Compare commits

...

2511 Commits

Author SHA1 Message Date
ca56cd7b31 v4.44.1 2024-08-20 19:41:53 +02:00
6e931e1647 Gemma2: fix FA2 generation (#32553)
fix FA2
2024-08-20 19:41:49 +02:00
74f57df61b Fix generate with inputs_embeds as input (#32493)
* I think inputs_embeds has ndim == 3

* fix sequence length catch

* add generate test

* [run-slow]olmo, persimmon, gemma, gemma2, qwen2, llama

* skip whisper

* fix bart test

* more fixes
2024-08-20 19:41:05 +02:00
084fe2ee6c Merge branch 'v4.44-release' of github.com:huggingface/transformers into v4.44-release 2024-08-20 19:41:05 +02:00
fff9be1545 Reduce the error log when using core models that need their weights renamed, and provide a step forward (#32656)
* Fin

* Modify msg

* Finish up nits
2024-08-20 19:41:05 +02:00
4fd0f4802b Fix VLM generation issues (#32836)
* fix in one commit

* add parameterized

* fix tests

* fix test flakiness

* maybe that's why flaky

* style

* flakiness...

---------

Co-authored-by: raushan <raushan@huggingface.co>
2024-08-20 19:41:05 +02:00
5c4b15ae01 fix multi-gpu with static cache (#32543) 2024-08-20 19:41:05 +02:00
b51a82a524 Revert PR 32299, flag users when Zero-3 was missed (#32851)
Revert PR 32299
2024-08-20 19:41:05 +02:00
0dca7d72b8 Use head_dim if in config for RoPE (#32495)
* use head_dim if in config for RoPE

* typo

* simplify with getattr
2024-08-20 19:41:05 +02:00
a3e77bae9a add back the position ids (#32554)
* add back the position ids

* fix failing test
2024-08-20 19:41:05 +02:00
9c7aa7b3c7 Automatically add transformers tag to the modelcard (#32623)
* Automatically add `transformers` tag to the modelcard

* Specify library_name and test
2024-08-20 19:41:05 +02:00
ed6acee21a Fix sliding window attention used in Gemma2FlashAttention2 (#32522)
* fix sliding window attention (flash2) in gemma2 model

* [run-slow] gemma

* fix slicing attention_mask for flash_attn2

* fix slicing attention_mask when flash_attn is used

* add missing comment

* slice the last seq_len tokens in the key, value states

* revert code of slicing key, value states
2024-08-20 19:41:05 +02:00
51741d7e46 Fix: FA2 with packed training (#32487)
* fix check

* add tests

* [run-slow] llama, gemma2

* oops, whisper actually runs but needed some special treatment
2024-08-20 19:41:05 +02:00
984bc11b08 Revert "fixes to properly shard FSDP across cpu and meta for cpu_effcient_loading for prequantized 4bit (#32276)" (#32477)
* Revert "fixes to properly shard FSDP across cpu and meta for cpu_efficient_loading for prequantized 4bit (#32276)"

This reverts commit 62c60a30181a65e1a3a7f19c3055a240a6a21335.

We uncovered an issue with this change that caused our training runs to hang.

* `is_torchdynamo_compiling` -- cast a wide exception net (#32476)

* cast a wide net

* make fix-copies with a few manual changes

* add copied from

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2024-08-06 20:35:22 +02:00
af61272239 is_torchdynamo_compiling -- cast a wide exception net (#32476)
* cast a wide net

* make fix-copies with a few manual changes

* add copied from
2024-08-06 20:35:17 +02:00
3e93524a13 release v4.44.0 2024-08-06 17:00:10 +02:00
80b90e7b2f Add codestral mamba2 (#32080)
* add new model like

* draft cuda forward - mismatched keys (sharding on conv1)

* match keys successfully

* fix split

* get generation/forward running (wrong gens, norm?)

* :update

* some refactoring

* fixes

* works up until copy to cache

* fix

* update

* NON WORKING VERSION

* version that work?

* nit

* fix config

* fix conversion script

* working cuda forward

* nit

* update

* simplifcation

* make mamba slow simple work

* no einops

* todo

* fix style

* no einops

* update fix no einsum

* nit

* remove einops

* bug: scan_output differs strongly

* add rms norm option

* fix fast + slow generation with and w/o cache ✔️

* draft integration tests

* remove a big chunk of the einsum

* fix slow, fast generations, without any einsum

* fix copies

* fix structure

* fix up modeling and tests

* fix tests

* clamping is indeed worse

* recover mamba2 cache test

* fix copies

* no cache position (yet)

* fix tf tests

* fix matmul for generate

* fixup

* skip cache tests for now

* [run-slow]mamba2

* tune out hidden states for padding

* test batched generation

* propagate attention mask changes

* fix past length

* fix integration test

* style

* address comments

* update readme

* add mamba2 version check

* fix tests

* [run-slow]mamba2

* skip edge tests

* [run-slow]mamba2

* last fixup

* [run-slow]mamba2

* update README

---------

Co-authored-by: Arthur Zucker <arthur.zucker@gmail.com>
2024-08-06 16:39:52 +02:00
3d8bd11942 Generate: fix end to end compilation (#32465) 2024-08-06 15:06:47 +01:00
6a03942db7 Add Nemotron HF Support (#31699)
* Add nemotron support

* fix inference

* add unit test

* add layernorm1p as a class to avoid meta device mismatch

* test fixed

* Add copied_from statements

* remove pretraining_tp args

* remove nemotronlayernorm

* force LN computation done in FP32

* remove nemotrontokenizer and use llamatokenizer

* license update

* add option for kv_channels for minitron8b

* remove assert

* o_proj fixed

* o_proj reshape

* add gated_proj option

* typo

* remove todos

* fix broken test after merging latest main

* remove nezha/nat after meging main

* chnage default config to 15b model

* add nemo conversion script

* rename conversion script

* remove gate_proj option

* pr comment resolved

* fix unit test

* rename kv_channels to head_dim

* resolve PR issue

* add nemotron md

* fix broken tests

* refactor rope for nemotron

* test fix

* remove linearscaling

* whitespace and import

* fix some copied-from

* code style fix

* reformatted

* add position_embedding to nemotronattention

* rope refactor to only use config, copied-from fix

* format

* Run make fix-copies

* nemotron md with autodoc

* doc  fix

* fix order

* pass check_config_docstrings.py

* fix config_attributes

* remove all llama BC related code

* Use PreTrainedTokenizerFast

* ruff check examples

* conversion script update

* add nemotron to toctree
2024-08-06 15:42:05 +02:00
36fd35e1cf Dependencies: fix typo (#32389)
deps_2
2024-08-06 12:36:33 +01:00
438d06c95a Fix get large model config for Switch Transformer encoder only tester (#32438) 2024-08-06 11:48:32 +01:00
fb66ef8147 Update kwargs validation for preprocess with decorator (#32024)
* BLIP preprocess

* BIT preprocess

* BRIDGETOWER preprocess

* CHAMELEON preprocess

* CHINESE_CLIP preprocess

* CONVNEXT preprocess

* DEIT preprocess

* DONUT preprocess

* DPT preprocess

* FLAVA preprocess

* EFFICIENTNET preprocess

* FUYU preprocess

* GLPN preprocess

* IMAGEGPT preprocess

* INTRUCTBLIPVIDEO preprocess

* VIVIT preprocess

* ZOEDEPTH preprocess

* VITMATTE preprocess

* VIT preprocess

* VILT preprocess

* VIDEOMAE preprocess

* VIDEOLLAVA

* TVP processing

* TVP fixup

* SWIN2SR preprocess

* SIGLIP preprocess

* SAM preprocess

* RT-DETR preprocess

* PVT preprocess

* POOLFORMER preprocess

* PERCEIVER preprocess

* OWLVIT preprocess

* OWLV2 preprocess

* NOUGAT preprocess

* MOBILEVIT preprocess

* MOBILENETV2 preprocess

* MOBILENETV1 preprocess

* LEVIT preprocess

* LAYOUTLMV2 preprocess

* LAYOUTLMV3 preprocess

* Add test

* Update tests
2024-08-06 11:33:05 +01:00
e85d86398a add the missing flash attention test marker (#32419)
* add flash attention check

* fix

* fix

* add the missing marker

* bug fix

* add one more

* remove order

* add one more
2024-08-06 11:18:58 +01:00
0aa8328293 Llava: fix checkpoint_doc (#32458)
fix: add new llava like model bug
2024-08-06 10:11:59 +01:00
37c5ca5eb9 Cache: create docs (#32150)
* draft

* updates

* works?

* try adding python example in hidden section

* another try

* hwo do i render python

* format as html code?

* Update docs/source/en/kv_cache.md

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update docs/source/en/kv_cache.md

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update docs/source/en/kv_cache.md

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update docs/source/en/kv_cache.md

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update docs/source/en/kv_cache.md

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* one more small update

* should render hidden secrtion now

* add outputs

* fix links

* check links

* update all links

* update with offloaded cache

* all cache is importable, so they appear in docs

* fix copies

* docstring...

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2024-08-06 10:24:19 +05:00
13dc6b0853 Fix documentation links and code reference to model llava-next (#32434) 2024-08-05 15:14:50 -07:00
7e5d46ded4 Respect the config's attn_implementation if set (#32383)
* Respect the config's attn if set

* Update test - can override in from_config

* Fix
2024-08-05 16:33:19 +01:00
458b0cd2c5 fix: Updated test_embeded_special_tokens for luke and mluke models (#32413)
Fixed tokenizertests for luke, mluke models.
2024-08-05 15:19:42 +01:00
baf7e5c927 Persist embedding type of BART and mBART models after resize (#32242)
* fix: persist embedding type of MBartConditonalGeneration after resize

* fix: persist embedding type of BartConditonalGeneration after resize
2024-08-05 14:15:36 +01:00
f5f1e52f6c Fix documentation references to google/bit-50 model (#32407) 2024-08-05 10:18:28 +02:00
ea5da52ebc add values for neftune (#32399)
I always forget what typical values are, and I have to look at the paper everytime. This will be a helpful reminder.
2024-08-05 09:51:58 +02:00
3d7c2f9dea #32184 save total_vocab_size (#32240)
* save total_vocab_size = vocab_size + user added tokens to speed up operation

* updating length when added_tokens_decoder is set

* add test len(tokenizer)
2024-08-05 09:22:48 +02:00
3bb646a54f Phi3 tests: fix typing for Python 3.8 (#32388)
fix phi
2024-08-05 11:58:42 +05:00
05ae3a300d fix: SeamlessM4TFeatureExtractor stride remainder (#32088)
* fix: SeamlessM4TFeatureExtractor stride remainder

* Added attention mask size test

* Reran ruff for style correction
2024-08-05 08:40:58 +02:00
847bb856d5 Bump keras from 2.8.0 to 2.13.1 in /examples/research_projects/decision_transformer (#32393)
Bump keras in /examples/research_projects/decision_transformer

Bumps [keras](https://github.com/keras-team/keras) from 2.8.0 to 2.13.1.
- [Release notes](https://github.com/keras-team/keras/releases)
- [Commits](https://github.com/keras-team/keras/compare/v2.8.0...v2.13.1)

---
updated-dependencies:
- dependency-name: keras
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-08-05 08:38:34 +02:00
621fb3c0ed MixtralFlashAttention2: put "plus 1" inside parentheses when calculating rotary_seq_len, allowing None position_ids input. (#31500)
* Mixtral: remove unnecessary plus 1 when calculating rotary_seq_len, allowing position_ids=None (no auto position_ids generation could be unsafe)

* fix typo [:-1] to [:, -1]

* to meet formatting requirement

* to meet formatting requirement

* remove white space

* MixtralFlashAttention2: put "+ 1" inside parentheses when calculating rotary_seq_len, allowing None position_ids input. Fix format/style issue.

* propagate to startcoder2, phi3, mixtral and qwen2

* update qwen2_moe
2024-08-03 20:07:55 +02:00
7c31d05b59 fix: (issue #32124) Exception raised when running transformers/examples/flax/language-modeling/t5_tokenizer_model.py. (#32157)
fix: Exception raised when running .
2024-08-03 18:24:11 +02:00
c1aa0edb48 [generate] only require an attention mask for mps with torch<2.4 (#32367)
* up

* style

* stopping
2024-08-02 17:32:50 +08:00
083e13b7c4 RoPE: Add numerical tests (#32380)
tests! :D
2024-08-02 09:39:45 +01:00
2af199c42b Update docs (#32368)
nits
2024-08-02 09:54:16 +05:00
82efc53513 Yell at the user if zero-3 init wasn't performed, but expected to have been done (#32299)
* Test this zach

* Test for improper init w/o zero3

* Move back

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Get rid of stars in warning

* Make private

* Make clear

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-08-01 15:18:43 -04:00
51ab25e293 Fixed Hybrid Cache Shape Initialization. (#32163)
* fixed hybrid cache init, added test

* Fix Test Typo

---------

Co-authored-by: Aaron Haag <aaron.haag@siemens.com>
2024-08-01 13:57:42 +01:00
e3d8285a84 Docker: add speech dep to the consistency docker image (#32374) 2024-08-01 13:46:11 +01:00
ca59d6f77c Offloaded KV Cache (#31325)
* Initial implementation of OffloadedCache

* enable usage via cache_implementation

* Address feedback, add tests, remove legacy methods.

* Remove flash-attn, discover synchronization bugs, fix bugs

* Prevent usage in CPU only mode

* Add a section about offloaded KV cache to the docs

* Fix typos in docs

* Clarifications and better explanation of streams
2024-08-01 14:42:07 +02:00
b4727a1216 Fix conflicting key in init kwargs in PreTrainedTokenizerBase (#31233)
* Fix conflicting key in init kwargs in PreTrainedTokenizerBase

* Update code to check for callable key in save_pretrained

* Apply PR suggestions

* Invoke CI

* Updates based on PR suggestion
2024-08-01 14:32:13 +02:00
db8c7caeb6 Empty list in defaults for LLaMA special tokens during weights conversion (#32342)
empty list in defaults
2024-08-01 14:30:10 +02:00
2229ebe722 update clean_up_tokenization_spaces warning (#32371) 2024-08-01 13:57:41 +02:00
05c1f9af9a Check device map for saving tokenizer config on TPU (fix for issue #31971) (#32043)
* Remove TPU device map for saving tokenizer config

* Update tokenization_utils_base.py

* Fix error msg when passing non-string device into tokenizer

* Fix error message for non-string tokenizer device

* Print out tokenizer device type in error msg

* Update tokenization_utils_base.py
2024-08-01 13:52:05 +02:00
9e28284032 add missing attribute _supports_param_buffer_assignment for gpt-j. (#32359)
Co-authored-by: Guoming Zhang <37257613+nv-guomingz@users.noreply.github.com>
2024-08-01 13:51:20 +02:00
48ed24c50a Remove size check between attn_weights and kv_seq_len for phi3 (#32339)
* Remove size check between attn_weights and kv_seq_len

* add unit tests
2024-08-01 13:49:00 +02:00
e234061cdd [whisper] compile compatibility with long-form decoding (#31772)
* [whisper] compile compatibility with long-form decoding

* clarify comment

* fix after rebase

* finalise

* fix bsz

* fix cache split

* remove contiguous

* style

* finish

* update doc

* prevent cuda graph trace
2024-08-01 18:10:56 +08:00
9451a38526 [enc-dec cache] fix bug in indexing (#32370) 2024-08-01 16:05:27 +08:00
453e74884f LLaVa: add cache class attribute (#32278)
cache class flag
2024-08-01 09:48:03 +05:00
14ee2326e5 fix: warmup_steps check for training_args (#32236) 2024-07-31 23:34:22 +01:00
53f0c9c290 fix: Removed unnecessary @staticmethod decorator (#32361)
* Fixed staticmethods with self as first argument.

* Fixed staticmethods with self as first argument.

* Fixed staticmethods with self as first argument.

* Fixed staticmethods with self as first argument.
2024-07-31 20:56:50 +01:00
92abe60334 >3-5x faster torch.compile forward compilation for autoregressive decoder models (#32227)
* draft

* apply changes to all relevant archs

* rerun ci - check_docstrings.py failing?

* fix docstring

* move 2D->4D mask creation to modeling file

* repo consistency

* fix the batch size = 1 case - calling contiguous is not enough

* nit

* style

* propagate to gemma/gemma-2

* prepare inputs for gemma generation

* implement test and tiny fix in gemma2

* Update src/transformers/models/bloom/modeling_bloom.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fix copies

* ci pass

* fix gemma's test_compile_static_cache tests

* flacky

* retrigger ci

---------

Co-authored-by: sanchit-gandhi <sanchit@huggingface.co>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-08-01 02:03:07 +08:00
b46bd8b9d2 Fix error when streaming to gradio with non-string tool arguments (#32360)
Fix error when streaming agent run to gradio with non-string tool arguments
2024-07-31 18:44:53 +02:00
ef177a5e1c Gemma 2: support assisted generation (#32357) 2024-07-31 16:04:48 +01:00
5f1fcc299c [Idefics2] - Fix FA2 call for Perceiver layer (#32275)
* Fix FA2 call for Perciever layer

* [run_slow] idefics2

* [run_slow] idefics2

* [run_slow] idefics2

* Fix up

* [run_slow] idefics2

* [run_slow] idefics2

* [run_slow] idefics2
2024-07-31 14:51:04 +01:00
b75ad56620 Llama 3.1: Fix incorrect inv_freq assignment (#32330)
fix 💩
2024-07-31 11:12:46 +01:00
7f552e28e0 Gemma2 and flash-attention (#32188)
* enable flash-attn & static cache

* this works, not the prev

* fix for sliding window layers

* not needed anymore
2024-07-31 10:33:38 +05:00
a3264332cf LLaVA-NeXT: fix anyres shapes (#32314)
fix
2024-07-31 10:01:12 +05:00
6e2d04e429 Fix slow GemmaTokenizer and improve SPM slow -> fast conversion process (#32191)
* Remove user-defined tokens which can be obtained through merges

* Remove debug line

* formatting

* Refactor spm slow -> fast converter

* revert unnecessary refactor

* set comprehension

* remove test files

* Use `vocab_scores`

* Always replace spiece underline with space in decode

* we no longer need token filtering

* Add save fast load slow unit test

* Remove tokenizers version check

* Remove duplicate code

* Make `<start_of_turn>` and `<end_of_turn>` special tokens

* Bias merge priority with length if score is the same

* Add unit test for merge priority

* CI
2024-07-30 23:36:38 +02:00
026a173a64 Repo checks: skip docstring checks if not in the diff (#32328)
* tmp

* skip files not in the diff

* use git.Repo instead of an external subprocess

* add tiny change to confirm that the diff is working on pushed changes

* add make quality task

* more profesh main commit reference
2024-07-30 18:56:10 +01:00
516af4bb63 fixes #32329 : The Torch code is correct - to get an average of 10% o… (#32335)
fixes #32329 : The Torch code is correct - to get an average of 10% of the total, we want to take 50% of the remainder after we've already masked 80% with [MASK] in the previous step.
2024-07-30 18:21:45 +01:00
62c60a3018 fixes to properly shard FSDP across cpu and meta for cpu_efficient_loading for prequantized 4bit (#32276) 2024-07-30 18:55:59 +02:00
1627108033 fix: Added missing raise keyword for few exceptions (#32333)
Fixed raising of few exceptions.
2024-07-30 17:53:03 +01:00
bd54ed2ed7 Alternative agent plan (#32295)
* new agent plan

* plan type assertion

* style corrections

* better prompt naming

* make fixup
2024-07-30 18:48:18 +02:00
e68ec18ce2 Docs: formatting nits (#32247)
* doc formatting nits

* ignore non-autodocs

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/esm/modeling_esm.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/esm/modeling_esm.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* make fixup

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-07-30 15:49:14 +01:00
2fbbcf5007 Fix M4T for ASR pipeline (#32296)
* tentative fix

* do the same for M4T
2024-07-30 16:00:13 +02:00
084b5094eb feat(ci): set fetch-depth: 0 in trufflehog checkout step (#31663) 2024-07-30 14:49:26 +02:00
20528f067c Cast epochs_trained to int when resuming training (#32286)
* fix epochs_trained as int when resuming training

* refactor

---------

Co-authored-by: teddyferdinan <teddy.ferdinan@pwr.edu.pl>
2024-07-30 11:25:54 +02:00
934fe1504e Fix GGUF dequantize for gguf==0.9.1 (#32298)
* fix gguf dequantize for gguf==0.9.1

* fix old version

* make style
2024-07-30 11:01:00 +02:00
3e8106d253 Docs: fix GaLore optimizer code example (#32249)
Docs: fix GaLore optimizer example

Fix incorrect usage of GaLore optimizer in Transformers trainer code example.

The GaLore optimizer uses low-rank gradient updates to reduce memory usage. GaLore is quite popular and is implemented by the authors in [https://github.com/jiaweizzhao/GaLore](https://github.com/jiaweizzhao/GaLore). A few months ago GaLore was added to the HuggingFace Transformers library in https://github.com/huggingface/transformers/pull/29588.

Documentation of the Trainer module includes a few code examples of how to use GaLore. However, the `optim_targe_modules` argument to the `TrainingArguments` function is incorrect, as discussed in https://github.com/huggingface/transformers/pull/29588#issuecomment-2006289512. This pull request fixes this issue.
2024-07-30 09:19:24 +02:00
f0bc49e7f6 use torch 2.4 in 2 CI jobs (#32302)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-07-29 22:12:21 +02:00
a24a9a66f4 Add stream messages from agent run for gradio chatbot (#32142)
* Add stream_to_gradio method for running agent in gradio demo
2024-07-29 20:12:44 +02:00
811a9caa21 Make static cache compatible with torch.export (#32168) 2024-07-29 18:19:15 +01:00
7f5d644e69 [pipeline] fix padding for 1-d tensors (#31776)
* [pipeline] fix padding for 1-d tensors

* add test

* make style

* Update tests/pipelines/test_pipelines_automatic_speech_recognition.py

Co-authored-by: Kamil Akesbi <45195979+kamilakesbi@users.noreply.github.com>

* Update tests/pipelines/test_pipelines_automatic_speech_recognition.py

---------

Co-authored-by: Kamil Akesbi <45195979+kamilakesbi@users.noreply.github.com>
2024-07-29 21:24:42 +08:00
3fbaaaa64d Whisper tokenizer word level timestamps (#32197)
* fix _fix_key in PreTrainedModel

* fix _find_longest_common_sequence

* add test

* remove result.json

* nit

* update test
2024-07-29 11:19:52 +01:00
7ffe25f2b9 Generate: end-to-end compilation (#30788)
* mvp

* added test (a few models need fixes)

* fix a few test cases

* test nits

* harder test 😈

* revert changes in stablelm

* test with improved condition

* add todo

* tmp commit

* merged with main

* nits

* add todo

* final corrections

* add docs for generation compilation

* docs nits

* add  tip

* PR suggestions

* add more details to the compilation docs

* fix cache positions

* cache is now init in generate; update docs

* tag test as flaky

* docs

* post rebase make fixup and other nits

* remove unintended changes

* whisper (encoder-decoder) not supported

* move token default updates to ; add tests for token defaults

* push changes

* manual rebase

* chameleon doesn't support this

* fix test_static_cache_mha_mqa_gqa (broken in another PR)

* docs: dynamic is better with end-to-end compilation
2024-07-29 10:52:13 +01:00
49928892d6 fix(docs): Fixed a link in docs (#32274)
Fixed a link in docs.
2024-07-29 10:50:43 +01:00
6494479f1d make p_mask a numpy array before passing to select_starts_ends (#32076)
* fix

* bug fix

* refine

* fix
2024-07-29 10:29:11 +01:00
535fe78b9f Repo: remove exceptions in check_docstrings (#32259)
remove exceptions
2024-07-29 11:06:05 +02:00
a2ad9d5ad5 fix: Fixed wrong argument passed to convert_blip_checkpoint function call (#32262)
Removed one wrong argument passed to convert_blip_checkpoint function call.
2024-07-29 10:43:09 +02:00
5019aabfac Optimize t5 tokenize logic to avoid redundant calls (#32270)
* Optimize t5 tokenize logic to avoid redundant calls

* fix and overwrite copies
2024-07-29 09:51:43 +02:00
f2122cc6eb Upload new model failure report to Hub (#32264)
upload

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-07-29 09:42:54 +02:00
f739687684 🚨 Bloom support for cache class (#31445)
* bloom dynamic cache

* bloom follows standard cache format

* no skips for bloom anymore

* use cache position when possible

* clean up

* codestyle

* Update src/transformers/models/bloom/modeling_bloom.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/bloom/modeling_bloom.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/bloom/modeling_bloom.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* pr comments

* isinstance fix

* address comments

* make musicgen test happy

* [run-slow] bloom

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-07-29 10:58:59 +05:00
44f6fdd74f Llama 3.1: replace for loop by tensor ops at inv_freq initialization (#32244)
* replace for loop by tensor ops

* rm assert; readability
2024-07-27 10:19:46 +01:00
8da9068730 More flexible trigger condition (#32251)
update

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-07-26 20:52:45 +02:00
81233c069c Flash-Attn: fix generation when no attention mask or no pading (#32241)
* fix

* fix prev test (half of failures)

* [run-slow] llama, gemma2

* [run-slow] llama, gemma2
2024-07-26 14:45:55 +05:00
27c7f971c0 [tests] fix static cache implementation is not compatible with attn_implementation==flash_attention_2 (#32039)
* add flash attention check

* fix

* fix
2024-07-26 11:41:27 +02:00
5f841c74b6 Add check for target_sizes is None in post_process_image_guided_detection for owlv2 (#31934)
* Add check for target_sizes is None in post_process_image_guided_detection

* Make sure Owlvit and Owlv2 in sync

* Fix incorrect indentation; add check for correct size of target_sizes
2024-07-26 10:05:46 +01:00
f9756d9edb Adds: extra_repr for RMSNorm layers in most models (#32204)
* adds: extra_repr() to RMSNorm layers in multiple models

* adds: extra_repr for deprecated models as well

* formatting as per style guide
2024-07-26 11:05:38 +02:00
b8e5cd5396 Refactor: Removed un-necessary object base class (#32230)
* Refactored to remove un-necessary object base class.

* small fix.
2024-07-26 10:33:02 +02:00
1c7ebf1d6e don't log base model architecture in wandb if log model is false (#32143)
* don't log base model architecture in wandb is log model is false

* Update src/transformers/integrations/integration_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* convert log model setting into an enum

* fix formatting

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-07-26 09:38:59 +02:00
c46edfb823 Resize embeds with DeepSpeed (#32214)
* fix resize when deepspeed

* deepsped uses new embeds

* we needed this
2024-07-26 10:52:06 +05:00
fad15fba78 Llava: generate without images (#32183)
* llava w/o images

* tests
2024-07-26 10:17:27 +05:00
4ab33c2d81 Generation: stop at eos for assisted decoding (#31301)
* fix

* move changes to prompt lookup

* add test

* set eos in assistant model

* style

* fix flakiness

* changes for new `main`

* Update tests/generation/test_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/generation/test_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* add comment to explain

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-07-26 10:16:06 +05:00
9d6c0641c4 Fix code snippet for Grounding DINO (#32229)
Fix code snippet for grounding-dino
2024-07-25 19:20:47 +01:00
3a83ec48a6 Allow a specific microphone to be used by the ffmpeg audio pipeline utility functions. Default to using the currently active microphone on Mac (#31846)
* use currently active microphone on mac for ffmpeg_microphone

* Allow ffmpeg_microphone device to be specified

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-07-25 17:16:13 +01:00
6ed0bf1e85 translate philosophy.md to chinese (#32177)
* translate philosophy.md to chinese

* add the missing link
2024-07-25 09:01:06 -07:00
df6eee9201 Follow up for #31973 (#32025)
* fix

* [test_all] trigger full CI

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-07-25 16:12:23 +02:00
de2318894e [warnings] fix E721 warnings (#32223)
fix E721 warnings
2024-07-25 15:12:23 +02:00
9b9a54e61b [BigBird Pegasus] set _supports_param_buffer_assignment to False (#32222)
set _supports_param_buffer_assignment to False
2024-07-25 15:11:43 +02:00
1ecedf1d9e Update question_answering.py (#32208) 2024-07-25 13:20:27 +01:00
f53a5dec7b remove unnecessary guard code related with pytorch versions 1.4.2 ~ 1.7.0 (#32210)
remove unnecessary guard code related with pytorch versions 1.4.2 ~
1.7.0
2024-07-25 11:04:04 +02:00
5658e749ad [whisper] fix short-form output type (#32178)
* [whisper] fix short-form output type

* add test

* make style

* update long-form tests

* fixes

* last fix

* finalise test
2024-07-25 16:58:02 +08:00
85a1269e19 fix: Replaced deprecated unittest method with the correct one (#32198)
Replaced deprecated unittest method with the correct one.
2024-07-24 18:00:21 +01:00
edd68f4ed8 🚨 No more default chat templates (#31733)
* No more default chat templates

* Add the template to the GPT-SW3 tests since it's not available by default now

* Fix GPT2 test

* Fix Bloom test

* Fix Bloom test

* Remove default templates again
2024-07-24 17:36:32 +01:00
1c122a46dc Support dequantizing GGUF FP16 format (#31783)
* support gguf fp16

* support gguf bf16 with pytorch

* add gguf f16 test

* remove bf16
2024-07-24 17:59:59 +02:00
af0e4b7b37 Fix float8_e4m3fn in modeling_utils (#32193)
* Fix float8_e4m3fn in modeling_utils

* style

* fix

* comment
2024-07-24 17:14:05 +02:00
1392a6867f Fix resize embedding with Deepspeed (#32192)
fix resize when deepspeed
2024-07-24 19:26:20 +05:00
8d2534c4d0 let's not warn when someone is running a forward (#32176)
* let's not warn when someone is running a foward without cache + self.training

* more models

* fixup
2024-07-24 16:06:39 +02:00
e0182f3bd7 RoPE: relaxed rope validation (#32182)
* relaxed rope check

* lets also accept rope_type=None, defaulting to the original implementation

* type and rope_type can coexist
2024-07-24 15:00:48 +01:00
165116bc14 Remove conversational pipeline tests (#32099)
Remove conversation pipeline tests
2024-07-24 14:03:40 +01:00
5f4ee98a7a Update qwen2.md (#32108)
* Update qwen2.md

outdated description

* Update qwen2.md

amended

* Update qwen2.md

Update

* Update qwen2.md

fix wrong version code, now good to go
2024-07-24 11:54:41 +01:00
8678879f1d fix: default value reflects the runtime environment variables rather than the ones present at import time. (#32153)
* fix: default value reflects the runtime environment variables rather than the ones present at import time.

* Fix: Change `deterministic` to None by default; use env var if None
2024-07-24 11:38:49 +01:00
01be5b4879 adds: extra_repr() to MambaRMSNorm to include hidden size / size of weights in the layer (#32171)
* adds: extra_repr() to MambaRMSNorm to include the hidden size of the layer

* style fix with ruff:
2024-07-24 09:09:59 +02:00
c85510f958 [docs] change temperature to a positive value (#32077)
fix
2024-07-23 17:47:51 +01:00
bc2adb0112 fix: Fixed an if condition that is always evaluating to true (#32160)
Fixed an if condition always evaluating to true.
2024-07-23 16:52:41 +01:00
23f6a43f82 fix (#32162) 2024-07-23 16:48:16 +01:00
d5a99dfcee Llama 3.1 conversion
Co-authored-by: Arthur Zucker <arthur.zucker@gmail.com>
2024-07-23 17:13:25 +02:00
ff0d708fe6 Dev version: v4.44.0.dev0 2024-07-23 17:12:47 +02:00
d2c687b3f1 Updated ruff to the latest version (#31926)
* Updated ruff version and fixed the required code accorindg to the latest version.

* Updated ruff version and fixed the required code accorindg to the latest version.

* Added noqa directive to ignore 1 error shown by ruff
2024-07-23 17:07:31 +02:00
9cf4f2aa9a Enhancing SFT Training Efficiency Using Packing and FlashAttention2 with Position IDs (#31629)
* add DataCollatorBatchFlattening

* Update data_collator.py

* change name

* new FA2 flow if position_ids is provided

* add comments

* minor fix

* minor fix data collator

* add test cases for models

* add test case for data collator

* remove extra code

* formating for ruff check and check_repo.py

* ruff format

ruff format tests src utils

* custom_init_isort.py
2024-07-23 15:56:41 +02:00
7d92009af6 Added additional kwarg for successful running of optuna hyperparameter search (#31924)
Update integration_utils.py

Added additional kwarg
2024-07-23 14:41:52 +01:00
63700628ad feat(cache): StaticCache uses index_copy_ to avoid useless copy (#31857)
* feat(cache): StaticCache uses index_copy_ to avoid useless copy

Using index_copy_ allows for explicit in-place change of the tensor.
Some backends (XLA) will otherwise copy the tensor, making the code
slower and using more memory.

Proposed implementation will end up using less memory and on XLA will
result in less compilation, but the change is also quite generic, making
no change whatsoever on CUDA or CPU backend.

* feat(cache): SlidingWindowCache uses index_copy_ to avoid useless copy

Applying the same change done in StaticCache.

* fix(cache): fallback of index_copy_ when not implemented

* fix(cache): in index_copy_ ensure tensors are on same device

* [run slow] llama

* fix(cache): add move of cache_position to same device in SlidingWindowCache

* Revert "[run slow] llama"

This reverts commit 02608dd14253ccd464e31c108e0cd94364f0e8b9.
2024-07-23 14:18:19 +02:00
a009fbdab3 Fix typing to be compatible with later py versions (#32155) 2024-07-23 12:23:34 +01:00
3263b34354 Revert "Incorrect Whisper long-form decoding timestamps " (#32148)
Revert "Incorrect Whisper long-form decoding timestamps  (#32003)"

This reverts commit cd48553fc8375e1a28d4d82cfe231dedf6a23af8.
2024-07-23 18:34:30 +08:00
034b477847 Rename Phi-3 rope scaling type (#31436)
* renamed phi3 rope_scaling type

* fixed trailing whitespaces

* fixed test

* added warning

* fixed format
2024-07-23 12:33:22 +02:00
bab32d6fe9 Added mamba.py backend (#30139)
* Update README.md

* tests: forward ok

* backward test done

* done testing

* removed check. scripts

* Update README.md

* added use_mambapy arg

* fixed typo in warning

* protected imports w/ mambapy package

* delete pscan.py + raise rather than assert

* Update import_utils.py

* fix whitespaces and unused import

* trailing whitespace + import block unformatted

* Update modeling_mamba.py

* transpose before pscan

* shape comment

* ran make style

* use_mambapy=False by default

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* ran make fix-copies

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-07-23 12:32:19 +02:00
9ced33ca7f Fix video batching to videollava (#32139)
---------

Co-authored-by: Merve Noyan <mervenoyan@Merve-MacBook-Pro.local>
2024-07-23 13:23:23 +03:00
a5b226ce98 Fix flash attention speed issue (#32028)
Add the lru_cache for speed
2024-07-23 12:21:23 +02:00
a1844a3209 gguf conversion add_prefix_space=None for llama3 (#31937)
* gguf conversion forces add_prefix_space=False for llama3, this is not required and forces from_slow, which fails. changing to None + test

* typo

* clean test
2024-07-23 11:45:54 +02:00
2e113422b3 Llama: RoPE refactor (#32135)
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-07-23 10:42:55 +01:00
5a4a76edb7 Modify resize_token_embeddings to ensure output type is same as input (#31979)
* Change resize_token_embeddings to make it return same Class that is passed to it

* Add explanatory comment as requested in review

* Add explanatory comments for add resizing function in lxmert

* Add comment for padding_idx and moving _resize_bias in lxmert to LxmertForPreTraining

---------

Co-authored-by: Prashanth Sateesh <prasatee@Prashanths-MBP.attlocal.net>
Co-authored-by: Prashanth Sateesh <prasatee@Prashanths-MacBook-Pro.local>
2024-07-23 10:28:44 +01:00
1535a2c93d Disable quick init for TapasPreTrainedModel (#32149)
add attribute to model

Signed-off-by: Daniel Lok <daniel.lok@databricks.com>
2024-07-23 10:26:00 +01:00
34b43211d7 Add YaRN and Dynamic-YaRN RoPE Scaling Methods (#30910)
* Add YaRN and Dynamic-YaRN RoPE Scaling Methods

YaRN (Yet another RoPE extension method) combines the NTK-By-Parts
Interpolation and Attention Scaling methods, improving upon existing
RoPE interpolation methods for longer context window sizes.

Fine-tuned models maintain their original performance across benchmarks
while enabling efficient extrapolation and transfer learning for
quicker convergence, especially in compute-limited environments.

We implement YaRN and Dynamic-YaRN for the following list of models:

 - LLaMA
 - Falcon
 - GPT-NeoX
 - Olmo
 - Persimmon
 - Phi
 - StableLM
 - OpenLLaMA

New unit tests are added to assert YaRN's correct behavior on both
short and long sequence inputs.

For more details, please refer to https://arxiv.org/abs/2309.00071.

Co-authored-by: Miguel Almeida <miguel.pessanha.almeida@tecnico.ulisboa.pt>

* Refactor YaRN implementation for LLaMA

Iterate on YaRN implementation for LLaMA and remove diff from remaining
models for increased PR modularity.

This commit includes the following changes:
- Merge 'yarn_rope_scaling' and 'rope_scaling' dictionaries
- Remove unnecessary attributes ('extrapolation_factor' and 'finetuned')
  from YaRN classes
- Inherit 'forward' method in YaRN classes from superclass
- Rename 'yarn' method to 'compute_yarn_scaling'
- Extend YaRN tests with further assertions
- Fix style inconsistencies

Co-authored-by: Miguel Monte e Freitas <miguelmontefreitas@tecnico.ulisboa.pt>

* Refactor Tensor Building Logic for YaRN

- Comply with the the tensor building logic introduced in #30743
- Add referencing to the optimized Attention Factor equation
- Remove Dynamic YaRN for a more agile deployment

Co-authored-by: mig-mfreitas <mig-mfreitas@users.noreply.github.com>

* remove unwanted file

---------

Co-authored-by: Miguel Almeida <miguel.pessanha.almeida@tecnico.ulisboa.pt>
Co-authored-by: mig-mfreitas <mig-mfreitas@users.noreply.github.com>
Co-authored-by: Joao Gante <joao@huggingface.co>
2024-07-23 10:07:58 +01:00
7405c1c77e Add method to retrieve used chat template (#32032)
encapsulate chat template logic
2024-07-23 10:56:21 +02:00
605f3245dc Fix mask creations of GPTNeoX and GPT2 (#31944)
* fix mask creation of gpt2 and gpt_neox caused by me

* forgot the reshape of masks when shape > 2

* add tests for gpt neox and gpt2

* nit on a comment
2024-07-23 10:11:12 +02:00
2782aadae2 [modelling] remove un-necessary transpose for fa2 attention (#31749)
* [whisper] remove un-necessary transpose for fa2 attention

* propagate
2024-07-23 14:55:16 +08:00
f83c6f1d02 Remove trust_remote_code when loading Libri Dummy (#31748)
* [whisper integration] use parquet dataset for testing

* propagate to others

* more propagation

* last one
2024-07-23 14:54:38 +08:00
3aefb4ec7f LLaVaNeXT: pad on right if training (#32134)
* pad on right if training

* docs

* add tests
2024-07-23 10:23:55 +05:00
251a2409c6 Add llama3-llava-next-8b to llava_next conversion script (#31395)
* Add llama3-llava-next-8b to llava_next conversion script

Adds support for the lmms-lab/llama3-llava-next-8b model to the
convert_llava_next_weights_to_hf.py script, along with an example
prompt generated from the llava_llama_3 conv_template in the LLaVA-NeXT
repo.

* Exclude <|begin_of_text|> from prompt example

This token gets added automatically, so it should not be included in the
prompt example.

* Add llava-next-72b and llava-next-110b

Adds the Qwen-based LLaVA-Next models to the conversion script, along
with changes to load the models on multiple GPUs for inference.

* Add llama3 and qwen prompt formats to docs

* Chat prompt and padding side left for llama3 batched

* update

* Update src/transformers/models/llava_next/convert_llava_next_weights_to_hf.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/llava_next/convert_llava_next_weights_to_hf.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* remove code

* better naming

---------

Co-authored-by: raushan <raushan@huggingface.co>
Co-authored-by: Raushan Turganbay <raushan.turganbay@alumni.nu.edu.kz>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-07-23 10:12:16 +05:00
96a074fa7e Add new quant method (#32047)
* Add new quant method

* update

* fix multi-device

* add test

* add offload

* style

* style

* add simple example

* initial doc

* docstring

* style again

* works ?

* better docs

* switch to non persistant

* remove print

* fix init

* code review
2024-07-22 20:21:59 +02:00
bd9dca3b85 set warning level to info for special tokens have been added (#32138)
fixes #7002
2024-07-22 19:42:47 +02:00
817a676bd7 Don't default to other weights file when use_safetensors=True (#31874)
* Don't default to other weights file when use_safetensors=True

* Add tests

* Update tests/utils/test_modeling_utils.py

* Add clarifying comments to tests

* Update tests/utils/test_modeling_utils.py

* Update tests/utils/test_modeling_utils.py
2024-07-22 18:29:50 +01:00
74d0eb3fed Return assistant generated tokens mask in apply_chat_template (#30650)
return assistant generated tokens mask in apply_chat_template
2024-07-22 18:24:43 +01:00
7987710696 [RoBERTa] Minor clarifications to model doc (#31949)
* minor edits and clarifications

* address comment

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-07-22 10:08:27 -07:00
12b6880c81 fix: Fixed raising TypeError instead of ValueError for invalid type (#32111)
* Raised TypeError instead of ValueError for invalid types.

* Updated formatting using ruff.

* Retrieved few changes.

* Retrieved few changes.

* Updated tests accordingly.
2024-07-22 17:46:17 +01:00
d1ec36b94f Update ko/_toctree.yml and remove custom_tools.md to reflect latest changes (#31969)
update `ko/_toctree.yml` and remove `custom_tools.md`
2024-07-22 08:27:13 -07:00
7ba028fccb Fix failing test with race condition (#32140)
* Fix failing test with race condition

* make fixup

* monotonic_ns instead of randint

* uuid4 instead of monotonic_ns

* Add a finally cleanup step
2024-07-22 16:07:29 +01:00
5a649ff3ec [generate] fix eos/pad id check on mps devices (#31695)
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2024-07-22 15:18:48 +02:00
f2a1e3ca68 Mention model_info.id instead of model_info.modelId (#32106) 2024-07-22 14:14:47 +01:00
0fcfc5ccc9 fix: Replaced deprecated mktemp() function (#32123)
Replaced deprecated mktemp function.
2024-07-22 14:13:39 +01:00
c38c55f4fb Generate: store special token tensors under a unique variable name (#31980)
* rename stuff

* english; this one shouldn't be changed

* add a _ to the new var names

* musicgen

* derp
2024-07-22 14:06:49 +01:00
aa8f86a421 Fix shard order (#32023) 2024-07-22 14:06:22 +02:00
b381880597 Agents planning (#31702)
* Allow planning for agents
2024-07-22 10:49:57 +02:00
0fdea8607d Fix tests after huggingface_hub 0.24 (#32054)
* adapt tests

* style

* comment
2024-07-19 19:32:39 +01:00
fe008d6ebe Chameleon: not supported with fast load (#32091)
fixes
2024-07-19 19:21:45 +05:00
62aa270f2a Disable quick init for deepspeed (#32066)
Disable via deepspeed
2024-07-19 08:58:53 -04:00
89575b567e Support generating with fallback for short form audio in Whisper (#30984)
* remove is_shortform

* adapt _retrieve_max_frames_and_seek for short_form

* return bos token in short and long form

* add decoder_input_ids to short form audios

* add eos token for  short form

* handle short form token_timestamps

* no need to return scores

* add is_shortform conditions

* handle when max_new_tokens is None - short form

* handle assistant decoding

* fix

* handle return_dict_in_generate

* handle split_by_batch for encoder_attentions attribute

* handle num_beams>1

* handle num_return_sequences>1 in generate_with_fallback

* handle num_return_sequences>1 with return_dict_in_generate=True

* raise error if max_new_tokens + decoder_inputs_ids > max_target_pos

* fix

* apply review suggestions

* fix

* Update src/transformers/models/whisper/generation_whisper.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Update src/transformers/models/whisper/generation_whisper.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Update src/transformers/models/whisper/generation_whisper.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* fix

* logits for both short form and long form

* handle if logits_processor is None

* test

* apply review changes to num_return_sequences

* add _expand_variables_for_generation

* remove short form commented section

* update comments

* uncomment num_beams line in generate_with_fallback

* update assistant decoding

* handle return_segment with short form generation

* up

* fix output format is_shortform

* overwrite beam_sample test

* update _set_return_timestamps

* apply review suggestions

* apply review suggestions

* remove seek_outputs_short_form

* fix _stack_split_outputs

* fix stack dim in _stack_split_outputs

* update tests

* fix past_key_values + beam tests

* fix

* clean _expand_variables_for_generation

* make style

* fix slow tests

* make style

* max_length condition

* make style

* add slow tests for shortform fallback

* Update src/transformers/models/whisper/generation_whisper.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Update src/transformers/models/whisper/generation_whisper.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* apply review changes

* Update src/transformers/models/whisper/generation_whisper.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* up

* fix slow tests

* apply review suggestions

* update test

* make style

* small fix

* fix

* fix test_new_cache_format

* fix past_key_values

* fix

* make style

* fix slow tests

* fix

---------

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
2024-07-19 13:42:22 +01:00
46835ec6ae Add image-text-to-text task guide (#31777)
* Add image-text-to-text task page

* Update docs/source/en/tasks/image_text_to_text.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/tasks/image_text_to_text.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/tasks/image_text_to_text.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/tasks/image_text_to_text.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/tasks/image_text_to_text.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/tasks/image_text_to_text.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/tasks/image_text_to_text.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/tasks/image_text_to_text.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/tasks/image_text_to_text.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/tasks/image_text_to_text.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/tasks/image_text_to_text.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Address comments

* Fix heading

* Update docs/source/en/tasks/image_text_to_text.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/tasks/image_text_to_text.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/tasks/image_text_to_text.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/tasks/image_text_to_text.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/tasks/image_text_to_text.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/tasks/image_text_to_text.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Address comments

* Update image_text_to_text.md

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-07-19 13:40:40 +01:00
4bd8f12972 Fixes to chameleon docs (#32078)
* Fixes

* Let's not use auto
2024-07-19 12:50:34 +01:00
566b0f1fbf Fix progress callback deepcopy (#32070)
* Replacing ProgressCallbacks deepcopy with a shallowcopy

* Using items instead of entries

* code cleanup for copy in trainer callback

* Style fix for ProgressCallback
2024-07-19 11:56:45 +01:00
e316c5214f VideoLLaVa: fix chat format in docs (#32083)
fix chat format
2024-07-19 15:38:01 +05:00
22f888b3fa [mistral] Fix FA2 attention reshape for Mistral Nemo (#32065)
* [mistral] Fix FA2 attention reshape

* [run-slow] mistral
2024-07-19 11:19:35 +02:00
cd48553fc8 Incorrect Whisper long-form decoding timestamps (#32003)
* fix lo form timestamps in decode_batch

* Update src/transformers/models/whisper/tokenization_whisper.py

Co-authored-by: Yoach Lacombe <52246514+ylacombe@users.noreply.github.com>

* Update src/transformers/models/whisper/tokenization_whisper.py

Co-authored-by: Yoach Lacombe <52246514+ylacombe@users.noreply.github.com>

* add test

* make style

* fix copies

* Update src/transformers/models/whisper/tokenization_whisper_fast.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/whisper/tokenization_whisper.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/whisper/processing_whisper.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/whisper/tokenization_whisper.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* apply review suggestions

* fix

* fix copies

* fix

* Update src/transformers/models/whisper/tokenization_whisper_fast.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* fix-copies

---------

Co-authored-by: Yoach Lacombe <52246514+ylacombe@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-07-19 09:26:38 +01:00
56a7745704 [Chameleon, Hiera] Improve docs (#32038)
* Improve docs

* Fix docs

* Fix code snippet
2024-07-19 11:20:03 +03:00
b873234cb6 Llava: add default chat templates (#31691)
* add default chat templates

* Update src/transformers/models/llava/processing_llava.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/llava_next/processing_llava_next.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* more clear docstring and docs

* Update docs/source/en/model_doc/llava.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/model_doc/llava_next.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/model_doc/vipllava.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* add tests

* remove default templates (see #31733)

* load chat template from another file

* Update docs/source/en/model_doc/llava_next.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* revert some changes in docs

* forgot vipllava

* chat template file is not temporary hack

* warn if loading from processor

* not that file

* similarly modify `save_pretrained`

* Update tests/models/llava_next/test_processor_llava_next.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/vipllava/test_processor_vipllava.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/model_doc/vipllava.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/processing_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/processing_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/model_doc/vipllava.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/model_doc/llava.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/model_doc/llava.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/model_doc/llava_next.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/model_doc/llava_next.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/processing_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/model_doc/llava_next.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* fix

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2024-07-19 10:08:56 +05:00
271fd8e60d docs: Fixed 2 links in the docs along with some minor fixes (#32058)
* Fixed 2 links in the docs along with some minor fixes.

* Updated Contributing.md
2024-07-18 21:28:36 +01:00
8f0d26c55e fix: Removed duplicate entries in a dictionary (#32041)
Removed duplicate key in a dictionary.
2024-07-18 17:26:08 +01:00
c75969ee28 Add torch.compile Support For Mamba (#31247)
* modify mamba cache

* set up cache

* add test

* [run-slow] mamba

* [run-slow] mamba

* address comments

* [run-slow] mamba

* use_cache_position

* [run-slow] mamba

* [run-slow] mamba

* [run-slow] mamba

* [run-slow] mamba

* fix

* cache in generate

* [run-slow] mamba

* address comments

* [run-slow] mamba

* [run-slow] mamba

* address comments

* [run-slow] mamba

* fix

* [run-slow] mamba

* fix

* [run-slow] mamba

* fix cache name

* [run-slow] mamba
2024-07-18 11:54:54 -04:00
4c040aba02 [mistral] Support passing head_dim through config (and do not require head_dim * num_heads == hidden_size) (#32050)
* Allow `head_dim` to be set in Mistral config

* Add docstring

* Do not require `head_dim * num_heads == hidden_size`

* [run-slow] mistral
2024-07-18 16:41:12 +02:00
c50e0551fd Bump scikit-learn from 1.1.2 to 1.5.0 in /examples/research_projects/codeparrot/examples (#32052)
Bump scikit-learn in /examples/research_projects/codeparrot/examples

Bumps [scikit-learn](https://github.com/scikit-learn/scikit-learn) from 1.1.2 to 1.5.0.
- [Release notes](https://github.com/scikit-learn/scikit-learn/releases)
- [Commits](https://github.com/scikit-learn/scikit-learn/compare/1.1.2...1.5.0)

---
updated-dependencies:
- dependency-name: scikit-learn
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-07-18 13:29:56 +01:00
c25dde1fc9 Bump scikit-learn from 1.0.2 to 1.5.0 in /examples/research_projects/decision_transformer (#31458)
Bump scikit-learn in /examples/research_projects/decision_transformer

Bumps [scikit-learn](https://github.com/scikit-learn/scikit-learn) from 1.0.2 to 1.5.0.
- [Release notes](https://github.com/scikit-learn/scikit-learn/releases)
- [Commits](https://github.com/scikit-learn/scikit-learn/compare/1.0.2...1.5.0)

---
updated-dependencies:
- dependency-name: scikit-learn
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-07-18 13:13:38 +01:00
673d30b826 Chameleon: minor fixes after shipping (#32037)
* fix merging

* make chameleon conditional
2024-07-18 16:54:07 +05:00
765732e92c unpin numpy<2.0 (#32018)
* unpin np

* [test_all] trigger full CI

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-07-18 11:26:01 +02:00
1c37e8c1a6 Add sdpa and FA2 for CLIP (#31940)
* Squashed commit of the following:

commit 102842cd477219b9f9bcb23a0bca3a8b92bd732f
Author: Pavel Iakubovskii <qubvel@gmail.com>
Date:   Fri Jul 12 18:23:52 2024 +0000

    Add model-specific sdpa tests

commit 60e4c88581abf89ec098da84ed8e92aa904c997d
Author: Pavel Iakubovskii <qubvel@gmail.com>
Date:   Fri Jul 12 18:20:53 2024 +0000

    Add fallback to eager (expensive operation)

commit c29033d30e7ffde4327e8a15cbbc6bee37546f80
Author: Pavel Iakubovskii <qubvel@gmail.com>
Date:   Thu Jul 11 17:09:55 2024 +0000

    Fix attn_implementation propagation

commit 783aed05f0f38cb2f99e758f81db6838ac55b9f8
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Sat May 25 09:05:27 2024 +0530

    style

commit e77e703ca75d00447cda277eca6b886cd32bddc0
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Sat May 25 09:04:57 2024 +0530

    add comment to explain why I had to touch forbidden codebase.

commit ab9d8849758e7773a31778ccba71588d18552623
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Sat May 25 09:03:02 2024 +0530

    fix: flax attribute access.

commit c570fc0abf9d1bd58c291aae3c7e384f995996d2
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Sat May 25 08:23:54 2024 +0530

    fix tensorflow attribute name.

commit 32c812871cfdb268d8a6e3e2c61c5c925c8ed47e
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Sat May 25 07:57:10 2024 +0530

    fix attribute access.

commit 4f41a0138b6c417aed9c9332278f8bcd979cb7c2
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Sat May 25 07:44:02 2024 +0530

    _from_config.

commit 35aed64ff602422adcf41d7f677a0a24bd9eccae
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri May 24 18:46:52 2024 +0530

    propagation of attn_implementation.

commit 4c25c19845438b1dc1d35a5adf9436151c8c5940
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri May 24 09:24:36 2024 +0530

    style again

commit 5f7dc5c5015c0f8116408f737e8c318d1802c80c
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri May 24 09:19:05 2024 +0530

    use from_config.

commit b70c409956d0359fa6ae5372275d2a20ba7e3389
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri May 24 09:13:43 2024 +0530

    quality

commit a7b63beff53d0fc754c6564e2a7b51731ddee49d
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri May 10 14:35:10 2024 +0200

    add benchmark numbers

commit 455b0eaea50862b8458c8f422b60fe60ae40fdcb
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri May 10 13:50:16 2024 +0200

    Revert "reflect feedback more"

    This reverts commit dc123e71eff60aae74d5f325f113d515d0d71117.

commit ca674829d28787349c2a9593a14e0f1d41f04ea4
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri May 10 13:50:05 2024 +0200

    Revert "fix"

    This reverts commit 37a1cb35b87acdc4cf7528b8b1ed6da27d244e52.

commit fab2dd8576c099eb1a3464958cb206a664d28247
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri May 10 13:47:46 2024 +0200

    fix

commit fbc6ae50fd6f2d36294d31e191761631b701d696
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri May 10 13:38:30 2024 +0200

    reflect feedback more

commit 87245bb020b2d60a89afe318a951df0159404fc9
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri May 3 08:54:34 2024 +0530

    fixes

commit 1057cc26390ee839251e7f8b3326c4207595fb23
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri May 3 07:49:03 2024 +0530

    don't explicit set attn_implementation in tests

commit e33f75916fc8a99f516b1cf449dbbe9d3aabda81
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri May 3 07:43:54 2024 +0530

    explicitly override attn_implementation in the towers.

commit 4cf41cb1bc885c39df7cb8f2a0694ebf23299235
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri May 3 07:38:42 2024 +0530

    import in one-line.

commit f2cc447ae9e74ccfacb448140cdf88259d4afc8c
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri May 3 07:34:58 2024 +0530

    move sdpa mention to usage tips.

commit 92884766c64dbb456926a3a84dd427be1349fa95
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Mon Apr 29 10:58:26 2024 +0530

    fix: memory allocation problem.

commit d7ffbbfe12f7750b7d0a361420f35c13e0ea787d
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Mon Apr 29 09:56:59 2024 +0530

    fix-copies

commit 8dfc3731cedd02e36acd3fe56bb2e6d61efd25d8
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri Apr 26 20:16:12 2024 +0530

    address arthur's comments.

commit d2ed7b4ce4ff15ae9aa4d3d0500f1544e3dcd9e9
Author: Sayak Paul <spsayakpaul@gmail.com>
Date:   Fri Apr 26 20:08:15 2024 +0530

    Apply suggestions from code review

    Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

commit 46e04361f37ded5c522ff05e9f725b9f82dce40e
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Wed Apr 24 09:55:27 2024 +0530

    add to docs.

commit 831629158ad40d34d8983f209afb2740ba041af2
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Wed Apr 24 09:33:10 2024 +0530

    styling.g

commit d263a119c77314250f4b4c8469caf42559197f22
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Wed Apr 24 09:15:20 2024 +0530

    up

commit d44f9d3d7633d4c241a737a1bc317f791f6aedb3
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Tue Apr 23 18:40:42 2024 +0530

    handle causal and attention mask

commit 122f1d60153df6666b634a94e38d073f3f260926
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Tue Apr 23 15:18:21 2024 +0530

    test fixes.

commit 4382d8cff6fa1dee5dbcf0d06b3e2841231e36f5
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Tue Apr 23 09:39:25 2024 +0530

    fix: scaling inside sdpa.

commit 0f629989efc48b7315cf19405a81e02955efe7e5
Author: Sayak Paul <spsayakpaul@gmail.com>
Date:   Tue Apr 23 08:14:58 2024 +0530

    Update src/transformers/models/clip/modeling_clip.py

    Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

commit 14367316877dc27ea40f767ad1aee38bbc97e4ce
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Mon Apr 22 16:21:36 2024 +0530

    add: sdpa support to clip.

* Remove fallback for empty attention mask (expensive operation)

* Fix typing in copies

* Add flash attention

* Add flash attention tests

* List CLIP in FA docs

* Fix embeddings attributes and tf

* [run-slow] clip

* Update clip documentation

* Remove commented code, skip compile dynamic for CLIPModel

* Fix doc

* Fix doc 2

* Remove double transpose

* Add torch version check for contiguous()

* Add comment to test mixin

* Fix copies

* Add comment for mask

* Update docs

* [run-slow] clip
2024-07-18 10:30:37 +05:30
b31d595040 Add language to word timestamps for Whisper (#31572)
* add language to words

_collate_word_timestamps uses the return_language flag to determine whether the language of the chunk should be added to the word's information

* ran style checks

added missing comma

* add new language test

test that the pipeline can return both the language and timestamp

* remove model configuration in test

Removed model configurations that do not influence test results

* remove model configuration in test

Removed model configurations that do not influence test results
2024-07-17 21:32:53 +01:00
cb23d1b20b Pass missing arguments to SeamlessM4Tv2ConformerEncoderLayer.forward() when gradient checkpointing is enabled (#31945)
* pass missing arguments when gradient checkpointing is enabled for SeamlessM4Tv2

* fix same bug in SeamlessM4Tv1

* pass args, not kwargs
2024-07-17 20:42:53 +01:00
bc36c26fa6 doc: fix broken BEiT and DiNAT model links on Backbone page (#32029)
Signed-off-by: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com>
2024-07-17 20:24:10 +01:00
63be8e6f39 Fix typo in classification function selection logic to improve code consistency (#32031)
Make problem_type condition consistent with num_labels condition

The latter condition generally overrides the former, so this is more of a code reading issue. I'm not sure the bug would ever actually get triggered under normal use.
2024-07-17 20:20:39 +01:00
72fb02c47d Fixed log messages that are resulting in TypeError due to too many arguments (#32017)
* Fixed log messages that are resulting in TypeErrors due to too many arguments.

* Removed un-necessary imports.
2024-07-17 10:56:44 +01:00
691586b0dc Fix tests skip (#32012)
* [run-slow] clip

* [run-slow] clip

* Fix skip -> skipTest

* [run-slow] clip
2024-07-17 08:37:43 +01:00
24cfcc2114 Chameleon: add model (#31534)
* Chameleon model integration

Co-authored-by: Jacob Kahn <jacobkahn1@gmail.com>
Co-authored-by: Leonid Shamis <leonid.shamis@gmail.com>

* fix 7B, again. mask away image tokens

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* remove pretrained_config_map

* make fixup passing up to utils/check_config_docstrings.py; vqgan moved to the modeling file

* remove tokenizer (use llama's); remove codechameleon tests

* a few copied from statements and minor changes

* copied from in ChameleonModel

* some copies in ChameleonForCausalLM

* a few more copies

* VQModel moved to ChameleonModel (as opposed to being in the processor)

* ChameleonProcessor ready

* Fix chameleon weights convert

* update conversion script

* clean-up processing

* update modeling a bit

* update

* update (throws error...)

* correct conversion ready

* fix tests

* fix docs

* docs

* ve swin norm

* fix device for vocab map

* add normalization

* update

* update script with rope rotations

* final fix on model conversion

* add slow tests

* more info in docs

* fix repo consistency tests

* fix repo tests

* fix-copies

* hope this will make CI happy

* fix for 30b model

* Update docs/source/en/index.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/model_doc/chameleon.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/chameleon/modeling_chameleon.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/model_doc/chameleon.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/model_doc/chameleon.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/model_doc/chameleon.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/model_doc/chameleon.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/auto/configuration_auto.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/chameleon/image_processing_chameleon.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/chameleon/image_processing_chameleon.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/chameleon/image_processing_chameleon.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/chameleon/image_processing_chameleon.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/chameleon/modeling_chameleon.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/chameleon/processing_chameleon.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/chameleon/processing_chameleon.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/chameleon/test_modeling_chameleon.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/chameleon/test_modeling_chameleon.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/chameleon/test_modeling_chameleon.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* address comments

* remove assertion in conversion script

* add image processor test

* not copied

* port changes for qk layernorm

* fix-copies

* read token decorator for tests

* [run-slow] chameleon

* one more read-token

* address some comments

* qk norm changes

* tests and repo check

* moved rope permutations to conversion, YAY!

* fix past kv check

* docs

* layernorm done!

* let's be consistent in naming

* fix slow tests

* weird thing with slow CI, but let's see

* once more try

* remove past-kv as tuple following llama

* ignore

* style

---------

Co-authored-by: Pablo Montalvo <39954772+molbap@users.noreply.github.com>
Co-authored-by: ArthurZucker <arthur.zucker@gmail.com>
Co-authored-by: jacobkahn <jacobkahn1@gmail.com>
Co-authored-by: Leonid Shamis <leonid.shamis@gmail.com>
Co-authored-by: Leonid Shamis <lshamis@meta.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Joao Gante <joao@huggingface.co>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-07-17 10:41:43 +05:00
4037a2b5b1 SpeechEncoderDecoder doesn't support param buffer assignments (#32009)
One more model
2024-07-16 18:18:32 -04:00
6f40a213eb Fix if else and *actually* enable superfast init (#32007)
* Fix if else

* rm err raise
2024-07-16 14:35:57 -04:00
e391706420 Fix gather when collecting 'num_input_tokens_seen' (#31974)
* Move token count to device before gathering

* Run 'make style; make quality'
2024-07-16 19:35:10 +01:00
c22efa6196 Bug report update -- round 2 (#32006)
* like this?

* Update .github/ISSUE_TEMPLATE/bug-report.yml

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-07-16 19:22:45 +01:00
88e0813d8d fix: Fixed incorrect dictionary assignment in src/transformers/__init__.py (#31993)
Fixed incorrect dictionary assignment.
2024-07-16 17:28:14 +01:00
036d3de23d add flash-attn deterministic option to flash-attn>=2.4.1 (#31961)
* add flash-attn deterministic option to flash-attn>=2.4.1

* Add Missing Import

* Fix ruff linting issues

* Replace `is_flash_attn_greater_or_equal_2_41` with the existing `is_flash_attn_greater_or_equal`

---------

Co-authored-by: jun.4 <jun.4@kakaobrain.com>
2024-07-16 17:55:41 +02:00
89eec5cf20 Bug report update (#31983) 2024-07-16 16:51:05 +01:00
999981daf4 Tests: remove cuda versions when the result is the same 🧹🧹 (#31955)
remove cuda versions when the result is the same
2024-07-16 16:49:54 +01:00
693cb828ff Fix bad test about slower init (#32002)
Bronked main
2024-07-16 10:33:05 -04:00
25e5e3fa56 [tests] fix deepspeed zero3 config for test_stage3_nvme_offload (#31881)
fix config
2024-07-16 16:11:37 +02:00
e0dfd7bcaf Speedup model init on CPU (by 10x+ for llama-3-8B as one example) (#31771)
* 1,100%!

* Clean

* Don't touch DS

* Experiment with dtype allocation

* skip test_load_save_without_tied_weights test

* A little faster

* Include proper upscaling?

* Fixup tests

* Potentially skip?

* Let's see if this fixes git history

* Maintain new dtype

* Fin

* Rm hook idea for now

* New approach, see what breaks

* stage

* Clean

* Stash

* Should be fin now, just need to mark failing models

* Clean up

* Simplify

* Deal with weird models

* Enc/Dec

* Skip w/ reason

* Adjust test

* Fix test

* one more test

* Keep experimenting

* Fix ref

* TO REMOVE: testing feedback CI

* Right push

* Update tests/utils/test_modeling_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* disable

* Add new func

* Test nits from Amy

* Update src/transformers/modeling_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Adjust comment

* Adjust comment on skip

* make private

* Fin

* Should be a not flag

* Clarify and rename test

---------

Co-authored-by: Marc Sun <marc@huggingface.co>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-07-16 09:32:01 -04:00
03a3becc48 Cambricon MLUs support SDPA and flash_attn (#31102)
* add Cambricon MLUs support

* fix mlu device rng state

* up for quality check

* up mlu to support fp16

* fix mlu device dependency error

* fix mlu device dependency error

* enable mlu device for bf16

* fix mlu device memory tracker

* Cambricon support SDPA and flash_attn
2024-07-16 14:33:22 +02:00
ac946aac25 Fix the incorrect permutation of gguf (#31788)
* Fix the incorrect permutation of gguf

* rename num_kv_heads

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* add typing to num_kv_heads

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* rename variables

* refactor permute function name

* update the expected text of the llama3 q4 test

---------

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2024-07-16 08:20:34 +02:00
6fbea6d237 Generate: doc nits (#31982)
nits
2024-07-15 19:59:20 +01:00
e4682de635 Masking: remove flakiness from test (#31939) 2024-07-15 18:49:37 +01:00
a1a34657d4 Avoid race condition (#31973)
* [test_all] hub

* remove delete

* remove delete

* remove delete

* remove delete

* remove delete

* remove delete

* [test_all]

* [test_all]

* [test_all]

* [test_all]

* [test_all]

* [test_all]

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-07-15 17:56:24 +02:00
11efb4fc09 Notify new docker images built for circleci (#31701)
* hello

* hello

* hello

* hello

* hello

* hello

* hello

* notify

* trigger

* use new channel

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-07-15 17:16:36 +02:00
556a4205f0 fix: Fixed the arguments in create_repo() function call (#31947)
* Fixed the arguments in create_repo() function call.

* Formatted the code properly using ruff.

* Formatted the code more clearly.
2024-07-15 15:56:17 +01:00
907500423d Generate: handle logits_warper update in models with custom generate fn (#31957)
handle logits_warper update in models with custom generate fn
2024-07-15 12:07:53 +02:00
454bc14d90 fix: Removed a wrong key-word argument in sigmoid_focal_loss() function call (#31951)
Removed a wrong key-word argument in sigmoid_focal_loss() function call.
2024-07-15 10:05:08 +01:00
a5c642fe7a Whisper: move to tensor cpu before converting to np array at decode time (#31954) 2024-07-14 16:39:42 +01:00
df1c248a6d Generate: v4.42 deprecations 🧹🧹 (#31956)
v4_42 deprecations
2024-07-14 16:39:24 +01:00
739a63166d Generate: remove deprecated code due to Cache and cache_position being default (#31898)
* tmp commit

* shorter

* nit

* explicit kwargs

* propagate changes

* mass propagation with a few manual touches (let's see how CI behaves)

* fix cacheless case

* Update src/transformers/generation/utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* make fixup

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-07-14 15:16:58 +01:00
8480fda6ee Fix GenerationMixin.generate compatibility with pytorch profiler (#31935)
use torch.compiler.is_compiling() when possible
2024-07-14 14:44:38 +01:00
7f79a97399 fix prompt strip to support tensors and np arrays (#27818)
* fix prompt strip to support tensors and np arrays

* framework agnostic

* change logic check before converting prompt into list

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* adding _convert_to_list to tokenization_whisper_fast

* adding tests for prompt decoding

* adding comment

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* adding comment

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* revert minor

* make style formatting

* style formatting after update

* Update src/transformers/models/whisper/tokenization_whisper_fast.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* fixing _strip_prompt to handle _decode_with_timestamps

* fix copies

---------

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
2024-07-12 20:07:10 +01:00
d1a1bcf56a Docker: TF pin on the consistency job (#31928)
* pin

* dev-ci

* dev-ci

* dev-ci

* test pushed image
2024-07-12 14:28:46 +02:00
aec1ca3a58 [Bug Fix] fix qa pipeline tensor to numpy (#31585)
* fix qa pipeline

* fix tensor to numpy
2024-07-11 22:22:26 +01:00
c1e139c2b0 Adding hiera (#30356)
* initialized Structure

* Updated variable names

* Added Config class, basic HF setup, convert_to_hf

* Fixed Convert function, added hiera to HF files, Initilized test files

* better naming for x in forward pass

* Moved utils to hiera

* Change hiera -> hiera_model

* Fixed integration into tranformers

* Fix: Convert Checkpoint

* added documentation for hiera

* added documentation for hiera

* added Docstings to models, Transformers based changes

* make style and quality

* make style and quality

* Integration & Block tests running

* Fixed bugs

* initialized Structure

* Updated variable names

* Added Config class, basic HF setup, convert_to_hf

* Fixed Convert function, added hiera to HF files, Initilized test files

* better naming for x in forward pass

* Moved utils to hiera

* Change hiera -> hiera_model

* Fixed integration into tranformers

* Fix: Convert Checkpoint

* added documentation for hiera

* added documentation for hiera

* added Docstings to models, Transformers based changes

* make style and quality

* make style and quality

* Integration & Block tests running

* Fixed bugs

* Removed tim dependency

* added HieraBlock

* fixed: Model name

* added tests for HieraModel, HieraBlock

* fixed imports

* fixed quality & copies

* Fixes

* Update docs/source/en/model_doc/hiera.md

Fix name

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/hiera.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/hiera.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update src/transformers/models/hiera/configuration_hiera.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update src/transformers/models/hiera/configuration_hiera.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update src/transformers/models/hiera/modeling_hiera.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update src/transformers/models/hiera/modeling_hiera.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Fixed formatting

* Code quality & Import differences

* quality and repo-consistency fix

* fixed no torch error

* Docstring fix

* Docstring fix

* doc string fix

* fixed example usage

* Resolved issues in modeling_hiera

* Removed Hiera MAE

* Added test and resolved bug

* fixed doc string

* First commit

* Finished conversion script and model forward working

* Resolved all issues

* nits

* Improving tests

* Nits

* More nits

* Improving HieraForMaskedImageModeling

* More improvements and nits

* Fixed docstrings of outputs

* More fixes

* More imrpovments

* Updated conversion script

* Fixed docstrings

* Improved tests

* Fixed attentou outputs test

* All tests green

* Removed unnecessary file

* contribution attribution

* Resolved a few issues

* Resolved Comments

* Updated model repo id and fixed bugs

* Removed loss print

* Make tests green

* Updated docstrings

* Fix style

* Fixed num_heads in config

* Removed unnecessary video checkpoint related code in the conversion script

* Fix style

* Changed atol in conversion script

* HieraConfig

* Fix copies

* Fixed typo

* Resolved few issues

* make

* converted conv_nd -> nn.Module

* Removed video complexities

* Removed video complexities

* fix style

* Addressing comments

* Update src/transformers/models/hiera/modeling_hiera.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/hiera/modeling_hiera.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/hiera/modeling_hiera.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Fix style

* Fixed tests

* Fixed typo

* Fixed interpolate test

* Made torch fx compatible

* Made sure imageprocesor is correct

* Addressed comments

* Noise directly as torch

* Remove unnecesary attr

* Added return_dit

* Update src/transformers/models/hiera/__init__.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Updated checkpoints

* [run_slow] hiera

* Fixed device mismatch

* [run_slow] hiera

* Fixed GPU tests

* [run_slow] hiera

---------

Co-authored-by: Ubuntu <ubuntu@ip-172-31-29-50.us-east-2.compute.internal>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Eduardo Pacheco <eduardo.pach@hotmail.com>
Co-authored-by: Eduardo Pacheco <69953243+EduardoPach@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-07-11 22:13:56 +01:00
574e68d554 Allow Trainer.get_optimizer_cls_and_kwargs to be overridden (#31875)
* Change `Trainer.get_optimizer_cls_and_kwargs` to `self.`

* Make `get_optimizer_cls_and_kwargs` an instance method

* Fixing typo

* Revert `get_optimizer_cls_and_kwargs` to staticmethod

* restore newline to trainer.py eof
2024-07-11 22:13:06 +01:00
52585019a1 🚨 fix(SigLip): remove spurious exclusion of first vision output token (#30952)
fix(SigLip): remove spurious exclusion of first vision output token in classifier
2024-07-11 19:40:57 +01:00
6a05f68f51 Generate: fix SlidingWindowCache.reset() (#31917)
fix sliding cache
2024-07-11 19:35:46 +01:00
e314395277 Refactor flash attention implementation in transformers (#31446)
* dumb commit

* nit

* update

* something like this

* unpack in modeling utils

* safe import

* oups

* update

* nits

* diff convert gemma

* update

* start propagating

* udpate other modeling code as well

* update for sliding window models

* nits

* more init cleanups

* styling

* fixup

* noice

* pass fixup

* typo typing_extension -> typing_extensions

* torch.nn.functionnal -> torch.nn.functional

* add to import structure

* unpack

* simplify a bit more for this first version

* nut

* update

* update

* nit

* ease the import of `Unpack`

* remove useless `use_sliding_window`

* no qua please

* protect import?

* style

* [run-slow]

* [run slow] llama,gemma,mistral,mixtral

* remove extra kwargs

* fix llama

* address review comments

* apply diff_model_converter to modeling_gemma.py

* remove cache_position 1

* remove cache_position 2

* some cleaning

* refactor gemma2 as well

* apply review comments

* rename file to modeling_flash_attention_utils.py

* siglip refactor

* remove dead code

* is the hub down?

* still down?

* fix siglip

* fix gemma2

* fatal: Could not read from remote repository.

* fix typo in softcap implem

* flacky

* Failed: Timeout >120.0s

---------

Co-authored-by: fxmarty <9808326+fxmarty@users.noreply.github.com>
2024-07-11 20:37:31 +08:00
ad4ef3a290 Fix fx tests with inputs_embeds (#31862)
* fix tests

* [test_all] check

* address review comments
2024-07-11 20:14:03 +08:00
1499a55008 Add warning message for beta and gamma parameters (#31654)
* Add warning message for  and  parameters

* Fix when the warning is raised

* Formatting changes

* Improve testing and remove duplicated warning from _fix_key
2024-07-11 13:01:47 +01:00
23d6d0cc06 add gather_use_object arguments II (#31799)
* add gather_use_object arguments

* fix name and pass the CI test for Seq2SeqTrainer

* make style

* make it to functools

* fix typo

* add accelerate version:

* adding warning

* Update src/transformers/trainer.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* make style

* Update src/transformers/training_args.py

* check function move to initial part

* add test for eval_use_gather_object

* fix minor

---------

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2024-07-11 12:23:02 +01:00
2e48b3e872 fix: Fixed the 1st argument name in classmethods (#31907)
Fixed the first argument name in few classmethods.
2024-07-11 12:11:50 +01:00
48c20700e1 Fix missing methods for Fuyu (#31880)
* add missing methods for FuyuForCausalLM

* fix a typo

* format code

* add missing tie_weights

* format code
2024-07-11 11:01:46 +01:00
f4ec7a286a [Gemma2] Support FA2 softcapping (#31887)
* Support softcapping

* strictly greater than

* update
2024-07-11 11:57:35 +02:00
f67e0f7fb7 [ConvertSlow] make sure the order is preserved for addedtokens (#31902)
* preserve the order

* oups

* oups

* nit

* trick

* fix issues
2024-07-11 11:56:41 +02:00
14d3b3f0f0 Processor accepts any kwargs (#31889)
* accept kwargs in processors

* return unused kwargs

* fix tests

* typo

* update the other way
2024-07-11 13:20:30 +05:00
a695c18649 Fixes to alternating SWA layers in Gemma2 (#31775)
* HybridCache: Flip order of alternating global-attn/sliding-attn layers

* HybridCache: Read sliding_window argument from cache_kwargs

* Gemma2Model: Flip order of alternating global-attn/sliding-attn layers

* Code formatting
2024-07-11 10:03:46 +02:00
d625294d79 InstructBlipVideo: Update docstring (#31886)
* update docs

* one more change
2024-07-11 10:13:29 +05:00
c54af4c77e Add a condition for nested_detach (#31855)
fix bug: https://github.com/huggingface/transformers/issues/31852
2024-07-10 21:37:22 +01:00
080e14b24c Modify warnings in a with block to avoid flaky tests (#31893)
* fix

* [test_all] check before merge

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-07-10 17:56:12 +02:00
ec03d97b27 [RT-DETR] Add resources (#31815)
* Add resources

* Address comments
2024-07-10 16:34:53 +01:00
8df28bb308 Push sharded checkpoint to hub when push_to_hub=True in TrainingArguments (#31808)
Save sharded checkpoint in Trainer
2024-07-10 15:14:20 +02:00
da79b18087 fix: Removed duplicate field definitions in some classes (#31888)
Removed duplicate field definitions in classes.
2024-07-10 13:46:31 +01:00
9d98706b3f Fix failed tests in #31851 (#31879)
* Revert "Revert "Fix `_init_weights` for `ResNetPreTrainedModel`" (#31868)"

This reverts commit b45dd5de9c8426db5dbda1797a4790566a278919.

* fix

* [test_all] check

* fix

* [test_all] check

* fix

* [test_all] check

* fix

* [test_all] check

* fix

* [test_all] check

* fix

* [test_all] check

* fix

* [test_all] check

* fix

* [test_all] check

* fix

* [test_all] check

* fix

* [test_all] check

* fix

* [test_all] check

* fix

* [test_all] check

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-07-10 14:25:24 +02:00
a0a3e2f469 Fix file type checks in data splits for contrastive training example script (#31720)
fix data split file type checks
2024-07-10 10:17:03 +01:00
e9eeedaf3b remove duplicate words in msg (#31876) 2024-07-10 09:54:45 +01:00
97aa3e2905 Add conversion for interleave llava (#31858)
* add conversion for interleave llava

* remove debug lines

* remove unused imports

* Update src/transformers/models/llava/convert_llava_weights_to_hf.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* small changes + docs

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-07-10 12:12:21 +05:00
ad35309a62 add warning when using gradient_checkpointing with FSDP full shard (#31578)
* add warning when using  with FSDP full shard

* fix style

* Update src/transformers/training_args.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/training_args.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* add hybrid shard warn

* fix style

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-07-09 23:55:57 +01:00
6176d8f5ee Bump certifi from 2023.7.22 to 2024.7.4 in /examples/research_projects/visual_bert (#31872)
Bump certifi in /examples/research_projects/visual_bert

Bumps [certifi](https://github.com/certifi/python-certifi) from 2023.7.22 to 2024.7.4.
- [Commits](https://github.com/certifi/python-certifi/compare/2023.07.22...2024.07.04)

---
updated-dependencies:
- dependency-name: certifi
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-07-09 22:20:39 +01:00
b45dd5de9c Revert "Fix _init_weights for ResNetPreTrainedModel" (#31868)
Revert "Fix `_init_weights` for `ResNetPreTrainedModel` (#31851)"

This reverts commit 4c8149d643576c23d4df559d4931ccf08fa7aee4.
2024-07-09 23:00:56 +02:00
c5bc2d5fd5 Add return type annotation to PreTrainedModel.from_pretrained (#31869)
Update modeling_utils.py

Add return type annotation to PreTrainedModel.from_pretrained
2024-07-09 21:49:29 +01:00
6e59b30841 Bump zipp from 3.7.0 to 3.19.1 in /examples/research_projects/decision_transformer (#31871)
Bump zipp in /examples/research_projects/decision_transformer

Bumps [zipp](https://github.com/jaraco/zipp) from 3.7.0 to 3.19.1.
- [Release notes](https://github.com/jaraco/zipp/releases)
- [Changelog](https://github.com/jaraco/zipp/blob/main/NEWS.rst)
- [Commits](https://github.com/jaraco/zipp/compare/v3.7.0...v3.19.1)

---
updated-dependencies:
- dependency-name: zipp
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-07-09 21:44:48 +01:00
e3a7d9bd47 Update depth estimation task guide (#31860)
---------

Co-authored-by: Merve Noyan <mervenoyan@Merve-MacBook-Pro.local>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-07-09 22:13:30 +03:00
4c8149d643 Fix _init_weights for ResNetPreTrainedModel (#31851)
* init

* test

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-07-09 20:09:08 +02:00
d094d8d9ec Generate: Add new decoding strategy "DoLa" in .generate() (#29619)
Co-authored-by: Joao Gante <joao@huggingface.co>
2024-07-09 17:37:38 +01:00
99c0e55335 docs: typo in tf qa example (#31864)
Signed-off-by: chenk <hen.keinan@gmail.com>
2024-07-09 16:30:06 +01:00
4c2538b863 Test loading generation config with safetensor weights (#31550)
fix test
2024-07-09 16:22:43 +02:00
cffa2b9c1d save_pretrained: use tqdm when saving checkpoint shards from offloaded params (#31856) 2024-07-09 12:55:57 +01:00
350aed7076 chore: remove duplicate words (#31853)
remove duplicate words
2024-07-09 10:38:29 +01:00
bd760cd13d [Grounding DINO] Add processor to auto mapping (#31845)
Add model
2024-07-09 11:28:53 +02:00
0abf5e8eae FX symbolic_trace: do not test decoder_inputs_embeds (#31840)
only test input_embeds, not decoder_input_embeds
2024-07-09 08:07:46 +02:00
952dfd4867 Deprecate vocab_size in other two VLMs (#31681)
* deprrecate `vocab_size` in other two VLMs

* Update src/transformers/models/fuyu/configuration_fuyu.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* depracate until 4.44

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-07-09 10:40:06 +05:00
594c1610fa Mamba & RecurrentGemma: enable strict signature (#31549)
* enable strict signature

* this should not have been deleted

* recurrent_gemma too
2024-07-08 15:48:32 +01:00
ae9dd02ee1 Fix incorrect accelerator device handling for MPS in TrainingArguments (#31812)
* Fix wrong acclerator device setup when using MPS

* More robust TrainingArguments MPS handling

* Update training_args.py

* Cleanup
2024-07-08 12:49:30 +01:00
4879ac2b33 Avoid failure TFBlipModelTest::test_pipeline_image_to_text (#31827)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-07-08 13:49:21 +02:00
ba743700f4 transformers.fx.symbolic_trace supports inputs_embeds (#31574)
* symbolic trace supports inputs_embeds

* fix test?

* Update tests/test_modeling_common.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-07-08 19:17:28 +08:00
e5ca9b057c Fix typos (#31819)
* fix typo

* fix typo

* fix typos

* fix typo

* fix typos
2024-07-08 11:52:47 +01:00
f4711844a3 Bump certifi from 2023.7.22 to 2024.7.4 in /examples/research_projects/lxmert (#31838)
Bump certifi in /examples/research_projects/lxmert

Bumps [certifi](https://github.com/certifi/python-certifi) from 2023.7.22 to 2024.7.4.
- [Commits](https://github.com/certifi/python-certifi/compare/2023.07.22...2024.07.04)

---
updated-dependencies:
- dependency-name: certifi
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-07-08 11:17:49 +01:00
9f3f58c905 Bump transformers from 4.26.1 to 4.38.0 in /examples/tensorflow/language-modeling-tpu (#31837)
Bump transformers in /examples/tensorflow/language-modeling-tpu

Bumps [transformers](https://github.com/huggingface/transformers) from 4.26.1 to 4.38.0.
- [Release notes](https://github.com/huggingface/transformers/releases)
- [Commits](https://github.com/huggingface/transformers/compare/v4.26.1...v4.38.0)

---
updated-dependencies:
- dependency-name: transformers
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-07-08 11:12:33 +01:00
a177821b24 Add FA2 and sdpa support for SigLIP (#31499)
* Rebase to main

* Fix attention implementation autoset for tex and vision configs

* Fixup

* Minor fixes

* Fix copies

* Fix attention_mask for FA2

* Add eqvivalence tests for siglip

* Remove right padding test

* Uncomment flaky

* Fix import

* Add to docs

* Fix test message

* Add sdpa

* Add sdpa equivalence test

* Add siglip sdpa to docs

* Fix typing for attention output

* Add sdpa tests

* Fix signature of FA2

* Autoset attn_implementation in config

* Rename bsz -> batch_size

* Move back autoset attn method

* Mark as flaky

* Correct attention mask padding

* [run-slow] siglip

* Add FA2 and sdpa docs

* Style fix

* Remove flaky for FA2 test

* Change attention implementation set

* Change attn_implementaiton propogation

* Fix typos

* Add modality to assert message

* Add more sdpa backends in test

* [run slow] siglip

* Add math sdpa backend for all options

* [run slow] siglip
2024-07-08 11:10:02 +01:00
076e66e479 Bump certifi from 2023.7.22 to 2024.7.4 in /examples/research_projects/decision_transformer (#31813)
Bump certifi in /examples/research_projects/decision_transformer

Bumps [certifi](https://github.com/certifi/python-certifi) from 2023.7.22 to 2024.7.4.
- [Commits](https://github.com/certifi/python-certifi/compare/2023.07.22...2024.07.04)

---
updated-dependencies:
- dependency-name: certifi
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-07-08 10:52:10 +01:00
c1cda0ee2c Fix Seq2SeqTrainer crash when BatchEncoding data is None (#31418)
avoiding crash when BatchEncoding data is None
2024-07-08 10:51:23 +01:00
06fd7972ac Add ZoeDepth (#30136)
* First draft

* Add docs

* Clean up code

* Convert model

* Add image processor

* Convert Zoe_K

* More improvements

* Improve variable names and docstrings

* Improve variable names

* Improve variable names

* Replace nn.sequential

* More improvements

* Convert ZoeD_NK

* Fix most tests

* Verify pixel values

* Verify pixel values

* Add squeeze

* Update beit to support arbitrary window sizes

* Improve image processor

* Improve docstring

* Improve beit

* Improve model outputs

* Add figure

* Fix beit

* Update checkpoint

* Fix repo id

* Add _keys_to_ignore_on_load_unexpected

* More improvements

* Address comments

* Address comments

* Address comments

* Address comments

* Rename variable name

* Add backbone_hidden_size

* Vectorize

* Vectorize more

* Address comments

* Clarify docstring

* Remove backbone_hidden_size

* Fix image processor

* Remove print statements

* Remove print statement

* Add integration test

* Address comments

* Address comments

* Address comments

* Address comments

* Add requires_backends

* Clean up

* Simplify conversion script

* Simplify more

* Simplify more

* Simplify more

* Clean up

* Make sure beit is loaded correctly

* Address comment

* Address bin_configurations

* Use bin_configurations

* Convert models, add integration tests

* Fix doc test

* Address comments

* Unify regressor classes

* Clarify arguments

* Improve resize_image

* Add num_relative_features

* Address comment

* [run-slow]beit,data2vec,zoedepth

* [run-slow]beit,data2vec,zoedepth

* Address comments

* Address comment

* Address comment

* Replace nn.TransformerEncoderLayer and nn.TransformerEncoder

* Replace nn.MultiheadAttention

* Add attributes for patch transformer to config

* Add tests for ensure_multiple_of

* Update organization

* Add tests

* [run-slow] beit data2vec

* Update ruff

* [run-slow] beit data2vec

* Add comment

* Improve docstrings, add test

* Fix interpolate_pos_encoding

* Fix slow tests

* Add docstring

* Update src/transformers/models/zoedepth/image_processing_zoedepth.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/zoedepth/image_processing_zoedepth.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Improve tests and docstrings

* Use run_common_tests

* Improve docstrings

* Improve docstrings

* Improve tests

* Improve tests

* Remove print statements

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-07-08 11:43:33 +02:00
1082361a19 Depth Anything: update conversion script for V2 (#31522)
* Depth Anything: update conversion script for V2

* Update docs

* Style

* Revert "Update docs"

This reverts commit be0ca47ea1be4f3cd9aa2113bdd8efcc9959119e.

* Add docs for depth anything v2

* Add depth_anything_v2 to MODEL_NAMES_MAPPING

Done similarly to Flan-T5: https://github.com/huggingface/transformers/pull/19892/files

* Add tip in original docs
2024-07-05 19:28:41 +01:00
a8fa6fbbec Fix Wav2Vec2 Fairseq conversion (weight norm state dict keys) (#31714)
* handle new weight norm

* fix

* fix trailing space
2024-07-05 19:26:21 +01:00
a01b033cb4 Fix galore lr display with schedulers (#31710)
* fix galore lr display with lr schedulers

* style

* add some tests to check for displayed lrs

* copy-paste err for warmup steps

* standardize the default lr to be only in the optimizer

* trying out my luck with the reads
2024-07-05 18:59:09 +01:00
ac26260436 Allow FP16 or other precision inference for Pipelines (#31342)
* cast image features to model.dtype where needed to support FP16 or other precision in pipelines

* Update src/transformers/pipelines/image_feature_extraction.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Use .to instead

* Add FP16 pipeline support for zeroshot audio classification

* Remove unused torch imports

* Add docs on FP16 pipeline

* Remove unused import

* Add FP16 tests to pipeline mixin

* Add fp16 placeholder for mask_generation pipeline test

* Add FP16 tests for all pipelines

* Fix formatting

* Remove torch_dtype arg from is_pipeline_test_to_skip*

* Fix format

* trigger ci

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-07-05 17:21:50 +01:00
e786844425 Repeating an important warning in the chat template docs (#31796)
* Repeating an important warning in the chat template docs

* Update docs/source/en/chat_templating.md

Co-authored-by: Lysandre Debut <hi@lysand.re>

* Reword for clarity

* Reword for clarity

---------

Co-authored-by: Lysandre Debut <hi@lysand.re>
2024-07-05 15:30:24 +01:00
1d3eaa6f7e Add training support for SigLIP (#31495)
* Add siglip loss function

* Update docs

* Enable training tests
[experimental] enable GC training tests as it has worked for my own data

* Remove test_training* overrides to enable training tests
[run_slow] siglip

* Skip training tests for Siglip text model and ImageClassificationModel
[run_slow] siglip

* Skip GC training tests for SiglipForImageClassification

* Explicitly skip training tests for SiglipVisionModel
Add skip reason for training tests for SiglipTextModel

* Remove copied from to fix CI
2024-07-05 14:50:39 +01:00
1556025271 Code agent: allow function persistence between steps (#31769)
* Code agent: allow function persistence between steps
2024-07-05 11:09:11 +02:00
eef0507f3d Fix gemma tests (#31794)
* skip 3 7b tests

* fix

* fix

* fix

* [run-slow] gemma

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-07-05 10:17:59 +02:00
9e599d1d94 Update CometCallback to allow reusing of the running experiment (#31366)
* Update CometCallback to allow reusing of the running experiment

* Fixups

* Remove useless TODO

* Add checks for minimum version of the Comet SDK

* Fix documentation and links.

