = [
... {"role": "user", "content": "Hello, how are you?"},
... {"role": "assistant", "content": "I'm doing great. How can I help you today?"},
... {"role": "user", "content": "I'd like to show off how chat templating works!"},
... ]
>> tokenizer.use_default_system_prompt = False
>> tokenizer.apply_chat_template(chat, tokenize=False)
"<s>[INST] Hello, how are you? [/INST] I'm doing great. How can I help you today? </s><s>[INST] I'd like to show off how chat templating works! [/INST]"
```
Note that this time, the tokenizer has added the control tokens [INST] and [/INST] to indicate the start and end of
user messages (but not assistant messages!)
## How do chat templates work?
The chat template for a model is stored on the `tokenizer.chat_template` attribute. If no chat template is set, the
default template for that model class is used instead. Let's take a look at the template for `BlenderBot`:
```python
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill")
>>> tokenizer.default_chat_template
"{% for message in messages %}{% if message['role'] == 'user' %}{{ ' ' }}{% endif %}{{ message['content'] }}{% if not loop.last %}{{ ' ' }}{% endif %}{% endfor %}{{ eos_token }}"
```
That's kind of intimidating. Let's add some newlines and indentation to make it more readable. Note that the first
newline after each block as well as any preceding whitespace before a block are ignored by default, using the
Jinja `trim_blocks` and `lstrip_blocks` flags. However, be cautious - although leading whitespace on each
line is stripped, spaces between blocks on the same line are not. We strongly recommend checking that your template
isn't printing extra spaces where it shouldn't be!
```
{% for message in messages %}
{% if message['role'] == 'user' %}
{{ ' ' }}
{% endif %}
{{ message['content'] }}
{% if not loop.last %}
{{ ' ' }}
{% endif %}
{% endfor %}
{{ eos_token }}
```
If you've never seen one of these before, this is a [Jinja template](https://jinja.palletsprojects.com/en/3.1.x/templates/).
Jinja is a templating language that allows you to write simple code that generates text. In many ways, the code and
syntax resembles Python. In pure Python, this template would look something like this:
```python
for idx, message in enumerate(messages):
if message['role'] == 'user':
print(' ')
print(message['content'])
if not idx == len(messages) - 1: # Check for the last message in the conversation
print(' ')
print(eos_token)
```
Effectively, the template does three things:
1. For each message, if the message is a user message, add a blank space before it, otherwise print nothing.
2. Add the message content
3. If the message is not the last message, add two spaces after it. After the final message, print the EOS token.
This is a pretty simple template - it doesn't add any control tokens, and it doesn't support "system" messages, which
are a common way to give the model directives about how it should behave in the subsequent conversation.
But Jinja gives you a lot of flexibility to do those things! Let's see a Jinja template that can format inputs
similarly to the way LLaMA formats them (note that the real LLaMA template includes handling for default system
messages and slightly different system message handling in general - don't use this one in your actual code!)
```
{% for message in messages %}
{% if message['role'] == 'user' %}
{{ bos_token + '[INST] ' + message['content'] + ' [/INST]' }}
{% elif message['role'] == 'system' %}
{{ '<<SYS>>\\n' + message['content'] + '\\n<</SYS>>\\n\\n' }}
{% elif message['role'] == 'assistant' %}
{{ ' ' + message['content'] + ' ' + eos_token }}
{% endif %}
{% endfor %}
```
Hopefully if you stare at this for a little bit you can see what this template is doing - it adds specific tokens based
on the "role" of each message, which represents who sent it. User, assistant and system messages are clearly
distinguishable to the model because of the tokens they're wrapped in.
## How do I create a chat template?
Simple, just write a jinja template and set `tokenizer.chat_template`. You may find it easier to start with an
existing template from another model and simply edit it for your needs! For example, we could take the LLaMA template
above and add "[ASST]" and "[/ASST]" to assistant messages:
```
{% for message in messages %}
{% if message['role'] == 'user' %}
{{ bos_token + '[INST] ' + message['content'].strip() + ' [/INST]' }}
{% elif message['role'] == 'system' %}
{{ '<<SYS>>\\n' + message['content'].strip() + '\\n<</SYS>>\\n\\n' }}
{% elif message['role'] == 'assistant' %}
{{ '[ASST] ' + message['content'] + ' [/ASST]' + eos_token }}
{% endif %}
{% endfor %}
```
Now, simply set the `tokenizer.chat_template` attribute. Next time you use [`~PreTrainedTokenizer.apply_chat_template`], it will
use your new template! This attribute will be saved in the `tokenizer_config.json` file, so you can use
[`~utils.PushToHubMixin.push_to_hub`] to upload your new template to the Hub and make sure everyone's using the right
template for your model!
```python
template = tokenizer.chat_template
template = template.replace("SYS", "SYSTEM") # Change the system token
tokenizer.chat_template = template # Set the new template
tokenizer.push_to_hub("model_name") # Upload your new template to the Hub!
```
The method [`~PreTrainedTokenizer.apply_chat_template`] which uses your chat template is called by the [`ConversationalPipeline`] class, so
once you set the correct chat template, your model will automatically become compatible with [`ConversationalPipeline`].
## What are "default" templates?
Before the introduction of chat templates, chat handling was hardcoded at the model class level. For backwards
compatibility, we have retained this class-specific handling as default templates, also set at the class level. If a
model does not have a chat template set, but there is a default template for its model class, the `ConversationalPipeline`
class and methods like `apply_chat_template` will use the class template instead. You can find out what the default
template for your tokenizer is by checking the `tokenizer.default_chat_template` attribute.
This is something we do purely for backward compatibility reasons, to avoid breaking any existing workflows. Even when
the class template is appropriate for your model, we strongly recommend overriding the default template by
setting the `chat_template` attribute explicitly to make it clear to users that your model has been correctly configured
for chat, and to future-proof in case the default templates are ever altered or deprecated.
## What template should I use?
When setting the template for a model that's already been trained for chat, you should ensure that the template
exactly matches the message formatting that the model saw during training, or else you will probably experience
performance degradation. This is true even if you're training the model further - you will probably get the best
performance if you keep the chat tokens constant. This is very analogous to tokenization - you generally get the
best performance for inference or fine-tuning when you precisely match the tokenization used during training.
If you're training a model from scratch, or fine-tuning a base language model for chat, on the other hand,
you have a lot of freedom to choose an appropriate template! LLMs are smart enough to learn to handle lots of different
input formats. Our default template for models that don't have a class-specific template follows the
[ChatML format](https://github.com/openai/openai-python/blob/main/chatml.md), and this is a good, flexible choice for many use-cases. It looks like this:
```
{% for message in messages %}
{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}
{% endfor %}
```
If you like this one, here it is in one-liner form, ready to copy into your code. The one-liner also includes
handy support for "generation prompts" - see the next section for more!
```
tokenizer.chat_template = "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}"
```
This template wraps each message in `<|im_start|>` and `<|im_end|>` tokens, and simply writes the role as a string, which
allows for flexibility in the roles you train with. The output looks like this:
```
<|im_start|>system
You are a helpful chatbot that will do its best not to say anything so stupid that people tweet about it.<|im_end|>
<|im_start|>user
How are you?<|im_end|>
<|im_start|>assistant
I'm doing great!<|im_end|>
```
The "user", "system" and "assistant" roles are the standard for chat, and we recommend using them when it makes sense,
particularly if you want your model to operate well with [`ConversationalPipeline`]. However, you are not limited
to these roles - templating is extremely flexible, and any string can be a role.
## What are "generation prompts"?
You may notice that the `apply_chat_template` method has an `add_generation_prompt` argument. This argument tells
the template to add tokens that indicate the start of a bot response. For example, consider the following chat:
```python
messages = [
{"role": "user", "content": "Hi there!"},
{"role": "assistant", "content": "Nice to meet you!"},
{"role": "user", "content": "Can I ask a question?"}
]
```
Here's what this will look like without a generation prompt, using the ChatML template we described above:
```python
>> tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=False)
"""<|im_start|>user
Hi there!<|im_end|>
<|im_start|>assistant
Nice to meet you!<|im_end|>
<|im_start|>user
Can I ask a question?<|im_end|>
"""
```
And here's what it looks like **with** a generation prompt:
```python
>> tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
"""<|im_start|>user
Hi there!<|im_end|>
<|im_start|>assistant
Nice to meet you!<|im_end|>
<|im_start|>user
Can I ask a question?<|im_end|>
<|im_start|>assistant
"""
```
Note that this time, we've added the tokens that indicate the start of a bot response. This ensures that when the model
generates text it will write a bot response instead of doing something unexpected, like continuing the user's
message. Remember, chat models are still just language models - they're trained to continue text, and chat is just a
special kind of text to them! You need to guide them with the appropriate control tokens so they know what they're
supposed to be doing.
Not all models require generation prompts. Some models, like BlenderBot and LLaMA, don't have any
special tokens before bot responses. In these cases, the `add_generation_prompt` argument will have no effect. The exact
effect that `add_generation_prompt` has will depend on the template being used.
## I want to use chat templates! How should I get started?
If you have any chat models, you should set their `tokenizer.chat_template` attribute and test it using
[`~PreTrainedTokenizer.apply_chat_template`]. This applies even if you're not the model owner - if you're using a model
with an empty chat template, or one that's still using the default class template, please open a [pull request](https://huggingface.co/docs/hub/repositories-pull-requests-discussions) to
the model repository so that this attribute can be set properly!
Once the attribute is set, that's it, you're done! `tokenizer.apply_chat_template` will now work correctly for that
model, which means it is also automatically supported in places like `ConversationalPipeline`!
By ensuring that models have this attribute, we can make sure that the whole community gets to use the full power of
open-source models. Formatting mismatches have been haunting the field and silently harming performance for too long -
it's time to put an end to them!
## Template writing tips
If you're unfamiliar with Jinja, we generally find that the easiest way to write a chat template is to first
write a short Python script that formats messages the way you want, and then convert that script into a template.
Remember that the template handler will receive the conversation history as a variable called `messages`. Each
message is a dictionary with two keys, `role` and `content`. You will be able to access `messages` in your template
just like you can in Python, which means you can loop over it with `{% for message in messages %}` or access
individual messages with, for example, `{{ messages[0] }}`.
You can also use the following tips to convert your code to Jinja:
### For loops
For loops in Jinja look like this:
```
{% for message in messages %}
{{ message['content'] }}
{% endfor %}
```
Note that whatever's inside the {{ expression block }} will be printed to the output. You can use operators like
`+` to combine strings inside expression blocks.
### If statements
If statements in Jinja look like this:
```
{% if message['role'] == 'user' %}
{{ message['content'] }}
{% endif %}
```
Note how where Python uses whitespace to mark the beginnings and ends of `for` and `if` blocks, Jinja requires you
to explicitly end them with `{% endfor %}` and `{% endif %}`.