Also simplify how the Comet Experiment name is passed
2024-07-05 08:13:46 +02:00
d19b5a90c2 Exclude torch.compile time from metrics computation (#31443)
* exclude compile time from metrics computation

* fix the quality issue
2024-07-05 08:11:55 +02:00
2aa2a14481 Make tensor device correct when ACCELERATE_TORCH_DEVICE is defined (#31751)
return correct device when ACCELERATE_TORCH_DEVICE is defined
2024-07-05 08:09:04 +02:00
8c5c180de0 Fix serialization for offloaded model (#31727)
* Fix serialization

* style

* add test
2024-07-05 08:07:07 +02:00
eaa5f41439 Fix ClapProcessor to merge feature_extractor output into the returned BatchEncoding (#31767)
* fixed ClapProcessor to merge all values output from the feature extractor into the returned BatchEncoding.

* fixed trailing whitespace
2024-07-05 07:55:47 +02:00
43ffb785c0 Add torch_empty_cache_steps to TrainingArguments (#31546)
* Add torch_empty_cache_steps to TrainingArguments

* Fix formatting

* Add torch_empty_cache_steps to docs on single gpu training

* Remove check for torch_empty_cache_steps <= max_steps

* Captalize Tip

* Be device agnostic

* Fix linting
2024-07-04 13:20:49 -04:00
cee768d97e Fix Gemma2 types (#31779)
Update __init__.py
2024-07-04 15:37:32 +02:00
87726a08ed pytest_num_workers=4 for some CircleCI jobs (#31764)
pytest_num_workers=4

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-07-04 14:44:58 +02:00
048f599f35 Fix RT-DETR weights initialization (#31724)
* Fix init for rt-detr heads

* Fixup

* Add separate prior_prob value to config for initialization

* Add bbox init

* Change to 1 / num_labels init

* Adjust weights init test

* Fix style for test
2024-07-03 14:29:02 +01:00
b97521614a Fix RT-DETR cache for generate_anchors (#31671)
* Fix cache and type conversion

* Add test

* Fixup

* nit

* [run slow] rt_detr

* Fix test

* Fixup

* [run slow] rt_detr

* Update src/transformers/models/rt_detr/modeling_rt_detr.py
2024-07-03 14:19:57 +01:00
534cbf8a5d [fix bug] logits's shape different from label's shape in preprocess_logits_for_metrics (#31447)
* [fix BUG] pad labels before use it in preprocess_logits_for_metrics

* a more readable fix

labels can't use  `gather` before pass to `preprocess_logits_for_metrics`, so must split into 2 if-block

* add a comment

* oh code quality check
2024-07-03 06:58:27 -04:00
65a02cd27d Add ignore_errors=True to trainer.py rmtree in _inner_training_loop (#31668)
Update trainer.py
2024-07-03 06:54:49 -04:00
ddfaf11926 Gemma 2: Update slow tests (#31759)
gemma 2 slow tests
2024-07-03 11:43:44 +02:00
c1fe12595e handle (processor_class, None) returned by ModelPatterns (#31753) 2024-07-03 11:42:30 +02:00
0fd885b91c Adds final answer tool for all agents (#31703)
* Adds final answer tool for all agents

* Typo

* Add clarification in doc

* Put final_answer tool adition in agent for clarity
2024-07-03 11:36:09 +02:00
dc72fd7edd Requires for torch.tensor before casting (#31755) 2024-07-03 11:12:51 +02:00
7f91f168a1 fix assisted decoding (#31401)
* fix assisted decoding

* check None

* fix typo

* fix _prepare_special_tokens

* fix style

* fix lint

* add tests for assisted decoding

* fix style

* fix tests check
2024-07-03 09:22:56 +01:00
f91c16d270 Fix documentation for Gemma2. (#31682)
* Fix documentation for Gemma2. 

Model sizes and Blog post URL are wrong in the documentation.

* Update docs/source/en/model_doc/gemma2.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-07-02 23:04:53 +01:00
cd0935dd55 Make tool JSON schemas consistent (#31756)
Make the order of array items consistent using sorted()
2024-07-02 20:00:42 +01:00
82486e5995 🚨🚨 TextGenerationPipeline: rely on the tokenizer default kwargs (#31747)
* rely on the tokenizer default kwargs

* fix a few tests
2024-07-02 16:17:42 +02:00
a9701953ff [whisper] static kv cache (#31166)
* make work with cache abstraction

* correct for static cache

* hacks for compile

* make fast

* fix

* fix pos ids

* generate

* fix sdpa

* fix sdpa cache pos

* fix fa2

* clean fa2

* integrate cache into generate

* make style

* copies

* more copies

* update eager

* update sdpa

* update fa2

* simplify

* use cache pos

* always compute cross-cache for debug

* avoid recompiles
Co-authored-by: Arthur Zucker <arthur@huggingface.co>

* fix fix

* fix fix fix

* more fix

* try encoder-decoder cache (too messy)

* revert encoder-decoder cache

* check cross-attn cache

* use enc-dec dataclass

* use richer enc-dec dataclass

* clean-up

* revert static cache changes

* small fixes

* revert to cpu flag

* fix copies

* add static slow test

* past k/v docstring

* more docstrings

* cache_position docstrings

* add to docs

* add enc-dec cache to docs

* make style

* fix after rebase

* fix beam

* style

* fix generation strategies

* fix most decoder-only tests

* style

* skip test

* more clean up

* small docstrings

* Apply suggestions from code review

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* add todo

* only crop self-attn

* check cache in mixin

* style

* fix re-compile after rebase

* move `is_updated` logic to enc-dec wrapper

* revert back

* revert cache back

* finalise design

* fix

* fix fix

* style

* Update src/transformers/cache_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* deprecate

* updates

* final updates

* style

* style

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-07-02 13:24:15 +01:00
57d7594a79 Fix mistral ONNX export (#31696)
* use bitwise or

* why is the CI not triggered?
2024-07-02 19:54:10 +08:00
93cd94b79d Move some test files (tets/test_xxx_utils.py) to tests/utils (#31730)
* move

* move

* move

* move

* Update tests/utils/test_image_processing_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-07-02 13:46:03 +02:00
cf85e86e9a remove incorrect urls pointing to the llava repository (#31107)
* remove incorrect urls pointing to the llava repository

* remove incorrect urls pointing to the llava repository; removing entire comments

* remove incorrect urls pointing to the llava repository; removing entire comments; ran fix-copies

* ran fixup
2024-07-02 12:24:55 +01:00
3345ae733b dependencies: keras-nlp<0.14 pin (#31684)
* keras nlp pin

* this should use the new docker images:dev

* dev-ci
2024-07-01 17:39:33 +01:00
e655029515 Add French version of run scripts tutorial (#31483)
* Add French translation of run scripts tutorial

* Update docs/source/fr/run_scripts_fr.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update docs/source/fr/run_scripts_fr.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update docs/source/fr/run_scripts_fr.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update docs/source/fr/run_scripts_fr.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update docs/source/fr/run_scripts_fr.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

---------

Co-authored-by: Jade Choghari <chogharijade@icloud.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-06-28 18:02:30 +02:00
bbf1e61864 Gemma capping is a must for big models (#31698)
* softcapping

* soft cap before the mask

* style

* ...

* super nit
2024-06-28 17:16:17 +02:00
cb298978ad add gather_use_object arguments (#31514)
* add gather_use_object arguments

* fix name and pass the CI test for Seq2SeqTrainer

* make style

* make it to functools

* fix typo

* add accelerate version:

* adding warning

* Update src/transformers/trainer.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* make style

* Update src/transformers/training_args.py

* check function move to initial part

* add test for eval_use_gather_object

---------

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2024-06-28 13:50:27 +01:00
82a1fc7256 Fix return_dict in encodec (#31646)
* fix: use return_dict parameter

* fix: type checks

* fix: unused imports

* update: one-line if else

* remove: recursive check
2024-06-28 12:18:01 +01:00
5e89b335ab Fix Gemma2 4d attention mask (#31674)
Update modeling_gemma2.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-06-28 08:20:30 +02:00
0142aab7f8 don't zero out the attention_mask when using sliding window with flash attention (#31670)
* don't zero out the attention_mask when using sliding window with flash attention

* chore: lint
2024-06-28 07:59:54 +02:00
1c68f2cafb [HybridCache] Fix get_seq_length method (#31661)
* fix gemma2

* handle in generate
2024-06-27 19:40:40 +02:00
464aa74659 [docs] Llama3 (#31662)
quick usage to top
2024-06-27 10:32:51 -07:00
e44b878c02 Fix float out of range in owlvit and owlv2 when using FP16 or lower precision (#31657) 2024-06-27 18:07:33 +01:00
75a6319864 Fix post gemma merge (#31660)
* nit

* toctree issue

* protect gemma2 tests as well

* sdpa supported
2024-06-27 17:51:42 +02:00
727eea4ab0 v4.43.0.dev0 2024-06-27 17:40:07 +02:00
0cf60f13ab Add gemma 2 (#31659)
* inital commit

* Add doc

* protect?

* fixup stuffs

* update tests

* fix build documentation

* mmmmmmm config attributes

* style

* nit

* uodate

* nit

* Fix docs

* protect some stuff

---------

Co-authored-by: Lysandre <lysandre@huggingface.co>
2024-06-27 17:36:19 +02:00
4aa17d0069 Remove deprecated config attribute in VLMs (#31655)
remove
2024-06-27 16:54:41 +05:00
be50a0338b change anchor_image_size None for compatibility (#31640)
* change anchor_image_size None for compatibility

* make fix-copies
2024-06-27 12:36:55 +01:00
3a028101e9 [QoL] Allow dtype str for torch_dtype arg of from_pretrained (#31590)
* Allow dtype str for torch_dtype in from_pretrained

* Update docstring

* Add tests for str torch_dtype
2024-06-27 12:41:49 +02:00
11138ca013 [Llama] Conversion: fix and simplify the script! (#31591)
* fix and simplify the script!

* add co-author

---------

Co-authored-by: crackalamoo <crackalamoo@users.noreply.github.com>
2024-06-27 12:35:19 +02:00
c9f191a0b7 Fix ONNX exports for Optimum compatible models (#31311)
* fixed models

* format with bumped ruff version on my local

* fix copies

* add tracing checks

* format

* Update src/transformers/utils/generic.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* format

* style fix

* Update modeling_mobilevit.py

* add docstring and change name

* Update __init__.py

* Update __init__.py

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-06-27 10:46:36 +01:00
dc76e9fa7f Generation: past kv can be None (#31051)
* fix

* better
2024-06-27 09:55:33 +05:00
1de7dc7403 Skip tests properly (#31308)
* Skip tests properly

* [test_all]

* Add 'reason' as kwarg for skipTest

* [test_all] Fix up

* [test_all]
2024-06-26 21:59:08 +01:00
1f9f57ab4c Fix dtype casting in swinv2 and swinv2sr to allow non-FP32 inference (#31589)
* Fix dtype casting in modeling_swin2sr to allow non-FP32 inference

* Fix formattting

* Fix for swinv2 too

* Update src/transformers/models/swin2sr/modeling_swin2sr.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/swinv2/modeling_swinv2.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Add FP16 tests for swin2sr and swinv2

* [run_slow] swin2sr, swinv2

* [run_slow] swin2sr, swinv2

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-06-26 18:46:48 +01:00
a3fb96a42a Generate: fix assisted generation with past_key_values passed as kwargs (#31644) 2024-06-26 18:24:04 +01:00
492ee17ec3 Fix paligemma detection inference (#31587)
* fix extended attention mask

* add slow test for detection instance

* [run-slow]paligemma
2024-06-26 19:17:09 +02:00
e71f2863d7 Add LLaVa NeXT Video (#31252)
* squash into single commit

* run diff once more

* docstring

* tests

* minor chnages and ready to go

* Update src/transformers/models/llava_next_video/processing_llava_next_video.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/vipllava/test_modeling_vipllava.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* [run-slow] llava-next-video

* [run-slow] llava-next-video

* [run-slow] llava_next_video

* fix two tests

* fix slow tests

* remove logit checks due to numeric errors

* run test once more

* [run-slow] llava_next_video

* final try to pass the test

* [run-slow] llava_next_video

* [run-slow] llava_next_video

* [run-slow] llava_next_video

* style

* fix

* style

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-06-26 21:52:28 +05:00
b1ec745475 Fix RT-DETR inference with float16 and bfloat16 (#31639)
* [run_slow] rt_detr

* Fix positional embeddings and anchors dtypes

* [run slow] rt_detr

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Fixup

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-06-26 17:50:10 +01:00
3f93fd0694 Llama et al. / FSDP : Fix breaking change in 4.40 for FSDP (#31161)
* fix llama fsdp

* fixup

* adding FSDP tests for CPU offloading

* fixes

* fix tests

* fix tests

* add it for mixtral

* propagate the changes on other models

* Update src/transformers/models/phi/modeling_phi.py

* Delete utils/testing_scripts/fsdp_cpu_offloading.py

Remove script - FSDP + CPU offloading it tested in the test suite

* Delete utils/testing_scripts/dummy_fsdp_config.yml

* Update + add cache_positions docstring

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-06-26 14:50:08 +01:00
ac52084bf2 Update RT-DETR code snippet (#31631)
Update code snippet
2024-06-26 14:42:20 +01:00
915cce39c9 Fix llama gguf converter (#31575) 2024-06-26 15:02:40 +02:00
b07770c5eb [GPT-NeoX] Add SDPA support (#31031)
* starting support for sdpa in `gptneox` models

* small comment on tests

* fix dropout

* documentation and style

* clarify concrete paths for reference

* generalise attn projections and rope application

added head mask check to sdpa mask creation

handle sdpa memory backend bug via own version flag

* update docs and style

* move dtype casting outside of general attn_projection_and_rope function

fix flash_attn_2 stuff

* more generic attn warning if output_attns or head_mask

* simplify head mask check by moving head mask creation to a later point

* remove copied llama artifact

* remove padding_mask from attention function signature

* removing unnecessary comments, only "save" attn implementation once

* [run_slow] gpt_neox
2024-06-26 13:56:36 +01:00
1218e439b5 Removed unnecessary self.projection call in VivitTubeletEmbeddings (#31632)
removes unnecessary second projection call
2024-06-26 11:19:26 +01:00
2daf2c3eaa docs: move translations to i18n (#31584)
docs: move translations to i18n
2024-06-26 10:32:54 +02:00
0f67ba1d74 Add ViTImageProcessorFast to tests (#31424)
* Add ViTImageProcessor to tests

* Correct data format

* Review comments
2024-06-25 13:36:58 +01:00
aab0829790 Improve error message for mismatched copies in code blocks (#31535)
improve error message for mismatched code blocks
2024-06-25 13:55:11 +02:00
e73a97a2b3 add preprocessing_num_workers to run_classification.py (#31586)
preprocessing_num_workers option to speedup preprocess
2024-06-25 12:35:50 +01:00
fc689d75a0 Add video modality for InstrucBLIP (#30182)
* squash in single commit

* add docs

* dummy obj

* more changes in diff converter

* tiny fix

* make docs happy

* skip test

* repo consistency tests

* update docstring

* style

* fix tests

* change diff imports

* [run-slow] instructblipvideo

* [run-slow] instructblipvideo

* fix tests and remove logit check

* [run-slow] instructblipvideo
2024-06-25 15:45:39 +05:00
a958c4a801 fix output data type of image classification (#31444)
* fix output data type of image classification

* add tests for low-precision pipeline

* add bf16 pipeline tests

* fix bf16 tests

* Update tests/pipelines/test_pipelines_image_classification.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* fix import

* fix import torch

* fix style

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-06-25 11:14:39 +01:00
7e86cb6c6f Siglip: add _no_split_module (#31566)
* device-map siglip

* move split modules to PretrainedSigLip
2024-06-25 09:49:55 +05:00
74b92c6256 Added version constraint on numpy for version <2.0 (#31569)
* Contrained numpy to <2.0

* Updated dependency_versions_table

---------

Co-authored-by: René Gentzen <rene.gentzen@mittelstand.ai>
2024-06-24 17:47:34 +01:00
3a49ebe0d8 Fix is_torch_xpu_available for torch < 2.3 (#31573) 2024-06-24 16:57:49 +01:00
2fc9d8e9b1 Fix doc typo in TrainingArguments (#31503) 2024-06-24 08:39:12 -07:00
2d4820284d Add Jinja as a requirement with the right version cutoff (#31536)
* Add Jinja as a requirement with the right version cutoff

* Correct package name!
2024-06-24 14:42:16 +01:00
0e23e60a5a Fix bug about add_special_tokens and so on (#31496)
* fix bug about add_special_tokens and so on

* improve add_special_tokens and padding behavior

* add a test case for add_special_tokens and padding
2024-06-24 14:05:16 +01:00
aac8ee4237 Fix the error caused by incorrect use of logger in pipeline (#31565) 2024-06-24 14:04:52 +01:00
c54a8ca48e Update git templates (#31539)
remove younes
2024-06-24 12:32:50 +02:00
0dd65a0319 chore: fix typos (#31559)
Signed-off-by: snoppy <michaleli@foxmail.com>
2024-06-24 09:48:16 +01:00
dce253f645 Add implementation of spectrogram_batch (#27159)
* Add initial implementation of `spectrogram_batch`

* Format the initial implementation

* Add test suite for the `spectrogram_batch`

* Update `spectrogram_batch` to ensure compatibility with test suite

* Update `spectrogram_batch` to include pre and post-processing

* Add `amplitude_to_db_batch` function and associated tests

* Add `power_to_db_batch` function and associated tests

* Reimplement the test suite for `spectrogram_batch`

* Fix errors in `spectrogram_batch`

* Add the function annotation for `spectrogram_batch`

* Address code quality

* Re-add `test_chroma_equivalence` function

* Update src/transformers/audio_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/audio_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-06-24 09:19:12 +02:00
3c2d4d60d7 Correct @is_flaky test decoration (#31480)
* Correct @is_flaky decorator
2024-06-24 08:09:21 +01:00
4b822560a1 Update mask_generation.md (#31543)
Minor bug fixes -- rearrange import & add missing parentheses
2024-06-23 20:27:21 +01:00
74a207404e New model support RTDETR (#29077)
* fill out docs string in configuration
75dcd3a0e8 (r1506391856)

* reduce the input image size for the tests

* remove the unappropriate tests

* only 5 failes exists

* make style

* fill up missed architecture for object detection in docs

* fix auto modeling

* simple fix in missing import

* major change including backbone refactor and objectdetectionoutput refactor

* minor fix only 4 fails left

* intermediate fix

* revert __init__.py

* revert __init__.py

* make style

* fixes in pr_docs

* intermediate fix

* make style

* two fixes

* pass doctest

* only one fix left

* intermediate commit

* all fixed

* Update src/transformers/models/rt_detr/image_processing_rt_detr.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/rt_detr/convert_rt_detr_original_pytorch_checkpoint_to_pytorch.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/rt_detr/configuration_rt_detr.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/rt_detr/test_modeling_rt_detr.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* function class above the model definition in dice_loss

* Update src/transformers/models/rt_detr/modeling_rt_detr.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* simple fix

* layernorm add config.layer_norm_eps

* fix inputs_docstring

* make style

* simple fix

* add custom coco loading test in image_processor

* fix error in BaseModelOutput
https://github.com/huggingface/transformers/pull/29077#discussion_r1516657790

* simple typo

* Update src/transformers/models/rt_detr/modeling_rt_detr.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* intermediate fix

* fix with load_backbone format

* remove unused configuration

* 3 fix test left

* make style

* Update src/transformers/models/rt_detr/image_processing_rt_detr.py

Co-authored-by: Sounak Dey <dey.sounak@gmail.com>

* change last_hidden_state to first index

* all pass fix
TO DO: minor update in comments

* make fix-copies

* remove deepcopy

* pr_document fix

* revert deepcopy due to the issue of unexpceted behavior in decoderlayer

* add atol in final

* add no_split_module

* _no_split_modules = None

* device transfer for model parallelism

* minor fix

* make fix-copies

* fix typo

* add test_image_processor with post_processing

* Update src/transformers/models/rt_detr/configuration_rt_detr.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* add config in RTDETRPredictionHead

* Update src/transformers/models/rt_detr/modeling_rt_detr.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* set lru_cache with max_size 32

* Update src/transformers/models/rt_detr/configuration_rt_detr.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* add lru_cache import and configuration change

* change the order of definition

* make fix-copies

* add docs and change config error

* revert strange make-fix

* Update src/transformers/models/rt_detr/modeling_rt_detr.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* test pass

* fix get_clones related and remove deepcopy

* Update src/transformers/models/rt_detr/configuration_rt_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/rt_detr/configuration_rt_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/rt_detr/image_processing_rt_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/rt_detr/image_processing_rt_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/rt_detr/modeling_rt_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/rt_detr/modeling_rt_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/rt_detr/image_processing_rt_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/rt_detr/modeling_rt_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/rt_detr/image_processing_rt_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* nit for paper section

* Update src/transformers/models/rt_detr/configuration_rt_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* rename denoising related parameters

* Update src/transformers/models/rt_detr/image_processing_rt_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* check the image transformation logic

* make style

* make style

* Update src/transformers/models/rt_detr/configuration_rt_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/rt_detr/modeling_rt_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/rt_detr/modeling_rt_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/rt_detr/modeling_rt_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/rt_detr/modeling_rt_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/rt_detr/modeling_rt_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* pe_encoding -> positional_encoding_temperature

* remove TODO

* Update src/transformers/models/rt_detr/image_processing_rt_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* remove eval_idx since transformer DETR is giving all decoder output

* Update src/transformers/models/rt_detr/configuration_rt_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/rt_detr/configuration_rt_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* change variable name

* make style and docs import update

* Revert "Update src/transformers/models/rt_detr/image_processing_rt_detr.py"

This reverts commit 74aa3e1de0ca0cd3d354161d38ef28b4389c0eee.

* fix typo

* add postprocessing in docs

* move import scipy to top

* change varaible name

* make fix-copies

* remove eval_idx in test

* move to after first sentence

* update image_processor since box loss requires normalized one

* change appropriate name to auxiliary_outputs

* Update src/transformers/models/rt_detr/__init__.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/rt_detr/__init__.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/model_doc/rt_detr.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/model_doc/rt_detr.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* make style

* remove panoptic related comments

* make style

* revert valid_processor_keys

* fix aux related test

* make style

* change origination from config to backbone API

* enable the dn_loss

* fix test and conversion

* renewal weight initialization

* change initializer_range

* make fix-up

* fix the loss issue in the auxiliary output and denoising part

* change weight loss to original RTDETR

* fix in initialization

* sync shape format of dn and aux

* make style

* stable fine-tuning and compatible conversion for resnet101

* make style

* skip input_embed

* change encoder related variable

* enable converting rtdetr_r101

* add r101 related conversion code

* Update src/transformers/models/rt_detr/modeling_rt_detr.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/rt_detr/modeling_rt_detr.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/model_doc/rt_detr.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/rt_detr/configuration_rt_detr.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/__init__.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/__init__.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/rt_detr/image_processing_rt_detr.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/rt_detr/image_processing_rt_detr.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/rt_detr/modeling_rt_detr.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* change name _shape to _reshape

* Update src/transformers/__init__.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/__init__.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* maket style

* make fix-copies

* remove deprecated import

* more fix

* remove last_hidden_state for task-specific model

* Revert "remove last_hidden_state for task-specific model"

This reverts commit ccb7a34051d69b9fc7aa17ed8644664d3fdbdaca.

* minore change in convert

* remove print

* make style and fix-copies

* add custom rtdetr backbone for r18, r34

* remove print

* change copied

* add pad_size

* make style

* change layertype to optional to pass the CI

* make style

* add test in modeling_resnet_rt_detr

* make fix-copies

* skip tmp file test

* fix comment

* add docs

* change to modeling_resnet file format

* enabling resnet50 above

* Update src/transformers/models/rt_detr/modeling_rt_detr.py

Co-authored-by: Jason Wu <jasonkit@users.noreply.github.com>

* enable all the rtdetr model :)

* finish except CI

* add RTDetrResNetBackbone

* make fix-copies

* fix
TO DO: CI enable

* make style

* rename test

* add docs

* add special fix

* revert resnet

* Update src/transformers/models/rt_detr/modeling_rt_detr_resnet.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* add more comment

* remove swin comment

* Update src/transformers/models/rt_detr/configuration_rt_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* rename convert and add verify backbone

* Update docs/source/en/_toctree.yml

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/model_doc/rt_detr.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/model_doc/rt_detr.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* make style

* requests for docs

* more general test docs

* general script docs

* make fix-copies

* final commit

* Revert "Update src/transformers/models/rt_detr/configuration_rt_detr.py"

This reverts commit d136225cd3f64f510d303ce1d227698174f43fff.

* skip test_model_get_set_embeddings

* remove target

* add changes

* make fix-copies

* remove decoder_attention_mask

* add load_backbone function for auto_backbone

* remove comment

* fix repo name

* Update src/transformers/models/rt_detr/configuration_rt_detr.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* final commit

* remove unused downsample_in_bottleneck

* new test for autobackbone

* change to appropriate indices

* test fix

* fix dict in test_image_processor

* fix test

* [run-slow] rt_detr, rt_detr_resnet

* change the slow test

* [run-slow] rt_detr

* [run-slow] rt_detr, rt_detr_resnet

* make in to same cuda in CSPRepLayer

* [run-slow] rt_detr, rt_detr_resnet

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Sounak Dey <dey.sounak@gmail.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Jason Wu <jasonkit@users.noreply.github.com>
Co-authored-by: ChoiSangBum <choisangbum@ChoiSangBumui-MacBookPro.local>
2024-06-21 17:50:08 +01:00
8b7cd40273 Removed torch.cuda.empty_cache from train loop. (#31530) 2024-06-21 14:45:27 +01:00
1e79eade41 SPLIT PR: add user defined symbols and control symbols (#31305)
* PR SPLIT: moving origina changes for adding user defined symbols

* adding gemma test and generalizing gemma converter

* ruff

* update common test

* update serialization test

* deberta v2 tests updates as rust version adds '.' as a user added token, so a space is not added

* removing commented lines

* applying feedback - user only added_tokens to add and check piece.type instead of trainer_spec for user_defined_symbols

* add comment referencing sentencepiece
2024-06-21 01:48:10 -07:00
730a440734 Deprecate legacy cache + use cache position (#31491)
* tmp

* update models

* revert utils

* delete

* Update src/transformers/models/dbrx/modeling_dbrx.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* modify warning msg

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-06-21 09:28:14 +05:00
12b1620e61 Bump urllib3 from 1.26.18 to 1.26.19 in /examples/research_projects/lxmert (#31524)
Bump urllib3 in /examples/research_projects/lxmert

Bumps [urllib3](https://github.com/urllib3/urllib3) from 1.26.18 to 1.26.19.
- [Release notes](https://github.com/urllib3/urllib3/releases)
- [Changelog](https://github.com/urllib3/urllib3/blob/main/CHANGES.rst)
- [Commits](https://github.com/urllib3/urllib3/compare/1.26.18...1.26.19)

---
updated-dependencies:
- dependency-name: urllib3
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-06-20 19:45:53 +01:00
d4564df1d4 Revive Nightly/Past CI (#31159)
* build

* build

* build

* build

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-06-20 18:57:24 +02:00
ec905f3a76 unskip 2 tests in cohere (#31517)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-06-20 17:21:08 +02:00
1fd60fec75 RWKV: enable generation tests (#31490)
* add rwkv tests

* has_attentions set in individual tests
2024-06-20 14:15:01 +01:00
d28e647f28 Fix mismatched ` in doc & other common typos (#31516)
fix common doc typos

Co-authored-by: Jiahui Wei <jiahui.wei@tusen.ai>
2024-06-20 14:03:07 +01:00
6d4306160a GGUF: Fix llama 3 GGUF (#31358)
* Create push-important-models.yml

* llama3 support for GGUF

* fixup

* Update src/transformers/integrations/ggml.py

* fix pre-tokenizer

* fix

* fix

* fix

* fix

* fix

* fix

* address final comment

* handle special tokens + add tests
2024-06-20 14:29:58 +02:00
35b112d344 Fix a teeny-tiny typo in tokenization_utils_base.py's docstring (#31510)
Update tokenization_utils_base.py
2024-06-20 10:35:52 +01:00
0ed3ffcb44 Add valid columns check in _remove_unused_columns method (#31466)
* Add valid columns checking in _remove_unused_columns method

https://github.com/huggingface/datasets/issues/6973#issue-2355517362
https://github.com/huggingface/datasets/issues/6535
https://discuss.huggingface.co/t/indexerror-invalid-key-16-is-out-of-bounds-for-size-0/14298/25

* Update modeling_mixtral.py

* Update modeling_mixtral.py

* Update modeling_mixtral.py
2024-06-19 13:26:37 +01:00
547b5582ec Consider inheritance in type checking for tensors (#31378)
* Consider inheritance in type checking for tensors

Add an additional check to bypass type assertion when both tensors are
torch.Tensor instances.

* Fix the quality issue
2024-06-19 14:05:20 +02:00
3b5fa14fb8 Fix wandb integration with SetFit model (#30021)
Fix W&B integration with SetFit model

Co-authored-by: PEARCE Timothe <timothe_pearce@ext.connect-tech.sncf>
2024-06-19 13:23:05 +02:00
f4d189441d Fix typo: pas_token_id (#30894)
Fix typo
2024-06-19 11:23:08 +01:00
4144c354e9 auto-detect device when no device is passed to pipeline (#31398)
* fix device

* Update src/transformers/pipelines/base.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* bug fix

* add warning

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-06-19 11:12:39 +01:00
cd5f7c1790 Add docs on zeroshot image classification prompt templates (#31343)
* Add docs on pipeline templates

* Fix example and comments
Update usage tips

* Update docs/source/en/tasks/zero_shot_image_classification.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/model_doc/siglip.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Trigger CI

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-06-19 11:11:44 +01:00
1c1aec2ef1 Update object_detection.md (#31488)
Define MAX_SIZE before it is used.
2024-06-19 10:36:44 +01:00
83259e406d Mamba: add generative tests (#31478) 2024-06-19 10:27:23 +01:00
7d683f7bae Docs / AQLM: Clarify torch.compile support for AQLM (#31473)
Update overview.md
2024-06-19 11:26:25 +02:00
077c139f57 [tests] rename test_config_object to test_ds_config_object (#31403)
fix name
2024-06-19 11:19:15 +02:00
609e662243 Use self.config_tester.run_common_tests() (#31431)
* First testing updating config tests

* Use run_common_tests
2024-06-19 10:18:08 +01:00
7c71b61dae Fix autocast incompatibility in RecurrentGemma (#30832) 2024-06-19 09:59:34 +02:00
b275a41005 [GPT2] Add SDPA support (#31172)
* `gpt2` sdpa support

* fix (at least) one test, style, repo consistency

* fix sdpa mask in forward --> fixes generation

* test

* test2

* test3

* test4

* simplify shapes for attn mask creation and small comments

* hub fail test

* benchmarks

* flash attn 2 mask should not be inverted on enc-dec setup

* fix comment

* apply some suggestion from code review

- only save _attn_implentation once
- remove unnecessary comment

* change elif logic

* [run-slow] gpt2

* modify `test_gpt2_sample_max_time` to follow previous assertion patterns
2024-06-19 09:40:57 +02:00
22b41b3f8a Update perf_train_gpu_many.md (#31451)
* Update perf_train_gpu_many.md

* Update docs/source/en/perf_train_gpu_many.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/perf_train_gpu_many.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-06-18 11:00:26 -07:00
280cef51b3 Give more useful metric_for_best_model errors (#31450)
Give more useful metric_for_best_model errors
2024-06-18 16:56:30 +01:00
2505357e4f Fix documentation typos (#31476)
Fix doc typo
2024-06-18 16:09:50 +01:00
4691ffbd41 Bump urllib3 from 1.26.18 to 1.26.19 in /examples/research_projects/visual_bert (#31472)
Bump urllib3 in /examples/research_projects/visual_bert

Bumps [urllib3](https://github.com/urllib3/urllib3) from 1.26.18 to 1.26.19.
- [Release notes](https://github.com/urllib3/urllib3/releases)
- [Changelog](https://github.com/urllib3/urllib3/blob/1.26.19/CHANGES.rst)
- [Commits](https://github.com/urllib3/urllib3/compare/1.26.18...1.26.19)

---
updated-dependencies:
- dependency-name: urllib3
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-06-18 16:08:15 +01:00
1c7c34bc64 Improve PreTrainedTokenizerFast loading time when there are many added tokens (#31404)
* use hash

* use hash

* update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-06-18 15:20:14 +02:00
6e56b83453 Update chat template docs and bump Jinja version (#31455)
* Update chat template docs

* Minor bug in the version check

* Update docs/source/en/chat_templating.md

Co-authored-by: Joshua Lochner <admin@xenova.com>

* Update docs/source/en/chat_templating.md

Co-authored-by: Joshua Lochner <admin@xenova.com>

* Update docs/source/en/chat_templating.md

Co-authored-by: Joshua Lochner <admin@xenova.com>

* Replace backticks with bolding because the doc builder was trying to parse them

* Replace backticks with bolding because the doc builder was trying to parse them

* Replace backticks with bolding because the doc builder was trying to parse them

* More cleanups to avoid upsetting the doc builder

* Add one more tip at the end

---------

Co-authored-by: Joshua Lochner <admin@xenova.com>
2024-06-18 14:16:30 +01:00
28316d0e8b Fix single letter stop strings (#31448)
* Fix single letter stop strings

* Change the 0 to a 1 to avoid potential empty vector headaches later

* Restructure for clarity

* Update tests/generation/test_stopping_criteria.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Add the unsqueeze

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-06-18 14:07:16 +01:00
dabf01973a Make "tool_use" the default chat template key when tools are passed (#31429)
* Make "tool_use" the default when tools are passed

* Add some opinionated text to the docs

* Add some opinionated text to the docs
2024-06-18 13:54:42 +01:00
cd71f9381b Donut: fix generate call from local path (#31470)
* local donut path fix

* engrish

* Update src/transformers/generation/utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-06-18 13:28:06 +01:00
76289fbc7c Bump urllib3 from 1.26.18 to 1.26.19 in /examples/research_projects/decision_transformer (#31459)
Bump urllib3 in /examples/research_projects/decision_transformer

Bumps [urllib3](https://github.com/urllib3/urllib3) from 1.26.18 to 1.26.19.
- [Release notes](https://github.com/urllib3/urllib3/releases)
- [Changelog](https://github.com/urllib3/urllib3/blob/1.26.19/CHANGES.rst)
- [Commits](https://github.com/urllib3/urllib3/compare/1.26.18...1.26.19)

---
updated-dependencies:
- dependency-name: urllib3
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-06-18 12:22:25 +01:00
b38612d312 Agents: Improve python interpreter (#31409)
* Improve Python interpreter
* Add with and assert statements
* Prevent overwriting existing tools
* Check interpreter errors are well logged in code agent
* Add lazy evaluation for and and or
* Improve variable assignment
* Fix early return statements in functions
* Add small import fix on interpreter tool
2024-06-18 11:55:36 +02:00
1f9387d33d Fix typing errors in Qwen2ForTokenClassification (#31440)
* Update modeling_qwen2.py

* Fix llama

* More fixes
2024-06-18 10:27:18 +01:00
9ba9369a25 simple fix (#31456) 2024-06-17 22:30:37 +01:00
02300273e2 🚨 Remove dataset with restrictive license (#31452)
remove dataset with restrictive license
2024-06-17 17:56:51 +01:00
a14b055b65 Pass datasets trust_remote_code (#31406)
* Pass datasets trust_remote_code

* Pass trust_remote_code in more tests

* Add trust_remote_dataset_code arg to some tests

* Revert "Temporarily pin datasets upper version to fix CI"

This reverts commit b7672826cad31e30319487af876e608d8af7d37b.

* Pass trust_remote_code in librispeech_asr_dummy docstrings

* Revert "Pin datasets<2.20.0 for examples"

This reverts commit 833fc17a3e3f0dcb40cff2ffd86c00ad9ecadab9.

* Pass trust_remote_code to all examples

* Revert "Add trust_remote_dataset_code arg to some tests" to research_projects

* Pass trust_remote_code to tests

* Pass trust_remote_code to docstrings

* Fix flax examples tests requirements

* Pass trust_remote_dataset_code arg to tests

* Replace trust_remote_dataset_code with trust_remote_code in one example

* Fix duplicate trust_remote_code

* Replace args.trust_remote_dataset_code with args.trust_remote_code

* Replace trust_remote_dataset_code with trust_remote_code in parser

* Replace trust_remote_dataset_code with trust_remote_code in dataclasses

* Replace trust_remote_dataset_code with trust_remote_code arg
2024-06-17 17:29:13 +01:00
485fd81471 Support multiple validation datasets when dataloader_persistent_workers=True (#30627)
* Support multiple validation datasets when dataloader_persistent_workers=True

* Test support of multiple validation datasets
2024-06-17 16:58:39 +01:00
147c404fb1 Bump idna from 2.8 to 3.7 in /examples/research_projects/visual_bert (#30201)
Bumps [idna](https://github.com/kjd/idna) from 2.8 to 3.7.
- [Release notes](https://github.com/kjd/idna/releases)
- [Changelog](https://github.com/kjd/idna/blob/master/HISTORY.rst)
- [Commits](https://github.com/kjd/idna/compare/v2.8...v3.7)

---
updated-dependencies:
- dependency-name: idna
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-06-17 16:39:42 +01:00
9454f437b0 [tests] make TestDeepSpeedModelZoo device-agnostic (#31402)
* fix

* use accelerator device count

* ci fix
2024-06-17 16:42:57 +02:00
7977f206dc Bump idna from 2.8 to 3.7 in /examples/research_projects/lxmert (#30200)
Bumps [idna](https://github.com/kjd/idna) from 2.8 to 3.7.
- [Release notes](https://github.com/kjd/idna/releases)
- [Changelog](https://github.com/kjd/idna/blob/master/HISTORY.rst)
- [Commits](https://github.com/kjd/idna/compare/v2.8...v3.7)

---
updated-dependencies:
- dependency-name: idna
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-06-17 15:13:33 +01:00
ee197e2b9e Bump idna from 3.3 to 3.7 in /examples/research_projects/decision_transformer (#30203)
Bump idna in /examples/research_projects/decision_transformer

Bumps [idna](https://github.com/kjd/idna) from 3.3 to 3.7.
- [Release notes](https://github.com/kjd/idna/releases)
- [Changelog](https://github.com/kjd/idna/blob/master/HISTORY.rst)
- [Commits](https://github.com/kjd/idna/compare/v3.3...v3.7)

---
updated-dependencies:
- dependency-name: idna
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-06-17 11:13:16 +01:00
377e903928 Generate: fix tokenizer being popped twice (#31427) 2024-06-17 10:36:10 +01:00
02c525d226 Rename misnamed image processor test files (#31430) 2024-06-17 10:21:28 +01:00
7ae4fc271d Fix Bark logits processors device misplacement (#31416)
Fix Logits Processors device misplacement
2024-06-17 09:54:06 +02:00
9af1b6a80a Musicgen special tokens in tensors (#31420)
fix
2024-06-17 10:09:27 +05:00
eed9ed6798 xpu: support xpu backend from stock pytorch (>=2.4) (#31238)
* xpu: support xpu backend from stock pytorch (>=2.4)

Fixes: https://github.com/huggingface/transformers/issues/31237

XPU backend is available in the stock PyTorch starting from
version 2.4, see [1]. This commit extends huggingface transformers
to support XPU from both IPEX and the stock pytorch. IPEX is being
tried first.

See: https://github.com/pytorch/pytorch/issues/114842
Requires: https://github.com/huggingface/accelerate/pull/2825
Signed-off-by: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com>

* xpu: enable gpt2 and decision_transformer tests for xpu pytorch backend

Note that running xpu tests requires TRANSFORMERS_TEST_DEVICE_SPEC=spec.py
passed to the test runner:

  import torch
  DEVICE_NAME = 'xpu'
  MANUAL_SEED_FN = torch.xpu.manual_seed
  EMPTY_CACHE_FN = torch.xpu.empty_cache
  DEVICE_COUNT_FN = torch.xpu.device_count

Signed-off-by: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com>

---------

Signed-off-by: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com>
2024-06-14 21:31:35 +02:00
20812237ce Remove empty create_and_test_config_common_properties tests (#31359)
Remove empty tests
2024-06-14 20:15:48 +01:00
3d0bd86915 Install the tensorflow example requirements in docker (#31428) 2024-06-14 19:35:43 +01:00
11f43c15d3 Remove duplicate image processor in auto map (#31383) 2024-06-14 18:23:55 +01:00
c212ac9a02 Change potential inputs_embeds padding logger.warning to logger.warning_once (#31411)
change embeddings padding warning to warning_once
2024-06-14 17:36:15 +01:00
7e1c7dc8b6 Fix SpeechT5 decoder_attention_mask shape (#28071)
* Fix SpeechT5

* add test foward with labels and attention mask

* make style
2024-06-14 15:20:11 +02:00
d9daeff297 Set seed for M4T retain grad test (#31419) 2024-06-14 14:48:04 +02:00
43ee58588b Fix MusicGen SDPA (#31208)
* fix sdpa musicgen

* make style

* remove copied from statement from Musicgen SDPA
2024-06-14 13:30:44 +02:00
833fc17a3e Pin datasets<2.20.0 for examples (#31417) 2024-06-14 12:06:56 +01:00
cfb22e035e Support Clip QKV for MPT (#31307) 2024-06-14 11:47:06 +01:00
b7672826ca Temporarily pin datasets upper version to fix CI (#31407)
Temporarily pin datasets upper version
2024-06-13 18:01:18 +01:00
67a4ef89d4 Add missing French translation of tutoriel_pipeline.md (#31396)
* Update french translation of tutoriel_pipeline.md

* Update docs/source/fr/tutoriel_pipeline.md

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update docs/source/fr/tutoriel_pipeline.md

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update docs/source/fr/tutoriel_pipeline.md

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update docs/source/fr/tutoriel_pipeline.md

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update docs/source/fr/tutoriel_pipeline.md

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update docs/source/fr/tutoriel_pipeline.md

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update docs/source/fr/tutoriel_pipeline.md

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update docs/source/fr/tutoriel_pipeline.md

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

---------

Co-authored-by: Jade Choghari <chogharijade@icloud.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2024-06-13 17:48:54 +02:00
c624d5ba0b add initial design for uniform processors + align model (#31197)
* add initial design for uniform processors + align model

* fix mutable default 👀

* add configuration test

* handle structured kwargs w defaults + add test

* protect torch-specific test

* fix style

* fix

* fix assertEqual

* move kwargs merging to processing common

* rework kwargs for type hinting

* just get Unpack from extensions

* run-slow[align]

* handle kwargs passed as nested dict

* add from_pretrained test for nested kwargs handling

* [run-slow]align

* update documentation + imports

* update audio inputs

* protect audio types, silly

* try removing imports

* make things simpler

* simplerer

* move out kwargs test to common mixin

* [run-slow]align

* skip tests for old processors

* [run-slow]align, clip

* !$#@!! protect imports, darn it

* [run-slow]align, clip

* [run-slow]align, clip

* update doc

* improve documentation for default values

* add model_max_length testing

This parameter depends on tokenizers received.

* Raise if kwargs are specified in two places

* fix

* expand VideoInput

* fix

* fix style

* remove defaults values

* add comment to indicate documentation on adding kwargs

* protect imports

* [run-slow]align

* fix

* remove set() that breaks ordering

* test more

* removed unused func

* [run-slow]align
2024-06-13 16:27:16 +02:00
15b3923d65 Make chat templates part of ProcessorMixin (#30744)
* Let's try moving chat templates out of IDEFICS and into the generic ProcessorMixin

* Chat templates should not be mandatory

* Chat templates should not be mandatory

* Not all classes will have default chat templates

* stash commit

* Add chat template docstring

* Clean up docstring

* Add chat templates to LLaVA/LLaVA-next

* Docstring fixup

* Quick IDEFICS2 fixup

* Remove some old references to the Conversation class

* make fixup
2024-06-13 14:35:30 +01:00
3c4a8dca0c [QoL fix] [Image processing] Add warning on assumption of channel dim and avoid infering when inputs are PIL.Image (#31364)
* Add warning on assumption of channel dim
Use PIL info whenever possible to decide channel axis

* Fix ruff format

* Remove type checking
Improve warning message

* Update src/transformers/models/siglip/image_processing_siglip.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/image_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/image_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-06-13 10:34:58 +01:00
348e2294ac feat(ci): add trufflehog secrets detection (#31344) 2024-06-12 18:00:43 +02:00
17896f6783 Change JSON serialization to custom json.dumps (#31100)
* Change JSON serialization to custom json.dumps to prevent escaping of "<", ">", "&", "'"

* caller has control over the order, remove sort_key=True

* Move tojson into a proper function and expose a couple of other args

---------

Co-authored-by: jun.4 <jun.4@kakaobrain.com>
Co-authored-by: Matt <rocketknight1@gmail.com>
2024-06-12 14:59:35 +01:00
1c77b3d9cf Bump jupyter-core from 4.6.3 to 4.11.2 in /examples/research_projects/visual_bert (#31386)
Bump jupyter-core in /examples/research_projects/visual_bert

Bumps [jupyter-core](https://github.com/jupyter/jupyter_core) from 4.6.3 to 4.11.2.
- [Release notes](https://github.com/jupyter/jupyter_core/releases)
- [Changelog](https://github.com/jupyter/jupyter_core/blob/main/CHANGELOG.md)
- [Commits](https://github.com/jupyter/jupyter_core/compare/4.6.3...4.11.2)

---
updated-dependencies:
- dependency-name: jupyter-core
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-06-12 14:12:53 +01:00
254b25abd9 Use huggingface_hub helper function to split state dict (#31091)
* shard saving from hf hub

* index = None

* fix tests

* indent
2024-06-12 14:10:32 +02:00
1c73d85b86 Update comment in modeling_utils.py (#31299) 2024-06-12 12:01:42 +01:00
9f863d9a5b README underline between badges fix (#31376)
Badge underline fix
2024-06-12 11:49:50 +01:00
d218a2e51f backbone_utils - fix relative import (#31382)
Fix relative import
2024-06-12 11:42:20 +01:00
84351d57eb docs: fix broken link (#31370)
* docs: fix broken link

* fix link
2024-06-12 11:33:00 +01:00
20fac1f249 [Bug Fix] Renamed loss to losses to suppress UnboundLocalError (#31365)
Renamed loss to losses to suppress UnboundLocalError

Co-authored-by: Your Name <you@example.com>
2024-06-12 11:29:25 +01:00
08ad34b19e Fix idefics cache (#31377)
* fix idefics cache

* fix tests
2024-06-12 15:24:32 +05:00
a2ede66674 Add support to declare imports for code agent (#31355)
* Support import declaration in Code Agent
2024-06-12 09:32:28 +02:00
35a6d9d648 Add french translation of AutoBackbone (#31300) 2024-06-11 18:28:52 +01:00
f53fe35b29 Fast image processor (#28847)
* Draft fast image processors

* Draft working fast version

* py3.8 compatible cache

* Enable loading fast image processors through auto

* Tidy up; rescale behaviour based on input type

* Enable tests for fast image processors

* Smarter rescaling

* Don't default to Fast

* Safer imports

* Add necessary Pillow requirement

* Woops

* Add AutoImageProcessor test

* Fix up

* Fix test for imagegpt

* Fix test

* Review comments

* Add warning for TF and JAX input types

* Rearrange

* Return transforms

* NumpyToTensor transformation

* Rebase - include changes from upstream in ImageProcessingMixin

* Safe typing

* Fix up

* convert mean/std to tesnor to rescale

* Don't store transforms in state

* Fix up

* Update src/transformers/image_processing_utils_fast.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/auto/image_processing_auto.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/auto/image_processing_auto.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/auto/image_processing_auto.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Warn if fast image processor available

* Update src/transformers/models/vit/image_processing_vit_fast.py

* Transpose incoming numpy images to be in CHW format

* Update mapping names based on packages, auto set fast to None

* Fix up

* Fix

* Add AutoImageProcessor.from_pretrained(checkpoint, use_fast=True) test

* Update src/transformers/models/vit/image_processing_vit_fast.py

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* Add equivalence and speed tests

* Fix up

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
2024-06-11 15:47:38 +01:00
edc1dffd00 Chat Template support for function calling and RAG (#30621)
* First draft, still missing automatic function conversion

* First draft of the automatic schema generator

* Lots of small fixes

* the walrus has betrayed me

* please stop committing your debug breakpoints

* Lots of cleanup and edge cases, looking better now

* Comments and bugfixes for the type hint parser

* More cleanup

* Add tests, update schema generator

* Update tests, proper handling of return values

* Small docstring change

* More doc updates

* More doc updates

* Add json_schema decorator

* Clean up the TODOs and finish the docs

* self.maxDiff = None to see the whole diff for the nested list test

* add import for add_json_schema

* Quick test fix

* Fix something that was bugging me in the chat template docstring

* Less "anyOf" when unnecessary

* Support return types for the templates that need them

* Proper return type tests

* Switch to Google format docstrings

* Update chat templating docs to match new format

* Stop putting the return type in with the other parameters

* Add Tuple support

* No more decorator - we just do it implicitly!

* Add enum support to get_json_schema

* Update docstring

* Add copyright header

* Update src/transformers/tokenization_utils_base.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/chat_templating.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/utils/chat_template_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/utils/chat_template_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Add copyright header

* make fixup

* Fix indentation

* Reformat chat_template_utils

* Correct return value

* Make regexes module-level

* Support more complex, multi-line arg docstrings

* Update error message for ...

* Update ruff

* Add document type validation

* Refactor docs

* Refactor docs

* Refactor docs

* Clean up Tuple error

* Add an extra test for very complex defs and docstrings and clean everything up for it

* Document enum block

* Quick test fixes

* Stop supporting type hints in docstring to fix bugs and simplify the regex

* Update docs for the regex change

* Clean up enum regex

* Wrap functions in {"type": "function", "function": ...}

* Update src/transformers/utils/chat_template_utils.py

Co-authored-by: Pablo Montalvo <39954772+molbap@users.noreply.github.com>

* Temporary tool calling commit

* Add type hints to chat template utils, partially update docs (incomplete!)

* Code cleanup based on @molbap's suggestion

* Add comments to explain regexes

* Fix up type parsing for unions and lists

* Add custom exception types and adjust tests to look for them

* Update docs with a demo!

* Docs cleanup

* Pass content as string

* Update tool call formatting

* Update docs with new function format

* Update docs

* Update docs with a second tool to show the model choosing correctly

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Pablo Montalvo <39954772+molbap@users.noreply.github.com>
2024-06-11 15:46:38 +01:00
ce3647ad2d Bump jupyter-core from 4.6.3 to 4.11.2 in /examples/research_projects/lxmert (#31360)
Bump jupyter-core in /examples/research_projects/lxmert

Bumps [jupyter-core](https://github.com/jupyter/jupyter_core) from 4.6.3 to 4.11.2.
- [Release notes](https://github.com/jupyter/jupyter_core/releases)
- [Changelog](https://github.com/jupyter/jupyter_core/blob/main/CHANGELOG.md)
- [Commits](https://github.com/jupyter/jupyter_core/compare/4.6.3...4.11.2)

---
updated-dependencies:
- dependency-name: jupyter-core
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-06-11 12:11:10 +01:00
12ae6d3573 Fix gradio tool demos (#31230)
* Fix gradio tool demos
2024-06-11 11:35:27 +02:00
dcdda5324b Bump transformers from 3.5.1 to 4.38.0 in /examples/research_projects/pplm (#31352)
Bump transformers in /examples/research_projects/pplm

Bumps [transformers](https://github.com/huggingface/transformers) from 3.5.1 to 4.38.0.
- [Release notes](https://github.com/huggingface/transformers/releases)
- [Commits](https://github.com/huggingface/transformers/compare/v3.5.1...v4.38.0)

---
updated-dependencies:
- dependency-name: transformers
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-06-10 18:59:46 +01:00
a1e06af15f Bump tornado from 6.3.3 to 6.4.1 in /examples/research_projects/lxmert (#31353)
Bumps [tornado](https://github.com/tornadoweb/tornado) from 6.3.3 to 6.4.1.
- [Changelog](https://github.com/tornadoweb/tornado/blob/master/docs/releases.rst)
- [Commits](https://github.com/tornadoweb/tornado/compare/v6.3.3...v6.4.1)

---
updated-dependencies:
- dependency-name: tornado
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-06-10 18:59:27 +01:00
a4e1a1d028 🚨 FLAVA: Remove double softmax (#31322)
Remove double softmax
2024-06-10 15:01:27 +01:00
8fff07ded0 Fix Cohere CI (#31263)
* [run-slow] cohere

* [run-slow] cohere

* [run-slow] cohere

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-06-10 15:16:58 +02:00
dc6eb44841 Improve error msg when using bitsandbytes (#31350)
improve error msg when using bnb
2024-06-10 14:22:14 +02:00
517df566f5 Decorators for deprecation and named arguments validation (#30799)
* Fix do_reduce_labels for maskformer image processor

* Deprecate reduce_labels in favor to do_reduce_labels

* Deprecate reduce_labels in favor to do_reduce_labels (segformer)

* Deprecate reduce_labels in favor to do_reduce_labels (oneformer)

* Deprecate reduce_labels in favor to do_reduce_labels (maskformer)

* Deprecate reduce_labels in favor to do_reduce_labels (mask2former)

* Fix typo

* Update mask2former test

* fixup

* Update segmentation examples

* Update docs

* Fixup

* Imports fixup

* Add deprecation decorator draft

* Add deprecation decorator

* Fixup

* Add deprecate_kwarg decorator

* Validate kwargs decorator

* Kwargs validation (beit)

* fixup

* Kwargs validation (mask2former)

* Kwargs validation (maskformer)

* Kwargs validation (oneformer)

* Kwargs validation (segformer)

* Better message

* Fix oneformer processor save-load test

* Update src/transformers/utils/deprecation.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/utils/deprecation.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/utils/deprecation.py

Co-authored-by: Pablo Montalvo <39954772+molbap@users.noreply.github.com>

* Update src/transformers/utils/deprecation.py

Co-authored-by: Pablo Montalvo <39954772+molbap@users.noreply.github.com>

* Better handle classmethod warning

* Fix typo, remove warn

* Add header

* Docs and `additional_message`

* Move to filter decorator ot generic

* Proper deprecation for semantic segm scripts

* Add to __init__ and update import

* Basic tests for filter decorator

* Fix doc

* Override `to_dict()` to pop depracated `_max_size`

* Pop unused parameters

* Fix trailing whitespace

* Add test for deprecation

* Add deprecation warning control parameter

* Update generic test

* Fixup deprecation tests

* Introduce init service kwargs

* Revert popping unused params

* Revert oneformer test

* Allow "metadata" to pass

* Better docs

* Fix test

* Add notion in docstring

* Fix notification for both names

* Add func name to warning message

* Fixup

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Pablo Montalvo <39954772+molbap@users.noreply.github.com>
2024-06-10 12:35:10 +01:00
4fa4dcb2be docs/zh: fix style (#31334) 2024-06-10 11:40:40 +01:00
6b11f89c6b Fix paligemma inverted mask (#31207)
* pass inverted causal mask

* add sanity check for paligemma finetuning

* [run-slow]paligemma
2024-06-10 11:22:39 +02:00
807483edba docs: fix style (#31340) 2024-06-10 09:53:25 +01:00
2f16a45d5f Use unused prepare_img() function in dinov2 conversion script (#31335) 2024-06-10 09:42:01 +01:00
25245ec26d Rename test_model_common_attributes -> test_model_get_set_embeddings (#31321)
* Rename to test_model_common_attributes
The method name is misleading - it is testing being able to get and set embeddings, not common attributes to all models

* Explicitly skip
2024-06-07 19:40:26 +01:00
c1be42f6f7 Bump transformers from 3.5.1 to 4.38.0 in /examples/research_projects/adversarial (#31320)
Bump transformers in /examples/research_projects/adversarial

Bumps [transformers](https://github.com/huggingface/transformers) from 3.5.1 to 4.38.0.
- [Release notes](https://github.com/huggingface/transformers/releases)
- [Commits](https://github.com/huggingface/transformers/compare/v3.5.1...v4.38.0)

---
updated-dependencies:
- dependency-name: transformers
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-06-07 19:28:45 +01:00
3b9174f248 interpolation added for TVP. (#30863)
* Update TVP model to interpolate pre-trained image pad prompter encodings

* feat: Add 2D positional embeddings interpolation in TvpVisualInputEmbedding

* added required comments

* Update TVP model to interpolate pre-trained image pad prompter encodings

* feat: Add 2D positional embeddings interpolation in TvpVisualInputEmbedding

* added required comments

* docstring and argument fix

* doc fixes and test case fix suggested in review.

* varibale typo fix

* styling and name fixes for padding interpolation flag.
2024-06-07 18:44:16 +01:00
ea50b64bea Bump pillow from 10.2.0 to 10.3.0 in /examples/research_projects/decision_transformer (#31319)
Bump pillow in /examples/research_projects/decision_transformer

Bumps [pillow](https://github.com/python-pillow/Pillow) from 10.2.0 to 10.3.0.
- [Release notes](https://github.com/python-pillow/Pillow/releases)
- [Changelog](https://github.com/python-pillow/Pillow/blob/main/CHANGES.rst)
- [Commits](https://github.com/python-pillow/Pillow/compare/10.2.0...10.3.0)

---
updated-dependencies:
- dependency-name: pillow
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-06-07 18:09:02 +01:00
065729a692 Remove ConversationalPipeline and Conversation object (#31165)
* Remove ConversationalPipeline and Conversation object, as they have been deprecated for some time and are due for removal

* Update not-doctested.txt

* Fix JA and ZH docs

* Fix JA and ZH docs some more

* Fix JA and ZH docs some more
2024-06-07 17:50:18 +01:00
3a10058201 Bump transformers from 3.5.1 to 4.38.0 in /examples/research_projects/bert-loses-patience (#31291)
Bump transformers in /examples/research_projects/bert-loses-patience

Bumps [transformers](https://github.com/huggingface/transformers) from 3.5.1 to 4.38.0.
- [Release notes](https://github.com/huggingface/transformers/releases)
- [Commits](https://github.com/huggingface/transformers/compare/v3.5.1...v4.38.0)

---
updated-dependencies:
- dependency-name: transformers
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-06-07 16:45:54 +01:00
e3f03789a9 Bump aiohttp from 3.9.0 to 3.9.4 in /examples/research_projects/decision_transformer (#31317)
Bump aiohttp in /examples/research_projects/decision_transformer

Bumps [aiohttp](https://github.com/aio-libs/aiohttp) from 3.9.0 to 3.9.4.
- [Release notes](https://github.com/aio-libs/aiohttp/releases)
- [Changelog](https://github.com/aio-libs/aiohttp/blob/master/CHANGES.rst)
- [Commits](https://github.com/aio-libs/aiohttp/compare/v3.9.0...v3.9.4)

---
updated-dependencies:
- dependency-name: aiohttp
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-06-07 16:43:57 +01:00
48d35b2178 Bump tornado from 6.3.3 to 6.4.1 in /examples/research_projects/visual_bert (#31298)
Bump tornado in /examples/research_projects/visual_bert

Bumps [tornado](https://github.com/tornadoweb/tornado) from 6.3.3 to 6.4.1.
- [Changelog](https://github.com/tornadoweb/tornado/blob/master/docs/releases.rst)
- [Commits](https://github.com/tornadoweb/tornado/compare/v6.3.3...v6.4.1)

---
updated-dependencies:
- dependency-name: tornado
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-06-07 15:44:38 +01:00
60861fe1fd Implement JSON dump conversion for torch_dtype in TrainingArguments (#31224)
* Implement JSON dump conversion for torch_dtype in TrainingArguments

* Add unit test for converting torch_dtype in TrainingArguments to JSON

* move unit test for converting torch_dtype into TrainerIntegrationTest class

* reformating using ruff

* convert dict_torch_dtype_to_str to private method _dict_torch_dtype_to_str

---------

Co-authored-by: jun.4 <jun.4@kakaobrain.com>
2024-06-07 15:43:34 +01:00
ff689f57aa Extend save_pretrained to offloaded models (#27412)
* added hidden subset

* debugged hidden subset contrastive search

* added contrastive search compression

* debugged compressed contrastive search

* memory reduction for contrastive search

* debugged mem red

* added low memory option feature

* debugged mem optmimization output stack

* debugged mem optmimization output stack

* debugged low mem

* added low mem cache

* fixed 2047 tensor view

* debugged 2042 past key val inputs

* reformatted tensors

* changed low mem output

* final clean

* removed subset hidden csearch

* fixed hidden device

* fixed hidden device

* changed compressor dtype

* removed hstate compression

* integrated csearch in generate

* test csearch integration into generation

exit()

* fixed csearch kwarg integration with generation

* final wrap and added doc

* Update src/transformers/generation/utils.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/generation/utils.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/generation/utils.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* added debug print

* direct hstate cat

* direct hstate cat

* direct hstate cat debug

* direct hstate cat debug

* expanded full hidden state stack

* expanded full hidden state stack

* matched dims for hstates

* matched dims for hstates

* logits fix

* equality test

* equality hidden debug

* debug

* added prints for debug

* added prints for debug

* equality check

* switched squeeze dim

* input format debug

* tracing top_k_ids

* removed trace

* added test context

* added jitter

* added jitter

* added jitter

* returned state

* rebuilt past key value reconstruction

* debugged

* cleaned traces

* added selection for pkv

* changed output to dict

* cleaned

* cleaned

* cleaned up contrastive search test

* moved low_memory kwarg

* debugged

* changed low mem test batch size to 1

* removed output

* debugged test input shape

* reformatted csearch test

* added trace

* removed unsqueeze on final forward pass

* replaced unsqueeze with view

* removed traces

* cleaned

* debugged model kwargs

* removed special models from test

* ran make quality

* Update src/transformers/generation/configuration_utils.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/generation/configuration_utils.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* refactored

* refactored

* refactored

* make fixup

* renamed flag sequential

* renamed flag sequential

* iterative onloading

* black style and test utils

* added traces for integrated test

* debugged

* added traces

* make style

* removed traces, make style

* included suggestions and added test

* debugged test

* added offload module check and make style

* is_accelerate_available and make style

* added test decorator

* changed test model and config spec

* added offload condition

* added lazy loading for each shard

* debugged

* modified sharding

* debugged

* added traces

* removed safe serialization

* no index overload;

* trace on safe save ptrs

* added ptr condition

* debugged

* debugged ptr

* moved module map init

* remake shard only for offloaded modules

* refactored

* debugged

* refactored

* debugged

* cleaned and make style

* cleaned and make style

* added trace

* sparse module map

* debugged

* removed module map conditional

* refactored

* debug

* debugged

* added traces

* added shard mem trace

* added shard mem trace

* removed underlying storage check

* refactored

* memory leak removal and make style

* cleaned

* swapped test decs and make style

* added mem checks and make style

* added free mem warning

* implemented some suggestions

* moved onloading to accelerate

* refactored for accelerate integration

* cleaned test

* make style

* debugged offload map name

* cleaned and make style

* replaced meta device check for sharding

* cleaned and make style

* implemented some suggestions

* more suggestions

* update warning

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* more suggestions

* make style

* new make style

* Update src/transformers/modeling_utils.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* Update src/transformers/modeling_utils.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* Update src/transformers/modeling_utils.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* Update src/transformers/modeling_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-06-07 07:50:35 -04:00
8bcf9c8dd4 Fix jetmoe model (#31279)
* Fix jetmoe model

* Remove skip-tests
2024-06-07 11:51:41 +02:00
f868cf731a Fixed Wav2Vec2ProcessorWithLM decoding error (#31188)
* fix: wav2vec2_with_lm decoding error

Fixed an error where some language models could
not be loaded due to a decoding error, since it
was impossible to select the 'unigram_encoding'
value.

* fix: unexpected keyword argument

Fixed unexpected keyword argument caused by
passing kwargs directly to BeamSearchDecoderCTC.

* style: wav2vec2_with_lm

Changed single quotes to double quotes.
2024-06-07 11:50:07 +02:00
bdf36dcd48 Enable HF pretrained backbones (#31145)
* Enable load HF or tim backbone checkpoints

* Fix up

* Fix test - pass in proper out_indices

* Update docs

* Fix tvp tests

* Fix doc examples

* Fix doc examples

* Try to resolve DPT backbone param init

* Don't conditionally set to None

* Add condition based on whether backbone is defined

* Address review comments
2024-06-06 22:02:38 +01:00
a3d351c00f Update text-to-speech.md (#31269)
SpeechBrain usage has changed
2024-06-06 21:59:22 +01:00
3b4d3d09fd Fix SwinLayer / DonutSwinLayer / ClapAudioLayer attention mask device (#31295)
Fix DonutSwinLayer attention mask device
2024-06-06 21:52:14 +01:00
b6c9f47fd6 Bump transformers from 3.5.1 to 4.38.0 in /examples/research_projects/bertabs (#31290)
Bump transformers in /examples/research_projects/bertabs

Bumps [transformers](https://github.com/huggingface/transformers) from 3.5.1 to 4.38.0.
- [Release notes](https://github.com/huggingface/transformers/releases)
- [Commits](https://github.com/huggingface/transformers/compare/v3.5.1...v4.38.0)

---
updated-dependencies:
- dependency-name: transformers
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-06-06 16:13:18 +01:00
f9296249a3 Pipeline VQA: Add support for list of images and questions as pipeline input (#31217)
* Add list check for image and question

* Handle passing two lists and update docstring

* Add tests

* Add support for dataset

* Add test for dataset as input

* fixup

* fix unprotected import

* fix unprotected import

* fix import again

* fix param type
2024-06-06 14:50:45 +01:00
4c82102523 Bump transformers from 4.19.0 to 4.38.0 in /examples/research_projects/codeparrot (#31285)
Bump transformers in /examples/research_projects/codeparrot

Bumps [transformers](https://github.com/huggingface/transformers) from 4.19.0 to 4.38.0.
- [Release notes](https://github.com/huggingface/transformers/releases)
- [Commits](https://github.com/huggingface/transformers/compare/v4.19.0...v4.38.0)

---
updated-dependencies:
- dependency-name: transformers
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-06-06 14:49:31 +01:00
c53fcd8381 Mark MobileNetV1ModelTest::test_batching_equivalence as flaky (#31258)
* Mark MobileNetV1ModelTest::test_batching_equivalence as flaky

* Add link to issue

* woops
2024-06-06 14:47:58 +01:00
681183974a Enable dynamic resolution input for Beit (#31053)
* Initial attempt

* Updates: PR suggestions

* Interpolate the relative position bias when interpolate_pos_encoding is True

* Add slow tag for the added tests

* Add in DATA2VEC_VISION_INPUTS_DOCSTRING
2024-06-06 14:47:41 +01:00
99895ae5e2 fix accelerate tests for roberta xl (#31288)
* fix accelerate tests for roberta xl

* style
2024-06-06 14:44:35 +01:00
5ba8ac54f5 Fix _save_tpu: use _maybe_convert_to_cpu instead of to cpu. (#31264)
* Fix _save_tpu: use _maybe_convert_to_cpu instead of to cpu.

* fix lint
2024-06-06 09:42:55 -04:00
14ff5dd962 Bump transformers from 3.5.1 to 4.38.0 in /examples/research_projects/bertology (#31256)
Bump transformers in /examples/research_projects/bertology

Bumps [transformers](https://github.com/huggingface/transformers) from 3.5.1 to 4.38.0.
- [Release notes](https://github.com/huggingface/transformers/releases)
- [Commits](https://github.com/huggingface/transformers/compare/v3.5.1...v4.38.0)

---
updated-dependencies:
- dependency-name: transformers
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-06-06 12:42:40 +01:00
9e9679c022 fix: str should be used not int when setting env variables (#31272) 2024-06-06 12:41:31 +01:00
9ef93fccad Switch from cached_download to hf_hub_download in remaining occurrences (#31284)
Switch from hf_hub_url to hf_hub_download in remaining occurences
2024-06-06 12:05:59 +01:00
5fabd1e83b Generation: fix handling of special tokens (#31254)
* fix special tokens in generatioon

* fix test

* add warning

* fix the check

* warn once

* fix
2024-06-06 15:21:32 +05:00
7729b77478 Make mamba use cache (#31116)
* make mamba use cache

* uss cache naming as in mamba

* fix musicgen
2024-06-06 13:37:29 +05:00
f5c0fa9f6f fix loading special_tokens_map_file (#31012) 2024-06-06 09:15:27 +02:00
9b85e405ab [SwitchTransformer] Significant performance improvement on MoE blocks (#31173)
* SwitchTransformer MoE layer performance improvement

* make fixup

* comments about shapes

* make fixup
2024-06-06 09:10:12 +02:00
8177aa0e1a no need for explicit EXTRA_TOKENS in processing_paligemma.py (#31022)
no need for explicit EXTRA_TOKENS
2024-06-06 08:41:41 +02:00
940fde8daf Skip failing JetMOE generation tests (#31266)
Skip failing tests for now
2024-06-05 19:06:46 +01:00
bd5091df8d Reduce by 2 the memory requirement in generate() 🔥🔥🔥 (#30536)
* Fix contrastive_search for new cache structure, and improve performance by removing inneficient torch.stack(torch.split(x, top_k, dim=0))

* Fix _contrastive_search for non-standard cache using ellipsis slicing

* Fix all outputs.logits memory leaks for all decoding strategies!

* Fix small error in _contrastive_search()

* Make all necessary change and revert for the new class

* Apply coding style

* Remove pipes in type hints for compatibility

* correct type hint

* apply style

* Use DynamicCache by default and solve conflicts

* Fix rebase issues

* Add `_supports_dynamic_cache_class` in models for models that support DynamicCache but not other caches to make DynamicCache the default for more models

* Create generation config to return legacy format by default, or to choose not to

* style

* Fix case when use_cache is False

* Remove default DynamicCache in assiste_decoding if assistant_model does not support it + fix _seen_tokens when cropping cache

* Update prepare_inputs_for_generation() for case with empty DynamicCache

* Correct return of args in _assisted_decoding

* Remove EfficientDynamicCache as it is no longer needed

* Correct mistake in generation config

* Move cache logic of assisted decoding to AssistedCandidateGenerator.__init__

* change DynamicCache function names from "split" to "batch_split" for readability + apply coding style

* Remove `_supports_dynamic_cache_class` attribute after rebase

* Correct missing line lost in conflict resolution during rebasing

* Add special case for Jamba

* Fix jamba test

* Coding style

* coding style

* Correct missing import in rebasing

* Simplify _validate_model_kwargs based on removal of _supports_dynamic_cache attribute

* Simplify code paths in _contrastive_search

* coding style

* Update docstrings of cache methods

* Update prepare_inputs_for_generation() -> past_key_values are always Cache objects
2024-06-05 17:05:01 +02:00
d6276f0fc5 Add condition to benchmark job in push-important-models.yml (#31259)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-06-05 15:19:16 +02:00
b72752f068 Fix circular reference issue in CLIPTokenizerFast (#31075) 2024-06-05 14:01:13 +02:00
464d986b6c Add missing Flaubert tokenizer tests (#30492)
* add flaubert tokenization test, enrich inheritance in FlaubertTokenizer.

* fix quality code ci

* ensure parameter consistency

* fix ci

* fix copyright year and flatten vocab list.

* fix style
2024-06-05 13:52:16 +02:00
41cf4097f7 enable deterministic mode for npu (#31253) 2024-06-05 07:35:35 -04:00
4a6024921f doc: add info about wav2vec2 bert in older wav2vec2 models. (#31120)
* doc: add info about wav2vec2 bert in older wav2vec2 models.

* apply suggestions from review.

* forward contrib credits from review

---------

Co-authored-by: Sanchit Gandhi <sanchit-gandhi@users.noreply.github.com>
2024-06-05 11:56:11 +01:00
c39aaea972 Bump transformers from 3.5.1 to 4.38.0 in /examples/research_projects/deebert (#31244)
Bump transformers in /examples/research_projects/deebert

Bumps [transformers](https://github.com/huggingface/transformers) from 3.5.1 to 4.38.0.
- [Release notes](https://github.com/huggingface/transformers/releases)
- [Commits](https://github.com/huggingface/transformers/compare/v3.5.1...v4.38.0)

---
updated-dependencies:
- dependency-name: transformers
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-06-05 11:12:58 +01:00
54659048a2 Early labels validation (#31240)
* Move label validation checks - fail early

* Remove some formatting changes - add back labels change wav2vec2
2024-06-05 10:50:55 +01:00
03ea160937 Benchmark GitHub Actions workflow (#31163)
* benchmark workflow

* benchmark workflow

* benchmark workflow

* benchmark workflow

* build

* build

* build

* build

* build

* build

* build

* build

* build

* build

* build

* build

* build

* build

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-06-05 10:39:00 +02:00
63fb253df0 Fixing name 'torch' is not defined in bitsandbytes integration (#31243)
Fixed torch definition error
2024-06-05 08:00:30 +02:00
66875ac070 Specify dtype=torch.bool to avoid xla error (#31191)
The StoppingCriteriaList allocates is_done without specifying dtype=torch.bool. On XLA this allocates a float tensor and causes a failure on the following line:

is_done = is_done | criteria(input_ids, scores, **kwargs)

by attempting to OR float with bool.
2024-06-05 07:50:54 +02:00
8685b3c5d2 Bump transformers from 4.26.0 to 4.38.0 in /examples/research_projects/vqgan-clip (#31242)
Bump transformers in /examples/research_projects/vqgan-clip

Bumps [transformers](https://github.com/huggingface/transformers) from 4.26.0 to 4.38.0.
- [Release notes](https://github.com/huggingface/transformers/releases)
- [Commits](https://github.com/huggingface/transformers/compare/v4.26.0...v4.38.0)

---
updated-dependencies:
- dependency-name: transformers
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-06-04 22:11:45 +01:00
3714f3f86b Upload (daily) CI results to Hub (#31168)
* build

* build

* build

* build

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-06-04 21:20:54 +02:00
99de3a844b Move out common backbone config param validation (#31144)
* Move out common validation

* Add missing backbone config arguments
2024-06-04 18:15:37 +01:00
485d913dfb Blip: Deprecate BlipModel (#31235)
* deprecate blip

* mention deprecation on docs
2024-06-04 18:29:45 +02:00
fd3238b4b0 Fix MistralIntegrationTest (#31231)
* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-06-04 18:04:08 +02:00
2965b20459 add no split modules for xlmrobertaxl (#31223) 2024-06-04 15:46:19 +01:00
821b772ab9 Add new line switch before logging ***** Running {description} ***** (#31225)
 Add new line switch before logging "***** Running {description} *****".

Signed-off-by: jacklanda <yonyonlau@gmail.com>
2024-06-04 13:38:17 +01:00
4ba66fdb4c Fix pipeline tests - torch imports (#31227)
* Fix pipeline tests - torch imports

* Frameowrk dependant float conversion
2024-06-04 12:30:23 +01:00
6b22a8f2d8 fix bf16 issue in text classification pipeline (#30996)
* fix logits dtype

* Add bf16/fp16 tests for text_classification pipeline

* Update test_pipelines_text_classification.py

* fix

* fix
2024-06-04 11:20:48 +01:00
de460e28e1 Add dynamic resolution input/interpolate position embedding to deit (#31131)
* Added interpolate pos encoding feature and test to deit

* Added interpolate pos encoding feature and test for deit TF model

* readded accidentally delted test for multi_gpu

* storing only patch_size instead of entire config and removed commented code

* Update modeling_tf_deit.py to remove extra line

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-06-04 10:29:01 +01:00
d64e4da713 Video-LLaVa: handle any number of frames (#31221)
video-llava can handle more frames
2024-06-04 14:20:03 +05:00
36ade4a32b fix(PatchTST): Wrong dropout used for PretainHead (#31117)
* fix(PatchTST): Wrong dropout used for PretainHead

* feat(PatchTST): remove unused config.dropout

---------

Co-authored-by: Strobel Maximilian (IFAG PSS SIS SCE ACM) <Maximilian.Strobel@infineon.com>
2024-06-04 10:11:36 +01:00
e83cf58145 Fix sentence fragment within test comments (#31218) 2024-06-04 10:09:24 +01:00
83238eeebc Pass device in Logits Processor's init (#29804)
* add device in logits processor

* remove device when not needed

* codestyle

* tests

* forgot `melody` version

* Update src/transformers/models/whisper/generation_whisper.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* codestyle

* updates

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2024-06-04 10:19:19 +05:00
c73ee1333d [docs] Spanish translation of tokenizer_summary.md (#31154)
* add tokenizer_summary to es/_toctree.yml

* add tokenizer_summary to es/

* fix link to Transformes XL in en/

* translate until Subword tokenization section

* fix GPT link in en/

* fix other GPT link in en/

* fix typo in en/

* translate the doc

* run make fixup

* Remove .md in Transformer XL link

* fix some link issues in es/

* fix typo
2024-06-03 16:52:23 -07:00
8a1a23ae4d Fix GPU OOM for mistral.py::Mask4DTestHard (#31212)
* build

* build

* build

* build

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-06-03 19:25:15 +02:00
df5abae894 Set greater_is_better to False if metric_for_best_model ends with "loss" (#31142)
* update to not(endswith(loss))

* ruff formatting
2024-06-03 17:52:28 +01:00
924c46d40c Cohere: Fix copied from (#31213)
Update modeling_cohere.py
2024-06-03 18:29:31 +02:00
98dd842339 Wrong translation FR : Contents = Contenu (#31186)
Update index.md - Contents = Contenu

French typo -
Contents = Contenu
2024-06-03 17:40:14 +02:00
c6c78733d7 Rename sanity_evaluation to eval_on_start (#31192)
* Rename sanity_evaluation to eval_on_start

* move arg back to last
2024-06-03 16:32:21 +01:00
c230504b36 Fix typo in utils (#31169)
fix typo
2024-06-03 17:27:53 +02:00
874ac129bb fix the get_size_with_aspect_ratio in max_size situation (#30902)
* fix the get_size_with_aspect_ratio in max_size situation

* make fix-up

* add more general solution

* consider when max_size is not defined

* fix typo

* fix typo

* simple fix

* fix error

* fix if else error

* fix error of size overwrite

* fix yolos image processing

* fix detr image processing

* make

* add longest related test script

* Update src/transformers/models/yolos/image_processing_yolos.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* add more test

* add test script about longest size

* remove deprecated

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-06-03 16:12:08 +01:00
e4628434d8 Add Qwen2 GGUF loading support (#31175)
* add qwen2 gguf support

* Update docs

* fix qwen2 tokenizer

* add qwen2 gguf test

* fix typo in qwen2 gguf test

* format code

* Remove mistral, clarify the error message

* format code

* add typing and update docstring
2024-06-03 14:55:10 +01:00
df848acc5d Fix test_compile_static_cache (#30991)
* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-06-03 15:16:28 +02:00
70c8713872 🚨 [Mistral and friends] Update MLP (#31057)
Update MLP
2024-06-03 14:57:07 +02:00
d475f76745 SlidingWindowCache: reduce differences to other Cache classes (#30970)
* tmp commit

* sliding window with fewer differences

* make fixup + rebase

* missing overwrite
2024-06-03 14:04:24 +02:00
221aaec6ec Ignore non-causal mask in more cases with SDPA (#30138)
* update non-causal mask for sdpa

* add test

* update docstrings

* add one more test

* fix cross attention bug

* gentler atol/rtol
2024-06-03 19:08:41 +08:00
f4f696255f Fix Cannot convert [array()] to EagerTensor of dtype int64 (#31109)
While running the model.prepare_tf_dataset() method,
it raises the error below:
```
TypeError: Cannot convert [array([322.,   1.])] to EagerTensor of dtype int64
```

This happens, in  "DataCollatorForSeq2Seq" function when we are try
to convert the labels to tensors. While converting the labels to tensors,
the labels can be in the format of list of list or list of ndarrays.
There is no problem converting the list of list lables. There is a problem
when the list of ndarrays are float values(like below).

```
[array([322.,   1.])]
```

so the exception raises while trying to convert this label to tensors using
below code.

```
batch["labels"] = tf.constant(batch["labels"], dtype=tf.int64)
```

The labels are always integer values, so this got converted to float
values in the label padding operation below.
```
batch["labels"] = [
                    call(label)
                    if padding_side == "right"
                    else np.concatenate([[self.label_pad_token_id] * (max_label_length - len(label)), label])
                    for label in labels
                    ]
```
Here we have 2 cases:
1 - Concatenating an array having integer padding token value with labels.
2 - Concatenating an empty array with labels.

----------------------------------------------------------------------------------------
case 1: Concatenating an array having integer padding token value with labels.
WORKS EXPECTED:
----------------------------------------------------------------------------------------
```
label = np.array([233, 1])
max_label_length = 4
label_pad_token_id = -100
np.concatenate([[label_pad_token_id] * (max_label_length - len(label)), label])
o/p:
array([-100, -100,  233,    1])
```

----------------------------------------------------------------------------------------
Case 2: Concatenating an empty array with labels.
GIVES THE ISSUE:
This scenorio can happen when the label has the maximum label length -- No padding needed.
----------------------------------------------------------------------------------------
```
label = np.array([233, 1])
max_label_length = 2
label_pad_token_id = -100
np.concatenate([[label_pad_token_id] * (max_label_length - len(label)), label])
o/p:
array([233.,   1.])
```

----------------------------------------------------------------------------------------
Solution:
----------------------------------------------------------------------------------------
We need to concatenate a ndarray of dtype int with labels.

AFTER FIX:
----------
case 1:
```

label = np.array([233, 1])
max_label_length = 4
label_pad_token_id = -100
np.concatenate([np.array([label_pad_token_id] * (max_label_length - len(label)), dtype=np.int64),label])

o/p:
array([-100, -100,  233,    1])
```

case 2:
```

label = np.array([233, 1])
max_label_length = 2
label_pad_token_id = -100
np.concatenate([np.array([label_pad_token_id] * (max_label_length - len(label)), dtype=np.int64),label])

o/p:
array([233,   1])
```
2024-06-03 10:49:03 +01:00
1749841a0e [GemmaModel] fix small typo (#31202)
* fixes

* fix-copies
2024-06-03 11:02:38 +02:00
39b2ff69d6 Token healing (#30081)
* token healing impl + trie with extensions

* make fixup

* prefix-robust space tokenization

* examples readme and requirements

* make fixup

* allow input prompt and model

* redundant defaults

* Specialized Trie

* make fixup

* updated tests with new inherited Tree

* input ids to auto device_map

* rm unused import

* Update src/transformers/generation/utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* naming convention

* Revert "naming convention"

This reverts commit dd39d9c5b7a969e2d8a8d2a8e54f121b82dc44f0.

* naming convention

* last -hopefully- changes

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-06-03 10:53:15 +02:00
5b5b48b11d Remove copied froms for deprecated models (#31153)
* Remove copied froms for deprecated models

* Remove automatically in script
2024-06-03 09:42:53 +01:00
97e5a7072c Fix typo: use_safetenstors to use_safetensors (#31184)
Corrected a typo in security.md. Changed `use_safetenstors` to `use_safetensors` in the section discussing the usage of safe formats for loading models to prevent arbitrary code execution.
2024-06-03 10:33:02 +02:00
96eb06286b Diff converter v2 (#30868)
* current working example!

* commit regex and result file

* update

* nit

* push the conversion file

* oups

* roadmap and nits

* attempt diffs for 3 files

* persimmon

* nit

* add diff file that is the same as the modeling_llama.py

* fix rope nits

* updates

* updates with converted versions

* give some breathing space to the code

* delete

* update

* update

* push the actual result

* update regex patterns

* update regex patterns

* fix some issues

* fix some issues

* fix some issues

* updates

* updates

* updates

* updates

* updates

* revert changes done to llama

* updates

* update gemma

* updates

* oups

* current state

* current state

* update

* ouiiii

* nit

* clear diffs

* nit

* fixup

* update

* doc 🚀

* 🔥

* for now use gemma

* deal with comments

* style

* handle funtions

* deal with assigns

* todos

* process inheritage

* keep decorators?

* 🤗

* deal with duplicates

* fixup

* correctly remove duplicate code

* run ruff post script

* ruff deals pretty well with imports, let's leave it to him

* ah maybe not lol

* for now remove all imports from child.

* nit

* conversion of llama

* okay

* convert starcoder2

* synch with main

* update llama diff

* updates

* https://docs.astral.sh/ruff/rules/redefined-while-unused/ fixes the imports, bit needs later version of ruff

* updates

* okay actual state

* non zero exit

* update!

* revert unrelated

* remove other diff files

* updates

* cleanup

* update

* less diff!

* stash

* current updates

* updates

* No need for call

* finished fining deps

* update

* current changes

* current state

* current state

* new status

* nit

* finally

* fixes

* nits

* order is now expected

* use logger info instead of prints

* fixup

* up

* nit

* update

* nits

* update

* correct merge

* update

* update

* update

* add warning

* update caution message

* update

* better merging strategy

* copy class statements :wink

* fixups

* nits

* update

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* nits

* smaller header

* do cleanup some stuff

* even simpler header?

* fixup

* updates

* ruff

* update examples

* nit

* TODO

* state

* OUUUUUUF

* current state

* nits

* final state

* add a readme

* fixup

* remove diff llama

* fix

* nit

* dummy noy funny

* ruff format tests src utils --check

* everless diffs

* less diffs and fix test

* fixes

* naming nit?

* update converter and add supper example

* nits

* updated for function signatures

* update

* update

* add converted dummies

* autoformat

* single target assign fix

* fixup

* fix some imports

* fixes

* don't push them

* `# noqa: F841`

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-05-31 18:37:43 +02:00
372baec2e6 Added description of quantization_config (#31133)
* Description of quantization_config

Added missing description about quantization_config in replace_with_bnb_linear for better readability.

* Removed trailing spaces
2024-05-31 18:23:11 +02:00
cdc813113a Instance segmentation examples (#31084)
* Initial setup

* Metrics

* Overfit on two batches

* Train 40 epochs

* Memory leak debugging

* Trainer fine-tuning

* Draft

* Fixup

* Trained end-to-end

* Add requirements

* Rewrite evaluator

* nits

* Add readme

* Add instance-segmentation to the table

* Support void masks

* Remove sh

* Update docs

* Add pytorch test

* Add accelerate test

* Update examples/pytorch/instance-segmentation/README.md

* Update examples/pytorch/instance-segmentation/run_instance_segmentation.py

* Update examples/pytorch/instance-segmentation/run_instance_segmentation_no_trainer.py

* Update examples/pytorch/instance-segmentation/run_instance_segmentation_no_trainer.py

* Update examples/pytorch/instance-segmentation/run_instance_segmentation.py

* Fix consistency oneformer

* Fix imports

* Fix imports sort

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update examples/pytorch/instance-segmentation/run_instance_segmentation.py

Co-authored-by: Sangbum Daniel Choi <34004152+SangbumChoi@users.noreply.github.com>

* Add resources to docs

* Update examples/pytorch/instance-segmentation/README.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update examples/pytorch/instance-segmentation/README.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Remove explicit model_type argument

* Fix tests

* Update readme

* Note about other models

---------

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Sangbum Daniel Choi <34004152+SangbumChoi@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-05-31 16:56:17 +01:00
9837a25481 Add streaming, various fixes (#30838)
* Implement streaming run in ReAct agents
* Allow additional imports in code agents
* Python interpreter: support classes and exceptions, fixes
2024-05-31 14:16:23 +02:00
f8e6ba454c [trainer] add sanity evaluation option (#31146)
* add sanity evaluation

* fix

* Apply suggestions from code review

Co-authored-by: Zach Mueller <muellerzr@gmail.com>

* fix

---------

Co-authored-by: Zach Mueller <muellerzr@gmail.com>
2024-05-31 12:44:20 +02:00
fc5d3e112a Quantization: Enhance bnb error message (#31160)
enhance error message
2024-05-31 12:36:46 +02:00
bd9d1ddf41 Update sam.md (#31130)
`mask` variable is not defined. probably a writing mistake. it should be `segmentation_map`. `segmentation_map` should be a `1` channel image rather than `RGB`.
[on a different note, the `mask_url` is the same as `raw_image`. could provide a better example.
2024-05-31 12:34:29 +02:00
48cada87c3 Fix quantized cache output (#31143) 2024-05-31 12:08:55 +02:00
d19566e852 pytest -rsfE (#31140)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-05-31 10:35:54 +02:00
f3f640dce1 helper (#31152)
* helper

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* updates

* more doc

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-05-31 08:49:33 +02:00
6bd511a45a Workflow: Remove IS_GITHUB_CI (#31147)
remove `IS_GITHUB_CI`
2024-05-30 17:21:10 +02:00
f5590deaa8 Docs / Quantization: Replace all occurences of load_in_8bit with bnb config (#31136)
Replace all occurences of `load_in_8bit` with bnb config
2024-05-30 16:47:35 +02:00
cda9c82a63 fix get_scheduler when name is warmup_stable_decay (#31128)
fix get_scheduler args
2024-05-30 15:25:43 +01:00
5e5c4d629d FIX / Quantization: Add extra validation for bnb config (#31135)
add validation for bnb config
2024-05-30 11:45:03 +02:00
2b9e252b16 Cleanup docker build (#31119)
* remove

* build

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-05-29 19:43:51 +02:00
5c88253556 Add on_optimizer_step to callback options (#31095)
* Modified test

* Added on_optimizer_step to callbacks

* Move callback after step is called

* Added on optimizer step callback
2024-05-29 16:20:59 +02:00
4af705c6ce Add VLM generation default contributor (#31115)
* add Raushan

* add Raushan
2024-05-29 15:17:14 +01:00
cb879c5801 FIX / Docs: Fix GPTQ expected number of bits (#31111)
Update overview.md
2024-05-29 15:56:28 +02:00
1f84141391 Fix nightly circleci (#31114)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-05-29 15:42:39 +02:00
d16053c867 Rm maintainer + migrate (#31089) 2024-05-29 09:35:37 -04:00
0bef4a2738 Fix faulty rstrip in module loading (#31108) 2024-05-29 13:33:26 +01:00
97a58a5d2c Fix env.py in cases where torch is not present (#31113)
* Fix env.py in cases where torch is not present

* Simplify the fix (and avoid some issues)
2024-05-29 13:20:36 +01:00
c8861376ad Improve transformers-cli env reporting (#31003)
* Improve `transformers-cli env` reporting

* move the line `"Using GPU in script?": "<fill in>"` to in if conditional
statement

* same option for npu
2024-05-29 11:57:54 +01:00
c3044ec2f3 Use HF_HUB_OFFLINE + fix has_file in offline mode (#31016)
* Fix has_file in offline mode

* harmonize env variable for offline mode

* Switch to HF_HUB_OFFLINE

* fix test

* revert test_offline to test TRANSFORMERS_OFFLINE

* Add new offline test

* merge conflicts

* docs
2024-05-29 11:55:43 +01:00
bfe6f513b9 FEAT: Add mistral v3 conversion script (#30981)
* add mistral v3 conversion script

* Update src/transformers/models/mistral/convert_mistral_weights_to_hf.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fixup

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-05-29 11:43:54 +02:00
d521ba5797 Quantized KV cache: update quanto (#31052)
* quanto latest version was refactored

* add error msg

* incorrect compare sign

* Update src/transformers/cache_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-05-29 14:25:44 +05:00
a564d10afe Deprecate low use models (#30781)
* Deprecate models
- graphormer
- time_series_transformer
- xlm_prophetnet
- qdqbert
- nat
- ernie_m
- tvlt
- nezha
- mega
- jukebox
- vit_hybrid
- x_clip
- deta
- speech_to_text_2
- efficientformer
- realm
- gptsan_japanese

* Fix up

* Fix speech2text2 imports

* Make sure message isn't indented

* Fix docstrings

* Correctly map for deprecated models from model_type

* Uncomment out

* Add back time series transformer and x-clip

* Import fix and fix-up

* Fix up with updated ruff
2024-05-28 18:07:07 +01:00
7f08817be4 Docs / Quantization: Redirect deleted page (#31063)
Update _redirects.yml
2024-05-28 18:29:22 +02:00
3264be4114 TST: Fix instruct-blip tests (#31088)
* fix flan t5 tests

* better format
2024-05-28 18:29:11 +02:00
476890e9ae Fix DeepSpeed compatibility with weight_norm (#30881) (#31018) 2024-05-28 17:25:15 +01:00
aada568f73 Fix PretrainedConfig docstring with deprecated resume_download (#31014) 2024-05-28 17:47:35 +02:00
3af7bf30ad skip test_multi_gpu_data_parallel_forward for vit and deit (#31086)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-05-28 17:44:52 +02:00
ab19f907fd FIX / OPT: Fix OPT multi-GPU training for OPTForQuestionAnswering (#31092)
Update modeling_opt.py
2024-05-28 17:06:00 +02:00
94d416f018 FIX: Add accelerate as a hard requirement (#31090)
add accelerate
2024-05-28 17:05:44 +02:00
22dab246c5 Render chat template tojson filter as unicode (#31041)
* Render chat template tojson filter as unicode

* ruff--
2024-05-28 15:02:51 +01:00
4f98b14465 Docs / PEFT: Add PEFT API documentation (#31078)
* add peft references

* add peft references

* Update docs/source/en/peft.md

* Update docs/source/en/peft.md
2024-05-28 15:04:43 +02:00
779bc360ff Watermark: fix tests (#30961)
* fix tests

* style

* Update tests/generation/test_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-05-28 17:07:42 +05:00
a3c7b59e31 Fix failing tokenizer tests (#31083)
* Fix failing tokenizer tests

* Use small tokenizer

* Fix remaining reference
2024-05-28 13:34:23 +02:00
90da0b1c9f [SuperPoint, PaliGemma] Update docs (#31025)
* Update docs

* Add PaliGemma resources

* Address comment

* Update docs
2024-05-28 13:22:06 +02:00
66add161dc Fix typo in trainer.py (#31048) 2024-05-28 12:09:32 +01:00
98e2d48e9a Fix OWLv2 post_process_object_detection for multiple images (#31082)
* Add test for multiple images

* [run slow] owlv2

* Fix box rescaling

* [run slow] owlv2
2024-05-28 12:06:06 +01:00
c31473ed44 Remove float64 cast for OwlVit and OwlV2 to support MPS device (#31071)
Remove float64
2024-05-28 11:41:40 +01:00
936ab7bae5 fix from_pretrained in offline mode when model is preloaded in cache (#31010)
* Unit test to verify fix

Signed-off-by: Raphael Glon <oOraph@users.noreply.github.com>

* fix from_pretrained in offline mode when model is preloaded in cache

Signed-off-by: Raphael Glon <oOraph@users.noreply.github.com>

* minor: fmt

Signed-off-by: Raphael Glon <oOraph@users.noreply.github.com>

---------

Signed-off-by: Raphael Glon <oOraph@users.noreply.github.com>
Co-authored-by: Raphael Glon <oOraph@users.noreply.github.com>
2024-05-28 11:56:05 +02:00
537deb7869 Remove redundant backend checks in training_args.py (#30999)
* Remove backend checks in training_args.py

* Expilicit initialize the device

---------

Co-authored-by: tonghengwen <tonghengwen@cambricon.com>
2024-05-28 11:52:47 +02:00
AP
dd4654eab7 Update quicktour.md to fix broken link to Glossary (#31072)
Update quicktour.md to fix broken link

Missing '/' in attention mask link in the transformers quicktour
2024-05-28 11:50:45 +02:00
e18da4e3f2 fix "piano" typo (#31027) 2024-05-28 11:48:23 +02:00
8e3b1fef97 Remove ninja from docker image build (#31080)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-05-28 11:36:26 +02:00
8f0f7271d0 use @main (#31065)
use main

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-05-28 10:53:28 +02:00
9d35edbb30 skip test_model_parallelism for 2 model test classes (#31067)
skip

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-05-27 18:36:39 +02:00
d355741eca Fix pad_to_max_length Whisper (#30787)
* fix pad_to_max_length Whisper

* add tests

* make style
2024-05-27 16:09:05 +02:00
b84cd67526 Fix quanto tests (#31062)
fix quanto tests
2024-05-27 15:53:45 +02:00
cd797778e4 Update feature request label in template (#30940) 2024-05-27 15:16:47 +02:00
0a064dc0fc Follow up: Fix link in dbrx.md (#30514)
* Fix link in dbrx.md

* remove "though this may not be up to date"

---------

Co-authored-by: Lysandre Debut <hi@lysand.re>
2024-05-27 14:57:43 +02:00
d7942d9d27 unpin uv (#31055)
[push-ci-image]

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-05-27 13:47:47 +02:00
84c4b72ee9 Redirect transformers_agents doc to agents (#31054) 2024-05-27 10:34:14 +02:00
bdb9106f24 Paligemma- fix devices and dtype assignments (#31008)
* fix devices and dtype assignments

* [run-slow]paligemma
2024-05-24 19:02:55 +02:00
deba7655e6 Add split special tokens (#30772)
* seems like `split_special_tokens` is used here

* split special token

* add new line at end of file

* moving split special token test to common tests

* added assertions

* test

* fixup

* add co-author

* passing rest of args to gptsan_japanese, fixing tests

* removing direct comparison of fast and slow models

* adding test support for UDOP and LayoutXLM

* ruff fix

* readd check if slow tokenizer

* modify test to handle bos tokens

* removing commented function

* trigger build

* applying review feedback - updated docstrings, var names, and simplified tests

* ruff fixes

* Update tests/test_tokenization_common.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* applying feedback, comments

* shutil temp directory fix

---------

Co-authored-by: Arthur Zucker <arthur.zucker@gmail.com>
Co-authored-by: Ita Zaporozhets <itazaporozhets@Itas-MBP.localdomain>
Co-authored-by: itazap <itazap@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Ita Zaporozhets <itazaporozhets@Itas-MacBook-Pro.local>
2024-05-24 08:38:58 -07:00
e5103a76cc added interpolation for vitmae model in pytorch as well as tf. (#30732)
* added interpolation for vitmae model in pytorch as well as tf.

* Update modeling_vit_mae.py

irreugalr import fixed

* small changes and proper formatting

* changes suggested in review.

* modified decoder interpolate_func

* arguments and docstring fix

* Apply suggestions from code review

doc fixes

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-05-24 16:20:09 +01:00
a3cdff417b save the list of new model failures (#31013)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-05-24 15:20:25 +02:00
658b849aeb Quantization / TST: Fix remaining quantization tests (#31000)
* Fix remaining quant tests

* Update test_quanto.py
2024-05-24 14:35:59 +02:00
fd3c128040 Fix resume_download future warning (#31007)
* Fix resume_download future warning

* better like this

* Add regression test
2024-05-24 14:35:40 +02:00
acbfaf69cc allow multi-gpu (#31011)
* allow multi-gpu

* allow multi-gpu

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-05-24 14:20:06 +02:00
ae87f9797b FIX / TST: Fix expected results on Mistral AWQ test (#30971)
fix awq mistral test
2024-05-24 14:06:31 +02:00
04c7c176d7 [tests] make test_model_parallelism device-agnostic (#30844)
* enable on xpu

* fix style

* add comment and mps
2024-05-24 11:51:51 +01:00
42d8dd8716 Perceiver interpolate position embedding (#30979)
* add test that currently fails

* test passed

* all perceiver passed

* fixup, style, quality, repo-consistency, all passed

* Apply suggestions from code review: default to False + compute sqrt once only

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* fix a minor bracket

* replace dim with self._num_channels

* add arguments to the rest preprocessors

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-05-24 11:13:58 +01:00
5855afd1f3 pin uv==0.1.45 (#31006)
* fix

* [push-ci-image]

* run with latest

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-05-24 12:00:50 +02:00
03935d300d Do not trigger autoconversion if local_files_only (#31004) 2024-05-24 11:00:59 +02:00
21e259d8c5 Fix training speed regression introduced by "optimize VRAM for calculating pos_bias in LayoutLM v2, v3 (#26139)" (#30988)
* Revert "optimize VRAM for calculating pos_bias in LayoutLM v2, v3 (#26139)"

This reverts commit a7e0ed829c398a67a641a401e23dae13e2f8b217.

* Instead of reverting commit, wrap indexing in torch.no_grad context

* Apply wrapping in LayoutLMv2

* Add comments explaining reason for no_grad

* Fix code format

---------

Co-authored-by: Kevin Koehncke <kevin.koehncke@uipath.com>
2024-05-24 10:43:44 +02:00
7f6e87413f add prefix space ignored in llama #29625 (#30964)
* add prefix space ignored in llama #29625

* adding test with add_prefix_space=False

* ruff

---------

Co-authored-by: Ita Zaporozhets <itazaporozhets@Itas-MBP.localdomain>
2024-05-24 01:03:00 -07:00
6657fb5fed Bugfix: WandbCallback uploads initial model checkpoint (#30897)
* fix wandb always uploading initial model

* Update comment.

* Optionally log initial model

* Revert "Optionally log initial model"

This reverts commit 9602cc1fad3feaf218f82a7339a194d3d2fbb946.
2024-05-23 20:29:00 +01:00
6d3d5b1039 Remove deprecated properties in tokenization_nllb.py and tokenization_nllb_fast.py (#29834)
* Fix typo in tokenization_nllb.py

Change `adder_tokens_decoder` into `added_tokens_decoder` and improve the warning's readability.

* Fix typo in tokenization_nllb_fast.py

Change `adder_tokens_decoder` into `added_tokens_decoder` and improve the warning's readability.

* Remove deprecated attributes in tokenization_nllb.py

Remove deprecated attributes: `lang_code_to_id`, `fairseq_tokens_to_ids`, `id_to_lang_code`, and `fairseq_ids_to_tokens`

* Remove deprecated attribute in tokenization_nllb_fast.py

Remove deprecated attribute `lang_code_to_id`

* Remove deprecated properties in tokenization_nllb.py

Remove deprecated properties - fix format

* Remove deprecated properties in tokenization_nllb_fast.py

Remove deprecated properties - fix format

* Update test_tokenization_nllb.py

* update test_tokenization_nllb.py

* Update tokenization_nllb.py

* Update test_tokenization_seamless_m4t.py

* Update test_tokenization_seamless_m4t.py
2024-05-23 18:53:26 +02:00
965e98dc54 [Port] TensorFlow implementation of Mistral (#29708)
* chore: initial commit

* chore: adding imports and inits

* chore: adding the causal and classification code

* chore: adding names to the layers

* chore: using single self attn layer

* chore: built the model and layers

* chore: start with testing

* chore: docstring change, transpose fix

* fix: rotary embedding

* chore: adding cache implementation

* remove unused torch

* chore: fixing the indexing issue

* make fix-copies

* Use modeling_tf_utils.keras

* make fixup

* chore: fixing tests

* chore: adding past key value logic

* chore: adding multi label classfication test

* fix: switching on the built parameters in the layers

* fixing repo consistency

* ruff formats

* style changes

* fix: tf and pt equivalence

* removing returns from docstrings

* fix docstrings

* fix docstrings

* removing todos

* fix copies

* fix docstring

* fix docstring

* chore: using easier rotate_half

* adding integration tests

* chore: addressing review related to rotary embedding layer

* review changes

* [run-slow] mistral

* skip: test save load after resize token embedding

* style

---------

Co-authored-by: Matt <rocketknight1@gmail.com>
2024-05-23 17:48:49 +01:00
2a89673fe5 Update 4 MptIntegrationTests expected outputs (#30989)
* fix

* fix

* fix

* fix

* fix

* [run-slow] mpt

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-05-23 18:27:54 +02:00
892b13d3cf Add a check that warmup_setps is either 0 or >= 1 (#30764)
* Add a check that warmup_setps is either 0 or >= 1

Update training_args.py to add a check that warmup_setps is either 0 or >= 1. Otherwise, raise an error.

* Update src/transformers/training_args.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-05-23 17:23:59 +01:00
21339a5213 [tests] add torch.use_deterministic_algorithms for XPU (#30774)
* add xpu check

* add marker

* add documentation

* update doc

* fix ci

* remove from global init

* fix
2024-05-23 16:53:07 +01:00
8366b57241 Fix accelerate failing tests (#30836)
* Fix accelerate tests

* fix clip

* skip dbrx tests

* fix GPTSan

* fix M2M100Model

* same fix as jamba

* fix mt5

* Fix T5Model

* Fix umt5 model

* fix switch_transformers

* fix whisper

* fix gptsan again

* fix siglip recent test

* skip siglip tests

* wrong place fixed
2024-05-23 17:18:58 +02:00
5a74ae6dbe FIX / Docs: Minor changes in quantization docs (#30985)
* Change in quantization docs

* Update overview.md

* Update docs/source/en/quantization/overview.md

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

---------

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2024-05-23 16:36:49 +02:00
046c2ad792 Finish adding support for torch.compile dynamic shapes (#30919)
add torch.compile dynamic support
2024-05-23 16:01:29 +02:00
6739e1d261 test_custom_4d_attention_mask skip with sliding window attn (#30833) 2024-05-23 15:22:10 +02:00
87a351818e Docs / Quantization: refactor quantization documentation (#30942)
* refactor quant docs

* delete file

* rename to overview

* fix

* fix table

* fix

* add content

* fix library versions

* fix table

* fix table

* fix table

* fix table

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* replace to quantization_config

* fix aqlm snippet

* add DLAI courses

* fix

* fix table

* fix bulet points

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-05-23 14:31:52 +02:00
d583f1317b Quantized KV Cache (#30483)
* clean-up

* Update src/transformers/cache_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/cache_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/cache_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fixup

* Update tests/quantization/quanto_integration/test_quanto.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update src/transformers/generation/configuration_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* more suggestions

* mapping if torch available

* run tests & add 'support_quantized' flag

* fix jamba test

* revert, will be fixed by another PR

* codestyle

* HQQ and versatile cache classes

* final update

* typo

* make tests happy

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2024-05-23 17:25:20 +05:00
e05baad861 Bump requests from 2.31.0 to 2.32.2 in /examples/research_projects/visual_bert (#30983)
Bump requests in /examples/research_projects/visual_bert

Bumps [requests](https://github.com/psf/requests) from 2.31.0 to 2.32.2.
- [Release notes](https://github.com/psf/requests/releases)
- [Changelog](https://github.com/psf/requests/blob/main/HISTORY.md)
- [Commits](https://github.com/psf/requests/compare/v2.31.0...v2.32.2)

---
updated-dependencies:
- dependency-name: requests
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-05-23 12:38:00 +01:00
4ef85fee71 Push ci image (#30982)
* [build-ci-image]

* correct branch

* push ci image

* [build-ci-image]

* update scheduled as well

* [push-ci-image]

* [build-ci-image]

* [push-ci-image]

* update deps

* [build-ci-image]

* [build-ci-image]

* [build-ci-image]

* [build-ci-image]

* [build-ci-image]

* [build-ci-image]

* oups [build-ci-image]

* [push-ci-image]

* fix

* [build-ci-image]

* [build-ci-image]

* [build-ci-image]

* [build-ci-image]

* [build-ci-image]

* [build-ci-image]

* [build-ci-image]

* updated

* [build-ci-image] update tag

* [build-ci-image]

* [build-ci-image]

* fix tag

* [build-ci-image]

* [build-ci-image]

* [build-ci-image]

* [build-ci-image]

* github name

* commit_title?

* fetch

* update

* it not found

* dev

* dev

* [push-ci-image]

* dev

* dev

* update

* dev

* dev print dev commit message dev

* dev ? dev

* dev

* dev

* dev

* dev

* [build-ci-image]

* [build-ci-image]

* [push-ci-image]

* revert unwanted

* revert convert as well

* no you are not important

* [build-ci-image]

* Update .circleci/config.yml

* pin tf probability dev

* [push-ci-image] skip

* [push-ci-image] test

* [push-ci-image]

* fix

* device
2024-05-23 11:45:31 +02:00
eb1a77bbb0 Using assistant in AutomaticSpeechRecognitionPipeline with different encoder size (#30637)
* fiw input to generate in pipeline

* fixup

* pass input_features to generate with assistant

* error if model and assistant with different enc size

* fix

* apply review suggestions

* use self.config.is_encoder_decoder

* pass inputs to generate directly

* add slow tests

* Update src/transformers/generation/utils.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Update tests/pipelines/test_pipelines_automatic_speech_recognition.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Update tests/pipelines/test_pipelines_automatic_speech_recognition.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Update tests/pipelines/test_pipelines_automatic_speech_recognition.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Update tests/pipelines/test_pipelines_automatic_speech_recognition.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Update tests/pipelines/test_pipelines_automatic_speech_recognition.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* apply review

* Update src/transformers/generation/utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/pipelines/test_pipelines_automatic_speech_recognition.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* apply code review

* update attributes encoder_xyz to check

* Update src/transformers/generation/utils.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/generation/utils.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/generation/utils.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* add slow test

* solve conflicts

---------

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2024-05-23 09:59:38 +01:00
15585b81a5 Update object detection with latest resize and pad strategies (#30955)
* Update with new resizing and pad strategy

* Return pixel mask param

* Update inference in guide

* Fix empty compose

* Update guide
2024-05-23 00:13:56 +01:00
a25f7d3c12 Paligemma causal attention mask (#30967)
* PaliGemma working causal attention

* Formatting

* Style

* Docstrings + remove commented code

* Update docstring for PaliGemma Config

* PaliGemma - add separator ind to model/labels

* Refactor + docstring paligemma processor method

* Style

* return token type ids when tokenizing labels

* use token type ids when building causal mask

* add token type ids to tester

* remove separator from config

* fix style

* don't ignore separator

* add processor documentation

* simplify tokenization

* fix causal mask

* style

* fix label propagation, revert suffix naming

* fix style

* fix labels tokenization

* [run-slow]paligemma

* add eos if suffixes are present

* [run-slow]paligemma

* [run-slow]paligemma

* add misssing tokens to fast version

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fix style

* [run-slow]paligemma

---------

Co-authored-by: Peter Robicheaux <peter@roboflow.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-05-22 19:37:15 +02:00
Jun
d44e1ae036 Fix link in Pipeline documentation (#30948)
fix documentation as suggested by stevhliu

Co-authored-by: Jun <jun@reliant.ai>
2024-05-22 09:39:46 -07:00
0948c827de [Whisper] Strip prompt before finding common subsequence (#27836) 2024-05-22 17:25:47 +01:00
b1065aa08a Generation: get special tokens from model config (#30899)
* fix

* let's do this way?

* codestyle

* update

* add tests
2024-05-22 18:15:41 +02:00
1d568dfab2 legacy to init the slow tokenizer when converting from slow was wrong (#30972) 2024-05-22 18:06:50 +02:00
1432f641b8 Finally fix the missing new model failure CI report (#30968)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-05-22 17:48:26 +02:00
dff54ad2d9 🚨 out_indices always a list (#30941)
* out_indices always a list

* Update src/transformers/utils/backbone_utils.py

* Update src/transformers/utils/backbone_utils.py

* Move type casting

* nit
2024-05-22 15:23:04 +01:00
250ae9f746 Paligemma - fix slow tests, add bf16 and f16 slow tests (#30851)
* fix slow tests, add bf16 and f16 slow tests

* few fixes

* [run-slow]paligemma

* add gate decorator

* [run-slow]paligemma

* add missing gating

* [run-slow]paligemma

* [run-slow]paligemma
2024-05-22 16:20:07 +02:00
ada86f973c [whisper] only trigger forced ids warning once (#30966) 2024-05-22 15:06:51 +01:00
1518508467 Avoid extra chunk in speech recognition (#29539) 2024-05-22 14:07:51 +01:00
24d2a5e1a3 [doc] Add references to the fine-tuning blog and distil-whisper to Whisper. (#30938)
[doc] Add references to the fine-tuning blog and distil-whisper to Whisper doc.
2024-05-22 14:06:09 +01:00
5c186003b8 Fix low cpu mem usage tests (#30808)
* Fix tests

* fix udop failing test

* remove skip

* style
2024-05-22 14:09:01 +02:00
934e1b84e9 Update video-llava docs (#30935)
* update video-llava

* Update docs/source/en/model_doc/video_llava.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-05-22 16:56:41 +05:00
edb14eba64 Bump requests from 2.31.0 to 2.32.2 in /examples/research_projects/lxmert (#30956)
---
updated-dependencies:
- dependency-name: requests
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-05-22 11:27:41 +01:00
8e8786e5f0 Update build ci image [push-ci-image] (#30933)
* [build-ci-image]

* correct branch

* push ci image

* [build-ci-image]

* update scheduled as well

* [push-ci-image]

* [build-ci-image]

* [push-ci-image]

* update deps

* [build-ci-image]

* [build-ci-image]

* [build-ci-image]

* [build-ci-image]

* [build-ci-image]

* [build-ci-image]

* oups [build-ci-image]

* [push-ci-image]

* fix

* [build-ci-image]

* [build-ci-image]

* [build-ci-image]

* [build-ci-image]

* [build-ci-image]

* [build-ci-image]

* [build-ci-image]

* updated

* [build-ci-image] update tag

* [build-ci-image]

* [build-ci-image]

* fix tag

* [build-ci-image]

* [build-ci-image]

* [build-ci-image]

* [build-ci-image]

* github name

* commit_title?

* fetch

* update

* it not found

* dev

* dev

* [push-ci-image]

* dev

* dev

* update

* dev

* dev print dev commit message dev

* dev ? dev

* dev

* dev

* dev

* dev

* [build-ci-image]

* [build-ci-image]

* [push-ci-image]

* revert unwanted

* revert convert as well

* no you are not important

* [build-ci-image]

* Update .circleci/config.yml

* pin tf probability dev
2024-05-22 10:52:59 +02:00
673440d073 update ruff version (#30932)
* update ruff version

* fix research projects

* Empty

* Fix errors

---------

Co-authored-by: Lysandre <lysandre@huggingface.co>
2024-05-22 06:40:15 +02:00
60bb571e99 🚨 [Idefics2] Update ignore index (#30898)
* Update ignore index

* Update docs

* Update docs
2024-05-21 19:38:02 +02:00
5bf9caa06d Fix inhomogeneous shape error in example (#30434)
Fix inhomogeneous shape error in example.
2024-05-21 18:14:11 +01:00
d24097e022 Fix swin embeddings interpolation (#30936) 2024-05-21 15:40:19 +01:00
eae2b6b89e TST / Workflows: Get slack notifications for docker image build (#30891)
* Get slack notifications for docker image build

* Apply suggestions from code review

* Apply suggestions from code review
2024-05-21 15:54:41 +02:00
64e0573a81 [Benchmark] Reuse optimum-benchmark (#30615)
* benchmark

* update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-05-21 15:15:19 +02:00
3b09d3f05f fix: center_crop occasionally outputs off-by-one dimension matrix (#30934)
If required padding for a crop larger than input image is odd-numbered,
the padding would be rounded down instead of rounded up, causing the
output dimension to be one smaller than it should be.
2024-05-21 13:56:52 +01:00
daf281f44f Enforce saving at end of training if saving option chosen (#30160)
* Enforce saving at end of training

* Fix test

* Rework test

* Fixup tests'

* Update comment based on sourab feedback

* Clean
2024-05-21 07:50:11 -04:00
7a4792e6b3 CI: AMD MI300 tests fix (#30797)
* add fix

* update import

* updated dicts and comments

* remove prints

* Update testing_utils.py
2024-05-21 12:46:07 +01:00
a755745546 PaliGemma - fix processor with no input text (#30916)
Update processing_paligemma.py
2024-05-21 10:43:22 +01:00
d502bd6475 Bump requests from 2.31.0 to 2.32.0 in /examples/research_projects/decision_transformer (#30925)
---
updated-dependencies:
- dependency-name: requests
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-05-21 09:41:29 +01:00
8871b26150 FEAT / Trainer: LOMO optimizer support (#30178)
* add V1 - adalomo not working yet

* add todo docs + refactor from comments

* adjust LR

* add docs

* add more elaborated test

* Apply suggestions from code review

Co-authored-by: Zach Mueller <muellerzr@gmail.com>

* fix

* push

* add accelerate check

* fix DDP case

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* fix

* init kwargs

* safely add attribute

* revert to enum logic

* Update src/transformers/trainer.py

---------

Co-authored-by: Zach Mueller <muellerzr@gmail.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-05-21 10:16:37 +02:00
c876d12127 FIX / TST: Fix expected results on Mistral slow test (A10) (#30909)
Update test_modeling_mistral.py
2024-05-21 09:14:14 +02:00
0df888ffb7 [docs] Spanish translation of model_memory_anatomy.md (#30885)
* add model_memory_anatomy to es/_toctree.yml

* copy model_memory_anatomy.md to es/

* translate first section

* translate doc

* chage forward activations

* fix sentence and and link to Trainer

* fix Trainer link
2024-05-20 16:48:52 -07:00
616bb11d48 Add torch.compile for Mistral (#30642)
* first version

* fix sliding window

* fix style

* add sliding window cache

* fix style

* address comments

* fix test

* fix style

* move sliding window check inside cache init

* revert changes on irrelevant files & add comment on SlidingWindowCache

* address comments & fix style

fix style

* update causal mask

* [run-slow] mistral

* [run-slow] mistral

* [run-slow] mistral

* [run-slow] mistral

* [run-slow] mistral

* [run-slow] llama

* [run-slow] mistral

* [run-slow] mistral

* [run-slow] mistral

* revert CI from a10 to t4

* wrap up
2024-05-20 16:27:24 +02:00
92d1d97c05 Introduce configured_state arg for accelerator_config (#29781)
* Introduce configured_state

* Include note on tuning

* Allow for users to have defined a state already

* Include tests

* Add note on hpam tune

* Guard a bit better

* Update src/transformers/training_args.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/training_args.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Finish rebase

* Finish rebase

* Guard carefully

* Fixup test

* Refactor

* Fin refactor

* Comment

* Update wrt feedback

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-05-20 09:21:40 -04:00
bb48e92186 tokenizer_class = "AutoTokenizer" Llava Family (#30912)
propagate changes to more models
2024-05-20 13:56:11 +02:00
76e05301c3 Fix a shape annotation and typos in mamba slow forward (#30691)
* fix typos and one shape comment

* fix `intermediade` typo in jamba
2024-05-20 13:55:57 +02:00
e6708709cb Add AutoFeatureExtractor support to Wav2Vec2ProcessorWithLM (#28706)
* Add AutoFeatureExtractor support to Wav2Vec2ProcessorWithLM

* update with a type filter

* add raises error test

* fix added test
2024-05-20 13:40:42 +02:00
c11ac7857b fix for custom pipeline configuration (#29004)
* fix for custom pipeline configuration

* fix for custom pipelines

* remove extra exception

* added test for custom pipelines extra tag

* format with ruff

* limit extra tag for first time only

* format with ruff

* improve tests for custom pipelines
2024-05-20 11:38:32 +02:00
7b4b456438 separate kwargs in processor (similar to #30193) (#30905)
* Fix similar bug in processor (related to #30193)

* Reformat processing_git.py to comply with ruff formatting
2024-05-20 10:18:17 +01:00
1834916481 Fix num_hidden_layers in initialization of new model in Mamba (#30403)
Fix num_hidden_layers in initialization

Originally, the initialization was using config.num_layers instead of config.num_hidden_layers. This fixes that.
2024-05-20 11:18:09 +02:00
1c2bb3ac54 add return_token_timestamps to WhisperProcessor (#30812)
* compute num_frames in WhisperFeatureExtractor

* add return_num_frames in WhisperFeatureProcessor + adapt pipeline

* return_timestamps renaming + pipeline fix

* fix

* fix

* fix

* add tests

* Update src/transformers/models/whisper/feature_extraction_whisper.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* apply review changes

* fix

* Update src/transformers/models/whisper/feature_extraction_whisper.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Update tests/models/whisper/test_modeling_whisper.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* apply review

* fix

* review changes

* Update src/transformers/models/whisper/feature_extraction_whisper.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* make style quality

* EXPECTED_OUTPUT in single line

* small numpy->torch fix

* fix

---------

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-05-20 09:53:58 +01:00
66b0d9ee5d DeformableDETR two stage support bfloat16 (#30907)
Update modeling_deformable_detr.py
2024-05-20 09:51:04 +01:00
5d0bf59b4d LLaVa-Next: Update docs with batched inference (#30857)
* update docs with batch ex

* Update docs/source/en/model_doc/llava_next.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* accept nested list of img

---------

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2024-05-20 13:45:56 +05:00
cd6bd0af34 Add support for torch.compile dynamic shapes (#30560)
* add torch.compile dynamic support

* Add SDPA dynamic shapes compile test & improve SDPA comment

* comment consistency
2024-05-20 10:36:57 +02:00
fce78fd0e9 FIX / Quantization: Fix Dockerfile build (#30890)
* Update Dockerfile

* Update docker/transformers-quantization-latest-gpu/Dockerfile
2024-05-20 10:08:26 +02:00
07bf2dff78 Add TokenClassification for Mistral, Mixtral and Qwen2 (#29878)
* Add MistralForTokenClassification

* Add tests and docs

* Add token classification for Mixtral and Qwen2

* Save llma for token classification draft

* Add token classification support for Llama, Gemma, Persimmon, StableLm and StarCoder2

* Formatting

* Add token classification support for Qwen2Moe model

* Add dropout layer to each ForTokenClassification model

* Add copied from in tests

* Update src/transformers/models/llama/modeling_llama.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Propagate suggested changes

* Style

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2024-05-20 10:06:57 +02:00
481a957814 Enable dynamic resolution input for Swin Transformer and variants (#30656)
* add interpolation of positional encoding support to swin

* add style changes

* use default image processor and make size a dictionary

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* remove logits testing

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Refactor image size validation logic when interpolation is disabled

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* remove asserts in modeling

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* add dynamic resolution input support to swinv2

* change size to ensure interpolation encoding path is triggered

* set interpolate_pos_encoding default value to False

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* set interpolate_pos_encoding default value to False

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* set interpolate_pos_encoding default value to False

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* set interpolate_pos_encoding default value to False

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* set interpolate_pos_encoding default value to False

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* set interpolate_pos_encoding default value to False

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* set interpolate_pos_encoding default value to False

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* set interpolate_pos_encoding default value to False

* add dynamic resolution input to donut swin

* add dynamic resolution input to maskformer swin

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-05-17 18:38:46 +01:00
b6eb708bf1 v4.42.dev.0 2024-05-17 17:30:41 +02:00
bf646fbf2d Add fixed resize and pad strategy for object detection (#30742)
* Add resize and pad strategy

* Merge get_size functions

* Add pad_size + tests to object detection models

* Fixup

* Update docstrings

* Fixup
2024-05-17 16:21:26 +01:00
e9a8041d1c update release script (#30880)
* update release script

* update release script
2024-05-17 17:09:30 +02:00
0a9300f474 Support arbitrary processor (#30875)
* Support arbitrary processor

* fix

* nit

* update

* nit

* nit

* fix and revert

* add a small test

* better check

* fixup

* bug so let's just use class for now

* oups

* .
2024-05-17 16:51:31 +02:00
57edd84bdb [whisper] fix multilingual fine-tuning (#30865)
* [whisper] fix multilingual fine-tuning

* config ids as well
2024-05-17 15:12:44 +01:00
977ce58a78 Fix dependencies for image classification example (#30842)
* fix: missing dependencies

* fix: image classification dependencies
2024-05-17 13:57:47 +01:00
3802e786ef Enable device map (#30870)
* added_no_split_modules

* added LlavaNextVisionAttention to _no_split_modules
2024-05-17 12:50:24 +01:00
57c965a8f1 Remove deprecated logic and warnings (#30743)
* Remove deprecated logic and warnings

* Add back some code that seems to be important...

* Let's just add all he nllb stuff back; removing it is a bit more involved

* Remove kwargs

* Remove more kwargs
2024-05-17 12:15:59 +01:00
3d7d3a87a0 TEST: Add llama logits tests (#30835)
* add llama logits test

* fix

* fix tests
"

"

* fix for a10

* format

* format

* fix

* [run-slow] remove fmt: skip

* Your commit message

* test commit

* Revert "test commit"

This reverts commit b66e01e55f5e31d4c0479cac4bcacc0f123dc9d2.

* [run-slow]llama

* Update tests/models/llama/test_modeling_llama.py

* [run-slow]llama

* empty commit
2024-05-17 12:23:00 +02:00
15c74a2829 Fix VideoLlava imports (#30867)
* Fix VideoLlava imports

* Update dummy objects
2024-05-16 17:06:21 +01:00
4e17e7dcf8 TST / Quantization: Reverting to torch==2.2.1 (#30866)
Reverting to 2.2.1
2024-05-16 17:30:02 +02:00
f4014e75db Docs: update example with assisted generation + sample (#30853) 2024-05-16 14:32:21 +01:00
95b3c3814d Video-LLaVa: Fix docs (#30855)
fix model id in docs
2024-05-16 17:23:01 +05:00
1b3dba9417 Make Gemma work with torch.compile (#30775)
* fix

* [run-slow] gemma

* add test

* add `test_compile_static_cache`

* fix

* style

* remove subprocess

* use attribute

* fix

* style

* update

* [run-slow] dbrx,gemma,jetmoe,phi3,recurrent_gemma

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-05-16 13:41:33 +02:00
0753134f4d Disable the FA backend for SDPA on AMD GPUs (#30850)
* disable fa

* disable fa

* update warning

* update warning
2024-05-16 13:31:14 +02:00
9d889f870e Cache: add new flag to distinguish models that Cache but not static cache (#30800)
* jamba cache

* new flag

* generate exception
2024-05-16 12:08:35 +01:00
17cc71e149 [Idefics2] Improve docs, add resources (#30717)
* Add resources

* Address comment

* Address comments

* Update docs/source/en/model_doc/idefics2.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update figure

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-05-16 12:22:13 +02:00
1c21f48a50 add sdpa to ViT [follow up of #29325] (#30555)
remove blank line (+1 squashed commit)
Squashed commits:
[24ccd2061] [run-slow]vit_msn,vision_encoder_decoder (+24 squashed commits)
Squashed commits:
[08bd27e7a] [run-slow]vit_msn,vision_encoder_decoder
[ec96a8db3] [run-slow]vit_msn
[ead817eca] fix vit msn multi gpu
[d12cdc8fd] [run-slow]audio_spectrogram_transformer,deit,vision_encoder_decoder,vision_text_dual_encoder,vit,vit_hybrid,vit_mae,vit_msn,videomae,yolos
[3fdbfa88f] doc
[a3ff33e4a] finish implementation
[e20b7b7fb] Update test_modeling_common.py
[e290c5810] Update test_modeling_flax_common.py
[d3af86f46] comment
[ff7dd32d8] more comments
[59b137889] suggestion
[7e2ba6d67] attn_implementation as attribute of the class
[fe66ab71f] minor
[38642b568] Apply suggestions from code review

Accept comments

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
[22cde7d52] Update tests/test_modeling_common.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
[48e137cc6] Update tests/test_modeling_common.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
[99f4c679f] Update tests/test_modeling_common.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
[96cf20a6d] Update src/transformers/models/vit_msn/modeling_vit_msn.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
[c59377d23] Update src/transformers/models/vit_mae/modeling_vit_mae.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
[b70a47259] Update tests/models/vision_text_dual_encoder/test_modeling_vision_text_dual_encoder.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
[00c84d216] [run-slow]audio_spectrogram_transformer,deit,vision_encoder_decoder,vision_text_dual_encoder,vit,vit_hybrid,vit_mae,vit_msn,videomae,yolos
[61f00ebb0] all tests are passing locally
[e9e0b82b7] vision encoder/decoder
[4d5076b56] test-vision (+20 squashed commits)
Squashed commits:
[d1add8db9] yolo
[9fde65716] fix flax
[986566c28] minor
[ca2f21d1f] vit
[3333efd7a] easy models change
[ebfc21402] [run-slow]audio_spectrogram_transformer,deit,vision_encoder_decoder,vision_text_dual_encoder,vit,vit_hybrid,vit_mae,vit_msn,videomae,yolos
[b8b8603ed] [run-slow]vision_encoder_decoder,vision_text_dual_encoder,yolos
[48ecc7e26] all tests are passing locally
[bff7fc366] minor
[62f88306f] fix yolo and text_encoder tests
[121507555] [run-slow]audio_spectrogram_transformer,deit,vit,vit_hybrid,vit_mae,vit_msn,videomae
[1064cae0a] [run-slow]vision_encoder_decoder,vision_text_dual_encoder,yolos
[b7f52ff3a] [run-slow]audio_spectrogram_transformer,deit,vit,vit_hybrid,vit_mae,vit_msn,videomae
[cffaa10dd] fix-copies
[ef6c511c4] test vit hybrid
[7d4ba8644] vit hybrid
[66f919033] [run-slow]audio_spectrogram_transformer,deit,vit,vit_hybrid,vit_mae,vit_msn,videomae
[1fcc0a031] fixes
[cfde6eb21] fixup
[e77df1ed3] all except yolo end encoder decoder (+17 squashed commits)
Squashed commits:
[602913e22] vit + vit_mae are working
[547f6c4cc] RUN_SLOW=1 pytest tests/models/audio_spectrogram_transformer/ tests/models/deit/ tests/models/videomae/  passes
[61a97dfa9] it s the complete opposite...
[aefab37d4] fix more tests
[71802a1b9] fix all torch tests
[40b12eb58] encoder - decoder tests
[941552b69] slow decorator where appropriate
[14d055d80] has_attentions to yolo and msn
[3381fa19f] add correct name
[e261316a7] repo consistency
[31c6d0c08] fixup
[9d214276c] minor fix
[11ed2e1b7] chore
[eca6644c4] add sdpa to vit-based models
[cffbf390b] make fix-copies result
[6468319b0] fix style
[d324cd02a] add sdpa for vit

Co-authored-by: Liubov Yaronskaya <luba.yaronskaya@gmail.com>
2024-05-16 10:56:11 +01:00
9fd606dbdb [LLaVa-NeXT] Small fixes (#30841)
* First draft

* Update docstring
2024-05-16 08:19:15 +02:00
4b3eb19fa7 Fix llama model sdpa attention forward function masking bug when output_attentions=True (#30652)
* Fix llama model forward function with attention=True, same-length encoded sequence.

* Fix style

* propagate fix to modeling_cohere, gemma, dbrx, and olmo (which copy the same sdpa masking logic from llama)

* Fix style

* ignore unnecessary sdpa mask converter when output_attentions=True

* add tests checking sdpa and eager outputs match when output_attentions=True

* Split if statements in two lines

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Fix formatting

* Add fix to new jetmoe model

* Add missing output_attentions argument to jetmoe mask creation

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-05-15 19:48:19 +02:00
2d83324ecf Use torch 2.3 for CI (#30837)
2.3

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-05-15 19:31:52 +02:00
3f435823e0 FEAT / Bitsandbytes: Add dequantize API for bitsandbytes quantized models (#30806)
* add  method

* change method name

* more comments

* Apply suggestions from code review

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* fixup

* add docstrings and fix comment

* warn users on the de-quantized dtype

* Update src/transformers/quantizers/base.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* Update src/transformers/integrations/bitsandbytes.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* final suggestion - use private method

---------

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-05-15 17:17:09 +02:00
58faa7b824 Deprecate models script - correctly set the model name for the doc file (#30785)
* Correctly set the moel name for the doc file

* Fix up
2024-05-15 15:14:11 +01:00
5ca085b882 Better llava next. (#29850)
* Better llava next.
- Batched forward with multiple image of different sizes (number of patches).
- Support training, for cases without any image.
- Support multi-image in same sequence. e.g: ["<image> <image> the first image is a dog while the second is a cat", "<image> <image> <image> <image> these 4 image are..."]

Current limitation:
- Haven't done testing
- Only support right padding (for training)
- left padding (batched generation) is not ready yet.
- PR not ready.

* fix bugs in batched generation

* add tests

* fix batch-gen bugs, left-padding positions and incorrect attention mask

* remove better modeling llava

* fix formatting

* fix test

* fix test

* fix testing

* fix test

* fix formatting

* Update src/transformers/models/llava_next/modeling_llava_next.py

add clarity

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update modeling_llava_next.py

remove assert

* fix bug modeling_llava_next.py

* update modeling

* fix bugs

* fix format

* fix error

* fix new_token_positions

* Update modeling_llava_next.py

* update formatting

* add args

* removecomments

* add slow tests for batched inference

* failing tf/flax tests

* this one ic correct

* Update src/transformers/models/llava_next/modeling_llava_next.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* fix docs

* make fixup

* more fixup

* add test for batch equivalence

* Update tests/models/llava_next/test_modeling_llava_next.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/llava_next/image_processing_llava_next.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/llava_next/image_processing_llava_next.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/llava_next/modeling_llava_next.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/llava_next/modeling_llava_next.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/llava_next/modeling_llava_next.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/llava_next/modeling_llava_next.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/llava_next/modeling_llava_next.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/llava_next/modeling_llava_next.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* pr comments

* hardcode padding side for bs=1

* update

* [run-slow] llava_next

* [run-slow] llava_next

* make fix-copies

---------

Co-authored-by: NGUYEN, Xuan Phi <x.nguyen@alibaba-inc.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: raushan <raushan@huggingface.co>
Co-authored-by: Raushan Turganbay <raushan.turganbay@alumni.nu.edu.kz>
2024-05-15 19:02:56 +05:00
bdfefbadaf Update ds_config_zero3.json (#30829) 2024-05-15 10:02:31 -04:00
92544cb8f3 Missing Optional in typing. (#30821)
The function checks for None in its first line.
2024-05-15 15:00:43 +01:00
64c06df325 Jamba - Skip 4d custom attention mask test (#30826)
* Jamba - Skip 4d custom attention mask test

* Skip assistant greedy test
2024-05-15 13:57:28 +01:00
a42844955f Loading GGUF files support (#30391)
* Adds support for loading GGUF files

Co-authored-by: Younes Belkada <younesbelkada@gmail.com>
Co-authored-by: 99991 <99991@users.noreply.github.com>

* add q2_k q3_k q5_k support from @99991

* fix tests

* Update doc

* Style

* Docs

* fix CI

* Update docs/source/en/gguf.md

* Update docs/source/en/gguf.md

* Compute merges

* change logic

* add comment for clarity

* add comment for clarity

* Update src/transformers/models/auto/tokenization_auto.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* change logic

* Update src/transformers/modeling_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* change

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/modeling_gguf_pytorch_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* put back comment

* add comment about mistral

* comments and added tests

* fix unconsistent type

* more

* fix tokenizer

* Update src/transformers/modeling_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* address comments about tests and tokenizer + add added_tokens

* from_gguf -> gguf_file

* replace on docs too

---------

Co-authored-by: Younes Belkada <younesbelkada@gmail.com>
Co-authored-by: 99991 <99991@users.noreply.github.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-05-15 14:28:20 +02:00
bd9f4d7951 Add Video Llava (#29733)
* add model draft

* update docstring

* add tests

* support image and video as input

* update for better handling of mixed input and clean-up a bit

* bug when mixed inputs & add tests

* Update README.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Merge remote-tracking branch 'upstream/main' into video_llava

* link to abstract of paper in README

* fix test

* fix-copies

* make tests happy

* skip docstest for now

* do not run doctest for now

* Update src/transformers/models/video_llava/processing_video_llava.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/video_llava/image_processing_video_llava.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/video_llava/image_processing_video_llava.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/video_llava/image_processing_video_llava.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/video_llava/image_processing_video_llava.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/video_llava/test_modeling_video_llava.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/video_llava/image_processing_video_llava.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* address review comments

* failing tests

* Fix vocab_size in common tests for VLMs

* codestyle

* Update src/transformers/models/video_llava/configuration_video_llava.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/video_llava/configuration_video_llava.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/video_llava/modeling_video_llava.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/video_llava/modeling_video_llava.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/model_doc/video_llava.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/model_doc/video_llava.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/video_llava/image_processing_video_llava.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/model_doc/video_llava.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/video_llava/processing_video_llava.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/video_llava/test_modeling_video_llava.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/video_llava/test_modeling_video_llava.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/video_llava/test_modeling_video_llava.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* PR suggestions

* fix-copies

* Update src/transformers/models/video_llava/configuration_video_llava.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/video_llava/configuration_video_llava.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* add full example in docs

* clean-up with new model-id

* [run-slow] video_llava

* update docstring

* [run-slow] video_llava

* remove all achive maps

* fix some tests

* test was supposed to be skipped for llava :)

---------

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-05-15 16:42:29 +05:00
b8aee2e918 Remove unused module DETR based models (#30823)
* removing heads for classification from DETR models.

* quality fix
2024-05-15 11:19:43 +01:00
be3aa43e5f Support mixed-language batches in WhisperGenerationMixin (#29688)
* Add support for mixing languages in a single batch

* Update docstring

* Enable different detected languages in batch

* Do not require input_features

* Test list of languages

* Fix comment

* Make init_tokens length-1 if possible, broadcast at the end

* Test for ValueError with language list of incorrect length

* Slow test for batched multilingual transcription

* fixup

* Apply suggestions from code review

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Address review, refactor

* Second attempt to move this line where it was originally

* Split test, fix a bug

---------

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
2024-05-15 09:53:17 +02:00
37543bad3c Add missing dependencies in image classification example (#30820)
fix: missing dependencies
2024-05-15 08:38:30 +02:00
99e16120ab Add support for custom checkpoints in MusicGen (#30011)
* feat: support custom checkpoint

* update: revert changes and add TODO

* update: docs and exception handling

* fix: ah, extra space
2024-05-15 08:30:33 +02:00
1360801a69 Add PaliGemma (#30814)
* add new model like

* add state dict slicing + new model config

* update palma config and weights, passes vision activations

* fix

* update

* reorder loading/unpacking

* clean up

* add debug statements

* change device

* fix

* debugging

* fix noncausal mask

* fixup sdpa + causal mask

* fix activation function

* remove debug before changing modeling file

* add variants

* debug attention mask in generate

* revert to non-debug sdpa

* revert gemma modifications

* add custom language modeling

* use Processor

* add language modeling file to init

* try thin wrapper around generate

* Update

* update mask

* breakpoints galore

* remove conflict

* switch to left-padding

* add incomplete model doc

* add paligemma global files

* batch rename paligemma

* make generation match outputs and captioning

* style

* style

* remove copied from + doc

* remove more copied from

* remove copy from projector

* minor fix

* update config and style

* add readme - dummy

* CORRECT image captioning

* moving to args

* add siglip proper + fix merging image + text features

* take update_causal_mask from upstream

* remove breakpoint

* leverage AutoModel

* fix input_ids slicing

* make siglip head conditional

* remove encoder_decoder value

* remove unneeded modeling file

* add commented 4d attention mask

* FIXED generation with 4D mask

* Update src/transformers/models/siglip/modeling_siglip.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fix left padding detection

* shuffle order of verifications

* fix missing labels for training

* fix

* vectorize merging of features, improve slicing

* improve testing before conversion

* handle merging in processor

* image token index depends on checkpoint

* add variants, save processor too

* save processors, base tokenizer off spm file

* expand model embeddings due to additional image token

* pass image processing args

* add convert rgb to siglip processor

* add \n token separately

* fix tokenizer and prompts

* fix docstrings

* change to camel

* fix casing

* debug pos_ids and sdpa

* pass and use cache_position

* add flag for newline tokenization

* Update src/transformers/models/paligemma/processing_paligemma.py

Co-authored-by: Merve Noyan <merveenoyan@gmail.com>

* simplify conversion script

* add copied from

* add precision to conversion script

* Update src/transformers/models/paligemma/modeling_paligemma.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* clean up

* Shift attention mask from `1:`

After discussion with @molbap

* add docs, fix quality

* quality, tied weights inheritance, and logits/label alignment

* fix more tests

* pass attn_implementation to language model correctly

* add SiglipVisionTransformer to no split modules

* skip paligemma test for sdpa dispatch to flash

* skip incompatible tests

* quality

* [broken archive maps]

* Apply suggestions

- remove archive lists
- style
- take shape of inputs_embeds for batch

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/utils/dummy_pt_objects.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* simplify conversion script

* add suggestions

* add suggestions

* add copied from

* fix

* move labels out

* revert

* fix

* remove placeholder labels if None

* use cache_position

* fix quality + docstrings

* fix quality

* fix paligemma 4d gemma mask incompatibility

* fix config docstring

* fix query and attn_mask dtype

---------

Co-authored-by: ArthurZucker <arthur.zucker@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Merve Noyan <merveenoyan@gmail.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2024-05-14 22:07:15 +02:00
c96aca3a8d Added the necessay import of module (#30804) 2024-05-14 18:45:06 +01:00
ccdabc5642 Add JetMoE model (#30005)
* init jetmoe code

* update archive maps

* remove flax import

* fix import error

* update README

* ruff fix

* update readme

* fix

* update config

* fix issue

* merge files

* fix model bug

* fix test

* auto fix

* model size

* add comments

* fix form

* add flash attention support

* fix attention head number

* fix init

* fix support list

* sort auto mapping

* fix test

* fix docs

* update test

* fix test

* fix test

* change variable name

* fix config

* fix init

* update format

* clean code

* fix config

* fix config

* change default config

* update config

* fix issues

* update formate

* update config argument

* update format

* Update src/transformers/models/jetmoe/modeling_jetmoe.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/jetmoe/modeling_jetmoe.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* change to mixtral aux loss

* change to cache_position

* debug

* fix bugs

* debug

* fix format

* fix format

* fix copy

* fix format

* fix format

* fix sort

* fix sort

* fix sort

* add copy comment

* add copy from

* remove debug code

* revert readme update

* add copy

* debug

* remove debug code

* fix flash attention

* add comments

* clean code

* clean format

* fix format

* fix format

* Update src/transformers/models/jetmoe/modeling_jetmoe.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update src/transformers/models/jetmoe/modeling_jetmoe.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update src/transformers/models/jetmoe/modeling_jetmoe.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update src/transformers/models/jetmoe/modeling_jetmoe.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update src/transformers/models/jetmoe/modeling_jetmoe.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update src/transformers/models/jetmoe/modeling_jetmoe.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* change variable name

* add copied from

* fix variable name

* remove deprecated functinos

* sync to llama implementation

* fix format

* fix copy

* fix format

* update format

* remove repr

* add comment for moe weight

* fix copy

* Update src/transformers/models/jetmoe/configuration_jetmoe.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/jetmoe/modeling_jetmoe.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/jetmoe/modeling_jetmoe.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/jetmoe/modeling_jetmoe.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/jetmoe/modeling_jetmoe.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/jetmoe/modeling_jetmoe.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/jetmoe/modeling_jetmoe.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/jetmoe/modeling_jetmoe.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/jetmoe/modeling_jetmoe.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/jetmoe/modeling_jetmoe.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/jetmoe/modeling_jetmoe.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/jetmoe/modeling_jetmoe.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* add comments and reformat config

* fix format

* fix format

* fix format

* update test

* update doc string in config

* Update src/transformers/models/jetmoe/modeling_jetmoe.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* update config doc

* update attention cache

* fix format

* fix copy

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2024-05-14 16:32:01 +02:00
d84f34ad77 [T5] Adding model_parallel = False to T5ForTokenClassification and MT5ForTokenClassification (#30763)
* Adding model_parallel = False

* Revert "Adding model_parallel = False"

This reverts commit ba1d99976acb598824ce3347dbe7d848daa21e79.

* Trainer: circumvent error for model  in which is_parallelizable is True but does not have model_parallel attribute
2024-05-14 14:39:25 +01:00
9ef3884046 Deprecate TF weight conversion since we have full Safetensors support now (#30786) 2024-05-14 13:48:17 +01:00
d8f8a9cd61 CI: more models wo cache support (#30780) 2024-05-14 10:43:03 +01:00
5ad960f1f4 Add Watermarking LogitsProcessor and WatermarkDetector (#29676)
* add watermarking processor

* remove the other hashing (context width=1 always)

* make style

* Update src/transformers/generation/logits_process.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/generation/logits_process.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/generation/logits_process.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/generation/configuration_utils.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* update watermarking process

* add detector

* update tests to use detector

* fix failing tests

* rename `input_seq`

* make style

* doc for processor

* minor fixes

* docs

* make quality

* Update src/transformers/generation/configuration_utils.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/generation/logits_process.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/generation/watermarking.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/generation/watermarking.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/generation/watermarking.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* add PR suggestions

* let's use lru_cache's default max size (128)

* import processor if torch available

* maybe like this

* lets move the config to torch independet file

* add docs

* tiny docs fix to make the test happy

* Update src/transformers/generation/configuration_utils.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/generation/watermarking.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* PR suggestions

* add docs

* fix test

* fix docs

* address pr comments

* style

* Revert "style"

This reverts commit 7f33cc34ff08b414f8e7f90060889877606b43b2.

* correct style

* make doctest green

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2024-05-14 13:31:39 +05:00
65ea1904ff PEFT: Access active_adapters as a property in Trainer (#30790)
Access active_adapters as a property
2024-05-14 09:31:18 +01:00
c02d302e6b Fix cache type in Idefics2 (#30729)
standardize cache in idefics2
2024-05-14 13:30:53 +05:00
449894d2e5 Fix OWLv2 Doc (#30794)
fix: owlv2 doc
2024-05-14 08:36:11 +02:00
37bba2a32d CI: update to ROCm 6.0.2 and test MI300 (#30266)
* update to ROCm 6.0.2 and test MI300

* add callers for mi300

* update dockerfile

* fix trainer tests

* remove apex

* style

* Update tests/trainer/test_trainer_seq2seq.py

* Update tests/trainer/test_trainer_seq2seq.py

* Update tests/trainer/test_trainer_seq2seq.py

* Update tests/trainer/test_trainer_seq2seq.py

* update to torch 2.3

* add workflow dispatch target

* we may need branches: mi300-ci after all

* nit

* fix docker build

* nit

* add check runner

* remove docker-gpu

* fix issues

* fix

---------

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-05-13 18:14:36 +02:00
539ed75d50 skip low_cpu_mem_usage tests (#30782) 2024-05-13 18:00:43 +02:00
0f8fefd481 Deprecate models script (#30184)
* Add utility for finding candidate models for deprecation

* Update model init

* Make into configurable script

* Fix path

* Add sorting of base object alphabetically

* Tidy

* Refactor __init__ alpha ordering

* Update script with logging

* fix import

* Fix logger

* Fix logger

* Get config file before moving files

* Take models from CLI

* Split models into lines to make easier to feed to deprecate_models script

* Update

* Use posix path

* Print instead

* Add example in module docstring

* Fix up

* Add clarifying comments; add models to DEPRECATE_MODELS

* Address PR comments

* Don't update relative paths on the same level
2024-05-13 16:30:55 +01:00
82c1625ec3 Save other CI jobs' result (torch/tf pipeline, example, deepspeed etc) (#30699)
* update

* update

* update

* update

* update

* update

* update

* update

* Update utils/notification_service.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-05-13 17:27:44 +02:00
2e27291ce4 Generate: assistant should be greedy in assisted decoding (#30778)
* assistant should be greedy

* better comment

* Update src/transformers/generation/candidate_generator.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-05-13 16:08:45 +01:00
94306352f4 Port IDEFICS to tensorflow (#26870)
* Initial commit

* Just a copy of modeling_idefics.py that will be ported to TF

* - Prepend TF to the name of all classes
- Convert pytorch ops to TF (not all operations are converted yet)

* Add TF imports

* Add autotranslated files

* Add TF classes to model_tf_auto.py

* Add the TF classes in model_doc

* include auto-translated code

* Adopted from auto-translated version

* Add a forgotten super().build

* Add test code for TF version.

* Fix indentation and load pytorch weights for now

* Some fixes. Many tests are still failing but some are passing now.

- I have added TODO's for some of the hacks I made to unblock me
  and I will address them soon
- I have the processing_idefics.py hacked in my view to support TF temporarily

* Add ALL_LAYERNORM_LAYERS to match pytorch

* Revert "Add ALL_LAYERNORM_LAYERS to match pytorch"

This reverts commit 7e0a35119b4d7a6284d04d8c543fba1b29e573c9 as it
is not needed in the tf implementation.

* Fix freeze_relevant_params()

* Some more fixes

* Fix test_attention_outputs

* Add tf stuff to processing_idefics.py

processing_idefics.py supports both pytorch and tf now.

test_processor_idefics.py for pytorch is passing, so i didn't break anything
but still some issues with tf. I also need to add tf tests in
test_processor_idefics.py.

* Pass return_tensors to image processing code and fix test

* Pass return_tensors to the image processor __init__

* Fix several test cases

- Make input to some of the forward pass of type `TFModelInputType`
- Decorate main layer forward pass with `@unpack_inputs`
- Decorate main layer with `@keras_serializable`
- Pass `inputs` to TFIdeficsModel

* Some more fixes forgotten in last commit

* Fix processing code and vision_tf.py

* Fix perceiver bug

* Import from

* Auto-add build() methods + style pass

* Fix build() errors due to `None` being passed as shape to some layers

* Change name in TFIdeficsForVisionText2Text to attribute in IdeficsForVisionText2Text

* Fix pytorch weights load for tf2

There were a lot of `name=` missing in weight initialization code.

* Attempt to fix CI

* Add back accidently removed line

* Remove torch-specific stuff from the TF test file

* make fix-copies, make style, remove autotranslated files

* Fixes to imports/docstrings

* Let's try the from future import in desperation

* Fix the core random_attention_mask fn to match the torch/flax behaviour

* Clean random_attention_mask up correctly

* Remove torch-only test

* Fix loss shape, couple of nits

* make style

* Don't test for OOB embeddings because IDEFICS uses those deliberately

* Fix loss computation to handle masking

* Fix test failures when flattening

* Fix some test failures

- Add cross attention gate which was missing and wasn't being passed arround
- Fix overwriting of image_attention_mask due to hack I had for dummy inputs

* Add a proper stateless scaled_dot_product_attention

* make style

* Adding missing attribute from the PyTorch version

* Small cleanups to decoupledlinearlayer in case that helps

* Pass epsilon to LayerNormalization

* Attemp to fix pytorch weight cross-loading for TFIdeficsEmbedding

* Fix a bug in TFIdeficsGatedCrossAttentionLayer

* Patching up build() methods

* Constant self.inv_freq

* Constant self.inv_freq

* First working version

The TF implementation works now, there was a bug in the TFIdeficsDecoupledLinear
where the weights were mis-intialized (in_features,out_features)
when it should be: (out_features, in_features)

I have tested this so far with tiny-random and idefics-9b-instruct
and gives correct output.

I also dumped the final outputs for both pytorch and TF
and they are identical.

* Fix some test failures

* remove print statement

* Fix return_tensors

* Fix CI test failure check_code_quality

* Attempt to fix CI failures by running `make fixup`

The hardcoded IDs in test_modeling_tf_idefics.py are for the integration
test and makes that file unreadable and should probably be moved to a seperate file.

* Attempt to fix tests_pr_documentation_tests

* Fix a test failure in test_image_processing_idefics.py

* Fix test test_pt_tf_model_equivalence

* Fix a few failures

* Tiny fix

* Some minor fixes

* Remove a duplicate test

* Override a few test failures for IDEFICS

- `test_keras_save_load` is passing now
- `test_compile_tf_model` is still failing

* Fix processing_idefics.py after rebase

* Guard import keras with is_tf_available

* fix check code quality

* fix check code quality

* Minor fixes

* Skip test_save_load temporarily

This test passed on my local box but fails on the CI, skipping
for now to see if there are other remaining failures on the CI.

* Run `ruff format tests src utils`

* Fix last failing test, `test_compile_tf_model`

* Add fixes for vision_tf.py

I forgot to add this file in last commit.

* Minor fixes

* Replace "<<<" with "<<" for doc tests

IDEFICS-9B is too big for doctest runner, so don't run it there

* Make code more readable

* Fix bug after code review

I added a layer_norm_eps to IdeficsConfig but I don't even need it
since the vision config has a layer_norm_eps.

* Fix after code review

Use original code tokenizer.convert_tokens_to_ids

* Keep PyTorch as the default return_tensors

* Fixes to modeling_tf after code review

* Fixes from code review

- Remove all references of `TF_IDEFICS_PRETRAINED_MODEL_ARCHIVE_LIST`
- Pass 1e-5 to LayerNormalization in perceiver

* Run ruff

* Undo a change

* Refactor processing code after Matt's suggestion

* Remove TODO's that aren't needed anymore

* For pytorch, Use original pytorch processing code from main

Since this PR is a TF port it shouldn't make any modifications
to pytorch IDEFICS code. This changes undo's the pytorch processing
modifications I made and uses original code from main.

* Update tests/models/idefics/test_modeling_idefics.py

* Update tests/models/idefics/test_modeling_tf_idefics.py

* Add missing imports for is_pt_tf_cross_test

* [DO NOT MERGE]: This is a commit for debugging and will be reverted

The cross test `test_pt_tf_model_equivalence` passes locally but
fails when running on the CI. This commit is to help debug that
and will be reverted.

* Revert "[DO NOT MERGE]: This is a commit for debugging and will be reverted"

This reverts commit 8f0d709ec5bd46685fb0b4259d914ffee794875b.

* [DO NOT MERGE]: This commit is for debugging a CI failure and will be reverted

* [DO NOT MERGE]: This commit is for debugging a CI failure and will be reverted

* Revert "[DO NOT MERGE]: This commit is for debugging a CI failure and will be reverted"

This reverts commit 998cc38b8c3d313bf5e5eb55a7f5b7b881897b89.

* Revert "[DO NOT MERGE]: This commit is for debugging a CI failure and will be reverted"

This reverts commit 1c695ac4219c4ae4d39b330b01744dc27deb7dd4.

* Don't skip test_save_load

IIRC test_save_load was also failing on the CI but not on my local
box, it might be easier to debug that on the CI first than the cross tests

* Debugging commit, will be reverted

* Revert "Debugging commit, will be reverted"

This reverts commit 8eafc8e41e20c4e95a3a90834f06a6e9f445e2d5.

* Override `test_save_load` and push model to save

Maybe this will help me repro this weird bug

* pass my repo_id

* add endpoint

* Pass a temp (write) token just for this CI

* Undo last few commits, still pushing to hub for model debugging

The issue seems to be with save_pretrained(),  when I looked at the model saved
from the CI test failure it is basically empty and has no weights.
`self.save_weights(..)` seems to be failing in save_pretrained but needs
more debugging

* Add logging to modeling tf utils, will be reverted just for debugging

* Debugging, will revert

* Revert "Debugging, will revert"

This reverts commit 9d0d3075fb7c82d8cde3a5c76bc8f3876c5c55d3.

* Revert "Add logging to modeling tf utils, will be reverted just for debugging"

This reverts commit 774b6b7b1c17b3ce5d7634ade768f2f686cee617.

* Remove `test_save_load`

The CI failures are gone after my latest rebase, no idea why
but I was still saving the model to my hub on HF and the tf_model.h5
file now has everything.

* Run make fix-copies

* Run ruff format tests src utils

* Debugging commit, will be reverted

* Run ruff, also trigger CI run

* Run ruff again

* Undo debugging commit

---------

Co-authored-by: Matt <rocketknight1@gmail.com>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2024-05-13 15:59:46 +01:00
de2f722172 Generate: remove near-duplicate sample/greedy copy (#30773) 2024-05-13 15:48:20 +01:00
ce87dca1d7 [Object detection pipeline] Lower threshold (#30710)
* Lower threshold

* Address comment
2024-05-13 16:47:58 +02:00
69d9bca55a enable Pipeline to get device from model (#30534)
* check model.device

* fix

* style fix

* move model device

* remove print

* add comment

* fix

* add unit test

* optimize

* change test names and add more cases

* Update tests/pipelines/test_pipelines_common.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-05-13 15:00:39 +01:00
f4dc26d466 Qwen: incorrect setup flag (#30776)
qwen does not support the new cache classes
2024-05-13 14:12:58 +01:00
f823fec53e Generation / FIX: Fix multi-device generation (#30746)
* attempt to fix multi-device generation

* fix

* final fix

* final fix

* fix

* fix

* fix

* fix

* add joao suggestion

* fix
2024-05-13 14:35:45 +02:00
a0779b9e19 Llama: fix custom 4D masks, v2 (#30348)
* 4d mask fixes

* Update custom 4D mask logic

* test moved to mixin

* extra tests 4d mask

* upd 4d mask and StaticCache handling

* added Mask4DTestHard to mistral tests

* post-rebase fixes

* test fixes for StaticCache

* make fix-copies

* upd 1 after #30476

* fix common tests

* rm elif attention_mask.dim() == 4:

* tests combined, fixed, mixtral supported

* bigbird style chg reverted

* rm if attention_mask.dim() == 2

* modeling_llama formatting chg

---------

Co-authored-by: Joao Gante <joao@huggingface.co>
2024-05-13 13:46:06 +02:00
453893ed15 [GroundingDino] Adding ms_deform_attn kernels (#30768)
* Adding ms_deform_attn kernels to GroundingDino

* Pointing to deformable detr kernels
2024-05-13 12:34:45 +01:00
e52741f601 Support for Falcon2-11B (#30771)
* remove unrelated changes

* remove unrelated changes on phi and stable LM

* add: Test for Falcon 10B

* fix: formatting

* fix: loading the falcon 10B in 8 bit precision using bitsanbytes.

* fix: device placement

* fix: broken tests.

* fix: backwards compatibility for falcon 1B architecture.

* chore: updated test.

* chore: test_modeling_falcon.py to use the 11B model.

* chore: minor edit

* chore: formating.

---------

Co-authored-by: Pablo Montalvo <39954772+molbap@users.noreply.github.com>
Co-authored-by: ArthurZucker <arthur.zucker@gmail.com>
2024-05-13 13:32:43 +02:00
f63d822242 Blip dynamic input resolution (#30722)
* blip with interpolated pos encoding

* feat: Add interpolate_pos_encoding option to other models from `BLIP` family.

* include check for textual generated content in tests
2024-05-13 12:20:16 +01:00
a4e530e3c8 Workflow: Replace actions/post-slack with centrally defined workflow (#30737)
* Remove commit details

* remove old workflow
2024-05-13 12:08:48 +02:00
de6e0db184 [awq] replace scale when we have GELU (#30074)
* fix awq test

* style

* add log

* new fix

* style

* only modifying impacted model in the end

* rename function
2024-05-13 11:41:03 +02:00
e0c3cee170 hqq - fix weight check in check_quantized_param (#30748)
* hqq - fix weight check in check_quantized_param

* ruff format
2024-05-10 19:29:35 +02:00
8ce4fefc52 [docs] Update link in es/pipeline_webserver.md (#30745)
* update link

* run make style
2024-05-10 09:29:26 -07:00
2d1602aef7 PEFT / Trainer: Make use of model.active_adapters() instead of deprecated model.active_adapter whenever possible (#30738)
* Update trainer.py

* Update src/transformers/trainer.py

* Update src/transformers/trainer.py

* Update src/transformers/trainer.py

* style

* Update src/transformers/trainer.py

* Update src/transformers/trainer.py
2024-05-10 15:16:44 +02:00
1c52cb7b3b mlp_only_layers is more flexible than decoder_sparse_step (#30552)
* force back to commit ba40a21 and fix workflow errors

* match the review suggestions

* fix ci errors

* fix CI

* fix ci, format code

* fix ci, ruff format

* fix ci, ruff format again

* Update src/transformers/models/qwen2_moe/configuration_qwen2_moe.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/qwen2_moe/configuration_qwen2_moe.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/qwen2_moe/configuration_qwen2_moe.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* solve this warning: Default Argument Value is mutable

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-05-10 14:00:46 +02:00
73fcfb2861 Update llama3.md, fix typo (#30739)
Update llama3.md

fix typo again
2024-05-10 12:40:57 +01:00
47735f5f0f [docs] Update es/pipeline_tutorial.md (#30684)
* copy en/ contect to es/

* translate first section

* translate the doc

* fix typos

* run make style
2024-05-09 16:42:01 -07:00
c99d88e520 Update CodeLlama references (#30218)
* Update CodeLlama references

* Update slow_documentation_tests.txt

* Update slow_documentation_tests.txt
2024-05-09 22:57:52 +02:00
7130a22db9 Generate: consistently handle special tokens as tensors (#30624)
* tmp commit

* [test_all] mvp

* missing not

* [test_all] final test fixes

* fix musicgen_melody and rag

* [test_all] empty commit

* PR comments

* Update src/transformers/generation/utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-05-09 18:01:57 +01:00
5413b8986d KV cache is no longer a model attribute (#30730)
kv_cache is no longer a model attribute
2024-05-09 17:59:29 +01:00
218f44135f Fix image post-processing for OWLv2 (#30686)
* feat: add note about owlv2

* fix: post processing coordinates

* remove: workaround document

* fix: extra quotes

* update: owlv2 docstrings

* fix: copies check

* feat: add unit test for resize

* Update tests/models/owlv2/test_image_processor_owlv2.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-05-09 17:02:03 +01:00
df53c6e5d9 Generate: add min_p sampling (#30639)
* min_p

* more relaxed test to avoid numerical issues

* Update src/transformers/generation/logits_process.py

Co-authored-by: menhguin <minh1228@gmail.com>

* Update src/transformers/generation/configuration_utils.py

Co-authored-by: menhguin <minh1228@gmail.com>

* docstring clarifications

* PR comments

* Update tests/generation/test_logits_process.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* make fixup

---------

Co-authored-by: menhguin <minh1228@gmail.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-05-09 14:36:53 +01:00
297b732bdf Removal of deprecated maps (#30576)
* [test_all] Remove all imports

Remove remaining ARCHIVE MAPS

Remove remaining PRETRAINED maps

* review comments

* [test_all] empty commit to trigger tests
2024-05-09 14:15:56 +02:00
8c5b3c19cf Enable dynamic resolution for vivit (#30630)
* feat: enable dynamic resolution for vivit

* fix: formatting

* remove: print statement for testing

* Update src/transformers/models/vivit/modeling_vivit.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/vivit/modeling_vivit.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/vivit/modeling_vivit.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/vivit/test_modeling_vivit.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/vivit/test_modeling_vivit.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/vivit/modeling_vivit.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/vivit/test_modeling_vivit.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/vivit/modeling_vivit.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/vivit/modeling_vivit.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/vivit/modeling_vivit.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/vivit/modeling_vivit.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* fix: style check

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-05-09 11:23:39 +01:00
60293bd210 Add dynamic resolution input/interpolate position embedding to SigLIP (#30719)
* Add interpolate positional encoding to siglip

* Change # of patches for siglip interpolation test

* fix formatting

* Apply nit suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-05-09 11:10:38 +01:00
f26e407370 Cache: models return input cache type (#30716) 2024-05-08 18:26:34 +01:00
71c1985069 Immutability for data collators (#30603)
* immutability fix for seq2seq as well as immutability tests for the collators

* ensure we don't act on none labels and formatting

* remove tf/pt in respective tests as they are not required

* more type error fixes tf/np

* remove todo

* apply suggestions from code review

* formatting / style
2024-05-08 17:54:49 +01:00
5962d62bac Update object detection guide (#30683)
* Object detection guide

* Minor update

* Minor updates, links

* Fix typo

* Wording, add albu space

* Add missing part

* Update docs/source/en/tasks/object_detection.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/tasks/object_detection.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/tasks/object_detection.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Fix device, add imports for inference

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2024-05-08 15:16:14 +01:00
e7a5f45ed1 Add installation of examples requirements in CI (#30708)
* Add installation of examples requirements in CI

* Update .circleci/create_circleci_config.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-05-08 14:56:42 +01:00
467164ea0a Llava: remove dummy labels (#30706)
remove labels from llavas
2024-05-08 18:35:49 +05:00
1872bde7fc [BitsandBytes] Verify if GPU is available (#30533)
Change order
2024-05-08 12:42:58 +02:00
998dbe068b Add examples for detection models finetuning (#30422)
* Training script for object detection

* Evaluation script for object detection

* Training script for object detection with eval loop outside trainer

* Trainer DETR finetuning

* No trainer DETR finetuning

* Eval script

* Refine object detection example with trainer

* Remove commented code and enable telemetry

* No trainer example

* Add requirements for object detection examples

* Add test for trainer example

* Readme draft

* Fix uploading to HUB

* Readme improvements

* Update eval script

* Adding tests for object-detection examples

* Add object-detection example

* Add object-detection resources to docs

* Update README with custom dataset instructions

* Update year

* Replace valid with validation

* Update instructions for custom dataset

* Remove eval script

* Remove use_auth_token

* Add copied from and telemetry

* Fixup

* Update readme

* Fix id2label

* Fix links in docs

* Update examples/pytorch/object-detection/run_object_detection.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update examples/pytorch/object-detection/run_object_detection.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Move description to the top

* Fix Trainer example

* Update no trainer example

* Update albumentations version

---------

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2024-05-08 11:42:07 +01:00
508c0bfe55 Patch CLIP image preprocessor (#30698)
* patch clip preprocessor

* Update image_processing_clip.py

* Update src/transformers/models/clip/image_processing_clip.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-05-08 09:27:31 +01:00
5b7a225f25 Pin deepspeed (#30701)
pin ds
2024-05-07 13:45:24 -04:00
cf7bed9832 Add safetensors to model not found error msg for default use_safetensors value (#30602)
* add safetensors to model not found error for default use_safetensors=None case

* format code w/ ruff

* fix assert true typo
2024-05-07 17:55:27 +01:00
884e3b1c53 Rename artifact name prev_ci_results to ci_results (#30697)
* rename

* update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-05-07 16:59:16 +02:00
05ec950c24 Update workflow_id in utils/get_previous_daily_ci.py (#30695)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-05-07 16:58:50 +02:00
4208c428f6 Separate tokenizer tests (#30675)
* nit

* better filter

* pipeline tests should only be models/xxx not anything else

* nit to better see filtering of the files that are passed to test torch

* oups
2024-05-07 13:56:56 +02:00
4a17200891 Bump tqdm from 4.48.2 to 4.66.3 in /examples/research_projects/lxmert (#30644)
Bumps [tqdm](https://github.com/tqdm/tqdm) from 4.48.2 to 4.66.3.
- [Release notes](https://github.com/tqdm/tqdm/releases)
- [Commits](https://github.com/tqdm/tqdm/compare/v4.48.2...v4.66.3)

---
updated-dependencies:
- dependency-name: tqdm
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-05-07 12:45:29 +01:00
0ba15cedbc Reboot Agents (#30387)
* Create CodeAgent and ReactAgent

* Fix formatting errors

* Update documentation for agents

* Add custom errors, improve logging

* Support variable usage in ReactAgent

* add messages

* Add message passing format

* Create React Code Agent

* Update

* Refactoring

* Fix errors

* Improve python interpreter

* Only non-tensor inputs should be sent to device

* Calculator tool slight refactor

* Improve docstrings

* Refactor

* Fix tests

* Fix more tests

* Fix even more tests

* Fix tests by replacing output and input types

* Fix operand type issue

* two small fixes

* EM TTS

* Fix agent running type errors

* Change text to speech tests to allow changed outputs

* Update doc with new agent types

* Improve code interpreter

* If max iterations reached, provide a real answer instead of an error

* Add edge case in interpreter

* Add safe imports to the interpreter

* Interpreter tweaks: tuples and listcomp

* Make style

* Make quality

* Add dictcomp to interpreter

* Rename ReactJSONAgent to ReactJsonAgent

* Misc changes

* ToolCollection

* Rename agent's logger to self.logger

* Add while loops to interpreter

* Update doc with new tools. still need to mention collections

* Add collections to the doc

* Small fixes on logs and interpretor

* Fix toolbox return type

* Docs + fixup

* Skip doctests

* Correct prompts with improved examples and formatting

* Update prompt

* Remove outdated docs

* Change agent to accept Toolbox object for tools

* Remove calculator tool

* Propagate removal of calculator in doc

* Fix 2 failing workflows

* Simplify additional argument passing

* AgentType audio

* Minor changes: function name, types

* Remove calculator tests

* Fix test

* Fix torch requirement

* Fix final answer tests

* Style fixes

* Fix tests

* Update docstrings with calculator removal

* Small type hint fixes

* Update tests/agents/test_translation.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update tests/agents/test_python_interpreter.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/agents/default_tools.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/agents/tools.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update tests/agents/test_agents.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/bert/configuration_bert.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/agents/tools.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/agents/speech_to_text.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update tests/agents/test_speech_to_text.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update tests/agents/test_tools_common.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* pygments

* Answer comments

* Cleaning up

* Simplifying init for all agents

* Improving prompts and making code nicer

* Style fixes

* Add multiple comparator test in interpreter

* Style fixes

* Improve BERT example in documentation

* Add examples to doc

* Fix python interpreter quality

* Logging improvements

* Change test flag to agents

* Quality fix

* Add example for HfEngine

* Improve conversation example for HfEngine

* typo fix

* Verify doc

* Update docs/source/en/agents.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/agents/agents.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/agents/prompts.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/agents/python_interpreter.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update docs/source/en/agents.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Fix style issues

* local s2t tool

---------

Co-authored-by: Cyril Kondratenko <kkn1993@gmail.com>
Co-authored-by: Lysandre <lysandre@huggingface.co>
Co-authored-by: Lysandre <lysandre.debut@reseau.eseo.fr>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-05-07 12:59:49 +02:00
3733391c53 Bump tqdm from 4.48.2 to 4.66.3 in /examples/research_projects/visual_bert (#30645)
Bump tqdm in /examples/research_projects/visual_bert

Bumps [tqdm](https://github.com/tqdm/tqdm) from 4.48.2 to 4.66.3.
- [Release notes](https://github.com/tqdm/tqdm/releases)
- [Commits](https://github.com/tqdm/tqdm/compare/v4.48.2...v4.66.3)

---
updated-dependencies:
- dependency-name: tqdm
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-05-07 11:57:30 +01:00
4051d362cb Bump tqdm from 4.63.0 to 4.66.3 in /examples/research_projects/decision_transformer (#30646)
Bump tqdm in /examples/research_projects/decision_transformer

Bumps [tqdm](https://github.com/tqdm/tqdm) from 4.63.0 to 4.66.3.
- [Release notes](https://github.com/tqdm/tqdm/releases)
- [Commits](https://github.com/tqdm/tqdm/compare/v4.63.0...v4.66.3)

---
updated-dependencies:
- dependency-name: tqdm
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-05-07 11:57:10 +01:00
e5f71ecaae Updated docs of forward in Idefics2ForConditionalGeneration with correct ignore_index value (#30678)
updated docs of `forward` in `Idefics2ForConditionalGeneration` with correct `ignore_index` value
2024-05-07 10:23:52 +01:00
9c8979e35f Word-level timestamps broken for short-form audio (#30325)
* force chunk_length_s in AutomaticSpeechRecognitionPipeline

* compute num_frames even when stride is None

* add slow tests

* fix test

* Update src/transformers/pipelines/automatic_speech_recognition.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/pipelines/test_pipelines_automatic_speech_recognition.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* add input validation

* fixup

* small fix

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-05-07 10:17:27 +01:00
4fda78c3f8 Fix cache_position initialisation for generation with use_cache=False (#30485)
* Fix cache_position init for generation

* Update src/transformers/generation/utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Fix cache position update

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-05-07 11:13:11 +02:00
54a2361a29 Adding _tie_weights() to prediction heads to support low_cpu_mem_usage=True (#29024)
* Adding _tie_weights() to prediction heads to support low_cpu_mem_usage=True

* Testing for the non-safe-tensors case, since the default is safe-tensors already

* Running fixup/fix-copies

* Adding accelerate annotations to tests
2024-05-07 11:12:21 +02:00
ce47582d81 Bump werkzeug from 3.0.1 to 3.0.3 in /examples/research_projects/decision_transformer (#30679)
Bump werkzeug in /examples/research_projects/decision_transformer

Bumps [werkzeug](https://github.com/pallets/werkzeug) from 3.0.1 to 3.0.3.
- [Release notes](https://github.com/pallets/werkzeug/releases)
- [Changelog](https://github.com/pallets/werkzeug/blob/main/CHANGES.rst)
- [Commits](https://github.com/pallets/werkzeug/compare/3.0.1...3.0.3)

---
updated-dependencies:
- dependency-name: werkzeug
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-05-07 09:39:35 +01:00
a898fb95bd Bump jinja2 from 3.1.3 to 3.1.4 in /examples/research_projects/decision_transformer (#30680)
Bump jinja2 in /examples/research_projects/decision_transformer

Bumps [jinja2](https://github.com/pallets/jinja) from 3.1.3 to 3.1.4.
- [Release notes](https://github.com/pallets/jinja/releases)
- [Changelog](https://github.com/pallets/jinja/blob/main/CHANGES.rst)
- [Commits](https://github.com/pallets/jinja/compare/3.1.3...3.1.4)

---
updated-dependencies:
- dependency-name: jinja2
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-05-07 09:28:56 +01:00
4980d62af3 top-k instead of top-p in MixtralConfig docstring (#30687)
top-k instead of top-p in docstring
2024-05-07 10:19:24 +02:00
835de4c833 Respect resume_download deprecation (#30620)
* Deprecate resume_download

* remove default resume_download value

---------

Co-authored-by: Lysandre Debut <hi@lysand.re>
2024-05-06 18:01:15 +02:00
277db238b7 Fix typo: llama3.md (#30653)
Update llama3.md

fix typo
2024-05-06 15:54:39 +02:00
df475bf8e6 Trainer - add cache clearing and the option for batched eval metrics computation (#28769)
* Added cache clearing for GPU efficiency.

* Added cache clearing for GPU efficiency.

* Added batch_eval_metrics capability

* Ran make fixup

* Fixed bug

* Fixed whitespace issue

* Fixed outdated condition

* Updated docstrings with instructions for batch_eval_metrics. Updated end of dataloader logic

* Added first version of batch_eval_metrics Trainer test

* Fixed batch_eval_metrics Trainer tests for both eval and predict

* Fixed batch_eval_metrics behavior for new Trainer variables

* Fixed batch_eval_metrics Trainer tests

* Ran fixup
2024-05-06 08:23:40 -04:00
e076953079 Trainer._load_from_checkpoint - support loading multiple Peft adapters (#30505)
* Trainer: load checkpoint model with multiple adapters

* Trainer._load_from_checkpoint support multiple active adapters

* PeftModel.set_adapter does not support multiple adapters yet

* Trainer._load_from_checkpoint test multiple adapters

---------

Co-authored-by: Clara Luise Pohland <clara-luise.pohland@telekom.de>
2024-05-06 08:22:52 -04:00
aa64f086a2 Fix llava next tie_word_embeddings config (#30640)
* fix llava next embedding

* add docstring

* Update src/transformers/models/llava_next/configuration_llava_next.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

---------

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2024-05-06 14:01:26 +02:00
9c772ac888 Quantization / HQQ: Fix HQQ tests on our runner (#30668)
Update test_hqq.py
2024-05-06 11:33:52 +02:00
a45c514899 Hotfix-change-ci (#30669)
* dmmy change

* fiux

* revert change
2024-05-06 11:26:04 +02:00
09edd77f64 Check if the current compiled version of pytorch supports MPS (#30664) 2024-05-06 10:32:19 +02:00
307f632bb2 [CI update] Try to use dockers and no cache (#29202)
* change cis

* nits

* update

* minor updates

* [push-ci-image]

* nit [push-ci-image]

* nitsssss

* [build-ci-image]

* [push-ci-image]

* [push-ci-image]

* both

* [push-ci-image]

* this?

* [push-ci-image]

* pypi-kenlm needs g++

* [push-ci-image]

* nit

* more nits [push-ci-image]

* nits [push-ci-image]

* [push-ci-image]

* [push-ci-image]

* [push-ci-image]

* add vision

* [push-ci-image]

* [push-ci-image]

* add new dummy file but will need to update them [push-ci-image]

* [push-ci-image]

* show package size as well

* [push-ci-image]

* potentially ignore failures

* workflow updates

* nits [push-ci-image]

* [push-ci-image]

* fix consistency

* clean nciida triton

* also show big packages [push-ci-image]

* nit

* update

* another one

* line escape?

* add accelerate [push-ci-image]

* updates [push-ci-image]

* nits to run tests, no push-ci

* try to parse skip reason to make sure nothing is skipped that should no be skippped

* nit?

* always show skipped reasons

* nits

* better parsing of the test outputs

* action="store_true",

* failure on failed

* show matched

* debug

* update short summary with skipped, failed and errors

* nits

* nits

* coolu pdates

* remove docbuilder

* fix

* always run checks

* oups

* nits

* don't error out on library printing

* non zero exi codes

* no warning

* nit

* WAT?

* format nit

* [push-ci-image]

* fail if fail is needed

* [push-ci-image]

* sound file for torch light?

* [push-ci-image]

* order is important [push-ci-image]

* [push-ci-image] reduce even further

* [push-ci-image]

* use pytest rich !

* yes [push-ci-image]

* oupsy

* bring back the full traceback, but pytest rich should help

* nit

* [push-ci-image]

* re run

* nit

* [push-ci-image]

* [push-ci-image]

* [push-ci-image]

* empty push to trigger

* [push-ci-image]

* nit? [push-ci-image]

* empty

* try to install timm with no deps

* [push-ci-image]

* oups [push-ci-image]

* [push-ci-image]

* [push-ci-image] ?

* [push-ci-image] open ssh client for git checkout fast

* empty for torch light

* updates [push-ci-image]

* nit

* @v4 for checkout

* [push-ci-image]

* [push-ci-image]

* fix fetch tests with parallelism

* [push-ci-image]

* more parallelism

* nit

* more nits

* empty to re-trigger

* empty to re-trigger

* split by timing

* did not work with previous commit

* junit.xml

* no path?

* mmm this?

* junitxml format

* split by timing

* nit

* fix junit family

* now we can test if the xunit1 is compatible!

* this?

* fully list tests

* update

* update

* oups

* finally

* use classname

* remove working directory to make sure the path does not interfere

* okay no juni should have the correct path

* name split?

* sort by classname is what make most sense

* some testing

* naem

* oups

* test something fun

* autodetect

* 18?

* nit

* file size?

* uip

* 4 is best

* update to see versions

* better print

* [push-ci-image]

* [push-ci-image]

* please install the correct keras version

* [push-ci-image]

* [push-ci-image]

* [push-ci-image]

* [push-ci-image]

* [push-ci-image]

* uv is fucking me up

* [push-ci-image]

* [push-ci-image]

* [push-ci-image]

* nits

* [push-ci-image]

* [push-ci-image]

* install issues an pins

* tapas as well

* nits

* more paralellism

* short tb

* soundfile

* soundfile

* [push-ci-image]

* [push-ci-image]

* [push-ci-image]

* oups

* [push-ci-image]

* fix some things

* [push-ci-image]

* [push-ci-image]

* [push-ci-image]

* [push-ci-image]

* use torch-light for hub

* small git lfs for hub job

* [push-ci-image]

* [push-ci-image]

* [push-ci-image]

* [push-ci-image]

* fix tf tapas

* [push-ci-image]

* nits

* [push-ci-image]

* don't update the test

* [push-ci-image]

* [push-ci-image]

* [push-ci-image]

* no use them

* [push-ci-image]

* [push-ci-image]

* [push-ci-image]

* [push-ci-image]

* update tf proba

* [push-ci-image]

* [push-ci-image]

* woops

* [push-ci-image]

* [push-ci-image]

* [push-ci-image]

* [push-ci-image]

* [push-ci-image]

* [push-ci-image]

* test with built dockers

* [push-ci-image]

* skip annoying tests

* revert fix copy

* update test values

* update

* last skip and fixup

* nit

* ALL GOOOD

* quality

* Update tests/models/layoutlmv2/test_image_processing_layoutlmv2.py

* Update docker/quality.dockerfile

Co-authored-by: Lysandre Debut <hi@lysand.re>

* Update src/transformers/models/tapas/modeling_tf_tapas.py

Co-authored-by: Lysandre Debut <hi@lysand.re>

* Apply suggestions from code review

Co-authored-by: Lysandre Debut <hi@lysand.re>

* use torch-speed

* updates

* [push-ci-image]

* [push-ci-image]

* [push-ci-image]

* [push-ci-image]

* fuck ken-lm [push-ci-image]

* [push-ci-image]

* [push-ci-image]

---------

Co-authored-by: Lysandre Debut <hi@lysand.re>
2024-05-06 10:10:32 +02:00
91d155ea92 Avoid duplication in PR slow CI model list (#30634)
update

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-05-03 18:19:30 +02:00
deb7605a2a Prevent TextGenerationPipeline._sanitize_parameters from overriding previously provided parameters (#30362)
* Fixed TextGenerationPipeline._sanitize_parameters default params

* removed empty spaces

---------

Co-authored-by: Ng, Yen Ting <yen.ting.ng@intel.com>
2024-05-03 17:49:28 +02:00
d0c72c15c2 HQQ: PEFT support for HQQ (#30632)
Update quantizer_hqq.py
2024-05-03 16:01:15 +02:00
66f675eb65 Fix W&B run name (#30462)
* Remove comparison to output_dir

* Update docs for `run_name`

* Add warning
2024-05-03 12:04:15 +01:00
425e1a0426 add mlp bias for llama models (#30031)
* add bias

* fix quality
2024-05-03 11:02:17 +02:00
a0e77a1f6b Fix CI after #30410 (#30612)
* Fix CI after #30410

* [run-slow] blenderbot
2024-05-03 01:18:48 +05:00
59952994c4 Add HQQ quantization support (#29637)
* update HQQ transformers integration

* push import_utils.py

* add force_hooks check in modeling_utils.py

* fix | with Optional

* force bias as param

* check bias is Tensor

* force forward for multi-gpu

* review fixes pass

* remove torch grad()

* if any key in linear_tags fix

* add cpu/disk check

* isinstance return

* add multigpu test + refactor tests

* clean hqq_utils imports in hqq.py

* clean hqq_utils imports in quantizer_hqq.py

* delete hqq_utils.py

* Delete src/transformers/utils/hqq_utils.py

* ruff init

* remove torch.float16 from __init__ in test

* refactor test

* isinstance -> type in quantizer_hqq.py

* cpu/disk device_map check in quantizer_hqq.py

* remove type(module) nn.linear check in quantizer_hqq.py

* add BaseQuantizeConfig import inside HqqConfig init

* remove hqq import in hqq.py

* remove accelerate import from test_hqq.py

* quant config.py doc update

* add hqqconfig to main_classes doc

* make style

* __init__ fix

* ruff __init__

* skip_modules list

* hqqconfig format fix

* hqqconfig doc fix

* hqqconfig doc fix

* hqqconfig doc fix

* hqqconfig doc fix

* hqqconfig doc fix

* hqqconfig doc fix

* hqqconfig doc fix

* hqqconfig doc fix

* hqqconfig doc fix

* test_hqq.py remove mistral comment

* remove self.using_multi_gpu is False

* torch_dtype default val set and logger.info

* hqq.py isinstance fix

* remove torch=None

* torch_device test_hqq

* rename test_hqq

* MODEL_ID in test_hqq

* quantizer_hqq setattr fix

* quantizer_hqq typo fix

* imports quantizer_hqq.py

* isinstance quantizer_hqq

* hqq_layer.bias reformat quantizer_hqq

* Step 2 as comment in quantizer_hqq

* prepare_for_hqq_linear() comment

* keep_in_fp32_modules fix

* HqqHfQuantizer reformat

* quantization.md hqqconfig

* quantization.md model example reformat

* quantization.md # space

* quantization.md space   })

* quantization.md space   })

* quantization_config fix doc

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* axis value check in quantization_config

* format

* dynamic config explanation

* quant config method in quantization.md

* remove shard-level progress

* .cuda fix modeling_utils

* test_hqq fixes

* make fix-copies

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-05-02 17:51:49 +01:00
4c940934da Output None as attention when layer is skipped (#30597)
* Output `None` as attention when layer is skipped

* Add test for output_attentions
2024-05-02 17:25:19 +01:00
39359e5b5f Fix FX tracing issues for Llama (#30619) 2024-05-02 17:03:10 +02:00
9719202d37 Generate: fix SinkCache on Llama models (#30581) 2024-05-02 15:24:33 +01:00
66abe13951 Docs: add missing StoppingCriteria autodocs (#30617)
* add missing docstrings to docs

* Update src/transformers/generation/stopping_criteria.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-05-02 15:20:04 +01:00
aa55ff44a2 Docs: fix generate-related rendering issues (#30600)
* does this work?

* like this?