### Special variables
Inside your template, you will have access to the list of `messages`, but you can also access several other special
variables. These include special tokens like `bos_token` and `eos_token`, as well as the `add_generation_prompt`
variable that we discussed above. You can also use the `loop` variable to access information about the current loop
iteration, for example using `{% if loop.last %}` to check if the current message is the last message in the
conversation. Here's an example that puts these ideas together to add a generation prompt at the end of the
conversation if add_generation_prompt is `True`:
```
{% if loop.last and add_generation_prompt %}
{{ bos_token + 'Assistant:\n' }}
{% endif %}
```
### Notes on whitespace
As much as possible, we've tried to get Jinja to ignore whitespace outside of {{ expressions }}. However, be aware
that Jinja is a general-purpose templating engine, and it may treat whitespace between blocks on the same line
as significant and print it to the output. We **strongly** recommend checking that your template isn't printing extra
spaces where it shouldn't be before you upload it!

View File

@ -1,8 +1,4 @@
<!--⚠️ Note that this file is in Markdown but contains specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Community
# Community
This page regroups resources around 🤗 Transformers developed by the community.
@ -10,7 +6,7 @@ This page regroups resources around 🤗 Transformers developed by the community
| Resource | Description | Author |
|:----------|:-------------|------:|
| [Hugging Face Transformers Glossary Flashcards](https://www.darigovresearch.com/huggingface-transformers-glossary-flashcards) | A set of flashcards based on the [Transformers Docs Glossary](glossary) that has been put into a form which can be easily learned/revised using [Anki ](https://apps.ankiweb.net/) an open source, cross platform app specifically designed for long term knowledge retention. See this [Introductory video on how to use the flashcards](https://www.youtube.com/watch?v=Dji_h7PILrw). | [Darigov Research](https://www.darigovresearch.com/) |
| [Hugging Face Transformers Glossary Flashcards](https://www.darigovresearch.com/huggingface-transformers-glossary-flashcards) | A set of flashcards based on the [Transformers Docs Glossary](glossary) that has been put into a form which can be easily learnt/revised using [Anki ](https://apps.ankiweb.net/) an open source, cross platform app specifically designed for long term knowledge retention. See this [Introductory video on how to use the flashcards](https://www.youtube.com/watch?v=Dji_h7PILrw). | [Darigov Research](https://www.darigovresearch.com/) |
## Community notebooks:
@ -35,7 +31,7 @@ This page regroups resources around 🤗 Transformers developed by the community
|[Speed up Fine-Tuning in Transformers with Dynamic Padding / Bucketing](https://github.com/ELS-RD/transformers-notebook/blob/master/Divide_Hugging_Face_Transformers_training_time_by_2_or_more.ipynb)|How to speed up fine-tuning by a factor of 2 using dynamic padding / bucketing|[Michael Benesty](https://github.com/pommedeterresautee) |[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1CBfRU1zbfu7-ijiOqAAQUA-RJaxfcJoO?usp=sharing)|
|[Pretrain Reformer for Masked Language Modeling](https://github.com/patrickvonplaten/notebooks/blob/master/Reformer_For_Masked_LM.ipynb)| How to train a Reformer model with bi-directional self-attention layers | [Patrick von Platen](https://github.com/patrickvonplaten) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1tzzh0i8PgDQGV3SMFUGxM7_gGae3K-uW?usp=sharing)|
|[Expand and Fine Tune Sci-BERT](https://github.com/lordtt13/word-embeddings/blob/master/COVID-19%20Research%20Data/COVID-SciBERT.ipynb)| How to increase vocabulary of a pretrained SciBERT model from AllenAI on the CORD dataset and pipeline it. | [Tanmay Thakur](https://github.com/lordtt13) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1rqAR40goxbAfez1xvF3hBJphSCsvXmh8)|
|[Fine Tune BlenderBotSmall for Summarization using the Trainer API](https://github.com/lordtt13/transformers-experiments/blob/master/Custom%20Tasks/fine-tune-blenderbot_small-for-summarization.ipynb)| How to fine-tune BlenderBotSmall for summarization on a custom dataset, using the Trainer API. | [Tanmay Thakur](https://github.com/lordtt13) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/19Wmupuls7mykSGyRN_Qo6lPQhgp56ymq?usp=sharing)|
|[Fine Tune BlenderBotSmall for Summarization using the Trainer API](https://github.com/lordtt13/transformers-experiments/blob/master/Custom%20Tasks/fine-tune-blenderbot_small-for-summarization.ipynb)| How to fine tune BlenderBotSmall for summarization on a custom dataset, using the Trainer API. | [Tanmay Thakur](https://github.com/lordtt13) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/19Wmupuls7mykSGyRN_Qo6lPQhgp56ymq?usp=sharing)|
|[Fine-tune Electra and interpret with Integrated Gradients](https://github.com/elsanns/xai-nlp-notebooks/blob/master/electra_fine_tune_interpret_captum_ig.ipynb) | How to fine-tune Electra for sentiment analysis and interpret predictions with Captum Integrated Gradients | [Eliza Szczechla](https://elsanns.github.io) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/elsanns/xai-nlp-notebooks/blob/master/electra_fine_tune_interpret_captum_ig.ipynb)|
|[fine-tune a non-English GPT-2 Model with Trainer class](https://github.com/philschmid/fine-tune-GPT-2/blob/master/Fine_tune_a_non_English_GPT_2_Model_with_Huggingface.ipynb) | How to fine-tune a non-English GPT-2 Model with Trainer class | [Philipp Schmid](https://www.philschmid.de) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/philschmid/fine-tune-GPT-2/blob/master/Fine_tune_a_non_English_GPT_2_Model_with_Huggingface.ipynb)|
|[Fine-tune a DistilBERT Model for Multi Label Classification task](https://github.com/DhavalTaunk08/Transformers_scripts/blob/master/Transformers_multilabel_distilbert.ipynb) | How to fine-tune a DistilBERT Model for Multi Label Classification task | [Dhaval Taunk](https://github.com/DhavalTaunk08) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/DhavalTaunk08/Transformers_scripts/blob/master/Transformers_multilabel_distilbert.ipynb)|

View File

@ -8,10 +8,6 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Create a custom architecture
@ -209,7 +205,7 @@ Easily reuse this checkpoint for another task by switching to a different model
The last base class you need before using a model for textual data is a [tokenizer](main_classes/tokenizer) to convert raw text to tensors. There are two types of tokenizers you can use with 🤗 Transformers:
- [`PreTrainedTokenizer`]: a Python implementation of a tokenizer.
- [`PreTrainedTokenizerFast`]: a tokenizer from our Rust-based [🤗 Tokenizer](https://huggingface.co/docs/tokenizers/python/latest/) library. This tokenizer type is significantly faster - especially during batch tokenization - due to its Rust implementation. The fast tokenizer also offers additional methods like *offset mapping* which maps tokens to their original words or characters.
- [`PreTrainedTokenizerFast`]: a tokenizer from our Rust-based [🤗 Tokenizer](https://huggingface.co/docs/tokenizers/python/latest/) library. This tokenizer type is significantly faster - especially during batch tokenization - due to it's Rust implementation. The fast tokenizer also offers additional methods like *offset mapping* which maps tokens to their original words or characters.
Both tokenizers support common methods such as encoding and decoding, adding new tokens, and managing special tokens.
@ -263,7 +259,7 @@ To use, create an image processor associated with the model you're using. For ex
ViTImageProcessor {
"do_normalize": true,
"do_resize": true,
"image_processor_type": "ViTImageProcessor",
"feature_extractor_type": "ViTImageProcessor",
"image_mean": [
0.5,
0.5,
@ -295,7 +291,7 @@ Modify any of the [`ViTImageProcessor`] parameters to create your custom image p
ViTImageProcessor {
"do_normalize": false,
"do_resize": true,
"image_processor_type": "ViTImageProcessor",
"feature_extractor_type": "ViTImageProcessor",
"image_mean": [
0.3,
0.3,

View File

@ -8,10 +8,6 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Sharing custom models
@ -341,7 +337,7 @@ model. This is different from pushing the code to the Hub in the sense that user
get the custom models (contrarily to automatically downloading the model code from the Hub).
As long as your config has a `model_type` attribute that is different from existing model types, and that your model
classes have the right `config_class` attributes, you can just add them to the auto classes like this:
classes have the right `config_class` attributes, you can just add them to the auto classes likes this:
```py
from transformers import AutoConfig, AutoModel, AutoModelForImageClassification

View File

@ -8,10 +8,6 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Custom Tools and Prompts
@ -25,7 +21,7 @@ If you are not aware of what tools and agents are in the context of transformers
<Tip warning={true}>
Transformers Agents is an experimental API that is subject to change at any time. Results returned by the agents
Transformers Agent is an experimental API that is subject to change at any time. Results returned by the agents
can vary as the APIs or underlying models are prone to change.
</Tip>
@ -418,13 +414,6 @@ of the tools, it has available to it.
</Tip>
In both cases, you can pass a repo ID instead of the prompt template if you would like to use a template hosted by someone in the community. The default prompts live in [this repo](https://huggingface.co/datasets/huggingface-tools/default-prompts) as an example.
To upload your custom prompt on a repo on the Hub and share it with the community just make sure:
- to use a dataset repository
- to put the prompt template for the `run` command in a file named `run_prompt_template.txt`
- to put the prompt template for the `chat` command in a file named `chat_prompt_template.txt`
## Using custom tools
In this section, we'll be leveraging two existing custom tools that are specific to image generation:

View File

@ -8,10 +8,6 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Debugging

View File

@ -8,10 +8,6 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Use tokenizers from 🤗 Tokenizers

View File

@ -8,10 +8,6 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Text generation strategies
@ -57,8 +53,10 @@ When you load a model explicitly, you can inspect the generation configuration t
>>> model = AutoModelForCausalLM.from_pretrained("distilgpt2")
>>> model.generation_config
GenerationConfig {
"_from_model_config": true,
"bos_token_id": 50256,
"eos_token_id": 50256,
"transformers_version": "4.26.0.dev0"
}
```
@ -75,15 +73,14 @@ producing highly repetitive results.
You can override any `generation_config` by passing the parameters and their values directly to the [`generate`] method:
```python
>>> my_model.generate(**inputs, num_beams=4, do_sample=True) # doctest: +SKIP
>>> my_model.generate(**inputs, num_beams=4, do_sample=True)
```
Even if the default decoding strategy mostly works for your task, you can still tweak a few things. Some of the
commonly adjusted parameters include:
- `max_new_tokens`: the maximum number of tokens to generate. In other words, the size of the output sequence, not
including the tokens in the prompt. As an alternative to using the output's length as a stopping criteria, you can choose
to stop generation whenever the full generation exceeds some amount of time. To learn more, check [`StoppingCriteria`].
including the tokens in the prompt.
- `num_beams`: by specifying a number of beams higher than 1, you are effectively switching from greedy search to
beam search. This strategy evaluates several hypotheses at each time step and eventually chooses the hypothesis that
has the overall highest probability for the entire sequence. This has the advantage of identifying high-probability
@ -91,7 +88,7 @@ sequences that start with a lower probability initial tokens and would've been i
- `do_sample`: if set to `True`, this parameter enables decoding strategies such as multinomial sampling, beam-search
multinomial sampling, Top-K sampling and Top-p sampling. All these strategies select the next token from the probability
distribution over the entire vocabulary with various strategy-specific adjustments.
- `num_return_sequences`: the number of sequence candidates to return for each input. This option is only available for
- `num_return_sequences`: the number of sequence candidates to return for each input. This options is only available for
the decoding strategies that support multiple sequence candidates, e.g. variations of beam search and sampling. Decoding
strategies like greedy search and contrastive search return a single output sequence.
@ -106,11 +103,11 @@ If you would like to share your fine-tuned model with a specific generation conf
```python
>>> from transformers import AutoModelForCausalLM, GenerationConfig
>>> model = AutoModelForCausalLM.from_pretrained("my_account/my_model") # doctest: +SKIP
>>> model = AutoModelForCausalLM.from_pretrained("my_account/my_model")
>>> generation_config = GenerationConfig(
... max_new_tokens=50, do_sample=True, top_k=50, eos_token_id=model.config.eos_token_id
... )
>>> generation_config.save_pretrained("my_account/my_model", push_to_hub=True) # doctest: +SKIP
>>> generation_config.save_pretrained("my_account/my_model", push_to_hub=True)
```
You can also store several generation configurations in a single directory, making use of the `config_file_name`
@ -132,20 +129,19 @@ one for summarization with beam search). You must have the right Hub permissions
... pad_token=model.config.pad_token_id,
... )
>>> # Tip: add `push_to_hub=True` to push to the Hub
>>> translation_generation_config.save_pretrained("/tmp", "translation_generation_config.json")
>>> translation_generation_config.save_pretrained("t5-small", "translation_generation_config.json", push_to_hub=True)
>>> # You could then use the named generation config file to parameterize generation
>>> generation_config = GenerationConfig.from_pretrained("/tmp", "translation_generation_config.json")
>>> generation_config = GenerationConfig.from_pretrained("t5-small", "translation_generation_config.json")
>>> inputs = tokenizer("translate English to French: Configuration files are easy to use!", return_tensors="pt")
>>> outputs = model.generate(**inputs, generation_config=generation_config)
>>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
['Les fichiers de configuration sont faciles à utiliser!']
['Les fichiers de configuration sont faciles à utiliser !']
```
## Streaming
The `generate()` supports streaming, through its `streamer` input. The `streamer` input is compatible with any instance
The `generate()` supports streaming, through its `streamer` input. The `streamer` input is compatible any instance
from a class that has the following methods: `put()` and `end()`. Internally, `put()` is used to push new tokens and
`end()` is used to flag the end of text generation.
@ -217,9 +213,10 @@ The two main parameters that enable and control the behavior of contrastive sear
>>> outputs = model.generate(**inputs, penalty_alpha=0.6, top_k=4, max_new_tokens=100)
>>> tokenizer.batch_decode(outputs, skip_special_tokens=True)
['Hugging Face Company is a family owned and operated business. We pride ourselves on being the best
in the business and our customer service is second to none.\n\nIf you have any questions about our
products or services, feel free to contact us at any time. We look forward to hearing from you!']
['Hugging Face Company is a family owned and operated business. \
We pride ourselves on being the best in the business and our customer service is second to none.\
\n\nIf you have any questions about our products or services, feel free to contact us at any time.\
We look forward to hearing from you!']
```
### Multinomial sampling
@ -232,8 +229,7 @@ risk of repetition.
To enable multinomial sampling set `do_sample=True` and `num_beams=1`.
```python
>>> from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed
>>> set_seed(0) # For reproducibility
>>> from transformers import AutoTokenizer, AutoModelForCausalLM
>>> checkpoint = "gpt2-large"
>>> tokenizer = AutoTokenizer.from_pretrained(checkpoint)
@ -244,8 +240,11 @@ To enable multinomial sampling set `do_sample=True` and `num_beams=1`.
>>> outputs = model.generate(**inputs, do_sample=True, num_beams=1, max_new_tokens=100)
>>> tokenizer.batch_decode(outputs, skip_special_tokens=True)
['Today was an amazing day because when you go to the World Cup and you don\'t, or when you don\'t get invited,
that\'s a terrible feeling."']
['Today was an amazing day because we are now in the final stages of our trip to New York City which was very tough. \
It is a difficult schedule and a challenging part of the year but still worth it. I have been taking things easier and \
I feel stronger and more motivated to be out there on their tour. Hopefully, that experience is going to help them with \
their upcoming events which are currently scheduled in Australia.\n\nWe love that they are here. They want to make a \
name for themselves and become famous for what they']
```
### Beam-search decoding
@ -269,7 +268,7 @@ To enable this decoding strategy, specify the `num_beams` (aka number of hypothe
>>> outputs = model.generate(**inputs, num_beams=5, max_new_tokens=50)
>>> tokenizer.batch_decode(outputs, skip_special_tokens=True)
['It is astonishing how one can have such a profound impact on the lives of so many people in such a short period of
['It is astonishing how one can have such a profound impact on the lives of so many people in such a short period of \
time."\n\nHe added: "I am very proud of the work I have been able to do in the last few years.\n\n"I have']
```
@ -279,8 +278,7 @@ As the name implies, this decoding strategy combines beam search with multinomia
the `num_beams` greater than 1, and set `do_sample=True` to use this decoding strategy.
```python
>>> from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, set_seed
>>> set_seed(0) # For reproducibility
>>> from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
>>> prompt = "translate English to German: The house is wonderful."
>>> checkpoint = "t5-small"
@ -299,45 +297,41 @@ the `num_beams` greater than 1, and set `do_sample=True` to use this decoding st
The diverse beam search decoding strategy is an extension of the beam search strategy that allows for generating a more diverse
set of beam sequences to choose from. To learn how it works, refer to [Diverse Beam Search: Decoding Diverse Solutions from Neural Sequence Models](https://arxiv.org/pdf/1610.02424.pdf).
This approach has three main parameters: `num_beams`, `num_beam_groups`, and `diversity_penalty`.
The diversity penalty ensures the outputs are distinct across groups, and beam search is used within each group.
This approach has two main parameters: `num_beams` and `num_beam_groups`.
The groups are selected to ensure they are distinct enough compared to the others, and regular beam search is used within each group.
```python
>>> from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
>>> checkpoint = "google/pegasus-xsum"
>>> prompt = (
... "The Permaculture Design Principles are a set of universal design principles "
... "that can be applied to any location, climate and culture, and they allow us to design "
... "the most efficient and sustainable human habitation and food production systems. "
... "Permaculture is a design system that encompasses a wide variety of disciplines, such "
... "as ecology, landscape design, environmental science and energy conservation, and the "
... "Permaculture design principles are drawn from these various disciplines. Each individual "
... "design principle itself embodies a complete conceptual framework based on sound "
... "scientific principles. When we bring all these separate principles together, we can "
... "create a design system that both looks at whole systems, the parts that these systems "
... "consist of, and how those parts interact with each other to create a complex, dynamic, "
... "living system. Each design principle serves as a tool that allows us to integrate all "
... "the separate parts of a design, referred to as elements, into a functional, synergistic, "
... "whole system, where the elements harmoniously interact and work together in the most "
... "efficient way possible."
... )
>>> prompt = "The Permaculture Design Principles are a set of universal design principles \
>>> that can be applied to any location, climate and culture, and they allow us to design \
>>> the most efficient and sustainable human habitation and food production systems. \
>>> Permaculture is a design system that encompasses a wide variety of disciplines, such \
>>> as ecology, landscape design, environmental science and energy conservation, and the \
>>> Permaculture design principles are drawn from these various disciplines. Each individual \
>>> design principle itself embodies a complete conceptual framework based on sound \
>>> scientific principles. When we bring all these separate principles together, we can \
>>> create a design system that both looks at whole systems, the parts that these systems \
>>> consist of, and how those parts interact with each other to create a complex, dynamic, \
>>> living system. Each design principle serves as a tool that allows us to integrate all \
>>> the separate parts of a design, referred to as elements, into a functional, synergistic, \
>>> whole system, where the elements harmoniously interact and work together in the most \
>>> efficient way possible."
>>> tokenizer = AutoTokenizer.from_pretrained(checkpoint)
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
>>> outputs = model.generate(**inputs, num_beams=5, num_beam_groups=5, max_new_tokens=30, diversity_penalty=1.0)
>>> outputs = model.generate(**inputs, num_beams=5, num_beam_groups=5, max_new_tokens=30)
>>> tokenizer.decode(outputs[0], skip_special_tokens=True)
'The Design Principles are a set of universal design principles that can be applied to any location, climate and
culture, and they allow us to design the'
'The Design Principles are a set of universal design principles that can be applied to any location, climate and culture, and they allow us to design the most efficient and sustainable human habitation and food production systems.'
```
This guide illustrates the main parameters that enable various decoding strategies. More advanced parameters exist for the
[`generate`] method, which gives you even further control over the [`generate`] method's behavior.
For the complete list of the available parameters, refer to the [API documentation](./main_classes/text_generation.md).
For the complete list of the available parameters, refer to the [API documentation](./main_classes/text_generation.mdx).
### Assisted Decoding
@ -366,12 +360,11 @@ To enable assisted decoding, set the `assistant_model` argument with a model.
['Alice and Bob are sitting in a bar. Alice is drinking a beer and Bob is drinking a']
```
When using assisted decoding with sampling methods, you can use the `temperature` argument to control the randomness
When using assisted decoding with sampling methods, you can use the `temperarure` argument to control the randomness
just like in multinomial sampling. However, in assisted decoding, reducing the temperature will help improving latency.
```python
>>> from transformers import AutoModelForCausalLM, AutoTokenizer, set_seed
>>> set_seed(42) # For reproducibility
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
>>> prompt = "Alice and Bob"
>>> checkpoint = "EleutherAI/pythia-1.4b-deduped"
@ -384,5 +377,5 @@ just like in multinomial sampling. However, in assisted decoding, reducing the t
>>> assistant_model = AutoModelForCausalLM.from_pretrained(assistant_checkpoint)
>>> outputs = model.generate(**inputs, assistant_model=assistant_model, do_sample=True, temperature=0.5)
>>> tokenizer.batch_decode(outputs, skip_special_tokens=True)
['Alice and Bob are going to the same party. It is a small party, in a small']
["Alice and Bob are sitting on the sofa. Alice says, 'I'm going to my room"]
```

View File

@ -8,10 +8,6 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Glossary
@ -112,12 +108,6 @@ A type of layer in a neural network where the input matrix is multiplied element
## D
### DataParallel (DP)
Parallelism technique for training on multiple GPUs where the same setup is replicated multiple times, with each instance
receiving a distinct data slice. The processing is done in parallel and all setups are synchronized at the end of each training step.
Learn more about how DataParallel works [here](perf_train_gpu_many#dataparallel-vs-distributeddataparallel).