* fix the other generate links

* missing these
2024-05-02 14:42:25 +01:00
801894e08c phi3 chat_template does not support system role (#30606)
* phi3 chat_template does not support system role

* fix doc test error
2024-05-02 15:30:21 +02:00
f57f014936 Use contiguous() in clip checkpoint conversion script (#30613)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-05-02 13:59:40 +02:00
a65da83d75 fix:missing output_router_logits in SwitchTransformers (#30573)
* fix:missing `output_router_logits` in SwitchTransformers

* fix whitespace in blank line
2024-05-02 13:47:00 +02:00
4ad5adaf1d Fix copies for DBRX - neuron fix (#30610) 2024-05-02 11:00:26 +01:00
f95302584b 🚨 Update image_processing_vitmatte.py (#30566)
* Update image_processing_vitmatte.py

* add test

* [run-slow]vitmatte
2024-05-02 11:00:07 +01:00
12c5544dca Fix memory leak with CTC training script on Chinese languages (#30358)
* Fix memory leak with CTC training script on Chinese languages

* Fix lint
2024-05-02 09:33:36 +01:00
fbabd6746f Fix for Neuron (#30259) 2024-05-02 10:24:47 +02:00
5cf3e6bf05 Fix: failing CI after #30568 (#30599)
* failiing CI

* no let's keep it intil full deprecation in  v4.42
2024-05-02 12:15:17 +05:00
c681b58b06 Bump torch from 1.9.0+cpu to 1.13.1 in /examples/flax/vision (#21168)
Bumps [torch](https://github.com/pytorch/pytorch) from 1.9.0+cpu to 1.13.1.
- [Release notes](https://github.com/pytorch/pytorch/releases)
- [Changelog](https://github.com/pytorch/pytorch/blob/master/RELEASE.md)
- [Commits](https://github.com/pytorch/pytorch/commits/v1.13.1)

---
updated-dependencies:
- dependency-name: torch
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-05-01 20:14:57 +01:00
3a36597a5f Bump pillow from 10.0.1 to 10.2.0 in /examples/research_projects/decision_transformer (#28655)
Bump pillow in /examples/research_projects/decision_transformer

Bumps [pillow](https://github.com/python-pillow/Pillow) from 10.0.1 to 10.2.0.
- [Release notes](https://github.com/python-pillow/Pillow/releases)
- [Changelog](https://github.com/python-pillow/Pillow/blob/main/CHANGES.rst)
- [Commits](https://github.com/python-pillow/Pillow/compare/10.0.1...10.2.0)

---
updated-dependencies:
- dependency-name: pillow
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-05-01 19:58:34 +01:00
4f3c7af489 Bump torch from 1.9.0+cpu to 1.13.1 in /examples/research_projects/jax-projects/hybrid_clip (#21167)
Bump torch in /examples/research_projects/jax-projects/hybrid_clip

Bumps [torch](https://github.com/pytorch/pytorch) from 1.9.0+cpu to 1.13.1.
- [Release notes](https://github.com/pytorch/pytorch/releases)
- [Changelog](https://github.com/pytorch/pytorch/blob/master/RELEASE.md)
- [Commits](https://github.com/pytorch/pytorch/commits/v1.13.1)

---
updated-dependencies:
- dependency-name: torch
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-05-01 18:37:55 +01:00
6f465d45d9 Bump torch from 1.11.0 to 1.13.1 in /examples/research_projects/decision_transformer (#21171)
Bump torch in /examples/research_projects/decision_transformer

Bumps [torch](https://github.com/pytorch/pytorch) from 1.11.0 to 1.13.1.
- [Release notes](https://github.com/pytorch/pytorch/releases)
- [Changelog](https://github.com/pytorch/pytorch/blob/master/RELEASE.md)
- [Commits](https://github.com/pytorch/pytorch/compare/v1.11.0...v1.13.1)

---
updated-dependencies:
- dependency-name: torch
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-05-01 18:16:25 +01:00
5090ea3f68 Fix llava half precision and autocast issues (#29721)
* Ensure input_embeds and image_features are the same dtype in autocast

* Fix nans in half precision llava-next and fix autocasting behavior.

* Fix styling issues.

* fix randn newline instantiation

* fix broken slow llava test

* Fix llava next init.

* fix styling issues

* [run-slow]llava,llava_next

* fix styling issues
2024-05-01 17:49:44 +01:00
d57ffb487f Generate: remove deprecated public decoding functions and streamline logic 🧼 (#29956) 2024-05-01 17:38:44 +01:00
dc401d3a4e Improve object detection task guideline (#29967)
* Add improvements

* Address comment
2024-05-01 17:58:01 +02:00
d2feb54591 Fix image segmentation example - don't reopen image (#30481)
Fix image segmentation example - don't repoen image
2024-05-01 16:52:57 +01:00
6e0cba3cec Bump torch from 1.6.0 to 1.13.1 in /examples/research_projects/visual_bert (#21172)
Bump torch in /examples/research_projects/visual_bert

Bumps [torch](https://github.com/pytorch/pytorch) from 1.6.0 to 1.13.1.
- [Release notes](https://github.com/pytorch/pytorch/releases)
- [Changelog](https://github.com/pytorch/pytorch/blob/master/RELEASE.md)
- [Commits](https://github.com/pytorch/pytorch/compare/v1.6.0...v1.13.1)

---
updated-dependencies:
- dependency-name: torch
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-05-01 16:40:54 +01:00
ce66c0e989 Bump torch from 1.11.0 to 1.13.1 in /examples/research_projects/codeparrot (#21170)
Bump torch in /examples/research_projects/codeparrot

Bumps [torch](https://github.com/pytorch/pytorch) from 1.11.0 to 1.13.1.
- [Release notes](https://github.com/pytorch/pytorch/releases)
- [Changelog](https://github.com/pytorch/pytorch/blob/master/RELEASE.md)
- [Commits](https://github.com/pytorch/pytorch/compare/v1.11.0...v1.13.1)

---
updated-dependencies:
- dependency-name: torch
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-05-01 16:40:19 +01:00
7a29c577e8 Bump torch from 1.6.0 to 1.13.1 in /examples/research_projects/lxmert (#21174)
Bumps [torch](https://github.com/pytorch/pytorch) from 1.6.0 to 1.13.1.
- [Release notes](https://github.com/pytorch/pytorch/releases)
- [Changelog](https://github.com/pytorch/pytorch/blob/master/RELEASE.md)
- [Commits](https://github.com/pytorch/pytorch/compare/v1.6.0...v1.13.1)

---
updated-dependencies:
- dependency-name: torch
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-05-01 16:39:55 +01:00
b33f01fe6b Bump pyarrow from 1.0.1 to 15.0.0 in /examples/research_projects/lxmert (#30584)
Bumps [pyarrow](https://github.com/apache/arrow) from 1.0.1 to 15.0.0.
- [Commits](https://github.com/apache/arrow/compare/apache-arrow-1.0.1...go/v15.0.0)

---
updated-dependencies:
- dependency-name: pyarrow
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-05-01 16:38:07 +01:00
0ec3003ae9 Bump pyarrow from 1.0.1 to 15.0.0 in /examples/research_projects/visual_bert (#30583)
Bump pyarrow in /examples/research_projects/visual_bert

Bumps [pyarrow](https://github.com/apache/arrow) from 1.0.1 to 15.0.0.
- [Commits](https://github.com/apache/arrow/compare/apache-arrow-1.0.1...go/v15.0.0)

---
updated-dependencies:
- dependency-name: pyarrow
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-05-01 16:37:54 +01:00
aefbdfe8cf Bump pyarrow from 7.0.0 to 15.0.0 in /examples/research_projects/decision_transformer (#30582)
Bump pyarrow in /examples/research_projects/decision_transformer

Bumps [pyarrow](https://github.com/apache/arrow) from 7.0.0 to 15.0.0.
- [Commits](https://github.com/apache/arrow/compare/go/v7.0.0...go/v15.0.0)

---
updated-dependencies:
- dependency-name: pyarrow
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-05-01 16:37:40 +01:00
7164171212 Bump gitpython from 3.1.32 to 3.1.41 in /examples/research_projects/distillation (#30586)
Bump gitpython in /examples/research_projects/distillation

Bumps [gitpython](https://github.com/gitpython-developers/GitPython) from 3.1.32 to 3.1.41.
- [Release notes](https://github.com/gitpython-developers/GitPython/releases)
- [Changelog](https://github.com/gitpython-developers/GitPython/blob/main/CHANGES)
- [Commits](https://github.com/gitpython-developers/GitPython/compare/3.1.32...3.1.41)

---
updated-dependencies:
- dependency-name: gitpython
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-05-01 16:36:57 +01:00
ff8f624542 Bump grpcio from 1.44.0 to 1.53.2 in /examples/research_projects/decision_transformer (#30585)
Bump grpcio in /examples/research_projects/decision_transformer

Bumps [grpcio](https://github.com/grpc/grpc) from 1.44.0 to 1.53.2.
- [Release notes](https://github.com/grpc/grpc/releases)
- [Changelog](https://github.com/grpc/grpc/blob/master/doc/grpc_release_schedule.md)
- [Commits](https://github.com/grpc/grpc/compare/v1.44.0...v1.53.2)

---
updated-dependencies:
- dependency-name: grpcio
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-05-01 16:35:52 +01:00
b71f512823 Bump gitpython from 3.1.32 to 3.1.41 in /examples/research_projects/decision_transformer (#30587)
Bump gitpython in /examples/research_projects/decision_transformer

Bumps [gitpython](https://github.com/gitpython-developers/GitPython) from 3.1.32 to 3.1.41.
- [Release notes](https://github.com/gitpython-developers/GitPython/releases)
- [Changelog](https://github.com/gitpython-developers/GitPython/blob/main/CHANGES)
- [Commits](https://github.com/gitpython-developers/GitPython/compare/3.1.32...3.1.41)

---
updated-dependencies:
- dependency-name: gitpython
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-05-01 16:30:24 +01:00
f4f18afde8 Gemma: update activation warning (#29995)
* Gemma: only display act. warning when necessary

This is a nit PR, but I was confused. I got the warning even after I
had changed `hidden_act` to `gelu_pytorch_tanh`, telling me that I
was using the "legacy" `gelu_pytorch_tanh`.

Another option is to keep the warning but change the message to say
something like "`hidden_act` is ignored, please use `hidden_activation`
instead. Setting Gemma's activation function to `gelu_pytorch_tanh`".

* Change message, and set `config.hidden_activation`
2024-05-01 17:23:38 +02:00
bbaa8ceff6 Fix canonical model --model_type in examples (#30480)
Fix --model_type in examples
2024-05-01 15:47:05 +01:00
3c69d81eeb remove jax example (#30498)
remove example
2024-05-01 16:34:57 +02:00
1e05671d21 Fix QA example (#30580)
* Handle cases when CLS token is absent

* Use BOS token as a fallback
2024-05-01 08:43:02 +01:00
4b4da18f53 Refactor default chat template warnings (#30551)
* Temporarily silence warnings in apply_chat_template until we can properly deprecate default chat templates

* make fixup

* Move the default chat template warning into apply_chat_template itself

* make fixup
2024-05-01 08:42:11 +01:00
4bc9cb36b7 Fix Marian model conversion (#30173)
* fix marian model coversion

* uncomment that line

* remove unnecessary code

* revert tie_weights, doesn't hurt
2024-05-01 12:33:12 +05:00
38a4bf79ad Encoder-decoder models: move embedding scale to nn.Module (#30410)
* move scaling to nn.Module

* let the test be here for now (need to fix)

* failing tests

* last failing models

* Revert commit 4c14817f38

* clean-up

* oops forgot

* codestyle

* raise NotImplemented when possible

* Update tests/test_modeling_common.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* skip tests in respective modeling files

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-05-01 12:33:00 +05:00
9d31b32e9d Use text config's vocab size in testing models (#30568)
use text config's vocab size
2024-05-01 12:32:45 +05:00
78fdd64dcf Remove use_square_size after loading (#30567)
* fix

* add test

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-04-30 21:11:37 +02:00
87927b248e General PR slow CI (#30540)
* More general PR slow CI

* Update utils/pr_slow_ci_models.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-04-30 21:05:09 +02:00
b8ac4d035c Fix generation doctests (#30263)
* fix doctest

* fix torch doctest

* make CI happy

* raise error

* make fixup
2024-04-30 21:02:26 +02:00
2ecefc3959 Add chat templating support for KeyDataset in text-generation pipeline (#30558)
* added chat templating support for keydataset in generation pipeline

* fixed and improved test

* fix formatting test failures

* Fix tests

* Fix tests
2024-04-30 19:51:41 +01:00
0cdb6b3f92 BlipModel: get_multimodal_features method (#30438)
* add_blip_get_multimodal_feautres

* Fix docstring error

* reimplement get_multimodal_features

* fix error

* recheck code quality

* add new necessary tests
2024-04-30 19:01:01 +01:00
9112520b15 Fix seq2seq collator padding (#30556)
* fix seq2seq data collator to respect the given padding strategy

further added tests for the seq2seq data collator in the style of the `data_collator_for_token_classification` (pt, tf, np)

* formatting and change bool equals "==" to "is"

* add missed return types in tests

* update numpy test as it can handle unequal shapes, not like pt or tf
2024-04-30 18:32:30 +01:00
78a57c5e1a DBRX: make fixup (#30578) 2024-04-30 18:30:23 +01:00
1bff6a0b58 Generate: update links on LLM tutorial doc (#30550) 2024-04-30 18:14:12 +01:00
75bbfd5b22 Cache: Static cache as a standalone object (#30476) 2024-04-30 16:37:19 +01:00
0ae789e043 Enable multi-device for more models (#30409)
* feat: support for dinov2

* feat: support for depth_anything

* feat: support for efficientformer

* feat: support for bert (is this right?)

* update: embedding split

* remove: empty string

* feat: support for align

* fix: copies

* fix: QAQBertEmbeddings

* fix: more consistency issues

* revert: support for effientformer

* feat: support for altclip

* feat: support for blip_text

* support for ChineseCLIP

* feat: support for depth anything

* feat: support for dpt

* feat: support for dpt

* feat: support for git

* feat: support for groupvit

* update: format

* fix: support for clip

* fix: consistency

* feat: support for pvt

* feat: support for vit_msn

* fix: consistency

* fix: other copies

* remove: device transfer

* revert: in-place add

* update: support for align

* update: support for bert

* update: support for Chinese CLIP

* revert: changes to efficientformer

* update: support for dpt

* update: support for efficientformer

* revert: changes to git

* revert: changes to groupvit

* revert: changes to roc_bert

* update: support for vit_msn

* revert: changes to dpt

* remove: extra space

* style: extra space
2024-04-30 12:09:08 +01:00
c712d05aa8 Pass use_cache in kwargs for GPTNeoX (#30538)
pass use_cache in kwargs
2024-04-30 12:16:18 +05:00
a3aabc702e Include safetensors as part of _load_best_model (#30553)
* Include safetensors

* Cleanup
2024-04-29 14:47:26 -04:00
9df8b301ce Reenable SDPA's FA2 During Training with torch.compile (#30442)
* Reenable SDPA's FA2 during training with torch.compile

* fix Olmo's SDPA FA2 dispatching too

* update formatting

* improved SDPA comment

* formatting and explanatory comment

* is_causal if statement to one-liner
2024-04-30 00:45:43 +08:00
87be06ca77 Fix repo. fetch/checkout in PR slow CI job (#30537)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-04-29 14:32:43 +02:00
c02421883b Update runner tag for PR slow CI (#30535)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-04-29 14:07:41 +02:00
bdbe166211 Fix broken link to Transformers notebooks (#30512)
Co-authored-by: Clint Adams <clint@debian.org>
2024-04-29 10:57:51 +01:00
e8acb70015 Pass attn_implementation when using AutoXXX.from_config (#30507)
* Pass attn_implementation when using AutoXXX.from_config

* Fix
2024-04-29 10:22:33 +01:00
80126f98d8 Allow boolean FSDP options in fsdp_config (#30439)
* Allow boolean FSDP options in fsdp_config

* Use lower() to be safe
2024-04-29 10:03:26 +01:00
73014b561d Fix link in dbrx.md (#30509) 2024-04-26 20:52:24 +01:00
6d4cabda26 [SegGPT] Fix seggpt image processor (#29550)
* Fixed SegGptImageProcessor to handle 2D and 3D prompt mask inputs

* Added new test to check prompt mask equivalence

* New proposal

* Better proposal

* Removed unnecessary method

* Updated seggpt docs

* Introduced do_convert_rgb

* nits
2024-04-26 19:40:12 +01:00
c793b26f2e load_image - decode b64encode and encodebytes strings (#30192)
* Decode b64encode and encodebytes strings

* Remove conditional encode -- image is always a string
2024-04-26 18:21:47 +01:00
e7d52a10d7 Fix GroundingDINO, DPR after BERT SDPA update (#30506)
Fix GroundingDINO, DPR after BET SDPA update
2024-04-26 18:04:41 +01:00
38b53da38a [examples] update whisper fine-tuning (#29938)
* [examples] update whisper fine-tuning

* deprecate forced/suppress tokens

* item assignment

* update readme

* final fix
2024-04-26 17:06:03 +01:00
aafa7ce72b [DETR] Remove timm hardcoded logic in modeling files (#29038)
* Enable instantiating model with pretrained backbone weights

* Clarify pretrained import

* Use load_backbone instead

* Add backbone_kwargs to config

* Fix up

* Add tests

* Tidy up

* Enable instantiating model with pretrained backbone weights

* Update tests so backbone checkpoint isn't passed in

* Clarify pretrained import

* Update configs - docs and validation check

* Update src/transformers/utils/backbone_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Clarify exception message

* Update config init in tests

* Add test for when use_timm_backbone=True

* Use load_backbone instead

* Add use_timm_backbone to the model configs

* Add backbone_kwargs to config

* Pass kwargs to constructors

* Draft

* Fix tests

* Add back timm - weight naming

* More tidying up

* Whoops

* Tidy up

* Handle when kwargs are none

* Update tests

* Revert test changes

* Deformable detr test - don't use default

* Don't mutate; correct model attributes

* Add some clarifying comments

* nit - grammar is hard

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-04-26 16:55:24 +01:00
77ff304d29 Remove skipping logic now that set_epoch exists (#30501)
* Remove skipping logic now that set_epoch exists

* Working version, clean
2024-04-26 11:52:09 -04:00
dfa7b580e9 [BERT] Add support for sdpa (#28802)
* Adding SDPA support for BERT

* Using the proper input name for testing model input in inference()

* Adding documentation for SDPA in BERT model page

* Use the stable link for the documentation

* Adding a gate to only call .contiguous() for torch < 2.2.0

* Additions and fixes to the documentation

* Minor updates to documentation

* Adding extra requirements needed for the contiguous() bug

* Adding "Adapted from" in plcae of the "Copied from"

* Add benchmark speedup tables to the documentation

* Minor fixes to the documentation

* Use ClapText as a replacemenet for Bert in the Copied-From

* Some more fixes for the fix-copies references

* Overriding the test_eager_matches_sdpa_generate in bert tests to not load with low_cpu_mem_usage

[test all]

* Undo changes to separate test

* Refactored SDPA self attention code for KV projections

* Change use_sdpa to attn_implementation

* Fix test_sdpa_can_dispatch_on_flash by preparing input (required for MultipleChoice models)
2024-04-26 16:23:44 +01:00
2de5cb12be Use the Keras set_random_seed in tests (#30504)
Use the Keras set_random_seed to ensure reproducible weight initialization
2024-04-26 16:14:53 +01:00
20081c743e Update dtype_byte_size to handle torch.float8_e4m3fn/float8_e5m2 types (#30488)
* Update modeling_utils/dtype_byte_size to handle float8 types

* Add a test for dtype_byte_size

* Format

* Fix bool
2024-04-26 11:26:43 +01:00
kyo
59e715f71c Fix the bitsandbytes error formatting ("Some modules are dispatched on ...") (#30494)
Fix the `bitsandbytes` error when some modules are not properly offloaded.
2024-04-26 10:13:52 +01:00
19cfdf0fac FEAT: PEFT support for EETQ (#30449)
Update quantizer_eetq.py
2024-04-26 10:20:35 +02:00
a98c41798c [docs] Spanish translation of pipeline_tutorial.md (#30252)
* add pipeline_webserver to es/

* add pipeline_webserver to es/, translate first section

* add comment for checking link

* translate pipeline_webserver

* edit pipeline_webserver

* fix typo
2024-04-25 12:18:06 -07:00
26ddc58047 Quantization: HfQuantizer quant method update (#30484)
ensure popular quant methods are supported
2024-04-25 21:09:28 +02:00
f39627125b Add sidebar tutorial for chat models (#30401)
* Draft tutorial for talking to chat models

* Reformat lists and text snippets

* Cleanups and clarifications

* Finish up remaining TODOs

* Correct section link

* Small fix

* Add proper quantization examples

* Add proper quantization examples

* Add proper quantization examples

* Update docs/source/en/conversations.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/conversations.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/conversations.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/conversations.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/conversations.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/conversations.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/conversations.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/conversations.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/conversations.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/conversations.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/_toctree.yml

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/conversations.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Fix Text Generation Pipeline link and add a ref to the LLM inference guide

* intelligent -> capable

* Small intro cleanup

* Small text cleanup

* Small text cleanup

* Clarification about system message

* Clarification about system message

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-04-25 19:38:48 +01:00
bc274a28a9 Do not use deprecated SourceFileLoader.load_module() in dynamic module loading (#30370) 2024-04-25 18:23:39 +02:00
e60491adc9 Fix Llava for 0-embeddings (#30473) 2024-04-25 20:28:51 +05:00
ad697f1801 Introduce Stateful Callbacks (#29666)
* Introduce saveable callbacks

* Add note

* Test for non-present and flag

* Support early stopping and refusing to train further

* Update docstring

* More saving

* Import oopsie

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Make it go through TrainerArguments

* Document

* Fix test

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Rework to allow for duplicates

* CLean

* Fix failing tests

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-04-25 11:00:09 -04:00
86f2569738 Make accelerate install non-torch dependent (#30463)
* Pin accelerate w/o eager

* Eager

* Update .circleci/create_circleci_config.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Expound

* Expound squared

* PyTorch -> dependency

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-04-25 09:37:55 -04:00
928331381e Fix Issue #29817 Video Classification Task Guide Using Undeclared Variables (#30457)
* Fix issue #29817

Video Classification Task Guide Using Undeclared Variables

* Update docs/source/en/tasks/video_classification.md

updated with review comments

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Fix issue #29817

Add line space following PR comments

---------

Co-authored-by: manju-rangam <Manju1@Git>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-04-25 13:49:30 +01:00
7b1170b0fa Add WSD scheduler (#30231)
* Added WSD scheduler.

* Added tests.

* Fixed errors.

* Fix formatting.

* CI fixes.
2024-04-25 12:07:21 +01:00
90cb55bf77 🚨 Add training compatibility for Musicgen-like models (#29802)
* first modeling code

* make repository

* still WIP

* update model

* add tests

* add latest change

* clean docstrings and copied from

* update docstrings md and readme

* correct chroma function

* correct copied from and remove unreleated test

* add doc to toctree

* correct imports

* add convert script to notdoctested

* Add suggestion from Sanchit

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* correct get_uncoditional_inputs docstrings

* modify README according to SANCHIT feedback

* add chroma to audio utils

* clean librosa and torchaudio hard dependencies

* fix FE

* refactor audio decoder -> audio encoder for consistency with previous musicgen

* refactor conditional -> encoder

* modify sampling rate logics

* modify license at the beginning

* refactor all_self_attns->all_attentions

* remove ignore copy from causallm generate

* add copied from for from_sub_models

* fix make copies

* add warning if audio is truncated

* add copied from where relevant

* remove artefact

* fix convert script

* fix torchaudio and FE

* modify chroma method according to feedback-> better naming

* refactor input_values->input_features

* refactor input_values->input_features and fix import fe

* add input_features to docstrigs

* correct inputs_embeds logics

* remove dtype conversion

* refactor _prepare_conditional_hidden_states_kwargs_for_generation ->_prepare_encoder_hidden_states_kwargs_for_generation

* change warning for chroma length

* Update src/transformers/models/musicgen_melody/convert_musicgen_melody_transformers.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* change way to save wav, using soundfile

* correct docs and change to soundfile

* fix import

* fix init proj layers

* add draft training

* fix cross entropy

* clean loss computation

* fix labels

* remove line breaks from md

* fix issue with docstrings

* add FE suggestions

* improve is in logics and remove useless imports

* remove custom from_pretrained

* simplify docstring code

* add suggestions for modeling tests

* make style

* update converting script with sanity check

* remove encoder attention mask from conditional generation

* replace musicgen melody checkpoints with official orga

* rename ylacombe->facebook in checkpoints

* fix copies

* remove unecessary warning

* add shape in code docstrings

* add files to slow doc tests

* fix md bug and add md to not_tested

* make fix-copies

* fix hidden states test and batching

* update training code

* add training tests for melody

* add training for o.g musicgen

* fix copied from

* remove final todos

* make style

* fix style

* add suggestions from review

* add ref to the original loss computation code

* rename method + fix labels in tests

* make style

---------

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
2024-04-25 12:51:19 +02:00
ce5ae5a434 Prevent crash with WandbCallback with third parties (#30477)
* Use EAFP principle to prevent crash with third parties

* Remove leftover debugging code

* Add info-level logger message
2024-04-25 12:49:06 +02:00
aca4a1037f Don't run fp16 MusicGen tests on CPU (#30466) 2024-04-25 11:14:07 +01:00
4fed29e3a4 Fix SigLip classification doctest (#30475)
* Fix SigLip classification doctest

* Remove extra line

* Update src/transformers/models/siglip/modeling_siglip.py
2024-04-25 11:13:53 +01:00
30ee508c6c Script for finding candidate models for deprecation (#29686)
* Add utility for finding candidate models for deprecation

* Better model filtering

* Update

* Add warning tip

* Fix up

* Review comments

* Filter requests based on tags

* Add copyright header
2024-04-25 10:10:01 +01:00
c60749d6a6 [fix codellama conversion] (#30472)
* fix codellama conversion

* nit
2024-04-25 10:56:48 +02:00
e9b1635478 FIX / Workflow: Fix SSH workflow bug (#30474)
Update ssh-runner.yml
2024-04-25 10:36:54 +02:00
cd0cd12add FIX / Workflow: Change tailscale trigger condition (#30471)
Update push-important-models.yml
2024-04-25 10:33:12 +02:00
cebb07262f Workflow / ENH: Add SSH into our runners workflow (#30425)
* add SSH into our runners workflow

* fix

* fix

* fix

* use our previous approaches

* forward contrib credits from discussions

---------

Co-authored-by: Yih-Dar <ydshieh@users.noreply.github.com>
2024-04-25 10:23:40 +02:00
fbb41cd420 consistent job / pytest report / artifact name correspondence (#30392)
* better names

* run better names

* update

* update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-04-24 22:32:42 +02:00
6ad9c8f743 Non blocking support to torch DL's (#30465)
* Non blocking support

* Check for optimization

* Doc
2024-04-24 16:24:23 -04:00
5c57463bde Enable fp16 on CPU (#30459)
* Check removing flag for torch

* LLM oops

* Getting there...

* More discoveries

* Change

* Clean up and prettify

* Logic check

* Not
2024-04-24 15:38:52 -04:00
d1d94d798f Neuron: When save_safetensor=False, no need to move model to CPU (#29703)
save_safetensor=True is default as of release 4.35.0, which then
required TPU hotfix https://github.com/huggingface/transformers/pull/27799
(issue https://github.com/huggingface/transformers/issues/27578).
However, when the flag save_safetensor is set to False (compatibility mode),
moving the model to CPU causes generation of too many graphs
during checkpoint https://github.com/huggingface/transformers/issues/28438.
This PR disable moving of model to CPU when save_safetensor=False.
2024-04-24 18:22:08 +01:00
661190b44d [research_project] Most of the security issues come from this requirement.txt (#29977)
update most of decision transformers research project
2024-04-24 17:56:45 +02:00
d0d430f14a Fix wrong indent in utils/check_if_new_model_added.py (#30456)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-04-24 17:44:12 +02:00
c9693db2fc Phi-3 (#30423)
* chore(root): Initial commit of Phi-3 files.

* fix(root): Fixes Phi-3 missing on readme.

* fix(root): Ensures files are consistent.

* fix(phi3): Fixes unit tests.

* fix(tests): Fixes style of phi-3 test file.

* chore(tests): Adds integration tests for Phi-3.

* fix(phi3): Removes additional flash-attention usage, .e.g, swiglu and rmsnorm.

* fix(phi3): Fixes incorrect docstrings.

* fix(phi3): Fixes docstring typos.

* fix(phi3): Adds support for Su and Yarn embeddings.

* fix(phi3): Improves according first batch of reviews.

* fix(phi3): Uses up_states instead of y in Phi3MLP.

* fix(phi3): Uses gemma rotary embedding to support torch.compile.

* fix(phi3): Improves how rotary embedding classes are defined.

* fix(phi3): Fixes inv_freq not being re-computed for extended RoPE.

* fix(phi3): Adds last suggestions to modeling file.

* fix(phi3): Splits inv_freq calculation in two lines.
2024-04-24 17:32:09 +02:00
42fed15c81 Add paths filter to avoid the chance of being triggered (#30453)
* trigger

* remove the last job

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-04-24 16:58:54 +02:00
d26c14139c [SegGPT] Fix loss calculation (#30421)
* Fixed main train issues

* Added loss test

* Update src/transformers/models/seggpt/modeling_seggpt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Added missing labels arg in SegGptModel forward

* Fixed typo

* Added slow test to test loss calculation

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-04-24 15:24:34 +01:00
37fa1f654f fix jamba slow foward for multi-gpu (#30418)
* fix jamba slow foward for multi-gpu

* remove comm

* oups

* style
2024-04-24 14:19:08 +02:00
5d64ae9d75 fix uncaught init of linear layer in clip's/siglip's for image classification models (#30435)
* fix clip's/siglip's _init_weights to reflect linear layers in "for image classification"

* trigger slow tests
2024-04-24 13:03:30 +01:00
16c8e176f9 [tests] make test device-agnostic (#30444)
* make device-agnostic

* clean code
2024-04-24 11:21:27 +01:00
9a4a119c10 [Llava] + CIs fix red cis and llava integration tests (#30440)
* nit

* nit and fmt skip

* fixup

* Update src/transformers/convert_slow_tokenizer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* set to true

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-04-24 10:51:35 +02:00
767e351840 Fix YOLOS image processor resizing (#30436)
* Add test for square image that fails

* Fix for square images

* Extend test cases

* Fix resizing in tests

* Style fixup
2024-04-24 09:50:17 +01:00
89c510d842 Add llama3 (#30334)
* nuke

* add co-author

* add co-author

* update card

* fixup and fix copies to please our ci

* nit fixup

* super small nits

* remove tokenizer_path from call to `write_model`

* always safe serialize by default

---------

Co-authored-by: pcuenca <pcuenca@users.noreply.github.com>
Co-authored-by: xenova <xenova@users.noreply.github.com>
2024-04-24 10:11:19 +02:00
fc34f842cc New model PR needs green (slow tests) CI (#30341)
* You should not pass

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-04-24 09:52:55 +02:00
c6bba94040 Remove mentions of models in the READMEs and link to the documentation page in which they are featured. (#30420)
* REAMDEs

* REAMDEs v2
2024-04-24 09:38:31 +02:00
d4e92f1a21 Remove add-new-model in favor of add-new-model-like (#30424)
* Remove add-new-model in favor of add-new-model-like

* nits
2024-04-24 09:38:18 +02:00
0eb8fbcdac Remove task guides auto-update in favor of links towards task pages (#30429) 2024-04-24 09:38:10 +02:00
e34da3ee3c [LlamaTokenizerFast] Refactor default llama (#28881)
* push legacy to fast as well

* super strange

* Update src/transformers/convert_slow_tokenizer.py

* make sure we are BC

* fix Llama test

* nit

* revert

* more test

* style

* update

* small update w.r.t tokenizers

* nit

* don't split

* lol

* add a test for `add_prefix_space=False`

* fix gemma tokenizer as well

* update

* fix gemma

* nicer failures

* fixup

* update

* fix the example for legacy = False

* use `huggyllama/llama-7b` for the PR doctest

* nit

* use from_slow

* fix llama
2024-04-23 23:12:59 +02:00
12c39e5693 Fix use_cache for xla fsdp (#30353)
* Fix use_cache for xla fsdp

* Fix linters
2024-04-23 18:01:35 +01:00
b8b1e442e3 Rename torch.run to torchrun (#30405)
torch.run does not exist anywhere as far as I can tell.
2024-04-23 09:04:17 -07:00
696ededd2b Remove old TF port docs (#30426)
* Remove old TF port guide

* repo-consistency

* Remove some translations as well for consistency

* Remove some translations as well for consistency
2024-04-23 16:06:20 +01:00
416fdbad7a Fix LayoutLMv2 init issue and doctest (#30278)
* fix

* try suggestion

* update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-04-23 15:33:17 +02:00
d179b9dc78 FIX: re-add bnb on docker image (#30427)
Update Dockerfile
2024-04-23 15:32:54 +02:00
4b63d0139e Make EosTokenCriteria compatible with mps (#30376) 2024-04-23 15:23:52 +02:00
57fc00f36c fix for itemsize => element_size() for torch backwards compat (#30133)
* fix for itemsize => element_size() for torch backwards compat

* improve handling of element counting

* Update src/transformers/modeling_utils.py

* fixup

* Update src/transformers/modeling_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Younes Belkada <younesbelkada@gmail.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-04-23 15:00:28 +02:00
77b59dce9f Fix on "cache position" for assisted generation (#30068)
* clean commit history I hope

* get kv seq length correctly

* PR suggestions

* Update src/transformers/testing_utils.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* add comment

* give gpt bigcode it's own overriden method

* remove code

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2024-04-23 16:23:36 +05:00
31921d8d5e Jax: scipy version pin (#30402)
scipy pin for jax
2024-04-23 10:42:17 +01:00
2d61823fa2 [tests] add require_torch_sdpa for test that needs sdpa support (#30408)
* add cuda flag

* check for sdpa

* add bitsandbytes
2024-04-23 10:39:38 +01:00
04ac3245e4 fix: link to HF repo/tree/revision when a file is missing (#30406)
fix: link to HF repo tree when a file is missing
2024-04-23 10:05:57 +01:00
179ab098da remove redundant logging from longformer (#30365) 2024-04-23 09:57:03 +01:00
c651ea982b [Grounding DINO] Add support for cross-attention in GroundingDinoMultiHeadAttention (#30364)
* Added cross attention support

* Fixed dtypes

* Fixed assumption

* Moved to decoder
2024-04-23 09:56:14 +01:00
408453b464 Add inputs embeds in generation (#30269)
* Add inputs embeds in generation

* always scale embeds

* fix-copies

* fix failing test

* fix copies once more

* remove embeds for models with scaling

* second try to revert

* codestyle
2024-04-23 13:14:48 +05:00
6c1295a0d8 show -rs to show skip reasons (#30318) 2024-04-23 08:05:42 +02:00
e74d793a3c [docs] LLM inference (#29791)
* first draft

* feedback

* static cache snippet

* feedback

* feedback
2024-04-22 12:41:51 -07:00
b4c18a830a [FEAT]: EETQ quantizer support (#30262)
* [FEAT]: EETQ quantizer support

* Update quantization.md

* Update docs/source/en/main_classes/quantization.md

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* Update docs/source/en/quantization.md

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* Update docs/source/en/quantization.md

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* Update src/transformers/integrations/__init__.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* Update src/transformers/integrations/__init__.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* Update src/transformers/integrations/eetq.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* Update src/transformers/integrations/eetq.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* Update src/transformers/integrations/eetq.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* Update tests/quantization/eetq_integration/test_eetq.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* Update src/transformers/quantizers/auto.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* Update src/transformers/quantizers/auto.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* Update src/transformers/quantizers/auto.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* Update src/transformers/quantizers/quantizer_eetq.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* Update tests/quantization/eetq_integration/test_eetq.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* Update src/transformers/quantizers/quantizer_eetq.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* Update tests/quantization/eetq_integration/test_eetq.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* Update tests/quantization/eetq_integration/test_eetq.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* [FEAT]: EETQ quantizer support

* [FEAT]: EETQ quantizer support

* remove whitespaces

* update quantization.md

* style

* Update docs/source/en/quantization.md

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* add copyright

* Update quantization.md

* Update docs/source/en/quantization.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/quantization.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Address the comments by amyeroberts

* style

---------

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
Co-authored-by: Marc Sun <marc@huggingface.co>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-04-22 20:38:58 +01:00
569743f510 Add sdpa and fa2 the Wav2vec2 family. (#30121)
* add sdpa to wav2vec.
Co-authored-by: kamilakesbi <kamil@huggingface.co>
Co-authored-by: jp1924 <jp42maru@gmail.com>

* add fa2 to wav2vec2

* add tests

* fix attention_mask compatibility with fa2

* minor dtype fix

* replace fa2 slow test

* fix fa2 slow test

* apply code review + add fa2 batch test

* add sdpa and fa2 to hubert

* sdpa and fa2 to data2vec_audio

* sdpa and fa2 to Sew

* sdpa to unispeech + unispeech sat

* small fix

* attention mask in tests

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* add_speedup_benchmark_to_doc

---------

Co-authored-by: kamil@huggingface.co <kamil.akesbi@gmail.com>
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
2024-04-22 18:30:38 +01:00
367a0dbd53 FIX / PEFT: Pass device correctly to peft (#30397)
pass device correctly to peft
2024-04-22 18:13:19 +02:00
13b3b90ab1 Fix DETA save_pretrained (#30326)
* Add class_embed to tied weights for DETA

* Fix test_tied_weights_keys for DETA model

* Replace error raise with assert statement
2024-04-22 17:11:13 +01:00
6c7335e053 Jamba: fix left-padding test (#30389)
fix test
2024-04-22 17:02:55 +01:00
f3b3533e19 Fix layerwise GaLore optimizer hard to converge with warmup scheduler (#30372)
Update optimization.py
2024-04-22 17:00:26 +01:00
0d84901cb7 Terminator strings for generate() (#28932)
* stash commit (will discard all of this)

* stash commit

* First commit - needs a lot of testing!

* Add a test

* Fix imports and make the tests actually test something

* Tests pass!

* Rearrange test

* Add comments (but it's still a bit confusing)

* Stop storing the tokenizer

* Comment fixup

* Fix for input_ids with a single sequence

* Update tests to test single sequences

* make fixup

* Fix incorrect use of isin()

* Expand tests to catch more cases

* Expand tests to catch more cases

* make fixup

* Fix length calculation and update tests

* Handle Ġ as a space replacement too

* Update src/transformers/generation/stopping_criteria.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Add optimizations from Joao's suggestion

* Remove TODO

* Update src/transformers/generation/stopping_criteria.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update tests/generation/test_stopping_criteria.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* make fixup

* Rename some variables and remove some debugging clauses for clarity

* Add tests for the sub-methods

* Clarify one test slightly

* Add stop_strings to GenerationConfig

* generate() supports stop_string arg, asks for tokenizer if not provided

* make fixup

* Cleanup code and rename variables for clarity

* Update tokenizer error

* Update tokenizer passing, handle generation on GPU

* Slightly more explanation cleanup

* More comment cleanup

* Factor out the token cleanup so it's more obvious what we're doing, and we can change it later

* Careful with that cleanup!

* Cleanup + optimizations to _get_matching_positions

* More minor performance tweaks

* Implement caching and eliminate some expensive ops (startup time: 200ms -> 9ms)

* Remove the pin_memory call

* Parallelize across all stop strings!

* Quick fix for tensor devices

* Update embeddings test for the new format

* Fix test imports

* Manual patching for BERT-like tokenizers

* Return a bool vector instead of a single True/False

* Better comment

* Better comment

* Add tests from @zucchini-nlp

* Amy's list creation nit

* tok_list -> token_list

* Push a big expanded docstring (should we put it somewhere else?)

* Expand docstrings

* Docstring fixups

* Rebase

* make fixup

* Make a properly general method for figuring out token strings

* Fix naming throughout the functions

* Move cache, refactor, fix tests

* Add comment

* Remove finished TODO

* Remove finished TODO

* make fixup

* Update src/transformers/generation/stopping_criteria.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update and shorten docstring

* Update tests to be shorter/clearer and test specific cases

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-04-22 14:13:04 +01:00
0e9d44d7a1 Update docstrings for text generation pipeline (#30343)
* Update docstrings for text generation pipeline

* Fix docstring arg

* Update docstring to explain chat mode

* Fix doctests

* Fix doctests
2024-04-22 14:01:30 +01:00
2d92db8458 Llama family, fix use_cache=False generation (#30380)
* nit to make sure cache positions are not sliced

* fix other models

* nit

* style
2024-04-22 14:42:57 +02:00
f16caf44bb Add FSDP config for CPU RAM efficient loading through accelerate (#30002)
* Add FSDP config for CPU RAM efficient loading

* Style fix

* Update src/transformers/training_args.py

Co-authored-by: Zach Mueller <muellerzr@gmail.com>

* Update src/transformers/training_args.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Add sync_module_states and cpu_ram_efficient_loading validation logic

* Update src/transformers/training_args.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Style

---------

Co-authored-by: Zach Mueller <muellerzr@gmail.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-04-22 13:15:28 +01:00
9138935784 GenerationConfig: warn if pad token is negative (#30187)
* warn if pad token is negative

* Update src/transformers/generation/configuration_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/generation/configuration_utils.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/generation/configuration_utils.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2024-04-22 11:31:38 +01:00
8b02bb6e74 Enable multi-device for more models (#30379)
* feat: support for vitmatte

* feat: support for vivit

* feat: support for beit

* feat: support for blip :D

* feat: support for data2vec
2024-04-22 10:57:27 +01:00
b20b017949 Nits for model docs (#29795)
* Update llava_next.md

* Update seggpt.md
2024-04-22 10:41:03 +01:00
8c12690cec [Grounding DINO] Add resources (#30232)
* Add resources

* Address comments

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-04-19 21:03:07 +02:00
d2cec09baa Add TF swiftformer (#23342)
* Duplicate swiftformer

* Convert SwiftFormerPatchEmbedding

* Convert SwiftFormerEmbeddings

* Convert TFSwiftFormerMlp

* Convert TFSwiftFormerConvEncoder

* Convert TFSwiftFormerLocalRepresentation

* convert TFSwiftFormerEncoderBlock

* Convert SwiftFormerStage

* Convert SwiftFormerEncoder

* Add TFSWiftFormerPreTrainedModel

* Convert SwiftFormerForImageClassification

* Add kwargs and start drop path

* Fix syntax

* Change Model class name

* Add TFSwiftFormer to __init__

* Duplicate test_modeling_swiftformer

* First test conversions

* Change require_torch to require_tf

* Add exports to swiftformer __init__

* Add TFSwiftFormerModel wrapper

* Fix __init__ and run black

* Remove docstring from MainLayer, fix padding

* Use keras.layers.Activation on keras.Sequential

* Fix swiftformer exports

* Fix activation layer from config

* Remove post_inits

* Use tf.keras.layers.ZeroPadding2D

* Convert torch normalize

* Change tf test input shape

* Fix softmax and reduce_sum

* Convert expand_dims and repeat

* Add missing reshape and tranpose

* Simplify TFSwiftFormerEncoderBlock.call

* Fix mismatch in patch embeddings

* Fix expected output shape to match channels last

* Fix swiftformer typo

* Disable test_onnx

* Fix TFSwiftFormerForImageClassification call

* Add unpack inputs

* Convert flatten(2).mean(-1)

* Change vision dummy inputs (to be reviewed)

* Change test_forward_signature to use .call

* Fix @unpack_inputs

* Set return_tensors="tf" and rename class

* Rename wrongly named patch_embeddings layer

* Add serving_output and change dummy_input shape

* Make dimensions BCHW and transpose inside embedding layer

* Change SwiftFormerEncoderBlock

* Fix ruff problems

* Add image size to swiftformer config

* Change tranpose to MainLayer and use -1 for reshape

* Remove serving_outputs and dummy_inputs

* Remove test_initialization test from tf model

* Make Sequential component a separate layer

* Fix layers' names

* Tranpose encoder outputs

* Fix tests and check if hidden states is not None

* Fix TFSwiftFormerForImageClassification

* Run make fixup

* Run make fix-copies

* Update modeling_tf_auto

* Update docs

* Fix modeling auto mapping

* Update modelint_tf_swiftformer docs

* Fill image_size doc and type

* Add reduction=None to loss computation

* Update docs

* make style

* Debug: Delete the tip to see if that changes anything

* Re-add tip

* Remove add_code_sample_docstrings

* Remove unused import

* Get the debug to actually tell us the problem it has with the docs

* Try a substitution to match the PyTorch file?

* Add swiftformer to ignore list

* Add build() methods

* Update copyright year

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Remove FIXME comment

* Remove from_pt

* Update copyright year

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Rename one-letter variables

* Remove FIXMEs related to momentum

* Remove old TODO comment

* Remove outstanding FIXME comments

* Get dropout rate from config

* Add specific dropout config for MLP

* Add convencoder dropout to config

* Pass config to SwiftFormerDropPath layer

* Fix drop_path variable name and add Adapted from comment

* Run ruff

* Removed copied from comment

* Run fix copies

* Change drop_path to identity to match pt

* Cleanup build() methods and move to new keras imports

* Update docs/source/en/model_doc/swiftformer.md

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* Raise error if drop_path_rate > 0.0

* Apply suggestions from code review

Replace (self.dim), with self.dim,

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* Remove drop_path function

* Add training to TFSwiftFormerEncoder

* Set self.built = True last

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Should have been added to previous commit

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Change default_feature_extractor to default_image_processor

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Import Keras from modeling_tf_utils

* Remove relative import

* Run ruff --fix

* Move import keras to tf_available

* Add copied from comment to test_forward_signature

* Reduce batch size and num_labels

* Extract loss logic to hf_compute_loss

* Run ruff format

---------

Co-authored-by: Matt <rocketknight1@gmail.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2024-04-19 18:31:43 +01:00
21c912e79c Fix config + attn_implementation in AutoModelForCausalLM.from_pretrained (#30299)
* Update modeling_utils.py

* Update test_modeling_utils.py

* Update test_modeling_utils.py

* Update test_modeling_utils.py
2024-04-19 17:45:53 +01:00
b1cd48740e Do not remove half seq length in generation tests (#30016)
* remove seq length from generation tests

* style and quality

* [test_all] & PR suggestion

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update tests/generation/test_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* [test all] remove unused variables

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-04-19 17:32:52 +01:00
b4fd49b6c5 Update unwrap from accelerate (#29933)
* Use unwrap with the one in accelerate

* oups

* update unwrap

* fix

* wording

* raise error instead

* comment

* doc

* Update src/transformers/modeling_utils.py

Co-authored-by: Zach Mueller <muellerzr@gmail.com>

* style

* put else

---------

Co-authored-by: Zach Mueller <muellerzr@gmail.com>
2024-04-19 18:05:34 +02:00
fbd8c51ffc Restore casting of masked_spec_embed (#30336)
* fix Parameter dtype in audio models

* restore casting of masked_spec_embed

* restore casting of masked_spec_embed
2024-04-19 17:18:36 +02:00
0927bfd002 Deprecate default chat templates (#30346)
* initial commit, remove warnings on default chat templates

* stash commit

* Raise a much sterner warning for default chat templates, and prepare for depreciation

* Update the docs
2024-04-19 15:41:26 +01:00
e67ccf0610 Transformers Metadata (#30344) 2024-04-19 15:08:53 +02:00
32d4bef641 parallel job limit for doctest (#30342)
limit

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-04-19 14:46:08 +02:00
4ed0e51cc3 [Whisper] Fix slow tests (#30152)
* fix tests

* style

* more fixes

* move model to device

* move logits to cpu

* update expected values

* use ungated dataset

* fix

* fix

* update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-04-19 13:21:46 +02:00
91472cf5fc Pipeline: fix pad_token_id again (#30338)
fix again
2024-04-19 16:04:11 +05:00
cd09a8dfbc [Feature Extractors] Fix kwargs to pre-trained (#30260)
fixes
2024-04-19 11:16:08 +01:00
4ab7a28216 feat: Upgrade Weights & Biases callback (#30135)
* feat: upgrade wandb callback with new features

* fix: ci issues with imports and run fixup
2024-04-19 11:03:32 +01:00
30b453206d Enable multi-device for some models (#30207)
* feat: multidevice for resnet

* feat: yes! resnet

* fix: compare all elements in tuple

* feat: support for regnet

* feat: support for convnextv2

* feat: support for bit

* feat: support for cvt

* feat: add support for focalnet

* feat: support for yolos

* feat: support for glpn

* feat: support for imagegpt

* feat: support for levit

* feat: support for mgp_str

* feat: support for mobilnet_v1

* feat: support for mobilnet_v2

* feat: support for mobilevit

* feat: support for mobilevitv2

* feat: support for poolformer

* fix: copies

* fix: code quality check

* update: upstream changes from main

* fix: consistency check

* feat: support for sam

* feat: support for switchformer

* feat: support for swin

* feat: support for swinv2

* feat: support for timesformer

* feat: suport for trocr

* feat: support for upernet

* fix: check copies

* update: rerun CI

* update: rerun again, maybe

* update: one more rerun

---------

Co-authored-by: Jacky Lee <jackylee328@gmail.com>
2024-04-19 09:24:44 +01:00
ecfe9be705 [UDOP] Add special tokens to tokenizer (#29594)
* Add special tokens

* Add special tokens

* Use fmt

* Uncomment code

* Add test

* Remove scripts

* Address comments

* Improve tests

* Address comment

* Remove flag
2024-04-19 09:06:01 +02:00
d9850abd40 Fix AssertionError in clip conversion script (#30321)
* fix

* fix

* fix

* update comments

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-04-18 20:18:02 +02:00
01ae3b87c0 Avoid jnp import in utils/generic.py (#30322)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-04-18 19:46:46 +02:00
60d5f8f9f0 🚨🚨🚨Deprecate evaluation_strategy to eval_strategy🚨🚨🚨 (#30190)
* Alias

* Note alias

* Tests and src

* Rest

* Clean

* Change typing?

* Fix tests

* Deprecation versions
2024-04-18 12:49:43 -04:00
c86d020ead Fix test transposing image with EXIF Orientation tag (#30319)
* Fix test with exif_transpose image

* Replace datasets with PIL to load image in tests
2024-04-18 17:41:20 +01:00
57b92bbfe5 disable use_cache if using gradient checkpointing (#30320) 2024-04-18 17:18:03 +01:00
68be1d3c16 fix Parameter dtype in audio models (#30310) 2024-04-18 17:18:01 +02:00
791321451d Fix: remove pad token id in pipeline forward arguments (#30285) 2024-04-18 15:31:32 +01:00
df96438484 Fix missing prev_ci_results (#30313)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-04-18 16:10:25 +02:00
ce8e64fbe2 Dev version 2024-04-18 15:53:25 +02:00
5728b5ad00 FIX: Fixes unexpected behaviour for Llava / LLama & AWQ Fused modules + revert #30070 at the same time (#30317)
* Update awq.py

* style

* revert felix PR

* fix

* add felix comments
2024-04-18 15:51:17 +02:00
005b957fb8 Add DBRX Model (#29921)
* wip

* fix __init__.py

* add docs

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* address comments 1

* work on make fixup

* pass configs down

* add sdpa attention

* remove DbrxBlock

* add to configuration_auto

* docstring now passes formatting test

* fix style

* update READMEs

* add dbrx to modeling_auto

* make fix-copies generated this

* add DBRX_PRETRAINED_CONFIG_ARCHIVE_MAP

* config docstring passes formatting test

* rename moe_loss_weight to router_aux_loss_coef

* add to flash-attn documentation

* fix model-path in tests

* Explicitly make `"suli"` the default `ffn_act_fn`

Co-authored-by: Wing Lian <wing.lian@gmail.com>

* default to using router_aux_loss_coef over ffn_config[moe_loss_weight]

* fix _flash_attn_uses_top_left_mask and is_causal

* fix tests path

* don't use token type IDs

* follow Llama and remove token_type_ids from test

* init ConfigTester differently so tests pass

* remove multiple choice test

* remove question + answer test

* remove sequence classification test

* remove token classification test

* copy Llama tests and remove token_type_ids from test inputs

* do not test pruning or headmasking; style code

* add _tied_weights_keys parameter to pass test

* add type hints

* fix type check

* update config tester

* remove masked_lm test

* remove encoder tests

* initialize DbrxModelTester with correct params

* style

* torch_dtype does not rely on torch

* run make fixup, fix-copies

* use https://huggingface.co/v2ray/dbrx-base-fixed/blob/main/modeling_dbrx.py

* add copyright info

* fix imports and DbrxRotaryEmbedding

* update DbrxModel docstring

* use copies

* change model path in docstring

* use config in DbrxFFN

* fix flashattention2, sdpaattention

* input config to DbrXAttention, DbrxNormAttentionNorm

* more fixes

* fix

* fix again!

* add informative comment

* fix ruff?

* remove print statement + style

* change doc-test

* fix doc-test

* fix docstring

* delete commented out text

* make defaults match dbrx-instruct

* replace `router_aux_loss_coef` with `moe_loss_weight`

* is_decoder=True

* remove is_decoder from configtester

* implement sdpa properly

* make is_decoder pass tests

* start on the GenerationTesterMixin tests

* add dbrx to sdpa documentation

* skip weight typing test

* style

* initialize smaller model

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* Add DBRX to toctree

* skip test_new_cache_format

* make config defaults smaller again

* add pad_token_id

* remove pad_token_id from config

* Remove all references to DBRX_PRETRAINED_CONFIG_ARCHIVE_MAP

* Update src/transformers/models/dbrx/__init__.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/dbrx/modeling_dbrx.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update docs/source/en/model_doc/dbrx.md

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* Update src/transformers/models/dbrx/configuration_dbrx.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update docs/source/en/model_doc/dbrx.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fix typo

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* update docs, fix configuration_auto.py

* address pr comments

* remove is_decoder flag

* slice

* fix requires grad

* remove grad

* disconnect differently

* remove grad

* enable grads

* patch

* detach expert

* nissan al ghaib

* Update modeling_dbrx.py

* Update src/transformers/models/dbrx/modeling_dbrx.py

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* replace "Gemma" with "Dbrx"

* remove # type: ignore

* don't hardcode vocab_size

* remove ToDo

* Re-add removed idefics2 line

* Update test to use tiny-random!

* Remove TODO

* Remove one more case of loading the entire dbrx-instruct in the tests

* Update src/transformers/models/dbrx/modeling_dbrx.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* address some comments

* small model

* add dbrx to tokenization_auto

* More docstrings with add_start_docstrings

* Dbrx for now

* add PipelineTesterMixin

* Update src/transformers/models/dbrx/configuration_dbrx.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* remove flash-attn2 import error

* fix docstring

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* add useage example

* put on one line

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* fix ffn_act_fn

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* change "dbrx" to "DBRX" for display purposes.

* fix __init__.py?

* fix __init__.py

* fix README

* return the aux_loss

* remove extra spaces

* fix configuration_auto.py

* fix format in tokenization_auto

* remove new line

* add more useage examples

---------

Co-authored-by: Abhi Venigalla <abhi.venigalla@databricks.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Eitan Turok <eitan.turok@databricks.com>
Co-authored-by: Eitan Turok <150733043+eitanturok@users.noreply.github.com>
Co-authored-by: Wing Lian <wing.lian@gmail.com>
Co-authored-by: Eitan Turok <eitanturok@gmail.com>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
Co-authored-by: Matt <rocketknight1@gmail.com>
Co-authored-by: Your Name <you@example.com>
Co-authored-by: Mihir Patel <mihir.v.patel7@gmail.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-04-18 15:18:52 +02:00
63c5e27efb Do not drop mask with SDPA for more cases (#30311)
* overlooked

* style

* cleaner
2024-04-18 20:37:09 +08:00
acab997bef Revert "Re-enable SDPA's FA2 path (#30070)" (#30314)
* Revert "Re-enable SDPA's FA2 path (#30070)"

This reverts commit 05bdef16b611df0946a6a602503f1ace604b6c80.

* Revert "Fix quality Olmo + SDPA (#30302)"

This reverts commit ec92f983af5295fc92414a37b988d8384785988a.
2024-04-18 14:09:52 +02:00
7509a0ad98 Fix RecurrentGemma device_map (#30273)
* Switch to non persistant buffer

* fix device mismatch issue due to cache

* style
2024-04-18 11:52:10 +02:00
9459efb807 Add atol for sliding window test (#30303)
atol for sliding window test
2024-04-18 17:08:34 +08:00
3f20877da9 Add jamba (#29943)
* Add jamba arch

* apply "make fix-copies" changes

* fix link to model in JambaConfig docstring

* Add n_ctx in modeling file because repo-consistency wants that

* Add jamba to flash attention and sdpa documentation

* mamba dt_proj quant fix now works for LoRA as well

* override test_left_padding_compatibility and use a more permissive tolerance. left padding numerical difference are accentuated by mamba layers

* add jamba to tokenization auto

* fix comments of shape (PR #24 in the model page: https://huggingface.co/ai21labs/Jamba-v0.1/discussions/24)

* simple PR fixes

* remove unnecessary kwargs from JambaAttentionDecoderLayer and JambaMambaDecoderLayer

* remove the LoRA hack for the mamba dt_proj bias. It was solved in huggingface/peft#1530 (https://github.com/huggingface/peft/pull/1530)

* Add copied comment on JambaMLP (it's the same as MixtralMLP)

* remove padding_mask warnings. It's not supported anymore

* fix docstring. Float instead of int

* A few more minor PR fixes

* (1) lowercase names for mamba layernorms (2) remove _apply_inner_layernorms and do it directly in the forward pass

* Return None attention weights from mamba layers. Append to all attentions only if not None.

* remove some leftover jamba archive lists

* Better separation between expert vs non-expert layers. non-expert layers return None as router_logits, and it is not concatenated to all_router_logits returned from JambaModel

* no need to take router_logits at config.expert_layer_offset anymore. result.router_logits now holds results only for expert layers

* Add Jamba paper on READMEs

* (1) rename n_ctx -> max_position_embeddings (2) don't use it in the modeling file since it's not needed (set it as an exception to check_config_attributes)

* Add copied from comment

* remove the code path for apply_inner_layernorms=False. Jamba always has the inner mamba layernorms

* clearer docstring for _convert_to_standard_cache

* style fixes

* Change calc_logits_for_entire_prompt (bool) to num_logits_to_keep (int). Adapt assisted decoding code tp use it. Also small change in low memory beam search decoding path to support this new int value in model_inputs

* rename test so it still overrides what its meant to override

* draft

* oups

* nit

* remove more complexe logic

* fix names used in config

* fix fix fix

* style

* fix some more failing tests

* generate did not init the cache 🙃

* more small nits

* typo

* config.mamba_expand * config.hidden_size for the intermediate size of the mamba shapes

* fix init of pkv with torch.tensor()

* empty tensor

* fix some init issues

* stupid changes required by generate because it does not even support it's own DynamicCache class

* more fixes

* fix general assisted gen cache_position bug

* tests passing

* Add offsets and periods as SPECIAL_CASES_TO_ALLOW in check_config_attributes.py

* fix reorder_cache to reorder mamba states and override some more functions in HybridMambaAttentionDynamicCache

* no need to override test_past_key_values_format() and _check_past_key_values_for_generate() in tests anymore

* fix docstrings and typehints for past_key_values

* style fixes

* fix docs

* change typehint due to copy from Mixtral

* forgot import

* import order

* Add configuration_jamba and modeling_jamba to not_doctested because the model is too big to download (in docstring of JambaForCausalLM.forward)

* Add integration test with tiny tandom Jamba model on hub

* fix flash attention cache shapes

* bring back forgotten hidden states

* rename HybridMambaAttentionDynamicCache.seqlen_offset to has_previous_state (and make bool) and bugfix - it should be set to True after a finished forward pass of the entire model

* align integration test after modeling fixes

* bugfix - mamba can use precomputed states only of forward pass is on a single token

* bugfix - mamba can use precomputed states only if they match the batch size

* typo

* remove making _prepare_4d_causal_attention_mask a leaf function

* stop using past_seq_len.get_seq_length(). Use cache positions instead. Adjust test (test_decoder_model_past_with_large_inputs) accordingly

---------

Co-authored-by: Arthur Zucker <arthur.zucker@gmail.com>
Co-authored-by: Joao Gante <joao@huggingface.co>
2024-04-18 11:04:02 +02:00
28a22834bf Fix all torch pipeline failures except one (#30290)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-04-18 10:35:43 +02:00
7915a25976 Fix donut token2json multiline (#30300)
* Fix multiline processing

* Update test for token2json
2024-04-18 09:30:40 +01:00
b65df514d1 Add Flash Attention 2 to M2M100 model (#30256)
* Added flash attention 2.

* Fixes.

* Fix inheritance.

* Fixed init.

* Remove stuff.

* Added documentation.

* Add FA2 to M2M100 documentation.

* Add test.

* Fixed documentation.

* Update src/transformers/models/m2m_100/modeling_m2m_100.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update docs/source/en/model_doc/nllb.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Fixed variable name.

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-04-18 10:27:58 +02:00
ec92f983af Fix quality Olmo + SDPA (#30302)
fix olmo
2024-04-17 23:08:11 +02:00
05bdef16b6 Re-enable SDPA's FA2 path (#30070)
* tentatively re-enable FA2 + SDPA

* better comment

* _ignore_causal_mask_sdpa as staticmethod

* type hints

* use past_seen_tokens instead

* enable copied from for sdpa

* ruff

* llama simplifications on review

* remove unnecessary self.is_causal check

* fix copies

* cleaning

* precise message

* better doc

* add test

* simplify

* Update src/transformers/models/llama/modeling_llama.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/llama/modeling_llama.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/llama/modeling_llama.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* style

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-04-18 04:21:00 +08:00
e4ea19b958 Add OLMo model family (#29890)
* Add OLMo using add-new-model-like with Llama

* Fix incorrect tokenizer for OLMo

* Copy-paste relevant OLMo methods and their imports

* Add OLMo config

* Modify OLMo config to follow HF conventions

* Remove unneeded Llama code from OLMo model

* Add ability for OLMo model to output attentions

* Add OLMoPreTrainedModel and OLMoModel

* Add OLMoForCausalLM

* Minor fixes to OLMo model for style and missing functions

* Implement OLMo tokenizer

* Implement OLMo to HF conversion script

* Add tests for OLMo model

* Add tests for OLMo fast tokenizer

* Add auto-generated dummy objects

* Remove unimplemented OLMo classes from auto and init classes and re-format

* Add README and associated auto-generated files

* Use OLMo names for common properties

* Run make fixup

* Remove `|` from OLMo typing

* Remove unneeded tokenization_olmo.py

* Revert model, config and converter to add-new-model-like Llama

* Move logic for adding bos/eos token into GPTNeoxTokenizerFast

* Change OLMoConfig defaults to match OLMo-7B

* Use GPTNeoXToknizerFast in OLMo tokenizer tests

* Modify auto-generated OLMoModelTests to work for OLMo

* Add non-parametric layer norm OLMoLayerNorm

* Update weight conversion script for OLMo

* Fix __init__ and auto structure for OLMo

* Fix errors from make fixup

* Remove OLMoTokenizerFast from documentation

* Add missing 'Copied from' for OLMoModel._update_causal_mask

* Run make fix-copies

* Rearrange string replacements in OLMoForCausalLM Copied from

* Move OLMo and Llama CausalLM.forward example into global constants

* Fix OLMO_GENERATION_EXAMPLE doc string typo

* Add option for qkv clipping to OLMo

* Rearrange OLMoConfig kwargs in convert_olmo_weights_to_hf

* Add clip_qkv to OLMoConfig in convert_olmo_weights_to_hf

* Fix OLMo tokenization bug using conversion script

* Keep model in full precision after conversion

* Do not add eos token automatically

* Update references to OLMo model in HF Hub

* Do not add eos token during encoding by default

* Fix Llama generation example

* Run make fixup

* OLMo 7B integration test fix

* Remove unneeded special case for OLMoConfig

* OLMo 7B Twin 2T integration test fix

* Fix test_model_7b_greedy_generation

* Remove test_compile_static_cache

* Fix OLMo and Llama generation example

* Run make fixup

* Revert "OLMo 7B integration test fix"

This reverts commit 4df56a4b150681bfa559846f40e9b7b7f97d7908.

* Revert "OLMo 7B Twin 2T integration test fix"

This reverts commit 9ff65a4a294ace89ab047b793ca55e623a9ceefc.

* Ungate 7B integration tests and fix greedy generation test

* Add retries for flaky test_eager_matches_sdpa_generate

* Fix output of doc example for OLMoForCausalLM.forward

* Downsize OLMo doc test for OLMoForCausalLM.forward to 1B model

* Try fix incorrect characters in OLMoForCausalLM.forward doct test

* Try fix incorrect characters in OLMoForCausalLM.forward doc test using end quotes

* Remove pretraining_tp from OLMo config and model

* Add missing 'Copied from' instances

* Remove unneeded causal_mask from OLMoModel

* Revert Llama changes

* Ignore copy for OLMoForCausalLM.forward

* Change 'OLMo' to 'Olmo' in classes

* Move minimal OLMo tokenization tests to model tests

* Add missed 'Copied from' for repeat_kv
2024-04-17 17:59:07 +02:00
8e5f76f511 Upgrading to tokenizers 0.19.0 (#30289)
* [DO NOT MERGE] Testing tokenizers 0.19.0rc0

* Accounting for the breaking change.

* Ruff.

* Upgrading to tokenizers `0.19` (new release with preprend_scheme fixed
and new surface for BPE tiktoken bug).
2024-04-17 17:17:50 +02:00
c15aad0939 Add strategy to store results in evaluation loop (#30267)
* Add evaluation loop container for interm. results

* Add tests for EvalLoopContainer

* Formatting

* Fix padding_index in test and typo

* Move EvalLoopContainer to pr_utils to avoid additional imports

* Fix `eval_do_concat_batches` arg description

* Fix EvalLoopContainer import
2024-04-17 12:42:27 +01:00
8d6b509611 Add token type ids to CodeGenTokenizer (#29265)
* Add create token type ids to CodeGenTokenizer

* Fix inconsistent length of token type ids

* Format source codes

* Fix inconsistent order of methods

* Update docstring

* add test_tokenizer_integration test

* Format source codes

* Add `copied from` comment to CodeGenTokenizerFast

* Add doc of create_token_type_ids_from_sequences

* Make return_token_type_ids False by default

* Make test_tokenizer_integration as slow test

* Add return_token_type_ids to tokenizer init arg

* Add test for tokenizer's init return_token_type_ids

* Format source codes
2024-04-17 12:19:18 +02:00
812a5de229 FIX: Fix push important models CI (#30291)
Update push-important-models.yml
2024-04-17 12:01:09 +02:00
eb75516e7c Fix Fatal Python error: Bus error in ZeroShotAudioClassificationPipelineTests (#30283)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-04-17 11:47:30 +02:00
05dab4e5ba Fix test ExamplesTests::test_run_translation (#30281)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-04-17 11:46:33 +02:00
304c6a1e0d Enable fx tracing for Mistral (#30209)
* tracing for mistral

* typo

* fix copies
2024-04-17 14:38:48 +05:00
98717cb341 Configuring Translation Pipelines documents update #27753 (#29986)
* Configuring Translation Pipelines documents update #27753

Configuring Translation Pipelines documents update

* Language Format Addition

* adding supported list of languages list
2024-04-17 11:27:49 +02:00
080b700805 FIX / AWQ: Fix failing exllama test (#30288)
fix filing exllama test
2024-04-17 11:26:35 +02:00
4114524706 Fix SpeechT5 forward docstrings (#30287) 2024-04-17 11:23:49 +02:00
40eb6d6c5f Fix SDPA sliding window compatibility (#30127)
* fix sdpa + sliding window

* give credit

Co-authored-by: ehuaa <ehuamail@163.com>

* remove unnecessary warning

* fix typog

* add test

---------

Co-authored-by: ehuaa <ehuamail@163.com>
2024-04-17 17:21:26 +08:00
5fabebdb7d Fix test fetcher (doctest) + Idefics2's doc example (#30274)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-04-16 21:25:06 +02:00
37b5946a66 fix: Fixed a raise statement (#30275)
* Fixed a raise statement.

* Minor changes.
2024-04-16 18:49:40 +01:00
c63f158903 BLIP - fix pt-tf equivalence test (#30258)
* BLIP - fix pt-tf equivalence test

* Update tests/models/blip/test_modeling_blip.py

* Update more model tests
2024-04-16 17:46:53 +01:00
e27d9308be Raise relevent err when wrong type is passed in as the accelerator_config (#29997)
* Raise relevent err

* Use type instead
2024-04-16 11:21:24 -04:00
0eaef0c709 add push_to_hub to pipeline (#29172)
* add `push_to_hub` to pipeline

* fix docs

* format with ruff

* update save_pretrained

* update save_pretrained

* remove unnecessary comment

* switch to push_to_hub method in DynamicPipelineTester

* remove unused imports

* update docs for add_new_pipeline

* fix docs for add_new_pipeline

* add comment

* fix italien docs

* changes to token retrieval for pipelines

* Update src/transformers/pipelines/base.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-04-16 15:34:04 +01:00
60dea593ed Workflow: Update tailscale to release version (#30268)
Update tailscale to release version
2024-04-16 15:35:03 +02:00
487505ff45 Allow for str versions of dicts based on typing (#30227)
* Bookmark, initial impelemtation. Need to test

* Clean

* Working fully, woop woop

* I think working version now, testing

* Fin!

* rm cast, could keep None

* Fix typing issue

* rm typehint

* Add test

* Add tests and make more rigid
2024-04-16 08:15:09 -04:00
b86d0f4eca FIX: Fix 8-bit serialization tests (#30051)
* fix 8-bit serialization tests

* add more clarification

* Update src/transformers/quantizers/quantizer_bnb_8bit.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-04-16 12:28:10 +02:00
ddf5f2588f FIX: Fix corner-case issue with the important models workflow (#30212)
* Update push-important-models.yml

* dummy commit

* Update modeling_bark.py

* test

* test

* test

* another test

* another test

* test

* final test

* final test

* test

* another test

* test

* test

* another test

* test llama

* revert everything

* remove echo
2024-04-16 11:15:57 +01:00
cbc2cc187a More fixes for doctest (#30265)
* fix

* update

* update

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-04-16 11:58:55 +02:00
51bcadc10a Update ko/_toctree.yml (#30062)
* fix: update `ko/_toctree.yml`

* fix: update ko/_toctree.yml

* Update docs/source/ko/_toctree.yml

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* fix: delete `perf_infer_gpu_many`

* fix: Replace untranslated docs with `in_translation`

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* fix: Replace untraslated docs with `in_translation`

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-04-15 10:42:46 -07:00
5be21302ad Remove incorrect arg in codellama doctest (#30257)
Remove incorrect arg in codellama docstring
2024-04-15 18:31:23 +01:00
8127f39624 [Docs] Update recurrent_gemma.md for some minor nits (#30238)
Update recurrent_gemma.md
2024-04-15 18:30:59 +02:00
6b78360e6d Add Idefics2 (#30253)
* Initial add model additions

* Test

* All weights loading

* Can perform full forward pass

* Local and remote the same

* Matching local and remote

* Fixup

* Idefics2Model importable; fixup docstrings

* Don't skip by default

* Remove deprecated use_resampler arg

* Remove self.config

* DecoupledLinear takes config

* Tidy up

* Enable eager attention and tidy up

* Most tests passing

* Update for batch of processed images

* Add image processor

* Update doc pages

* Update conversion script

* Remove erroneous breakpoint

* Remove accidendtal spelling change

* Update to reflect changes on hub - make generate work

* Fix up

* Image processor tests

* Update tests

* Add a processor

* Add a processor

* Update convert script

* Update modeling file - remove fixmes

* Bug fix

* Add processing test

* Use processor

* Fix up

* Update src/transformers/models/idefics2/modeling_idefics2.py

Co-authored-by: Victor SANH <victorsanh@gmail.com>

* Update src/transformers/models/idefics2/modeling_idefics2.py

Co-authored-by: Victor SANH <victorsanh@gmail.com>

* Fix test

* Update config - PR comments and defaults align with checkpoint

* Reviewer comments

* Add copied froms for flahs attention

* Update src/transformers/models/idefics2/modeling_idefics2.py

Co-authored-by: Victor SANH <victorsanh@gmail.com>

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Remove qk_layer_norm and freeze_layers functionality

* Fix

* Remove freeze_layer options from config

* Sync with upstream main

* Fix attention shapes siglip

* Remove Llava-next refs - TO REBASE

* Use AutoModel for text model

* Add comment to explain vision embeddings

* Fix issue with tie_word_embeddings

* Address review comments

* Fix and fix up

* Chat templates for idefics

* Fix copies

* Fix

* Add layer norms to FA2

* Fix tests

* Apply suggestions from code review

Co-authored-by: Victor SANH <victorsanh@gmail.com>

* Fix

* Review comments

* Update src/transformers/models/idefics2/modeling_idefics2.py

Co-authored-by: Victor SANH <victorsanh@gmail.com>

* Update inputs merger

* Merge weights in correct order

* Update convert script

* Update src/transformers/models/idefics2/processing_idefics2.py

Co-authored-by: Victor SANH <victorsanh@gmail.com>

* Update template

* Model code examples (fix idefics too)

* More review comments

* Tidy up

* Update processing

* Fix attention mask preparation

* Update inputs_merger inputs

* Vectorize inputs_merger

* Update src/transformers/models/idefics2/__init__.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/idefics2/modeling_idefics2.py

* Review comments

* saying bye to the `qk_layer_norms`

* Simplify

* Update latents

* Remove erroneuous readme changes

* Return images when applying chat template

* Fix bug - prompt images are for a single sample

* Update src/transformers/models/idefics2/modeling_idefics2.py

* image splitting

* fix test

* some more comment

* some comment

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/idefics2/image_processing_idefics2.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update processor

* Update model tests

* Update src/transformers/models/idefics2/processing_idefics2.py

Co-authored-by: Victor SANH <victorsanh@gmail.com>

* Update src/transformers/models/idefics2/processing_idefics2.py

Co-authored-by: Victor SANH <victorsanh@gmail.com>

* Don't add BOS in template

* Update src/transformers/models/idefics2/processing_idefics2.py

Co-authored-by: Victor SANH <victorsanh@gmail.com>

* Remove index in examples

* Update tests to reflect #13

* Update src/transformers/models/idefics2/processing_idefics2.py

Co-authored-by: Victor SANH <victorsanh@gmail.com>

* PR comment - consistent typing

* Update readme and model doc

* Update docs

* Update checkpoint references

* Update examples

* Fix and update tests

* Small addition

* Update tests - remove copied from as no ignore placement copy could be found

* Update example

* small fixes

* Update docs/source/en/model_doc/idefics2.md

Co-authored-by: Victor SANH <victorsanh@gmail.com>

* Update docs/source/en/model_doc/idefics2.md

Co-authored-by: Victor SANH <victorsanh@gmail.com>

* Update README.md

Co-authored-by: Victor SANH <victorsanh@gmail.com>

* Connector model as bridge

* Fix up

* Fix up

* Don't pass model inputs for generation kwargs update

* IDEFICS-2 -> Idefics2

* Remove config archive name

* IDEFICS-2 -> Idefics2

* Add back llava-next

* Update readmes

* Add requirements for processor tester

* Use custom convert_to_rgb to avoid possible BC

* Fix doc example

* Fix doc example

* Skip model doc tests - as model to large

* More doc example - account for image splitting

* Update src/transformers/image_transforms.py

* Fix config doctest

---------

Co-authored-by: Pablo Montalvo <39954772+molbap@users.noreply.github.com>
Co-authored-by: ArthurZucker <arthur.zucker@gmail.com>
Co-authored-by: Victor SANH <victorsanh@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-04-15 17:03:03 +01:00
667939a2d3 [tests] add the missing require_torch_multi_gpu flag (#30250)
add gpu flag
2024-04-15 16:30:52 +01:00
440bd3c3c0 update github actions packages' version to suppress warnings (#30249)
update

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-04-15 15:08:09 +02:00
LZR
766810153b round epoch only in console (#30237) 2024-04-15 13:53:21 +01:00
fe2d20d275 Fix doctest more (for docs/source/en) (#30247)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-04-15 14:10:59 +02:00
ec344b560d Separate out kwargs in processor (#30193)
* Separate out kwargs in processor

* Fix up
2024-04-15 12:36:50 +01:00
fc8eda36c5 fix: Fixed type annotation for compatability with python 3.8 (#30243)
* Fixed type annotation for compatability with python 3.8

* Fixed unsorted imports.
2024-04-15 12:31:37 +01:00
b6b6daf2b7 Refactor doctest (#30210)
* fix

* update

* fix

* update

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-04-15 13:20:36 +02:00
b3595cf02b fix: Replaced deprecated typing.Text with str (#30230)
typing.Text is deprecated. Use str instead
2024-04-15 12:18:37 +01:00
f010786218 Set pad_token in run_glue_no_trainer.py #28534 (#30234) 2024-04-15 11:39:10 +01:00
06b1192768 fix: Replace deprecated assertEquals with assertEqual (#30241)
Replace deprecated assertEquals with assertEqual.
2024-04-15 09:36:06 +01:00
8fd2de933c Add test for parse_json_file and change typing to os.PathLike (#30183)
* Add test for parse_json_file

* Change Path to PathLike

* Fix `Import block is un-sorted or un-formatted`

* revert parse_json_file

* Fix ruff format

* Add parse_json_file test
2024-04-15 09:34:36 +01:00
b109257f4f Fixed config.json download to go to user-supplied cache directory (#30189)
* Fixed config.json download to go to user-supplied cache directory.

* Simplied implementation suggested by @amyeroberts
2024-04-12 18:03:49 +01:00
db7d155444 Fix/Update for doctest (#30216)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-04-12 18:59:45 +02:00
4f7b434acb Update modeling_bark.py (#30221)
Change .view() to .reshape() to prevent errors on non-contiguous tensors
2024-04-12 17:03:38 +01:00
bf9a7ab932 Fix RecurrentGemmaIntegrationTest.test_2b_sample (#30222)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-04-12 17:53:25 +02:00
65657d5d8a fix fuyu doctest (#30215)
* fix doctest

* fix example

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-04-12 17:45:15 +02:00
ac33aeeeee fix typo (#30220) 2024-04-12 15:41:35 +01:00
caa5c65db1 fix: Replaced deprecated logger.warn with logger.warning (#30197)
* Fixed deprecated logger.warn by using logger.warning

* Reformatted using ruff.
2024-04-12 10:21:24 +01:00
c82b38a3e2 Fix pipeline logger.warning_once bug (#30195)
Fix warning bug
2024-04-12 09:34:45 +01:00
2c66600c3f ENH: [CI] Add new workflow to run slow tests of important models on push main if they are modified (#29235)
* v1

* v1

* more changes

* more models

* add more markers

* swtich to A10

* use cache

* Update .github/workflows/push-important-models.yml

* Update .github/workflows/push-important-models.yml

* Update modeling_llama.py

* test

* test

* another test

* test

* test

* attempt to fix

* fix

* try automatic tagging

* fix

* alternative approach for collecting

* fix

* fix

* fix

* test

* fix

* fix

* test

* revert some changes

* fix

* fix

* fix

* final push

* fix

* revert

* test new slack message

* oops

* Update send-slack.yml

* test

* test re-usable workflow in steps

* Update action.yml

* test

* another test

* test

* another test

* test

* another test

* another test (hopefully last one)

* attempt to fix

* allez

* removing comma

* test

* another test

* attempt

* test

* test

* test push

* test

* test

* another test

* test

* make it better

* fix commas

* valid json

* test

* another test

* test

* final push

* test

* final push

* more customizable messages

* test

* push

* oops

* another test

* another test

* missing indentation

* more tweaks

* more tweaks

* another test

* another test

* tests

* final push

* use global variables instead

* Update .github/workflows/push-important-models.yml

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* commit to test all models

* issue with arrays

* another test

* attempt to fix failing tests

* Update .github/workflows/push-important-models.yml

* add ssh

* Update .github/workflows/push-important-models.yml

* test

* test

* add install curl

* attempt to fix

* final fix

* test

* test

* test

* fix test

* another test

* add inherit secrets

* push

* revert unneeded changes

* revert

* add env variables

* add pip freeze

* revert change in gemma

* Update .github/workflows/push-important-models.yml

* fix mistral and mixtral

* add pdb

* fix mixtral tesst

* fix

* fix mistral ?

* add fix gemma

* fix mistral

* fix

* test

* anoter test

* fix

* fix

* fix mistral tests

* fix them again

* final fixes for mistral

* fix padding right

* fix whipser fa2

* fix

* fix

* fix gemma

* test

* fix llama

* fix

* fix

* fix llama gemma

* add class attribute

* fix CI

* clarify whisper

* compute_capability

* rename names in some comments

* Add   # fmt: skip

* make style

* Update tests/models/mistral/test_modeling_mistral.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* update

* update

* change branch

* correct workflow

* modify file

* test

* works

* final test

* another fix

* install sudo

* final fix

* add `-y`

* set to `main`

* Update .github/actions/post-slack/action.yml

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* change title

* fixup

* add upload report

* fix

* revert to main

* add empty lines + add comment

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-04-12 10:01:28 +02:00
0bd58f1ce0 Docs PR template (#30171)
remove maria :(
2024-04-11 09:23:55 -07:00
edf0935dca Falcon: make activation, ffn_hidden_size configurable (#30134)
* Falcon chg

* delta

* Docstring

* Fix import block

* doc

* fix and overwrite
2024-04-11 14:04:46 +01:00
5569552cf8 Update output of SuperPointForKeypointDetection (#29809)
* Remove auto class

* Update ImagePointDescriptionOutput

* Update model outputs

* Rename output class

* Revert "Remove auto class"

This reverts commit ed4a8f549d79cdb0cdf7aa74205a185c41471519.

* Address comments
2024-04-11 14:59:30 +02:00
386ef34e7d [Processor classes] Update docs (#29698)
Update docs
2024-04-11 14:24:38 +02:00
e516d1b19d fix: Fixed ruff configuration to avoid deprecated configuration warning (#30179)
* Fixed deprecated ruff configuration in pyproject.toml file

* reverted un-necessary changes.

* small fix.
2024-04-11 12:47:10 +01:00
58b170cdb1 chore: remove repetitive words (#30174)
Signed-off-by: hugehope <cmm7@sina.cn>
2024-04-11 09:49:36 +01:00
e50be9a058 Guard XLA version imports (#30167) 2024-04-11 04:49:16 -04:00
fbdb978eb5 Fix Llava chat template examples (#30130) 2024-04-11 10:38:24 +02:00
b752ad3019 Adding grounding dino (#26087)
* Fixed typo when converting weigths to GroundingDINO vision backbone

* Final modifications on modeling

* Removed unnecessary class

* Fixed convert structure

* Added image processing

* make fixup partially completed

* Now text_backbone_config has its own class

* Modified convert script

* Removed unnecessary config attribute

* Added new function to generate sub sentence mask

* Renamed parameters with gamma in the name as it's currently not allowed

* Removed tokenization and image_processing scripts since we'll map from existing models

* Fixed some issues with configuration

* Just some modifications on conversion script

* Other modifications

* Copied deformable detr

* First commit

* Added bert to model

* Bert validated

* Created Text and Fusion layers for Encoder

* Adapted Encoder layer

* Fixed typos

* Adjusted Encoder

* Converted encoder to hf

* Modified Decoder Layer

* Modified main decoder class

* Removed copy comments

* Fixed forward from GroundingDINOModel and GroundingDINODecoder

* Added all necessary layers, configurations and forward logic up to GroundingDINOModel

* Added all layers to convertion

* Fixed outputs for GroundingDINOModel and GroundingDINOForObjectDetection

* Fixed mask input to encoders and fixed nn.MultiheadAttention batch first and attn output

* Fixed forward from GroundingDINOTextEnhancerLayer

* Fixed output bug with GroundingDINODeformableLayer

* Fixed bugs that prevent GroundingDINOForObjectDetection to run forward method

* Fixed attentions to be passed correctly

* Passing temperature arg when creating Sine position embedding

* Removed copy comments

* Added temperature argument for position embedding

* Fixed typo when converting weigths to GroundingDINO vision backbone

* Final modifications on modeling

* Removed unnecessary class

* Fixed convert structure

* Added image processing

* make fixup partially completed

* Now text_backbone_config has its own class

* Modified convert script

* Removed unnecessary config attribute

* Added new function to generate sub sentence mask

* Renamed parameters with gamma in the name as it's currently not allowed

* Removed tokenization and image_processing scripts since we'll map from existing models

* Fixed some issues with configuration

* Just some modifications on conversion script

* Other modifications

* Fix style

* Improve fixup

* Improve conversion script

* Improve conversion script

* Add GroundingDINOProcessor

* More improvements

* Return token type ids

* something

* Fix more tests

* More improvements

* More cleanup

* More improvements

* Fixed tests, improved modeling and config

* More improvements and fixing tests

* Improved tests and modeling

* Improved tests and added image processor

* Improved tests inference

* More improvements

* More test improvements

* Fixed last test

* Improved docstrings and comments

* Fix style

* Update src/transformers/models/grounding_dino/modeling_grounding_dino.py

Co-authored-by: Rafael Padilla <31217453+rafaelpadilla@users.noreply.github.com>

* Update src/transformers/models/grounding_dino/modeling_grounding_dino.py

Co-authored-by: Rafael Padilla <31217453+rafaelpadilla@users.noreply.github.com>

* Update src/transformers/models/grounding_dino/modeling_grounding_dino.py

Co-authored-by: Rafael Padilla <31217453+rafaelpadilla@users.noreply.github.com>

* Update src/transformers/models/grounding_dino/modeling_grounding_dino.py

Co-authored-by: Rafael Padilla <31217453+rafaelpadilla@users.noreply.github.com>

* Update src/transformers/models/grounding_dino/modeling_grounding_dino.py

Co-authored-by: Rafael Padilla <31217453+rafaelpadilla@users.noreply.github.com>

* Better naming

* Better naming

* Added Copied statement

* Added Copied statement

* Moved param init from GroundingDINOBiMultiHeadAttention

* Better naming

* Fixing clamp style

* Better naming

* Update src/transformers/models/grounding_dino/modeling_grounding_dino.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/grounding_dino/modeling_grounding_dino.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/grounding_dino/configuration_grounding_dino.py

Co-authored-by: Rafael Padilla <31217453+rafaelpadilla@users.noreply.github.com>

* Update src/transformers/models/grounding_dino/convert_grounding_dino_to_hf.py

Co-authored-by: Rafael Padilla <31217453+rafaelpadilla@users.noreply.github.com>

* Update src/transformers/models/grounding_dino/modeling_grounding_dino.py

Co-authored-by: Rafael Padilla <31217453+rafaelpadilla@users.noreply.github.com>

* Improving conversion script

* Improved config

* Improved naming

* Improved naming again

* Improved grouding-dino.md

* Moved grounding dino to multimodal

* Update src/transformers/models/grounding_dino/convert_grounding_dino_to_hf.py

Co-authored-by: Rafael Padilla <31217453+rafaelpadilla@users.noreply.github.com>

* Fixed docstrings and style

* Fix docstrings

* Remove timm attributes

* Reorder imports

* More improvements

* Add Grounding DINO to pipeline

* Remove model from check_repo

* Added grounded post_process to GroundingDINOProcessor

* Fixed style

* Fixed GroundingDINOTextPrenetConfig docstrings

* Aligned inputs.keys() when both image and text are passed with model_input_names

* Added tests for GroundingDINOImageProcessor and GroundingDINOProcessor

* Testing post_process_grounded_object_detection from GroundingDINOProcessor at test_inference_object_detection_head

* Fixed order

* Marked test with require_torch

* Temporarily changed repo_id

* More improvements

* Fix style

* Final improvements

* Improve annotators

* Fix style

* Add is_torch_available

* Remove type hints

* vocab_tokens as one liner

* Removed print statements

* Renamed GroundingDINOTextPrenetConfig to GroundingDINOTextConfig

* remove unnecessary comments

* Removed unnecessary tests on conversion script

* Renamed GroundingDINO to camel case GroundingDino

* Fixed GroundingDinoProcessor docstrings

* loading MSDA kernels in the modeling file

* Fix copies

* Replace nn.multiheadattention

* Replace nn.multiheadattention

* Fixed inputs for GroundingDinoMultiheadAttention & order of modules

* Fixed processing to avoid messing with inputs

* Added more tips for GroundingDino

* Make style

* Chaning name to align with SAM

* Replace final nn.multiheadattention

* Fix model tests

* Update year, remove GenerationTesterMixin

* Address comments

* Address more comments

* Rename TextPrenet to TextModel

* Rename hidden_states

* Address more comments

* Address more comments

* Address comment

* Address more comments

* Address merge

* Address comment

* Address comment

* Address comment

* Make style

* Added layer norm eps to layer norms

* Address more comments

* More fixes

* Fixed equivalence

* Make fixup

* Remove print statements

* Address comments

* Address comments

* Address comments

* Address comments

* Address comments

* Address comments

* Add comment

* Address comment

* Remove overwriting of test

* Fix bbox_embed

* Improve decoder_bbox_embed_share

* Simplify outputs

* Updated post_process_grounded_object_detection

* Renamed sources to feature_maps

* Improved tests for Grounding Dino ImageProcessor and Processor

* Fixed test requirements and imports

* Fixed image_processing

* Fixed processor tests

* Fixed imports for image processing tests

* Fix copies

* Updated modeling

* Fix style

* Moved functions to correct position

* Fixed copy issues

* Update src/transformers/models/deformable_detr/modeling_deformable_detr.py

Co-authored-by: Sangbum Daniel Choi <34004152+SangbumChoi@users.noreply.github.com>

* Update src/transformers/models/grounding_dino/modeling_grounding_dino.py

Co-authored-by: Sangbum Daniel Choi <34004152+SangbumChoi@users.noreply.github.com>

* Update src/transformers/models/grounding_dino/modeling_grounding_dino.py

Co-authored-by: Sangbum Daniel Choi <34004152+SangbumChoi@users.noreply.github.com>

* Keeping consistency custom cuda kernels for MSDA

* Make GroundingDinoProcessor logic clearer

* Updated Grounding DINO checkpoints

* Changed tests to correct structure

* Updated gpu-cpu equivalence test

* fix copies

* Update src/transformers/models/grounding_dino/processing_grounding_dino.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/grounding_dino/processing_grounding_dino.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/grounding_dino/modeling_grounding_dino.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/grounding_dino/configuration_grounding_dino.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Fixed erros and style

* Fix copies

* Removed inheritance from PreTrainedModel from GroundingDinoTextModel

* Fixed GroundingDinoTextModel

* Fixed type of default backbone config

* Fixed missing methods for GroundingDinoTextModel and Added timm support for GroundingDinoConvEncoder

* Addressed comments

* Addressed batched image processing tests

* Addressed zero shot test comment

* Addressed tip comment

* Removed GroundingDinoTextModel from check_repo

* Removed inplace masking

* Addressed comments

* Addressed comments

* Addressed comments

* Fix copies

* Fixing timm test

* Fixed batching equivalence test

* Update docs/source/en/model_doc/grounding-dino.md

Co-authored-by: Tianqi Xu <40522713+dandansamax@users.noreply.github.com>

* Update docs/source/en/model_doc/grounding-dino.md

Co-authored-by: Tianqi Xu <40522713+dandansamax@users.noreply.github.com>

* Update docs/source/en/model_doc/grounding-dino.md

Co-authored-by: Tianqi Xu <40522713+dandansamax@users.noreply.github.com>

* Addressed more comments

* Added a new comment

* Reduced image size

* Addressed more comments

* Nits

* Nits

* Changed the way text_config is initialized

* Update src/transformers/models/grounding_dino/processing_grounding_dino.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: Niels <niels.rogge1@gmail.com>
Co-authored-by: Rafael Padilla <31217453+rafaelpadilla@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Eduardo Pacheco <eduardo.pacheco@limehome.com>
Co-authored-by: Sangbum Daniel Choi <34004152+SangbumChoi@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Tianqi Xu <40522713+dandansamax@users.noreply.github.com>
2024-04-11 08:32:16 +01:00
a5e5c92aea Fixed typo in comments/documentation for Pipelines documentation (#30170)
Update feature_extraction.py - Fixed typo in comments/documentation
2024-04-10 14:52:51 -07:00
d71f5b3ea8 Update config class check in auto factory (#29854) 2024-04-10 17:24:32 +01:00
f569172fc2 FIX / bnb: fix torch compatiblity issue with itemize (#30162)
* fix torch compatiblity issues

* fix

* Update src/transformers/modeling_utils.py
2024-04-10 18:12:43 +02:00
4f7a9f9c5c Fix natten install in docker (#30161)
* fix dinat in docker

* update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-04-10 17:45:49 +02:00
3280b13260 Fixing a bug when MlFlow try to log a torch.tensor (#29932)
* Update integration_utils.py

Add the case where a tensor with one element is log with Mlflow

* Update src/transformers/integrations/integration_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update integration_utils.py add a whitespace

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-04-10 16:07:58 +01:00
0fe44059ae Add recurrent gemma (#30143)
* Fork.