### decoder input IDs
This input is specific to encoder-decoder models, and contains the input IDs that will be fed to the decoder. These
@ -193,7 +183,7 @@ The model head refers to the last layer of a neural network that accepts the raw
### image patch
Vision-based Transformers models split an image into smaller patches which are linearly embedded, and then passed as a sequence to the model. You can find the `patch_size` - or resolution - of the model in its configuration.
Vision-based Transformers models split an image into smaller patches which are linearly embedded, and then passed as a sequence to the model. You can find the `patch_size` - or resolution - of the model in it's configuration.
### inference
@ -346,12 +336,6 @@ A pipeline in 🤗 Transformers is an abstraction referring to a series of steps
For more details, see [Pipelines for inference](https://huggingface.co/docs/transformers/pipeline_tutorial).
### PipelineParallel (PP)
Parallelism technique in which the model is split up vertically (layer-level) across multiple GPUs, so that only one or
several layers of the model are placed on a single GPU. Each GPU processes in parallel different stages of the pipeline
and working on a small chunk of the batch. Learn more about how PipelineParallel works [here](perf_train_gpu_many#from-naive-model-parallelism-to-pipeline-parallelism).
### pixel values
A tensor of the numerical representations of an image that is passed to a model. The pixel values have a shape of [`batch_size`, `num_channels`, `height`, `width`], and are generated from an image processor.
@ -422,10 +406,6 @@ An example of a semi-supervised learning approach is "self-training", in which a
Models that generate a new sequence from an input, like translation models, or summarization models (such as
[Bart](model_doc/bart) or [T5](model_doc/t5)).
### Sharded DDP
Another name for the foundational [ZeRO](#zero-redundancy-optimizer--zero-) concept as used by various other implementations of ZeRO.
### stride
In [convolution](#convolution) or [pooling](#pooling), the stride refers to the distance the kernel is moved over a matrix. A stride of 1 means the kernel is moved one pixel over at a time, and a stride of 2 means the kernel is moved two pixels over at a time.
@ -436,14 +416,6 @@ A form of model training that directly uses labeled data to correct and instruct
## T
### Tensor Parallelism (TP)
Parallelism technique for training on multiple GPUs in which each tensor is split up into multiple chunks, so instead of
having the whole tensor reside on a single GPU, each shard of the tensor resides on its designated GPU. Shards gets
processed separately and in parallel on different GPUs and the results are synced at the end of the processing step.
This is what is sometimes called horizontal parallelism, as the splitting happens on horizontal level.
Learn more about Tensor Parallelism [here](perf_train_gpu_many#tensor-parallelism).
### token
A part of a sentence, usually a word, but can also be a subword (non-common words are often split in subwords) or a
@ -513,12 +485,3 @@ Self-attention based deep learning model architecture.
### unsupervised learning
A form of model training in which data provided to the model is not labeled. Unsupervised learning techniques leverage statistical information of the data distribution to find patterns useful for the task at hand.
## Z
### Zero Redundancy Optimizer (ZeRO)
Parallelism technique which performs sharding of the tensors somewhat similar to [TensorParallel](#tensorparallel--tp-),
except the whole tensor gets reconstructed in time for a forward or backward computation, therefore the model doesn't need
to be modified. This method also supports various offloading techniques to compensate for limited GPU memory.
Learn more about ZeRO [here](perf_train_gpu_many#zero-data-parallelism).

View File

@ -7,10 +7,6 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Hyperparameter Search using Trainer API
@ -54,19 +50,7 @@ For optuna, see optuna [object_parameter](https://optuna.readthedocs.io/en/stabl
... }
```
Optuna provides multi-objective HPO. You can pass `direction` in `hyperparameter_search` and define your own compute_objective to return multiple objective values. The Pareto Front (`List[BestRun]`) will be returned in hyperparameter_search, you should refer to the test case `TrainerHyperParameterMultiObjectOptunaIntegrationTest` in [test_trainer](https://github.com/huggingface/transformers/blob/main/tests/trainer/test_trainer.py). It's like following
```py
>>> best_trials = trainer.hyperparameter_search(
... direction=["minimize", "maximize"],
... backend="optuna",
... hp_space=optuna_hp_space,
... n_trials=20,
... compute_objective=compute_objective,
... )
```
For raytune, see raytune [object_parameter](https://docs.ray.io/en/latest/tune/api/search_space.html), it's like following:
For raytune, see raytune [object_parameter](https://docs.ray.io/en/latest/tune/api_docs/search_space.html), it's like following:
```py
>>> def ray_hp_space(trial):
@ -133,4 +117,4 @@ You could define your own compute_objective function, if not defined, the defaul
```
## Hyperparameter search For DDP finetune
Currently, Hyperparameter search for DDP is enabled for optuna and sigopt. Only the rank-zero process will generate the search trial and pass the argument to other ranks.
Currently, Hyperparameter search for DDP is enabled for optuna and sigopt. Only the rank-zero process will generate the search trial and pass the argument to other ranks.

View File

@ -1,303 +0,0 @@
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# 🤗 Transformers
State-of-the-art Machine Learning for [PyTorch](https://pytorch.org/), [TensorFlow](https://www.tensorflow.org/), and [JAX](https://jax.readthedocs.io/en/latest/).
🤗 Transformers provides APIs and tools to easily download and train state-of-the-art pretrained models. Using pretrained models can reduce your compute costs, carbon footprint, and save you the time and resources required to train a model from scratch. These models support common tasks in different modalities, such as:
📝 **Natural Language Processing**: text classification, named entity recognition, question answering, language modeling, summarization, translation, multiple choice, and text generation.<br>
🖼️ **Computer Vision**: image classification, object detection, and segmentation.<br>
🗣️ **Audio**: automatic speech recognition and audio classification.<br>
🐙 **Multimodal**: table question answering, optical character recognition, information extraction from scanned documents, video classification, and visual question answering.
🤗 Transformers support framework interoperability between PyTorch, TensorFlow, and JAX. This provides the flexibility to use a different framework at each stage of a model's life; train a model in three lines of code in one framework, and load it for inference in another. Models can also be exported to a format like ONNX and TorchScript for deployment in production environments.
Join the growing community on the [Hub](https://huggingface.co/models), [forum](https://discuss.huggingface.co/), or [Discord](https://discord.com/invite/JfAtkvEtRb) today!
## If you are looking for custom support from the Hugging Face team
<a target="_blank" href="https://huggingface.co/support">
<img alt="HuggingFace Expert Acceleration Program" src="https://cdn-media.huggingface.co/marketing/transformers/new-support-improved.png" style="width: 100%; max-width: 600px; border: 1px solid #eee; border-radius: 4px; box-shadow: 0 1px 2px 0 rgba(0, 0, 0, 0.05);">
</a>
## Contents
The documentation is organized into five sections:
- **GET STARTED** provides a quick tour of the library and installation instructions to get up and running.
- **TUTORIALS** are a great place to start if you're a beginner. This section will help you gain the basic skills you need to start using the library.
- **HOW-TO GUIDES** show you how to achieve a specific goal, like finetuning a pretrained model for language modeling or how to write and share a custom model.