* RecurrentGemma initial commit.

* Updating __init__.py.

* Minor modification to how we initialize the cache.
Changing how the config specifies the architecture.

* Reformat code to 4 spaces.
Fixed a few typos.

* Fixed the forward pass.
Still unclear on the cache?

* Fixed the RecurrentGemmaForCausalLM

* Minor comment that we might not need attention_mask and output_attention arguments.

* Now cache should work as well.

* Adding a temporary example to check whether the model generation works.

* Adding the tests and updating imports.

* Adding the example file missing in the previous commit.

* First working example.

* Removing .gitignore and reverting parts of __init__.

* Re-add .gitignore.

* Addressing comments for configuration.

* Move mask creation to `_prepare_inputs_for_generation`.

* First try at integration tests:
1. AttributeError: 'GriffinCausalLMOutput' object has no attribute 'attentions'.
2. `cache_position` not passed

* Transfoering between machines.

* Running normal tests.

* Minor fix.

* More fixes.

* Addressing more comments.

* Minor fixes.

* first stab at cleanup

* more refactoring

* fix copies and else

* renaming and get init to work

* fix causal mask creation

* update

* nit

* fix a hell lot of things

* updates

* update conversion script

* make all keys importable

* nits

* add auto mappings

* properly convert ffw_up and down

* add scaling

* fix generations

* for recurrent dtype

* update

* fix going beyong window

* fixup

* add missing files

* current updates to remove last einops

* finish modeling refactor

* TADA

* fix compile

* fix most failing testt ? ?

* update tests

* refactor and update

* update

* nits, fixup and update tests

* more fixup

* nits

* fix imports

* test format

* fixups

* nits

* tuple typing

* fix code quality

* add model card

* fix doc

* skip most generation tests

* nits

* style

* doc fixes

* fix pr and check_copies?

* last nit

* oupsy

* Apply suggestions from code review

Co-authored-by: Lysandre Debut <hi@lysand.re>

* update

* Update src/transformers/models/recurrent_gemma/convert_recurrent_gemma_to_hf.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/recurrent_gemma/test_modeling_recurrent_gemma.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/recurrent_gemma/test_modeling_recurrent_gemma.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/recurrent_gemma/test_modeling_recurrent_gemma.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/recurrent_gemma/test_modeling_recurrent_gemma.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* update based on review

* doc nit

* fix quality

* quality

* fix slow test model path

* update default dype

* ignore attributes that can be safely ignored in check config attributes

* 0lallalala come on

* save nit

* style

* remove to dict update

* make sure we can also run in float16

* style

---------

Co-authored-by: Pablo Montalvo <39954772+molbap@users.noreply.github.com>
Co-authored-by: Aleksandar Botev <botev@google.com>
Co-authored-by: Leonard Berrada <lberrada@users.noreply.github.com>
Co-authored-by: anushanf <anushanf@google.com>
Co-authored-by: botev <botevmg@gmail.com>
Co-authored-by: Lysandre Debut <hi@lysand.re>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-04-10 16:59:13 +02:00
33bca5419c Fix typing annotation in hf_argparser (#30156) 2024-04-10 15:58:56 +01:00
0f94e3e152 Fix accelerate kwargs for versions <0.28.0 (#30086)
* fix learning rate display issue in galore optimizer

* fix kwarg in accelerate when using versions < 0.28.0

* this was supposed to be in the other PR whoops
2024-04-10 15:36:43 +01:00
505854f78f [UDOP] Improve docs, add resources (#29571)
* Improve docs

* Add more tips
2024-04-10 16:02:50 +02:00
50c1c19fc7 [UDOP] Fix tests (#29573)
* Fix tests

* Fix tests

* Remove no_split_modules
2024-04-10 15:47:17 +02:00
b7d002bdff Add str to TrainingArguments report_to type hint (#30078)
* Add str to TrainingArguments report_to type hint

* Swap order in Union

* Merge Optional into Union

https://github.com/huggingface/transformers/pull/30078#issuecomment-2042227546
2024-04-10 14:42:00 +01:00
185463784e [tests] make 2 tests device-agnostic (#30008)
add torch device
2024-04-10 14:46:39 +02:00
bb76f81e40 [CI] Quantization workflow fix (#30158)
* fix workflow

* call ci

* Update .github/workflows/self-scheduled-caller.yml

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2024-04-10 11:51:06 +02:00
56d001b26f Fix and simplify semantic-segmentation example (#30145)
* Remove unused augmentation

* Fix pad_if_smaller() and remove unused augmentation

* Add indentation

* Fix requirements

* Update dataset use instructions

* Replace transforms with albumentations

* Replace identity transform with None

* Fixing formatting

* Fixed comment place
2024-04-10 09:10:52 +01:00
41579763ee Fix length related warnings in speculative decoding (#29585)
* avoid generation length warning

* add tests

* Update src/transformers/generation/candidate_generator.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* add tests and minor fixes

* refine `min_new_tokens`

* Update src/transformers/generation/candidate_generator.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* add method to prepare length arguments

* add test for min length

* Update src/transformers/generation/candidate_generator.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* fix variable naming

* empty commit for tests

* trigger tests (empty)

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2024-04-10 12:45:07 +05:00
6cdbd73e01 [CI] Fix setup (#30147)
* [CI] fix setup

* fix

* test

* Revert "test"

This reverts commit 7df416d45074439e2fa1b78afd24eacf37ce072f.
2024-04-09 18:10:00 +02:00
21e23ffca7 [docs] Fix image segmentation guide (#30132)
fixes
2024-04-09 09:08:37 -07:00
58a939c6b7 Fix quantization tests (#29914)
* revert back to torch 2.1.1

* run test

* switch to torch 2.2.1

* udapte dockerfile

* fix awq tests

* fix test

* run quanto tests

* update tests

* split quantization tests

* fix

* fix again

* final fix

* fix report artifact

* build docker again

* Revert "build docker again"

This reverts commit 399a5f9d9308da071d79034f238c719de0f3532e.

* debug

* revert

* style

* new notification system

* testing notfication

* rebuild docker

* fix_prev_ci_results

* typo

* remove warning

* fix typo

* fix artifact name

* debug

* issue fixed

* debug again

* fix

* fix time

* test notif with faling test

* typo

* issues again

* final fix ?

* run all quantization tests again

* remove name to clear space

* revert modfiication done on workflow

* fix

* build docker

* build only quant docker

* fix quantization ci

* fix

* fix report

* better quantization_matrix

* add print

* revert to the basic one
2024-04-09 17:10:29 +02:00
6487e9b370 Send headers when converting safetensors (#30144)
Co-authored-by: Wauplin <lucainp@gmail.com>
2024-04-09 17:03:36 +02:00
08a194fcd6 Fix slow tests for important models to be compatible with A10 runners (#29905)
* fix mistral and mixtral

* add pdb

* fix mixtral tesst

* fix

* fix mistral ?

* add fix gemma

* fix mistral

* fix

* test

* anoter test

* fix

* fix

* fix mistral tests

* fix them again

* final fixes for mistral

* fix padding right

* fix whipser fa2

* fix

* fix

* fix gemma

* test

* fix llama

* fix

* fix

* fix llama gemma

* add class attribute

* fix CI

* clarify whisper

* compute_capability

* rename names in some comments

* Add   # fmt: skip

* make style

* Update tests/models/mistral/test_modeling_mistral.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* update

* update

---------

Co-authored-by: Younes Belkada <younesbelkada@gmail.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-04-09 13:28:54 +02:00
e9c23fa056 [Trainer] Undo #29896 (#30129)
* Undo

* Use tokenizer

* Undo data collator
2024-04-09 12:55:42 +02:00
ba1b24e07b [Trainer] Fix default data collator (#30142)
* Fix data collator

* Support feature extractors as well
2024-04-09 12:52:50 +02:00
ec59a42192 Revert workaround for TF safetensors loading (#30128)
* See if we can get tests to pass with the fixed weights

* See if we can get tests to pass with the fixed weights

* Replace the revisions now that we don't need them anymore
2024-04-09 11:04:18 +01:00
841e87ef4f Fix docs Pop2Piano (#30140)
fix copies
2024-04-09 14:58:02 +05:00
af4c02622b Add datasets.Dataset to Trainer's train_dataset and eval_dataset type hints (#30077)
* Add datasets.Dataset to Trainer's train_dataset and eval_dataset type hints

* Add is_datasets_available check for importing datasets under TYPE_CHECKING guard

https://github.com/huggingface/transformers/pull/30077/files#r1555939352
2024-04-09 09:26:15 +01:00
4e3490f79b Fix failing DeepSpeed model zoo tests (#30112)
* fix sequence length errors

* fix label column name error for vit

* fix the lm_head embedding!=linear layer mismatches for Seq2Seq models
2024-04-09 12:01:47 +05:30
2f12e40822 [StableLm] Add QK normalization and Parallel Residual Support (#29745)
* init: add StableLm 2 support

* add integration test for parallel residual and qk layernorm

* update(modeling): match qk norm naming for consistency with phi/persimmon

* fix(tests): run fwd/bwd on random init test model to jitter norm weights off identity

* `use_parallel_residual`: add copy pointer to `GPTNeoXLayer.forward`

* refactor: rename head states var in `StableLmLayerNormPerHead`

* tests: update test model and add generate check
2024-04-08 23:51:58 +02:00
8c00b53eb0 Adding mps as device for Pipeline class (#30080)
* adding env variable for mps and is_torch_mps_available for Pipeline

* fix linting errors

* Remove environment overide

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-04-08 18:07:30 +01:00
7afade2086 Fix typo at ImportError (#30090)
fix typo at ImportError
2024-04-08 17:45:21 +01:00
ef38e2a7e5 Make vitdet jit trace complient (#30065)
* remove controlflows

* style

* rename patch_ to padded_ following review comment

* style
2024-04-08 23:10:06 +08:00
a71def025c Trainer / Core : Do not change init signature order (#30126)
* Update trainer.py

* fix copies
2024-04-08 16:57:38 +02:00
1897874edc Fix falcon with SDPA, alibi but no passed mask (#30123)
* fix falcon without attention_mask & alibi

* add test

* Update tests/models/falcon/test_modeling_falcon.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-04-08 22:25:07 +08:00
1773afcec3 fix learning rate display in trainer when using galore optimizer (#30085)
fix learning rate display issue in galore optimizer
2024-04-08 14:54:12 +01:00
08c8443307 Accept token in trainer.push_to_hub() (#30093)
* pass token to trainer.push_to_hub

* fmt

* Update src/transformers/trainer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* pass token to create_repo, update_folder

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-04-08 14:51:11 +01:00
0201f6420b [#29174] ImportError Fix: Trainer with PyTorch requires accelerate>=0.20.1 Fix (#29888)
* ImportError: Trainer with PyTorch requires accelerate>=0.20.1 Fix

Adding the evaluate and accelerate installs at the beginning of the cell to fix the issue

* ImportError Fix: Trainer with PyTorch requires accelerate>=0.20.1

* Import Error Fix

* Update installation.md

* Update quicktour.md

* rollback other lang changes

* Update _config.py

* updates for other languages

* fixing error

* Tutorial Update

* Update tokenization_utils_base.py

* Just use an optimizer string to pass the doctest?

---------

Co-authored-by: Matt <rocketknight1@gmail.com>
2024-04-08 14:21:16 +01:00
7f9aff910b Patch fix - don't use safetensors for TF models (#30118)
* Patch fix - don't use safetensors for TF models

* Skip test for TF for now

* Update for another test
2024-04-08 13:29:20 +01:00
f5658732d5 fixing issue 30034 - adding data format for run_ner.py (#30088) 2024-04-08 12:49:59 +01:00
d16f0abc3f [tests] add require_bitsandbytes marker (#30116)
* add bnb flag

* move maker

* add accelerator maker
2024-04-08 12:49:31 +01:00
5e673ed2dc updated examples/pytorch/language-modeling scripts and requirements.txt to require datasets>=2.14.0 (#30120)
updated requirements.txt and require_version() calls in examples/pytorch/language-modeling to require datasets>=2.14.0
2024-04-08 12:41:28 +01:00
836e88caee Make MLFlow version detection more robust and handles mlflow-skinny (#29957)
* Make MLFlow version detection more robust and handles mlflow-skinny

* Make function name more clear and refactor the logic

* Further refactor
2024-04-08 12:20:02 +02:00
a907a903d6 Change log level to warning for num_train_epochs override (#30014) 2024-04-08 10:36:53 +02:00
1ed93be48a [Whisper] Computing features on GPU in batch mode for whisper feature extractor. (#29900)
* add _torch_extract_fbank_features_batch function in feature_extractor_whisper

* reformat feature_extraction_whisper.py file

* handle batching in single function

* add gpu test & doc

* add batch test & device in each __call__

* add device arg in doc string

---------

Co-authored-by: vaibhav.aggarwal <vaibhav.aggarwal@sprinklr.com>
2024-04-08 10:36:25 +02:00
1fc34aa666 doc: Correct spelling mistake (#30107) 2024-04-08 08:44:05 +01:00
76fa17c166 Fix whisper kwargs and generation config (#30018)
* clean-up whisper kwargs

* failing test
2024-04-05 21:28:58 +05:00
9b5a6450d4 Fix auto tests (#30067)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-04-05 17:49:46 +02:00
d9fa13ce62 Add docstrings and types for MambaCache (#30023)
* Add docstrings and types for MambaCache

* Update src/transformers/models/mamba/modeling_mamba.py

* Update src/transformers/models/mamba/modeling_mamba.py

* Update src/transformers/models/mamba/modeling_mamba.py

* make fixup

* import copy in generation_whisper

* ruff

* Revert "make fixup"

This reverts commit c4fedd6f60e3b0f11974a11433bc130478829a5c.
2024-04-05 16:19:54 +02:00
b17b54d3dd Refactor daily CI workflow (#30012)
* separate jobs

* separate jobs

* use channel name directly instead of ID

* use channel name directly instead of ID

* use channel name directly instead of ID

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-04-05 15:49:51 +02:00
17cd7a9d28 Fix torch.fx symbolic tracing for LLama (#30047)
* [WIP] fix fx

* [WIP] fix fx

* [WIP] fix fx

* [WIP] fix fx

* [WIP] fix fx

* Apply changes to other models
2024-04-05 15:14:09 +02:00
48795317a2 [test fetcher] Always include the directly related test files (#30050)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-04-05 14:30:36 +02:00
de11d0bdf0 Update quantizer_bnb_4bit.py: In the ValueError string there should be "....you need to set llm_int8_enable_fp32_cpu_offload=True...." instead of "load_in_8bit_fp32_cpu_offload=True". (#30013)
* Update quantizer_bnb_4bit.py

There is an mistake in ValueError on line 86 of quantizer_bnb_4bit.py. In the error string there should be "....you need to set `llm_int8_enable_fp32_cpu_offload=True`...." instead of "load_in_8bit_fp32_cpu_offload=True". I think you updated the BitsAndBytesConfig() arguments, but forgot to change the ValueError in quantizer_bnb_4bit.py.

* Update quantizer_bnb_4bit.py

Changed ValueError string "...you need to set load_in_8bit_fp32_cpu_offload=True..." to "....you need to set llm_int8_enable_fp32_cpu_offload=True...."
2024-04-05 14:04:50 +02:00
4207a4076d [bnb] Fix offload test (#30039)
fix bnb test
2024-04-05 13:11:28 +02:00
1ab7136488 [Trainer] Allow passing image processor (#29896)
* Add image processor to trainer

* Replace tokenizer=image_processor everywhere
2024-04-05 10:10:44 +02:00
d704c0b698 Fix mixtral ONNX Exporter Issue. (#29858)
* fix mixtral onnx export

* fix qwen model
2024-04-05 09:49:42 +02:00
79d62b2da2 if output is tuple like facebook/hf-seamless-m4t-medium, waveform is … (#29722)
* if output is tuple like facebook/hf-seamless-m4t-medium, waveform is the first element

Signed-off-by: Wang, Yi <yi.a.wang@intel.com>

* add test and fix batch issue

Signed-off-by: Wang, Yi <yi.a.wang@intel.com>

* add dict output support for seamless_m4t

Signed-off-by: Wang, Yi <yi.a.wang@intel.com>

---------

Signed-off-by: Wang, Yi <yi.a.wang@intel.com>
2024-04-05 09:26:44 +02:00
8b52fa6b42 skip test_encode_decode_fast_slow_all_tokens for now (#30044)
skip test_encode_decode_fast_slow_all_tokens for now

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-04-05 09:07:41 +02:00
24d787ce9d Add whisper to IMPORTANT_MODELS (#30046)
Add whisper

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-04-05 09:06:40 +02:00
517a3e670d Refactor Cohere Model (#30027)
* changes

* addressing comments

* smol fix
2024-04-04 12:46:20 +02:00
75b76a5ea4 [ProcessingIdefics] Attention mask bug with padding (#29449)
* Defaulted IdeficsProcessor padding to 'longest', removed manual padding

* make fixup

* Defaulted processor call to padding=False

* Add padding to processor call in IdeficsModelIntegrationTest as well

* Defaulted IdeficsProcessor padding to 'longest', removed manual padding

* make fixup

* Defaulted processor call to padding=False

* Add padding to processor call in IdeficsModelIntegrationTest as well

* redefaulted padding=longest again

* fixup/doc
2024-04-04 10:11:09 +01:00
4e6c5eb045 Add a converter from mamba_ssm -> huggingface mamba (#29705)
* implement convert_mamba_ssm_checkpoint_to_pytorch

* Add test test_model_from_mamba_ssm_conversion

* moved convert_ssm_config_to_hf_config to inside mamba_ssm_available check

* fix skipif clause

* moved skips to inside test since skipif decorator isn't working for some reason

* Added validation

* removed test

* fixup

* only compare logits

* remove weight rename

* Update src/transformers/models/mamba/convert_mamba_ssm_checkpoint_to_pytorch.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* nits

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-04-04 09:29:32 +01:00
03732dea60 Enable multi-device for efficientnet (#29989)
feat: enable mult-idevice for efficientnet
2024-04-03 20:54:34 +01:00
863e2562d8 Make clearer about zero_init requirements (#29879)
* Docstring to note about zero init

* Check for accelerate

* Change conditional return

* Tweak

* Add new accelerate-specific zero3 check

* Fix import

* Revert to RTFM

* Update src/transformers/modeling_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-04-03 13:37:52 -04:00
695d823323 [Main CIs] Fix the red cis (#30022)
* fix

* sort imports
2024-04-03 19:34:39 +02:00
c10b5dd25e Superpoint imports fix (#29898)
quick fix
2024-04-03 18:32:01 +01:00
34bfe95af5 [docs] Fix audio file (#30006)
new audio file
2024-04-03 10:05:15 -07:00
cc75f1ac73 Fix vipllava for generation (#29874)
* fix vipllava generation

* consistent llava code

* revert llava tests changes
2024-04-03 17:00:08 +01:00
240e10626b Fix probability computation in WhisperNoSpeechDetection when recomputing scores (#29248)
* Fix is_scores_logprobs in WhisperNoSpeechDetection

* Add test_whisper_longform_no_speech_detection

* Fix typo
2024-04-03 17:53:07 +02:00
bcd42c4af9 Fix kwargs handling in generate_with_fallback (#29225)
* Fix generate_with_fallback **kwargs

* Change pop to get

* Delete keys from kwargs to prevent overriding generation_config

* Revert to passing kwargs by reference, but make a (shallow) copy

* dict -> copy.copy

* Add test_whisper_longform_multi_batch_beam
2024-04-03 17:51:03 +02:00
851f253f4d Fix Qwen2Tokenizer (#29929)
qwen2: fixed tokens starting with # in slow tokenizer; add tests

Co-authored-by: jklj077 <17811943+jklj077@users.noreply.github.com>
2024-04-03 17:42:43 +02:00
17b06e2c66 Fix Swinv2ForImageClassification NaN output (#29981)
To address the issue of NaN logit outputs for certain combinations
of the `image_size`, `patch_size` and `depths` configuration
parameters, an assertion was made to ensure that the resulting
`window_size` field in the model's Self Attention class is greater
than 1, preventing divisions by zero in the normalization of
`relative_coords_table`.

Fix: #28675
2024-04-03 14:54:45 +01:00
81642d2b51 Make EncodecModel.decode ONNX exportable (#29913)
* fix encodec onnx export for musicgen

* simplification

* fix quality

* better style
2024-04-03 17:11:01 +08:00
b44df05bc0 Update tests/utils/tiny_model_summary.json (#29941)
update

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-04-03 09:25:01 +02:00
fce52cefa7 Fix remove_columns in text-classification example (#29351) 2024-04-02 19:15:27 +02:00
5080ab12c8 Generate: fix logits processors doctests (#29718)
* fix norm

* fix logits processors doctests
2024-04-02 17:18:31 +01:00
9b0a8ea7d1 Hard error when ignoring tensors. (#27484) (#29906)
* Hard error when ignoring tensors. (#27484)

* [WIP] Hard error when ignoring tensors.

* Better selection/error when saving a checkpoint.

- Find all names we should normally drop (those are in the transformers
  config)
- Find all disjoint tensors (for those we can safely trigger a copy to
  get rid of the sharing before saving)
- Clone those disjoint tensors getting rid of the issue
- Find all identical names (those should be declared in the config
  but we try to find them all anyway.)
- For all identical names:
  - If they are in the config, just ignore them everything is fine
  - If they are not, warn about them.
- For all remainder tensors which are shared yet neither identical NOR
  disjoint. raise a hard error.

* Adding a failing test on `main` that passes here.

* We don't need to keep the subfolder logic in this test.

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Add small tests.

* Dead variable.

* Fixup.

* Fixing tied_Weights_keys on generic models.

* Fixup + T5 encoder/decoder tying (with different layers)

* Code quality.

* Dynamic member.

* trigger

* Fixing encoder name for other types of encoder/decoder combos.

* Fix scoping.

* Update .github/workflows/self-scheduled.yml

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Fixing the tied_weights after the call.

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-04-02 16:59:05 +02:00
15cd68713d Fix skip_special_tokens for Wav2Vec2CTCTokenizer._decode (#29311)
* Fix skip_special_tokens process for Wav2Vec2CTCTokenizer._decode

* Fix skip_special_tokens for Wav2Vec2CTCTokenizer._decode

* Exclude pad_token filtering since it is used as CTC-blank token

* Add small test for skip_special_tokens

* Update decoding test for added new token
2024-04-02 16:55:11 +02:00
cb5927ca8f [Docs] Make an ordered list prettier in add_tensorflow_model.md (#29949) 2024-04-02 12:37:56 +01:00
0d04b1e25a Add Flash Attention 2 support to Musicgen and Musicgen Melody (#29939)
* add FA2 to o.g Musicgen

* make style

* add FA2 support to Musicgen Melody

* add generation FA2 tests to o.g Musicgen

* make style and fix copies

* add Musicgen to FA2 docs + deprecate list

* add sdpa supports to Musicgen's

* make style and fix copies

* refactor attention implementation arguments

* add Copied from to sdpa tests

* add copied form in sdpa tests melody

* add copied for FA2 generation tests

* add FA2 inference copied from

* make style
2024-04-02 11:23:49 +01:00
fed27ffc7e Adding FlaxNoRepeatNGramLogitsProcessor (#29677)
* fix issue with logit processor in beam search in Flax

* adding FlaxNoRepeatNGramLogitsProcessor class + unit test

* style correction and code verification

* add FlaxNoRepeatNGramLogitsProcessor to the test_processor_list and test_processor_list_jitted tests

* fix an issue where ngrams are banned only if they appear ==1 time + update description of get_previous_ngrams

* replace non-jit compatible masking of ngrams that are not yet generated with jittable version

* Revert "fix issue with logit processor in beam search in Flax"

This reverts commit 09b70d7e4dc32d0cc4db61af09a835a9cd238b50.

* add FlaxNoRepeatNGramLogitsProcessor to _get_logits_processor

* change the method of casting to boolean of banned tokens indices

* fix code style

* remove some useless operations + significantly faster computation of update indices using jax.lax.fori_loop

* remove useless loop iterations

* set some variables that were calculated and used multiple times

* fix format
2024-04-02 11:39:33 +02:00
33288ff150 [bnb] Fix bug in _replace_with_bnb_linear (#29958)
fix bug
2024-04-02 11:18:03 +02:00
416711c3ea Fix 29807 sinusoidal positional encodings in Flaubert, Informer and XLM (#29904)
* Fix sinusoidal_embeddings in FlaubertModel

* Fix for Informer

* Fix for XLM

* Move sinusoidal emb for XLM

* Move sinusoidal emb for Flaubert

* Small cleanup

* Add comments on tests code copied from

* Add with Distilbert->
2024-04-02 10:27:26 +02:00
83b26dd79d [generate] fix breaking change for patch (#29976)
* fix bug and add tests

* nit

* otherway to get the cur len instead of attention mask

* more places where this might have been broken

* nit

* oups

* inputs_embeds vs input_embeds

* test generated outptus

* style

* nit

* fix

* skip failing biogpt
2024-04-02 09:51:45 +02:00
096f304695 [docs] Big model loading (#29920)
* update

* feedback
2024-04-01 18:47:32 -07:00
c9f6e5e351 Generate: move misplaced test (#29902) 2024-04-01 12:45:25 +01:00
e4f5b57a3b [tests] fix the wrong output in ImageToTextPipelineTests.test_conditional_generation_llava (#29975)
bug fix
2024-04-01 13:08:39 +02:00
fa2c49b00b Fix copies main ci (#29979)
* fix copies

* nit

* style

* Update utils/check_copies.py
2024-04-01 12:43:58 +02:00
569f6c7d43 Fix FA2 tests (#29909)
* fix FA2 tests

* refactor inference test name
2024-04-01 07:51:00 +00:00
3b8e2932ce Rework tests to compare trainer checkpoint args (#29883)
* Start rework

* Fix failing test

* Include max

* Update src/transformers/trainer.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-03-30 22:19:17 -04:00
6e584070d4 [BC] Fix BC for AWQ quant (#29965)
fix awq quant
2024-03-30 19:37:25 +01:00
46d636818b Update model card and link of blog post. (#29928)
* Update qwen2_moe.md

* update link of blogpost.

* fixup

---------

Co-authored-by: bozheng-hit <dsoul0621@gmail.com>
2024-03-30 17:49:03 +01:00
f6701bc664 Reset alarm signal when the function is ended (#29706)
Fixes #29690
2024-03-30 17:41:27 +01:00
e644b60038 fix: get mlflow version from mlflow-skinny (#29918)
Co-authored-by: Alexander Jipa <azzhipa@amazon.com>
2024-03-30 17:38:29 +01:00
156d30da94 Add warning message for run_qa.py (#29867)
* improve: error message for best model metric

* update: raise warning instead of error
2024-03-30 17:02:31 +01:00
6fd93fe93a Fix rope theta for OpenLlama (#29893)
fix: rope_theta for open llama
2024-03-30 16:30:52 +01:00
5ad7f17002 Super tiny fix 12 typos about "with with" (#29926)
* with with

* style
2024-03-29 14:31:31 +00:00
43d17c1836 Mark test_eager_matches_sdpa_generate flaky for some models (#29479)
* fix

* revert for qwen2

* revert for qwen2

* update

* update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-03-29 11:51:20 +01:00
ba56ed0869 Update installs in image classification doc (#29947)
Trainer with PyTorch now requires accelerate to be installed.

Partly resolves huggingface/transformers#29174
2024-03-28 14:26:27 -07:00
536ea2aca2 [LlamaSlowConverter] Slow to Fast better support (#29797)
* fix

* fix test

* style

* nit

* rather rely on concert token to id

* fix quality

* Update src/transformers/convert_slow_tokenizer.py
2024-03-28 16:19:32 +01:00
e203646871 Fix doc issue #29758 in DebertaV2Config class (#29842)
Fix doc issue in DebertaV2Config class

Co-authored-by: Vinayakk Garg <vigar@akamai.com>
2024-03-28 14:49:57 +00:00
2bbbf1be5b [BC] Fix BC for other libraries (#29934)
* fi xbc?

* nit
2024-03-28 15:13:23 +01:00
4df5b9b4b2 Allow GradientAccumulationPlugin to be configured from AcceleratorConfig (#29589)
* add gradient_accumulation_kwargs to AcceleratorConfig

* add suggestions from @muellerzr to docstrings, new behavior and tests

* Documentation suggestions from @muellerz

Co-authored-by: Zach Mueller <muellerzr@gmail.com>

* addressed @muellerzr comments regarding tests and test utils

* moved accelerate version to top of file.

* @muellerzr's variable fix

Co-authored-by: Zach Mueller <muellerzr@gmail.com>

* address @amyeroberts. fix tests and docstrings

* address @amyeroberts additional suggestions

---------

Co-authored-by: Yu Chin Fabian Lim <flim@sg.ibm.com>
Co-authored-by: Zach Mueller <muellerzr@gmail.com>
2024-03-28 14:01:40 +00:00
a2a7f71604 [ TokenizationLlama] fix the way we convert tokens to strings to keep leading spaces 🚨 breaking fix (#29453)
* nit

* update test and fix test

* fixup
2024-03-28 13:58:40 +01:00
e677479c81 [Mamba] from pretrained issue with self.embeddings (#29851)
* nit

* update

* oups

* Update src/transformers/models/mamba/modeling_mamba.py

Co-authored-by: Lysandre Debut <hi@lysand.re>

---------

Co-authored-by: Lysandre Debut <hi@lysand.re>
2024-03-28 13:54:51 +01:00
441de62f49 RoPE models: add numerical sanity-check test for RoPE scaling (#29808)
* add hard rope scaling test

* make fixup

* quick rope scaling tests

* add copy statements
2024-03-28 11:25:50 +00:00
aac7099c92 add functions to inspect model and optimizer status to trainer.py (#29838)
* add functions to get number of params which require grad, get optimizer group for parameters and get learning rates of param groups to trainer.py

* add tests and raise ValueError when optimizer is None

* add second layer to test and freeze its weigths

* check if torch is available before running tests

* use decorator to check if torch is available

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* fix test indentation

Co-authored-by: Zach Mueller <muellerzr@gmail.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Zach Mueller <muellerzr@gmail.com>
2024-03-28 10:37:16 +00:00
855b95ce34 Safe import of LRScheduler (#29919)
* Safe import of LRScheduler

* Update src/transformers/trainer_pt_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/trainer_pt_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Fix up

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-03-28 09:54:51 +00:00
c9d2e855ea Add beam search visualizer to the doc (#29876) 2024-03-28 09:54:08 +00:00
248d5d23a2 Tests: replace torch.testing.assert_allclose by torch.testing.assert_close (#29915)
* replace torch.testing.assert_allclose by torch.testing.assert_close

* missing atol rtol
2024-03-28 09:53:31 +00:00
7c19fafe44 [doc] fix some typos and add xpu to the testing documentation (#29894)
fix typo
2024-03-28 09:42:49 +00:00
22d159ddf9 Adding Flash Attention 2 Support for GPT2 (#29226)
* First commit to add flash attention 2 for GPT-2

* more improvements

* Make GPT2 pass tests and fixed Decison Transformers copies

* Fixed missing arg

* fix copies

* Added expected speedup

* Update src/transformers/models/gpt2/modeling_gpt2.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/gpt2/modeling_gpt2.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/gpt2/modeling_gpt2.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Added test

* Fixed attn attribute

* Update docs/source/en/model_doc/gpt2.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update docs/source/en/model_doc/gpt2.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update Decision transformer attentions

* More updates

* Passing tests

* Fix copies

* Fix copies part 2

* Decision transformer updates

* Update src/transformers/models/gpt2/modeling_gpt2.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Fix copies

* Decision transformer not supporting flash attn

* Addressed comments

* Addressed comments

* Addressed comments

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-03-28 09:31:24 +00:00
3a7e68362b [pipeline]. Zero shot add doc warning (#29845)
* add doc warning

* fix build pr
2024-03-28 09:10:26 +01:00
543889f3f6 [GptNeox] don't gather on pkv when using the trainer (#29892)
don't gather on pkv when using the trainer
2024-03-28 08:56:53 +01:00
b256516a8c [make fix-copies] update and help (#29924)
* add some help

* style
2024-03-28 08:56:14 +01:00
d9dc993fdd Fix typo in T5Block error message (#29881) 2024-03-28 03:30:29 +01:00
a25037beb9 MixtralSparseMoeBlock: add gate jitter (#29865)
This commit adds gate jitter to MixtralSparseMoeBlock's input data
before passing it through the MoE layer, if turned on.
2024-03-27 16:14:26 +01:00
75769744e9 add Cambricon MLUs support (#29627)
* add Cambricon MLUs support

* fix mlu device rng state

* up for quality check

* up mlu to support fp16

* fix mlu device dependency error

* fix mlu device dependency error

* enable mlu device for bf16

* fix mlu device memory tracker
2024-03-27 15:54:28 +01:00
0efcf32351 Move eos_token_id to stopping criteria (#29459)
* add eos stopping criteria

* minor fix

* Update tests/generation/test_stopping_criteria.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* check eos is not None and fix tests

* make style and fixup

* Update src/transformers/generation/stopping_criteria.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update tests/generation/test_utils.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update tests/generation/test_utils.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/generation/__init__.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/generation/stopping_criteria.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/generation/stopping_criteria.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/generation/stopping_criteria.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* camel case everywhere

* call stopping criteria list for candidate ids

* make style  and fixup

* Empty commit

* Empty commit to pass flaky test

* set max length in PromptLookupCandidateGenerator

* Update src/transformers/generation/utils.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* lets fix this typo in docs

* Update src/transformers/generation/utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/generation/utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* update PR

* empty commit

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-03-27 12:18:10 +00:00
31c575bcf1 fix fuyu device_map compatibility (#29880)
fix foward
2024-03-27 10:18:48 +01:00
4d8427f739 Reimplement "Automatic safetensors conversion when lacking these files" (#29846)
* Automatic safetensors conversion when lacking these files (#29390)

* Automatic safetensors conversion when lacking these files

* Remove debug

* Thread name

* Typo

* Ensure that raises do not affect the main thread

* Catch all errors
2024-03-27 08:58:08 +01:00
a81cf9ee90 Fix 29807, sinusoidal positional encodings overwritten by post_init() (#29813)
* Check for requires_grad when initing weights

* Add unit test

* Move sinusoidal positional encoding generation after post_init()

* Add modules to skip init list

* Move create_sinusoidal_embeddings to _init_weights
2024-03-27 06:28:00 +01:00
cefb819f7a Mamba slow_forward gradient fix (#29563)
* FIX: Cached slow forward in mamba
- additionally added mamba cached test
- added unused test (mamba causal lm forward and backward)
- fixed typo: "causl" --> "causal"

* formatting

* fix: use real `slow_forward` call instead of torch module's

* add shape assertion for mixer block test

* adjust shape assertion
2024-03-27 04:52:12 +01:00
1c39974a4c Add Qwen2MoE (#29377)
* add support for qwen2 MoE models

* update docs

* add support for qwen2 MoE models

* update docs

* update model name & test

* update readme

* update class names & readme & model_doc of Qwen2MoE.

* update architecture name

* fix qwen2_moe tests

* use Qwen2Tokenizer instead of Qwen2MoeTokenizer

* update modeling_qwen2_moe.py

* fix model architecture

* fix qwen2_moe tests

* use Qwen2Tokenizer instead of Qwen2MoeTokenizer

* update modeling_qwen2_moe.py

* fix model architecture

* fix style

* fix test when there are sparse and non sparse layers

* fixup

* Update README.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fixup

* fixup

* add archive back

* add support for qwen2 MoE models

* update docs

* update model name & test

* update readme

* update class names & readme & model_doc of Qwen2MoE.

* update architecture name

* fix qwen2_moe tests

* use Qwen2Tokenizer instead of Qwen2MoeTokenizer

* update modeling_qwen2_moe.py

* fix model architecture

* fixup

* fix qwen2_moe tests

* use Qwen2Tokenizer instead of Qwen2MoeTokenizer

* fix style

* fix test when there are sparse and non sparse layers

* fixup

* add archive back

* fix integration test

* fixup

---------

Co-authored-by: bozheng-hit <dsoul0621@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-03-27 02:11:55 +01:00
8e08acad6b Support num_attention_heads != num_key_value_heads in Flax Llama Implementation (#29557)
* fix tinyllama flax modelling

* rename vars to minimize changes

* move

* formatting

* remove unused var
2024-03-27 02:08:43 +01:00
f01e1609bf Set custom_container in build docs workflows (#29855) 2024-03-26 14:46:02 +01:00
07d79520ef Disable AMD memory benchmarks (#29871)
* remove py3nvml to skip amd memory benchmarks

* uninstall pynvml from docker images
2024-03-26 14:43:12 +01:00
ef60995858 Add cosine_with_min_lr scheduler in Trainer (#29341)
* Add cosine_with_min_lr scheduler

* Update error message for missing min_lr or min_lr_rate
2024-03-26 13:57:07 +01:00
998b5bb56f Allow bos_token_id is None during the generation with inputs_embeds (#29772)
* update

* add ut

* update
2024-03-26 12:51:00 +00:00
b9ceb03df8 [docs] Indent ordered list in add_new_model.md (#29796) 2024-03-26 12:03:39 +00:00
de81a677c4 Fix header in IFE task guide (#29859)
Update image_feature_extraction.md
2024-03-26 12:32:37 +01:00
b32bf85b58 Replace 'decord' with 'av' in VideoClassificationPipeline (#29747)
* replace the 'decord' with 'av' in VideoClassificationPipeline

* fix the check of backend in VideoClassificationPipeline

* adjust the order of imports

* format 'video_classification.py'

* format 'video_classification.py' with ruff

---------

Co-authored-by: wanqiancheng <13541261013@163.com>
2024-03-26 10:12:24 +00:00
b5a6d6eeab Add warnings if training args differ from checkpoint trainer state (#29255)
* add warnings if training args differ from checkpoint args stored in trainer_state.json

* run formatting and styling

* add a test

* format and styling

---------

Co-authored-by: Jonathan Flynn <jonl.flynn@guardian.co.uk>
2024-03-26 07:13:13 +01:00
7eb3ba8224 remove quotes in code example (#29812)
Co-authored-by: Johannes <johannes.kolbe@tech.better.team>
2024-03-25 13:26:54 +00:00
e3e16ddc3c [revert commit] revert 00a09ed448082da3d6d35fb23a37b7d04f7b4dcd 2024-03-25 22:01:01 +09:00
00a09ed448 fix 😭 2024-03-25 21:57:31 +09:00
8e9a2207b3 Populate torch_dtype from model to pipeline (#28940)
* Populate torch_dtype from model to pipeline

Signed-off-by: B-Step62 <yuki.watanabe@databricks.com>

* use property

Signed-off-by: B-Step62 <yuki.watanabe@databricks.com>

* lint

Signed-off-by: B-Step62 <yuki.watanabe@databricks.com>

* Remove default handling

Signed-off-by: B-Step62 <yuki.watanabe@databricks.com>

---------

Signed-off-by: B-Step62 <yuki.watanabe@databricks.com>
2024-03-25 10:46:40 +01:00
afe73aed54 Fix the behavior of collecting 'num_input_tokens_seen' (#29099)
fix the behavior of collecting 'num_input_tokens_seen'

See https://github.com/huggingface/transformers/issues/28791 for more details.
2024-03-25 10:43:46 +01:00
39114c0383 Remove static pretrained maps from the library's internals (#29112)
* [test_all] Remove static pretrained maps from the library's internals

* Deprecate archive maps instead of removing them

* Revert init changes

* [test_all] Deprecate instead of removing

* [test_all] PVT v2 support

* [test_all] Tests should all pass

* [test_all] Style

* Address review comments

* Update src/transformers/models/deprecated/_archive_maps.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/deprecated/_archive_maps.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* [test_all] trigger tests

* [test_all] LLAVA

* [test_all] Bad rebase

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-03-25 10:33:38 +01:00
76a33a1092 model_summary.md - Restore link to Harvard's Annotated Transformer. (#29702)
* model_summary.md - Add link to Harvard's Annotated Transformer.

* model_summary.md - slight wording change + capitalize name of the paper

* model_summary.md - moves the Annotated Transformer link in a praenthesis next to the link to the original paper (great idea, stevhliu!)

* model_summary.md - moves the Annotated Transformer link in a praenthesis next to the link to the original paper (commit pt. 2, accidentally removed "has" in pt. 1)
2024-03-23 18:29:39 -07:00
dafe370255 [DOCS] Fix typo for llava next docs (#29829)
Fix typo for llava next docs
2024-03-23 11:32:31 -07:00
c5f0288bc7 [SuperPoint] Fix doc example (#29816)
[SuperPoint] Fix doc example
2024-03-22 16:04:30 +00:00
7e1413d16a Complete security policy with mentions of remote code (#29707)
* Security policy

* Apply suggestions from code review

Co-authored-by: Luc Georges <McPatate@users.noreply.github.com>
Co-authored-by: Michelle Habonneau <83347449+Michellehbn@users.noreply.github.com>

* Update SECURITY.md

Co-authored-by: Diogo Teles Sant'Anna <diogoteles@google.com>

---------

Co-authored-by: Luc Georges <McPatate@users.noreply.github.com>
Co-authored-by: Michelle Habonneau <83347449+Michellehbn@users.noreply.github.com>
Co-authored-by: Diogo Teles Sant'Anna <diogoteles@google.com>
2024-03-22 14:13:18 +01:00
2e7cb46f85 [cleanup] vestiges of causal mask (#29806)
nit
2024-03-22 12:25:40 +00:00
884b2215c3 replaced concatenation to f-strings to improve readability and unify … (#29785)
replaced concatenation to f-strings to improve readability and unify with the rest code
2024-03-22 12:23:16 +00:00
34e07f4ba8 Generate: remove unused attributes in AssistedCandidateGenerator (#29787)
remove unused attrs
2024-03-22 12:20:32 +00:00
e85654f5ec rm input dtype change in CPU (#28631)
* rm input dtype change in CPU

* add warning when use CPU low-precision

* rm useless logging
2024-03-22 12:02:43 +00:00
13b23704a8 Correct llava mask & fix missing setter for vocab_size (#29389)
* correct llava mask

* fix vipllava as wlel

* mask out embedding for padding tokens

* add test

* fix style

* add setter

* fix test on suggestion
2024-03-22 19:57:08 +08:00
aa17cf986f Enable AMD docker build CI (#29803)
* enable amd ci

* remove unnecessary clean up
2024-03-22 11:56:47 +01:00
347916130c Fix type hint for train_dataset param of Trainer.__init__() to allow IterableDataset. Issue 29678 (#29738)
* Fixed typehint for train_dataset param in Trainer.__init__().  Added IterableDataset option.

* make fixup
2024-03-22 10:46:14 +00:00
e68ff30419 [quality] update quality check to make sure we check imports 😈 (#29771)
* update quality check

* make it nice

* update

* let's make sure it runs and we have the logs actually

* update workflow

* nits
2024-03-22 10:11:59 +01:00
fadb053379 Change in-place operations to out-of-place in LogitsProcessors (#29680)
* change in-place -> out-of-place

* add tests

* add more tests

* naming consistency

* fix doctest

* forgot min-length processors

* empty

* Revert "fix doctest"

This reverts commit 4772768457f9bc057f1d4d9d67ea94eb7224eb8d.

* revert change in docstring

* Update tests/generation/test_logits_process.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/generation/test_logits_process.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-03-21 16:37:33 +00:00
b469ebc5cf Prepend bos token to Blip generations (#29642)
* prepend "bos" to blip generation

* minor changes

* Update src/transformers/models/blip_2/modeling_blip_2.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/models/instructblip/modeling_instructblip.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* add generation tester mixin

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-03-21 16:33:18 +00:00
ee38fc31fb Llama: always convert the causal mask in the SDPA code path (#29663)
* always convert the mask

* rebase and fix copies
2024-03-21 16:30:18 +00:00
5ffef2a978 Generate: remove legacy generation mixin imports (#29782) 2024-03-21 16:28:25 +00:00
ef6e371dba Add support for torch_dtype in the run_mlm example (#29776)
feat: add support for torch_dtype

Co-authored-by: Jacky Lee <jackylee328@gmail.com>
2024-03-21 15:09:35 +00:00
10d232e88e Add deterministic config to set_seed (#29778)
* Add deterministic config

* Add note on slowdown

* English fails me again
2024-03-21 11:07:39 -04:00
f0bfb150fe Silence deprecations and use the DataLoaderConfig (#29779)
* Remove deprecations

* Clean
2024-03-21 10:26:51 -04:00
de627f5a14 Cast bfloat16 to float32 for Numpy conversions (#29755)
* Cast bfloat16 to float32 for Numpy conversions

* Add test
2024-03-21 14:04:11 +00:00
73a73b415e [LlavaNext] Fix llava next unsafe imports (#29773)
* path llava-next

* styling

* styling
2024-03-21 13:47:58 +01:00
2ddceef9a2 Fix docker image build for Latest PyTorch + TensorFlow [dev] (#29764)
* update

* update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-03-21 13:14:29 +01:00
fd734be1b6 fix issue with logit processor during beam search in Flax (#29636)
fix issue with logit processor in beam search in Flax
2024-03-21 11:27:03 +00:00
691c3d7325 Allow -OO mode for docstring_decorator (#29689)
Fixes
```
  File "/nix/store/rv8xdwghdad9jv2w86b8g08kan9l6ksm-python3.11-transformers-4.38.2/lib/python3.11/site-packages/transformers/models/auto/configuration_auto.py", line 987, in <module>
    class AutoConfig:
  File "/nix/store/rv8xdwghdad9jv2w86b8g08kan9l6ksm-python3.11-transformers-4.38.2/lib/python3.11/site-packages/transformers/models/auto/configuration_auto.py", line 1011, in AutoConfig
    @replace_list_option_in_docstrings()
     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/nix/store/rv8xdwghdad9jv2w86b8g08kan9l6ksm-python3.11-transformers-4.38.2/lib/python3.11/site-packages/transformers/models/auto/configuration_auto.py", line 966, in docstring_decorator
    lines = docstrings.split("\n")
            ^^^^^^^^^^^^^^^^
AttributeError: 'NoneType' object has no attribute 'split'
```
2024-03-21 11:18:17 +00:00
9556054fb2 OWL-ViT box_predictor inefficiency issue (#29712)
* Calculating box_bias at the start once, then reusing it at inference

* Updating the compute_box_bias function for backwards compatibility

* Caching compute_box_bias function

* Bux fix

* Update owlv2 accordingly to ensure repo consistency

* Co-authored by: nvbinh15 <binh.pdc01@gmail.com>

* Fixup changes

* Made copied code consistent

* Co-authored by: nvbinh15 <binh.pdc01@gmail.com>

---------

Co-authored-by: Nguyen Van Binh <>
Co-authored-by: Nguyen Van Binh <binh.pdc01@gmail.com>
2024-03-21 11:17:45 +00:00
0639034a26 Fixed typo in quantization_config.py (#29766)
Update quantization_config.py

Fixed typo for clarity and correctness.

previous: input time
current: input type
// changed time to type to fix the typo
2024-03-21 11:02:53 +00:00
5d1a58a646 [docs] Remove redundant - and the from custom_tools.md (#29767)
[docs] Remove redundant  and  from custom_tools.md
2024-03-21 10:56:40 +00:00
ff841900e4 [BC 4.37 -> 4.38] for Llama family, memory and speed (#29753)
* attempt to fix

* the actual fix that works with compilation!

* this?

* temporary update

* nit?

* dispatcg to memory efficient?

* update both models that have static cache support

* fix copies fix compile

* make sure fix

* fix cohere and gemma

* fix beams?

* nit

* slipped through the cracks

* nit

* nits

* update

* fix-copies

* skip failing tests

* nits
2024-03-20 23:47:01 +01:00
8dd4ce6f2c [BitsAndBytesConfig] Warning for unused kwargs & safety checkers for load_in_4bit and load_in_8bit (#29761)
* added safety checkers for load_in_4bit and load_in_8bit on init, as well as their setters

* Update src/transformers/utils/quantization_config.py

typo correction for load_in_8bit setter checks

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2024-03-20 18:37:28 +00:00
17e4467f0e Fix docker image build (#29762)
update

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-03-20 19:17:26 +01:00
c78f57729f Update test reqs to include sentencepiece (#29756)
* Update test reqs

* Clean
2024-03-20 15:53:42 +00:00
d91fd7f92c Add LLaVa-1.6, bis (#29586)
* First draft

* Fix tests, add docs

* Improve docstrings

* Fix test

* Address comments

* Address comments

* Remove vocab_size attribute

* Remove batch_size

* Address comment

* Add image processor tests

* Support fx

* Update docstring

* Add support for 34b

* Convert 34b model

* Add integration tests

* Update checkpoints

* Convert vicuna-13b, remove doc tests

* Remove script

* Remove file

* Address comments

* Improve docstrings

* Deprecate vocab_size

* Remove aspect_ratio_setting

* Address comments

* Update READMEs

* Add tips about chat templates

* Fix tests

* Deprecate vocab_size safely

* Update tests

---------

Co-authored-by: Amy Roberts <22614925+amyeroberts@users.noreply.github.com>
2024-03-20 15:51:12 +00:00
9d999481b2 Add correct batched handling for apply_chat_template (#29222)
* Add correct batched handling for apply_chat_template

* Fix warning method

* Add error for incompatible options

* expand tests

* Add a skip for markuplm

* Add skips for other layout models

* Skip for LayoutLMv2

* Slightly update the warning message

* Update src/transformers/tokenization_utils_base.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/tokenization_utils_base.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/tokenization_utils_base.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/tokenization_utils_base.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/tokenization_utils_base.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/tokenization_utils_base.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* typo fix

* Update docstring for conversation kwarg

* Update return docstring

* Remove the warning, improve error message

* Update src/transformers/tokenization_utils_base.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/tokenization_utils_base.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/test_tokenization_common.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/test_tokenization_common.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Remove return_dict=None

* Fix up some merge cruft

* More merge cruft

* Add another skip

* Add another skip

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-03-20 15:50:22 +00:00
3c17c529cc SuperPointModel -> SuperPointForKeypointDetection (#29757) 2024-03-20 15:41:03 +00:00
1248f09252 v4.40.0.dev.0 2024-03-20 23:31:47 +09:00
11ef35e828 Support sharded safetensors in TF (#29350)
* Initial commit (still lots of unfinished bits)

* (Still untested) add safetensors sharding to save_pretrained

* Fix savetensors saving, update default shard size to match PT

* Add proper loading of TF-format safetensors

* Revert default size in case that changes things

* Fix incorrect index name

* Update loading priority

* Update tests

* Make the tests a little more stringent

* Expand tests

* Add sharded cross-test

* Fix argument name

* One more test fix

* Adding mlx to the list of allowed formats

* Remove irrelevant block for safetensors

* Refactor warning logging into a separate function

* Remove unused skip_logger_warnings arg

* Update src/transformers/modeling_tf_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Move function def

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-03-20 14:22:35 +00:00
870bbb4c6b fix jinja2 package version check (#29754) 2024-03-20 13:51:16 +00:00
76b3b20fb2 Update Mamba types and pass through use_cache attr to MambaModel (#29605)
* Update docstring for RMSNorm

* Update cache_params object to correct MambaCache type

* Update docstrings and type info

* Pass through use_cache

* ruff

* Reformat with 119 char limit per line (thanks Arthur)

* Pass through use_cache specifically to the backbone rather than all keyword arguments

* Update src/transformers/models/mamba/modeling_mamba.py

* Update src/transformers/models/mamba/modeling_mamba.py

* Update src/transformers/models/mamba/modeling_mamba.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/mamba/modeling_mamba.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update tab

* Update src/transformers/models/mamba/modeling_mamba.py

* Update src/transformers/models/mamba/modeling_mamba.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-03-20 13:53:22 +01:00
776c9d3af8 [Tests] Remove unused code (#29737)
Remove unused code
2024-03-20 13:26:00 +01:00
a1a7454107 fix galore layerwise with frozen params (#29743) 2024-03-20 11:06:52 +01:00
8692aa88e2 fixed the issue of DPO trainer that using one node and mutiple GPUs and set the device_map='auto' (#29695)
* fixed the issue of DPO trainer that using one node and mutiple GPUs

* before update, add the assert

* run the ruff formatter

* Update src/transformers/trainer.py

Thank you.

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* remember to do make style and make quality before commit

* Update src/transformers/trainer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-03-20 10:05:28 +00:00
243d0de997 Larger runner on CircleCI (#29750)
larger runner

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-03-20 10:02:11 +01:00
1a5c500f12 Tests: Musicgen tests + make fix-copies (#29734)
* make fix-copies

* some tests fixed

* tests fixed
2024-03-20 08:45:53 +01:00
66ce9593fd Fix check_copies not capturing the diff in model/paper title and link (#29724)
* fix

* update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-03-19 18:52:36 +01:00
4294f0c358 Llama: partial 4d masks (#29731)
* partial 4d masks

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-03-19 17:32:01 +00:00
425ba56cdf Clean-up generation tests after moving methods to private (#29582)
* clean-up tests

* refine comments

* fix musicgen tests

* make style

* remove slow decorator from a test

* more clean-up

* fix other failing tests
2024-03-19 17:03:31 +00:00
56baa03380 Implementation of SuperPoint and AutoModelForKeypointDetection (#28966)
* Added SuperPoint docs

* Added tests

* Removed commented part

* Commit to create and fix add_superpoint branch with a new branch

* Fixed dummy_pt_objects

* Committed missing files

* Fixed README.md

* Apply suggestions from code review

Fixed small changes

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Moved ImagePointDescriptionOutput from modeling_outputs.py to modeling_superpoint.py

* Removed AutoModelForKeypointDetection and related stuff

* Fixed inconsistencies in image_processing_superpoint.py

* Moved infer_on_model logic simply in test_inference

* Fixed bugs, added labels to forward method with checks whether it is properly a None value, also added tests about this logic in test_modeling_superpoint.py

* Added tests to SuperPointImageProcessor to ensure that images are properly converted to grayscale

* Removed remaining mentions of MODEL_FOR_KEYPOINT_DETECTION_MAPPING

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Fixed from (w, h) to (h, w) as input for tests

* Removed unnecessary condition

* Moved last_hidden_state to be the first returned

* Moved last_hidden_state to be the first returned (bis)

* Moved last_hidden_state to be the first returned (ter)

* Switched image_width and image_height in tests to match recent changes

* Added config as first SuperPointConvBlock init argument

* Reordered README's after merge

* Added missing first config argument to SuperPointConvBlock instantiations

* Removed formatting error

* Added SuperPoint to README's de, pt-br, ru, te and vi

* Checked out README_fr.md

* Fixed README_fr.md

* Test fix README_fr.md

* Test fix README_fr.md

* Last make fix-copies !

* Updated checkpoint path

* Removed unused SuperPoint doc

* Added missing image

* Update src/transformers/models/superpoint/modeling_superpoint.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Removed unnecessary import

* Update src/transformers/models/superpoint/modeling_superpoint.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Added SuperPoint to _toctree.yml

---------

Co-authored-by: steven <steven.bucaillle@gmail.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Steven Bucaille <steven.bucaille@buawei.com>
2024-03-19 14:43:02 +00:00
2f9a3edbb9 [GemmaConverter] use user_defined_symbols (#29473)
* use user_defined_symbols

* fixup

* nit

* add a very robust test

* make sure all models are tested with the `pretrained_tokenizer_to_test`

* should we make sure we test all of them?

* merge

* remove the id

* fix test

* update

* ousies

* oups

* fixup

* fix copies check

* remove `pretrained_tokenizer_to_test`
2024-03-19 15:13:56 +01:00
8e2fc52ea3 [Gemma] final fixes to the modeling (#29729)
* gelu_pytorch_tanh

* Force config.hidden_act to be approx gelu

* Gemma bug fixes

* force_use_exact_gelu

* Update configuration_gemma.py

* Update modeling_gemma.py

* update

* update for simpler handling

* nit

* nit

* fixpup

* update

* also update the jax modeling!

* add `"gelu_pytorch_tanh": partial(nn.gelu, approximate=True),`

* fixup

* fix order

* act vs act_fn

---------

Co-authored-by: Daniel Han <danielhanchen@gmail.com>
2024-03-19 14:47:42 +01:00
229ac72b1e [tests] add more tests to NOT_DEVICE_TESTS (#29670)
* add more tests

* remove 2 tests

* add more tests
2024-03-19 12:44:30 +00:00
f6261d7d81 FEAT / Optim: Add GaLore optimizer (#29588)
* add galore v1

* add import

* add tests and doc

* fix doctest

* forward contrib credits from discussions

* forward contrib credits from discussions

* Apply suggestions from code review

Co-authored-by: Zach Mueller <muellerzr@gmail.com>

* fix failing tests'

* switch to `optim_target_modules` and clarify docs

* more clarification

* enhance lookup logic

* update a test to add peak memory

* add regex, all-linear and single string support

* add layer-wise optimization through DummyOptimizers and LRSchedulers

* forward contrib credits from discussions and original idea

* add a section about DDP not supported in layerwise

* Update src/transformers/trainer.py

Co-authored-by: Zach Mueller <muellerzr@gmail.com>

* fix self

* check only if layer_wise

* Update src/transformers/training_args.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* oops

* make use of intervals

* clarify comment

* add matching tests

* GaLoRe -> GaLore

* move to `get_scheduler`

* add note on docs

* add a warning

* adapt a bit the docs

* update docstring

* support original API

* Update docs/source/en/trainer.md

* slightly refactor

* Update docs/source/en/trainer.md

Co-authored-by: Matthew Douglas <38992547+matthewdouglas@users.noreply.github.com>

* Update src/transformers/training_args.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* fix args parsing and add tests

* remove warning for regex

* fix type hint

* add note about extra args

* make `is_regex` return optional

---------

Co-authored-by: Maxime <maximegmd @users.noreply.github.com>
Co-authored-by: Wing Lian <winglian @users.noreply.github.com>
Co-authored-by: Zach Mueller <muellerzr@gmail.com>
Co-authored-by: hiyouga <hiyouga@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Matthew Douglas <38992547+matthewdouglas@users.noreply.github.com>
2024-03-19 11:40:23 +01:00
484e10f7f2 Use logging.warning instead of warnings.warn in pipeline.__call__ (#29717)
* Use logging.warning instead of warnings.warn in pipeline.__call__

* Update src/transformers/pipelines/base.py
2024-03-19 09:23:22 +00:00
838b87abe2 Update the pipeline tutorial to include gradio.Interface.from_pipeline (#29684)
* Update pipeline_tutorial.md to include gradio

* Update pipeline_tutorial.md

* Update docs/source/en/pipeline_tutorial.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/pipeline_tutorial.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/pipeline_tutorial.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/pipeline_tutorial.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update pipeline_tutorial.md

* Update docs/source/en/pipeline_tutorial.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-03-18 09:17:41 -07:00
c852d4fba6 FIX [bnb] Make unexpected_keys optional (#29420)
* make `unexpected_keys` optional

* push

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-03-18 15:50:56 +01:00
87e2ea33aa Fix filter_models (#29710)
* update

* update

* update

* check

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-03-18 14:32:42 +01:00
c43b380e70 Add MusicGen Melody (#28819)
* first modeling code

* make repository

* still WIP

* update model

* add tests

* add latest change

* clean docstrings and copied from

* update docstrings md and readme

* correct chroma function

* correct copied from and remove unreleated test

* add doc to toctree

* correct imports

* add convert script to notdoctested

* Add suggestion from Sanchit

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* correct get_uncoditional_inputs docstrings

* modify README according to SANCHIT feedback

* add chroma to audio utils

* clean librosa and torchaudio hard dependencies

* fix FE

* refactor audio decoder -> audio encoder for consistency with previous musicgen

* refactor conditional -> encoder

* modify sampling rate logics

* modify license at the beginning

* refactor all_self_attns->all_attentions

* remove ignore copy from causallm generate

* add copied from for from_sub_models

* fix make copies

* add warning if audio is truncated

* add copied from where relevant

* remove artefact

* fix convert script

* fix torchaudio and FE

* modify chroma method according to feedback-> better naming

* refactor input_values->input_features

* refactor input_values->input_features and fix import fe

* add input_features to docstrigs

* correct inputs_embeds logics

* remove dtype conversion

* refactor _prepare_conditional_hidden_states_kwargs_for_generation ->_prepare_encoder_hidden_states_kwargs_for_generation

* change warning for chroma length

* Update src/transformers/models/musicgen_melody/convert_musicgen_melody_transformers.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* change way to save wav, using soundfile

* correct docs and change to soundfile

* fix import

* fix init proj layers

* remove line breaks from md

* fix issue with docstrings

* add FE suggestions

* improve is in logics and remove useless imports

* remove custom from_pretrained

* simplify docstring code

* add suggestions for modeling tests

* make style

* update converting script with sanity check

* remove encoder attention mask from conditional generation

* replace musicgen melody checkpoints with official orga

* rename ylacombe->facebook in checkpoints

* fix copies

* remove unecessary warning

* add shape in code docstrings

* add files to slow doc tests

* fix md bug and add md to not_tested

* make fix-copies

* fix hidden states test and batching

---------

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
2024-03-18 13:06:12 +00:00
bf3dfd1160 CI / generate: batch size computation compatible with all models (#29671) 2024-03-18 11:36:00 +00:00
00c1d87a7d [docs] Spanish translation of attention.md (#29681)
* add attention to es/ and edit es/_toctree.yml

* translate attention.md

* fix transformers

* fix transformers
2024-03-15 11:55:35 -07:00
5011908e10 Revert "Fix wrong condition used in filter_models" (#29682)
Revert "Fix wrong condition used in `filter_models` (#29673)"

This reverts commit 174aecd099764920cf173703961d99d814fe9a75.
2024-03-15 18:59:37 +01:00
4e98d59443 [FIX] Fix speech2test modeling tests (#29672)
* fix speech_to_test generation tests

* Add details to comment

* Update tests/models/speech_to_text/test_modeling_speech_to_text.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-03-15 17:58:11 +00:00
9e4df7c424 Generate: replace breaks by a loop condition (#29662)
* replace breaks by a loop condition

* Update src/transformers/generation/utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-03-15 17:49:41 +00:00
28de2f4de3 [Quantization] Quanto quantizer (#29023)
* start integration

* fix

* add and debug tests

* update tests

* make pytorch serialization works

* compatible with device_map and offload

* fix tests

* make style

* add ref

* guard against safetensors

* add float8 and style

* fix is_serializable

* Fix shard_checkpoint compatibility with quanto

* more tests

* docs

* adjust memory

* better

* style

* pass tests

* Update src/transformers/modeling_utils.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* add is_safe_serialization instead

* Update src/transformers/quantizers/quantizer_quanto.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* add QbitsTensor tests

* fix tests

* simplify activation list

* Update docs/source/en/quantization.md

Co-authored-by: David Corvoysier <david.corvoysier@gmail.com>

* better comment

* Update tests/quantization/quanto_integration/test_quanto.py

Co-authored-by: David Corvoysier <david.corvoysier@gmail.com>

* Update tests/quantization/quanto_integration/test_quanto.py

Co-authored-by: David Corvoysier <david.corvoysier@gmail.com>

* find and fix edge case

* Update docs/source/en/quantization.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* pass weights_only_kwarg instead

* fix shard_checkpoint loading

* simplify update_missing_keys

* Update tests/quantization/quanto_integration/test_quanto.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* recursion to get all tensors

* block serialization

* skip serialization tests

* fix

* change by cuda:0 for now

* fix regression

* update device_map

* fix doc

* add noteboon

* update torch_dtype

* update doc

* typo

* typo

* remove comm

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: David Corvoysier <david.corvoysier@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Younes Belkada <younesbelkada@gmail.com>
2024-03-15 11:51:29 -04:00
f02aea2737 Rename glue to nyu-mll/glue (#29679)
* Update run_glue.py

* Update run_glue.py

* Update run_glue_no_trainer.py
2024-03-15 16:35:02 +01:00
03847ef451 fix: typos (#29653)
Signed-off-by: guoguangwu <guoguangwug@gmail.com>
2024-03-15 15:02:50 +00:00
174aecd099 Fix wrong condition used in filter_models (#29673)
update

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-03-15 15:38:36 +01:00
272f48e734 [tests] ensure device-required software is available in the testing environment before testing (#29477)
* gix

* fix style

* add warning

* revert

* no newline

* revert

* revert

* add CUDA as well
2024-03-15 14:28:52 +00:00
8a3cfaac0d Fix AutoformerForPrediction example code (#29639)
Removed static_real_features from AutoformerForPrediction example code

Signed-off-by: Maciej Torhan <maciek97x@gmail.com>
2024-03-15 14:21:47 +00:00
c1993e68b8 [tests] remove deprecated tests for model loading (#29450)
* gix

* fix style

* remove equivalent tests

* add back for image_processor

* remove again
2024-03-15 14:18:41 +00:00
0e4a1c3401 Cohere Model Release (#29622)
* Cohere Model Release (#1)

Cohere Model Release

* Remove unnecessary files and code (#2)

Some cleanup

* Delete cohere-model directory (#3)

* Make Fix (#5)

* Pr fixes (#6)

* fixes for pr

* pr fixes for the format

* pr fixes for the format

* src/transformers/models/auto/tokenization_auto.py

* Tokenizer test (#8)

* tokenizer test

* format fix

* Adding Docs and other minor changes (#7)

* Add modeling tests (#9)

* Smol Fix (#11)

* tokenization tests are fixed

* format fixes

* fix pr doc tests

* fix pr doc tests

* fix pr doc tests

* fix pr style check

* small changes in cohere.md

* FIX: Address final comments for transformers integration (#13)

* fix modeling final nits and add proper test file

* for now leave empty tests

* add integration test

* push new test

* fix modeling cohere (#14)

* Update chat templates to use the new API (#15)

---------

Co-authored-by: ahmetustun <ahmetustun89@gmail.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2024-03-15 14:29:11 +01:00
53d891247b Pipeline: use tokenizer pad token at generation time if the model pad token is unset. (#29614) 2024-03-15 13:00:18 +00:00
c47fcd0830 Trainer: fail early in the presence of an unsavable generation_config (#29675) 2024-03-15 12:59:10 +00:00
f62407f788 Extend import utils to cover "editable" torch versions (#29000)
* Extend import utils to cover "editable" torch versions

* Re-add type hint

* Remove whitespaces

* Double quote strings

* Update comment

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* Restore package_exists

* Revert "Restore package_exists"

This reverts commit 66fd2cd5c33d1b9a26a8f3e8adef2e6ec1214868.

---------

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2024-03-15 12:34:48 +00:00
56b64bf1a5 Inaccurate code example within inline code-documentation (#29661)
* docs:inaccurate_code_example

* Inaccurate code example within inline code-documentation
2024-03-14 19:59:32 +00:00
48fbab7330 Allow apply_chat_template to pass kwargs to the template and support a dict of templates (#29658)
* Allow apply_chat_template to pass kwargs to the template

* Fix priority for template_kwargs

* Fix docstring

* style fix

* Add the option for the model to have a dict of templates

* Error message cleanup

* Add test for chat template dicts

* Simplify the chat template dict test and apply it to all tokenizers in self.get_tokenizers()

* Save chat template dicts as lists with fixed key names

* Add test for serialization/reloading

* Add require_jinja just to be safe, even though I don't think we use it
2024-03-14 18:23:14 +00:00
23db187d92 Generate: handle cache_position update in generate (#29467) 2024-03-14 16:35:31 +00:00
7b87ecb047 Fix PVT v2 tests (#29660)
* update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-03-14 17:00:32 +01:00
2cc3cc835f Add dataset_revision argument to RagConfig (#29610)
* add arg

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-03-14 16:48:11 +01:00
956f44f11a Fix TPU checkpointing inside Trainer (#29657)
Manually call sync step
2024-03-14 15:43:16 +00:00
c9e3c0b454 [PEFT] Fix save_pretrained to make sure adapters weights are also saved on TPU (#29388)
* Fix for saving ad
apter weights when using PEFT

* Change supported-classes to PushToHubMixin
2024-03-14 11:30:19 +00:00
b4b96251cd Add newly added PVTv2 model to all README files. (#29647)
Add newly added models to all README files.

Also fix one relative path in README_ru.md.
2024-03-14 10:54:17 +00:00
f738ab3b5d [docs] Remove broken ChatML format link from chat_templating.md (#29643)
* remove ChatML link from en/

* remove ChatML link in ja/

* remove ChatML link in zh/
2024-03-13 13:04:51 -07:00
1fc505b816 Add PvT-v2 Model (#26812)
* Added pytests for pvt-v2, all passed

* Added pvt_v2 to docs/source/end/model_doc

* Ran fix-copies and fixup. All checks passed

* Added additional ReLU for linear attention mode

* pvt_v2_b2_linear converted and working

* copied models/pvt to adapt to pvt_v2

* First commit of pvt_v2

* PvT-v2 now works in AutoModel

* Reverted batch eval changes for PR

* Expanded type support for Pvt-v2 config

* Fixed config docstring. Added channels property

* Fixed model names in tests

* Fixed config backbone compat. Added additional type support for image size in config

* Fixed config backbone compat

* Allowed for batching of eval metrics

* copied models/pvt to adapt to pvt_v2

* First commit of pvt_v2

* Set key and value layers to use separate linear modules. Fixed pruning function

* Set AvgPool to 7

* Fixed issue in init

* PvT-v2 now works in AutoModel

* Successful conversion of pretrained weights for PVT-v2

* Successful conversion of pretrained weights for PVT-v2 models

* Added pytests for pvt-v2, all passed

* Ran fix-copies and fixup. All checks passed

* Added additional ReLU for linear attention mode

* pvt_v2_b2_linear converted and working

* Allowed for batching of eval metrics

* copied models/pvt to adapt to pvt_v2

* First commit of pvt_v2

* Set key and value layers to use separate linear modules. Fixed pruning function

* Set AvgPool to 7

* Fixed issue in init

* PvT-v2 now works in AutoModel

* Successful conversion of pretrained weights for PVT-v2

* Successful conversion of pretrained weights for PVT-v2 models

* Added pytests for pvt-v2, all passed

* Ran fix-copies and fixup. All checks passed

* Added additional ReLU for linear attention mode

* pvt_v2_b2_linear converted and working

* Reverted batch eval changes for PR

* Updated index.md

* Expanded type support for Pvt-v2 config

* Fixed config docstring. Added channels property

* Fixed model names in tests

* Fixed config backbone compat

* Ran fix-copies

* Fixed PvtV2Backbone tests

* Added TFRegNet to OBJECTS_TO_IGNORE in check_docstrings.py

* Fixed backbone stuff and fixed tests: all passing

* Ran make fixup

* Made modifications for code checks

* Remove ONNX config from configuration_pvt_v2.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Use explicit image size dict in test_modeling_pvt_v2.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Make image_size optional in test_modeling_pvt_v2.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Remove _ntuple use in modeling_pvt_v2.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Remove reference to fp16_enabled

* Model modules now take config as first argument even when not used

* Replaced abbreviations for "SR" and "AP" with explicit "spatialreduction" and "averagepooling"

* All LayerNorm now instantiates with config.layer_norm_eps

* Added docstring for depth-wise conv layer

* PvtV2Config now only takes Union[int, Tuple[int, int]] for image size

* Refactored PVTv2 in prep for gradient checkpointing

* Gradient checkpointing ready to test

* Removed override of _set_gradient_checkpointing

* Cleaned out old code

* Applied code fixup

* Applied code fixup

* Began debug of pvt_v2 tests

* Leave handling of num_labels to base pretrained config class

* Deactivated gradient checkpointing tests until it is fixed

* Removed PvtV2ImageProcessor which duped PvtImageProcessor

* Allowed for batching of eval metrics

* copied models/pvt to adapt to pvt_v2

* First commit of pvt_v2

* Set key and value layers to use separate linear modules. Fixed pruning function

* Set AvgPool to 7

* Fixed issue in init

* PvT-v2 now works in AutoModel

* Successful conversion of pretrained weights for PVT-v2

* Successful conversion of pretrained weights for PVT-v2 models

* Added pytests for pvt-v2, all passed

* Added pvt_v2 to docs/source/end/model_doc

* Ran fix-copies and fixup. All checks passed

* Added additional ReLU for linear attention mode

* pvt_v2_b2_linear converted and working

* copied models/pvt to adapt to pvt_v2

* First commit of pvt_v2

* PvT-v2 now works in AutoModel

* Reverted batch eval changes for PR

* Expanded type support for Pvt-v2 config

* Fixed config docstring. Added channels property

* Fixed model names in tests

* Fixed config backbone compat. Added additional type support for image size in config

* Fixed config backbone compat

* Allowed for batching of eval metrics

* copied models/pvt to adapt to pvt_v2

* First commit of pvt_v2

* Set key and value layers to use separate linear modules. Fixed pruning function

* Set AvgPool to 7

* Fixed issue in init

* PvT-v2 now works in AutoModel

* Successful conversion of pretrained weights for PVT-v2

* Successful conversion of pretrained weights for PVT-v2 models

* Added pytests for pvt-v2, all passed

* Ran fix-copies and fixup. All checks passed

* Added additional ReLU for linear attention mode

* pvt_v2_b2_linear converted and working

* Allowed for batching of eval metrics

* copied models/pvt to adapt to pvt_v2

* First commit of pvt_v2

* Set key and value layers to use separate linear modules. Fixed pruning function

* Set AvgPool to 7

* Fixed issue in init

* PvT-v2 now works in AutoModel

* Successful conversion of pretrained weights for PVT-v2

* Successful conversion of pretrained weights for PVT-v2 models

* Added pytests for pvt-v2, all passed

* Ran fix-copies and fixup. All checks passed

* Added additional ReLU for linear attention mode

* pvt_v2_b2_linear converted and working

* Reverted batch eval changes for PR

* Expanded type support for Pvt-v2 config

* Fixed config docstring. Added channels property

* Fixed model names in tests

* Fixed config backbone compat

* Ran fix-copies

* Fixed PvtV2Backbone tests

* Added TFRegNet to OBJECTS_TO_IGNORE in check_docstrings.py

* Fixed backbone stuff and fixed tests: all passing

* Ran make fixup

* Made modifications for code checks

* Remove ONNX config from configuration_pvt_v2.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Use explicit image size dict in test_modeling_pvt_v2.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Make image_size optional in test_modeling_pvt_v2.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Remove _ntuple use in modeling_pvt_v2.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Remove reference to fp16_enabled

* Model modules now take config as first argument even when not used

* Replaced abbreviations for "SR" and "AP" with explicit "spatialreduction" and "averagepooling"

* All LayerNorm now instantiates with config.layer_norm_eps

* Added docstring for depth-wise conv layer

* PvtV2Config now only takes Union[int, Tuple[int, int]] for image size

* Refactored PVTv2 in prep for gradient checkpointing

* Gradient checkpointing ready to test

* Removed override of _set_gradient_checkpointing

* Cleaned out old code

* Applied code fixup

* Applied code fixup

* Allowed for batching of eval metrics

* copied models/pvt to adapt to pvt_v2

* First commit of pvt_v2

* PvT-v2 now works in AutoModel

* Ran fix-copies and fixup. All checks passed

* copied models/pvt to adapt to pvt_v2

* First commit of pvt_v2

* PvT-v2 now works in AutoModel

* Reverted batch eval changes for PR

* Fixed config docstring. Added channels property

* Fixed config backbone compat

* Allowed for batching of eval metrics

* copied models/pvt to adapt to pvt_v2

* First commit of pvt_v2

* PvT-v2 now works in AutoModel

* Ran fix-copies and fixup. All checks passed

* Allowed for batching of eval metrics

* copied models/pvt to adapt to pvt_v2

* First commit of pvt_v2

* PvT-v2 now works in AutoModel

* Fixed config backbone compat

* Ran fix-copies

* Began debug of pvt_v2 tests

* Leave handling of num_labels to base pretrained config class

* Deactivated gradient checkpointing tests until it is fixed

* Removed PvtV2ImageProcessor which duped PvtImageProcessor

* Fixed issue from rebase

* Fixed issue from rebase

* Set tests for gradient checkpointing to skip those using reentrant since it isn't supported

* Fixed issue from rebase

* Fixed issue from rebase

* Changed model name in docs

* Removed duplicate PvtV2Backbone

* Work around type switching issue in tests

* Fix model name in config comments

* Update docs/source/en/model_doc/pvt_v2.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Changed name of variable from 'attn_reduce' to 'sr_type'

* Changed name of variable from 'attn_reduce' to 'sr_type'

* Changed from using 'sr_type' to 'linear_attention' for clarity

* Update src/transformers/models/pvt_v2/modeling_pvt_v2.py

Removed old code

* Changed from using 'sr_type' to 'linear_attention' for clarity

* Fixed Class names to be more descriptive

* Update src/transformers/models/pvt_v2/modeling_pvt_v2.py

Removed outdated code

* Moved paper abstract to single line in pvt_v2.md

* Added usage tips to pvt_v2.md

* Simplified module inits by passing layer_idx

* Fixed typing for hidden_act in PvtV2Config

* Removed unusued import

* Add pvt_v2 to docs/source/en/_toctree.yml

* Updated documentation in docs/source/en/model_doc/pvt_v2.md to be more comprehensive.

* Updated documentation in docs/source/en/model_doc/pvt_v2.md to be more comprehensive.

* Update src/transformers/models/pvt_v2/modeling_pvt_v2.py

Move function parameters to single line

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/pvt_v2/modeling_pvt_v2.py

Update year of copyright to 2024

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/pvt_v2/modeling_pvt_v2.py

Make code more explicit

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Updated sr_ratio to be more explicit spatial_reduction_ratio

* Removed excess type hints in modeling_pvt_v2.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Move params to single line in modeling_pvt_v2.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Removed needless comment in modeling_pvt_v2.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update copyright date in pvt_v2.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Moved params to single line in modeling_pvt_v2.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Updated copyright date in configuration_pvt_v2.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Cleaned comments in modeling_pvt_v2.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Renamed spatial_reduction Conv2D operation

* Revert "Update src/transformers/models/pvt_v2/modeling_pvt_v2.py
"

This reverts commit c4a04416dde8f3475ab405d1feb368600e0f8538.

* Updated conversion script to reflect module name change

* Deprecated reshape_last_stage option in config

* Removed unused imports

* Code formatting

* Fixed outdated decorators on test_inference_fp16

* Added "Copied from" comments in test_modeling_pvt_v2.py

* Fixed import listing

* Updated model name

* Force empty commit for PR refresh

* Fixed linting issue

* Removed # Copied from comments

* Added PVTv2 to README_fr.md

* Ran make fix-copies

* Replace all FoamoftheSea hub references with OpenGVLab

* Fixed out_indices and out_features logic in configuration_pvt_v2.py

* Made ImageNet weight conversion verification optional in convert_pvt_v2_to_pytorch.py

* Ran code fixup

* Fixed order of parent classes in PvtV2Config to fix the to_dict method override

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-03-13 19:05:20 +00:00
fe085560d0 Fix multi_gpu_data_parallel_forward for MusicgenTest (#29632)
update

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-03-13 19:12:20 +01:00
5ac264d8a8 Fix batching tests for new models (Mamba and SegGPT) (#29633)
* fix batchinng tests for new models

* Update tests/models/seggpt/test_modeling_seggpt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-03-13 17:52:49 +00:00
31d01150ad Refactor TFP call to just sigmoid() (#29641)
* Refactor TFP call to just sigmoid()

* Make sure we cast to the right dtype
2024-03-13 17:51:13 +00:00
a7e5e15472 [tests] make test_trainer_log_level_replica to run on accelerators with more than 2 devices (#29609)
add new arg
2024-03-13 17:44:35 +00:00
3b6e95ec7f [Mask2Former] Move normalization for numerical stability (#29542)
* Move normalization for numerical stability

* Apply suggestions from code review

Remove useless x=x line

* PR comment - normalize later to preserve var name meaning
2024-03-13 16:40:14 +00:00
350c5d1566 Add support for FSDP+QLoRA and DeepSpeed ZeRO3+QLoRA (#29587)
* fsdp+qlora related changes

* fixes

* Update quantization_config.py

* support fsdp+qlora and dsz3+qlora

* Update quantization_config.py

* Update modeling_utils.py

* Update modeling_utils.py

* Update modeling_utils.py

* Update modeling_utils.py

* Update modeling_utils.py

* Update modeling_utils.py

* handle fsdp+qlora and dsz3+qlora correctly while model loading

* fix param count

* quality

* fsdp related changes

* fsdp changes only when using LoRA/QLoRA

* add accelerate version check

* refactor, update min accelerate version and add tests

1. Update minimum accelerate version to 0.26.0
2. Clean the trainer wrt accelerate version checks
3. FSDP refactor and test for fsdp config
4. use `itemsize` instead of `dtype2bytes` dict

* fix test

* Address comments

Co-Authored-By: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* fix the conditional flag

* fix conditional flag

* address comments

Co-Authored-By: Zach Mueller <7831895+muellerzr@users.noreply.github.com>

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Zach Mueller <7831895+muellerzr@users.noreply.github.com>
2024-03-13 22:03:02 +05:30
d3801aae2e [docs] Spanish translate chat_templating.md & yml addition (#29559)
* torchscript and trainer md es translation

* corrected md es files and even corrected spelling in en md

* made es corrections to trainer.md

* deleted entrenamiento... title on yml

* placed entrenamiento in right place

* translated es chat_templating.md w/ yml addition

* requested es changes to md and yml

* last es changes to md
2024-03-13 09:28:11 -07:00
b340d90738 [PyTorch/XLA] Fix extra TPU compilations introduced by recent changes (#29158)
* tmp

* Remove debug step

* Fix a typo

* Move to is_torch_xla_available
2024-03-13 15:30:32 +00:00
1e21c4fbe0 Llama: allow custom 4d masks (#29618) 2024-03-13 15:07:52 +00:00
88a4f68fe5 [MaskFormer, Mask2Former] Use einsum where possible (#29544)
* Use einsum where possible

* Fix
2024-03-13 14:52:37 +00:00
624788570c Fix minor typo: infenrece => inference (#29621) 2024-03-13 14:49:09 +00:00
fafe90930d [generate] deprecate forced ids processor (#29487)
* [generate] deprecate forced ids processor

* add todo

* make message clearer
2024-03-13 20:10:02 +05:30
11bbb505c7 Adds pretrained IDs directly in the tests (#29534)
* Adds pretrained IDs directly in the tests

* Fix tests

* Fix tests

* Review!
2024-03-13 14:53:27 +01:00
38bff8c84f Warn about tool use (#29628)
* Warn against remote tool use

* Additional disclaimer

* Update docs/source/en/custom_tools.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-03-13 14:53:13 +01:00
4afead8a1c [Whisper] Deprecate forced ids for v4.39 (#29485)
deprecate old funcs
2024-03-13 19:14:19 +05:30
9acce7de1c Core: Fix copies on main (#29624)
fix fix copies
2024-03-13 09:16:59 +01:00
be3fd8a262 [Flash Attention 2] Add flash attention 2 for GPT-J (#28295)
* initial implementation of flash attention for gptj

* modify flash attention and overwrite test_flash_attn_2_generate_padding_right

* update flash attention support list

* remove the copy line in the `CodeGenBlock`

* address copy mechanism

* Update src/transformers/models/gptj/modeling_gptj.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Add GPTJ attention classes

* add expected outputs in the gptj test

* Ensure repo consistency with 'make fix-copies'

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-03-13 08:43:00 +01:00
d522afea13 [Gemma] Supports converting directly in half-precision (#29529)
* Update convert_gemma_weights_to_hf.py

* Update src/transformers/models/gemma/convert_gemma_weights_to_hf.py

* fixup
2024-03-12 22:44:49 +01:00
d47966536c Examples: check max_position_embeddings in the translation example (#29600)
check max_position_embeddings
2024-03-12 18:58:12 +00:00
6b660d5ed5 Fix: handle logging of scalars in Weights & Biases summary (#29612)
fix: handle logging of scalars in wandb summary

fixes:  #29430
2024-03-12 18:26:09 +00:00
8e64ba2890 Add tests for batching support (#29297)
* add tests for batching support

* Update src/transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update tests/test_modeling_common.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update tests/test_modeling_common.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update tests/test_modeling_common.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* fixes and comments

* use cosine distance for conv models

* skip mra model testing

* Update tests/models/vilt/test_modeling_vilt.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* finzalize  and make style

* check model type by input names

* Update tests/models/vilt/test_modeling_vilt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* fixed batch size for all testers

* Revert "fixed batch size for all testers"

This reverts commit 525f3a0a058f069fbda00352cf202b728d40df99.

* add batch_size for all testers

* dict from model output

* do not skip layoutlm

* bring back some code from git revert

* Update tests/test_modeling_common.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/test_modeling_common.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* clean-up

* where did minus go in tolerance

* make whisper happy

* deal with consequences of losing minus

* deal with consequences of losing minus

* maskformer needs its own test for happiness

* fix more models

* tag flaky CV models from Amy's approval

* make codestyle

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-03-12 17:46:19 +00:00
11163fff58 Fix typo ; Update quantization.md (#29615)
Update quantization.md
2024-03-12 16:32:50 +00:00
a15bd3af4e Update flava tests (#29611)
* update

* update

* update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-03-12 17:04:53 +01:00
df1542581e Set env var to hold Keras at Keras 2 (#29598)
* Set env var to hold Keras at Keras 2

* Add Amy's update

* make fixup

* Use a warning instead
2024-03-12 13:49:57 +00:00
b6404866cd Update legacy Repository usage in various example files (#29085)
* Update legacy Repository usage in `examples/pytorch/text-classification/run_glue_no_trainer.py`

Marked for deprecation here https://huggingface.co/docs/huggingface_hub/guides/upload#legacy-upload-files-with-git-lfs

* Fix import order

* Replace all example usage of deprecated Repository

* Fix remaining repo call and rename args variable

* Revert removing creation of gitignore files and don't change research examples
2024-03-12 13:20:49 +00:00
f1a565a39f Implemented add_pooling_layer arg to TFBertModel (#29603)
Implemented add_pooling_layer argument
2024-03-12 13:01:55 +00:00
50ec493363 Fix typo (determine) (#29606)
* Fix type (determine)

* ruff

* Update src/transformers/models/mamba/configuration_mamba.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-03-12 12:56:51 +00:00
81ec8028f9 Stop passing None to compile() in TF examples (#29597)
* Fix examples to stop passing None to compile(), rework example invocation for run_text_classification.py

* Add Amy's fix
2024-03-12 12:22:29 +00:00
73efe896df Fix minor typo: softare => software (#29602) 2024-03-12 10:39:56 +00:00
6cc5411d81 Fix Fuyu doc typos (#29601)
fix fuyu docs
2024-03-12 10:16:21 +00:00
b382a09e28 Experimental loading of MLX files (#29511)
* Experimental loading of MLX files

* Update exception message

* Add test

* Style

* Use model from hf-internal-testing
2024-03-11 18:42:06 +00:00
73a27345d4 Tiny improvement for doc (#29581)
* Update add_new_model.md

* Update docs/source/en/add_new_model.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-03-11 17:43:35 +00:00
b45c0f55e0 Fixed broken link (#29558)
Fixed broken link for Resources -> Token Classification -> Finetuning BERT for named-entity
2024-03-11 17:26:38 +00:00
c1e478aa7f Add missing localized READMEs to the copies check (#29575)
* Add missing localized READMEs to the copies check

* Run check to resolve all inconsistencies
2024-03-11 17:17:42 +00:00
47c9570903 fix error: TypeError: Object of type Tensor is not JSON serializable … (#29568)
fix error: TypeError: Object of type Tensor is not JSON serializable trainer

Co-authored-by: Zach Mueller <muellerzr@gmail.com>
2024-03-11 17:15:36 +00:00
e5eb55b88b Don't use a subset in test fetcher if on main branch (#28816)
save ci life

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-03-11 16:58:06 +01:00
dd1c905215 [Docs] Fix FastSpeech2Conformer model doc links (#29574)
[Docs] Fix FastSpeech2Conformer links
2024-03-11 14:14:03 +00:00
873d9bb3cc Make torch xla available on GPU (#29334)
* add USE_TORCH_XLA env

* rename torch_tpu to torch_xla

* better is_torch_xla_available; fix some fsdp and performance issues

* fix format

* fix bug when pjrt_device is cpu

* fix bug

* fix the deprecation handling

---------

Co-authored-by: anw90 <ang868@gmail.com>
Co-authored-by: wangang.wa <wangang.wa@alibaba-inc.com>
2024-03-11 14:07:16 +00:00
9a3f4d4daf Bark model Flash Attention 2 Enabling to pass on check_device_map parameter to super() (#29357)
* Fixing error #29332. The _check_and_enable_flash_attn_2() method receives a check_device_map parameter and fails.

* style fixup
2024-03-11 12:44:12 +00:00
6d67837f06 Add Fill-in-the-middle training objective example - PyTorch (#27464)
* add: initial script to train clm fim

* fix: if training model from scratch, new tokens will be added and embeddings resized

* fix: fixed attention_mask errors when generating FIM data

* fix: file formatted using black

* add: run_fim_no_trainer.py and fixed some comments in run_fim.py

* add: added fim examples to the README.md and ran code fixup

* fix: little bug in both fim training scripts

* fix: remove comment from notebook and added a note on fim related params

* fix: minor typo in README

* add: suggested minor changes to README and run_fim.py

* add: gradient_accumulation_steps and gradient_checkpointing args

* add: improved model embedding resizing

* add: pad_to_multiple_of and attn_implementation params

* add: requested minor changes

* add: deepspeed zero compatibility

* add: resize embeddings layer with zero3 support for fim model initialization
2024-03-11 12:14:02 +00:00
d80c9a3497 [Docs] fixed minor typo (#29555) 2024-03-11 11:05:16 +00:00
4f27ee936a [Mamba doc] Post merge updates (#29472)
* post merge update

* nit

* oups
2024-03-11 09:46:24 +01:00
0290ec19c9 feat: use warning_advice for tensorflow warning (#29540)
feat: use `warning_advice` instead of tensorflow warning
2024-03-08 17:27:30 +00:00
469c13280d Fix eval thread fork bomb (#29538)
* Fix eval thread fork bomb

* Keep eval dl persistent and prepare after so free_memory doesn't destroy it

* Add note

* Quality
2024-03-08 11:04:18 -05:00
3f6973db06 [tests] use the correct n_gpu in TrainerIntegrationTest::test_train_and_eval_dataloaders for XPU (#29307)
* fix n_gpu

* fix style
2024-03-08 10:52:25 -05:00
1ba89dc2d2 Fix WhisperNoSpeechDetection when input is full silence (#29065)
fix total silence input with no_speech_threshold
2024-03-08 14:31:05 +00:00
697f05bab3 fix typos in FSDP config parsing logic in TrainingArguments (#29189)
fix FSDP config
2024-03-08 08:36:30 -05:00
608fa5496c Make sliding window size inclusive in eager attention (#29519)
* Make sliding window size inclusive in eager attention

* Fix tests
2024-03-08 12:53:17 +00:00
f386c51ad9 StableLM: Fix dropout argument type error (#29236)
* fix stablelm dropout argument type error

* fix docs of _flash_attention_forward

* fix all docs of _flash_attention_forward

* fix docs of _flash_attention_forward in starcoder2

---------

Co-authored-by: oliang <oliang@tencent.com>
2024-03-08 11:58:25 +00:00
1ea3ad1aec [tests] use torch_device instead of auto for model testing (#29531)
* use torch_device

* skip for XPU

* Update tests/generation/test_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-03-08 11:21:43 +00:00
14536c339a Typo fix in error message (#29535) 2024-03-08 11:20:31 +00:00
8ee1d47203 fix image-to-text batch incorrect output issue (#29342)
* fix image-to-text batch incorrect output issue

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* add ci test

Signed-off-by: Wang, Yi <yi.a.wang@intel.com>

* update ci test

Signed-off-by: Wang, Yi <yi.a.wang@intel.com>

---------

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Signed-off-by: Wang, Yi <yi.a.wang@intel.com>
2024-03-08 11:11:10 +00:00
8e589c83b6 [tests] add the missing require_sacremoses decorator (#29504)
* add sacremoses check

* fix style

* for FlaubertTokenizer

* HerbertTokenizer fix

* add typeHint

* Update src/transformers/testing_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* make less skipped

* make quality

* remove import

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-03-08 10:13:54 +00:00
bc764f4263 Generate: left-padding test, revisited (#29515)
* left-padding test revisited

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-03-08 10:06:46 +00:00
631fa7bf6b Typo in mlx tensor support (#29509)
Potential typo in mlx support
2024-03-08 09:47:44 +00:00
b338a6c3b8 Fix VisionEncoderDecoder Positional Arg (#29497)
* 🐛 Fix vision encoder decoder positional arg

*  Add test for VisionEncoderDecoder with LayoutLMv3 encoder

---------

Co-authored-by: Nick DeGroot <1966472+nickthegroot@users.noreply.github.com>
2024-03-07 20:45:51 +00:00
ddf177ee4a Set inputs as kwarg in TextClassificationPipeline (#29495)
* Set `inputs` as kwarg in `TextClassificationPipeline`

This change has been done to align the `TextClassificationPipeline` with the rest of the pipelines, and to be able to e.g. `pipeline(**{"inputs": "text"})` which wouldn't be possible since the `*args` were being used instead.

* Add `noqa: C409` on `tuple([inputs],)`

Even though is discouraged by the linter, the cast `tuple(list(...),)` is required here, as otherwise the original list in `inputs` will be transformed into a `tuple` and the elements 1...N will be ignored by the `Pipeline`

* Run `ruff format`

* Simplify `tuple` conversion with `(inputs,)`

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

---------

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2024-03-07 20:43:57 +00:00
4ed9ae623d test_generation_config_is_loaded_with_model - fall back to pytorch model for now (#29521)
* Fall back to pytorch model for now

* Fix up
2024-03-07 17:30:28 +00:00
45c0651090 Add support for metadata format MLX (#29335)
Add support for loading safetensors files saved with metadata format mlx.
2024-03-07 14:51:59 +01:00
923733c22b Flava multimodal add attention mask (#29446)
* flava multimodal add attn mask

* make style

* check mask is not None
2024-03-07 12:45:47 +01:00
9288e759ad fix: Avoid error when fsdp_config is missing xla_fsdp_v2 (#29480)
Signed-off-by: Ashok Pon Kumar Sree Prakash <ashokponkumar@gmail.com>
2024-03-07 12:44:23 +01:00
f6133d767a Revert "Automatic safetensors conversion when lacking these files (#2… (#29507)
Revert "Automatic safetensors conversion when lacking these files (#29390)"

This reverts commit a69cbf4e64c7bc054d814d64f6877180f7cd3a25.
2024-03-07 12:12:41 +01:00
ffe60fdcd6 v4.39 deprecations 🧼 (#29492) 2024-03-07 10:44:43 +00:00
979fccc90f Enable BLIP for auto VQA (#29499)
* Enable BLIP for auto VQA

* Make style

* Add VQA to BLIP pipeline tests
2024-03-07 10:28:01 +01:00
d45f47ab7f Fix: Disable torch.autocast in RotaryEmbedding of Gemma and LLaMa for MPS device (#29439)
* Fix: Disable torch.autocast in RotaryEmbedding of Gemma and LLaMa for MPS devices

* Update src/transformers/models/gemma/modeling_gemma.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update llama ang gemma rope use cpu in mps device

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-03-07 00:57:22 +01:00
2a939f20ff Substantially reduce memory usage in _update_causal_mask for large batches by using .expand instead of .repeat [needs tests+sanity check] (#29413)
* try to fix gemma mem use

* fix: handle attention mask dim==2 case

* remove logits=logits.float()

* clean up + add llama

* apply formatting

* readability edit: swap order of items being multiplied

* revert change unrelated to PR

* revert black autoformat

* switch to one .to

* Accept style edits

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-03-07 00:56:25 +01:00
965cf67769 Fix TextGenerationPipeline.__call__ docstring (#29491) 2024-03-06 09:03:55 -08:00
19fb1e22d2 added the max_matching_ngram_size to GenerationConfig (#29131)
* added the max_matching_ngram_size parameter into the GenerationConfig, for the PromptLookupCandidateGenerator

* switched back to keyword arguments

* added PromptLookupCandidateGenerator docstring for its parameters

* ruff reformat

* Update src/transformers/generation/configuration_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-03-06 15:06:45 +00:00
ddb4fda3cb Generate: torch.compile-ready generation config preparation (#29443) 2024-03-06 14:28:45 +00:00
9322576e2f Fix test failure on DeepSpeed (#29444)
* Fix test failure

* use item
2024-03-06 07:11:53 -05:00
0a5b0516f8 Avoid dummy token in PLD to optimize performance (#29445) 2024-03-06 11:19:47 +00:00
700d48fb2d Generate: get generation mode from the generation config instance 🧼 (#29441) 2024-03-06 11:18:35 +00:00
41f7b7ae4b Generate: add tests for caches with pad_to_multiple_of (#29462) 2024-03-06 10:57:04 +00:00
2890116ab7 Fix TrainingArguments regression with torch <2.0.0 for dataloader_prefetch_factor (#29447)
* Fix TrainingArguments regression with torch <2.0.0 for dataloader_prefetch_factor

dataloader_prefetch_factor was added to TrainingArguments in #28498 with the default value None, but  versions of torch<2.0.0 do not accept None and will raise an error if num_workers == 0 and prefetch_factor != 2

* Add is_torch_available() check

* Use is_torch_greater_or_equal_than_2_0

add back check for dataloader_prefetch_factor
2024-03-06 09:44:08 +00:00
b27aa206dd [docs] Add starcoder2 docs (#29454)
* add accelerate docs

* Apply suggestions from code review

Co-authored-by: Loubna Ben Allal <44069155+loubnabnl@users.noreply.github.com>

* Update starcoder2.md

* add correct generation

---------

Co-authored-by: Loubna Ben Allal <44069155+loubnabnl@users.noreply.github.com>
2024-03-06 06:58:37 +01:00
2a002d073a [Docs / Awq] Add docs on exllamav2 + AWQ (#29474)
* add docs on exllamav2 + AWQ

* Update docs/source/en/quantization.md
2024-03-06 06:30:47 +01:00
00bf44270f [FIX] offload_weight() takes from 3 to 4 positional arguments but 5 were given (#29457)
* use require_torch_gpu

* enable on XPU

* fix
2024-03-06 03:58:42 +01:00
7b01579f73 🌐 [i18n-KO] Translated generation_strategies.md to Korean (#29086)
* Update ko _toctree.yml

* Create ko: generation_strategies.md

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Jungnerd <46880056+jungnerd@users.noreply.github.com>
2024-03-05 15:47:33 -08:00
638c423c89 [i18n-zh] Translate add_new_pipeline.md into Chinese (#29432)
* [i18n-zh] Translate add_new_pipeline.md into Chinese

* apply suggestions from Fan-Lin
2024-03-05 09:19:00 -08:00
a69cbf4e64 Automatic safetensors conversion when lacking these files (#29390)
* Automatic safetensors conversion when lacking these files

* Remove debug

* Thread name

* Typo

* Ensure that raises do not affect the main thread
2024-03-05 13:37:55 +01:00
9c5e560924 Update pytest import_path location (#29154)
* Update to pull function from proper lib

* Fix ruff formatting error

* Remove accidently added file
2024-03-05 12:23:34 +00:00
8f3f8e6766 Fix bug with passing capture_* args to neptune callback (#29041)
* Fix bug with passing capture_* args to neptune callback

* ruff happy?

* instantiate (frozen)set only once

* code review

* code review 2

* ruff happy?

* code review
2024-03-05 11:54:00 +00:00
fb1c62e973 [Add Mamba] Adds support for the Mamba models (#28094)
* initial-commit

* start cleaning

* small nits

* small nits

* current updates

* add kernels

* small refactoring little step

* add comments

* styling

* nit

* nits

* Style

* Small changes

* Push dummy mambda simple slow

* nit

* Use original names

* Use original names and remove norm

* Updates for inference params

* Style nd updates

* nits

* Match logits

* Add a test

* Add expected generated text

* nits doc, imports and styling

* style

* oups

* dont install kernels, invite users to install the required kernels

* let use use the original packages

* styling

* nits

* fix some copieds

* update doc

* fix-copies

* styling done

* nits

* fix import check

* run but wrong cuda ress

* mamba CUDA works :)

* fix the fast path

* config naming nits

* conversion script is not required at this stage

* finish fixing the fast path: generation make sense now!

* nit

* Let's start working on the CIs

* style

* better style

* more nits

* test nit

* quick fix for now

* nits

* nit

* nit

* nit

* nits

* update test rest

* fixup

* update test

* nit

* some fixes

* nits

* update test values

* fix styling

* nit

* support peft

* integrations tests require torchg

* also add slow markers

* styling

* chose forward wisely

* nits

* update tests

* fix gradient checkpointing

* fixup

* nit

* fix doc

* check copies

* fix the docstring

* fix some more tests

* style

* fix beam search

* add init schene

* update

* nit

* fix

* fixup the doc

* fix the doc

* fixup

* tentative update but slow is no longer good

* nit

* should we always use float32?

* nits

* revert wrong changes

* res in float32

* cleanup

* skip fmt for now

* update generation values

* update test values running original model

* fixup

* update tests + rename inference_params to cache_params + make sure training does not use cache_params

* small nits

* more nits

* fix final CIs

* style

* nit doc

* I hope final doc nits

* nit

* 🫠

* final touch!

* fix torch import

* Apply suggestions from code review

Co-authored-by: Lysandre Debut <hi@lysand.re>

* Apply suggestions from code review

* fix fix and fix

* fix base model prefix!

* nit

* Update src/transformers/models/mamba/__init__.py

* Update docs/source/en/model_doc/mamba.md

Co-authored-by: Lysandre Debut <hi@lysand.re>

* nit

---------

Co-authored-by: Lysandre Debut <hi@lysand.re>
2024-03-05 20:01:06 +09:00
87a0783dde Generate: inner decoding methods are no longer public (#29437) 2024-03-05 10:27:36 +00:00
4d892b7297 [Udop imports] Processor tests were not run. (#29456)
* fix udop imports

* sort imports
2024-03-05 11:01:08 +01:00
57d007b912 Revert-commit 0d52f9f582efb82a12e8d9162b43a01b1aa0200f (#29455)
* style

* revert with RP

* nit

* exact revert
2024-03-05 10:39:42 +01:00
0d52f9f582 more fix 2024-03-05 18:27:25 +09:00
132852203a [UdopTokenizer] Fix post merge imports (#29451)
* update

* ...

* nits

* arf

* 🧼

* beat the last guy

* style everyone
2024-03-05 09:42:52 +01:00
fa7f3cf336 [tests] enable test_pipeline_accelerate_top_p on XPU (#29309)
* use torch_device

* Update tests/pipelines/test_pipelines_text_generation.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fix style

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-03-05 09:16:05 +01:00
ebccb09169 [docs] Update starcoder2 paper link (#29418)
Update starcoder2 paper link
2024-03-05 08:57:33 +01:00
bd891aed01 Fix max length for BLIP generation (#29296)
* fix mal_length for blip

* update also min length

* fixes

* add a comment

* Update src/transformers/models/instructblip/modeling_instructblip.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/models/blip_2/modeling_blip_2.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* make fixup

* fix length when user passed

* remove else

* remove brackets

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2024-03-05 08:18:22 +01:00
4fc708f98c Exllama kernels support for AWQ models (#28634)
* added exllama kernels support for awq models

* doc

* style

* Update src/transformers/modeling_utils.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* refactor

* moved exllama post init to after device dispatching

* bump autoawq version

* added exllama test

* style

* configurable exllama kernels

* copy exllama_config from gptq

* moved exllama version check to post init

* moved to quantization dockerfile

---------

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2024-03-05 03:22:48 +01:00
81c8191b46 FIX [Generation] Fix some issues when running the MaxLength criteria on CPU (#29317)
fix the bitwise or issue
2024-03-05 02:29:19 +01:00
e947683294 [Docs] Spanish Translation -Torchscript md & Trainer md (#29310)
* torchscript and trainer md es translation

* corrected md es files and even corrected spelling in en md

* made es corrections to trainer.md

* deleted entrenamiento... title on yml

* placed entrenamiento in right place
2024-03-04 13:57:51 -08:00
836921fdeb Add UDOP (#22940)
* First draft

* More improvements

* More improvements

* More fixes

* Fix copies

* More improvements

* More fixes

* More improvements

* Convert checkpoint

* More improvements, set up tests

* Fix more tests

* Add UdopModel

* More improvements

* Fix equivalence test

* More fixes

* Redesign model

* Extend conversion script

* Use real inputs for conversion script

* Add image processor

* Improve conversion script

* Add UdopTokenizer

* Add fast tokenizer

* Add converter

* Update README's

* Add processor

* Add fully fledged tokenizer

* Add fast tokenizer

* Use processor in conversion script

* Add tokenizer tests

* Fix one more test

* Fix more tests

* Fix tokenizer tests

* Enable fast tokenizer tests

* Fix more tests

* Fix additional_special_tokens of fast tokenizer

* Fix tokenizer tests

* Fix more tests

* Fix equivalence test

* Rename image to pixel_values

* Rename seg_data to bbox

* More renamings

* Remove vis_special_token

* More improvements

* Add docs

* Fix copied from

* Update slow tokenizer

* Update fast tokenizer design

* Make text input optional

* Add first draft of processor tests

* Fix more processor tests

* Fix decoder_start_token_id

* Fix test_initialization

* Add integration test

* More improvements

* Improve processor, add test

* Add more copied from

* Add more copied from

* Add more copied from

* Add more copied from

* Remove print statement

* Update README and auto mapping

* Delete files

* Delete another file

* Remove code

* Fix test

* Fix docs

* Remove asserts

* Add doc tests

* Include UDOP in exotic model tests

* Add expected tesseract decodings

* Add sentencepiece

* Use same design as T5

* Add UdopEncoderModel

* Add UdopEncoderModel to tests

* More fixes

* Fix fast tokenizer

* Fix one more test

* Remove parallelisable attribute

* Fix copies

* Remove legacy file

* Copy from T5Tokenizer

* Fix rebase

* More fixes, copy from T5

* More fixes

* Fix init

* Use ArthurZ/udop for tests

* Make all model tests pass

* Remove UdopForConditionalGeneration from auto mapping

* Fix more tests

* fixups

* more fixups

* fix the tokenizers

* remove un-necessary changes

* nits

* nits

* replace truncate_sequences_boxes with truncate_sequences for fix-copies

* nit current path

* add a test for input ids

* ids that we should get taken from c9f7a32f57440d90ff79890270d376a1cc0acb68

* nits converting

* nits

* apply ruff

* nits

* nits

* style

* fix slow order of addition

* fix udop fast range as well

* fixup

* nits

* Add docstrings

* Fix gradient checkpointing

* Update code examples

* Skip tests

* Update integration test

* Address comment

* Make fixup

* Remove extra ids from tokenizer

* Skip test

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update year

* Address comment

* Address more comments

* Address comments

* Add copied from

* Update CI

* Rename script

* Update model id

* Add AddedToken, skip tests

* Update CI

* Fix doc tests

* Do not use Tesseract for the doc tests

* Remove kwargs

* Add original inputs

* Update casting

* Fix doc test

* Update question

* Update question

* Use LayoutLMv3ImageProcessor

* Update organization

* Improve docs

* Update forward signature

* Make images optional

* Remove deprecated device argument

* Add comment, add add_prefix_space

* More improvements

* Remove kwargs

---------

Co-authored-by: ArthurZucker <arthur.zucker@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-03-04 18:49:02 +01:00
ed74d97871 DeformableDETR support bfloat16 (#29232)
* Update ms_deform_attn_cuda.cu

* Update ms_deform_attn_cuda.cuh

* Update modeling_deformable_detr.py

* Update src/transformers/models/deformable_detr/modeling_deformable_detr.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update modeling_deformable_detr.py

* python utils/check_copies.py --fix_and_overwrite

* Fix dtype missmatch error

* Update test_modeling_deformable_detr.py

* Update test_modeling_deformable_detr.py

* Update modeling_deformable_detr.py

* Update modeling_deformable_detr.py

* Support DeformableDETR with bfloat16

* Add test code

* Use AT_DISPATCH_FLOATING_TYPES_AND2

Use AT_DISPATCH_FLOATING_TYPES_AND2

* Update tests/models/deformable_detr/test_modeling_deformable_detr.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/deformable_detr/test_modeling_deformable_detr.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Fix not found require_torch_bf16 function

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-03-04 14:18:09 +00:00
bcd23a54f1 Avoid edge case in audio utils (#28836) 2024-03-04 13:24:40 +00:00
7941769e55 Fix grad_norm unserializable tensor log failure (#29212)
* Fix grad_norm unserializable tensor log failure

* Fix origin of grad_norm logs to be in deepspeed get_global_grad_norm()
2024-03-04 13:12:35 +00:00
1681a6d452 🚨 Fully revert atomic checkpointing 🚨 (#29370)
Fully revert atomic checkpointing
2024-03-04 06:17:42 -05:00
8ef9862864 Fix OneFormer post_process_instance_segmentation for panoptic tasks (#29304)
* 🐛 Fix oneformer instance post processing when using panoptic task type

*  Add unit test for oneformer instance post processing panoptic bug

---------

Co-authored-by: Nick DeGroot <1966472+nickthegroot@users.noreply.github.com>
2024-03-04 11:04:49 +00:00
81220cba61 Fix: Fixed the previous tracking URI setting logic to prevent clashes with original MLflow code. (#29096)
* Changed logic for setting the tracking URI.

The previous code was calling the `mlflow.set_tracking_uri` function
regardless of whether or not the environment variable
`MLFLOW_TRACKING_URI` is even set. This led to clashes with the original
MLflow implementation and therefore the logic was changed to only
calling the function when the environment variable is explicitly set.

* Check if tracking URI has already been set.

The previous code did not consider the possibility that the tracking URI
may already be set elsewhere and was therefore (erroneously) overriding
previously set tracking URIs using the environment variable.

* Removed redundant parentheses.

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Fix docstring to reflect library convention properly.

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Fix docstring to reflect library convention properly.

"Unset by default" is the correct expression rather than "Default to `None`."

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-03-04 10:53:58 +00:00
5e4b69dc12 Convert SlimSAM checkpoints (#28379)
* First commit

* Improve conversion script

* Convert more checkpoints

* Update src/transformers/models/sam/convert_sam_original_to_hf_format.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Rename file

* More updates

* Update docstring

* Update script

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-03-04 11:51:16 +01:00
c38a12270a Workaround for #27758 to avoid ZeroDivisionError (#28756) 2024-03-04 10:23:40 +01:00
704b3f74f9 Add mlx support to BatchEncoding.convert_to_tensors (#29406)
* Add mlx support

* Fix import order and use def instead of lambda

* Another fix for ruff format :)

* Add detecting mlx from repr, add is_mlx_array
2024-03-04 10:19:13 +01:00
39ef3fb248 [Mixtral] Fixes attention masking in the loss (#29363)
Fix mixtral load balancing loss

Co-authored-by: dingkunbo <dingkunbo@baidu.com>
2024-03-04 09:08:56 +01:00
38953a75c1 update path to hub files in the error message (#29369)
update path to hub files

need to add `tree/` to path to files at HF hub.
see example path:
`https://huggingface.co/meta-llama/Llama-2-7b-hf/tree/main`
2024-03-04 08:26:01 +01:00
aade711d1e [tests] enable automatic speech recognition pipeline tests on XPU (#29308)
* use require_torch_gpu

* enable on XPU
2024-03-04 08:24:38 +01:00
831bc25d8f Correct zero division error in inverse sqrt scheduler (#28982)
* Correct zero division error in inverse sqrt scheduler

* default timescale to 10_000
2024-03-01 17:04:40 +00:00
1a7c117df9 Fix deprecated arg issue (#29372)
* Fix deprecated arg issue

* Trainer check too

* Check for dict or dataclass

* Simplify, make config always AcceleratorConfig

* Upstream to Trainer
2024-03-01 12:00:29 -05:00
cec773345a Fix llama + gemma accelete tests (#29380) 2024-03-01 10:32:36 -05:00
15f8296a9b Support subfolder with AutoProcessor (#29169)
enable subfolder
2024-03-01 10:29:21 +00:00
f1b1379f37 [YOLOS] Fix - return padded annotations (#29300)
* Fix yolos processing

* Add back slow marker - protects for pycocotools in slow

* Slow decorator goes above copied from header
2024-03-01 09:42:13 +00:00
0a0a279e99 🚨🚨[Whisper Tok] Update integration test (#29368)
* [Whisper Tok] Update integration test

* make style
2024-03-01 09:22:31 +00:00
e7b9837065 [Llama + AWQ] fix prepare_inputs_for_generation 🫠 (#29381)
* use the generation config 🫠

* fixup
2024-03-01 08:59:26 +01:00
50db7ca4e8 FIX [quantization / ESM] Fix ESM 8bit / 4bit with bitsandbytes (#29329)
* fix ESM 8bit

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fixup

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-03-01 03:01:53 +01:00
2858d6c634 Fix Base Model Name of LlamaForQuestionAnswering (#29258)
* LlamaForQuestionAnswering self.transformer->self.model

* fix "Copied from" string

* Llama QA model: set base_model_prefix = "transformer"
2024-03-01 02:58:19 +01:00
5ee0868a4b Expose offload_buffers parameter of accelerate to PreTrainedModel.from_pretrained method (#28755)
Expose offload_buffers parameter to from_pretrained method
2024-03-01 02:12:51 +01:00
0ad770c373 Fix @require_read_token in tests (#29367) 2024-02-29 11:25:16 +01:00
bb4f816ad4 Patch YOLOS and others (#29353)
Fix issue
2024-02-29 11:09:50 +01:00
44fe1a1cc4 Avoid using uncessary get_values(MODEL_MAPPING) (#29362)
* more fixes

* more fixes

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-02-29 17:19:17 +08:00
b647acdb53 FIX [CI] require_read_token in the llama FA2 test (#29361)
Update test_modeling_llama.py
2024-02-29 04:49:01 +01:00
8d8ac9c2df FIX [CI]: Fix failing tests for peft integration (#29330)
fix failing tests for peft integration
2024-02-29 03:56:16 +01:00
1aee9afd1c FIX [CI / starcoder2] Change starcoder2 path to correct one for slow tests (#29359)
change starcoder2 path to correct one
2024-02-29 03:52:13 +01:00
2209b7afa0 [i18n-zh] Sync source/zh/index.md (#29331)
* [i18n-zh] Sync source/zh/index.md

* apply review comments
2024-02-28 09:41:18 -08:00
49204c1d37 Better SDPA unmasking implementation (#29318)
* better unmask imple

* comment

* typo

* bug report pytorch

* cleanup

* fix import

* add back example

* retrigger ci

* come on
2024-02-28 16:36:47 +01:00
f54d82cace [CI] Quantization workflow (#29046)
* [CI] Quantization workflow

* build dockerfile

* fix dockerfile

* update self-cheduled.yml

* test build dockerfile on push

* fix torch install

* udapte to python 3.10

* update aqlm version

* uncomment build dockerfile

* tests if the scheduler works

* fix docker

* do not trigger on psuh again

* add additional runs

* test again

* all good

* style

* Update .github/workflows/self-scheduled.yml

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* test build dockerfile with torch 2.2.0

* fix extra

* clean

* revert changes

* Revert "revert changes"

This reverts commit 4cb52b8822da9d1786a821a33e867e4fcc00d8fd.

* revert correct change

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2024-02-28 10:09:25 -05:00
554e7ada89 check if position_ids exists before using it (#29306)
Co-authored-by: Joao Gante <joao@huggingface.co>
2024-02-28 14:56:25 +00:00
d3a4b47544 RoPE loses precision for Llama / Gemma + Gemma logits.float() (#29285)
* Update modeling_llama.py

Llama - Force float32 since bfloat16 loses precision on long contexts

* Update modeling_llama.py

* Update modeling_gemma.py

Fix RoPE and logits.float()

* @torch.no_grad()

* @torch.no_grad()

* Cos, Sin to float32

* cos, sin to float32

* Update src/transformers/models/gemma/modeling_gemma.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/llama/modeling_llama.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Resolve PR conflicts

* Fix RoPE for llama

* Revert "Fix RoPE for llama"

This reverts commit b860a22dab9bb01cd15cb9a3220abeaefad3e458.

* Fix RoPE for llama

* RoPE device

* Autocast device type

* RoPE

* RoPE isinstance

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-02-28 15:16:53 +01:00
7628b3a0f4 Idefics: generate fix (#29320) 2024-02-28 11:34:54 +00:00
2ce56d35f6 Disable Mixtral output_router_logits during inference (#29249)
* Set output_router_logits=False in prepare_inputs_for_generation for mixtral

* Add output_router_logits=False to prepare_inputs_for_generation for mixtral

* Fix style
2024-02-28 11:16:15 +01:00
8a8a0a4ae0 [Llama ROPE] Fix torch export but also slow downs in forward (#29198)
* remove control flow

* update gptneox

* update ....

* nits

* Actually let's just break. Otherwise we are silently failing which imo is not optimal

* version BC

* fix tests

* fix eager causal

* nit

* add a test

* style

* nits

* nits

* more nits for the test

* update and fix

* make sure cuda graphs are not skipped

* read token is needed for meta llama

* update!

* fiixup

* compile test should be slow

* fix thet fix copies

* stle 🫠
2024-02-28 10:45:53 +01:00
7c87f3577e [T5 and Llama Tokenizer] remove warning (#29346)
* remove warning

* add co-author

* update

---------

Co-authored-by: hiaoxui <hiaoxui@users.noreply.github.com>
2024-02-28 10:41:58 +01:00
a52888524d [require_read_token] fix typo (#29345)
fix wrapper
2024-02-28 10:13:57 +01:00
e715c78c66 Remove numpy usage from owlvit (#29326)
* remove numpy usage from owlvit

* fix init owlv2

* style
2024-02-28 09:38:44 +01:00
ad00c482c7 FIX [Gemma / CI] Make sure our runners have access to the model (#29242)
* pu hf token in gemma tests

* update suggestion

* add to flax

* revert

* fix

* fixup

* forward contrib credits from discussion

---------

Co-authored-by: ArthurZucker <ArthurZucker@users.noreply.github.com>
2024-02-28 06:25:23 +01:00
bd5b986306 simplify get_class_in_module and fix for paths containing a dot (#29262) 2024-02-28 03:10:36 +01:00
63caa370e6 Starcoder2 model - bis (#29215)
* Copy model

* changes

* misc

* fixes

* add embed and residual dropout (#30)

* misc

* remove rms norm and gated MLP

* remove copied mentions where its not a copy anymore

* remove unused _shape

* copied from mistral instead

* fix copies

* fix copies

* add not doctested

* fix

* fix copyright

* Update docs/source/en/model_doc/starcoder2.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/starcoder2/configuration_starcoder2.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/starcoder2/configuration_starcoder2.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fix doc

* revert some changes

* add fa2 tests

* fix styling nit

* fix

* push dummy docs

---------

Co-authored-by: Joel Lamy-Poirier <joel.lamy-poirier@servicenow.com>
Co-authored-by: younesbelkada <younesbelkada@gmail.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-02-28 01:24:34 +01:00
83ab0115d1 [i18n-zh] Translate fsdp.md into Chinese (#29305)
* [i18n-zh] Translate fsdp.md into Chinese

Signed-off-by: windsonsea <haifeng.yao@daocloud.io>

* apply suggestions from Fan-Lin

---------

Signed-off-by: windsonsea <haifeng.yao@daocloud.io>
2024-02-27 11:26:57 -08:00
227cd54aa5 Fix a few typos in GenerationMixin's docstring (#29277)
Co-authored-by: Joao Gante <joao@huggingface.co>
2024-02-27 18:15:43 +00:00
ddf7ac4237 Token level timestamps for long-form generation in Whisper (#29148) 2024-02-27 18:15:26 +00:00
8a1faf2803 Add compatibility with skip_memory_metrics for mps device (#29264)
* Add compatibility with mps device

* fix

* typo and style
2024-02-27 09:58:43 -05:00
5c341d4555 Use torch 2.2 for deepspeed CI (#29246)
update

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-02-27 17:51:37 +08:00
63a0c8f1cb [tests] enable benchmark unit tests on XPU (#29284)
* add xpu for benchmark

* no auto_map

* use require_torch_gpu

* use gpu

* revert

* revert

* fix style
2024-02-27 09:44:48 +00:00
6d3b643e2a Fix attn_implementation documentation (#29295)
fix
2024-02-27 10:43:01 +01:00
83e366bfd4 Image Feature Extraction docs (#28973)
* Image Feature Extraction docs

* Update docs/source/en/tasks/image_feature_extraction.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update image_feature_extraction.md

* Update docs/source/en/tasks/image_feature_extraction.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/tasks/image_feature_extraction.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Address comments

* Update docs/source/en/tasks/image_feature_extraction.md

Co-authored-by: Maria Khalusova <kafooster@gmail.com>

* Update docs/source/en/tasks/image_feature_extraction.md

Co-authored-by: Maria Khalusova <kafooster@gmail.com>

* Update docs/source/en/tasks/image_feature_extraction.md

Co-authored-by: Maria Khalusova <kafooster@gmail.com>

* Update docs/source/en/tasks/image_feature_extraction.md

Co-authored-by: Maria Khalusova <kafooster@gmail.com>

* Update docs/source/en/tasks/image_feature_extraction.md

Co-authored-by: Maria Khalusova <kafooster@gmail.com>

* Update docs/source/en/tasks/image_feature_extraction.md

Co-authored-by: Maria Khalusova <kafooster@gmail.com>

* Update docs/source/en/tasks/image_feature_extraction.md

Co-authored-by: Maria Khalusova <kafooster@gmail.com>

* Update docs/source/en/tasks/image_feature_extraction.md

Co-authored-by: Maria Khalusova <kafooster@gmail.com>

* Update image_feature_extraction.md

* Update image_feature_extraction.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Maria Khalusova <kafooster@gmail.com>
2024-02-27 09:39:58 +00:00
e3fc90ae68 Cleaner Cache dtype and device extraction for CUDA graph generation for quantizers compatibility (#29079)
* input_layernorm as the beacon of hope

* cleaner dtype extraction

* AQLM + CUDA graph test

* is available check

* shorter text test
2024-02-27 09:32:39 +01:00
a3f9221a44 Add generate kwargs to VQA pipeline (#29134) 2024-02-27 03:03:00 +01:00
871ba71dfa GenerationConfig validate both constraints and force_words_ids (#29163)
GenerationConfig validate both options for constrained decoding: constraints and force_words_ids
2024-02-27 01:43:52 +01:00
3fcfbe7549 Adding SegGPT (#27735)
* First commit

* Improvements

* More improvements

* Converted original checkpoint to HF checkpoint

* Fix style

* Fixed forward

* More improvements

* More improvements

* Update src/transformers/models/seggpt/modeling_seggpt.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Remove asserts

* Remove unnecessary attributes

* Changed model name to camel case

* Improve forward doc

* Improve tests

* More improvements

* Fix copies

* Fix doc

* Make SegGptImageProcessor more flexible

* Added few-shot test

* Fix style

* Update READMEs and docs

* Update READMEs

* Make inputs required

* Add SegGptForImageSegmentation

* Make tests pass

* Rename to out_indicies

* Update src/transformers/models/seggpt/image_processing_seggpt.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/seggpt/image_processing_seggpt.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Fixed naming convention

* Copying SegGptMlp from modeling_sam.py

* Some minor improvements

* Remove mlp_ratio

* Fix docstrings

* Fixed docstring match

* Objects defined before use

* Storing only patch_size and beta for SegGptLoss

* removed _prepare_inputs method

* Removed modified from headers

* Renamed to output_indicies

* Removed unnecessary einsums

* Update tests/models/seggpt/test_modeling_seggpt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/seggpt/test_modeling_seggpt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/seggpt/test_modeling_seggpt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/seggpt/image_processing_seggpt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/seggpt/image_processing_seggpt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/seggpt/image_processing_seggpt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/seggpt/modeling_seggpt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/seggpt/modeling_seggpt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Fixing issues

* Raise error as soon as possible

* More fixes

* Fix merge

* Added palette to SegGptImageProcessor

* Fixed typo

* Fixed shape typo

* Added permute before doing palette to class mapping

* Fixed style

* Fixed and added tests

* Fixed docstrings

* Matching SegFormer API for post_processing_semantic_segmentation

* Fixed copies

* Fixed SegGptImageProcessor to handle both binary and RGB masks

* Updated docstrings of SegGptImageProcessor

* Update src/transformers/models/seggpt/image_processing_seggpt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/model_doc/seggpt.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/seggpt/configuration_seggpt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/seggpt/convert_seggpt_to_hf.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/seggpt/image_processing_seggpt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/seggpt/modeling_seggpt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/seggpt/image_processing_seggpt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/seggpt/image_processing_seggpt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/seggpt/image_processing_seggpt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/seggpt/modeling_seggpt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/seggpt/test_image_processing_seggpt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/seggpt/test_modeling_seggpt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/seggpt/modeling_seggpt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/seggpt/modeling_seggpt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/seggpt/modeling_seggpt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Object definitions above & fix style

* Renamed output_indices to intermediate_feature_indices

* Removed unnecessary check on bool_masked_pos

* Loss first in the outputs

* Added validation for do_normalize

* Improved SegGptImageProcessor and added new tests

* Added comment

* Added docstrings to SegGptLoss

* Reimplemented ensemble condition logic in SegGptEncoder

* Update src/transformers/models/seggpt/__init__.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/seggpt/modeling_seggpt.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/seggpt/convert_seggpt_to_hf.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/seggpt/configuration_seggpt.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Updated docstrings to use post_process_semantic_segmentation

* Fixed typo on docstrings

* moved pixel values test to test_image_processing_seggpt

* Addressed comments

* Update src/transformers/models/seggpt/configuration_seggpt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/seggpt/image_processing_seggpt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/seggpt/configuration_seggpt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/seggpt/modeling_seggpt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Updated docstrings for SegGptLoss

* Address comments

* Added SegGpt example to model docs

* Update src/transformers/models/seggpt/modeling_seggpt.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* moved patchify and unpatchify

* Rename checkpoint

* Renamed intermediate_features to intermediate_hidden_states for consistency

* Update src/transformers/models/seggpt/configuration_seggpt.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Replaced post_process_masks for post_process_semantic_segmentation in the docs

---------

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Niels <niels.rogge1@gmail.com>
Co-authored-by: Eduardo Pacheco <eduardo.pacheco@limehome.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-02-26 18:17:19 +00:00
3b8c053631 Fixed Deformable Detr typo when loading cuda kernels for MSDA (#29294) 2024-02-26 17:24:30 +00:00
a44d2dc3a9 [i18n-zh] Translated task/asr.md into Chinese (#29233)
* [zh] Translate a task: asr.md

Signed-off-by: windsonsea <haifeng.yao@daocloud.io>

* apply suggestions from Fan-Lin

---------

Signed-off-by: windsonsea <haifeng.yao@daocloud.io>
2024-02-26 08:53:05 -08:00
c29135046a [i18n-vi] Translate README.md to Vietnamese (#29229)
* Add Tiếng Việt language support

* Add Vietnamese translation link to README.md

* update README_vi.md
2024-02-26 08:42:46 -08:00
734eb25476 🌐 [i18n-ZH] Translate chat_templating.md into Chinese (#28790)
* [Pix2struct] Simplify generation (#22527)

* Add model to doc tests

* Remove generate and replace by prepare_inputs_for_generation

* More fixes

* Remove print statements

* Update integration tests

* Fix generate

* Remove model from auto mapping

* Use auto processor

* Fix integration tests

* Fix test

* Add inference code snippet

* Remove is_encoder_decoder

* Update docs

* Remove notebook link

* Release: v4.28.0

* Revert (for now) the change on `Deta` in #22437 (#22750)

fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Patch release: v4.28.1

* update zh chat template.

* Update docs/source/zh/chat_templating.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/zh/_toctree.yml

Co-authored-by: Michael <haifeng.yao@daocloud.io>

* Update docs/source/zh/chat_templating.md

Co-authored-by: Michael <haifeng.yao@daocloud.io>

* Update docs/source/zh/chat_templating.md

Co-authored-by: Michael <haifeng.yao@daocloud.io>

* Update docs/source/zh/chat_templating.md

Co-authored-by: Michael <haifeng.yao@daocloud.io>

* Update docs/source/zh/chat_templating.md

Co-authored-by: Michael <haifeng.yao@daocloud.io>

* Update docs/source/zh/chat_templating.md

Co-authored-by: Michael <haifeng.yao@daocloud.io>

* Update docs/source/zh/chat_templating.md

Co-authored-by: Michael <haifeng.yao@daocloud.io>

---------

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Michael <haifeng.yao@daocloud.io>
2024-02-26 08:42:24 -08:00
b43340455d [i18n-zh] Translated torchscript.md into Chinese (#29234)
Signed-off-by: windsonsea <haifeng.yao@daocloud.io>
2024-02-26 08:27:47 -08:00
9f7535bda8 [docs] Spanish translation of tasks_explained.md (#29224)
* Add tasks_explained.md to es/

* Fix little typo in en/ version

* translate speach/audio section

* translate part of vision computer section | fix little typo in en/

* Fix little typo in en/

* Translate vision computer section | remove ** ** to * * in both files

* Translate NLP section | fix link to task/translation in en/

* Updete link in es/tasks_summary.md

* Fix task_summary title link
2024-02-26 08:18:15 -08:00
8f2f0f0f85 Track each row separately for stopping criteria (#29116) 2024-02-26 16:06:16 +00:00
ece1b62b93 Generate: v4.38 removals and related updates (#29171) 2024-02-26 13:36:12 +00:00
24d59c7969 Use torch.bool instead of torch.int64 for non-persistant causal mask buffer (#29241)
use torch.bool instead of torch.int64
2024-02-26 14:06:43 +01:00
7c4995f93d Add feature extraction mapping for automatic metadata update (#28944)
* add feature extraction mapping

* added prefix

* ruff check

* minor fix

* Update modeling_auto.py

* fix typo

* remove prefix to make variable public/importable

* Update src/transformers/models/auto/modeling_auto.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* fixes

* addressed comments

* nit

* fix-copies

* remove from tests

* this should fix

* Update tests/models/convnextv2/test_modeling_convnextv2.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* nits

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-02-26 10:35:37 +00:00
2a7746c4d1 Add non_device_test pytest mark to filter out non-device tests (#29213)
* add conftest

* fix

* remove deselected
2024-02-26 11:05:49 +01:00
93f8617afd Use DS_DISABLE_NINJA=1 (#29290)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-02-26 17:41:01 +08:00
9fe360883e Cache is_vision_available result (#29280)
Cache `is_vision_available`

This check is used quite often during process in image models and can take up a serious amount of time compared to the other processing steps.
2024-02-26 09:01:45 +00:00
c8d98405a8 Use torch 2.2 for daily CI (model tests) (#29208)
* Use torch 2.2 for daily CI (model tests)

* update

* update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-02-23 21:37:08 +08:00
371b572e55 Allow remote code repo names to contain "." (#29175)
* stash commit

* stash commit

* It works!

* Remove unnecessary change

* We don't actually need the cache_dir!

* Update docstring

* Add test

* Add test with custom cache dir too

* Update model repo path
2024-02-23 12:46:31 +00:00
89c64817ce [Doc] update model doc qwen2 (#29238)
* update model doc qwen2

* Update docs/source/en/model_doc/qwen2.md

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2024-02-23 10:43:31 +01:00
3f60d11a87 Improve _update_causal_mask performance (#29210)
* Fix issue 29206

* Fix style
2024-02-23 10:40:44 +01:00
75ed76ecea Fix missing translation in README_ru (#29054)
* Fix missing translation in README_ru

* Update README_ru.md

Co-authored-by: Maria Khalusova <kafooster@gmail.com>

---------

Co-authored-by: Maria Khalusova <kafooster@gmail.com>
2024-02-23 09:26:21 +01:00
4524494072 fix(mlflow): check mlflow version to use the synchronous flag (#29195)
* fix(mlflow): check mlflow version to use the  flag

* fix indent

* add log_params async and fix quality
2024-02-23 09:19:51 +01:00
2cc8cf6ce7 Fix torch.compile with fullgraph=True when attention_mask input is used (#29211)
* fix torch.export.export for llama

* do not change doc title

* make fix copies
2024-02-22 16:40:06 +01:00
dabe855668 [Mistral, Mixtral] Improve docs (#29084)
* Improve docs

* Improve chat template
2024-02-22 11:48:01 +01:00
2a9b1f80c4 [Gemma] Fix eager attention (#29187)
* fix modelling code

* add tests

* fix tests

* add some logit tests

* style

* fix fix
2024-02-22 01:07:52 +01:00
fc37f38915 Add training version check for AQLM quantizer. (#29142)
* training version check

* warn old aqlm

* aqlm 1.0.2 real

* docs
2024-02-21 17:09:36 +01:00
ae49b218c3 FIX [Gemma] Fix bad rebase with transformers main (#29170)
fix bad rebase
2024-02-21 14:56:34 +01:00
594c1277b2 [ gemma] Adds support for Gemma 💎 (#29167)
* inital commit

* update

* update conversion checkpoint

* update conversion script

* nits

* some fixes

* nits

* merge

* fix permute

* nits

* fix

* nits

* nits

* nits

* fix rope

* fix both rope

* nites

* style

* make sure flax works

* fix flax init code

* fix foward

* nits

* print flax generation out

* current code

* nits

* SIIIIIIIIIIIIIIIIIII

* update

* add new tokenizer

* correct fast tokenizer

* fix conversion

* more comments

* fix modeling and conversion

* nits and nits

* nits testing

* add some tokenization tests

* add some edge cases

* add slow tests and fix them

* fixup

* fix copies for modeling

* fix copies

* add 7B slow tests

* fix

* fix

* fix tests

* make tokenizer cis go green

* styling

* last tokenizer nits

* update jax tests

* fix flax for 7b

* add jit testing 🤗

* cleanups

* isolated nit, inv_freq for rotary_emb.inv_freq

* propagate to jax

* Apply suggestions from code review

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* adjust test

* fix conversion script

* change name

* correct file names

* update conversion script

* Fix bos and eos token ids in the model configuration (#3)

* update modelling

* update conversion script

* add static cache for gemma

* fix sdpa generate

* fix batched

* multiple fixes

* fix FA2

* final fix

* Rename a few missing strings and filenames (#4)

* merge with upstream main

* fix copies

* fix copies

* fix fixup

* fix fixup

* fix

* fix

* final tests

* fix fx gemma tests

* fix fx bf16/fp16 tests

* update slow fx tests

* fx slow tests: one logits, one generation

* move jit test standalone

* Apply suggestions from code review

* nits

* tokenizer updates

* more tokenization updates: custom GemmaSentencepieceExtrator

* style

* Update src/transformers/cache_utils.py

* Update src/transformers/models/gemma/__init__.py

* Update tests/models/gemma/test_modeling_flax_gemma.py

* small nits

* style

* update tokenization test

* fix the rotary embedding

* with style

* fix slow tests

* WARNING this commit might be very important for precisions

* Update tests/models/gemma/test_modeling_flax_gemma.py

* Update src/transformers/models/gemma/configuration_gemma.py

Co-authored-by: Lysandre Debut <hi@lysand.re>

* Update src/transformers/models/gemma/modeling_flax_gemma.py

Co-authored-by: Lysandre Debut <hi@lysand.re>

* small nits here and there!

* forgotten nit

* remove on the fly computation of inv_freq

* revert previous change, let's be safe and for now re-compute freq cis to make sure it's in float

* Apply suggestions from code review

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update src/transformers/models/gemma/convert_gemma_weights_to_hf.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update src/transformers/models/gemma/convert_gemma_weights_to_hf.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update tests/models/gemma/test_modeling_gemma.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update tests/models/gemma/test_modeling_gemma.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update tests/models/gemma/test_modeling_gemma.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update tests/models/gemma/test_modeling_flax_gemma.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update tests/models/gemma/test_modeling_gemma.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update tests/models/gemma/test_modeling_gemma.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update tests/models/gemma/test_tokenization_gemma.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update tests/models/gemma/test_tokenization_gemma.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update tests/models/gemma/test_tokenization_gemma.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update tests/models/gemma/test_tokenization_gemma.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update tests/models/gemma/test_modeling_gemma.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update tests/models/gemma/test_modeling_gemma.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update tests/models/gemma/test_modeling_gemma.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update tests/models/gemma/test_modeling_gemma.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update tests/models/gemma/test_modeling_gemma.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* nit conversion script link

* fix some tests

* add not doctest and pr doctest

* repo consistency

* fix last CIs 🚀

* update all readmes

---------

Co-authored-by: younesbelkada <younesbelkada@gmail.com>
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: sanchit-gandhi <sanchit@huggingface.co>
Co-authored-by: Lysandre Debut <hi@lysand.re>
2024-02-21 14:21:28 +01:00
58245ba6fb [Maskformer] safely get backbone config (#29166)
Safe getattr
2024-02-21 13:51:15 +01:00
1d0ea7abe0 support SDPA Attention in stablelm (#29106)
* support SDPA Attention in stablelm

* add integration test

* add fallback for output_attentions

* Update src/transformers/models/stablelm/modeling_stablelm.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update tests/models/stablelm/test_modeling_stablelm.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update src/transformers/models/stablelm/modeling_stablelm.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* handle non-contiguous states

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2024-02-21 13:12:49 +01:00
cc4a664baa torch.compile compatibility with generate + static cache (#29114)
* fix compatibility

* working version

* cleanup

* sanity checks

* more sanity

* working version WITH refactor

* working without API change

* cleanup & tests pass

* more cleaning

* fix test

* fix tests

* Update src/transformers/generation/utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* smaller comment

* update comment

* update comment

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-02-21 12:19:30 +01:00
3994fa5baf 🚨 Llama: update rope scaling to match static cache changes (#29143) 2024-02-21 09:47:41 +00:00
1a77f07f65 v4.39.dev.0 2024-02-21 15:23:22 +09:00
e770f0316d [pipeline] Add pool option to image feature extraction pipeline (#28985)
* Add pool option

* PR comments - error message and exact outputs check
2024-02-20 20:22:08 +00:00
c47576ca6e Fix drop path being ignored in DINOv2 (#29147)
Fix drop path not being used
2024-02-20 17:31:59 +00:00
3c00b885b9 Added image_captioning version in es and included in toctree file (#29104)
added image_captioning version in es and included in toctree file
2024-02-20 09:13:15 -08:00
857fd8eaab Generate: missing generation config eos token setting in encoder-decoder tests (#29146) 2024-02-20 16:17:51 +00:00
1c81132e80 Raise unused kwargs image processor (#29063)
* draft processor arg capture

* add missing vivit model

* add new common test for image preprocess signature

* fix quality

* fix up

* add back missing validations

* quality

* move info level to warning for unused kwargs
2024-02-20 16:20:20 +01:00
b8b16475d4 [Phi] Add support for sdpa (#29108) 2024-02-20 14:33:12 +01:00
7688d8df84 Save (circleci) cache at the end of a job (#29141)
nice job

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-02-20 21:31:36 +08:00
ee3af60be0 Add support for fine-tuning CLIP-like models using contrastive-image-text example (#29070)
* add support for siglip and chinese-clip model training with contrastive-image-text example

* codebase fixups
2024-02-20 12:08:31 +00:00
0996a10077 Revert low cpu mem tie weights (#29135)
* Revert "Add tie_weights() to LM heads and set bias in set_output_embeddings() (#28948)"

This reverts commit 725f4ad1ccad4e1aeb309688706b56713070334b.

* Revert "Patch to skip failing `test_save_load_low_cpu_mem_usage` tests (#29043)"

This reverts commit 4156f517ce0f00e0b7842410542aad5fe37e73cf.
2024-02-20 12:06:46 +00:00
15cfe38942 [Core tokenization] add_dummy_prefix_space option to help with latest issues (#28010)
* add add_dummy_prefix_space option to slow

* checking kwargs might be better. Should be there for all spm tokenizer IMO

* nits

* fix copies

* more copied

* nits

* add prefix space

* nit

* nits

* Update src/transformers/convert_slow_tokenizer.py

* fix inti

* revert wrong styling

* fix

* nits

* style

* updates

* make sure we use slow tokenizer for conversion instead of looking for the decoder

* support llama ast well

* update llama tokenizer fast

* nits

* nits nits nits

* update the doc

* update

* update to fix tests

* skip unrelated tailing test

* Update src/transformers/convert_slow_tokenizer.py

* add proper testing

* test decode as well

* more testing

* format

* fix llama test

* Apply suggestions from code review
2024-02-20 12:50:31 +01:00
efdd436663 FIX [PEFT / Trainer ] Handle better peft + quantized compiled models (#29055)
* handle peft + compiled models

* add tests

* fixup

* adapt from suggestions

* clarify comment
2024-02-20 12:45:08 +01:00
5e95dcabe1 [cuda kernels] only compile them when initializing (#29133)
* only compile when needed

* fix mra as well

* fix yoso as well

* update

* rempve comment

* Update src/transformers/models/deformable_detr/modeling_deformable_detr.py

* Update src/transformers/models/deformable_detr/modeling_deformable_detr.py

* opps

* Update src/transformers/models/deta/modeling_deta.py

* nit
2024-02-20 12:38:59 +01:00
a7755d2409 Generate: unset GenerationConfig parameters do not raise warning (#29119) 2024-02-20 11:34:31 +00:00
7d312ad2e9 Llama: fix batched generation (#29109) 2024-02-20 10:23:17 +00:00
ff76e7c212 FIX [bnb / tests] Propagate the changes from #29092 to 4-bit tests (#29122)
* forgot to push the changes for 4bit ..

* trigger CI
2024-02-20 11:11:15 +01:00
1c9134f004 Abstract image processor arg checks. (#28843)
* abstract image processor arg checks.

* fix signatures and quality

* add validate_ method to rescale-prone processors

* add more validations

* quality

* quality

* fix formatting

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* fix formatting

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* fix formatting

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Fix formatting mishap

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* fix crop_size compatibility

* fix default mutable arg

* fix segmentation map + image arg validity

* remove segmentation check from arg validation

* fix quality

* fix missing segmap

* protect PILImageResampling type

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* add back segmentation maps check

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-02-20 11:05:46 +01:00
f7ef7cec6c FEAT [Trainer / bnb]: Add RMSProp from bitsandbytes to HF Trainer (#29082)
* add RMSProp to Trainer

* revert some change

* Update src/transformers/trainer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-02-20 02:43:02 +01:00
a7ff2f23a0 Move misplaced line (#29117)
Move misplaced line, improve code comment
2024-02-20 02:24:48 +01:00
9094abe8dc [gradient_checkpointing] default to use it for torch 2.3 (#28538)
* default to use it

* style
2024-02-20 02:23:25 +01:00
49c0b293d2 Fixed nll with label_smoothing to just nll (#28708)
* Fixed nll with label_smoothing to nll

* Resolved conflict by rebase

* Fixed nll with label_smoothing to nll

* Resolved conflict by rebase

* Added label_smoothing to config file

* Fixed nits
2024-02-20 01:52:15 +01:00
4f09d0fd88 storing & logging gradient norm in trainer (#27326)
* report grad_norm during training

* support getting grad_norm from deepspeed
2024-02-19 19:07:41 +00:00
a4851d9477 Fix two tiny typos in pipelines/base.py::Pipeline::_sanitize_parameters()'s docstring (#29102)
* Update base.py

* Fix a typo
2024-02-19 18:50:28 +00:00
5ce90f3212 Bnb test fix for different hardwares (#29066)
* generated text on A10G

* generated text in CI

* Apply suggestions from code review

add explanatory comments

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2024-02-19 18:04:44 +00:00
08cd694ef0 ENH: added new output_logits option to generate function (#28667)
output_logits option behaves like output_scores, but returns the raw, unprocessed prediction logit scores,
ie. the values before they undergo logit processing and/or warping. The latter happens by default for the
regular output scores.

It's useful to have the unprocessed logit scores in certain circumstances. For example, unprocessed logit scores
are very useful with causallm models when one wants to determine the probability of a certain answer, e.g.
when asking a question with a yes/no answer. In that case getting the next-token probabilities of both "yes" and
"no" (and/or their relative ratio) is of interest for classification. The reason for getting these _before_ logit
processing and/or warping is b/c a) that can change the probabilities or b) reject the tokens of interest / reduce
the number of tokens to just 1.

For an example use-case see paper TabLLM: Few-shot Classification of Tabular Data with Large Language Models
by Stefan Hegselmann, Alejandro Buendia, Hunter Lang, Monica Agrawal, Xiaoyi Jiang, and David Sontag.
https://arxiv.org/abs/2210.10723

In addition:
- added dedicated unit test: tests/generation/test_utils/test_return_unprocessed_logit_scores
  which tests return of logics with output_logits=True in generation.
- set output_logits=True in all other generation unit tests, that also have output_scores=True.

Implemented @gante's and @amyeroberts review feedback

Co-authored-by: kx79wq <max.baak@ing.com>
2024-02-19 17:34:17 +00:00
07e3454f03 [Docs] Add resources (#28705)
* Add resource

* Add more resources

* Add resources

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Remove mention

* Remove pipeline tags

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-02-19 15:22:29 +01:00
b2724d7b4c change version (#29097)
* change version

* nuke

* this doesn't make sense

* update some requirements.py

* revert + no main

* nits

* change cache number

* more pin

* revert

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-02-19 22:08:44 +08:00
79132d4cfe Fix a typo in examples/pytorch/text-classification/run_classification.py (#29072) 2024-02-19 13:01:15 +00:00
9830858671 Fix the bert-base-cased tokenizer configuration test (#29105)
Fix test
2024-02-19 13:23:25 +01:00
593230f0a1 fix the post-processing link (#29091)
The link in evaluation was missing a hyphen between post and processing. I fixed this, for English only. Someone with the ability to do a global search/replace should fix the other languages (if indeed they have this issue)/
2024-02-19 10:15:58 +00:00
a75a6c9315 FIX [bnb / tests]: Fix currently failing bnb tests (#29092)
Update test_mixed_int8.py
2024-02-19 10:39:12 +01:00
864c8e6ea3 [Awq] Add peft support for AWQ (#28987)
* add peft support for AWQ

* Update src/transformers/quantizers/quantizer_awq.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* fix

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-02-19 01:31:39 +01:00
ce4fff0be7 [Docs] Spanish translation of task_summary.md (#28844)
* Add task_summary to es/_toctree.yml

* Add task_summary.md to docs/es

* Change title of task_summary.md

* Translate firsts paragraphs

* Translate middle paragraphs

* Translte the rest of the doc

* Edit firts paragraph
2024-02-16 15:50:06 -08:00
2f1003be86 Add chat support to text generation pipeline (#28945)
* Add chat support to text generation pipeline

* Better handling of single elements

* Deprecate ConversationalPipeline

* stash commit

* Add missing add_special_tokens kwarg

* Update chat templating docs to refer to TextGenerationPipeline instead of ConversationalPipeline

* Add TF tests

* @require_tf

* Add type hint

* Add specific deprecation version

* Remove unnecessary do_sample

* Remove todo - the discrepancy has been resolved

* Update src/transformers/tokenization_utils_base.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/pipelines/text_generation.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-02-16 16:41:01 +00:00
636b03244c Fix trainer test wrt DeepSpeed + auto_find_bs (#29061)
* FIx trainer test

* Update tests/trainer/test_trainer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-02-16 10:04:24 -05:00
161fe425c9 Feature: Option to set the tracking URI for MLflowCallback. (#29032)
* Added option to set tracking URI for MLflowCallback.

* Added option to set tracking URI for MLflowCallback.

* Changed  to  in docstring.
2024-02-16 14:47:18 +00:00
be42c24d14 Honor trust_remote_code for custom tokenizers (#28854)
* pass through trust_remote_code for dynamically loading unregistered tokenizers specified by config
add test

* change directories back to previous directory after test

* fix ruff check

* Add a note to that block for future in case we want to remove it later

---------

Co-authored-by: Matt <rocketknight1@gmail.com>
2024-02-16 13:40:23 +00:00
4c18ddb5cf auto_find_batch_size isn't yet supported with DeepSpeed/FSDP. Raise error accrodingly. (#29058)
Update trainer.py
2024-02-16 18:11:09 +05:30
b262808656 fix failing trainer ds tests (#29057) 2024-02-16 17:18:45 +05:30
258da40efd fix num_assistant_tokens with heuristic schedule (#28759)
* fix heuristic num_assistant_tokens_schedule

* Update src/transformers/generation/configuration_utils.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/generation/candidate_generator.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update utils.py

check that candidate_generator.assistant_model exists since some some speculations (like ngram and PLD) don't have assistant_model attribute

* Update src/transformers/generation/candidate_generator.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update tests/generation/test_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* make fixup

* merge conflict

* fix docstring

* make fixup

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-02-16 11:44:58 +00:00
0eb408551c Support : Leverage Accelerate for object detection/segmentation models (#28312)
* made changes for object detection models

* added support for segmentation models.

* Made changes for segmentaion models

* Changed import statements

* solving conflicts

* removed conflicts

* Resolving commits

* Removed conflicts

* Fix : Pixel_mask_value set to False
2024-02-16 11:38:59 +00:00
aee11fe427 Fix max_length criteria when using inputs_embeds (#28994)
* fix max_length for inputs_embeds

* make style

* Update src/transformers/generation/utils.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Static Cache: load models with MQA or GQA (#28975)

* fix

* fix tests

* fix tests

* Update src/transformers/generation/utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* more fixes

* make style

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-02-16 11:25:12 +00:00
8876ce8a5f Update important model list (#29019) 2024-02-16 11:31:51 +01:00
f497f564bb Update all references to canonical models (#29001)
* Script & Manual edition

* Update
2024-02-16 08:16:58 +01:00
1e402b957d add test marker to run all tests with @require_bitsandbytes (#28278) 2024-02-16 01:53:09 +01:00
f3aa7db439 Fix a tiny typo in generation/utils.py::GenerateEncoderDecoderOutput's docstring (#29044)
Update utils.py
2024-02-15 18:12:31 +00:00
b0a7f44f85 Removed obsolete attribute setting for AQLM quantization. (#29034)
removed redundant field
2024-02-15 18:11:13 +00:00
4156f517ce Patch to skip failing test_save_load_low_cpu_mem_usage tests (#29043)
* Patch to skip currently failing tests

* Whoops - wrong place
2024-02-15 17:26:33 +00:00
6d1f545665 FIX: Fix error with logger.warning + inline with recent refactor (#29039)
Update modeling_utils.py
2024-02-15 15:33:26 +01:00
8a0ed0a9a2 Fix copies between DETR and DETA (#29037) 2024-02-15 14:02:58 +00:00
5b6fa2306a DeformableDetrModel support fp16 (#29013)
* Update ms_deform_attn_cuda.cu

* Update ms_deform_attn_cuda.cuh

* Update modeling_deformable_detr.py

* Update src/transformers/models/deformable_detr/modeling_deformable_detr.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update modeling_deformable_detr.py

* python utils/check_copies.py --fix_and_overwrite

* Fix dtype missmatch error

* Update test_modeling_deformable_detr.py

* Update test_modeling_deformable_detr.py

* Update modeling_deformable_detr.py

* Update modeling_deformable_detr.py

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-02-15 12:31:09 +00:00
83e96dc0ab Add cuda_custom_kernel in DETA (#28989)
* enable graident checkpointing in DetaObjectDetection

* fix missing part in original DETA

* make style

* make fix-copies

* Revert "make fix-copies"

This reverts commit 4041c86c29248f1673e8173b677c20b5a4511358.

* remove fix-copies of DetaDecoder

* enable swin gradient checkpointing

* fix gradient checkpointing in donut_swin

* add tests for deta/swin/donut

* Revert "fix gradient checkpointing in donut_swin"

This reverts commit 1cf345e34d3cc0e09eb800d9895805b1dd9b474d.

* change supports_gradient_checkpointing pipeline to PreTrainedModel

* Revert "add tests for deta/swin/donut"

This reverts commit 6056ffbb1eddc3cb3a99e4ebb231ae3edf295f5b.

* Revert "Revert "fix gradient checkpointing in donut_swin""

This reverts commit 24e25d0a14891241de58a0d86f817d0b5d2a341f.

* Simple revert

* enable deformable detr gradient checkpointing

* add gradient in encoder

* add cuda_custom_kernel function in MSDA

* make style and fix input of DetaMSDA

* make fix-copies

* remove n_levels in input of DetaMSDA

* minor changes

* refactor custom_cuda_kernel like yoso format
0507e69d34/src/transformers/models/yoso/modeling_yoso.py (L53)
2024-02-15 12:09:39 +00:00
f3788b09e1 Fix static generation when compiling! (#28937)
* wow I was scared!

* fix everything

* nits

* make it BC?

* add todo

* nits

* is_tracing should still be used to pass tracing tests

* nits

* some nits to make sure genration works with static cache uncompiled

* fix sdpa

* fix FA2 for both static and dynamic in a better way?

* style

* fix-copies

* fix fix copies

* fix sequential beam searcg

* style

* use `keys_to_ignore`

* nit

* correct dtype inference when init

* :( the fix for FA2 is still not optimal to investigate!

* styling

* nits

* nit

* this might work better

* add comment

* Update src/transformers/models/llama/modeling_llama.py

* "position_ids" -> "cache_position"

* style

* nit

* Remove changes that should no be propagatted just yet

* Apply suggestions from code review

* Styling

* make sure we raise an errir for static cache with FA2 enabled

* move  to the bottom of the signature

* style

* Update src/transformers/models/llama/modeling_llama.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update src/transformers/models/llama/modeling_llama.py

* nit in the name

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2024-02-15 06:27:40 +01:00
609a1767e8 [CLeanup] Revert SDPA attention changes that got in the static kv cache PR (#29027)
* revert unrelated changes that got in

* style
2024-02-15 00:55:48 +01:00
7a0fccc6eb FIX [Trainer / tags]: Fix trainer + tags when users do not pass "tags" to trainer.push_to_hub() (#29009)
* fix trainer tags

* add test
2024-02-14 23:56:35 +01:00
5f06053dd8 [TPU] Support PyTorch/XLA FSDP via SPMD (#28949)
* Initial commit

* Add guards for the global mesh

* Address more comments

* Move the dataloader into integrations/tpu.py

* Fix linters

* Make karg more explicitly

* Remove the move device logic

* Fix the CI

* Fix linters

* Re-enable checkpointing
2024-02-14 21:44:49 +00:00
0199a484eb Backbone kwargs in config (#28784)
* Enable instantiating model with pretrained backbone weights

* Clarify pretrained import

* Use load_backbone instead

* Add backbone_kwargs to config

* Pass kwargs to constructors

* Fix up

* Input verification

* Add tests

* Tidy up

* Update tests/utils/test_backbone_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-02-14 20:46:44 +00:00
725f4ad1cc Add tie_weights() to LM heads and set bias in set_output_embeddings() (#28948)
* Add tie_weights() to LM heads and set bias in set_output_embeddings()

The bias were not tied correctly in some LM heads, and this change should fix that.

* Moving test_save_and_load_low_cpu_mem_usage to ModelTesterMixin

* Adding _tie_weights() to MPNet and Vilt

* Skip test for low cpu mem usage for Deta/DeformableDetr since they cannot init on meta device

* Rename to test name to save_load to match the convention
2024-02-14 20:39:01 +00:00
3f4e79d29c Mask Generation Task Guide (#28897)
* Create mask_generation.md

* add h1

* add to toctree

* Update docs/source/en/tasks/mask_generation.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/tasks/mask_generation.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/tasks/mask_generation.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/tasks/mask_generation.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/tasks/mask_generation.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update mask_generation.md

* Update docs/source/en/tasks/mask_generation.md

Co-authored-by: Maria Khalusova <kafooster@gmail.com>

* Update docs/source/en/tasks/mask_generation.md

Co-authored-by: Maria Khalusova <kafooster@gmail.com>

* Update docs/source/en/tasks/mask_generation.md

Co-authored-by: Maria Khalusova <kafooster@gmail.com>

* Update docs/source/en/tasks/mask_generation.md

Co-authored-by: Maria Khalusova <kafooster@gmail.com>

* Update docs/source/en/tasks/mask_generation.md

Co-authored-by: Maria Khalusova <kafooster@gmail.com>

* Update docs/source/en/tasks/mask_generation.md

Co-authored-by: Maria Khalusova <kafooster@gmail.com>

* Update docs/source/en/tasks/mask_generation.md

Co-authored-by: Maria Khalusova <kafooster@gmail.com>

* Update docs/source/en/tasks/mask_generation.md

Co-authored-by: Maria Khalusova <kafooster@gmail.com>

* Update docs/source/en/tasks/mask_generation.md

Co-authored-by: Maria Khalusova <kafooster@gmail.com>

* Update docs/source/en/tasks/mask_generation.md

Co-authored-by: Maria Khalusova <kafooster@gmail.com>

* Update mask_generation.md

* Update docs/source/en/tasks/mask_generation.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update docs/source/en/tasks/mask_generation.md

Co-authored-by: Klaus Hipp <khipp@users.noreply.github.com>

* Update docs/source/en/tasks/mask_generation.md

Co-authored-by: Klaus Hipp <khipp@users.noreply.github.com>

* Update docs/source/en/tasks/mask_generation.md

Co-authored-by: Klaus Hipp <khipp@users.noreply.github.com>

* Update docs/source/en/tasks/mask_generation.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update docs/source/en/tasks/mask_generation.md

* Update mask_generation.md

* Update mask_generation.md

---------

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Maria Khalusova <kafooster@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Klaus Hipp <khipp@users.noreply.github.com>
2024-02-14 18:29:49 +00:00
354775bc57 Fix flaky test vision encoder-decoder generate (#28923) 2024-02-14 15:40:57 +00:00
0507e69d34 Introduce AcceleratorConfig dataclass (#28664)
* Introduce acceleratorconfig dataclass

* Extra second warn

* Move import

* Try moving import under is_accelerate_available

* Quality

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Clean

* Remove to_kwargs

* Change version

* Improve tests by including dispatch and split batches

* Improve reliability

* Update tests/trainer/test_trainer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Fixup tests and review nits

* Make tests pass

* protect import

* Protect import

* Empty-Commit

* Make training_args.to_dict handle the AcceleratorConfig

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-02-14 10:18:09 -05:00
69ca640dd6 Set the dataset format used by test_trainer to float32 (#28920)
Co-authored-by: unit_test <test@unit.com>
2024-02-14 13:55:12 +00:00
7252e8d937 [Doc] Fix docbuilder - make BackboneMixin and BackboneConfigMixin importable from utils. (#29002)
* Trigger doc build

* Test removing references

* Importable from utils

* Trigger another run on a new commit for testing
2024-02-14 10:29:22 +00:00
1ecf5f7c98 AQLM quantizer support (#28928)
* aqlm init

* calibration and dtypes

* docs

* Readme update

* is_aqlm_available

* Simpler link in docs

* Test TODO real reference

* init _import_structure fix

* AqlmConfig autodoc

* integration aqlm

* integrations in tests

* docstring fix

* legacy typing

* Less typings

* More kernels information

* Performance -> Accuracy

* correct tests

* remoced multi-gpu test

* Update docs/source/en/quantization.md

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update src/transformers/utils/quantization_config.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Brought back multi-gpu tests

* Update src/transformers/integrations/aqlm.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* Update tests/quantization/aqlm_integration/test_aqlm.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

---------

Co-authored-by: Andrei Panferov <blacksamorez@yandex-team.ru>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2024-02-14 09:25:41 +01:00
63ffd56d02 Add SiglipForImageClassification and CLIPForImageClassification (#28952)
* First draft

* Add CLIPForImageClassification

* Remove scripts

* Fix doctests
2024-02-14 08:41:31 +01:00
de6029a059 Add StableLM (#28810)
* Add `StableLM`

* fix(model): re-create from `huggingface-cli add-new-model-like persimmon`

* fix: re-add changes to address comments

* fix(readme): add links to paper

* fix(tokenization_auto): remove `GPTNeoXTokenizerFastFast` ref

* fix(tests): re-add `@slow` decorator to integration tests

* fix(tests): import slow...

* fix(readme_hd): remove whitespace edit

* fix(tokenizer): auto tokenizer tuple

* skip doctests for `modeling_stablelm`
2024-02-14 07:15:18 +01:00
164bdef8cc ENH [AutoQuantizer]: enhance trainer + not supported quant methods (#28991)
* enhance trainer + not support quant methods

* remove all old logic

* add version
2024-02-14 01:30:23 +01:00
1d12b8bc25 ENH: Do not pass warning message in case quantization_config is in config but not passed as an arg (#28988)
* Update auto.py

* Update auto.py

* Update src/transformers/quantizers/auto.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/quantizers/auto.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-02-14 01:19:42 +01:00
bd4b83e1ba [DETR] Update the processing to adapt masks & bboxes to reflect padding (#28363)
* Update the processing so bbox coords are adjusted for padding

* Just pad masks

* Tidy up, add tests

* Better tests

* Fix yolos and mark as slow for pycocotols

* Fix yolos - return_tensors

* Clarify padding and normalization behaviour
2024-02-13 18:27:06 +00:00
3de6a6b493 Update configuration_llama.py: fixed broken link (#28946)
* Update configuration_llama.py: fix broken link

* [Nit] Explicit redirection not required

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-02-13 13:02:07 +00:00
3e70a207df Static Cache: load models with MQA or GQA (#28975) 2024-02-13 09:58:19 +00:00
da20209dbc Add sudachi_projection option to BertJapaneseTokenizer (#28503)
* add sudachi_projection option

* Upgrade sudachipy>=0.6.8

* add a test case for sudachi_projection

* Compatible with older versions of SudachiPy

* make fixup

* make style

* error message for unidic download

* revert jumanpp test cases

* format options for sudachi_projection

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* format options for sudachi_split_mode and sudachi_dict_type

* comment

* add tests for full_tokenizer kwargs

* pass projection arg directly

* require_sudachi_projection

* make style

* revert upgrade sudachipy

* check is_sudachi_projection_available()

* revert dependency_version_table and bugfix

* style format

* simply raise ImportError

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* simply raise ImportError

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-02-13 04:47:20 +01:00
b44567538b [NllbTokenizer] refactor with added tokens decoder (#27717)
* refactor with addedtokens decoder

* style

* get rid of lang code to id

* style

* keep some things for BC

* update tests

* add the mask token at the end of the vocab

* nits

* nits

* fix final tests

* style

* nits

* Update src/transformers/models/nllb/tokenization_nllb_fast.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* nits

* style?

* Update src/transformers/convert_slow_tokenizer.py

* make it a tad bit more custom

* ruff please stop
Co-Authored by avidale

<dale.david@mail.ru>

* Update
Co-authored-by: avidale
<dale.david@mail.ru>

* Update
Co-authored-by: avidale <dale.david@mail.ru>

* oupts

* ouft

* nites

* test

* fix the remaining failing tests

* style

* fix failing test

* ficx other test

* temp dir + test the raw init

* update test

* style

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-02-13 03:49:20 +01:00
d90acc1643 [i18n-de] Translate CONTRIBUTING.md to German (#28954)
* Translate contributing.md to German

* Fix formatting issues in contributing.md

* Address review comments

* Fix capitalization
2024-02-12 13:39:20 -08:00
78ba9f4617 [Docs] Add video section (#28958)
Add video section
2024-02-12 19:50:31 +01:00
fe3df9d5b3 [Docs] Add language identifiers to fenced code blocks (#28955)
Add language identifiers to code blocks
2024-02-12 10:48:31 -08:00
c617f988f8 Clean up staging tmp checkpoint directory (#28848)
clean up remaining tmp checkpoint dir

Signed-off-by: woshiyyya <xiaoyunxuan1998@gmail.com>
2024-02-12 15:47:21 +00:00
136cd893dc Always initialize tied output_embeddings if it has a bias term (#28947)
Continue to initialize tied output_embeddings if it has a bias term

The bias term is not tied, and so will need to be initialized accordingly.
2024-02-12 15:47:08 +00:00
792819f6cf Updated requirements for image-classification samples: datasets>=2.14.0 (#28974)
Updated datasets requirements. Need a package version >= 2.14.0
2024-02-12 14:57:25 +00:00
e30bbb2685 Tests: tag test_save_load_fast_init_from_base as flaky (#28930) 2024-02-12 14:43:34 +00:00
1709886eba [pipelines] updated docstring with vqa alias (#28951)
updated docstring with vqa alias
2024-02-12 14:34:08 +00:00
cf4c20b9fb Convert torch_dtype as str to actual torch data type (i.e. "float16" …to torch.float16) (#28208)
* Convert torch_dtype as str to actual torch data type (i.e. "float16" to torch.float16)

* Check if passed torch_dtype is an attribute in torch

* Update src/transformers/pipelines/__init__.py

Check type via isinstance

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-02-12 14:04:53 +00:00
ef5ab72f4b [Docs] Update README and default pipelines (#28864)
* Update README and docs

* Update README

* Update README
2024-02-12 10:21:36 +01:00
f278ef20ed [Nougat] Fix pipeline (#28242)
* Fix pipeline

* Remove print statements

* Address comments

* Address issue

* Remove unused imports
2024-02-12 10:21:15 +01:00
58e3d23e97 [i18n-de] Translate README.md to German (#28933)
* Translate README.md to German

* Add links to README_de.md

* Remove invisible characters in README

* Change to a formal tone and fix punctuation marks
2024-02-09 12:56:22 -08:00
d123e661e4 Fix type annotations on neftune_noise_alpha and fsdp_config TrainingArguments parameters (#28942) 2024-02-09 15:42:01 +00:00
ebf3ea2788 Fix a wrong link to CONTRIBUTING.md section in PR template (#28941) 2024-02-09 15:10:47 +00:00
de11e654c9 Fix max_position_embeddings default value for llama2 to 4096 #28241 (#28754)
* Changed max_position_embeddings default value from 2048 to 4096

* force push

* Fixed formatting issues. Fixed missing argument in write_model.

* Reverted to the default value 2048 in the Llama config. Added comments for the llama_version argument.

* Fixed issue with default value value of max_position_embeddings in docstring

* Updated help message for llama versions

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-02-09 10:24:01 +00:00
2749e479f3 [Docs] Fix broken links and syntax issues (#28918)
* Fix model documentation links in attention.md

* Fix external link syntax

* Fix target anchor names of section links

* Fix copyright statement comments

* Fix documentation headings
2024-02-08 14:13:35 -08:00
d628664688 Support batched input for decoder start ids (#28887)
* support batched input for decoder start ids

* Fix typos

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* minor changes

* fix: decoder_start_id as list

* empty commit

* empty commit

* empty commit

* empty commit

* empty commit

* empty commit

* empty commit

* empty commit

* empty commit

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2024-02-08 16:00:53 +00:00
cc309fd406 pass kwargs in stopping criteria list (#28927) 2024-02-08 15:38:29 +00:00
0b693e90e0 fix: torch.int32 instead of torch.torch.int32 (#28883) 2024-02-08 16:28:17 +01:00
693667b8ac Remove dead TF loading code (#28926)
Remove dead code
2024-02-08 14:17:33 +00:00
115ac94d06 [Core generation] Adds support for static KV cache (#27931)
Co-authored-by: fxmarty <9808326+fxmarty@users.noreply.github.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2024-02-08 11:50:34 +01:00
4b236aed76 Fix utf-8 yaml load for marian conversion to pytorch in Windows (#28618)
Fix utf-8 yaml in marian conversion
2024-02-08 08:23:15 +01:00
33df036917 [Docs] Revert translation of '@slow' decorator (#28912) 2024-02-08 03:31:47 +01:00
328ade855b [Docs] Fix placement of tilde character (#28913)
Fix placement of tilde character
2024-02-07 17:19:39 -08:00
5f96855761 Add npu device for pipeline (#28885)
add npu device for pipeline

Co-authored-by: unit_test <test@unit.com>
2024-02-07 17:27:01 +00:00
308d2b9004 Update the cache number (#28905)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-02-07 16:37:09 +01:00
abf8f54a01 ⚠️ Raise Exception when trying to generate 0 tokens ⚠️ (#28621)
* change warning to exception

* Update src/transformers/generation/utils.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* validate `max_new_tokens` > 0 in `GenerationConfig`

* fix truncation test parameterization in `TextGenerationPipelineTests`

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2024-02-07 13:42:01 +01:00
349a6e8542 Fix Keras scheduler import so it works for older versions of Keras (#28895)
Fix our schedule import so it works for older versions of Keras
2024-02-07 12:28:24 +00:00
d9deddb4c1 fix Starcoder FA2 implementation (#28891) 2024-02-07 14:10:10 +05:30
64d1518cbf fix: Fixed the documentation for logging_first_step by removing "evaluate" (#28884)
Fixed the documentation for logging_first_step by removing evaluate.
2024-02-07 08:46:36 +01:00
1c31b7aa3b [Docs] Add missing language options and fix broken links (#28852)
* Add missing entries to the language selector

* Add links to the Colab and AWS Studio notebooks for ONNX

* Use anchor links in CONTRIBUTING.md

* Fix broken hyperlinks due to spaces

* Fix links to OpenAI research articles

* Remove confusing footnote symbols from author names, as they are also considered invalid markup
2024-02-06 12:01:01 -08:00
40658be461 Hotfix - make torchaudio get the correct version in torch_and_flax_job (#28899)
* check

* check

* check

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-02-06 21:00:42 +01:00
4830f26965 [Docs] Fix backticks in inline code and documentation links (#28875)
Fix backticks in code blocks and documentation links
2024-02-06 11:15:44 -08:00
a1afec9e17 Explicit server error on gated model (#28894) 2024-02-06 17:45:20 +00:00
89439fea64 unpin torch (#28892)
* unpin torch

* check

* check

* check

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-02-06 17:21:05 +01:00
76b4f666f5 Revert "[WIP] Hard error when ignoring tensors." (#28898)
Revert "[WIP] Hard error when ignoring tensors. (#27484)"

This reverts commit 2da28c4b41bba23969a8afe97c3dfdcbc47a57dc.
2024-02-06 17:18:30 +01:00
6529a5b5c1 Fix FastSpeech2ConformerModelTest and skip it on CPU (#28888)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-02-06 11:05:23 +01:00
5346db1684 Raise error when using save_only_model with load_best_model_at_end for DeepSpeed/FSDP (#28866)
* Raise error when using `save_only_model` with `load_best_model_at_end` for DeepSpeed/FSDP

* Update trainer.py
2024-02-06 11:25:44 +05:30
ee2a3400f2 Fix LongT5ForConditionalGeneration initialization of lm_head (#28873) 2024-02-06 04:24:20 +01:00
1ea0bbd73c [Docs] Update project names and links in awesome-transformers (#28878)
Update project names and repository links in awesome-transformers
2024-02-06 04:06:29 +01:00
e83227d76e Bump cryptography from 41.0.2 to 42.0.0 in /examples/research_projects/decision_transformer (#28879)
Bump cryptography in /examples/research_projects/decision_transformer

Bumps [cryptography](https://github.com/pyca/cryptography) from 41.0.2 to 42.0.0.
- [Changelog](https://github.com/pyca/cryptography/blob/main/CHANGELOG.rst)
- [Commits](https://github.com/pyca/cryptography/compare/41.0.2...42.0.0)

---
updated-dependencies:
- dependency-name: cryptography
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-02-06 03:53:08 +01:00
2e7c942c81 Adds LlamaForQuestionAnswering class in modeling_llama.py along with AutoModel Support (#28777)
* This is a test commit

* testing commit

* final commit with some changes

* Removed copy statement

* Fixed formatting issues

* Fixed error added past_key_values in the forward method

* Fixed a trailing whitespace. Damn the formatting rules are strict

* Added the copy statement
2024-02-06 03:41:42 +01:00
ac51e59e47 Do not use mtime for checkpoint rotation. (#28862)
Resolve https://github.com/huggingface/transformers/issues/26961
2024-02-06 03:21:50 +01:00
06901162b5 ClearMLCallback enhancements: support multiple runs and handle logging better (#28559)
* add clearml tracker

* support multiple train runs

* remove bad code

* add UI entries for config/hparams overrides

* handle models in different tasks

* run ruff format

* tidy code based on code review

---------

Co-authored-by: Eugen Ajechiloae <eugenajechiloae@gmail.com>
2024-02-05 20:04:17 +00:00
ba3264b4e8 Image Feature Extraction pipeline (#28216)
* Draft pipeline

* Fixup

* Fix docstrings

* Update doctest

* Update pipeline_model_mapping

* Update docstring

* Update tests

* Update src/transformers/pipelines/image_feature_extraction.py

Co-authored-by: Omar Sanseviero <osanseviero@gmail.com>

* Fix docstrings - review comments

* Remove pipeline mapping for composite vision models

* Add to pipeline tests

* Remove for flava (multimodal)

* safe pil import

* Add requirements for pipeline run

* Account for super slow efficientnet

* Review comments

* Fix tests

* Swap order of kwargs

* Use build_pipeline_init_args

* Add back FE pipeline for Vilt

* Include image_processor_kwargs in docstring

* Mark test as flaky

* Update TODO

* Update tests/pipelines/test_pipelines_image_feature_extraction.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Add license header

---------

Co-authored-by: Omar Sanseviero <osanseviero@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-02-05 14:50:07 +00:00
7addc9346c Correct wav2vec2-bert inputs_to_logits_ratio (#28821)
* Correct wav2vec2-bert inputs_to_logits_ratio

* correct ratio

* correct ratio, clean asr pipeline

* refactor on one line
2024-02-05 13:14:47 +00:00
3f9f749325 [Doc] update contribution guidelines (#28858)
update guidelines
2024-02-05 21:19:21 +09:00
2da28c4b41 [WIP] Hard error when ignoring tensors. (#27484)
* [WIP] Hard error when ignoring tensors.

* Better selection/error when saving a checkpoint.

- Find all names we should normally drop (those are in the transformers
  config)
- Find all disjoint tensors (for those we can safely trigger a copy to
  get rid of the sharing before saving)
- Clone those disjoint tensors getting rid of the issue
- Find all identical names (those should be declared in the config
  but we try to find them all anyway.)
- For all identical names:
  - If they are in the config, just ignore them everything is fine
  - If they are not, warn about them.
- For all remainder tensors which are shared yet neither identical NOR
  disjoint. raise a hard error.

* Adding a failing test on `main` that passes here.

* We don't need to keep the subfolder logic in this test.

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-02-05 09:17:24 +01:00
0466fd5ca2 Ability to override clean_code_for_run (#28783)
* Add clean_code_for_run function

* Call clean_code_for_run from agent method
2024-02-05 03:48:41 +01:00
c430d6eaee [Docs] Fix bad doc: replace save with logging (#28855)
Fix bad doc: replace save with logging
2024-02-05 03:38:08 +01:00
7b702836af Support custom scheduler in deepspeed training (#26831)
Reuse trainer.create_scheduler to create scheduler for deepspeed
2024-02-05 03:33:55 +01:00
ca8944c4e3 Bump dash from 2.3.0 to 2.15.0 in /examples/research_projects/decision_transformer (#28845)
Bump dash in /examples/research_projects/decision_transformer

Bumps [dash](https://github.com/plotly/dash) from 2.3.0 to 2.15.0.
- [Release notes](https://github.com/plotly/dash/releases)
- [Changelog](https://github.com/plotly/dash/blob/dev/CHANGELOG.md)
- [Commits](https://github.com/plotly/dash/compare/v2.3.0...v2.15.0)

---
updated-dependencies:
- dependency-name: dash
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-02-05 03:12:30 +01:00
3d2900e829 Mark test_encoder_decoder_model_generate for vision_encoder_deocder as flaky (#28842)
Mark test as flaky
2024-02-02 16:57:08 +00:00
80d50076c8 Reduce GPU memory usage when using FSDP+PEFT (#28830)
support FSDP+PEFT
2024-02-02 21:18:01 +05:30
f497795948 Use -v for pytest on CircleCI (#28840)
use -v in pytest

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-02-02 16:44:13 +01:00
a7cb92aa03 fix / skip (for now) some tests before switch to torch 2.2 (#28838)
* fix / skip some tests before we can switch to torch 2.2

* style

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-02-02 14:11:50 +01:00
0e75aeefaf Fix issues caused by natten (#28834)
try

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-02-02 21:11:48 +09:00
ec29d25d9f Add missing None check for hf_quantizer (#28804)
* Add missing None check for hf_quantizer

* Add test, fix logic.

* make style

* Switch test model to Mistral

* Comment

* Update tests/test_modeling_utils.py

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2024-02-02 09:34:12 +01:00
1efb21c764 Explicitly check if token ID's are None in TFBertTokenizer constructor (#28824)
Add an explicit none-check, since token ids can be 0
2024-02-02 09:13:36 +01:00
721ee783ca [Docs] Fix spelling and grammar mistakes (#28825)
* Fix typos and grammar mistakes in docs and examples

* Fix typos in docstrings and comments

* Fix spelling of `tokenizer` in model tests

* Remove erroneous spaces in decorators

* Remove extra spaces in Markdown link texts
2024-02-02 08:45:00 +01:00
2418c64a1c [docs] HfQuantizer (#28820)
* tidy

* fix path
2024-02-02 08:22:18 +01:00
abbffc4525 [docs] Backbone (#28739)
* backbones

* fix path

* fix paths

* fix code snippet

* fix links
2024-02-01 09:16:16 -08:00
23ea6743f2 Add models from deit (#28302)
* Add modelss

* Add 2 more models

* add models to tocrree

* Add modles

* Update docs/source/ja/model_doc/detr.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/model_doc/deit.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/model_doc/deplot.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* fix bugs

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-02-01 09:15:55 -08:00
d98591a12b [docs] fix some bugs about parameter description (#28806)
Co-authored-by: p_spozzhang <p_spozzhang@tencent.com>
2024-02-01 16:59:29 +00:00
e19c12e094 enable graident checkpointing in DetaObjectDetection and add tests in Swin/Donut_Swin (#28615)
* enable graident checkpointing in DetaObjectDetection

* fix missing part in original DETA

* make style

* make fix-copies

* Revert "make fix-copies"

This reverts commit 4041c86c29248f1673e8173b677c20b5a4511358.

* remove fix-copies of DetaDecoder

* enable swin gradient checkpointing

* fix gradient checkpointing in donut_swin

* add tests for deta/swin/donut

* Revert "fix gradient checkpointing in donut_swin"

This reverts commit 1cf345e34d3cc0e09eb800d9895805b1dd9b474d.

* change supports_gradient_checkpointing pipeline to PreTrainedModel

* Revert "add tests for deta/swin/donut"

This reverts commit 6056ffbb1eddc3cb3a99e4ebb231ae3edf295f5b.

* Revert "Revert "fix gradient checkpointing in donut_swin""

This reverts commit 24e25d0a14891241de58a0d86f817d0b5d2a341f.

* Simple revert

* enable deformable detr gradient checkpointing

* add gradient in encoder
2024-02-01 15:07:44 +00:00
7bc6d76396 Add tip on setting tokenizer attributes (#28764)
* Add tip on setting tokenizer attributes

* Grammar

* Remove the bit that was causing doc builds to fail
2024-02-01 14:44:58 +00:00
709dc43239 Fix symbolic_trace with kv cache (#28724)
* fix symbolic_trace with kv cache

* comment & better test
2024-02-01 09:45:02 +01:00
eb8e7a005f Make is_torch_bf16_available_on_device more strict (#28796)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-02-01 09:03:53 +01:00
0d26abdd3a Adding [T5/MT5/UMT5]ForTokenClassification (#28443)
* Adding [T5/MT5/UMT5]ForTokenClassification

* Add auto mappings for T5ForTokenClassification and variants

* Adding ForTokenClassification to the list of models

* Adding attention_mask param to the T5ForTokenClassification test

* Remove outdated comment in test

* Adding EncoderOnly and Token Classification tests for MT5 and UMT5

* Fix typo in umt5 string

* Add tests for all the existing MT5 models

* Fix wrong comment in dependency_versions_table

* Reverting change to common test for _keys_to_ignore_on_load_missing

The test is correctly picking up redundant keys in _keys_to_ignore_on_load_missing.

* Removing _keys_to_ignore_on_missing from MT5 since the key is not used in the model

* Add fix-copies to MT5ModelTest
2024-02-01 03:53:49 +01:00
7b2bd1fbbd [docs] Correct the statement in the docstirng of compute_transition_scores in generation/utils.py (#28786) 2024-01-31 17:07:30 +00:00
4735866141 Split daily CI using 2 level matrix (#28773)
* update / add new workflow files

* Add comment

* Use env.NUM_SLICES

* use scripts

* use scripts

* use scripts

* Fix

* using one script

* Fix

* remove unused file

* update

* fail-fast: false

* remove unused file

* fix

* fix

* use matrix

* inputs

* style

* update

* fix

* fix

* no model name

* add doc

* allow args

* style

* pass argument

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-01-31 18:04:43 +01:00
95346e9dcd Add artifact name in job step to maintain job / artifact correspondence (#28682)
* avoid using job name

* apply to other files

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-01-31 15:58:17 +01:00
beb2a09687 DeepSpeed: hardcode torch.arange dtype on float usage to avoid incorrect initialization (#28760) 2024-01-31 14:39:07 +00:00
f7076cd346 Flax mistral (#26943)
* direct copy from llama work

* mistral modules forward pass working

* flax mistral forward pass with sliding window

* added tests

* added layer collection approach

* Revert "added layer collection approach"

This reverts commit 0e2905bf2236ec323163fc1a9f0c016b21aa8b8f.

* Revert "Revert "added layer collection approach""

This reverts commit fb17b6187ac5d16da7c461e1130514dc3d137a43.