- **CONCEPTUAL GUIDES** offers more discussion and explanation of the underlying concepts and ideas behind models, tasks, and the design philosophy of 🤗 Transformers.
- **API** describes all classes and functions:
- **MAIN CLASSES** details the most important classes like configuration, model, tokenizer, and pipeline.
- **MODELS** details the classes and functions related to each model implemented in the library.
- **INTERNAL HELPERS** details utility classes and functions used internally.
## Supported models and frameworks
The table below represents the current support in the library for each of those models, whether they have a Python
tokenizer (called "slow"). A "fast" tokenizer backed by the 🤗 Tokenizers library, whether they have support in Jax (via
Flax), PyTorch, and/or TensorFlow.
<!--This table is updated automatically from the auto modules with _make fix-copies_. Do not update manually!-->
| Model | PyTorch support | TensorFlow support | Flax Support |
|:------------------------------------------------------------------------:|:---------------:|:------------------:|:------------:|
| [ALBERT](model_doc/albert) | ✅ | ✅ | ✅ |
| [ALIGN](model_doc/align) | ✅ | ❌ | ❌ |
| [AltCLIP](model_doc/altclip) | ✅ | ❌ | ❌ |
| [Audio Spectrogram Transformer](model_doc/audio-spectrogram-transformer) | ✅ | ❌ | ❌ |
| [Autoformer](model_doc/autoformer) | ✅ | ❌ | ❌ |
| [Bark](model_doc/bark) | ✅ | ❌ | ❌ |
| [BART](model_doc/bart) | ✅ | ✅ | ✅ |
| [BARThez](model_doc/barthez) | ✅ | ✅ | ✅ |
| [BARTpho](model_doc/bartpho) | ✅ | ✅ | ✅ |
| [BEiT](model_doc/beit) | ✅ | ❌ | ✅ |
| [BERT](model_doc/bert) | ✅ | ✅ | ✅ |
| [Bert Generation](model_doc/bert-generation) | ✅ | ❌ | ❌ |
| [BertJapanese](model_doc/bert-japanese) | ✅ | ✅ | ✅ |
| [BERTweet](model_doc/bertweet) | ✅ | ✅ | ✅ |
| [BigBird](model_doc/big_bird) | ✅ | ❌ | ✅ |
| [BigBird-Pegasus](model_doc/bigbird_pegasus) | ✅ | ❌ | ❌ |
| [BioGpt](model_doc/biogpt) | ✅ | ❌ | ❌ |
| [BiT](model_doc/bit) | ✅ | ❌ | ❌ |
| [Blenderbot](model_doc/blenderbot) | ✅ | ✅ | ✅ |
| [BlenderbotSmall](model_doc/blenderbot-small) | ✅ | ✅ | ✅ |
| [BLIP](model_doc/blip) | ✅ | ✅ | ❌ |
| [BLIP-2](model_doc/blip-2) | ✅ | ❌ | ❌ |
| [BLOOM](model_doc/bloom) | ✅ | ❌ | ✅ |
| [BORT](model_doc/bort) | ✅ | ✅ | ✅ |
| [BridgeTower](model_doc/bridgetower) | ✅ | ❌ | ❌ |
| [BROS](model_doc/bros) | ✅ | ❌ | ❌ |
| [ByT5](model_doc/byt5) | ✅ | ✅ | ✅ |
| [CamemBERT](model_doc/camembert) | ✅ | ✅ | ❌ |
| [CANINE](model_doc/canine) | ✅ | ❌ | ❌ |
| [Chinese-CLIP](model_doc/chinese_clip) | ✅ | ❌ | ❌ |
| [CLAP](model_doc/clap) | ✅ | ❌ | ❌ |
| [CLIP](model_doc/clip) | ✅ | ✅ | ✅ |
| [CLIPSeg](model_doc/clipseg) | ✅ | ❌ | ❌ |
| [CodeGen](model_doc/codegen) | ✅ | ❌ | ❌ |
| [CodeLlama](model_doc/code_llama) | ✅ | ❌ | ❌ |
| [Conditional DETR](model_doc/conditional_detr) | ✅ | ❌ | ❌ |
| [ConvBERT](model_doc/convbert) | ✅ | ✅ | ❌ |
| [ConvNeXT](model_doc/convnext) | ✅ | ✅ | ❌ |
| [ConvNeXTV2](model_doc/convnextv2) | ✅ | ✅ | ❌ |
| [CPM](model_doc/cpm) | ✅ | ✅ | ✅ |
| [CPM-Ant](model_doc/cpmant) | ✅ | ❌ | ❌ |
| [CTRL](model_doc/ctrl) | ✅ | ✅ | ❌ |
| [CvT](model_doc/cvt) | ✅ | ✅ | ❌ |
| [Data2VecAudio](model_doc/data2vec) | ✅ | ❌ | ❌ |
| [Data2VecText](model_doc/data2vec) | ✅ | ❌ | ❌ |
| [Data2VecVision](model_doc/data2vec) | ✅ | ✅ | ❌ |
| [DeBERTa](model_doc/deberta) | ✅ | ✅ | ❌ |
| [DeBERTa-v2](model_doc/deberta-v2) | ✅ | ✅ | ❌ |
| [Decision Transformer](model_doc/decision_transformer) | ✅ | ❌ | ❌ |
| [Deformable DETR](model_doc/deformable_detr) | ✅ | ❌ | ❌ |
| [DeiT](model_doc/deit) | ✅ | ✅ | ❌ |
| [DePlot](model_doc/deplot) | ✅ | ❌ | ❌ |
| [DETA](model_doc/deta) | ✅ | ❌ | ❌ |
| [DETR](model_doc/detr) | ✅ | ❌ | ❌ |
| [DialoGPT](model_doc/dialogpt) | ✅ | ✅ | ✅ |
| [DiNAT](model_doc/dinat) | ✅ | ❌ | ❌ |
| [DINOv2](model_doc/dinov2) | ✅ | ❌ | ❌ |
| [DistilBERT](model_doc/distilbert) | ✅ | ✅ | ✅ |
| [DiT](model_doc/dit) | ✅ | ❌ | ✅ |
| [DonutSwin](model_doc/donut) | ✅ | ❌ | ❌ |
| [DPR](model_doc/dpr) | ✅ | ✅ | ❌ |
| [DPT](model_doc/dpt) | ✅ | ❌ | ❌ |
| [EfficientFormer](model_doc/efficientformer) | ✅ | ✅ | ❌ |
| [EfficientNet](model_doc/efficientnet) | ✅ | ❌ | ❌ |
| [ELECTRA](model_doc/electra) | ✅ | ✅ | ✅ |
| [EnCodec](model_doc/encodec) | ✅ | ❌ | ❌ |
| [Encoder decoder](model_doc/encoder-decoder) | ✅ | ✅ | ✅ |
| [ERNIE](model_doc/ernie) | ✅ | ❌ | ❌ |
| [ErnieM](model_doc/ernie_m) | ✅ | ❌ | ❌ |
| [ESM](model_doc/esm) | ✅ | ✅ | ❌ |
| [FairSeq Machine-Translation](model_doc/fsmt) | ✅ | ❌ | ❌ |
| [Falcon](model_doc/falcon) | ✅ | ❌ | ❌ |
| [FLAN-T5](model_doc/flan-t5) | ✅ | ✅ | ✅ |
| [FLAN-UL2](model_doc/flan-ul2) | ✅ | ✅ | ✅ |
| [FlauBERT](model_doc/flaubert) | ✅ | ✅ | ❌ |
| [FLAVA](model_doc/flava) | ✅ | ❌ | ❌ |
| [FNet](model_doc/fnet) | ✅ | ❌ | ❌ |
| [FocalNet](model_doc/focalnet) | ✅ | ❌ | ❌ |
| [Funnel Transformer](model_doc/funnel) | ✅ | ✅ | ❌ |
| [Fuyu](model_doc/fuyu) | ✅ | ❌ | ❌ |
| [GIT](model_doc/git) | ✅ | ❌ | ❌ |
| [GLPN](model_doc/glpn) | ✅ | ❌ | ❌ |
| [GPT Neo](model_doc/gpt_neo) | ✅ | ❌ | ✅ |
| [GPT NeoX](model_doc/gpt_neox) | ✅ | ❌ | ❌ |
| [GPT NeoX Japanese](model_doc/gpt_neox_japanese) | ✅ | ❌ | ❌ |
| [GPT-J](model_doc/gptj) | ✅ | ✅ | ✅ |
| [GPT-Sw3](model_doc/gpt-sw3) | ✅ | ✅ | ✅ |
| [GPTBigCode](model_doc/gpt_bigcode) | ✅ | ❌ | ❌ |
| [GPTSAN-japanese](model_doc/gptsan-japanese) | ✅ | ❌ | ❌ |
| [Graphormer](model_doc/graphormer) | ✅ | ❌ | ❌ |
| [GroupViT](model_doc/groupvit) | ✅ | ✅ | ❌ |
| [HerBERT](model_doc/herbert) | ✅ | ✅ | ✅ |
| [Hubert](model_doc/hubert) | ✅ | ✅ | ❌ |
| [I-BERT](model_doc/ibert) | ✅ | ❌ | ❌ |
| [IDEFICS](model_doc/idefics) | ✅ | ❌ | ❌ |
| [ImageGPT](model_doc/imagegpt) | ✅ | ❌ | ❌ |
| [Informer](model_doc/informer) | ✅ | ❌ | ❌ |
| [InstructBLIP](model_doc/instructblip) | ✅ | ❌ | ❌ |
| [Jukebox](model_doc/jukebox) | ✅ | ❌ | ❌ |
| [KOSMOS-2](model_doc/kosmos-2) | ✅ | ❌ | ❌ |
| [LayoutLM](model_doc/layoutlm) | ✅ | ✅ | ❌ |
| [LayoutLMv2](model_doc/layoutlmv2) | ✅ | ❌ | ❌ |
| [LayoutLMv3](model_doc/layoutlmv3) | ✅ | ✅ | ❌ |
| [LayoutXLM](model_doc/layoutxlm) | ✅ | ❌ | ❌ |
| [LED](model_doc/led) | ✅ | ✅ | ❌ |
| [LeViT](model_doc/levit) | ✅ | ❌ | ❌ |
| [LiLT](model_doc/lilt) | ✅ | ❌ | ❌ |
| [LLaMA](model_doc/llama) | ✅ | ❌ | ❌ |
| [Llama2](model_doc/llama2) | ✅ | ❌ | ❌ |
| [Longformer](model_doc/longformer) | ✅ | ✅ | ❌ |
| [LongT5](model_doc/longt5) | ✅ | ❌ | ✅ |
| [LUKE](model_doc/luke) | ✅ | ❌ | ❌ |
| [LXMERT](model_doc/lxmert) | ✅ | ✅ | ❌ |
| [M-CTC-T](model_doc/mctct) | ✅ | ❌ | ❌ |
| [M2M100](model_doc/m2m_100) | ✅ | ❌ | ❌ |
| [Marian](model_doc/marian) | ✅ | ✅ | ✅ |
| [MarkupLM](model_doc/markuplm) | ✅ | ❌ | ❌ |
| [Mask2Former](model_doc/mask2former) | ✅ | ❌ | ❌ |
| [MaskFormer](model_doc/maskformer) | ✅ | ❌ | ❌ |
| [MatCha](model_doc/matcha) | ✅ | ❌ | ❌ |
| [mBART](model_doc/mbart) | ✅ | ✅ | ✅ |
| [mBART-50](model_doc/mbart50) | ✅ | ✅ | ✅ |
| [MEGA](model_doc/mega) | ✅ | ❌ | ❌ |
| [Megatron-BERT](model_doc/megatron-bert) | ✅ | ❌ | ❌ |
| [Megatron-GPT2](model_doc/megatron_gpt2) | ✅ | ✅ | ✅ |
| [MGP-STR](model_doc/mgp-str) | ✅ | ❌ | ❌ |
| [Mistral](model_doc/mistral) | ✅ | ❌ | ❌ |
| [mLUKE](model_doc/mluke) | ✅ | ❌ | ❌ |
| [MMS](model_doc/mms) | ✅ | ✅ | ✅ |
| [MobileBERT](model_doc/mobilebert) | ✅ | ✅ | ❌ |
| [MobileNetV1](model_doc/mobilenet_v1) | ✅ | ❌ | ❌ |
| [MobileNetV2](model_doc/mobilenet_v2) | ✅ | ❌ | ❌ |
| [MobileViT](model_doc/mobilevit) | ✅ | ✅ | ❌ |
| [MobileViTV2](model_doc/mobilevitv2) | ✅ | ❌ | ❌ |
| [MPNet](model_doc/mpnet) | ✅ | ✅ | ❌ |
| [MPT](model_doc/mpt) | ✅ | ❌ | ❌ |
| [MRA](model_doc/mra) | ✅ | ❌ | ❌ |
| [MT5](model_doc/mt5) | ✅ | ✅ | ✅ |
| [MusicGen](model_doc/musicgen) | ✅ | ❌ | ❌ |
| [MVP](model_doc/mvp) | ✅ | ❌ | ❌ |
| [NAT](model_doc/nat) | ✅ | ❌ | ❌ |
| [Nezha](model_doc/nezha) | ✅ | ❌ | ❌ |
| [NLLB](model_doc/nllb) | ✅ | ❌ | ❌ |
| [NLLB-MOE](model_doc/nllb-moe) | ✅ | ❌ | ❌ |
| [Nougat](model_doc/nougat) | ✅ | ✅ | ✅ |
| [Nyströmformer](model_doc/nystromformer) | ✅ | ❌ | ❌ |
| [OneFormer](model_doc/oneformer) | ✅ | ❌ | ❌ |
| [OpenAI GPT](model_doc/openai-gpt) | ✅ | ✅ | ❌ |
| [OpenAI GPT-2](model_doc/gpt2) | ✅ | ✅ | ✅ |
| [OpenLlama](model_doc/open-llama) | ✅ | ❌ | ❌ |
| [OPT](model_doc/opt) | ✅ | ✅ | ✅ |
| [OWL-ViT](model_doc/owlvit) | ✅ | ❌ | ❌ |
| [OWLv2](model_doc/owlv2) | ✅ | ❌ | ❌ |
| [Pegasus](model_doc/pegasus) | ✅ | ✅ | ✅ |
| [PEGASUS-X](model_doc/pegasus_x) | ✅ | ❌ | ❌ |
| [Perceiver](model_doc/perceiver) | ✅ | ❌ | ❌ |
| [Persimmon](model_doc/persimmon) | ✅ | ❌ | ❌ |
| [PhoBERT](model_doc/phobert) | ✅ | ✅ | ✅ |
| [Pix2Struct](model_doc/pix2struct) | ✅ | ❌ | ❌ |
| [PLBart](model_doc/plbart) | ✅ | ❌ | ❌ |
| [PoolFormer](model_doc/poolformer) | ✅ | ❌ | ❌ |
| [Pop2Piano](model_doc/pop2piano) | ✅ | ❌ | ❌ |
| [ProphetNet](model_doc/prophetnet) | ✅ | ❌ | ❌ |
| [PVT](model_doc/pvt) | ✅ | ❌ | ❌ |
| [QDQBert](model_doc/qdqbert) | ✅ | ❌ | ❌ |
| [RAG](model_doc/rag) | ✅ | ✅ | ❌ |
| [REALM](model_doc/realm) | ✅ | ❌ | ❌ |
| [Reformer](model_doc/reformer) | ✅ | ❌ | ❌ |
| [RegNet](model_doc/regnet) | ✅ | ✅ | ✅ |
| [RemBERT](model_doc/rembert) | ✅ | ✅ | ❌ |
| [ResNet](model_doc/resnet) | ✅ | ✅ | ✅ |
| [RetriBERT](model_doc/retribert) | ✅ | ❌ | ❌ |
| [RoBERTa](model_doc/roberta) | ✅ | ✅ | ✅ |
| [RoBERTa-PreLayerNorm](model_doc/roberta-prelayernorm) | ✅ | ✅ | ✅ |
| [RoCBert](model_doc/roc_bert) | ✅ | ❌ | ❌ |
| [RoFormer](model_doc/roformer) | ✅ | ✅ | ✅ |
| [RWKV](model_doc/rwkv) | ✅ | ❌ | ❌ |
| [SAM](model_doc/sam) | ✅ | ✅ | ❌ |
| [SeamlessM4T](model_doc/seamless_m4t) | ✅ | ❌ | ❌ |
| [SegFormer](model_doc/segformer) | ✅ | ✅ | ❌ |
| [SEW](model_doc/sew) | ✅ | ❌ | ❌ |
| [SEW-D](model_doc/sew-d) | ✅ | ❌ | ❌ |
| [Speech Encoder decoder](model_doc/speech-encoder-decoder) | ✅ | ❌ | ✅ |
| [Speech2Text](model_doc/speech_to_text) | ✅ | ✅ | ❌ |
| [SpeechT5](model_doc/speecht5) | ✅ | ❌ | ❌ |
| [Splinter](model_doc/splinter) | ✅ | ❌ | ❌ |
| [SqueezeBERT](model_doc/squeezebert) | ✅ | ❌ | ❌ |
| [SwiftFormer](model_doc/swiftformer) | ✅ | ❌ | ❌ |
| [Swin Transformer](model_doc/swin) | ✅ | ✅ | ❌ |
| [Swin Transformer V2](model_doc/swinv2) | ✅ | ❌ | ❌ |
| [Swin2SR](model_doc/swin2sr) | ✅ | ❌ | ❌ |
| [SwitchTransformers](model_doc/switch_transformers) | ✅ | ❌ | ❌ |
| [T5](model_doc/t5) | ✅ | ✅ | ✅ |
| [T5v1.1](model_doc/t5v1.1) | ✅ | ✅ | ✅ |
| [Table Transformer](model_doc/table-transformer) | ✅ | ❌ | ❌ |
| [TAPAS](model_doc/tapas) | ✅ | ✅ | ❌ |
| [TAPEX](model_doc/tapex) | ✅ | ✅ | ✅ |
| [Time Series Transformer](model_doc/time_series_transformer) | ✅ | ❌ | ❌ |
| [TimeSformer](model_doc/timesformer) | ✅ | ❌ | ❌ |
| [Trajectory Transformer](model_doc/trajectory_transformer) | ✅ | ❌ | ❌ |
| [Transformer-XL](model_doc/transfo-xl) | ✅ | ✅ | ❌ |
| [TrOCR](model_doc/trocr) | ✅ | ❌ | ❌ |
| [TVLT](model_doc/tvlt) | ✅ | ❌ | ❌ |
| [UL2](model_doc/ul2) | ✅ | ✅ | ✅ |
| [UMT5](model_doc/umt5) | ✅ | ❌ | ❌ |
| [UniSpeech](model_doc/unispeech) | ✅ | ❌ | ❌ |
| [UniSpeechSat](model_doc/unispeech-sat) | ✅ | ❌ | ❌ |
| [UPerNet](model_doc/upernet) | ✅ | ❌ | ❌ |
| [VAN](model_doc/van) | ✅ | ❌ | ❌ |
| [VideoMAE](model_doc/videomae) | ✅ | ❌ | ❌ |
| [ViLT](model_doc/vilt) | ✅ | ❌ | ❌ |
| [Vision Encoder decoder](model_doc/vision-encoder-decoder) | ✅ | ✅ | ✅ |
| [VisionTextDualEncoder](model_doc/vision-text-dual-encoder) | ✅ | ✅ | ✅ |
| [VisualBERT](model_doc/visual_bert) | ✅ | ❌ | ❌ |
| [ViT](model_doc/vit) | ✅ | ✅ | ✅ |
| [ViT Hybrid](model_doc/vit_hybrid) | ✅ | ❌ | ❌ |
| [VitDet](model_doc/vitdet) | ✅ | ❌ | ❌ |
| [ViTMAE](model_doc/vit_mae) | ✅ | ✅ | ❌ |
| [ViTMatte](model_doc/vitmatte) | ✅ | ❌ | ❌ |
| [ViTMSN](model_doc/vit_msn) | ✅ | ❌ | ❌ |
| [VITS](model_doc/vits) | ✅ | ❌ | ❌ |
| [ViViT](model_doc/vivit) | ✅ | ❌ | ❌ |
| [Wav2Vec2](model_doc/wav2vec2) | ✅ | ✅ | ✅ |
| [Wav2Vec2-Conformer](model_doc/wav2vec2-conformer) | ✅ | ❌ | ❌ |
| [Wav2Vec2Phoneme](model_doc/wav2vec2_phoneme) | ✅ | ✅ | ✅ |
| [WavLM](model_doc/wavlm) | ✅ | ❌ | ❌ |
| [Whisper](model_doc/whisper) | ✅ | ✅ | ✅ |
| [X-CLIP](model_doc/xclip) | ✅ | ❌ | ❌ |
| [X-MOD](model_doc/xmod) | ✅ | ❌ | ❌ |
| [XGLM](model_doc/xglm) | ✅ | ✅ | ✅ |
| [XLM](model_doc/xlm) | ✅ | ✅ | ❌ |
| [XLM-ProphetNet](model_doc/xlm-prophetnet) | ✅ | ❌ | ❌ |
| [XLM-RoBERTa](model_doc/xlm-roberta) | ✅ | ✅ | ✅ |
| [XLM-RoBERTa-XL](model_doc/xlm-roberta-xl) | ✅ | ❌ | ❌ |
| [XLM-V](model_doc/xlm-v) | ✅ | ✅ | ✅ |
| [XLNet](model_doc/xlnet) | ✅ | ✅ | ❌ |
| [XLS-R](model_doc/xls_r) | ✅ | ✅ | ✅ |
| [XLSR-Wav2Vec2](model_doc/xlsr_wav2vec2) | ✅ | ✅ | ✅ |
| [YOLOS](model_doc/yolos) | ✅ | ❌ | ❌ |
| [YOSO](model_doc/yoso) | ✅ | ❌ | ❌ |
<!-- End table-->

View File

@ -1,63 +1,58 @@
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Dilesenkan di bawah Lesen Apache, Versi 2.0 ("Lesen"); anda tidak boleh menggunakan fail ini kecuali dengan mematuhi
Lesen. Anda boleh mendapatkan salinan Lesen di
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Melainkan diperlukan oleh undang-undang yang terpakai atau dipersetujui secara bertulis, perisian yang diedarkan di bawah Lesen diedarkan pada
ASAS ""SEBAGAIMANA ADANYA"", TANPA WARANTI ATAU SEBARANG JENIS SYARAT, sama ada nyata atau tersirat. Lihat Lesen untuk
bahasa tertentu yang mengawal kebenaran dan pengehadan di bawah Lesen.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# 🤗 Transformers
Pembelajaran Mesin terkini untuk [PyTorch](https://pytorch.org/), [TensorFlow](https://www.tensorflow.org/), dan [JAX](https://jax.readthedocs.io/en/latest/).
State-of-the-art Machine Learning for [PyTorch](https://pytorch.org/), [TensorFlow](https://www.tensorflow.org/), and [JAX](https://jax.readthedocs.io/en/latest/).
🤗 Transformers menyediakan API dan alatan untuk memuat turun dan melatih model pra-latihan terkini dengan mudah. Menggunakan model terlatih boleh mengurangkan kos pengiraan anda, jejak karbon dan menjimatkan masa serta sumber yang diperlukan untuk melatih model dari awal. Model ini menyokong tugas biasa dalam modaliti yang berbeza, seperti:
🤗 Transformers provides APIs and tools to easily download and train state-of-the-art pretrained models. Using pretrained models can reduce your compute costs, carbon footprint, and save you the time and resources required to train a model from scratch. These models support common tasks in different modalities, such as:
📝 **Natural Language Processing**: klasifikasi teks, pengecaman entiti bernama, menjawab soalan, pemodelan bahasa, ringkasan, terjemahan, pilihan berganda dan penjanaan teks.<br>
🖼️ **Computer Vision**: pengelasan imej, pengesanan objek dan pembahagian.<br>
🗣️ **Audio**: pengecaman pertuturan automatik dan klasifikasi audio.<br>
🐙 **Multimodal**: jawapan soalan jadual, pengecaman aksara optik, pengekstrakan maklumat daripada dokumen yang diimbas, klasifikasi video dan jawapan soalan visual.
📝 **Natural Language Processing**: text classification, named entity recognition, question answering, language modeling, summarization, translation, multiple choice, and text generation.<br>
🖼️ **Computer Vision**: image classification, object detection, and segmentation.<br>
🗣️ **Audio**: automatic speech recognition and audio classification.<br>
🐙 **Multimodal**: table question answering, optical character recognition, information extraction from scanned documents, video classification, and visual question answering.
🤗 Transformer menyokong kebolehoperasian rangka kerja antara PyTorch, TensorFlow, and JAX. Ini memberikan fleksibiliti untuk menggunakan rangka kerja yang berbeza pada setiap peringkat kehidupan model; latih model dalam tiga baris kod dalam satu rangka kerja, dan muatkannya untuk inferens dalam rangka kerja yang lain. Model juga boleh dieksport ke format seperti ONNX.
🤗 Transformers support framework interoperability between PyTorch, TensorFlow, and JAX. This provides the flexibility to use a different framework at each stage of a model's life; train a model in three lines of code in one framework, and load it for inference in another. Models can also be exported to a format like ONNX and TorchScript for deployment in production environments.
Sertai komuniti yang semakin berkembang di [Hub](https://huggingface.co/models), [forum](https://discuss.huggingface.co/), atau [Discord](https://discord.com/invite/JfAtkvEtRb) hari ini!
Join the growing community on the [Hub](https://huggingface.co/models), [forum](https://discuss.huggingface.co/), or [Discord](https://discord.com/invite/JfAtkvEtRb) today!