* fixed attention outputs

* added mistral to init and auto

* fixed import name

* fixed layernorm weight dtype

* freeze initialized weights

* make sure conversion consideres bfloat16

* added backend

* added docstrings

* added cache

* fixed sliding window causal mask

* passes cache tests

* passed all tests

* applied make style

* removed commented out code

* applied fix-copies ignored other model changes

* applied make fix-copies

* removed unused functions

* passed generation integration test

* slow tests pass

* fixed slow tests

* changed default dtype from jax.numpy.float32 to float32 for docstring check

* skip cache test  for FlaxMistralForSequenceClassification since if pad_token_id in input_ids it doesn't score previous input_ids

* updated checkpoint since from_pt not included

* applied black style

* removed unused args

* Applied styling and fixup

* changed checkpoint for doc back

* fixed rf after adding it to hf hub

* Add dummy ckpt

* applied styling

* added tokenizer to new ckpt

* fixed slice format

* fix init and slice

* changed ref for placeholder TODO

* added copies from Llama

* applied styling

* applied fix-copies

* fixed docs

* update weight dtype reconversion for sharded weights

* removed Nullable input ids

* Removed unnecessary output attentions in Module

* added embedding weight initialziation

* removed unused past_key_values

* fixed deterministic

* Fixed RMS Norm and added copied from

* removed input_embeds

* applied make style

* removed nullable input ids from sequence classification model

* added copied from GPTJ

* added copied from Llama on FlaxMistralDecoderLayer

* added copied from to FlaxMistralPreTrainedModel methods

* fix test deprecation warning

* freeze gpt neox random_params and fix copies

* applied make style

* fixed doc issue

* skipped docstring test to allign # copied from

* applied make style

* removed FlaxMistralForSequenceClassification

* removed unused padding_idx

* removed more sequence classification

* removed sequence classification

* applied styling and consistency

* added copied from in tests

* removed sequence classification test logic

* applied styling

* applied make style

* removed freeze and fixed copies

* undo test change

* changed repeat_kv to tile

* fixed to key value groups

* updated copyright year

* split casual_mask

* empty to rerun failed pt_flax_equivalence test FlaxWav2Vec2ModelTest

* went back to 2023 for tests_pr_documentation_tests

* went back to 2024

* changed tile to repeat

* applied make style

* empty for retry on Wav2Vec2
2024-01-31 14:19:02 +01:00
7a4961007a Wrap Keras methods to support BatchEncoding (#28734)
* Shim the Keras methods to support BatchEncoding

* Extract everything to a convert_batch_encoding function

* Convert BatchFeature too (thanks Amy)

* tf.keras -> keras
2024-01-31 13:18:42 +00:00
721e2d94df canonical repos moves (#28795)
* canonical repos moves

* Style

---------

Co-authored-by: Lysandre <lysandre@huggingface.co>
2024-01-31 14:18:31 +01:00
bebeeee012 Resolve DeepSpeed cannot resume training with PeftModel (#28746)
* fix: resolve deepspeed resume peft model issues

* chore: update something

* chore: update model instance pass into is peft model checks

* chore: remove hard code value to tests

* fix: format code
2024-01-31 13:58:26 +01:00
65a926e82b [Whisper] Refactor forced_decoder_ids & prompt ids (#28687)
* up

* Fix more

* Correct more

* Fix more tests

* fix fast tests

* Fix more

* fix more

* push all files

* finish all

* make style

* Fix timestamp wrap

* make style

* make style

* up

* up

* up

* Fix lang detection behavior

* Fix lang detection behavior

* Add lang detection test

* Fix lang detection behavior

* make style

* Update src/transformers/models/whisper/generation_whisper.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* better error message

* make style tests

* add warning

---------

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
2024-01-31 14:02:07 +02:00
f9f1f2ac5e [HFQuantizer] Remove check_packages_compatibility logic (#28789)
remove `check_packages_compatibility` logic
2024-01-31 03:21:27 +01:00
ae0c27adfa don't initialize the output embeddings if we're going to tie them to input embeddings (#28192)
* test that tied output embeddings aren't initialized on load

* don't initialize the output embeddings if we're going to tie them to the input embeddings
2024-01-31 02:19:18 +01:00
a937425e94 Prevent MLflow exception from disrupting training (#28779)
Modified MLflow logging metrics from synchronous to asynchronous

Co-authored-by: codiceSpaghetti <alessio.ser@hotmail.it>
2024-01-31 02:10:44 +01:00
d703eaaeff [bnb] Fix bnb slow tests (#28788)
fix bnb slow tests
2024-01-31 01:31:20 +01:00
74c9cfeaa7 Pin Torch to <2.2.0 (#28785)
* Pin torch to <2.2.0

* Pin torchvision and torchaudio as well

* Playing around with versions to see if this helps

* twiddle something to restart the CI

* twiddle it back

* Try changing the natten version

* make fixup

* Revert "Try changing the natten version"

This reverts commit de0d6592c35dc39ae8b5a616c27285db28262d06.

* make fixup

* fix fix fix

* fix fix fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-01-30 23:01:12 +01:00
415e9a0980 Add tf_keras imports to prepare for Keras 3 (#28588)
* Port core files + ESM (because ESM code is odd)

* Search-replace in modelling code

* Fix up transfo_xl as well

* Fix other core files + tests (still need to add correct import to tests)

* Fix cookiecutter

* make fixup, fix imports in some more core files

* Auto-add imports to tests

* Cleanup, add imports to sagemaker tests

* Use correct exception for importing tf_keras

* Fixes in modeling_tf_utils

* make fixup

* Correct version parsing code

* Ensure the pipeline tests correctly revert to float32 after each test

* Ensure the pipeline tests correctly revert to float32 after each test

* More tf.keras -> keras

* Add dtype cast

* Better imports of tf_keras

* Add a cast for tf.assign, just in case

* Fix callback imports
2024-01-30 17:26:36 +00:00
1d489b3e61 Task-specific pipeline init args (#28439)
* Abstract out pipeline init args

* Address PR comments

* Reword

* BC PIPELINE_INIT_ARGS

* Remove old arguments

* Small fix
2024-01-30 16:54:57 +00:00
2fa1c808ae [Backbone] Use load_backbone instead of AutoBackbone.from_config (#28661)
* Enable instantiating model with pretrained backbone weights

* Remove doc updates until changes made in modeling code

* Use load_backbone instead

* Add use_timm_backbone to the model configs

* Add missing imports and arguments

* Update docstrings

* Make sure test is properly configured

* Include recent DPT updates
2024-01-30 16:54:09 +00:00
c24c52454a Further pin pytest version (in a temporary way) (#28780)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-01-30 17:48:49 +01:00
6f7d5db58c Fix transformers.utils.fx compatibility with torch<2.0 (#28774)
guard sdpa on torch>=2.0
2024-01-30 14:54:42 +01:00
5c8d941d66 Use Conv1d for TDNN (#25728)
* use conv for tdnn

* run make fixup

* update TDNN

* add PEFT LoRA check

* propagate tdnn warnings to others

* add missing imports

* update TDNN in wav2vec2_bert

* add missing imports
2024-01-30 09:33:55 +01:00
866253f85e [HfQuantizer] Move it to "Developper guides" (#28768)
Update _toctree.yml
2024-01-30 07:20:20 +01:00
d78e78a0e4 HfQuantizer class for quantization-related stuff in modeling_utils.py (#26610)
* squashed earlier commits for easier rebase

* rm rebase leftovers

* 4bit save enabled @quantizers

* TMP gptq test use exllama

* fix AwqConfigTest::test_wrong_backend for A100

* quantizers AWQ fixes

* _load_pretrained_model low_cpu_mem_usage branch

* quantizers style

* remove require_low_cpu_mem_usage attr

* rm dtype arg from process_model_before_weight_loading

* rm config_origin from Q-config

* rm inspect from q_config

* fixed docstrings in QuantizationConfigParser

* logger.warning fix

* mv is_loaded_in_4(8)bit to BnbHFQuantizer

* is_accelerate_available error msg fix in quantizer

* split is_model_trainable in bnb quantizer class

* rm llm_int8_skip_modules as separate var in Q

* Q rm todo

* fwd ref to HFQuantizer in type hint

* rm note re optimum.gptq.GPTQQuantizer

* quantization_config in __init__ simplified

* replaced NonImplemented with  create_quantized_param

* rm load_in_4/8_bit deprecation warning

* QuantizationConfigParser refactoring

* awq-related minor changes

* awq-related changes

* awq config.modules_to_not_convert

* raise error if no q-method in q-config in args

* minor cleanup

* awq quantizer docstring

* combine common parts in bnb process_model_before_weight_loading

* revert test_gptq

* .process_model_ cleanup

* restore dict config warning

* removed typevars in quantizers.py

* cleanup post-rebase 16 jan

* QuantizationConfigParser classmethod refactor

* rework of handling of unexpected aux elements of bnb weights

* moved q-related stuff from save_pretrained to quantizers

* refactor v1

* more changes

* fix some tests

* remove it from main init

* ooops

* Apply suggestions from code review

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* fix awq issues

* fix

* fix

* fix

* fix

* fix

* fix

* add docs

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update docs/source/en/hf_quantizer.md

* address comments

* fix

* fixup

* Update src/transformers/modeling_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/modeling_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* address final comment

* update

* Update src/transformers/quantizers/base.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/quantizers/auto.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fix

* add kwargs update

* fixup

* add `optimum_quantizer` attribute

* oops

* rm unneeded file

* fix doctests

---------

Co-authored-by: younesbelkada <younesbelkada@gmail.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-01-30 02:48:25 +01:00
1f5590d32e Move CLIP _no_split_modules to CLIPPreTrainedModel (#27841)
Add _no_split_modules to CLIPModel
2024-01-30 02:15:58 +01:00
a989c6c6eb Don't allow passing load_in_8bit and load_in_4bit at the same time (#28266)
* Update quantization_config.py

* Style

* Protect from setting directly

* add tests

* Update tests/quantization/bnb/test_4bit.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2024-01-30 01:43:40 +01:00
cd2eb8cb2b Add French translation: french README.md (#28696)
* doc: french README

Signed-off-by: ThibaultLengagne <thibaultl@padok.fr>

* doc: Add Depth Anything

Signed-off-by: ThibaultLengagne <thibaultl@padok.fr>

* doc: Add french link in other docs

Signed-off-by: ThibaultLengagne <thibaultl@padok.fr>

* doc: Add missing links in fr docs

* doc: fix several mistakes in translation

Signed-off-by: ThibaultLengagne <thibaultl@padok.fr>

---------

Signed-off-by: ThibaultLengagne <thibaultl@padok.fr>
Co-authored-by: Sarapuce <alexandreh@padok.fr>
2024-01-29 10:07:49 -08:00
a055d09e11 Support saving only PEFT adapter in checkpoints when using PEFT + FSDP (#28297)
* Update trainer.py

* Revert "Update trainer.py"

This reverts commit 0557e2cc9effa3a41304322032239a3874b948a7.

* Make trainer.py use adapter_only=True when using FSDP + PEFT

* Support load_best_model with adapter_only=True

* Ruff format

* Inspect function args for save_ load_ fsdp utility functions and only pass adapter_only=True if they support it
2024-01-29 17:10:15 +00:00
da3c79b245 [Whisper] Make tokenizer normalization public (#28136)
* [Whisper] Make tokenizer normalization public

* add to docs
2024-01-29 16:07:35 +00:00
e694e985d7 Fix typo of Block. (#28727) 2024-01-29 15:25:00 +00:00
9e8f35fa28 Mark test_constrained_beam_search_generate as flaky (#28757)
* Make test_constrained_beam_search_generate as flaky

* Update tests/generation/test_utils.py
2024-01-29 15:22:25 +00:00
0f8d015a41 Pin pytest version <8.0.0 (#28758)
* Pin pytest version <8.0.0

* Update setup.py

* make deps_table_update
2024-01-29 15:22:14 +00:00
26aa03a252 small doc update for CamemBERT (#28644) 2024-01-29 15:46:32 +01:00
0548af54cc Enable Gradient Checkpointing in Deformable DETR (#28686)
* Enabled gradient checkpointing in Deformable DETR

* Enabled gradient checkpointing in Deformable DETR encoder

* Removed # Copied from headers in modeling_deta.py to break dependence on Deformable DETR code
2024-01-29 10:10:40 +00:00
f72c7c22d9 PatchtTST and PatchTSMixer fixes (#28083)
* 🐛 fix .max bug

* remove prediction_length from regression output dimensions

* fix parameter names, fix output names, update tests

* ensure shape for PatchTST

* ensure output shape for PatchTSMixer

* update model, batch, and expected for regression distribution test

* update test expected

Signed-off-by: Wesley M. Gifford <wmgifford@us.ibm.com>

* Update tests/models/patchtst/test_modeling_patchtst.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/patchtst/test_modeling_patchtst.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/patchtst/test_modeling_patchtst.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/patchtsmixer/modeling_patchtsmixer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/patchtsmixer/test_modeling_patchtsmixer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/patchtsmixer/test_modeling_patchtsmixer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* standardize on patch_length

Signed-off-by: Wesley M. Gifford <wmgifford@us.ibm.com>

* Update tests/models/patchtsmixer/test_modeling_patchtsmixer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/patchtsmixer/test_modeling_patchtsmixer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Make arguments more explicit

Signed-off-by: Wesley M. Gifford <wmgifford@us.ibm.com>

* adjust prepared inputs

Signed-off-by: Wesley M. Gifford <wmgifford@us.ibm.com>

---------

Signed-off-by: Wesley M. Gifford <wmgifford@us.ibm.com>
Co-authored-by: Wesley M. Gifford <wmgifford@us.ibm.com>
Co-authored-by: Kashif Rasul <kashif.rasul@gmail.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-01-29 10:09:26 +00:00
3a08cc485f [Docs] Fix Typo in English & Japanese CLIP Model Documentation (TMBD -> TMDB) (#28751)
* [Docs] Fix Typo in English CLIP model_doc

* [Docs] Fix Typo in Japanese CLIP model_doc
2024-01-29 10:06:51 +00:00
39fa400969 Fix input data file extension in examples (#28741) 2024-01-29 10:06:31 +00:00
5649c0cbb8 Fix DepthEstimationPipeline's docstring (#28733)
* fix

* fix

* Fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-01-29 10:42:55 +01:00
243e186efb Add serialization logic to pytree types (#27871)
* Add serialized type name to pytrees

* Modify context

* add serde test
2024-01-29 10:41:20 +01:00
f1cc615721 [Siglip] protect from imports if sentencepiece not installed (#28737)
[Siglip] protect from imports if sentencepiece not installed
2024-01-28 15:10:14 +00:00
03cc17775b Generate: deprecate old src imports (#28607) 2024-01-27 15:54:19 +00:00
a28a76996c Falcon: removed unused function (#28605) 2024-01-27 15:52:59 +00:00
de13a951b3 [Flax] Update no init test for Flax v0.7.1 (#28735) 2024-01-26 18:20:39 +00:00
abe0289e6d [docs] Fix datasets in guides (#28715)
* change datasets

* fix
2024-01-26 09:29:07 -08:00
f8b7c4345a Unpin pydantic (#28728)
* try pydantic v2

* try pydantic v2

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-01-26 17:39:33 +01:00
3aea38ce61 fix: suppress GatedRepoError to use cache file (fix #28558). (#28566)
* fix: suppress `GatedRepoError` to use cache file (fix #28558).

* move condition_to_return parameter back to outside.
2024-01-26 16:25:08 +00:00
708b19eb09 Stop confusing the TF compiler with ModelOutput objects (#28712)
* Stop confusing the TF compiler with ModelOutput objects

* Stop confusing the TF compiler with ModelOutput objects
2024-01-26 12:22:29 +00:00
a638de1987 Fix weights_only (#28725)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-01-26 13:00:49 +01:00
d6ac8f4ad2 Initialize _tqdm_active with hf_hub_utils.are_progress_bars_disabled(… (#28717)
Initialize _tqdm_active with hf_hub_utils.are_progress_bars_disabled() to respect HF_HUB_DISABLE_PROGRESS_BARS

It seems like enable_progress_bar() and disable_progress_bar() sync up with huggingface_hub, but the initial value is always True. This changes will make sure the user's preference is respected implicity on initialization.
2024-01-26 11:59:34 +00:00
D
3a46e30dd1 [docs] Update preprocessing.md (#28719)
* Update preprocessing.md

adjust ImageProcessor link to working target (same as in lower section of file)

* Update preprocessing.md
2024-01-26 11:58:57 +00:00
1f47a24aa1 fix: corrected misleading log message in save_pretrained function (#28699) 2024-01-26 11:52:53 +00:00
bbe30c6968 support PeftMixedModel signature inspect (#28321)
* support PeftMixedModel signature inspect

* import PeftMixedModel only peft>=0.7.0

* Update src/transformers/trainer.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update src/transformers/trainer.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update src/transformers/trainer.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update src/transformers/trainer.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update src/transformers/trainer.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update src/transformers/trainer.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* fix styling

* Update src/transformers/trainer.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update src/transformers/trainer.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* style fixup

* fix note

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-01-26 12:05:01 +01:00
8eb74c1c89 Fix duplicate & unnecessary flash attention warnings (#28557)
* fix duplicate & unnecessary flash warnings

* trigger ci

* warning_once

* if/else order

---------

Co-authored-by: Your Name <you@example.com>
2024-01-26 09:37:04 +01:00
142ce68389 Don't fail when LocalEntryNotFoundError during processor_config.json loading (#28709)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-01-26 09:02:32 +01:00
2875195887 [docs] Improve visualization for vertical parallelism (#28583)
The documentation says "We refer to this Model parallelism as “Vertical” because of how models are typically visualized.", but then visualizes the model horizontally. This change visualizes the model indeed vertically.
2024-01-25 17:55:11 +00:00
4cbd876e42 [Vilt] align input and model dtype in the ViltPatchEmbeddings forward pass (#28633)
align dtype
2024-01-25 15:03:20 +00:00
24f1a00e4c Update question_answering.md (#28694)
fix typo:

from:

 "model = TFAutoModelForQuestionAnswering("distilbert-base-uncased")"

to:
model = TFAutoModelForQuestionAnswering.from_pretrained("distilbert-base-uncased")
2024-01-25 14:06:38 +00:00
2000095666 Improve Backbone API docs (#28666)
Update backbones.md
2024-01-25 11:51:58 +00:00
7fa4b36eba [chore] Add missing space in warning (#28695)
Add missing space in warning
2024-01-25 09:34:52 +00:00
963db81a5a Add Depth Anything (#28654)
* First draft

* More improvements

* More improvements

* More improvements

* More improvements

* Add docs

* Remove file

* Add copied from

* Address comments

* Address comments

* Address comments

* Fix style

* Update docs

* Convert all checkpoints, add integration test

* Rename checkpoints

* Add pretrained backbone attributes

* Fix default config

* Address comment

* Add figure to docs

* Fix bug thanks to @xenova

* Update conversion script

* Fix integration test
2024-01-25 09:34:50 +01:00
f40b87de0c [docs] Fix doc format (#28684)
* fix hfoptions

* revert changes to other files

* fix
2024-01-24 11:18:59 -08:00
8278b1538e improve efficient training on CPU documentation (#28646)
* update doc

* revert

* typo fix

* refine

* add dtypes

* Update docs/source/en/perf_train_cpu.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/perf_train_cpu.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/perf_train_cpu.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* no comma

* use avx512-vnni

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-01-24 09:07:13 -08:00
5d29530ea2 Improved type hinting for all attention parameters (#28479)
* Changed type hinting for all attention inputs to 'Optional[Tuple[torch.FloatTensor,...]] = None'

* Fixed the ruff formatting issue

* fixed type hinting for all hidden_states to 'Optional[Tuple[torch.FloatTensor, ...]] = None'

* Changed type hinting in these 12 scripts modeling_dpr.py,modeling_nat.py,idefics/vision.py,modeling_tf_dpr.py,modeling_luke.py,modeling_swin.py,modeling_tf_swin.py,modeling_blip.py,modeling_tf_blip.py,modeling_donut_swin.py,modeling_dinat.py,modeling_swinv2.py

* test fail update

* fixed type hinting for these 15 scripts modeling_xlnet.py,modeling_tf_xlnet.py,modeling_led.py,modeling_tf_led.py,modleing_rwkv.py,modeling_dpt.py,modeling_tf_cvt.py,modeling_clip.py,modeling_flax_clip.py,modeling_tf_clip.py,modeling_longformer.py,modeling_tf_longformer.py,modeling_siglip.py,modeling_clap.py,modeling_git.py

* Changed type hinting in these 12 scripts modeling_dpr.py,modeling_nat.py,idefics/vision.py,modeling_tf_dpr.py,modeling_luke.py,modeling_swin.py,modeling_tf_swin.py,modeling_blip.py,modeling_tf_blip.py,modeling_donut_swin.py,modeling_dinat.py,modeling_swinv2.py

* test fail update

* Removed the myvenv file

* Fixed type hinting for these 8 scripts modeling_tvlt.py,modeling_sam.py,modeling_tf_sam.py,modeling_tvp.py,modeling_rag.py,modeling_tf_rag.py,modeling_tf_xlm.py,modeling_xlm.py
2024-01-24 16:47:34 +00:00
738ec75c90 [docs] DeepSpeed (#28542)
* config

* optim

* pre deploy

* deploy

* save weights, memory, troubleshoot, non-Trainer

* done
2024-01-24 08:31:28 -08:00
bb6aa8bc5f Add back in generation types (#28681) 2024-01-24 14:37:30 +00:00
0549000c5b Use save_safetensor to disable safe serialization for XLA (#28669)
* Use save_safetensor to disable safe serialization for XLA

https://github.com/huggingface/transformers/issues/28438

* Style fixup
2024-01-24 11:57:45 +00:00
c5c69096b3 Exclude the load balancing loss of padding tokens in Mixtral-8x7B (#28517)
* fix the function load_balancing_loss_func in Mixtral_Moe to include attention_mask

* format code using black and ruff

* skip computing mask if attention_mask=None

* add tests for load balancing loss Mixtral-Moe

* fix assert loss is different in mixtral_test

* fix pad_leng

* use assertNotAlmostEqual and print to debug

* remove print for debug

* minor updates

* reduce rtol and atol
2024-01-24 10:12:14 +01:00
5f81266fb0 Update README_es.md (#28612)
Fixing grammatical errors in the text
2024-01-23 21:09:01 +00:00
39c3c0a72a fix a hidden bug of GenerationConfig, now the generation_config.json can be loaded successfully (#28604)
* fix a hidden bug of GenerationConfig

* keep `sort_keys=True` to maintain visibility

* Update src/transformers/generation/configuration_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update configuration_utils.py

in case `obj` is a list, check the items in the list

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-01-23 17:48:38 +00:00
ebc8f47bd9 Remove deprecated eager_serving fn (#28665)
* Remove deprecated eager_serving fn

* Fix the input_signature docstring while I'm here
2024-01-23 16:53:07 +00:00
9a4521dd9b Support single token decode for CodeGenTokenizer (#28628)
convert token id to list in .decode()
2024-01-23 16:27:24 +01:00
5b5e71dc41 add dataloader prefetch factor in training args and trainer (#28498)
* add dataloader prefetch factor in training args and trainer

* remove trailing spaces

* prevent dataloader_num_workers == 0 and dataloader_prefetch_factor != None

dataloader_prefetch_factor works only when data is loaded in a different process as the main one. This commit adds the necessary checks to avoid having prefetch_factor set when there is no such process.

* Remove whitespaces in empty line

* Update src/transformers/training_args.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/training_args.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/training_args.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/training_args.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-01-23 15:08:18 +00:00
582d104b93 Fix windows err with checkpoint race conditions (#28637)
Fix windows err
2024-01-23 14:30:36 +01:00
c475eca9cd tensor_size - fix copy/paste error msg typo (#28660)
Fix copy/paste error msg typo
2024-01-23 11:22:02 +00:00
27c79a0fb4 Enable instantiating model with pretrained backbone weights (#28214)
* Enable instantiating model with pretrained backbone weights

* Update tests so backbone checkpoint isn't passed in

* Remove doc updates until changes made in modeling code

* Clarify pretrained import

* Update configs - docs and validation check

* Update src/transformers/utils/backbone_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Clarify exception message

* Update config init in tests

* Add test for when use_timm_backbone=True

* Small test updates

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-01-23 11:01:50 +00:00
008a6a2208 Enable safetensors conversion from PyTorch to other frameworks without the torch requirement (#27599)
* Initial commit

* Requirements & tests

* Tests

* Tests

* Rogue import

* Rogue torch import

* Cleanup

* Apply suggestions from code review

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>

* bfloat16 management

* Sanchit's comments

* Import shield

* apply suggestions from code review

* correct bf16

* rebase

---------

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
Co-authored-by: sanchit-gandhi <sanchit@huggingface.co>
2024-01-23 10:28:23 +01:00
039866094c integrations: fix DVCLiveCallback model logging (#28653) 2024-01-23 10:11:10 +01:00
1fc1296014 get default device through PartialState().default_device as it has been officially released (#27256)
get default device through `PartialState().default_device` as it has
been officially released
2024-01-23 10:09:31 +01:00
e547458c43 Fix phi model doc checkpoint (#28581)
Co-authored-by: Pashmina Cameron <11311835+pashminacameron@users.noreply.github.com>
2024-01-22 17:15:07 +00:00
590be773e6 [SigLIP] Only import tokenizer if sentencepiece available (#28636)
Only import class if sp available
2024-01-22 15:20:16 +00:00
a35ea570a8 Update image_processing_deformable_detr.py (#28561)
* Update image_processing_deformable_detr.py

* Changes after running make fix-copies
2024-01-22 15:17:39 +00:00
e201864bcb [GPTNeoX] Fix GPTNeoX + Flash Attention 2 issue (#28645)
Update modeling_gpt_neox.py
2024-01-22 15:50:01 +01:00
dafd59512c [Llava] Update convert_llava_weights_to_hf.py script (#28617)
* Update convert_llava_weights_to_hf.py script

* Remove config update of adding padding to `vocab_size` and `text_config.vocab_size` which causes `ValueError` exception.
* Remove keys that ends with `inv_freq` from the state dict.
* Add examples and instructions for creating `model_state_dict.bin` that can be used by the script.

* Update convert_llava_weights_to_hf.py

* Update convert_vipllava_weights_to_hf.py
2024-01-22 15:28:18 +01:00
deb2b59073 Fix lr_scheduler in no_trainer training scripts (#27872)
* Fix lr_scheduler

* Fix lr scheduler
2024-01-22 14:22:18 +00:00
692c3c6b73 Add config tip to custom model docs (#28601)
Add tip to custom model docs
2024-01-22 13:46:04 +00:00
d336c56d94 Avoid root logger's level being changed (#28638)
* avoid root logger's level being changed

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-01-22 14:45:30 +01:00
bf674153d3 Add missing key to TFLayoutLM signature (#28640)
Fix missing bbox in LayoutLM signature
2024-01-22 13:16:29 +00:00
f0acf7b6d8 Fix id2label assignment in run_classification.py (#28590) 2024-01-22 11:31:31 +00:00
83f9196cc4 [GPTNeoX] Fix BC issue with 4.36 (#28602)
* fix dtype issue

* add a test

* update copied from mentions

* nits

* fixup

* fix copies

* Apply suggestions from code review
2024-01-21 17:01:19 +00:00
3f69f415ad Fix auxiliary loss related code in transformers (#28406)
* [DETA] fix freeze/unfreeze function

* Update src/transformers/models/deta/modeling_deta.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/deta/modeling_deta.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* add freeze/unfreeze test case in DETA

* fix type

* fix typo 2

* fix : enable aux and enc loss in training pipeline

* Add unsynced variables from original DETA for training

* modification for passing CI test

* make style

* make fix

* manual make fix

* change deta_modeling_test of configuration 'two_stage' default to TRUE and minor change of dist checking

* remove print

* divide configuration in DetaModel and DetaForObjectDetection

* image smaller size than 224 will give topk error

* pred_boxes and logits should be equivalent to two_stage_num_proposals

* add missing part in DetaConfig

* Update src/transformers/models/deta/modeling_deta.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* add docstring in configure and prettify TO DO part

* change distribute related code to accelerate

* Update src/transformers/models/deta/configuration_deta.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/deta/test_modeling_deta.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* protect importing accelerate

* change variable name to specific value

* wrong import

* fix aux_loss in conditional_detr

* add test aux_loss

* add aux_loss test in deta and table_transformer

* fix yolos since it doesn't have auxiliary function

* fix maskformer auxiliary_loss related code

* make style

* change param 'auxiliary_loss' to 'use_auxiliary_loss'

* change param 'auxiliary_loss' to 'use_auxiliary_loss' in tests

* make style & fix-copies, also revert yolos related parameter

* revert variable name 'use_auxiliary_loss' to 'auxiliary_loss' due to DetrConfig

* revert variable name in yolos

* revert maskformer

* add aux_loss test in maskformer

* make style

* Update src/transformers/models/yolos/configuration_yolos.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-01-19 14:12:01 +00:00
948ffff407 RWKV: raise informative exception when attempting to manipulate past_key_values (#28600) 2024-01-19 14:09:36 +00:00
9efec11400 Fix _speculative_sampling implementation (#28508) 2024-01-19 14:07:31 +00:00
d15781597a Allow add_tokens for ESM (#28535)
* Allow non-special tokens to be added

* Add test, fix token adding code

* Revert changes to id_to_token and token_to_id

* Update the ESM tokenizer to be a bit more standardized

* Update src/transformers/models/esm/tokenization_esm.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-01-19 12:32:05 +00:00
5b7f4bc6c1 [Llava] Fix convert_llava_weights_to_hf.py script (#28570)
* Update convert_llava_weights_to_hf.py

Fix call to `tokenizer.add_tokens`

* Add special_tokens to tokenizer.add_tokens in convert_vipllava_weights_to_hf.py
2024-01-19 13:31:25 +01:00
faf03541e2 [SigLIP] Don't pad by default (#28578)
First draft
2024-01-19 13:30:00 +01:00
8db64367b2 Fix wrong xpu device in DistributedType.MULTI_XPU mode (#28386)
* remove elif xpu

* remove redudant code
2024-01-19 13:28:53 +01:00
690fe73f20 [Whisper] Finalize batched SOTA long-form generation (#27658)
* finalize

* make fix copies whisper

* [Tests] Make sure that we don't run tests mulitple times

* Update src/transformers/models/whisper/modeling_whisper.py

* [Tests] Make sure that we don't run tests mulitple times

* fix more

* improve

* improve

* improve further

* improve more

* improve

* fix more

* git commit and git push

* fix more

* fix more

* fix more

* New try

* Fix more whisper stuff

* Improve

* correct more

* correct more

* correct more

* Fix some tests

* Add more tests

* correct more

* correct more

* correct more

* push

* correct more

* Fix more

* Better

* without dec mask

* correct more

* clean

* save intermediate

* Fix more

* Fix VAD for large-v2

* Save new

* Correct more

* make cleaner

* correct tests

* correct src

* Finish

* Fix more

* Fix more

* finish

* Fix edge cases

* fix return_dict_in_generate

* fix all tests

* make style

* add docstrings

* add docstrings

* Fix logit processor

* make style

* fix pipeline test

* fix more style

* Apply suggestions from code review

* apply feedback Sanchit

* correct more

* Apply suggestions from code review

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* correct more

* correct more

* correct more

* Fix staticmethod

* correct more

* fix

* fix slow tests

* make style

* fix tokenizer test

* fix tokenizer test

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* finish

* finish

* revert kwargs change

---------

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-01-19 14:04:17 +02:00
d4fc1eb498 feat: Sequential beam search (#26304) 2024-01-19 11:36:54 +00:00
268fc1fdfa Add w2v2bert to pipeline (#28585)
* generalize asr pipeline to fbank models

* change w2v2 pipeline output

* Update test_pipelines_automatic_speech_recognition.py
2024-01-19 11:25:01 +00:00
b2748a6efd v4.38.dev.0 2024-01-19 10:43:28 +00:00
db9a7e9d3d Don't save processor_config.json if a processor has no extra attribute (#28584)
* not save if empty

* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-01-19 09:59:14 +00:00
772307be76 Making CTC training example more general (#28582)
* add w2v2bert compatibility

* Update examples/pytorch/speech-recognition/run_speech_recognition_ctc.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-01-18 17:01:49 +00:00
186aa6befe [Whisper] Fix audio classification with weighted layer sum (#28563)
* fix

* tests

* fix test
2024-01-18 16:41:44 +00:00
619ecfe26f [Whisper Tok] Move token ids to CPU when computing offsets (#28485)
* move token ids to cpu

* check for torch attr
2024-01-18 16:12:14 +00:00
0eaa5ea38e [ASR Pipe] Update init to set model type and subsequently call parent init method (#28486)
* add image processor arg

* super

* rm args
2024-01-18 16:11:49 +00:00
c662c78c71 Fix the documentation checkpoint for xlm-roberta-xl (#28567)
* Fix the documentation checkpoint for xlm-roberta-xl

* Improve docstring consistency
2024-01-18 13:47:49 +00:00
0754217c82 Use LoggingLevel context manager in 3 tests (#28575)
* inside with LoggingLevel

* remove is_flaky

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-01-18 13:41:25 +00:00
d2cdefb9ec Add new meta w2v2-conformer BERT-like model (#28165)
* first commit

* correct default value non causal

* update config and modeling code

* update converting checkpoint

* clean modeling and fix tests

* make style

* add new config parameters to docstring

* fix copied from statements

* Apply suggestions from code review

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* make position_embeddings_type docstrings clearer

* clean converting script

* remove function not used

* clean modeling file

* apply suggestion for test file + add convert script to not_doctested

* modify tests according to review - cleaner logic and more tests

* Apply nit suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* add checker of valid position embeddings type

* instantiate new layer norm layer with the right eps

* fix freeze_feature_encoder since it can be None in some cases

* add test same output in convert script

* restore wav2vec2conformer and add new model

* create processor and FE + clean

* add new model code

* fix convert script and set default config parameters

* correct model id paths

* make style

* make fix-copies and cleaning files

* fix copied from statements

* complete .md and fixe copies

* clean convert script argument defaults

* fix config parameters docstrings

* fix config docstring

* add copied from and enrich FE tests

* fix copied from and repo-consistency

* add autotokenizer

* make test input length shorter and change docstring code

* fix docstrings and copied from

* add add_adapter to ASR training example

* make testing of adapters more robust

* adapt to multi adapter layers

* refactor input_values->input_features and remove w2v2-bert feature extractor

* remove pretraining model

* remove depreciated features and useless lines

* add copied from and ignore statements to modeling tests

* remove pretraining model #2

* change import in convert script

* change default in convert script

* update readme and remove useless line

* Update tests/models/wav2vec2_bert/test_processor_wav2vec2_bert.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* refactor BERT to Bert for consistency

* remove useless ignore copy statement

* add persistent to buffer in rotary

* add eps in LayerNorm init and remove copied from

* add adapter activation parameters and add copied from statements

* Fix copied statements and add unitest.skip reasons

* add copied statement in test_processor

* refactor processor

* make style

* replace numpy random by torch rand

* remove expected output CTC

* improve converting script with processor class

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* remove gumbel class

* remove tests related to previously deleted class

* Update src/transformers/models/wav2vec2_bert/configuration_wav2vec2_bert.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* correct typos

* remove uused parameters

* update processor to takes both text and audio

* update checkpoints

* update expected output and add ctc expected output

* add label_attention_mask

* replace pt with np in processor tests

* fix typo

* revert to behaviour with labels_attention_mask

---------

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-01-18 13:37:34 +00:00
5d8eb93eee chore: Fix multiple typos (#28574) 2024-01-18 13:35:09 +00:00
8189977885 [Core Tokenization] Support a fix for spm fast models (#26678)
* fix

* last attempt

* current work

* fix forward compatibility

* save all special tokens

* current state

* revert additional changes

* updates

* remove tokenizer.model

* add a test and the fix

* nit

* revert one more break

* fix typefield issue

* quality

* more tests

* fix fields for FC

* more nits?

* new additional changes

* how

* some updates

* the fix

* where do we stand

* nits

* nits

* revert unrelated changes

* nits nits nits

* styling

* don't break llama just yet

* revert llama changes

* safe arg check

* fixup

* Add a test for T5

* Necessary changes

* Tests passing, added tokens need to not be normalized. If the added tokens are normalized, it will the stripping which seems to be unwanted for a normal functioning

* Add even more tests, when normalization is set to True (which does not work 😓 )

* Add even more tests, when normalization is set to True (which does not work 😓 )

* Update to main

* nits

* fmt

* more and more test

* comments

* revert change as tests are failing

* make the test more readble

* nits

* refactor the test

* nit

* updates

* simplify

* style

* style

* style convert slow

* Update src/transformers/convert_slow_tokenizer.py
2024-01-18 12:31:54 +01:00
a1668cc72e Use weights_only only if torch >= 1.13 (#28506)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-01-18 10:55:29 +00:00
3005f96552 Save Processor (#27761)
* save processor

* Update tests/models/auto/test_processor_auto.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update tests/test_processing_common.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-01-18 10:21:45 +00:00
98dda8ed03 Fix Switch Transformers When sparse_step = 1 (#28564)
Fix sparse_step = 1

I case sparse_step = 1, the current code will not work.
2024-01-17 21:26:21 +00:00
fa6d12f74f Allow to train dinov2 with different dtypes like bf16 (#28504)
I want to train dinov2 with bf16 but I get the following error in bc72b4e2cd/src/transformers/models/dinov2/modeling_dinov2.py (L635):

```
RuntimeError: Input type (float) and bias type (c10::BFloat16) should be the same
```

Since the input dtype is torch.float32, the parameter dtype has to be torch.float32...

@LZHgrla and I checked the code of clip vision encoder and found there is an automatic dtype transformation (bc72b4e2cd/src/transformers/models/clip/modeling_clip.py (L181-L182)).

So I add similar automatic dtype transformation to modeling_dinov2.py.
2024-01-17 19:03:08 +00:00
2c1eebc121 Fix SDPA tests (#28552)
* skip bf16 test if not supported by device

* fix

* fix bis

* use is_torch_bf16_available_on_device

* use is_torch_fp16_available_on_device

* fix & use public llama

* use 1b model

* fix flacky test

---------

Co-authored-by: Your Name <you@example.com>
2024-01-17 17:29:18 +01:00
d6ffe74dfa Add qwen2 (#28436)
* add config, modeling, and tokenization

* add auto and init

* update readme

* update readme

* update team name

* fixup

* fixup

* update config

* update code style

* update for fixup

* update for fixup

* update for fixup

* update for testing

* update for testing

* fix bug for config and tokenization

* fix bug for bos token

* not doctest

* debug tokenizer

* not doctest

* debug tokenization

* debug init for tokenizer

* fix style

* update init

* delete if in token auto

* add tokenizer doc

* add tokenizer in init

* Update dummy_tokenizers_objects.py

* update

* update

* debug

* Update tokenization_qwen2.py

* debug

* Update convert_slow_tokenizer.py

* add copies

* add copied from and make style

* update files map

* update test

* fix style

* fix merge reading and update tests

* fix tests

* fix tests

* fix style

* debug a variable in readme

* Update src/transformers/models/qwen2/configuration_qwen2.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* update test and copied from

* fix style

* update qwen2 tokenization  and tests

* Update tokenization_qwen2.py

* delete the copied from after property

* fix style

* update tests

* update tests

* add copied from

* fix bugs

* update doc

* add warning for sliding window attention

* update qwen2 tokenization

* fix style

* Update src/transformers/models/qwen2/modeling_qwen2.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fix tokenizer fast

---------

Co-authored-by: Ren Xuancheng <jklj077@users.noreply.github.com>
Co-authored-by: renxuancheng.rxc <renxuancheng.rxc@alibaba-inc.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-01-17 16:02:22 +01:00
d93ef7d751 Fixes default value of softmax_scale in PhiFlashAttention2. (#28537)
* fix(phi): Phi does not use softmax_scale in Flash-Attention.

* chore(docs): Update Phi docs.
2024-01-17 14:22:44 +01:00
a6adc05e6b symbolic_trace: add past_key_values, llama, sdpa support (#28447)
* torch.fx: add pkv, llama, sdpa support

* Update src/transformers/models/opt/modeling_opt.py

* remove spaces

* trigger ci

* use explicit variable names
2024-01-17 11:50:53 +01:00
09eb11a1bd [Makefile] Exclude research projects from format (#28551) 2024-01-17 11:59:40 +02:00
f4f57f9dfa Config: warning when saving generation kwargs in the model config (#28514) 2024-01-16 18:31:01 +00:00
7142bdfa90 Add is_model_supported for fx (#28521)
* modify check_if_model_is_supported to return bool

* add is_model_supported and have check_if_model_is_supported use that

* Update src/transformers/utils/fx.py

Fantastic

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-01-16 17:52:44 +00:00
02f8738ef8 Clearer error for SDPA when explicitely requested (#28006)
* clearer error for sdpa

* better message
2024-01-16 16:10:44 +00:00
fe23256b73 [SpeechT5Tokenization] Add copied from and fix the convert_tokens_to_string to match the fast decoding scheme (#28522)
* Add copied from and fix the `convert_tokens_to_string` to match the fast decoding scheme

* fixup

* add a small test

* style test file

* nites
2024-01-16 16:50:02 +01:00
96d0883103 [TokenizationRoformerFast] Fix the save and loading (#28527)
* cleanup

* add a test

* update the test

* style

* revert part that allows to pickle the tokenizer
2024-01-16 16:37:15 +01:00
716df5fb7e [ TokenizationUtils] Fix add_special_tokens when the token is already there (#28520)
* fix adding special tokens when the token is already there.

* add a test

* add a test

* nit

* fix the test: make sure the order is preserved

* Update tests/test_tokenization_common.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-01-16 16:36:29 +01:00
07ae53e6e7 Fix/speecht5 bug (#28481)
* Fix bug in SpeechT5 speech decoder prenet's forward method

- Removed redundant `repeat` operation on speaker_embeddings in the forward method. This line was erroneously duplicating the embeddings, leading to incorrect input size for concatenation and performance issues.
- Maintained original functionality of the method, ensuring the integrity of the speech decoder prenet's forward pass remains intact.
- This change resolves a critical bug affecting the model's performance in handling speaker embeddings.

* Refactor SpeechT5 text to speech integration tests

- Updated SpeechT5ForTextToSpeechIntegrationTests to accommodate the variability in sequence lengths due to dropout in the speech decoder pre-net. This change ensures that our tests are robust against random variations in generated speech, enhancing the reliability of our test suite.
- Removed hardcoded dimensions in test assertions. Replaced with dynamic checks based on model configuration and seed settings, ensuring tests remain valid across different runs and configurations.
- Added new test cases to thoroughly validate the shapes of generated spectrograms and waveforms. These tests leverage seed settings to ensure consistent and predictable behavior in testing, addressing potential issues in speech generation and vocoder processing.
- Fixed existing test cases where incorrect assumptions about output shapes led to potential errors.

* Fix bug in SpeechT5 speech decoder prenet's forward method

- Removed redundant `repeat` operation on speaker_embeddings in the forward method. This line was erroneously duplicating the embeddings, leading to incorrect input size for concatenation and performance issues.
- Maintained original functionality of the method, ensuring the integrity of the speech decoder prenet's forward pass remains intact.
- This change resolves a critical bug affecting the model's performance in handling speaker embeddings.

* Refactor SpeechT5 text to speech integration tests

- Updated SpeechT5ForTextToSpeechIntegrationTests to accommodate the variability in sequence lengths due to dropout in the speech decoder pre-net. This change ensures that our tests are robust against random variations in generated speech, enhancing the reliability of our test suite.
- Removed hardcoded dimensions in test assertions. Replaced with dynamic checks based on model configuration and seed settings, ensuring tests remain valid across different runs and configurations.
- Added new test cases to thoroughly validate the shapes of generated spectrograms and waveforms. These tests leverage seed settings to ensure consistent and predictable behavior in testing, addressing potential issues in speech generation and vocoder processing.
- Fixed existing test cases where incorrect assumptions about output shapes led to potential errors.

* Enhance handling of speaker embeddings in SpeechT5

- Refined the generate and generate_speech functions in the SpeechT5 class to robustly handle two scenarios for speaker embeddings: matching the batch size (one embedding per sample) and one-to-many (a single embedding for all samples in the batch).
- The update includes logic to repeat the speaker embedding when a single embedding is provided for multiple samples, and a ValueError is raised for any mismatched dimensions.
- Also added corresponding test cases to validate both scenarios, ensuring complete coverage and functionality for diverse speaker embedding situations.

* Improve Test Robustness with Randomized Speaker Embeddings
2024-01-16 14:14:28 +00:00
66db33ddc8 Fix mismatching loading in from_pretrained with/without accelerate (#28414)
* fix mismatching behavior in from_pretrained with/without accelerate

* meaningful refactor

* remove added space

* add test

* fix model on the hub

* comment

* use tiny model

* style
2024-01-16 14:29:51 +01:00
002566f398 Improving Training Performance and Scalability Documentation (#28497)
* Improving Training Performance and Scaling documentation by adding PEFT techniques to suggestions to reduce memory requirements for training

* Update docs/source/en/perf_train_gpu_one.md

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2024-01-16 11:30:26 +01:00
0cdcd7a2b3 Remove task arg in load_dataset in image-classification example (#28408)
* Remove `task` arg in `load_dataset` in image-classification example

* Manage case where "train" is not in dataset

* Add new args to manage image and label column names

* Similar to audio-classification example

* Fix README

* Update tests
2024-01-16 08:04:08 +01:00
edb170238f SiLU activation wrapper for safe importing (#28509)
Add back in wrapper for safe importing
2024-01-15 19:36:59 +00:00
ff86bc364d improve dev setup comments and hints (#28495)
* improve dev setup comments and hints

* fix tests for new dev setup hints
2024-01-15 18:36:40 +00:00
735968b61c fix: sampling in flax keeps EOS (#28378) 2024-01-15 18:12:09 +00:00
7e0ddf89f4 Generate: consolidate output classes (#28494) 2024-01-15 17:04:08 +00:00
72db39c065 Add a use_safetensors arg to TFPreTrainedModel.from_pretrained() (#28511)
* Add a use_safetensors arg to TFPreTrainedModel.from_pretrained()

* One more catch!

* One more one more catch
2024-01-15 17:00:54 +00:00
78d767e3c8 Fixed minor typos (#28489) 2024-01-15 16:45:15 +00:00
7c8dd88d13 [GPTQ] Fix test (#28018)
* fix test

* reduce length

* smaller model
2024-01-15 11:22:54 -05:00
366c03271e Tokenizer kwargs in textgeneration pipe (#28362)
* added args to the pipeline

* added test

* more sensical tests

* fixup

* docs

* typo
;

* docs

* made changes to support named args

* fixed test

* docs update

* styles

* docs

* docs
2024-01-15 16:52:18 +01:00
a573ac74fd Add the XPU device check for pipeline mode (#28326)
* Add the XPU check for pipeline mode

When setting xpu device for pipeline, It needs to use is_torch_xpu_available to load ipex and determine whether the device is available.

Signed-off-by: yuanwu <yuan.wu@intel.com>

* Don't move model to device when hf_device_map isn't None

1. Don't move model to device when hf_device_map is not None
2. The device string maybe includes the device index, so use 'in'instead of equal

Signed-off-by: yuanwu <yuan.wu@intel.com>

* Raise the error when xpu is not available

Signed-off-by: yuanwu <yuan.wu@intel.com>

* Update src/transformers/pipelines/base.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/pipelines/base.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Modify the error message

Signed-off-by: yuanwu <yuan.wu@intel.com>

* Change message format.

Signed-off-by: yuanwu <yuan.wu@intel.com>

---------

Signed-off-by: yuanwu <yuan.wu@intel.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-01-15 15:39:11 +00:00
1b9a2e4c80 [core/ FEAT] Add the possibility to push custom tags using PreTrainedModel itself (#28405)
* v1 tags

* remove unneeded conversion

* v2

* rm unneeded warning

* add more utility methods

* Update src/transformers/utils/hub.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/utils/hub.py

Co-authored-by: Lucain <lucainp@gmail.com>

* Update src/transformers/utils/hub.py

Co-authored-by: Lucain <lucainp@gmail.com>

* more enhancements

* oops

* merge tags

* clean up

* revert unneeded change

* add extensive docs

* more docs

* more kwargs

* add test

* oops

* fix test

* Update src/transformers/modeling_utils.py

Co-authored-by: Omar Sanseviero <osanseviero@gmail.com>

* Update src/transformers/utils/hub.py

Co-authored-by: Lucain <lucainp@gmail.com>

* Update src/transformers/modeling_utils.py

* Update src/transformers/trainer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/modeling_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* add more conditions

* more logic

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Lucain <lucainp@gmail.com>
Co-authored-by: Omar Sanseviero <osanseviero@gmail.com>
2024-01-15 14:48:07 +01:00
64bdbd888c Don't set finetuned_from if it is a local path (#28482)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-01-15 11:38:20 +01:00
881e966ace [chore] Update warning text, a word was missing (#28017)
Update warning, a word was missing
2024-01-15 10:08:03 +01:00
121641cab1 Fix paths to AI Sweden Models reference and model loading (#28423)
Fix URL to Ai Sweden Models reference and model loading
2024-01-15 09:09:22 +01:00
bc72b4e2cd Generate: fix candidate device placement (#28493)
* fix candidate device

* this line shouldn't have been in
2024-01-13 21:31:25 +01:00
e304f9769c Adding Prompt lookup decoding (#27775)
* MVP

* fix ci

* more ci

* remove redundant kwarg

* added and wired up PromptLookupCandidateGenerator

* rebased with main, working

* removed print

* style fixes

* fix test

* fixed tests

* added test for prompt lookup decoding

* fixed circleci

* fixed test issue

* Update src/transformers/generation/candidate_generator.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/generation/candidate_generator.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/generation/candidate_generator.py

* Update src/transformers/generation/candidate_generator.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

---------

Co-authored-by: Joao Gante <joao@huggingface.co>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-01-13 17:15:58 +00:00
29a2b14206 Change progress logging to once across all nodes (#28373) 2024-01-12 15:01:21 -05:00
2382706a1c Fix docstrings and update docstring checker error message (#28460)
* Fix TF Regnet docstring

* Fix TF Regnet docstring

* Make a change to the PyTorch Regnet too to make sure the CI is checking it

* Add skips for TFRegnet

* Update error message for docstring checker
2024-01-12 17:54:11 +00:00
4fb3d3a0f6 TF: purge TFTrainer (#28483) 2024-01-12 16:56:34 +00:00
afc45b13ca Generate: refuse to save bad generation config files (#28477) 2024-01-12 16:01:17 +00:00
dc01cf9c5e Docs: add model paths (#28475) 2024-01-12 15:25:43 +00:00
d026498830 Generate: deprecate old public functions (#28478) 2024-01-12 15:21:15 +00:00
edb314ae2b Fix torch.ones usage in xlnet (#28471)
Fix xlnet torch.ones usage

Co-authored-by: sungho-ham <sungho.ham@linecorp.com>
2024-01-12 15:31:00 +01:00
c45ef1c0d1 Bump jinja2 from 2.11.3 to 3.1.3 in /examples/research_projects/decision_transformer (#28457)
Bump jinja2 in /examples/research_projects/decision_transformer

Bumps [jinja2](https://github.com/pallets/jinja) from 2.11.3 to 3.1.3.
- [Release notes](https://github.com/pallets/jinja/releases)
- [Changelog](https://github.com/pallets/jinja/blob/main/CHANGES.rst)
- [Commits](https://github.com/pallets/jinja/compare/2.11.3...3.1.3)

---
updated-dependencies:
- dependency-name: jinja2
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-01-12 15:28:55 +01:00
266c67b06a [Mixtral / Awq] Add mixtral fused modules for Awq (#28240)
* add mixtral fused modules

* add changes from modeling utils

* add test

* fix test + rope theta issue

* Update src/transformers/modeling_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* add tests

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-01-12 14:29:35 +01:00
666a6f078c Update metadata loading for oneformer (#28398)
* Update meatdata loading for oneformer

* Enable loading from a model repo

* Update docstrings

* Fix tests

* Update tests

* Clarify repo_path behaviour
2024-01-12 12:35:31 +00:00
4e36a6cd00 Mark two logger tests as flaky (#28458)
* Mark two logger tests as flaky

* Add description to is_flaky
2024-01-12 11:58:59 +00:00
07bdbebb48 [Awq] Add llava fused modules support (#28239)
* add llava + fused modules

* Update src/transformers/models/llava/modeling_llava.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-01-12 06:55:54 +01:00
995a7ce9a8 Fix broken link on page (#28451)
* [docs] Fix broken link

Signed-off-by: Hankyeol Kyung <kghnkl0103@gmail.com>

* [docs] Use shorter domain

Signed-off-by: Hankyeol Kyung <kghnkl0103@gmail.com>

---------

Signed-off-by: Hankyeol Kyung <kghnkl0103@gmail.com>
2024-01-11 09:26:13 -08:00
143451355c Fix docstring checker issues with PIL enums (#28450) 2024-01-11 17:23:41 +00:00
19e83d174c Doc (#28431)
* update version for cpu training

* update docs for cpu training

* fix readme

* fix readme
2024-01-11 08:55:48 -08:00
59cd9de39d Byebye torch 1.10 (#28207)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-01-11 16:18:27 +01:00
e768616afa Fix load balancing loss func for mixtral (#28256)
* Correct the implementation of auxiliary loss of mixtrtal

* correct the implementation of auxiliary loss of mixtrtal

* Implement a simpler calculation method

---------

Co-authored-by: zhangliangxu3 <zhangliangxu3@jd.com>
2024-01-11 16:16:12 +01:00
5d4d62d0a2 Correctly resolve trust_remote_code=None for AutoTokenizer (#28419)
* Correctly resolve trust_remote_code=None for AutoTokenizer

* Second attempt at a proper resolution
2024-01-11 15:12:08 +00:00
5509058561 [Phi] Extend implementation to use GQA/MQA. (#28163)
* chore(phi): Updates configuration_phi with missing keys.

* chore(phi): Adds first draft of combined modeling_phi.

* fix(phi): Fixes according to latest review.

* fix(phi): Removes pad_vocab_size_multiple to prevent inconsistencies.

* fix(phi): Fixes unit and integration tests.

* fix(phi): Ensures that everything works with microsoft/phi-1 for first integration.

* fix(phi): Fixes output of docstring generation.

* fix(phi): Fixes according to latest review.

* fix(phi): Fixes according to latest review.

* fix(tests): Re-enables Phi-1.5 test.

* fix(phi): Fixes attention overflow on PhiAttention (for Phi-2).

* fix(phi): Improves how queries and keys are upcast.

* fix(phi): Small updates on latest changes.
2024-01-11 15:58:02 +01:00
d560637885 Optionally preprocess segmentation maps for MobileViT (#28420)
* optionally preprocess segmentation maps for mobilevit

* changed pretrained model name to that of segmentation model

* removed voc-deeplabv3 from model archive list

* added preprocess_image and preprocess_mask methods for processing images and segmentation masks respectively

* added tests for segmentation masks based on segformer feature extractor

* use crop_size instead of size

* reverting to initial model
2024-01-11 14:52:14 +00:00
95091e1582 Set cache_dir for evaluate.load() in example scripts (#28422)
While using `run_clm.py`,[^1] I noticed that some files were being added
to my global cache, not the local cache. I set the `cache_dir` parameter
for the one call to `evaluate.load()`, which partially solved the
problem. I figured that while I was fixing the one script upstream, I
might as well fix the problem in all other example scripts that I could.

There are still some files being added to my global cache, but this
appears to be a bug in `evaluate` itself. This commit at least moves
some of the files into the local cache, which is better than before.

To create this PR, I made the following regex-based transformation:
`evaluate\.load\((.*?)\)` -> `evaluate\.load\($1,
cache_dir=model_args.cache_dir\)`. After using that, I manually fixed
all modified files with `ruff` serving as useful guidance. During the
process, I removed one existing usage of the `cache_dir` parameter in a
script that did not have a corresponding `--cache-dir` argument
declared.

[^1]: I specifically used `pytorch/language-modeling/run_clm.py` from
v4.34.1 of the library. For the original code, see the following URL:
acc394c4f5/examples/pytorch/language-modeling/run_clm.py.
2024-01-11 15:38:44 +01:00
5fd5ef7624 Fix docker file (#28452)
fix docker file

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-01-11 15:34:05 +01:00
d019acb858 Use python 3.10 for docbuild (#28399)
update

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-01-11 14:39:49 +01:00
2a85345a23 Optimize the speed of the truncate_sequences function. (#28263)
* change truncate_sequences

* Update tokenization_utils_base.py

* change format

* fix when ids_to_move=0

* fix

* Update src/transformers/tokenization_utils_base.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-01-11 11:42:14 +01:00
66964c00f6 Enable multi-label image classification in pipeline (#28433)
Enable multi-label image classification
2024-01-11 10:29:38 +00:00
8205b2647c Assitant model may on a different device (#27995)
* Assitant model may on a different device

* fix tensor device
2024-01-11 11:24:59 +01:00
cbbe30749b [Whisper] Fix slow test (#28407)
* [Whisper] Fix slow test

* update

* update

* update

* update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-01-10 22:35:36 +01:00
6c78bbcb83 [docstring] Fix docstring for ErnieConfig, ErnieMConfig (#27029)
* Remove ErnieConfig, ErnieMConfig check_docstrings

* Run fix_and_overwrite for ErnieConfig, ErnieMConfig

* Replace <fill_type> and <fill_docstring> in configuration_ernie, configuration_ernie_m.py with type and docstring values

---------

Co-authored-by: vignesh-raghunathan <vignesh_raghunathan@intuit.com>
2024-01-10 18:20:39 +01:00
3724156b4d Fix load correct tokenizer in Mixtral model documentation (#28437) 2024-01-10 18:09:06 +01:00
cef2e40e0f Fix for checkpoint rename race condition (#28364)
* Changed logic for renaming staging directory when saving checkpoint to only operate with the main process.
Added fsync functionality to attempt to flush the write changes in case os.rename is not atomic.

* Updated styling using make fixup

* Updated check for main process to use built-in versions from trainer

Co-authored-by: Zach Mueller <muellerzr@gmail.com>

* Fixed incorrect usage of trainer main process checks
Added with open usage to ensure better file closing as suggested from PR
Added rotate_checkpoints into main process logic

* Removed "with open" due to not working with directory. os.open seems to work for directories.

---------

Co-authored-by: Zach Mueller <muellerzr@gmail.com>
2024-01-10 16:55:42 +01:00
fff8ca8e59 update docs to add the phi-2 example (#28392)
* update docs

* added Tip
2024-01-10 16:07:47 +01:00
ee2482b6f8 CI: limit natten version (#28432) 2024-01-10 12:39:05 +00:00
ffd3710391 Fix number of models in README.md (#28430) 2024-01-10 12:11:08 +01:00
6015d0ad6c Support DeepSpeed when using auto find batch size (#28088)
Fixup test
2024-01-10 06:03:13 -05:00
a777f52599 Skip now failing test in the Trainer tests (#28421)
* Fix test

* Skip
2024-01-10 06:02:31 -05:00
4df1d69634 [BUG] BarkEosPrioritizerLogitsProcessor eos_token_id use list, tensor size mismatch (#28201)
fix(generation/logits_process.py): BarkEosPrioritizerLogitsProcessor eos_token_id use list, tensor size mismatch

Co-authored-by: chenhanhui <chenhanhui@kanzhun.com>
2024-01-10 11:46:49 +01:00
932ad8af7a Bump fonttools from 4.31.1 to 4.43.0 in /examples/research_projects/decision_transformer (#28417)
Bump fonttools in /examples/research_projects/decision_transformer

Bumps [fonttools](https://github.com/fonttools/fonttools) from 4.31.1 to 4.43.0.
- [Release notes](https://github.com/fonttools/fonttools/releases)
- [Changelog](https://github.com/fonttools/fonttools/blob/main/NEWS.rst)
- [Commits](https://github.com/fonttools/fonttools/compare/4.31.1...4.43.0)

---
updated-dependencies:
- dependency-name: fonttools
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-01-10 11:22:43 +01:00
701298d2d3 Use mmap option to load_state_dict (#28331)
Use mmap option to load_state_dict (#28331)
2024-01-10 09:57:30 +01:00
0f2f0c634f Fix _merge_input_ids_with_image_features for llava model (#28333)
* fix `_merge_input_ids_with_image_features` for llava model

* Update src/transformers/models/llava/modeling_llava.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* adress comments

* style and tests

* ooops

* test the backward too

* Apply suggestions from code review

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update tests/models/vipllava/test_modeling_vipllava.py

* style and quality

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2024-01-10 08:33:33 +01:00
976189a6df Fix initialization for missing parameters in from_pretrained under ZeRO-3 (#28245)
* Fix initialization for missing parameters in `from_pretrained` under ZeRO-3

* Test initialization for missing parameters under ZeRO-3

* Add more tests

* Only enable deepspeed context for per-module level parameters

* Enable deepspeed context only once

* Move class definition inside test case body
2024-01-09 14:58:21 +00:00
357971ec36 fix auxiliary loss training in DetrSegmentation (#28354)
* fix auxiliary loss training in detrSegmentation

* add auxiliary_loss testing
2024-01-09 10:17:07 +00:00
8604dd308d [SDPA] Make sure attn mask creation is always done on CPU (#28400)
* [SDPA] Make sure attn mask creation is always done on CPU

* Update docker to 2.1.1

* revert test change
2024-01-09 11:05:19 +01:00
5c7e11e010 update warning for image processor loading (#28209)
* info

* update

* Update src/transformers/models/auto/image_processing_auto.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-01-09 08:51:37 +01:00
3b742ea84c Add SigLIP (#26522)
* Add first draft

* Use appropriate gelu function

* More improvements

* More improvements

* More improvements

* Convert checkpoint

* More improvements

* Improve docs, remove print statements

* More improvements

* Add link

* remove unused masking function

* begin tokenizer

* do_lower_case

* debug

* set split_special_tokens=True

* Remove script

* Fix style

* Fix rebase

* Use same design as CLIP

* Add fast tokenizer

* Add SiglipTokenizer to init, remove extra_ids

* Improve conversion script

* Use smaller inputs in conversion script

* Update conversion script

* More improvements

* Add processor to conversion script

* Add tests

* Remove print statements

* Add tokenizer tests

* Fix more tests

* More improvements related to weight initialization

* More improvements

* Make more tests pass

* More improvements

* More improvements

* Add copied from

* Add canonicalize_text

* Enable fast tokenizer tests

* More improvements

* Fix most slow tokenizer tests

* Address comments

* Fix style

* Remove script

* Address some comments

* Add copied from to tests

* Add more copied from

* Add more copied from

* Add more copied from

* Remove is_flax_available

* More updates

* Address comment

* Remove SiglipTokenizerFast for now

* Add caching

* Remove umt5 test

* Add canonicalize_text inside _tokenize, thanks Arthur

* Fix image processor tests

* Skip tests which are not applicable

* Skip test_initialization

* More improvements

* Compare pixel values

* Fix doc tests, add integration test

* Add do_normalize

* Remove causal mask and leverage ignore copy

* Fix attention_mask

* Fix remaining tests

* Fix dummies

* Rename temperature and bias

* Address comments

* Add copied from to tokenizer tests

* Add SiglipVisionModel to auto mapping

* Add copied from to image processor tests

* Improve doc

* Remove SiglipVisionModel from index

* Address comments

* Improve docs

* Simplify config

* Add first draft

* Make it like mistral

* More improvements

* Fix attention_mask

* Fix output_attentions

* Add note in docs

* Convert multilingual model

* Convert large checkpoint

* Convert more checkpoints

* Add pipeline support, correct image_mean and image_std

* Use padding=max_length by default

* Make processor like llava

* Add code snippet

* Convert more checkpoints

* Set keep_punctuation_string=None as in OpenCLIP

* Set normalized=False for special tokens

* Fix doc test

* Update integration test

* Add figure

* Update organization

* Happy new year

* Use AutoModel everywhere

---------

Co-authored-by: patil-suraj <surajp815@gmail.com>
2024-01-08 18:17:16 +01:00
73c88012b7 Add segmentation map processing to SAM Image Processor (#27463)
* add segmentation map processing to sam image processor

* fixup

* add tests

* reshaped_input_size is shape before padding

* update tests for size/shape outputs

* fixup

* add code snippet to docs

* Update docs/source/en/model_doc/sam.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Add missing backticks

* add `segmentation_maps` as arg for SamProcessor.__call__()

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-01-08 16:40:36 +00:00
2272ab57a9 Remove shell=True from subprocess.Popen to Mitigate Security Risk (#28299)
Remove shell=True from subprocess.Popen to mitigate security risk
2024-01-08 14:33:28 +00:00
87a6cf41d0 [AttentionMaskConverter] fix sdpa unmask unattended (#28369)
fix tensor device
2024-01-08 13:33:44 +01:00
98dba52ccd Bugfix / ffmpeg input device (mic) not working on Windows (#27051)
* fix input audio device for windows.

* ffmpeg audio device Windows

* Fixes wrong input device assignment in Windows

* Fixed getting mic on Windows systems by adding _get_microphone_name() function.
2024-01-08 13:32:36 +01:00
7d9d5cea55 remove two deprecated function (#28220) 2024-01-08 11:33:58 +00:00
0c2121f99b Fix building alibi tensor when num_heads is not a power of 2 (#28380)
* Fix building alibi tensor when num_heads is not a power of 2

* Remove print function
2024-01-08 10:39:40 +01:00
Chi
53cffeb33c Enhancing Code Readability and Maintainability with Simplified Activation Function Selection. (#28349)
* Little bit change code in get_activation()

* proper area to deffine gelu_activation() in this two file

* Fix github issue

* Mistake some typo

* My mistake to self using to call config

* Reformat my two file

* Update src/transformers/activations.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/electra/modeling_electra.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/convbert/modeling_convbert.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Rename gelu_act to activatioin

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-01-08 09:19:06 +01:00
3eddda1111 [Phi2] Add support for phi2 models (#28211)
* modified script and added test for phi2

* changes
2024-01-07 08:19:14 +01:00
4ab5fb8941 chore: Fix typo s/exclusivelly/exclusively/ (#28361) 2024-01-05 13:19:15 -08:00
7226f3d2b0 Update VITS modeling to enable ONNX export (#28141)
* Update vits modeling for onnx export compatibility

* fix style

* Update src/transformers/models/vits/modeling_vits.py
2024-01-05 17:52:32 +01:00
cadf93a6fc fix FA2 when using quantization for remaining models (#28341)
* fix fa2 autocasting when using quantization

* Update src/transformers/models/distilbert/modeling_distilbert.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/distilbert/modeling_distilbert.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-01-05 16:46:55 +01:00
899d8351f9 [DETA] Improvement and Sync from DETA especially for training (#27990)
* [DETA] fix freeze/unfreeze function

* Update src/transformers/models/deta/modeling_deta.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/deta/modeling_deta.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* add freeze/unfreeze test case in DETA

* fix type

* fix typo 2

* fix : enable aux and enc loss in training pipeline

* Add unsynced variables from original DETA for training

* modification for passing CI test

* make style

* make fix

* manual make fix

* change deta_modeling_test of configuration 'two_stage' default to TRUE and minor change of dist checking

* remove print

* divide configuration in DetaModel and DetaForObjectDetection

* image smaller size than 224 will give topk error

* pred_boxes and logits should be equivalent to two_stage_num_proposals

* add missing part in DetaConfig

* Update src/transformers/models/deta/modeling_deta.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* add docstring in configure and prettify TO DO part

* change distribute related code to accelerate

* Update src/transformers/models/deta/configuration_deta.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/deta/test_modeling_deta.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* protect importing accelerate

* change variable name to specific value

* wrong import

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-01-05 14:20:21 +00:00
57e9c83213 Fix pos_mask application and update tests accordingly (#27892)
* Fix pos_mask application and update tests accordingly

* Fix style

* Adding comments

---------

Co-authored-by: Fernando Rodriguez <fernando.rodriguez@nielseniq.com>
2024-01-05 12:36:10 +01:00
03b980990a Don't check the device when device_map=auto (#28351)
When running the case on multi-cards server with devcie_map-auto, It will not always be allocated to device 0,
Because other processes may be using these cards. It will select the devices that can accommodate this model.

Signed-off-by: yuanwu <yuan.wu@intel.com>
2024-01-05 12:21:29 +01:00
5d36025ca1 README: install transformers from conda-forge channel (#28313)
Switch to the conda-forge channel for transformer installation,
as the huggingface channel does not offer the latest version.

Fixes #28248
2024-01-04 09:36:16 -08:00
35e9d2b223 Fix error in M4T feature extractor (#28340)
* fix M4T FE error when no attention mask

* modify logic

* add test

* go back to initial test situation + add other tests
2024-01-04 16:40:53 +00:00
4a66c0d952 enable training mask2former and maskformer for transformers trainer (#28277)
* fix get_num_masks output as [int] to int

* fix loss size from torch.Size([1]) to torch.Size([])
2024-01-04 09:53:25 +01:00
6b8ec2588e [docs] Sort es/toctree.yml | Translate performance.md (#28262)
* Sort es/_toctree.yml like en/_toctree.yml

* Run make style

* Add -Rendimiento y escalabilidad- section to es/_toctree.yml

* Run make style

* Add s to section

* Add translate of performance.md

* Add performance.md to es/_toctree.yml

* Run make styele

* Fix docs links

* Run make style
2024-01-03 14:35:58 -08:00
3ea8833676 Translate contributing.md into Chinese (#28243)
* Translate contributing.md into Chinese

* Update review comments
2024-01-03 14:35:02 -08:00
45b1dfa342 Remove token_type_ids from model_input_names (like #24788) (#28325)
* remove token_type_ids from model_input_names (like #24788)

* removed test that assumed token_type_ids should be present and updated a model reference so that it points to an available model)
2024-01-03 19:26:07 +01:00
d83ff5eeff Add FastSpeech2Conformer (#23439)
* start - docs, SpeechT5 copy and rename

* add relevant code from FastSpeech2 draft, have tests pass

* make it an actual conformer, demo ex.

* matching inference with original repo, includes debug code

* refactor nn.Sequentials, start more desc. var names

* more renaming

* more renaming

* vocoder scratchwork

* matching vocoder outputs

* hifigan vocoder conversion script

* convert model script, rename some config vars

* replace postnet with speecht5's implementation

* passing common tests, file cleanup

* expand testing, add output hidden states and attention

* tokenizer + passing tokenizer tests

* variety of updates and tests

* g2p_en pckg setup

* import structure edits

* docstrings and cleanup

* repo consistency

* deps

* small cleanup

* forward signature param order

* address comments except for masks and labels

* address comments on attention_mask and labels

* address second round of comments

* remove old unneeded line

* address comments part 1

* address comments pt 2

* rename auto mapping

* fixes for failing tests

* address comments part 3 (bart-like, train loss)

* make style

* pass config where possible

* add forward method + tests to WithHifiGan model

* make style

* address arg passing and generate_speech comments

* address Arthur comments

* address Arthur comments pt2

* lint  changes

* Sanchit comment

* add g2p-en to doctest deps

* move up self.encoder

* onnx compatible tensor method

* fix is symbolic

* fix paper url

* move models to espnet org

* make style

* make fix-copies

* update docstring

* Arthur comments

* update docstring w/ new updates

* add model architecture images

* header size

* md wording update

* make style
2024-01-03 18:01:06 +00:00
6eba901d88 fix documentation for zero_shot_object_detection (#28267)
remove broken space
2024-01-03 09:20:34 -08:00
c2d283a64a Bump tj-actions/changed-files from 22.2 to 41 in /.github/workflows (#28311)
Bumps [tj-actions/changed-files](https://github.com/tj-actions/changed-files) from 22.2 to 41.
- [Release notes](https://github.com/tj-actions/changed-files/releases)
- [Changelog](https://github.com/tj-actions/changed-files/blob/main/HISTORY.md)
- [Commits](https://github.com/tj-actions/changed-files/compare/v22.2...v41)

---
updated-dependencies:
- dependency-name: tj-actions/changed-files
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-01-03 09:12:53 +01:00
aa4a0f8ef3 Remove fast tokenization warning in Data Collators (#28213) 2024-01-02 18:32:23 +00:00
5be46dfc09 [Whisper] Fix errors with MPS backend introduced by new code on word-level timestamps computation (#28288)
* Update modeling_whisper.py to support MPS backend

Fixed some issue with MPS backend.

First, the torch.std_mean is not implemented and is not scheduled for implementation, while the single torch.std and torch.mean are.
Second, MPS backend does not support float64, so it can not cast from float32 to float64. Inverting the double() when the matrix is in the cpu fixes the issue while should not change the logic.

* Found another instruction in modeling_whisper.py not implemented byor MPS

After a load test, where I transcribed a 2 hours audio file, I got into a branch that did not fix in the previous commit.
Similar fix, where the torch.std_mean is changed into torch.std and torch.mean

* Update modeling_whisper.py removed trailing white spaces

Removed trailing white spaces

* Update modeling_whisper.py to use is_torch_mps_available()

Using is_torch_mps_available() instead of capturing the NotImplemented exception

* Update modeling_whisper.py sorting the import block

Sorting the utils import block

* Update src/transformers/models/whisper/modeling_whisper.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/whisper/modeling_whisper.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/whisper/modeling_whisper.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-01-02 16:22:28 +00:00
87ae2a4632 fix bug:divide by zero in _maybe_log_save_evaluate() (#28251)
Co-authored-by: liujizhong1 <liujizhong1@xiaomi.com>
2024-01-02 14:19:42 +00:00
502a10a6f8 Fix trainer saving safetensors: metadata is None (#28219)
* Update trainer.py

* format
2024-01-02 12:58:29 +00:00
cad9f5c6cc Update docs around mixing hf scheduler with deepspeed optimizer (#28223)
update docs around mixing hf scheduler with deepspeed optimizer
2024-01-02 11:48:17 +00:00
3cefac1d97 small typo (#28229)
Update modeling_utils.py
2023-12-26 21:52:10 +01:00
3b7675b2b8 fix FA2 when using quantization (#28203) 2023-12-26 08:36:41 +05:30
fa21ead73d [Awq] Enable the possibility to skip quantization for some target modules (#27950)
* v1

* add docstring

* add tests

* add awq 0.1.8

* oops

* fix test
2023-12-25 11:06:56 +01:00
29e7a1e183 [Llava] Fix llava index errors (#28032)
* fix llava index errors

* forward contrib credits from original implementation and fix

* better fix

* final fixes and fix all tests

* fix

* fix nit

* fix tests

* add regression tests

---------

Co-authored-by: gullalc <gullalc@users.noreply.github.com>
2023-12-22 17:47:38 +01:00
68fa1e855b update the logger message with accordant weights_file_name (#28181)
Co-authored-by: yudong.lin <yudong.lin@funplus.com>
2023-12-22 15:05:10 +00:00
74d9d0cebb Fixing visualization code for object detection to support both types of bounding box. (#27842)
* fix: minor enhancement and fix in bounding box visualization example

The example that was trying to visualize the bounding box was not considering an edge case,
where the bounding box can be un-normalized. So using the same set of code, we can not get
results with a different dataset with un-normalized bounding box. This commit fixes that.

* run make clean

* add an additional note on the scenarios where the box viz code works

---------

Co-authored-by: Anindyadeep <anindya@pop-os.localdomain>
2023-12-22 13:24:40 +00:00
5da3db3fd5 [Whisper] Fix word-level timestamps with bs>1 or num_beams>1 (#28114)
* fix frames

* use smaller chunk length

* correct beam search + tentative stride

* fix whisper word timestamp in batch

* add test batch generation with return token timestamps

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* clean a test

* make style + correct typo

* write clearer comments

* explain test in comment

---------

Co-authored-by: sanchit-gandhi <sanchit@huggingface.co>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
2023-12-22 12:43:11 +00:00
c4df7c1668 Drop feature_extractor_type when loading an image processor file (#28195)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-12-22 13:19:04 +01:00
bb3bd44739 Fix the check of models supporting FA/SDPA not run (#28202)
* add check_support_list.py

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-12-22 12:56:11 +01:00
e37ab52dff Bug: training_args.py fix missing import with accelerate with version accelerate==0.20.1 (#28171)
* fix-accelerate-version

* updated with exported ACCELERATE_MIN_VERSION,

* update string in ACCELERATE_MIN_VERSION
2023-12-22 11:41:35 +00:00
c9fb250a25 Add Swinv2 backbone (#27742)
* First draft

* More improvements

* More improvements

* Make all tests pass

* Remove script

* Update image processor

* Address comments

* Use new gradient checkpointing method

* Convert checkpoints, add integration test

* Do not keep aspect ratio for now

* Set keep_aspect_ratio=False for beit, add integration test

* Remove print statement
2023-12-22 11:12:56 +00:00
1ef86c4f56 Fix: [SeamlessM4T - S2TT] Bug in batch loading of audio in torch.Tensor format in the SeamlessM4TFeatureExtractor class (#27914)
* fixes: code fixes on is_batched condition to also check for batched audio data in torch.Tensor format instead of only just checking for batched audio data in np.ndarray format

* Update src/transformers/models/seamless_m4t/feature_extraction_seamless_m4t.py

Co-authored-by: Yoach Lacombe <52246514+ylacombe@users.noreply.github.com>

* refactor: code refactoring to remove torch framework dependency

* docs: updated docstring to add torch tensor compatibility

* test: add test cases to incorporate torch tensor inputs

* test: ran make fix-copies for code conformity

* test: refactor test to separate the test_call into test_call_numpy and test_call_torch

---------

Co-authored-by: Yoach Lacombe <52246514+ylacombe@users.noreply.github.com>
2023-12-22 10:47:30 +00:00
548a8f6119 Fix ONNX export for causal LM sequence classifiers by removing reverse indexing (#28144)
* normalize reverse indexing for causal lm sequence classifiers

* normalize reverse indexing for causal lm sequence classifiers

* normalize reverse indexing for causal lm sequence classifiers

* use modulo instead

* unify modulo-based sequence lengths
2023-12-22 10:33:44 +00:00
71f460578d Update docs/source/en/perf_infer_gpu_one.md (#28198)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-12-22 10:40:22 +01:00
3a8769f6a9 [Docs] Add 4-bit serialization docs (#28182)
* add 4-bit serialization docs

* up

* up
2023-12-22 10:18:32 +01:00
3657748b4d Update YOLOS slow test values (#28187)
Update test values
2023-12-21 18:17:07 +00:00
cd1350ce9b Fix slow backbone tests - out_indices must match stage name ordering (#28186)
Indices must match stage name ordering
2023-12-21 18:16:50 +00:00
260b9d2179 Even more TF test fixes (#28146)
* Fix vision text dual encoder

* Small cleanup for wav2vec2 (not fixed yet)

* Small fix for vision_encoder_decoder

* Fix SAM builds

* Update TFBertTokenizer test with modern exporting + tokenizer

* Fix DeBERTa

* Fix DeBERTav2

* Try RAG fix but it's impossible to test locally

* Actually fix RAG now that I got FAISS working somehow

* Fix Wav2Vec2, add sermon

* Fix Hubert
2023-12-21 15:14:46 +00:00
f9a98c476c [Mixtral & Mistral] Add support for sdpa (#28133)
* some nits

* update test

* add support d\sd[a

* remove some dummy inputs

* all good

* style

* nits

* fixes

* fix more copies

* nits

* styling

* fix

* Update src/transformers/models/mistral/modeling_mistral.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* add a slow test just to be sure

* fixup

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2023-12-21 12:38:22 +01:00
814619f54f [Whisper] Use torch for stft if available (#26119)
* [Whisper] Use torch for stft if available

* update docstring

* mock patch decorator

* fit on one line
2023-12-21 11:04:05 +00:00
7e93ce40c5 Fix input_embeds docstring in encoder-decoder architectures (#28168) 2023-12-21 11:01:54 +00:00
4f7806ef7e [bnb] Let's make serialization of 4bit models possible (#26037)
* updated bitsandbytes.py

* rm test_raise_* from test_4bit.py

* add test_4bit_serialization.py

* modeling_utils bulk edits

* bnb_ver 0.41.3 in integrations/bitsandbytes.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* @slow reinstated

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* bnb ver 0.41.3 in  src/transformers/modeling_utils.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* rm bnb version todo in  integrations/bitsandbytes.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* moved 4b serialization tests to test_4bit

* tests upd for opt

* to torch_device

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* ruff fixes to tests

* rm redundant bnb version check in mod_utils

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* restore _hf_peft_config_loaded  modeling_utils.py::2188

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* restore _hf_peft_config_loaded  test in modeling_utils.py::2199

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* fixed NOT getattr(self, "is_8bit_serializable")

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* setting model.is_4bit_serializable

* rm separate fp16_statistics arg from set_module...

* rm else branch in integrations::bnb::set_module

* bnb 4bit dtype check

* upd comment on 4bit weights

* upd tests for FP4 safe

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2023-12-21 11:54:44 +01:00
e268d7e5dc disable test_retain_grad_hidden_states_attentions on SeamlessM4TModelWithTextInputTest (#28169)
disable retain_grad_hidden_states_attentions on SeamlessM4TModelWithTextInputTest
2023-12-21 08:39:44 +01:00
1d77735947 Fix yolos resizing (#27663)
* Fix yolos resizing

* Update tests

* Add a test
2023-12-20 20:55:51 +00:00
45b70384a7 Generate: fix speculative decoding (#28166)
Co-authored-by: Merve Noyan <merveenoyan@gmail.com>
2023-12-20 18:55:35 +00:00
01c081d138 [docs] Trainer docs (#28145)
* fsdp, debugging, gpu selection

* fix hfoption

* fix
2023-12-20 10:37:23 -08:00
ee298a16a2 Align backbone stage selection with out_indices & out_features (#27606)
* Iteratre over out_features instead of stage_names

* Update for all backbones

* Add tests

* Fix

* Align timm backbone behaviour with other backbones

* Fix tests

* Stricter checks on set out_features and out_indices

* Revert back stage selection logic

* Remove out-of-order logic

* Document restriction in docstrings
2023-12-20 18:33:17 +00:00
224ab70969 Update FA2 exception msg to point to hub discussions (#28161)
* Update FA2 exception msg to point to hub discussions

* Use path for hub url
2023-12-20 16:52:16 +00:00
9924df9eb2 Avoid unnecessary warnings when loading CLIPConfig (#28108)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-12-20 17:24:53 +01:00
7938c8c836 Fix weights not properly initialized due to shape mismatch (#28122)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-12-20 14:20:02 +01:00
769a9542de move code to Trainer.evaluate to enable use of that function with multiple datasets (#27844)
* move code to Trainer.evaluate to enable use of that function with multiple datasets

* test

* update doc string

* and a tip

* forgot the type

---------

Co-authored-by: Prof. Peter Schneider-Kamp <jps@ordbogen.com>
2023-12-20 10:55:56 +01:00
cd9f9d63f1 [gpt-neox] Add attention_bias config to support model trained without attention biases (#28126)
* add attention_bias hparam for a model trained without attention biases

* fix argument documentation error
2023-12-20 10:05:32 +01:00
def581ef51 Fix FA2 integration (#28142)
* fix fa2

* fix FA2 for popular models

* improve warning and add Younes as co-author

Co-Authored-By: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update src/transformers/modeling_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fix the warning

* Add Tip

* typo fix

* nit

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-12-20 14:25:07 +05:30
b134f6857e Remove deprecated CPU dockerfiles (#28149)
Signed-off-by: Abolfazl Shahbazi <abolfazl.shahbazi@intel.com>
2023-12-20 05:51:35 +01:00
38611086d2 [docs] Fix mistral link in mixtral.md (#28143)
Fix mistral link in mixtral.md
2023-12-19 10:34:14 -08:00
23f8e4db77 Update modeling_utils.py (#28127)
In docstring for PreTrainedModel.resize_token_embeddings, correct definition of new_num_tokens parameter to read "the new number of tokens" (meaning the new size of the vocab) rather than "the number of new tokens" (number of newly added tokens only).
2023-12-19 09:07:57 -08:00
4a04b4ccca [Mixtral] Fix loss + nits (#28115)
* default config should not use sliding window

* update the doc

* nits

* add a proper test

* update

* update

* update expected value

* Update src/transformers/tokenization_utils_fast.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* convert to float

* average then N**2

* comment

* revert nit

* good to fo

* fixup

* Update tests/models/mixtral/test_modeling_mixtral.py

Co-authored-by: Lysandre Debut <hi@lysand.re>

* revert unrelated change

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Lysandre Debut <hi@lysand.re>
2023-12-19 17:31:54 +01:00
ac974199c8 Generate: speculative decoding (#27979)
* speculative decoding

* fix test

* space

* better comments

* remove redundant test

* test nit

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* PR comments

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-12-19 13:58:30 +00:00
bd7a356135 Update split string in doctest to reflect #28087 (#28135) 2023-12-19 13:55:09 +00:00
5aec50ecaf When save a model on TPU, make a copy to be moved to CPU (#27993)
* When save a model, make a copy to be moved to CPU, dont move the original
model

* make deepcopy inside of _save_tpu

* Move to tpu without copy
2023-12-19 10:08:51 +00:00
4edffda636 [Doc] Fix token link in What 🤗 Transformers can do (#28123)
Fix token link
2023-12-18 15:06:54 -08:00
c52b515e94 Fix a typo in tokenizer documentation (#28118) 2023-12-18 19:44:35 +01:00
a52e180a0f [docs] General doc fixes (#28087)
* doc fix friday

* deprecated objects

* update not_doctested

* update toctree
2023-12-18 10:44:09 -08:00
08a6e7a702 Fix indentation error - semantic_segmentation.md (#28117)
Update semantic_segmentation.md
2023-12-18 12:47:54 -05:00
71d47f0ad4 More TF fixes (#28081)
* More build_in_name_scope()

* Make sure we set the save spec now we don't do it with dummies anymore

* make fixup
2023-12-18 15:26:03 +00:00
0695b2421a Remove warning if DISABLE_TELEMETRY is used (#28113)
remove warning if DISABLE_TELEMETRY is used
2023-12-18 16:18:01 +01:00
7c5408dade Disable jitter noise during evaluation in SwitchTransformers (#28077)
* Disable jitter noise during evaluation

* Update outdated configuration information

* Formatting

* Add new line
2023-12-18 15:08:55 +00:00
a0522de497 fix ConversationalPipeline docstring (#28091) 2023-12-18 15:08:37 +00:00
e6cb8e052a in peft finetune, only the trainable parameters need to be saved (#27825)
to reduce the storage size and also save the time of checkpoint saving while using deepspeed for training

Signed-off-by: Wang, Yi <yi.a.wang@intel.com>
2023-12-18 14:27:05 +00:00
7f2a8f92e4 Spelling correction (#28110)
Update mixtral.md

correct minor typo in overview
2023-12-18 14:04:05 +00:00
b8378b658e [Llava / Vip-Llava] Add SDPA into llava (#28107)
add SDPA into llava
2023-12-18 13:46:30 +01:00
e6dcf8abd6 Fix the deprecation warning of _torch_pytree._register_pytree_node (#27803) 2023-12-17 11:13:42 +01:00
f85a1e82c1 4D attention_mask support (#27539)
* edits to _prepare_4d_causal_attention_mask()

* initial tests for 4d mask

* attention_mask_for_sdpa support

* added test for inner model hidden

* added autotest decorators

* test mask dtype to torch.int64

* torch.testing.assert_close

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* torch_device and @torch_gpu in tests

* upd tests

* +torch decorators

* torch decorators fixed

* more decorators!

* even more decorators

* fewer decorators

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-12-17 11:08:04 +01:00
238d2e3c44 fix resuming from ckpt when using FSDP with FULL_STATE_DICT (#27891)
* fix resuming from ckpt when suing FSDP with FULL_STATE_DICT

* update tests

* fix tests
2023-12-16 19:41:43 +05:30
ebfdb9ca62 [docs] MPS (#28016)
* mps docs

* toctree
2023-12-15 13:17:29 -08:00
0d63d17765 [docs] Trainer (#27986)
* first draft

* add to toctree

* edits

* feedback
2023-12-15 12:06:55 -08:00
1faeff85ce Fix Vip-llava docs (#28085)
* Update vipllava.md

* Update modeling_vipllava.py
2023-12-15 20:16:47 +01:00
ffa04def0e Fix wrong examples in llava usage. (#28020)
* Fix wrong examples in llava usage.

* Update modeling_llava.py
2023-12-15 17:09:50 +00:00
29a1c1b472 Fix low_cpu_mem_usage Flag Conflict with DeepSpeed Zero 3 in from_pretrained for Models with keep_in_fp32_modules" (#27762)
Fix `from_pretrained` Logic
for `low_cpu_mem_usage` with DeepSpeed Zero3
2023-12-15 17:03:41 +00:00
26ea725bc0 Update fixtures-image-utils (#28080)
* fix hf-internal-testing/fixtures_image_utils

* fix test

* comments
2023-12-15 16:58:36 +00:00
1c286be508 Fix bug for checkpoint saving on multi node training setting (#28078)
* add multi-node traning setting

* fix style
2023-12-15 16:18:56 +00:00
dec84b3211 make torch.load a bit safer (#27282)
* make torch.load a bit safer

* Fixes

---------

Co-authored-by: Lysandre <lysandre.debut@reseau.eseo.fr>
2023-12-15 16:01:18 +01:00
74cae670ce Make GPT2 traceable in meta state (#28054)
* Put device in tensor constructor instead of to()

* Fix copy
2023-12-15 15:45:31 +01:00
e2b6df7971 [LLaVa] Add past_key_values to _skip_keys_device_placement to fix multi-GPU dispatch (#28051)
Add past_key_values to _skip_keys_device_placement  for LLaVa
2023-12-15 14:05:20 +00:00
deb72cb6d9 Skip M4T test_retain_grad_hidden_states_attentions (#28060)
* skip test from SpeechInput

* refine description of skip
2023-12-15 13:39:16 +00:00
d269c4b2d7 [Mixtral] update conversion script to reflect new changes (#28068)
* Update convert_mixtral_weights_to_hf.py

* forward contrib credits from original fix

---------

Co-authored-by: thomasw21 <thomasw21@users.noreply.github.com>
2023-12-15 14:05:20 +01:00
70a127a37a doc: Correct spelling mistake (#28064) 2023-12-15 13:01:39 +00:00
c817c17dbe Remove SpeechT5 deprecated argument (#28062) 2023-12-15 12:15:06 +00:00
6af3ce7757 [Flax LLaMA] Fix attn dropout (#28059) 2023-12-15 10:57:36 +00:00
7e876dca54 [Flax BERT] Update deprecated 'split' method (#28012)
* [Flax BERT] Update deprecated 'split' method

* fix copies
2023-12-15 10:57:18 +00:00
e737446ee6 [Modeling / Mixtral] Fix GC + PEFT issues with Mixtral (#28061)
fix for mistral
2023-12-15 11:34:42 +01:00
1e20931765 [FA-2] Fix fa-2 issue when passing config to from_pretrained (#28043)
* fix fa-2 issue

* fix test

* Update src/transformers/modeling_utils.py

Co-authored-by: fxmarty <9808326+fxmarty@users.noreply.github.com>

* clenaer fix

* up

* add more robust tests

* Update src/transformers/modeling_utils.py

Co-authored-by: fxmarty <9808326+fxmarty@users.noreply.github.com>

* fixup

* Update src/transformers/modeling_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* pop

* add test

---------

Co-authored-by: fxmarty <9808326+fxmarty@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-12-15 11:08:27 +01:00
1a585c1222 Remove warning when Annotion enum is created (#28048)
Remove warning when enum is created
2023-12-14 19:50:20 +00:00
3060899be5 Replace build() with build_in_name_scope() for some TF tests (#28046)
Replace build() with build_in_name_scope() for some tests
2023-12-14 17:42:25 +00:00
050e0b44f6 Proper build() methods for TF (#27794)
* Add a convenience method for building in your own name scope

* Second attempt at auto layer building

* Revert "Second attempt at auto layer building"

This reverts commit e03a3aaecf9ec41a805582b83cbdfe3290a631be.

* Attempt #3

* Revert "Attempt #3"

This reverts commit b9df7a0857560d29b5abbed6127d9e9eca77cf47.

* Add missing attributes that we're going to need later

* Add some attributes we're going to need later

* A fourth attempt! Feel the power flow through you!

* Revert "A fourth attempt! Feel the power flow through you!"

This reverts commit 6bf4aaf3875d6f28485f50187617a4c616c8aff7.

* Add more values we'll need later

* TF refactor that we'll need later

* Revert "TF refactor that we'll need later"

This reverts commit ca07202fb5b7b7436b893baa8d688b4f348ea7b9.

* Revert "Revert "TF refactor that we'll need later""

This reverts commit 1beb0f39f293ed9c27594575e1c849aadeb15c13.

* make fixup

* Attempt five!

* Revert "Attempt five!"

This reverts commit 3302207958dfd0374b0447a51c06eea51a506044.

* Attempt six - this time don't add empty methods

* Revert "Attempt six - this time don't add empty methods"

This reverts commit 67d60129be75416b6beb8f47c7d38d77b18d79bb.

* Attempt seven - better base model class detection!

* Revert "Attempt seven - better base model class detection!"

This reverts commit 5f14845e92ea0e87c598da933bfbfee10f553bc9.

* Another attribute we'll need later

* Try again with the missing attribute!