## Jika anda sedang mencari sokongan tersuai daripada pasukan Hugging Face
## If you are looking for custom support from the Hugging Face team
<a target="_blank" href="https://huggingface.co/support">
<img alt="HuggingFace Expert Acceleration Program" src="https://cdn-media.huggingface.co/marketing/transformers/new-support-improved.png" style="width: 100%; max-width: 600px; border: 1px solid #eee; border-radius: 4px; box-shadow: 0 1px 2px 0 rgba(0, 0, 0, 0.05);">
</a>
## Kandungan
## Contents
Dokumentasi disusun kepada lima bahagian:
The documentation is organized into five sections:
- **MULAKAN** menyediakan lawatan pantas ke perpustakaan dan arahan pemasangan untuk bangun dan berjalan.
- **TUTORIAL** ialah tempat yang bagus untuk bermula jika anda seorang pemula. Bahagian ini akan membantu anda memperoleh kemahiran asas yang anda perlukan untuk mula menggunakan perpustakaan.
- **PANDUAN CARA-CARA** menunjukkan kepada anda cara untuk mencapai matlamat tertentu, seperti memperhalusi model terlatih untuk pemodelan bahasa atau cara menulis dan berkongsi model tersuai.
- **PANDUAN KONSEP** menawarkan lebih banyak perbincangan dan penjelasan tentang konsep dan idea asas di sebalik model, tugasan dan falsafah reka bentuk 🤗 Transformers.
- **API** menerangkan semua kelas dan fungsi:
- **GET STARTED** provides a quick tour of the library and installation instructions to get up and running.
- **TUTORIALS** are a great place to start if you're a beginner. This section will help you gain the basic skills you need to start using the library.
- **HOW-TO GUIDES** show you how to achieve a specific goal, like finetuning a pretrained model for language modeling or how to write and share a custom model.
- **CONCEPTUAL GUIDES** offers more discussion and explanation of the underlying concepts and ideas behind models, tasks, and the design philosophy of 🤗 Transformers.
- **API** describes all classes and functions:
- **KELAS UTAMA** memperincikan kelas yang paling penting seperti konfigurasi, model, tokenizer dan saluran paip.
- **MODEL** memperincikan kelas dan fungsi yang berkaitan dengan setiap model yang dilaksanakan dalam perpustakaan.
- **PEMBANTU DALAMAN** memperincikan kelas utiliti dan fungsi yang digunakan secara dalaman.
- **MAIN CLASSES** details the most important classes like configuration, model, tokenizer, and pipeline.
- **MODELS** details the classes and functions related to each model implemented in the library.
- **INTERNAL HELPERS** details utility classes and functions used internally.
### Model yang disokong
### Supported models
<!--Senarai ini dikemas kini secara automatik daripada README dengan _make fix-copies_. Jangan kemas kini secara manual! -->
<!--This list is updated automatically from the README with _make fix-copies_. Do not update manually! -->
1. **[ALBERT](model_doc/albert)** (from Google Research and the Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.
1. **[ALIGN](model_doc/align)** (from Google Research) released with the paper [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918) by Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig.
1. **[AltCLIP](model_doc/altclip)** (from BAAI) released with the paper [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) by Chen, Zhongzhi and Liu, Guang and Zhang, Bo-Wen and Ye, Fulong and Yang, Qinghong and Wu, Ledell.
1. **[Audio Spectrogram Transformer](model_doc/audio-spectrogram-transformer)** (from MIT) released with the paper [AST: Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778) by Yuan Gong, Yu-An Chung, James Glass.
1. **[Autoformer](model_doc/autoformer)** (from Tsinghua University) released with the paper [Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://arxiv.org/abs/2106.13008) by Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long.
1. **[BART](model_doc/bart)** (from Facebook) released with the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer.
1. **[BARThez](model_doc/barthez)** (from École polytechnique) released with the paper [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis.
1. **[BARTpho](model_doc/bartpho)** (from VinAI Research) released with the paper [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen.
@ -76,7 +71,6 @@ Dokumentasi disusun kepada lima bahagian:
1. **[BLOOM](model_doc/bloom)** (from BigScience workshop) released by the [BigScience Workshop](https://bigscience.huggingface.co/).
1. **[BORT](model_doc/bort)** (from Alexa) released with the paper [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) by Adrian de Wynter and Daniel J. Perry.
1. **[BridgeTower](model_doc/bridgetower)** (from Harbin Institute of Technology/Microsoft Research Asia/Intel Labs) released with the paper [BridgeTower: Building Bridges Between Encoders in Vision-Language Representation Learning](https://arxiv.org/abs/2206.08657) by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan.
1. **[Bros](model_doc/bros)** (from NAVER) released with the paper [BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents](https://arxiv.org/abs/2108.04539) by Teakgyu Hong, Donghyun Kim, Mingi Ji, Wonseok Hwang, Daehyun Nam, Sungrae Park.
1. **[ByT5](model_doc/byt5)** (from Google Research) released with the paper [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel.
1. **[CamemBERT](model_doc/camembert)** (from Inria/Facebook/Sorbonne) released with the paper [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
1. **[CANINE](model_doc/canine)** (from Google Research) released with the paper [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting.
@ -162,7 +156,7 @@ Dokumentasi disusun kepada lima bahagian:
1. **[MatCha](model_doc/matcha)** (from Google AI) released with the paper [MatCha: Enhancing Visual Language Pretraining with Math Reasoning and Chart Derendering](https://arxiv.org/abs/2212.09662) by Fangyu Liu, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Yasemin Altun, Nigel Collier, Julian Martin Eisenschlos.
1. **[mBART](model_doc/mbart)** (from Facebook) released with the paper [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
1. **[mBART-50](model_doc/mbart)** (from Facebook) released with the paper [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan.
1. **[MEGA](model_doc/mega)** (from Meta/USC/CMU/SJTU) released with the paper [Mega: Moving Average Equipped Gated Attention](https://arxiv.org/abs/2209.10655) by Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and Luke Zettlemoyer.
1. **[MEGA](model_doc/mega)** (from Facebook) released with the paper [Mega: Moving Average Equipped Gated Attention](https://arxiv.org/abs/2209.10655) by Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and Luke Zettlemoyer.
1. **[Megatron-BERT](model_doc/megatron-bert)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[Megatron-GPT2](model_doc/megatron_gpt2)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[MGP-STR](model_doc/mgp-str)** (from Alibaba Research) released with the paper [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592) by Peng Wang, Cheng Da, and Cong Yao.
@ -180,7 +174,7 @@ Dokumentasi disusun kepada lima bahagian:
1. **[NLLB-MOE](model_doc/nllb-moe)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[Nyströmformer](model_doc/nystromformer)** (from the University of Wisconsin - Madison) released with the paper [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh.
1. **[OneFormer](model_doc/oneformer)** (from SHI Labs) released with the paper [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) by Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi.
1. **[OpenLlama](model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released on GitHub (now removed).
1. **[OpenLlama](model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released in [Open-Llama](https://github.com/s-JoL/Open-Llama).
1. **[OPT](master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al.
1. **[OWL-ViT](model_doc/owlvit)** (from Google AI) released with the paper [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby.
1. **[Pegasus](model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
@ -260,13 +254,13 @@ Dokumentasi disusun kepada lima bahagian:
1. **[YOSO](model_doc/yoso)** (from the University of Wisconsin - Madison) released with the paper [You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling](https://arxiv.org/abs/2111.09714) by Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh.
### Rangka kerja yang disokong
### Supported frameworks
Jadual di bawah mewakili sokongan semasa dalam perpustakaan untuk setiap model tersebut, sama ada model tersebut mempunyai Python
tokenizer (dipanggil ""lambat""). Tokenizer ""pantas"" yang disokong oleh perpustakaan Tokenizers 🤗, sama ada mereka mempunyai sokongan dalam Jax (melalui
Flax), PyTorch, dan/atau TensorFlow.
The table below represents the current support in the library for each of those models, whether they have a Python
tokenizer (called "slow"). A "fast" tokenizer backed by the 🤗 Tokenizers library, whether they have support in Jax (via
Flax), PyTorch, and/or TensorFlow.
<!--Jadual ini dikemas kini secara automatik daripada modul auto dengan _make fix-copies_. Jangan kemas kini secara manual!-->
<!--This table is updated automatically from the auto modules with _make fix-copies_. Do not update manually!-->
| Model | Tokenizer slow | Tokenizer fast | PyTorch support | TensorFlow support | Flax Support |
|:-----------------------------:|:--------------:|:--------------:|:---------------:|:------------------:|:------------:|
@ -274,7 +268,6 @@ Flax), PyTorch, dan/atau TensorFlow.
| ALIGN | ❌ | ❌ | ✅ | ❌ | ❌ |
| AltCLIP | ❌ | ❌ | ✅ | ❌ | ❌ |
| Audio Spectrogram Transformer | ❌ | ❌ | ✅ | ❌ | ❌ |
| Autoformer | ❌ | ❌ | ✅ | ❌ | ❌ |
| BART | ✅ | ✅ | ✅ | ✅ | ✅ |
| BEiT | ❌ | ❌ | ✅ | ❌ | ✅ |
| BERT | ✅ | ✅ | ✅ | ✅ | ✅ |
@ -289,7 +282,6 @@ Flax), PyTorch, dan/atau TensorFlow.
| BLIP-2 | ❌ | ❌ | ✅ | ❌ | ❌ |
| BLOOM | ❌ | ✅ | ✅ | ❌ | ❌ |
| BridgeTower | ❌ | ❌ | ✅ | ❌ | ❌ |
| Bros | ✅ | ✅ | ✅ | ❌ | ❌ |
| CamemBERT | ✅ | ✅ | ✅ | ✅ | ❌ |
| CANINE | ✅ | ❌ | ✅ | ❌ | ❌ |
| Chinese-CLIP | ❌ | ❌ | ✅ | ❌ | ❌ |
@ -319,7 +311,7 @@ Flax), PyTorch, dan/atau TensorFlow.
| DonutSwin | ❌ | ❌ | ✅ | ❌ | ❌ |
| DPR | ✅ | ✅ | ✅ | ✅ | ❌ |
| DPT | ❌ | ❌ | ✅ | ❌ | ❌ |
| EfficientFormer | ❌ | ❌ | ✅ | | ❌ |
| EfficientFormer | ❌ | ❌ | ✅ | | ❌ |
| EfficientNet | ❌ | ❌ | ✅ | ❌ | ❌ |
| ELECTRA | ✅ | ✅ | ✅ | ✅ | ✅ |
| Encoder decoder | ❌ | ❌ | ✅ | ✅ | ✅ |
@ -407,7 +399,7 @@ Flax), PyTorch, dan/atau TensorFlow.
| RoCBert | ✅ | ❌ | ✅ | ❌ | ❌ |
| RoFormer | ✅ | ✅ | ✅ | ✅ | ✅ |
| RWKV | ❌ | ❌ | ✅ | ❌ | ❌ |
| SAM | ❌ | ❌ | ✅ | | ❌ |
| SAM | ❌ | ❌ | ✅ | | ❌ |
| SegFormer | ❌ | ❌ | ✅ | ✅ | ❌ |
| SEW | ❌ | ❌ | ✅ | ❌ | ❌ |
| SEW-D | ❌ | ❌ | ✅ | ❌ | ❌ |
@ -459,4 +451,4 @@ Flax), PyTorch, dan/atau TensorFlow.
| YOLOS | ❌ | ❌ | ✅ | ❌ | ❌ |
| YOSO | ❌ | ❌ | ✅ | ❌ | ❌ |
<!-- Tamat -->
<!-- End table-->

View File

@ -12,10 +12,6 @@ distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Installation
@ -169,28 +165,28 @@ Pretrained models are downloaded and locally cached at: `~/.cache/huggingface/hu
## Offline mode
Run 🤗 Transformers in a firewalled or offline environment with locally cached files by setting the environment variable `TRANSFORMERS_OFFLINE=1`.
🤗 Transformers is able to run in a firewalled or offline environment by only using local files. Set the environment variable `TRANSFORMERS_OFFLINE=1` to enable this behavior.
<Tip>
Add [🤗 Datasets](https://huggingface.co/docs/datasets/) to your offline training workflow with the environment variable `HF_DATASETS_OFFLINE=1`.
Add [🤗 Datasets](https://huggingface.co/docs/datasets/) to your offline training workflow by setting the environment variable `HF_DATASETS_OFFLINE=1`.
</Tip>
For example, you would typically run a program on a normal network firewalled to external instances with the following command:
```bash
python examples/pytorch/translation/run_translation.py --model_name_or_path t5-small --dataset_name wmt16 --dataset_config ro-en ...
```
Run this same program in an offline instance with:
```bash
HF_DATASETS_OFFLINE=1 TRANSFORMERS_OFFLINE=1 \
python examples/pytorch/translation/run_translation.py --model_name_or_path t5-small --dataset_name wmt16 --dataset_config ro-en ...
```
This script should run without hanging or waiting to timeout because it won't attempt to download the model from the Hub.
You can also bypass loading a model from the Hub from each [`~PreTrainedModel.from_pretrained`] call with the [`local_files_only`] parameter. When set to `True`, only local files are loaded:
```py
from transformers import T5Model
model = T5Model.from_pretrained("./path/to/local/directory", local_files_only=True)
```
The script should now run without hanging or waiting to timeout because it knows it should only look for local files.
### Fetch models and tokenizers to use offline

View File

@ -8,10 +8,6 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Utilities for `FeatureExtractors`

View File

@ -8,10 +8,6 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# General Utilities

View File

@ -8,10 +8,6 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Utilities for Generation
@ -75,104 +71,39 @@ values. Here, for instance, it has two keys that are `sequences` and `scores`.
We document here all output types.
### PyTorch
[[autodoc]] generation.GreedySearchEncoderDecoderOutput
### GreedySearchOutput
[[autodoc]] generation.GreedySearchDecoderOnlyOutput
[[autodoc]] generation.SampleEncoderDecoderOutput
[[autodoc]] generation.SampleDecoderOnlyOutput
[[autodoc]] generation.BeamSearchEncoderDecoderOutput
[[autodoc]] generation.BeamSearchDecoderOnlyOutput
[[autodoc]] generation.BeamSampleEncoderDecoderOutput
[[autodoc]] generation.BeamSampleDecoderOnlyOutput
[[autodoc]] generation.ContrastiveSearchEncoderDecoderOutput
[[autodoc]] generation.ContrastiveSearchDecoderOnlyOutput
### TensorFlow
[[autodoc]] generation.TFGreedySearchEncoderDecoderOutput
[[autodoc]] generation.TFGreedySearchDecoderOnlyOutput
[[autodoc]] generation.TFSampleEncoderDecoderOutput
[[autodoc]] generation.TFSampleDecoderOnlyOutput
[[autodoc]] generation.TFBeamSearchEncoderDecoderOutput
[[autodoc]] generation.TFBeamSearchDecoderOnlyOutput
[[autodoc]] generation.TFBeamSampleEncoderDecoderOutput
[[autodoc]] generation.TFBeamSampleDecoderOnlyOutput
[[autodoc]] generation.TFContrastiveSearchEncoderDecoderOutput
[[autodoc]] generation.TFContrastiveSearchDecoderOnlyOutput
### FLAX
[[autodoc]] generation.FlaxSampleOutput
[[autodoc]] generation.GreedySearchEncoderDecoderOutput
[[autodoc]] generation.FlaxGreedySearchOutput
[[autodoc]] generation.FlaxBeamSearchOutput
### SampleOutput
[[autodoc]] generation.SampleDecoderOnlyOutput
[[autodoc]] generation.SampleEncoderDecoderOutput
[[autodoc]] generation.FlaxSampleOutput
### BeamSearchOutput
[[autodoc]] generation.BeamSearchDecoderOnlyOutput
[[autodoc]] generation.BeamSearchEncoderDecoderOutput
### BeamSampleOutput
[[autodoc]] generation.BeamSampleDecoderOnlyOutput
[[autodoc]] generation.BeamSampleEncoderDecoderOutput
## LogitsProcessor
A [`LogitsProcessor`] can be used to modify the prediction scores of a language model head for
generation.
### PyTorch
[[autodoc]] AlternatingCodebooksLogitsProcessor
- __call__
[[autodoc]] ClassifierFreeGuidanceLogitsProcessor
- __call__
[[autodoc]] EncoderNoRepeatNGramLogitsProcessor
- __call__
[[autodoc]] EncoderRepetitionPenaltyLogitsProcessor
- __call__
[[autodoc]] EpsilonLogitsWarper
- __call__
[[autodoc]] EtaLogitsWarper
- __call__
[[autodoc]] ExponentialDecayLengthPenalty
- __call__
[[autodoc]] ForcedBOSTokenLogitsProcessor
- __call__
[[autodoc]] ForcedEOSTokenLogitsProcessor
- __call__
[[autodoc]] ForceTokensLogitsProcessor
- __call__
[[autodoc]] HammingDiversityLogitsProcessor
- __call__
[[autodoc]] InfNanRemoveLogitsProcessor
- __call__
[[autodoc]] LogitNormalization
- __call__
[[autodoc]] LogitsProcessor
- __call__
@ -188,54 +119,40 @@ generation.
[[autodoc]] MinNewTokensLengthLogitsProcessor
- __call__
[[autodoc]] NoBadWordsLogitsProcessor
- __call__
[[autodoc]] NoRepeatNGramLogitsProcessor
- __call__
[[autodoc]] PrefixConstrainedLogitsProcessor
[[autodoc]] TemperatureLogitsWarper
- __call__
[[autodoc]] RepetitionPenaltyLogitsProcessor
- __call__
[[autodoc]] SequenceBiasLogitsProcessor
- __call__
[[autodoc]] SuppressTokensAtBeginLogitsProcessor
- __call__
[[autodoc]] SuppressTokensLogitsProcessor
- __call__
[[autodoc]] TemperatureLogitsWarper
[[autodoc]] TopPLogitsWarper
- __call__
[[autodoc]] TopKLogitsWarper
- __call__
[[autodoc]] TopPLogitsWarper
- __call__
[[autodoc]] TypicalLogitsWarper
- __call__
[[autodoc]] UnbatchedClassifierFreeGuidanceLogitsProcessor
[[autodoc]] NoRepeatNGramLogitsProcessor
- __call__
[[autodoc]] WhisperTimeStampLogitsProcessor
[[autodoc]] NoBadWordsLogitsProcessor
- __call__
### TensorFlow
[[autodoc]] TFForcedBOSTokenLogitsProcessor
[[autodoc]] PrefixConstrainedLogitsProcessor
- __call__
[[autodoc]] TFForcedEOSTokenLogitsProcessor
[[autodoc]] HammingDiversityLogitsProcessor
- __call__
[[autodoc]] TFForceTokensLogitsProcessor
[[autodoc]] ForcedBOSTokenLogitsProcessor
- __call__
[[autodoc]] ForcedEOSTokenLogitsProcessor
- __call__
[[autodoc]] InfNanRemoveLogitsProcessor
- __call__
[[autodoc]] TFLogitsProcessor
@ -247,6 +164,15 @@ generation.
[[autodoc]] TFLogitsWarper
- __call__
[[autodoc]] TFTemperatureLogitsWarper
- __call__
[[autodoc]] TFTopPLogitsWarper
- __call__
[[autodoc]] TFTopKLogitsWarper
- __call__
[[autodoc]] TFMinLengthLogitsProcessor
- __call__
@ -259,30 +185,10 @@ generation.
[[autodoc]] TFRepetitionPenaltyLogitsProcessor
- __call__
[[autodoc]] TFSuppressTokensAtBeginLogitsProcessor
[[autodoc]] TFForcedBOSTokenLogitsProcessor
- __call__
[[autodoc]] TFSuppressTokensLogitsProcessor
- __call__
[[autodoc]] TFTemperatureLogitsWarper
- __call__
[[autodoc]] TFTopKLogitsWarper
- __call__
[[autodoc]] TFTopPLogitsWarper
- __call__
### FLAX
[[autodoc]] FlaxForcedBOSTokenLogitsProcessor
- __call__
[[autodoc]] FlaxForcedEOSTokenLogitsProcessor
- __call__
[[autodoc]] FlaxForceTokensLogitsProcessor
[[autodoc]] TFForcedEOSTokenLogitsProcessor
- __call__
[[autodoc]] FlaxLogitsProcessor
@ -294,30 +200,27 @@ generation.
[[autodoc]] FlaxLogitsWarper
- __call__
[[autodoc]] FlaxMinLengthLogitsProcessor
- __call__
[[autodoc]] FlaxSuppressTokensAtBeginLogitsProcessor
- __call__
[[autodoc]] FlaxSuppressTokensLogitsProcessor
- __call__
[[autodoc]] FlaxTemperatureLogitsWarper
- __call__
[[autodoc]] FlaxTopKLogitsWarper
- __call__
[[autodoc]] FlaxTopPLogitsWarper
- __call__
[[autodoc]] FlaxWhisperTimeStampLogitsProcessor
[[autodoc]] FlaxTopKLogitsWarper
- __call__
[[autodoc]] FlaxForcedBOSTokenLogitsProcessor
- __call__
[[autodoc]] FlaxForcedEOSTokenLogitsProcessor
- __call__
[[autodoc]] FlaxMinLengthLogitsProcessor
- __call__
## StoppingCriteria
A [`StoppingCriteria`] can be used to change when to stop generation (other than EOS token). Please note that this is exclusivelly available to our PyTorch implementations.
A [`StoppingCriteria`] can be used to change when to stop generation (other than EOS token).
[[autodoc]] StoppingCriteria
- __call__
@ -333,7 +236,7 @@ A [`StoppingCriteria`] can be used to change when to stop generation (other than
## Constraints
A [`Constraint`] can be used to force the generation to include specific tokens or sequences in the output. Please note that this is exclusivelly available to our PyTorch implementations.
A [`Constraint`] can be used to force the generation to include specific tokens or sequences in the output.
[[autodoc]] Constraint

Some files were not shown because too many files have changed in this diff Show More