* Revert "Try again with the missing attribute!"

This reverts commit 760c6f30c5dffb3e04b0e73c34a77d1882a0fef7.

* This is the attempt that will pierce the heavens!

* Revert "This is the attempt that will pierce the heavens!"

This reverts commit c868bb657de057aca7a5260350a3f831fc4dfee6.

* Attempt seven - snag list is steadily decreasing

* Revert "Attempt seven - snag list is steadily decreasing"

This reverts commit 46fbd975deda64429bfb3e5fac4fc0370c00d316.

* Attempt eight - will an empty snag list do it?

* Revert "Attempt eight - will an empty snag list do it?"

This reverts commit 7c8a3c2b083253649569e9877e02054ae5cec67b.

* Fixes to Hubert issues that cause problems later

* Trying again with Conv1D/SeparableConv fixes

* Revert "Trying again with Conv1D/SeparableConv fixes"

This reverts commit 55092bca952bc0f750aa1ffe246a640bf1e2036e.

* Apply the build shape fixes to Wav2Vec2 as well

* One more attempt!

* Revert "One more attempt!"

This reverts commit 5ac3e4cb01b9458cc93312873725f9444ae7261c.

* Another attempt!

* Revert "Another attempt!"

This reverts commit ea16d890e019d7de8792a3b8e72f3b1c02adae50.

* Let's see how many failures we get without the internal build method

* Fix OpenAI

* Fix MobileBERT

* (Mostly) fix GroupVIT

* Fix BLIP

* One more BLIP fix

* One more BLIP fix!

* Fix Regnet

* Finally fully fix GroupViT

* Fix Data2Vec and add the new AdaptivePool

* Fix Segformer

* Fix Albert

* Fix Deberta/DebertaV2

* Fix XLM

* Actually fix XLM

* Fix Flaubert

* Fix lxmert

* Fix Resnet

* Fix ConvBERT

* Fix ESM

* Fix Convnext / ConvnextV2

* Fix SAM

* Fix Efficientformer

* Fix LayoutLMv3

* Fix speech_to_text

* Fix mpnet and mobilevit

* Fix Swin

* Fix CTRL

* Fix CVT

* Fix DPR

* Fix Wav2Vec2

* Fix T5

* Fix Hubert

* Fix GPT2

* Fix Whisper

* Fix DeiT

* Fix the encoder-decoder / dual-encoder classes

* make fix-copies

* build in name scope

* Fix summarization test

* Fix tied weight names for BART + Blenderbot

* Fix tied weight name building

* Fix to TFESM weight building

* Update TF SAM

* Expand all the shapes out into Big Boy Shapes
2023-12-14 15:17:30 +00:00
52c37882fb [Seamless] Fix links in docs (#27905)
* [Seamless] Fix links in docs

* apply suggestions from code review
2023-12-14 15:14:13 +00:00
388fd314d8 Generate: Mistral/Mixtral FA2 cache fix when going beyond the context window (#28037) 2023-12-14 14:52:45 +00:00
0ede762636 Fixed spelling error in T5 tokenizer warning message (s/thouroughly/t… (#28014)
Fixed spelling error in T5 tokenizer warning message (s/thouroughly/thoroughly)
2023-12-14 14:52:03 +00:00
bb1d0d0d9e Fix languages covered by M4Tv2 (#28019)
* correct language assessment  + add tests

* Update src/transformers/models/seamless_m4t_v2/modeling_seamless_m4t_v2.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* make style + simplify and enrich test

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-12-14 14:43:44 +00:00
e2b16485f3 SeamlessM4T: test_retain_grad_hidden_states_attentions is flaky (#28035) 2023-12-14 13:56:03 +00:00
9e5c28c573 Generate: assisted decoding now uses generate for the assistant (#28030)
generate refactor
2023-12-14 13:31:13 +00:00
dde6c427a1 Fix AMD push CI not triggered (#28029)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-12-14 12:44:00 +01:00
73de5108e1 [core / modeling] Fix training bug with PEFT + GC (#28031)
fix trainign bug
2023-12-14 12:19:45 +01:00
2788f8d8d5 [SeamlessM4TTokenizer] Safe import (#28026)
safe import
2023-12-14 08:46:10 +01:00
131a528be0 well well well (#28011) 2023-12-14 06:51:04 +01:00
17506d1256 add modules_in_block_to_quantize arg in GPTQconfig (#27956)
* add inside_layer_modules arg

* fix

* change to modules_to_quantize_inside_block

* fix

* remane again

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* better docsting

* fix again with less explanation

* Update src/transformers/utils/quantization_config.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* style

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-12-13 14:13:44 -05:00
fe44b1f1a9 Add model_docs from cpmant.md to derformable_detr.md (#27884)
* upfaste

* Update

* Update docs/source/ja/model_doc/deformable_detr.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/model_doc/data2vec.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/model_doc/cvt.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* add suggestions

* Toctree update

* remove git references

* Update docs/source/ja/_toctree.yml

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/model_doc/decision_transformer.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-12-13 10:02:29 -08:00
3ed3e3190c Dev version 2023-12-13 18:29:31 +01:00
815ea8e8a2 [Doc] Spanish translation of glossary.md (#27958)
* Add glossary to es/_toctree.yml

* Add glossary.md to es/

* A section translated

* B and C section translated

* Fix typo in en/glossary.md C section

* D section translated | Add a extra line in en/glossary.md

* E and F section translated | Fix typo in en/glossary.md

* Fix words preentrenado

* H and I section translated | Fix typo in en/glossary.md

* L section translated

* M and N section translated

* P section translated

* R section translated

* S section translated

* T section translated

* U and Z section translated | Fix TensorParallel link in both files

* Fix word
2023-12-13 09:21:59 -08:00
93766251cb Fix bug with rotating checkpoints (#28009)
* Fix bug

* Write test

* Keep back old modification for grad accum steps

* Whitespace...

* Whitespace again

* Race condition

* Wait for everyone
2023-12-13 12:17:30 -05:00
ec43d6870a [CI slow] Fix expected values (#27999)
* fix expected values

* style

* test is slow
2023-12-13 13:37:10 +01:00
749f94e460 Fix PatchTSMixer slow tests (#27997)
* fix slow tests

* revert formatting

---------

Co-authored-by: Arindam Jati <arindam.jati@ibm.com>
Co-authored-by: Kashif Rasul <kashif.rasul@gmail.com>
2023-12-13 13:34:25 +01:00
c7f076a00e Adds VIP-llava to transformers (#27932)
* v1

* add-new-model-like

* revert

* fix forward and conversion script

* revert

* fix copies

* fixup

* fix

* Update docs/source/en/index.md

* Apply suggestions from code review

* push

* fix

* fixes here and there

* up

* fixup and fix tests

* Apply suggestions from code review

* add docs

* fixup

* fixes

* docstring

* add docstring

* fixup

* docstring

* fixup

* nit

* docs

* more copies

* fix copies

* nit

* update test
2023-12-13 10:42:24 +01:00
371fb0b7dc [Whisper] raise better errors (#27971)
* [`Whisper`] raise better erros
fixes #27893

* update torch as well
2023-12-13 09:13:01 +01:00
230ac352d8 [Tokenizer Serialization] Fix the broken serialisation (#27099)
* nits

* nits

* actual fix

* style

* ze fix

* fix fix fix style
2023-12-13 09:11:34 +01:00
f4db565b69 fix typo in dvclive callback (#27983) 2023-12-12 16:29:58 -05:00
9936143014 [doc] fix typo (#27981) 2023-12-12 20:32:42 +00:00
78172dcdb7 Fix SDPA correctness following torch==2.1.2 regression (#27973)
* fix sdpa with non-contiguous inputs for gpt_bigcode

* fix other archs

* add currently comment

* format
2023-12-13 00:33:46 +09:00
5e4ef0a0f6 Better key error for AutoConfig (#27976)
* Improve the error printed when loading an unrecognized architecture

* Improve the error printed when loading an unrecognized architecture

* Raise a ValueError instead because KeyError prints weirdly

* make fixup
2023-12-12 14:41:55 +00:00
a49f4acab3 Fix link in README.md of Image Captioning (#27969)
Update the link for vision encoder decoder doc used by
FlaxVisionEncoderDecoderModel link.
2023-12-12 08:07:15 -05:00
680c610f97 Hot-fix-mixstral-loss (#27948)
* fix loss computation

* compute on GPU if possible
2023-12-12 12:20:28 +01:00
4b759da8be Generate: assisted_decoding now accepts arbitrary candidate generators (#27750)
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-12-12 09:25:57 +00:00
e660424717 fixed typos (issue 27919) (#27920)
* fixed typos (issue 27919)

* Update docs/source/en/tasks/knowledge_distillation_for_image_classification.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-12-11 18:44:23 -05:00
e5079b0b2a Support PeftModel signature inspect (#27865)
* Support PeftModel signature inspect

* Use get_base_model() to get the base model

---------

Co-authored-by: shujunhua1 <shujunhua1@jd.com>
2023-12-11 19:30:11 +00:00
35478182ce [docs] Fused AWQ modules (#27896)
streamline
2023-12-11 10:41:33 -08:00
67b1335cb9 Update bounding box format everywhere (#27944)
Update formats
2023-12-11 18:03:42 +00:00
54d0b1c278 [Mixtral] Change mistral op order (#27955)
up
2023-12-11 19:03:18 +01:00
4850aaba6f fix no sequence length models error (#27522)
* fix no sequence length models error

* block size check

---------

Co-authored-by: Adam Louly <adamlouly@microsoft.com@orttrainingdev9.d32nl1ml4oruzj4qz3bqlggovf.px.internal.cloudapp.net>
2023-12-11 18:01:26 +00:00
4b4b864224 Fix for stochastic depth decay rule in the TimeSformer implementation (#27875)
Update modeling_timesformer.py

Fixing typo to correct the stochastic depth decay rule
2023-12-11 16:20:31 +00:00
c0a354d8d7 fix bug in mask2former: cost matrix is infeasible (#27897)
fix bug: cost matrix is infeasible
2023-12-11 16:19:16 +00:00
7e35f37071 Fix a couple of typos and add an illustrative test (#26941)
* fix a typo and add an illustrative test

* appease black

* reduce code duplication and add Annotion type back with a pending deprecation warning

* remove unused code

* change warning type

* black formatting fix

* change enum deprecation approach to support 3.8 and earlier

* add stacklevel

* fix black issue

* fix ruff issues

* fix ruff issues

* move tests to own mixin

* include yolos

* fix black formatting issue

* fix black formatting issue

* use logger instead of warnings and include target version for deprecation
2023-12-11 15:51:51 +00:00
39acfe84ba Add deepspeed test to amd scheduled CI (#27633)
* add deepspeed scheduled test for amd

* fix image

* add dockerfile

* add comment

* enable tests

* trigger

* remove trigger for this branch

* trigger

* change runner env to trigger the docker build image test

* use new docker image

* remove test suffix from docker image tag

* replace test docker image with original image

* push new image

* Trigger

* add back amd tests

* fix typo

* add amd tests back

* fix

* comment until docker image build scheduled test fix

* remove deprecated deepspeed build option

* upgrade torch

* update docker & make tests pass

* Update docker/transformers-pytorch-deepspeed-amd-gpu/Dockerfile

* fix

* tmp disable test

* precompile deepspeed to avoid timeout during tests

* fix comment

* trigger deepspeed tests with new image

* comment tests

* trigger

* add sklearn dependency to fix slow tests

* enable back other tests

* final update

---------

Co-authored-by: Felix Marty <felix@hf.co>
Co-authored-by: Félix Marty <9808326+fxmarty@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-12-11 16:33:36 +01:00
0f59d2f173 Fix AMD scheduled CI not triggered (#27951)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-12-11 16:22:10 +01:00
417bb91484 In PreTrainedTokenizerBase add missing word in error message (#27949)
"text input must of type" -> "text input must be of type"
2023-12-11 15:12:40 +00:00
5cec306cdc Fix parameter count in readme for mixtral 45b (#27945)
fix parameter count in readme
2023-12-11 14:58:48 +00:00
921a6bf26e Update import message (#27946)
* Update import message

* Update message
2023-12-11 14:58:06 +00:00
44127ec667 Fix test for auto_find_batch_size on multi-GPU (#27947)
* Fix test for multi-GPU

* WIth CPU handle
2023-12-11 09:57:41 -05:00
b911c1f10f Docs for AutoBackbone & Backbone (#27456)
* Initial commit for AutoBackbone & Backbone

* Added timm and clarified out_indices

* Swapped the example to out_indices

* fix toctree

* Update autoclass_tutorial.md

* Update backbones.md

* Update autoclass_tutorial.md

* Add dummy torch input instead

* Add dummy torch input

* Update autoclass_tutorial.md

* Update backbones.md

* minor fix

* Update docs/source/en/main_classes/backbones.md

Co-authored-by: Maria Khalusova <kafooster@gmail.com>

* Update docs/source/en/autoclass_tutorial.md

Co-authored-by: Maria Khalusova <kafooster@gmail.com>

* Added illustrations and explained backbone & neck

* Update docs/source/en/main_classes/backbones.md

Co-authored-by: Maria Khalusova <kafooster@gmail.com>

* Update backbones.md

---------

Co-authored-by: Maria Khalusova <kafooster@gmail.com>
2023-12-11 08:22:17 -05:00
YQ
e49c385266 use logger.warning_once to avoid massive outputs (#27428)
* use logger.warning_once to avoid massive outputs when training/finetuning longformer

* update more
2023-12-11 11:59:29 +00:00
6ff109227b Fix PatchTSMixer Docstrings (#27943)
* docstring corrections

* style make

---------

Co-authored-by: vijaye12 <vijaye12@in.ibm.com>
2023-12-11 11:56:57 +00:00
accccdd008 [Add Mixtral] Adds support for the Mixtral MoE (#27942)
* up

* up

* test

* logits ok

* up

* up

* few fixes

* conversion script

* up

* nits

* nits

* update

* nuke

* more updates

* nites

* fix many issues

* nit

* scatter

* nit

* nuke megablocks

* nits

* fix conversion script

* nit

* remove

* nits

* nit

* update

* oupsssss

* change

* nits device

* nits

* fixup

* update

* merge

* add copied from

* fix the copy mentions

* update tests

* more fixes

* nits

* conversion script

* add parts of the readme

* Update tests/models/mixtral/test_modeling_mixtral.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* new test + conversion script

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Apply suggestions from code review

* fix

* fix copies

* fix copies

* ooops

* fix config

* Apply suggestions from code review

* fix nits

* nit

* add copies

* add batched tests

* docs

* fix flash attention

* let's add more verbose

* add correct outputs

* support router ouptus

* ignore copies where needed

* fix

* cat list if list is given for now

* nits

* Update docs/source/en/model_doc/mixtral.md

* finish router refactoring

* fix forward

* fix expected values

* nits

* fixup

* fix

* fix bug

* fix

* fix dtype mismatch

* fix

* grrr grrr I support item assignment

* fix CI

* docs

* fixup

* remove some copied form

* fix weird diff

* skip doctest fast on the config and modeling

* mark that is supports flash attention in the doc

* update

* Update src/transformers/models/mixtral/modeling_mixtral.py

Co-authored-by: Lysandre Debut <hi@lysand.re>

* Update docs/source/en/model_doc/mixtral.md

Co-authored-by: Lysandre Debut <hi@lysand.re>

* revert router logits config issue

* update doc accordingly

* Update src/transformers/models/mixtral/convert_mixtral_weights_to_hf.py

* nits

* use torch testing asssert close

* fixup

* doc nits

---------

Co-authored-by: younesbelkada <younesbelkada@gmail.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Lysandre Debut <hi@lysand.re>
2023-12-11 12:50:27 +01:00
0676d992a5 [from_pretrained] Make from_pretrained fast again (#27709)
* Skip nn.Module.reset_parameters

* Actually skip

* Check quality

* Maybe change all inits

* Fix init issues: only modify public functions

* Add a small test for now

* Style

* test updates

* style

* nice tes

* style

* make it even faster

* one more second

* remove fx icompatible

* Update tests/test_modeling_common.py

Co-authored-by: Lysandre Debut <hi@lysand.re>

* Update tests/test_modeling_common.py

Co-authored-by: Lysandre Debut <hi@lysand.re>

* skip

* fix quality

* protect the import

---------

Co-authored-by: Lysandre Debut <hi@lysand.re>
2023-12-11 12:38:17 +01:00
9f18cc6df0 Fix SDPA dispatch & make SDPA CI compatible with torch<2.1.1 (#27940)
fix sdpa dispatch
2023-12-11 18:56:38 +09:00
7ea21f1f03 [LLaVa] Some improvements (#27895)
* More improvements

* Improve variable names

* Update READMEs, improve docs
2023-12-11 10:22:26 +01:00
5e620a92cf Fix SeamlessM4Tv2ModelIntegrationTest (#27911)
change dtype of some integration tests
2023-12-11 09:18:41 +01:00
e96c1de191 Skip UnivNetModelTest::test_multi_gpu_data_parallel_forward (#27912)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-12-11 09:17:37 +01:00
8d8970efdd [BEiT] Fix test (#27934)
Fix test
2023-12-11 09:17:02 +01:00
235be08569 [DETA] fix backbone freeze/unfreeze function (#27843)
* [DETA] fix freeze/unfreeze function

* Update src/transformers/models/deta/modeling_deta.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/deta/modeling_deta.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* add freeze/unfreeze test case in DETA

* fix type

* fix typo 2

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-12-11 07:57:30 +01:00
df5c5c62ae Fix typo (#27918) 2023-12-09 11:59:24 +01:00
5fa66df3f3 [integration] Update Ray Tune integration for Ray 2.7 (#26499)
* fix tune integration for ray 2.7+

Signed-off-by: Justin Yu <justinvyu@anyscale.com>

* add version check for ray tune backend availability

Signed-off-by: Justin Yu <justinvyu@anyscale.com>

* missing import

Signed-off-by: Justin Yu <justinvyu@anyscale.com>

* pin min version instead

Signed-off-by: Justin Yu <justinvyu@anyscale.com>

* address comments

Signed-off-by: Justin Yu <justinvyu@anyscale.com>

* some fixes

Signed-off-by: Justin Yu <justinvyu@anyscale.com>

* fix unnecessary final checkpoint

Signed-off-by: Justin Yu <justinvyu@anyscale.com>

* fix lint

Signed-off-by: Justin Yu <justinvyu@anyscale.com>

* dep table fix

Signed-off-by: Justin Yu <justinvyu@anyscale.com>

* fix lint

Signed-off-by: Justin Yu <justinvyu@anyscale.com>

---------

Signed-off-by: Justin Yu <justinvyu@anyscale.com>
2023-12-09 11:04:13 +01:00
ffd426eef8 [CLAP] Replace hard-coded batch size to enable dynamic ONNX export (#27790)
* [CLAP] Replace hard-coded batch size to enable dynamic ONNX export

* Add back docstring
2023-12-09 10:39:39 +01:00
80377eb018 F.scaled_dot_product_attention support (#26572)
* add sdpa

* wip

* cleaning

* add ref

* yet more cleaning

* and more :)

* wip llama

* working llama

* add output_attentions=True support

* bigcode sdpa support

* fixes

* gpt-bigcode support, require torch>=2.1.1

* add falcon support

* fix conflicts falcon

* style

* fix attention_mask definition

* remove output_attentions from attnmaskconverter

* support whisper without removing any Copied from statement

* fix mbart default to eager renaming

* fix typo in falcon

* fix is_causal in SDPA

* check is_flash_attn_2_available in the models init as well in case the model is not initialized through from_pretrained

* add warnings when falling back on the manual implementation

* precise doc

* wip replace _flash_attn_enabled by config.attn_implementation

* fix typo

* add tests

* style

* add a copy.deepcopy on the config in from_pretrained, as we do not want to modify it inplace

* obey to config.attn_implementation if a config is passed in from_pretrained

* fix is_torch_sdpa_available when torch is not installed

* remove dead code

* Update src/transformers/modeling_attn_mask_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/modeling_attn_mask_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/modeling_attn_mask_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/modeling_attn_mask_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/modeling_attn_mask_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/bart/modeling_bart.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* remove duplicate pretraining_tp code

* add dropout in llama

* precise comment on attn_mask

* add fmt: off for _unmask_unattended docstring

* precise num_masks comment

* nuke pretraining_tp in LlamaSDPAAttention following Arthur's suggestion

* cleanup modeling_utils

* backward compatibility

* fix style as requested

* style

* improve documentation

* test pass

* style

* add _unmask_unattended tests

* skip meaningless tests for idefics

* hard_check SDPA requirements when specifically requested

* standardize the use if XXX_ATTENTION_CLASSES

* fix SDPA bug with mem-efficient backend on CUDA when using fp32

* fix test

* rely on SDPA is_causal parameter to handle the causal mask in some cases

* fix FALCON_ATTENTION_CLASSES

* remove _flash_attn_2_enabled occurences

* fix test

* add OPT to the list of supported flash models

* improve test

* properly test on different SDPA backends, on different dtypes & properly handle separately the pad tokens in the test

* remove remaining _flash_attn_2_enabled occurence

* Update src/transformers/modeling_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/modeling_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/modeling_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/modeling_attn_mask_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update docs/source/en/perf_infer_gpu_one.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* remove use_attn_implementation

* fix docstring & slight bug

* make attn_implementation internal (_attn_implementation)

* typos

* fix tests

* deprecate use_flash_attention_2=True

* fix test

* add back llama that was removed by mistake

* fix tests

* remove _flash_attn_2_enabled occurences bis

* add check & test that passed attn_implementation is valid

* fix falcon torchscript export

* fix device of mask in tests

* add tip about torch.jit.trace and move bt doc below sdpa

* fix parameterized.expand order

* move tests from test_modeling_attn_mask_utils to test_modeling_utils as a relevant test class is already there

* update sdpaattention class with the new cache

* Update src/transformers/configuration_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/bark/modeling_bark.py

* address review comments

* WIP torch.jit.trace fix. left: test both eager & sdpa

* add test for torch.jit.trace for both eager/sdpa

* fix falcon with torch==2.0 that needs to use sdpa

* fix doc

* hopefully last fix

* fix key_value_length that has no default now in mask converter

* is it flacky?

* fix speculative decoding bug

* tests do pass

* fix following #27907

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-12-09 05:38:14 +09:00
ce0bbd5101 Generate: SinkCache can handle iterative prompts (#27907) 2023-12-08 20:02:20 +00:00
94c765380c fix typo in image_processing_blip.py Wwhether -> Whether (#27899) 2023-12-08 10:32:48 -08:00
d6c3a3f137 [Doc] Spanish translation of pad_truncation.md (#27890)
* Add pad_truncation to es/_toctree.yml

* Add pad_truncation.md to es/

* Translated first two paragraph

* Translated paddig argument section

* Translated truncation argument section

* Translated final paragraphs

* Translated table

* Fixed typo in the table of en/pad_truncation.md

* Run make style | Fix a word

* Add Padding (relleno) y el Truncation (truncamiento) in the final paragraphs

* Fix relleno and truncamiento words
2023-12-08 10:32:18 -08:00
6757ed28ce Allow resume_from_checkpoint to handle auto_find_batch_size (#27568)
* Fuffill request

* Add test

* Better test

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Better test

* Better test

* MOre comments

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-12-08 11:51:02 -05:00
aa7ab98e72 fix llava (#27909)
* fix llava

* nits

* attention_mask was forgotten

* nice

* :)

* fixup
2023-12-08 17:32:34 +01:00
e0b617d192 Llama conversion script: adjustments for Llama Guard (#27910) 2023-12-08 16:02:50 +01:00
e366937587 Fix 2 tests in FillMaskPipelineTests (#27889)
* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-12-08 14:55:29 +01:00
79e7655906 Fix notification_service.py (#27903)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-12-08 14:55:02 +01:00
3b720ad9a5 mark test_initialization as flaky in 2 model tests (#27906)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-12-08 14:54:32 +01:00
7f07c356a4 Fix CLAP converting script (#27153)
* update converting script

* make style
2023-12-08 13:48:29 +00:00
b31905d1f6 Fix remaining issues in beam score calculation (#27808)
* Fix issues in add and is_done for BeamHypotheses

* make newly added arguments optional for better compatibility

* Directly use cur_len as generated_len, add note for retrocompatibility

* update test expectation

* make cur_len represents the length of the entire sequence including the decoder prompt

* remove redundant if/else in testing
2023-12-08 14:14:16 +01:00
3ac9945e56 Fix beam score calculation issue for Tensorflow version (#27814)
* Fix beam score calculation issue for tensorflow version

* fix transition score computation error

* make cur_len represent the entire sequence length including decoder prompt
2023-12-08 14:10:13 +01:00
4c5ed1d0c9 fix: non-atomic checkpoint save (#27820) 2023-12-08 14:08:54 +01:00
fe8d1302c7 Added passing parameters to "reduce_lr_on_plateau" scheduler (#27860) 2023-12-08 14:06:10 +01:00
56be5e80e6 Fix: Raise informative exception when prefix_allowed_tokens_fn return empty set of tokens (#27797)
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-12-08 10:25:49 +00:00
307a7d0be8 [⚠️ removed a default argument] Make AttentionMaskConverter compatible with torch.compile(..., fullgraph=True) (#27868)
* remove bugged torch.float32 default

* add test

* fix tests

* fix test

* fix doc
2023-12-08 18:44:47 +09:00
633215ba58 Generate: New Cache abstraction and Attention Sinks support (#26681)
* Draft version of new KV Caching

This should allow Attention Sinks (https://github.com/tomaarsen/attention_sinks)
/ StreamingLLM (https://arxiv.org/abs/2309.17453) to be easily implemented
in a third-party or in transformers directly

* Address numerous PR suggestions

1. Move layer_idx from cache to ...Attention. Removes confusing set_layer_idx magic.
2. Always convert past_key_values to Cache instance at the start of ...Attention, removes all other isinstance calls.
3. Remove __bool__ and __getitem__ magic as they're confusing.
4. past_key_values.update(key, value, idx) now returns key, value.
5. Add use_legacy_cache flag, defaults to None, i.e. Falsey. This breaks generate for now, until 1) the cache is used is generate() or 2) use_legacy_cache is defaulted to True in generate() until we change it in another PR.
6. Separate key_cache and value_cache.

Some work is still needed to see if the SinkCache can conveniently be implemented with just one update method.

* Implement the SinkCache through backward+forward rotations

* Integrate (Sink)Cache with Llama FA2

* Set use_legacy_cache=True as default, allows for test passes

* Move from/to_legacy_cache to ...Model class

* Undo unnecessary newline change

* Remove copy utility from deprecated OpenLlama

* Match import style

* manual rebase with main

* Cache class working with generate (#1)

* Draft version of new KV Caching

This should allow Attention Sinks (https://github.com/tomaarsen/attention_sinks)
/ StreamingLLM (https://arxiv.org/abs/2309.17453) to be easily implemented
in a third-party or in transformers directly

* Address numerous PR suggestions

1. Move layer_idx from cache to ...Attention. Removes confusing set_layer_idx magic.
2. Always convert past_key_values to Cache instance at the start of ...Attention, removes all other isinstance calls.
3. Remove __bool__ and __getitem__ magic as they're confusing.
4. past_key_values.update(key, value, idx) now returns key, value.
5. Add use_legacy_cache flag, defaults to None, i.e. Falsey. This breaks generate for now, until 1) the cache is used is generate() or 2) use_legacy_cache is defaulted to True in generate() until we change it in another PR.
6. Separate key_cache and value_cache.

Some work is still needed to see if the SinkCache can conveniently be implemented with just one update method.

* Integrate (Sink)Cache with Llama FA2

* Move from/to_legacy_cache to ...Model class

* Undo unnecessary newline change

* Match import style

* working generate

* Add tests; Simplify code; Apply changes to Mistral and Persimmon

* fix rebase mess

* a few more manual fixes

* last manual fix

* propagate changes to phi

* upgrade test

* add use_legacy_cache docstring; beef up tests

* reintroduce unwanted deletes

---------

Co-authored-by: Tom Aarsen <Cubiegamedev@gmail.com>

* move import

* add default to model_kwargs.get('use_legacy_cache')

* correct failing test

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* apply PR suggestions

* fix failing test

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Tom Aarsen <37621491+tomaarsen@users.noreply.github.com>

* PR comments

* tmp commit

* add docstrings

* more tests, more docstrings, add to docs

* derp

* tmp commit

* tmp dbg

* more dbg

* fix beam search bug

* cache can be a list of tuples in some models

* fix group beam search

* all but sinkcache integration tests

* fix sink cache and add hard integration test

* now also compatible with input_embeds input

* PR comments

* add Cache support to Phi+FA2

* make fixup

---------

Co-authored-by: Joao Gante <joao@huggingface.co>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-12-08 09:00:17 +01:00
0ea42ef0f9 Translate model_doc files from clip to cpm to JP (#27774)
* Add models

* Add more models

* Update docs/source/ja/model_doc/convnextv2.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/model_doc/convbert.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/model_doc/codegen.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update translation errors and author names

* link update

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-12-07 11:12:24 -08:00
79b79ae2db Updates the distributed CPU training documentation to add instructions for running on a Kubernetes cluster (#27780)
* Updates the Distributed CPU documentation to add a Kubernetes example

* Small edits

* Fixing link

* Adding missing new lines

* Minor edits

* Update to include Dockerfile snippet

* Add comment about tuning env var

* Updates based on review comments
2023-12-07 10:50:45 -08:00
f7595760ed [docs] Custom semantic segmentation dataset (#27859)
* custom dataset

* fix link

* feedback
2023-12-07 10:47:35 -08:00
58e7f9bb2f Generate: All logits processors are documented and have examples (#27796)
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-12-07 15:11:35 +00:00
47500b1d72 Fix TF loading PT safetensors when weights are tied (#27490)
* Un-skip tests

* Add aliasing support to tf_to_pt_weight_rename

* Refactor tf-to-pt weight rename for simplicity

* Patch mobilebert

* Let us pray that the transfo-xl one works

* Add XGLM rename

* Expand the test to see if we can get more models to break

* Expand the test to see if we can get more models to break

* Fix MPNet (it was actually an unrelated bug)

* Fix MPNet (it was actually an unrelated bug)

* Add speech2text fix

* Update src/transformers/modeling_tf_pytorch_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/mobilebert/modeling_tf_mobilebert.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update to always return a tuple from tf_to_pt_weight_rename

* reformat

* Add a couple of missing tuples

* Remove the extra test for tie_word_embeddings since it didn't cause any unexpected failures anyway

* Revert changes to modeling_tf_mpnet.py

* Skip MPNet test and add explanation

* Add weight link for BART

* Add TODO to clean this up a bit

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-12-07 14:28:53 +00:00
9f1f11a2e7 Show new failing tests in a more clear way in slack report (#27881)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-12-07 15:09:30 +01:00
c99f254763 Fix device of masks in tests (#27887)
fix device of mask in tests
2023-12-07 21:34:43 +09:00
fc71e815f6 update version of warning notification for get_default_device to v4.38 (#27848) 2023-12-07 13:25:10 +01:00
5324bf9c07 update create_model_card to properly save peft details when using Trainer with PEFT (#27754)
* update `create_model_card` to properly save peft details when using Trainer with PEFT

* nit

* Apply suggestions from code review

Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>

---------

Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>
2023-12-07 17:36:02 +05:30
52746922b0 Allow # Ignore copy (#27328)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-12-07 10:00:08 +01:00
44b5506d29 [Llava] Add Llava to transformers (#27662)
* add model like

* logits match

* minor fixes

* fixes

* up

* up

* add todo

* llava processor

* keep the processor simple

* add conversion script

* fixup

* fix copies

* up

* add to index

* fix config + logits

* fix

* refactor

* more refactor

* more refactor

* fix copies

* add authors

* v1 tests

* add `LlavaProcessor` in init

* remove unneeded import

* up

* up

* docs

* up

* fix CI

* fix CI

* add attention  mask in test

* make fixup

* remove the vision model

* that' s the dirty way to do it

* nits

* nits

* updates

* add more tests

* add input tests

* fixup

* more styling

* nits

* updates amd cleanup

* fixup the generation expected results

* fix the testing script

* some cleanup and simplification which does not work yet but almost there!

* make correct dispatch operations

* vectorize works for batch of images and text

* last todos

* nits

* update test and modeling code

* remove useless function for now

* fix few issues

* fix generation

* some nits

* add bakllava

* nits

* remove duplicated code

* finis merge

* cleanup

* missed this line

* fill the todos

* add left padding offset

* add left and rignt padding logic

* bool to properly index

* make sure

* more cleanups

* batch is fixed 😉

* add correct device for tensor creation

* fix some dtype missmatch

* ruff

* update conversion script

* Update src/transformers/__init__.py

* fa 2 support + fix conversion script

* more

* correct reshaping

* fix test dict

* fix copies by ignoring

* fix nit

* skip clip vision model

* fixup

* fixup

* LlavaForVisionText2Text -> LlavaForCausalLM

* update

* fix

* raise correct errors

* fix

* docs

* nuke for now

* nits here and there

* fixup

* fix remaining tests

* update LlavaForConditionalGeneration instead of CausalLM

* fixups

* pipeline support

* slow and piepline tests

* supports batch

* nits

* cleanup

* fix first integration tests

* add pad token where needed

* correct etsts

* fixups

* update pipeline testr

* fix quality

* nits

* revert unneeded change

* nit

* use BatchFeature

* from ...feature_extraction_utils import BatchFeature

* nits

* nits

* properly update

* more f*** nits

* fix copies

* comment

* keep slow test slow

* Update src/transformers/models/llava/processing_llava.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* add piepline example

* add pixel values in docstrign

* update pr doctest

* fix

* fix slow tests

* remove hack

* fixup

* small note

* forward contrib credits from PR25789

* forward contrib credits from original implementation and work

* add arthur

* Update src/transformers/models/llava/processing_llava.py

Co-authored-by: Lysandre Debut <hi@lysand.re>

* update docstring

* nit

* move to not doctested because of timeout issues

* fixup

* add description

* more

* fix-copies

* fix docs

* add beam search

* add more comments

* add typehints on processor

* add speedup plot

* update slow tests and docs

* push test

* push batched test

* fix batched generation with different number of images

* remove benchmark due to a bug

* fix test

* fix copies

* add gcolab demo

---------

Co-authored-by: Arthur Zucker <arthur.zucker@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: shauray8 <shauray8@users.noreply.github.com>
Co-authored-by: haotian-liu <haotian-liu@users.noreply.github.com>
Co-authored-by: Lysandre Debut <hi@lysand.re>
2023-12-07 09:30:47 +01:00
0410a29a2d fix: fix gradient accumulate step for learning rate (#27667) 2023-12-07 07:59:26 +01:00
f84d85ba67 [FA-2] Add Flash Attention to Phi (#27661)
* add FA and modify doc file

* test_flash_attn_2_generate_padding_right test overwritten

* comment

* modify persimmon modeling file

* added speedup graph

* more changes
2023-12-07 07:57:48 +01:00
06f561687c [i18n-fr] Translate autoclass tutorial to French (#27659)
* Translation of autoclass tutorial

* Update totree to keep only tutorial section

* Translate title toctree

* Fix typos

* Update review comments
2023-12-07 07:44:14 +01:00
4d806dba8c Fix bug of _prepare_4d_attention_mask (#27847)
* use _prepare_4d_attention_mask

* fix comment
2023-12-07 07:43:04 +01:00
75336c1794 Add Llama Flax Implementation (#24587)
* Copies `modeling_flax_gpt_neo.py` to start

* MLP Block. WIP Attention and Block

* Adds Flax implementation of `LlamaMLP`
Validated with in-file test.
Some slight numeric differences, but assuming it isn't an issue

* Adds `FlaxLlamaRMSNorm` layer
`flax.linen` includes `RMSNorm` layer but not necessarily in all
versions. Hence, we add in-file.

* Adds FlaxLlamaAttention
Copied from GPT-J as it has efficient caching implementation as well as
rotary embeddings.
Notice numerically different, but not by a huge amount. Needs
investigating

* Adds `FlaxLlamaDecoderLayer`
numerically inaccurate, debugging..

* debugging rotary mismatch
gptj uses interleaved whilst llama uses contiguous
i think they match now but still final result is wrong.
maybe drop back to just debugging attention layer?

* fixes bug with decoder layer
still somewhat numerically inaccurate, but close enough for now

* adds markers for what to implement next
the structure here diverges a lot from the PT version.
not a big fan of it, but just get something working for now

* implements `FlaxLlamaBlockCollection`]
tolerance must be higher than expected, kinda disconcerting

* Adds `FlaxLlamaModule`
equivalent PyTorch model is `LlamaModel`
yay! a language model🤗

* adds `FlaxLlamaForCausalLMModule`
equivalent to `LlamaForCausalLM`
still missing returning dict or tuple, will add later

* start porting pretrained wrappers
realised it probably needs return dict as a prereq

* cleanup, quality, style

* readds `return_dict` and model output named tuples

* (tentatively) pretrained wrappers work 🔥

* fixes numerical mismatch in `FlaxLlamaRMSNorm`
seems `jax.lax.rsqrt` does not match `torch.sqrt`.
manually computing `1 / jax.numpy.sqrt` results in matching values.

* [WIP] debugging numerics

* numerical match
I think issue was accidental change of backend. forcing CPU fixes test.
We expect some mismatch on GPU.

* adds in model and integration tests for Flax Llama
summary of failing:
- mul invalid combination of dimensions
- one numerical mismatch
- bf16 conversion (maybe my local backend issue)
- params are not FrozenDict

* adds missing TYPE_CHECKING import and `make fixup`

* adds back missing docstrings
needs review on quality of docstrings, not sure what is required.
Furthermore, need to check if `CHECKPOINT_FOR_DOC` is valid. See TODO

* commenting out equivalence test as can just use common

* debugging

* Fixes bug where mask and pos_ids were swapped in pretrained models
This results in all tests passing now 🔥

* cleanup of modeling file

* cleanup of test file

* Resolving simpler review comments

* addresses more minor review comments

* fixing introduced pytest errors from review

* wip additional slow tests

* wip tests
need to grab a GPU machine to get real logits for comparison
otherwise, slow tests should be okay

* `make quality`, `make style`

* adds slow integration tests
- checking logits
- checking hidden states
- checking generation outputs

* `make fix-copies`

* fix mangled function following `make fix-copies`

* adds missing type checking imports

* fixes missing parameter checkpoint warning

* more finegrained 'Copied from' tags
avoids issue of overwriting `LLAMA_INPUTS_DOCSTRING`

* swaps import guards
??? how did these get swapped initially?

* removing `inv_freq` again as pytorch version has now removed

* attempting to get CI to pass

* adds doc entries for llama flax models

* fixes typo in __init__.py imports

* adds back special equivalence tests
these come from the gpt neo flax tests. there is special behaviour for these models that needs to override the common version

* overrides tests with dummy to see if CI passes
need to fill in these tests later

* adds my contribution to docs

* `make style; make quality`

* replaces random masking with fixed to work with flax version

* `make quality; make style`

* Update src/transformers/models/llama/modeling_flax_llama.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Update src/transformers/models/llama/modeling_flax_llama.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Update src/transformers/models/llama/modeling_flax_llama.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Update src/transformers/models/llama/modeling_flax_llama.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Update src/transformers/models/llama/modeling_flax_llama.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Update src/transformers/models/llama/modeling_flax_llama.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* updates `x`->`tensor` in `rotate_half`

* addresses smaller review comments

* Update docs/source/en/model_doc/llama.md

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* adds integration test class

* adds `dtype` to rotary embedding to cast outputs

* adds type to flax llama rotary layer

* `make style`

* `make fix-copies`

* Apply suggestions from code review

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* applies suggestions from review

* Update modeling_flax_llama.py

* `make fix-copies`

* Update tests/models/llama/test_modeling_llama.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Update src/transformers/models/llama/modeling_flax_llama.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* fixes shape mismatch in FlaxLlamaMLP

* applies some suggestions from reviews

* casts attn output logits to f32 regardless of dtype

* adds attn bias using `LlamaConfig.attention_bias`

* adds Copied From comments to Flax Llama test

* mistral and persimmon test change -copy from llama

* updates docs index

* removes Copied from in tests

it was preventing `make fix-copies` from succeeding

* quality and style

* ignores FlaxLlama input docstring

* adds revision to `_CHECKPOINT_FOR_DOC`

* repo consistency and quality

* removes unused import

* removes copied from from Phi test

now diverges from llama tests following FlaxLlama changes

* adds `_REAL_CHECKPOINT_FOR_DOC`

* removes refs from pr tests

* reformat to make ruff happy

---------

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
2023-12-07 07:05:00 +01:00
7fc80724da Fix beam score calculation issue for JAX version (#27816)
* Fix beam score calculation issue for JAX

* Fix abstract tracer value errors
2023-12-07 06:34:18 +01:00
9660e27cd0 Translating en/model_doc folder docs to Japanese(from blip to clap) 🇯🇵 (#27673)
* Add models

* Add models and update `_toctree.yml`

* Update docs/source/ja/model_doc/chinese_clip.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/model_doc/camembert.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/model_doc/bros.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/model_doc/bros.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/model_doc/blip-2.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/model_doc/camembert.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* solve merge conflicts and update paper titles

* Update docs/source/ja/model_doc/bridgetower.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/model_doc/canine.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/model_doc/chinese_clip.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update the authons name in bros..md

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-12-06 10:38:21 -08:00
9270ab0827 [Flash Attention 2] Add flash attention 2 for GPT-Neo-X (#26463)
* add flash-attn-2 support for GPT-neo-x

* fixup

* add comment

* revert

* fixes

* update docs

* comment

* again

* fix copies

* add plot + fix copies

* Update docs/source/en/model_doc/gpt_neox.md
2023-12-06 17:22:32 +01:00
87714b3d11 Avoid class attribute _keep_in_fp32_modules being modified (#27867)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-12-06 17:19:44 +01:00
d6392482bd removed the delete doc workflows (#27852) 2023-12-06 01:30:56 -08:00
acd653164b Update CUDA versions for DeepSpeed (#27853)
* Update CUDA versions

* For testing

* Allow for workflow dispatch

* Use newer image

* Revert workflow

* Revert workflow

* Push

* Other docker image
2023-12-05 16:15:21 -05:00
ba52dec47f [Docs] Update broken image on fused modules (#27856)
Update quantization.md
2023-12-05 12:33:58 -08:00
da1d0d404f Documentation: Spanish translation of perplexity.mdx (#27807)
* Copy perplexity.md file to es/ folder

* Adding perplexity to es/_toctree.yml

* Translate first section

* Calculating PPL section translate

* Example section translate

* fix translate of log-likehood

* Fix title translate

* Fix \ in second paragraph

* Change verosimilitud for log-likelihood

* Run 'make style'
2023-12-05 10:53:55 -08:00
788730c670 fix(whisper): mutable generation config (#27833) 2023-12-05 19:01:07 +01:00
ac975074e6 Update VitDetModelTester.get_config to use pretrain_image_size (#27831)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-12-05 16:33:27 +01:00
28e2887a1a ⚠️ [VitDet] Fix test (#27832)
Address test
2023-12-05 16:32:43 +01:00
b242d0f297 [Time series] Add PatchTSMixer (#26247)
* patchtsmixer initial commit

* x,y->context_values,target_values, unittest addded

* cleanup code

* minor

* return hidden states

* model tests, partial integration tests

* ettm notebook temporary

* minor

* config mask bug fix, tests updated

* final ETT notebooks

* add selfattn

* init

* added docstrings

* PatchTSMixerForPretraining -> PatchTSMixerForMaskPretraining

* functionality tests added

* add start and input docstrings

* docstring edits

* testcase edits

* minor changes

* docstring error fixed

* ran make fixup

* finalize integration tests and docs

* minor

* cleaned gitignore

* added dataclass decorator, ran black formatter

* ran ruff

* formatting

* add slow decorator

* renamed in_Channel to input_size and default to 1

* shorten dataclass names

* use smaller model for testing

* moved the 3 heads to the modeling file

* use scalers instead of revin

* support forecast_channel_indices

* fix regression scaling

* undo reg. scaling

* removed unneeded classes

* forgot missing

* add more layers

* add copied positional_encoding

* use patchmask from patchtst

* removed dependency on layers directory

* formatting

* set seed

* removed unused imports

* fixed forward signature test

* adding distributional head for PatchTSMixerForecasting

* add generate to forecast

* testcases for generate

* add generate and distributional head for regression

* raise Exception for negative values for neg binominal distribution

* formatting changes

* remove copied from patchtst and add TODO for test passing

* make copies

* doc edits

* minor changes

* format issues

* minor changes

* minor changes

* format docstring

* change some class names to PatchTSMixer + class name

Transpose to PatchTSMixerTranspose
GatedAttention to PatchTSMixerGatedAttention

* change NormLayer to PatchTSMixerNormLayer

* change MLP to PatchTSMixerMLP

* change PatchMixer to PatchMixerBlock, FeatureMixer to FeatureMixerBlock

* change ChannelFeatureMixer to ChannelFeatureMixerBlock

* change PatchMasking to PatchTSMixerMasking

* change Patchify to PatchTSMixerPatchify

* list to `list`

* fix docstrings

* formatting

* change bs to batch_size, edit forecast_masking

* edit random_masking

* change variable name and update docstring in PatchTSMixerMasking

* change variable name and update docstring in InjectScalerStatistics4D

* update forward call in PatchTSMixerTranspose

* change variable name and update docstring in PatchTSMixerNormLayer

* change variable name and update docstring in PatchTSMixerMLP

* change variable name and update docstring in ChannelFeatureMixerBlock

* formatting

* formatting issues

* docstring issue

* fixed observed_mask type in docstrings

* use FloatTensor type

* formatting

* fix rescaling issue in forecasting, fixed integration tests

* add docstring from decorator

* fix docstring

* Update README.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/patchtsmixer/configuration_patchtsmixer.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/patchtsmixer/modeling_patchtsmixer.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/patchtsmixer/configuration_patchtsmixer.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/patchtsmixer/modeling_patchtsmixer.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* PatchTSMixerChannelFeatureMixerBlock

* formatting

* ForPretraining

* use num_labels instead of n_classes

* remove commented out code

* docstring fixed

* nn.functional used instead of one letter F

* x_tmp renamed

* one letter variable x removed from forward calls

* one letter variable y removed

* remove commented code

* rename patch_size, in_channels, PatchTSMixerBackbone

* add config to heads

* add config to heads tests

* code reafactoring to use config instead of passing individual params

* Cdocstring fixes part 1

* docstring fixes part 2

* removed logger.debug

* context_values -> past_values

* formatting changes

* pe -> positional_encoding

* removed unused target variable

* self.mode logic fixed

* formatting change

* edit docstring and var name

* change n_targets to num_targets

* rename input_size to num_input_channels

* add head names with prefix PatchTSMixer

* edit docstring in PatchTSMixerForRegression

* fix var name change in testcases

* add PatchTSMixerAttention

* return dict for all exposed classes, test cases added

* format

* move loss function to forward call

* make style

* adding return dict/tuple

* make repo-consistency

* remove flatten mode

* code refactoring

* rename data

* remove PatchTSMixer and keep only PatchTSMixerEncoder

* docstring fixes

* removed unused code

* format

* format

* remove contiguous and formatting changes

* remove model description from config

* replace asserts with ValueError

* remove nn.Sequential from PatchTSMixerNormLayer

* replace if-else with map

* remove all nn.Sequential

* format

* formatting

* fix gradient_checkpointing error after merge, and formatting

* make fix-copies

* remove comments

* reshape

* doesnt support gradient checkpointing

* corect Patchify

* masking updates

* batchnorm copy from

* format checks

* scaler edits

* remove comments

* format changes

* remove self.config

* correct class PatchTSMixerMLP(nn.Module):

* makr fix

* doc updates

* fix-copies

* scaler class correction

* doc edits

* scaler edits

* update readme with links

* injectstatistics add

* fix-copies

* add norm_eps option to LayerNorm

* format changes

* fix copies

* correct make copies

* use parametrize

* fix doc string

* add docs to toctree

* make style

* doc segmenting

* docstring edit

* change forecast to prediction

* edit doc

* doc edits

* remove PatchTSMixerTranspose

* add PatchTSMixerPositionalEncoding and init position_enc

* remove positional_encoding

* edit forecast_masking, remove forecast_mask_ratios

* fix broken code

* var rename target_values -> future_values

* num_features -> d_model

* fix broken code after master merge

* repo consistency

* use postional embedding

* prediction_logits -> prediction_outputs, make fix-copies

* uncommented @slow

* minor changes

* loss first in tuple

* tuple and dict same ordering

* style edits

* minor changes

* dict/tuple consistent enablement

* Update src/transformers/models/patchtsmixer/modeling_patchtsmixer.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update tests/models/patchtsmixer/test_modeling_patchtsmixer.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/patchtsmixer/modeling_patchtsmixer.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fix formatting

* formatting

* usage tip

* test on cpu only

* add sample usage

* change PatchTSMixerForClassification to PatchTSMixerForTimeSeriesClassification

* push changes

* fix copies

* std scaling set to default True case

* minor changes

* stylechanges

---------

Co-authored-by: Arindam Jati <arindam.jati@ibm.com>
Co-authored-by: vijaye12 <vijaye12@in.ibm.com>
Co-authored-by: Kashif Rasul <kashif.rasul@gmail.com>
Co-authored-by: nnguyen <nnguyen@us.ibm.com>
Co-authored-by: vijaye12 <vijaykr.e@gmail.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Nam Nguyen <namctin@gmail.com>
Co-authored-by: Wesley Gifford <79663411+wgifford@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-12-05 15:31:35 +01:00
e5c12c03b7 Move tensors to same device to enable IDEFICS naive MP training (#27746) 2023-12-05 15:06:46 +01:00
3e68944cc4 [ClipVision] accelerate support for clip-vision (#27851)
support accelerate for clip-vision
2023-12-05 14:04:20 +01:00
b7e6d120c1 Generate: Update VisionEncoderDecoder test value (#27850)
update test result, due to bug fix in decoder-only beam search
2023-12-05 11:26:59 +00:00
fdb85be40f Faster generation using AWQ + Fused modules (#27411)
* v1 fusing modules

* add fused mlp support

* up

* fix CI

* block save_pretrained

* fixup

* small fix

* add new condition

* add v1 docs

* add some comments

* style

* fix nit

* adapt from suggestion

* add check

* change arg names

* change variables name

* Update src/transformers/integrations/awq.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* style

* split up into 3 different private methods

* more conditions

* more checks

* add fused tests for custom models

* fix

* fix tests

* final update docs

* final fixes

* fix importlib metadata

* Update src/transformers/utils/quantization_config.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* change it to `do_fuse`

* nit

* Update src/transformers/utils/quantization_config.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* Update src/transformers/utils/quantization_config.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* Update src/transformers/utils/quantization_config.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* few fixes

* revert

* fix test

* fix copies

* raise error if model is not quantized

* add test

* use quantization_config.config when fusing

* Update src/transformers/modeling_utils.py

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2023-12-05 12:14:45 +01:00
df40edfb00 Make image processors more general (#27690)
* Make image processors more general

* Add backwards compatibility for KOSMOS-2

* Remove use_square_size everywhere

* Remove script
2023-12-05 10:45:39 +01:00
96f9caa10b pin ruff==0.1.5 (#27849)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-12-05 10:17:23 +01:00
235e5d4991 Translate en/tasks folder docs to Japanese 🇯🇵 (#27098)
* Create asr.md

* Create audio_classification.md

* Create document_question_answering.md

* Update document_question_answering.md

* add

* add

* ggg

* gg

* add masked_language_modeling.md

* add monocular_depth estimation

* new

* dd

* add

* add

* cl

* add

* Add Traslation.md

* hgf

* Added docs to Toctree file

* Update docs/source/ja/tasks/asr.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/tasks/asr.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/tasks/image_classification.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/tasks/idefics.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/tasks/image_captioning.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Fix docs and revert changes

* Update docs/source/en/tasks/idefics.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/tasks/language_modeling.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/tasks/language_modeling.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/tasks/language_modeling.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/tasks/prompting.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/tasks/masked_language_modeling.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/tasks/masked_language_modeling.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/tasks/prompting.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/tasks/object_detection.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/tasks/semantic_segmentation.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/tasks/semantic_segmentation.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/tasks/token_classification.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/tasks/translation.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/tasks/visual_question_answering.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/tasks/summarization.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* changes in review 1 and 2

* add

* Update docs/source/ja/tasks/asr.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/tasks/translation.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* changes

* Update docs/source/ja/_toctree.yml

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/_toctree.yml

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/_toctree.yml

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update _toctree.yml

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-12-04 14:10:54 -08:00
a502b0d427 translate internal folder files to chinese (#27638)
* translate

* update

* update

---------

Co-authored-by: jiaqiw <wangjiaqi50@huawei.com>
2023-12-04 10:04:28 -08:00
3c15fd1990 [Seamless v2] Add FE to auto mapping (#27829) 2023-12-04 16:34:13 +00:00
1d63b0ec36 Disallow pickle.load unless TRUST_REMOTE_CODE=True (#27776)
* fix

* fix

* Use TRUST_REMOTE_CODE

* fix doc

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-12-04 16:48:37 +01:00
e0d2e69582 restructure AMD scheduled CI (#27743)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-12-04 15:32:05 +01:00
e739a361bc single word should be set to False (#27738) 2023-12-04 14:56:51 +01:00
2b5d5ead53 [Hot-Fix][XLA] Re-enable broken _tpu_save for XLATensors (#27799)
* [XLA] Re-enable broken _tpu_save for XLATensors, by explicitly moving to cpu

* linter-fix
2023-12-04 14:56:00 +01:00
1da1302ec8 Flash Attention 2 support for RoCm (#27611)
* support FA2

* fix typo

* fix broken tests

* fix more test errors

* left/right

* fix bug

* more test

* typo

* fix layout flash attention falcon

* do not support this case

* use allclose instead of equal

* fix various bugs with flash attention

* bump

* fix test

* fix mistral

* use skiptest instead of return that may be misleading

* add fix causal arg flash attention

* fix copies

* more explicit comment

* still use self.is_causal

* fix causal argument

* comment

* fixes

* update documentation

* add link

* wrong test

* simplify FA2 RoCm requirements

* update opt

* make flash_attn_uses_top_left_mask attribute private and precise comment

* better error handling

* fix copy & mistral

* Update src/transformers/modeling_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/modeling_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/modeling_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/utils/import_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* use is_flash_attn_greater_or_equal_2_10 instead of is_flash_attn_greater_or_equal_210

* fix merge

* simplify

* inline args

---------

Co-authored-by: Felix Marty <felix@hf.co>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-12-04 21:52:17 +09:00
4d4febb7aa Added test cases for rembert refering to albert and reformer test_tok… (#27637)
* Added test cases for rembert refering to albert and reformer test_tokenization

* removed CURL_CA_BUNDLE='

* Added flag test_sentencepiece_ignore_case and space_between_special_tokens to True

* Overrided test_added_tokens_serialization

* As slow->fast token failed due to the different initialization for [MASK]  for slow and fast, Therefore it required to make the initialization for [MASK] token uniform between fast and slow token

* Added few more test cases in test_encode_decode_round_trip and modefied the slow token (mask_token) to  have AddedToken instance with lstrip=True

* Added few test cases in test_encoder_decoder round trip and also modified slow tokenizer of rembert to have mask_token as AddedToken with lstrip = True

* Cleaned the code and added  fmt: skip to avoid line breaks after make style +  added comments to indicate from the copied test cases

* Corrected few comments

* Fixed quality issue

* Ran fix-copies

* Fixed few minor issues as (make fix-copies) broke few test cases while stripping the text

* Reverted the changes made by repo-consistancy

---------

Co-authored-by: Kokane <kokanen@apac.corpdir.net>
2023-12-04 13:36:57 +01:00
a0f7c4a43d [Whisper] Fix doctest in timestamp logits processor (#27795) 2023-12-04 11:48:21 +00:00
ede09d671d [Seamless v1] Link to v2 docs (#27827) 2023-12-04 11:47:54 +00:00
facc66457e Keypoints 0.0 are confusing ../transformers/models/detr/image_processing_detr.py which are fixed (#26250)
* Keypoints 0.0 is fixed

* fixed keypoints for image_processing_yolos

* fixed keypoints for image_processing_deta

* fixed keypoints for image_processing_deformable_detr

* fixed keypoints for image_processing_conditional_detr

* fixed styles

* Removed Comments

* Removed comment form conditional detr too

* Removed Extra code

* make fix-copes

* Fixed code quality

* keypoints changes
2023-12-04 10:29:12 +01:00
73893df864 Fix Owlv2ModelIntegrationTest::test_inference_object_detection (#27793)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-12-04 09:45:22 +01:00
5a551df92b Fix TvpModelIntegrationTests (#27792)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-12-04 09:40:42 +01:00
c0b9db0914 [ModelOnTheFlyConversionTester] Mark as slow for now (#27823)
* mark test as slow for now

* style
2023-12-04 08:33:15 +01:00
269078a7eb Add persistent_workers parameter to TrainingArguments (#27189)
added param

Co-authored-by: Ilya Fedorov <ilyaf@nvidia.com>
2023-12-04 07:43:32 +01:00
a2b1e1df49 Fix typo in max_length deprecation warnings (#27788) 2023-12-04 07:41:50 +01:00
7edf8bfafd Improve forward signature test (#27729)
* First draft

* Extend test_forward_signature

* Update tests/test_modeling_common.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Revert suggestion

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-12-04 07:38:22 +01:00
bcd0a91a01 [JAX] Replace uses of jax.devices("cpu") with jax.local_devices(backend="cpu") (#27593)
An upcoming change to JAX will include non-local (addressable) CPU devices in jax.devices() when JAX is used multicontroller-style, where there are multiple Python processes.

This change preserves the current behavior by replacing uses of jax.devices("cpu"), which previously only returned local devices, with jax.local_devices("cpu"), which will return local devices both now and in the future.

This change is always safe (i.e., it should always preserve the previous behavior), but it may sometimes be unnecessary if code is never used in a multicontroller setting.

Co-authored-by: Peter Hawkins <phawkins@google.com>
2023-12-04 07:36:29 +01:00
2c658b5a42 [MusicGen] Fix audio channel attribute (#27440)
[MusicGen] Fix mono logit test
2023-12-01 17:10:03 +00:00
abd4cbd775 Better error message for bitsandbytes import (#27764)
* better error message

* fix logic

* fix log
2023-12-01 11:59:14 -05:00
7b6324e18e Make using safetensors files automated. (#27571)
* [WIP] Make using safetensors files automated.

If `use_safetensors=True` is used, and it doesn't exist:

- Don't crash just yet
- Lookup for an open PR containing it.
- If yes, use that instead
- If not, touch the space to convert, wait for conversion to be finished
  and the PR to be opened
- Use that new PR
- Profit.

* Remove the token.

* [Auto Safetensors] Websocket -> SSE (#27656)

* Websocket -> SSE

* Support sharded + tests +cleanup

a

* env var

* Apply suggestions from code review

* Thanks Simon

* Thanks Wauplin

Co-authored-by: Wauplin <lucainp@gmail.com>

* Cleanup

* Update tests

* Tests should pass

* Apply to other tests

* Extend extension

* relax requirement on latest hfh

* Revert

* Correct private handling & debug statements

* Skip gated repos as of now

* Address review comments

Co-authored-by: ArthurZucker <arthur.zucker@gmail.com>

---------

Co-authored-by: Lysandre Debut <hi@lysand.re>
Co-authored-by: Lysandre <lysandre@huggingface.co>
Co-authored-by: Wauplin <lucainp@gmail.com>
Co-authored-by: Lysandre <lysandre.debut@reseau.eseo.fr>
Co-authored-by: ArthurZucker <arthur.zucker@gmail.com>
2023-12-01 15:51:10 +01:00
95900916ab Fixes for PatchTST Config (#27777)
* Remove config reference and pass num_patches for PatchTSTforPrediction

* ensure return_dict is properly set

---------

Co-authored-by: Wesley M. Gifford <wmgifford@us.ibm.com>
2023-12-01 14:57:50 +01:00
cf62539a29 [i18n-fr] Translate installation to French (#27657)
* partial traduction of installation

* Finish translation of installation

* Update installation.mdx

* Rename installation.mdx to installation.md

* Typos

* Update docs/source/fr/installation.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update docs/source/fr/installation.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update docs/source/fr/installation.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update docs/source/fr/installation.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update docs/source/fr/installation.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update docs/source/fr/installation.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update docs/source/fr/installation.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update docs/source/fr/installation.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update docs/source/fr/installation.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update docs/source/fr/installation.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Address review comments

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-12-01 14:00:07 +01:00
0ad4e7e6da [SeamlessM4Tv2] Fix links in README (#27782)
Fix typo in README
2023-12-01 10:39:33 +01:00
9ddbb696d2 Fix unsupported setting of self._n_gpu in training_args on XPU devices (#27716)
change xpu _n_gpu = 1
2023-12-01 10:34:15 +01:00
29f1aee3b6 Add SeamlessM4T v2 (#27779)
* add working convertion script

* first non-working version of modeling code

* update modeling code (working)

* make style

* make fix-copies

* add config docstrings

* add config to ignore docstrings formatage due to unconventional markdown

* fix copies

* fix generation num_return_sequences

* enrich docs

* add and fix tests beside integration tests

* update integration tests

* update repo id

* add tie weights and make style

* correct naming in .md

* fix imports and so on

* correct docstrings

* fix fp16 speech forward

* fix speechencoder attention

* make style

* fix copied from

* rename SeamlessM4Tv2-v2 to SeamlessM4Tv2

* Apply suggestions on configuration

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* remove useless public models

* fix private models + better naming for T2U models

* clean speech encoder relative position embeddings

* refactor chunk attention

* add docstrings to chunk attention method

* improve naming and docstrings

* rename some attention variables + add temperature sampling in T2U model

* rename DOCSTRINGS variable names

* make style + remove 2 useless config parameters

* enrich model card

* remove any attention_head reference + fix temperature in T2U

* new fmt and make style

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* rename spkr_id->speaker_id and change docstrings of get_char_input_ids

* simplify v2attention

* make style

* Update seamless_m4t_v2.md

* update code and tests with last update

* update repo ids

* fill article name, abstract andauthors

* update not_doctested and slow_doc tests

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-11-30 20:24:43 +01:00
510270af34 Generate: GenerationConfig throws an exception when generate args are passed (#27757) 2023-11-30 14:16:31 +00:00
fe41647afc uses dvclive_test mode in examples/pytorch/test_accelerate_examples.py (#27763) 2023-11-30 14:52:03 +01:00
62ab32b299 Remove check_runner_status.yml (#27767)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-11-30 10:17:25 +01:00
083e36923a Fix precision errors from casting rotary parameters to FP16 with AMP (#27700)
* Update modeling_llama.py

* Update modeling_open_llama.py

* Update modeling_gpt_neox.py

* Update modeling_mistral.py

* Update modeling_persimmon.py

* Update modeling_phi.py

* Update modeling_falcon.py

* Update modeling_gpt_neox_japanese.py
2023-11-29 16:30:49 +01:00
af8acc4760 [Time series] Add patchtst (#27581)
* add distribution head to forecasting

* formatting

* Add generate function for forecasting

* Add generate function to prediction task

* formatting

* use argsort

* add past_observed_mask ordering

* fix arguments

* docs

* add back test_model_outputs_equivalence test

* formatting

* cleanup

* formatting

* use ACT2CLS

* formatting

* fix add_start_docstrings decorator

* add distribution head and generate function to regression task

add distribution head and generate function to regression task. Also made add PatchTSTForForecastingOutput,  PatchTSTForRegressionOutput.

* add distribution head and generate function to regression task

add distribution head and generate function to regression task. Also made add PatchTSTForForecastingOutput,  PatchTSTForRegressionOutput.

* fix typos

* add forecast_masking

* fixed tests

* use set_seed

* fix doc test

* formatting

* Update docs/source/en/model_doc/patchtst.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* better var names

* rename PatchTSTTranspose

* fix argument names and docs string

* remove compute_num_patches and unused class

* remove assert

* renamed to PatchTSTMasking

* use num_labels for classification

* use num_labels

* use default num_labels from super class

* move model_type after docstring

* renamed PatchTSTForMaskPretraining

* bs -> batch_size

* more review fixes

* use hidden_state

* rename encoder layer and block class

* remove commented seed_number

* edit docstring

* Add docstring

* formatting

* use past_observed_mask

* doc suggestion

* make fix-copies

* use Args:

* add docstring

* add docstring

* change some variable names and add PatchTST before some class names

* formatting

* fix argument types

* fix tests

* change x variable to patch_input

* format

* formatting

* fix-copies

* Update tests/models/patchtst/test_modeling_patchtst.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* move loss to forward

* Update src/transformers/models/patchtst/modeling_patchtst.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/patchtst/modeling_patchtst.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/patchtst/modeling_patchtst.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/patchtst/modeling_patchtst.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/patchtst/modeling_patchtst.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* formatting

* fix a bug when pre_norm is set to True

* output_hidden_states is set to False as default

* set pre_norm=True as default

* format docstring

* format

* output_hidden_states is None by default

* add missing docs

* better var names

* docstring: remove default to False in output_hidden_states

* change labels name to target_values in regression task

* format

* fix tests

* change to forecast_mask_ratios and random_mask_ratio

* change mask names

* change future_values to target_values param in the prediction class

* remove nn.Sequential and make PatchTSTBatchNorm class

* black

* fix argument name for prediction

* add output_attentions option

* add output_attentions to PatchTSTEncoder

* formatting

* Add attention output option to all classes

* Remove PatchTSTEncoderBlock

* create PatchTSTEmbedding class

* use config in PatchTSTPatchify

* Use config in PatchTSTMasking class

* add channel_attn_weights

* Add PatchTSTScaler class

* add output_attentions arg to test function

* format

* Update doc with image patchtst.md

* fix-copies

* rename Forecast <-> Prediction

* change name of a few parameters to match with PatchTSMixer.

* Remove *ForForecasting class to match with other time series models.

* make style

* Remove PatchTSTForForecasting in the test

* remove PatchTSTForForecastingOutput class

* change test_forecast_head to test_prediction_head

* style

* fix docs

* fix tests

* change num_labels to num_targets

* Remove PatchTSTTranspose

* remove arguments in PatchTSTMeanScaler

* remove arguments in PatchTSTStdScaler

* add config as an argument to all the scaler classes

* reformat

* Add norm_eps for batchnorm and layernorm

* reformat.

* reformat

* edit docstring

* update docstring

* change variable name pooling to pooling_type

* fix output_hidden_states as tuple

* fix bug when calling PatchTSTBatchNorm

* change stride to patch_stride

* create PatchTSTPositionalEncoding class and restructure the PatchTSTEncoder

* formatting

* initialize scalers with configs

* edit output_hidden_states

* style

* fix forecast_mask_patches doc string

* doc improvements

* move summary to the start

* typo

* fix docstring

* turn off masking when using prediction, regression, classification

* return scaled output

* adjust output when using distribution head

* remove _num_patches function in the config

* get config.num_patches from patchifier init

* add output_attentions docstring, remove tuple in output_hidden_states

* change SamplePatchTSTPredictionOutput and SamplePatchTSTRegressionOutput to SamplePatchTSTOutput

* remove print("model_class: ", model_class)

* change encoder_attention_heads to num_attention_heads

* change norm to norm_layer

* change encoder_layers to num_hidden_layers

* change shared_embedding to share_embedding, shared_projection to share_projection

* add output_attentions

* more robust check of norm_type

* change dropout_path to path_dropout

* edit docstring

* remove positional_encoding function and add _init_pe in PatchTSTPositionalEncoding

* edit shape of cls_token and initialize it

* add a check on the num_input_channels.

* edit head_dim in the Prediction class to allow the use of cls_token

* remove some positional_encoding_type options, remove learn_pe arg, initalize pe

* change Exception to ValueError

* format

* norm_type is "batchnorm"

* make style

* change cls_token shape

* Change forecast_mask_patches to num_mask_patches. Remove forecast_mask_ratios.

* Bring PatchTSTClassificationHead on top of PatchTSTForClassification

* change encoder_ffn_dim to ffn_dim and edit the docstring.

* update variable names to match with the config

* add generation tests

* change num_mask_patches to num_forecast_mask_patches

* Add examples explaining the use of these models

* make style

* Revert "Revert "[time series] Add PatchTST (#25927)" (#27486)"

This reverts commit 78f6ed6c70b29c1560780e3869a7ad4c6b3d2710.

* make style

* fix default std scaler's minimum_scale

* fix docstring

* close code blocks

* Update docs/source/en/model_doc/patchtst.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/patchtst/test_modeling_patchtst.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/patchtst/modeling_patchtst.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/patchtst/configuration_patchtst.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/patchtst/modeling_patchtst.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/patchtst/modeling_patchtst.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/patchtst/modeling_patchtst.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/patchtst/modeling_patchtst.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/patchtst/modeling_patchtst.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/patchtst/modeling_patchtst.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/patchtst/modeling_patchtst.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* fix tests

* add add_start_docstrings

* move examples to the forward's docstrings

* update prepare_batch

* update test

* fix test_prediction_head

* fix generation test

* use seed to create generator

* add output_hidden_states and config.num_patches

* add loc and scale args in PatchTSTForPredictionOutput

* edit outputs if if not return_dict

* use self.share_embedding to check instead checking type.

* remove seed

* make style

* seed is an optional int

* fix test

* generator device

* Fix assertTrue test

* swap order of items in outputs when return_dict=False.

* add mask_type and random_mask_ratio to unittest

* Update modeling_patchtst.py

* add add_start_docstrings for regression model

* make style

* update model path

* Edit the ValueError comment in forecast_masking

* update examples

* make style

* fix commented code

* update examples: remove config from from_pretrained call

* Edit example outputs

* Set default target_values to None

* remove config setting in regression example

* Update configuration_patchtst.py

* Update configuration_patchtst.py

* remove config from examples

* change default d_model and ffn_dim

* norm_eps default

* set has_attentions to Trye and define self.seq_length = self.num_patche

* update docstring

* change variable mask_input to do_mask_input

* fix blank space.

* change logger.debug to logger.warning.

* remove unused PATCHTST_INPUTS_DOCSTRING

* remove all_generative_model_classes

* set test_missing_keys=True

* remove undefined params in the docstring.

---------

Co-authored-by: nnguyen <nnguyen@us.ibm.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Nam Nguyen <namctin@gmail.com>
Co-authored-by: Wesley Gifford <79663411+wgifford@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-11-29 13:36:38 +01:00
bd50402b56 [docs] Quantization (#27641)
* first draft

* benchmarks

* feedback
2023-11-28 08:41:47 -08:00
f2ad4b537b Docs: Fix broken cross-references, i.e. ~transformer. -> ~transformers. (#27740)
~transformer. -> ~transformers.
2023-11-28 08:40:44 -08:00
dfbd209c25 CLVP Fixes (#27547)
* fixes

* more fixes

* style fix

* more fix

* comments
2023-11-28 17:40:01 +01:00
30e92ea323 Trigger corresponding pipeline tests if tests/utils/tiny_model_summary.json is modified (#27693)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-11-28 17:21:21 +01:00
0b9c934575 Enforce pin memory disabling when using cpu only (#27745)
if use_cpu: dataloader_pin_memory = False
2023-11-28 17:03:07 +01:00
fdd86eed3b Add madlad-400 MT models (#27471)
* Add madlad-400 models

* Add madlad-400 to the doc table

* Update docs/source/en/model_doc/madlad-400.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Fill missing details in documentation

* Update docs/source/en/model_doc/madlad-400.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Do not doctest madlad-400

Tests are timing out.

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-11-28 13:19:50 +00:00
6336a7f7d6 Log a warning in TransfoXLTokenizer.__init__ (#27721)
* log

* log

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-11-28 10:44:04 +01:00
93170298d1 Update tiny model creation script (#27674)
update

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-11-28 10:05:34 +01:00
1fb3c23b41 Add BeitBackbone (#25952)
* First draft

* Add backwards compatibility

* More improvements

* More improvements

* Improve error message

* Address comment

* Add conversion script

* Fix style

* Update code snippet

* Adddress comment

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-11-28 08:38:32 +00:00
7a757bb694 Fix AMD Push CI not triggered (#27732)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-11-28 09:30:21 +01:00
2ca73e5ee3 Fixed passing scheduler-specific kwargs via TrainingArguments lr_scheduler_kwargs (#27595)
* Fix passing scheduler-specific kwargs through TrainingArguments `lr_scheduler_kwargs`

* Added test for lr_scheduler_kwargs
2023-11-28 08:33:45 +01:00
0864dd3beb Translate en/model_doc to JP (#27264)
* Add `model_docs`

* Add

* Update Model adoc

* Update docs/source/ja/model_doc/bark.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/model_doc/beit.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/model_doc/bit.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/model_doc/blenderbot.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/model_doc/blenderbot-small.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* update reiew-1

* Update toctree.yml

* translating docs and fixes of PR #27401

* Update docs/source/ja/model_doc/bert.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/model_doc/bert-generation.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update the model docs

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-11-27 13:19:04 -08:00
cad1b1192b translation main-class files to chinese (#27588)
* translate work

* update

* update

* update [[autodoc]]

* Update callback.md

---------

Co-authored-by: jiaqiw <wangjiaqi50@huawei.com>
2023-11-27 12:36:37 -08:00
74a3cebfa5 Update chat template warnings/guides (#27634)
* Update default ChatML template

* Update docs/warnings

* Update docs/source/en/chat_templating.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Slight rework

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-11-27 18:40:10 +00:00
ce31508134 docs: replace torch.distributed.run by torchrun (#27528)
* docs: replace torch.distributed.run by torchrun

 `transformers` now officially support pytorch >= 1.10.
 The entrypoint `torchrun`` is present from 1.10 onwards.

Signed-off-by: Peter Pan <Peter.Pan@daocloud.io>

* Update src/transformers/trainer.py

with @ArthurZucker's suggestion

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

---------

Signed-off-by: Peter Pan <Peter.Pan@daocloud.io>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-11-27 16:26:33 +00:00
c832bcb812 Fix owlv2 code snippet (#27698)
* Fix code snippet

* Improve code snippet
2023-11-27 16:29:07 +01:00
334a6d18a1 Modify group_sub_entities in TokenClassification Pipeline to support label with "-" (#27325)
* fix group_sub_entities bug

* add space
2023-11-27 15:25:46 +00:00
59499bbe8b Update forward signature test for vision models (#27681)
* Update forward signature

* Empty-Commit
2023-11-27 15:48:17 +01:00
1d7f406e19 fix assisted decoding assistant model inputs (#27503)
* fix assisted decoding attention_cat

* fix attention_mask for assisted decoding

* fix attention_mask len

* fix attn len

* Use a more clean way to prepare assistant models inputs

* fix param meaning

* fix param name

* fix assistant model inputs

* update token type ids

* fix assistant kwargs copy

* add encoder-decoder tests of assisted decoding

* check if assistant kwargs contains updated keys

* revert test

* fix whisper tests

* fix assistant kwargs

* revert whisper test

* delete _extend funcs
2023-11-27 14:23:54 +00:00
307cf3a2ab Fix oneformer instance segmentation RuntimeError (#27725) 2023-11-27 14:59:59 +01:00
b09912c8f4 Fix mistral generate for long prompt / response (#27548)
* Fix mistral generate for long prompt / response

* Add unit test

* fix linter

* fix linter

* fix test

* add assisted generation test for mistral and load the model in 4 bit + fa2
2023-11-27 10:18:41 +01:00
27b752bcf1 Reorder the code on the Hub to explicit that sharing on the Hub isn't a requirement (#27691)
Reorder
2023-11-27 09:38:18 +01:00
5c30dd40e7 fix warning (#27689) 2023-11-27 09:14:40 +01:00
e11e26df93 Fix Past CI (#27696)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-11-27 09:11:58 +01:00
f70db28322 Fix sliding_window hasattr in Mistral (#27041)
* Fix sliding_window hasattr in Mistral

* hasattr -> getattr for sliding_window in Mistral

---------

Co-authored-by: Ilya Gusev <ilya.gusev@booking.com>
2023-11-26 16:28:37 +01:00
35551f9a0f Fix TVPModelTest (#27695)
* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-11-24 19:47:50 +01:00
Chi
29c94808ea Successfully Resolved The ZeroDivisionError Exception. (#27524)
* Successfully resolved the ZeroDivisionError exception in the utils.notebook.y file.

* Now I update little code mentioned by Peter

* Using Black package to reformat my file

* Now I using ruff libary to reformated my file
2023-11-24 16:55:08 +00:00
c13a43aaf2 Reflect RoCm support in the documentation (#27636)
* reflect RoCm support in the documentation

* Update docs/source/en/main_classes/trainer.md

Co-authored-by: Lysandre Debut <hi@lysand.re>

* fix review comments

* use ROCm instead of RoCm

---------

Co-authored-by: Lysandre Debut <hi@lysand.re>
2023-11-25 00:59:17 +09:00
a6d178e238 [DocString] Support a revision in the docstring add_code_sample_docstrings to facilitate integrations (#27645)
* initial commit

* dummy changes

* style

* Update src/transformers/utils/doc.py

Co-authored-by: Alex McKinney <44398246+vvvm23@users.noreply.github.com>

* nits

* nit use ` if re.match(r'^refs/pr/\d*', revision):`

* restrict

* nit

* test the doc vuilder

* wow

* oke the order was wrong

---------

Co-authored-by: Alex McKinney <44398246+vvvm23@users.noreply.github.com>
2023-11-24 16:30:05 +01:00
2098d343cc Fix semantic error in evaluation section (#27675)
Change "convert predictions to logits" to "convert logits to
predictions" to fix semantic error in the evaluation section. Logits
need to be converted to predictions to evaluate the accuracy, not the
other way round
2023-11-24 12:41:16 +01:00
181f85da24 Docs/Add conversion code to the musicgen docs (#27665)
* Update musicgen.md

please make it less hidden

* Add cleaner formatting
2023-11-24 12:34:24 +01:00
80e9f76857 Fix typo in warning message (#27055)
* Fix typo in warning message

The path of `default_cache_path` is hf_cache_home/hub. There is no
directory named transformers under hf_cache_home

* Fix a typo in comment

* Update the version number

v4.22.0 is the earlist version that contains those changes in PR #18492
2023-11-24 12:24:04 +01:00
7293fdc5b9 Deprecate TransfoXL (#27607)
* fix

* fix

* trigger

* Apply suggestions from code review

Co-authored-by: Lysandre Debut <hi@lysand.re>

* tic

* revert

* revert

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Lysandre Debut <hi@lysand.re>
2023-11-24 11:48:02 +01:00
623432dcc9 Skip pipeline tests for 2 models for now (#27687)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-11-24 09:43:20 +01:00
a761d6e9a0 Refactoring Trainer, adds save_only_model arg and simplifying FSDP integration (#27652)
* add code changes

1. Refactor FSDP
2. Add `--save_only_model` option: When checkpointing, whether to only save the model, or also the optimizer, scheduler & rng state.
3. Bump up the minimum `accelerate` version to `0.21.0`

* quality

* fix quality?

* Revert "fix quality?"

This reverts commit 149330a6abc078827be274db84c8a2d26a76eba1.

* fix fsdp doc strings

* fix quality

* Update src/transformers/training_args.py

Co-authored-by: Zach Mueller <muellerzr@gmail.com>

* please fix the quality issue 😅

* Apply suggestions from code review

Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>

* address comment

* simplify conditional check as per the comment

* update documentation

---------

Co-authored-by: Zach Mueller <muellerzr@gmail.com>
Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>
2023-11-24 11:40:52 +05:30
b8db265bc6 Update tiny model summary file (#27388)
* update

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-11-23 21:00:39 +01:00
fe1c16e95a [DPT, Dinov2] Add resources (#27655)
* Add resources

* Remove script

* Update docs/source/en/model_doc/dinov2.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-11-23 17:44:08 +00:00
b406c4d261 Update TVP arxiv link (#27672)
Update arxiv link
2023-11-23 17:02:16 +00:00
baabd3877a Extended semantic segmentation to image segmentation (#27039)
* Extended semantic segmentation

* Update image_segmentation.md

* Changed title

* Update docs/source/en/tasks/semantic_segmentation.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update docs/source/en/tasks/semantic_segmentation.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update docs/source/en/tasks/semantic_segmentation.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update docs/source/en/tasks/semantic_segmentation.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update docs/source/en/tasks/semantic_segmentation.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update semantic_segmentation.md

* Update docs/source/en/tasks/semantic_segmentation.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/tasks/semantic_segmentation.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Addressed Niels' and Maria's comments

* Added detail on panoptic segmentation

* Added redirection and renamed the file

* Update _toctree.yml

* Update _redirects.yml

* Rename image_segmentation.md to semantic_segmentation.md

---------

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2023-11-23 15:58:21 +00:00
3bc50d81e6 [FA2] Add flash attention for opt (#26414)
* added flash attention for opt

* added to list

* fix use cache (#3)

* style fix

* fix text

* test fix2

* reverted until 689f599

* torch fx tests are working now!

* small fix

* added TODO docstring

* changes

* comments and .md file modification

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2023-11-23 10:16:51 +00:00
1ddc4fa60e update d_kv'annotation in mt5'configuration (#27585)
* update d_kv'annotation in mt5'configuration

* update d_kv'annotation in mt5'configuration

* update d_kv'annotation in mt5'configuration
2023-11-23 09:09:56 +01:00
8aca43bdb3 update Openai API call method (#27628)
Co-authored-by: 张兴言 <SENSETIME\zhangxingyan1@cn0214006377l.domain.sensetime.com>
2023-11-22 17:28:27 +01:00
7f6a804d30 Add UnivNet Vocoder Model for Tortoise TTS Diffusers Integration (#24799)
* initial commit

* Add inital testing files and modify __init__ files to add UnivNet imports.

* Fix some bugs

* Add checkpoint conversion script and add references to transformers pre-trained model.

* Add UnivNet entries for auto.

* Add initial docs for UnivNet.

* Handle input and output shapes in UnivNetGan.forward and add initial docstrings.

* Write tests and make them pass.

* Write docs.

* Add UnivNet doc to _toctree.yml and improve docs.

* fix typo

* make fixup

* make fix-copies

* Add upsample_rates parameter to config and improve config documentation.

* make fixup

* make fix-copies

* Remove unused upsample_rates config parameter.

* apply suggestions from review

* make style

* Verify and add reason for skipped tests inherited from ModelTesterMixin.

* Add initial UnivNetGan integration tests

* make style

* Remove noise_length input to UnivNetGan and improve integration tests.

* Fix bug and make style

* Make UnivNet integration tests pass

* Add initial code for UnivNetFeatureExtractor.

* make style

* Add initial tests for UnivNetFeatureExtractor.

* make style

* Properly initialize weights for UnivNetGan

* Get feature extractor fast tests passing

* make style

* Get feature extractor integration tests passing

* Get UnivNet integration tests passing

* make style

* Add UnivNetGan usage example

* make style and use feature extractor from hub in integration tests

* Update tips in docs

* apply suggestions from review

* make style

* Calculate padding directly instead of using get_padding methods.

* Update UnivNetFeatureExtractor.to_dict to be UnivNet-specific.

* Update feature extractor to support using model(**inputs) and add the ability to generate noise and pad the end of the spectrogram in __call__.

* Perform padding before generating noise to ensure the shapes are correct.

* Rename UnivNetGan.forward's noise_waveform argument to noise_sequence.

* make style

* Add tests to test generating noise and padding the end for UnivNetFeatureExtractor.__call__.

* Add tests for checking batched vs unbatched inputs for UnivNet feature extractor and model.

* Add expected mean and stddev checks to the integration tests and make them pass.

* make style

* Make it possible to use model(**inputs), where inputs is the output of the feature extractor.

* fix typo in UnivNetGanConfig example

* Calculate spectrogram_zero from other config values.

* apply suggestions from review

* make style

* Refactor UnivNet conversion script to use load_state_dict (following persimmon).

* Rename UnivNetFeatureExtractor to UnivNetGanFeatureExtractor.

* make style

* Switch to using torch.tensor and torch.testing.assert_close for testing expected values/slices.

* make style

* Use config in UnivNetGan modeling blocks.

* make style

* Rename the spectrogram argument of UnivNetGan.forward to input_features, following Whisper.

* make style

* Improving padding documentation.

* Add UnivNet usage example to the docs.

* apply suggestions from review

* Move dynamic_range_compression computation into the mel_spectrogram method of the feature extractor.

* Improve UnivNetGan.forward return docstring.

* Update table in docs/source/en/index.md.

* make fix-copies

* Rename UnivNet components to have pattern UnivNet*.

* make style

* make fix-copies

* Update docs

* make style

* Increase tolerance on flaky unbatched integration test.

* Remove torch.no_grad decorators from UnivNet integration tests to try to avoid flax/Tensorflow test errors.

* Add padding_mask argument to UnivNetModel.forward and add batch_decode feature extractor method to remove padding.

* Update documentation and clean up padding code.

* make style

* make style

* Remove torch dependency from UnivNetFeatureExtractor.

* make style

* Fix UnivNetModel usage example

* Clean up feature extractor code/docstrings.

* apply suggestions from review

* make style

* Add comments for tests skipped via ModelTesterMixin flags.

* Add comment for model parallel tests skipped via the test_model_parallel ModelTesterMixin flag.

* Add # Copied from statements to copied UnivNetFeatureExtractionTest tests.

* Simplify UnivNetFeatureExtractorTest.test_batch_decode.

* Add support for unbatched padding_masks in UnivNetModel.forward.

* Refactor unbatched padding_mask support.

* make style
2023-11-22 17:21:36 +01:00
4151fbb49c [Whisper] Add sequential longform decoding (#27492)
* [Whisper] Add seq gen

* [Whisper] Add seq gen

* more debug

* Fix whisper logit processor

* Improve whisper code further

* Fix more

* more debug

* more debug

* Improve further

* Add tests

* Prep for batch size > 1

* Get batch_size>1 working

* Correct more

* Add extensive tests

* more debug

* more debug

* more debug

* add more tests

* more debug

* Apply suggestions from code review

* more debug

* add comments to explain the code better

* add comments to explain the code better

* add comments to explain the code better

* Add more examples

* add comments to explain the code better

* fix more

* add comments to explain the code better

* add comments to explain the code better

* correct

* correct

* finalize

* Apply suggestions from code review

* Apply suggestions from code review
2023-11-22 13:27:34 +01:00
b2c63c79c3 Fix max_steps documentation regarding the end-of-training condition (#27624)
* fix max_steps doc

* Update src/transformers/training_args.py [ci skip]

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* propagate suggested change

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-11-22 12:10:11 +01:00
c651eb23c3 Simplify the implementation of jitter noise in moe models (#27643) 2023-11-22 11:49:40 +01:00
b54993aa94 [dependency] update pillow pins (#27409)
* update pillow pins

* Apply suggestions from code review

* more freedomin pins
2023-11-22 09:40:30 +01:00
c5be38cd27 Fix resize_token_embeddings (#26861) (#26865)
* Fix `resize_token_embeddings` about `requires_grad`

The method `resize_token_embeddings` should keep `requires_grad`
unchanged for all parameters in embeddings.

Previously, `resize_token_embeddings` always set `requires_grad`
to `True`. After fixed, `resize_token_embeddings` copy the
`requires_grad` attribute in the old embeddings.
2023-11-21 17:51:48 +00:00
d2a980ec74 Harmonize HF environment variables + other cleaning (#27564)
* Harmonize HF environment variables + other cleaning

* backward compat

* switch from HUGGINGFACE_HUB_CACHE to HF_HUB_CACHE

* revert
2023-11-21 18:36:26 +01:00
7f04373865 Explicitely specify use_cache=True in Flash Attention tests (#27635)
explicit use_cache=True
2023-11-22 01:53:10 +09:00
c770600fde TVP model (#25856)
* tvp model for video grounding

add tokenizer auto

fix param in TVPProcessor

add docs

clear comments and enable different torch dtype

add image processor test and model test and fix code style

* fix conflict

* fix model doc

* fix image processing tests

* fix tvp tests

* remove torch in processor

* fix grammar error

* add more details on tvp.md

* fix model arch for loss, grammar, and processor

* add docstring and do not regard TvpTransformer, TvpVisionModel as individual model

* use pad_image

* update copyright

* control first downsample stride

* reduce first only works for ResNetBottleNeckLayer

* fix param name

* fix style

* add testing

* fix style

* rm init_weight

* fix style

* add post init

* fix comments

* do not test TvpTransformer

* fix warning

* fix style

* fix example

* fix config map

* add link in config

* fix comments

* fix style

* rm useless param

* change attention

* change test

* add notes

* fix comments

* fix tvp

* import checkpointing

* fix gradient checkpointing

* Use a more accurate example in readme

* update

* fix copy

* fix style

* update readme

* delete print

* remove tvp test_forward_signature

* remove TvpTransformer

* fix test init model

* merge main and make style

* fix tests and others

* fix image processor

* fix style and model_input_names

* fix tests
2023-11-21 16:41:55 +00:00
f5c9738f61 remove the deprecated method init_git_repo (#27617)
* remove deprecated method `init_git_repo`

* make style
2023-11-21 17:09:35 +01:00
0145c6825e Fix tracing dinov2 (#27561)
* Enable tracing with DINOv2 model

* ABC

* Add note to model doc
2023-11-21 14:28:38 +00:00
82cc0a79ac Fix flash attention bugs with Mistral and Falcon (#27625)
* fix various bugs with flash attention

* bump

* fix test

* fix mistral

* use skiptest instead of return that may be misleading

* fix on review
2023-11-21 23:20:44 +09:00
f93c1e9ece Add RoCm scheduled CI & upgrade RoCm CI to PyTorch 2.1 (#26940)
* add scheduled ci on amdgpu

* fix likely typo

* more tests, avoid parallelism

* precise comment

* fix report channel

* trigger docker build on this branch

* fix

* fix

* run rocm scheduled ci

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-11-21 14:55:13 +01:00
851a4f7088 Idefics: Fix information leak with cross attention gate in modeling (#26839)
* fix image_attention gate in idefics modeling

* update comment

* cleaner gating

* fix gate condition

* create attention gate once

* update comment

* update doc of cross-attention forward

* improve comment

* bring back no_images

* pass cross_attention_gate similarly  to no_images gate

* add information on gate shape

* fix no_images placement

* make tests for gate

* take off no_images logic

* update test based on comments

* raise value error if cross_attention_gate is None

* send cross_attention_gate to device

* Revert "send cross_attention_gate to device"

This reverts commit 054f84228405bfa2e75fecc502f6a96dc83cdc0b.

* send cross_attention_gate to device

* fix device in test + nit

* fill hidden_states with zeros instead of multiplying with the gate

* style

* Update src/transformers/models/idefics/modeling_idefics.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/idefics/modeling_idefics.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-11-21 13:26:01 +01:00
81b7981830 Generate: Update docs regarding reusing past_key_values in generate (#27612) 2023-11-21 10:48:14 +00:00
ade7af9361 [ConvNext] Improve backbone (#27621)
* Improve convnext backbone

* Fix convnext2
2023-11-21 10:14:42 +00:00
0e6794ff1c [core / gradient_checkpointing] add support for old GC method (#27610)
* add support for old GC method

* add also disable

* up

* oops
2023-11-21 11:03:30 +01:00
8eb9e29d8d dvclive callback: warn instead of fail when logging non-scalars (#27608)
* dvclive callback: warn instead of fail when logging non-scalars

* tests: log lr as scalar
2023-11-21 09:29:51 +01:00
38e2633f80 Fix torch.fx import issue for torch 1.12 (#27570)
* Fix torch.fx import issue for torch 1.12

* Fix up

* Python verion dependent import

* Woops - fix

* Fix
2023-11-20 22:22:51 +00:00
f18c95b49c Update Korean tutorial for using LLMs, and refactor the nested conditional statements in hr_argparser.py (#27489)
docs: Update Korean LLM tutorial to use Mistral-7B, not Llama-v1
2023-11-20 17:14:23 +00:00
87e217d065 [Whisper] Add large-v3 version support (#27336)
* Enable large-v3 downloading and update language list

* Fix type annotation

* make fixup

* Export Whisper feature extractor

* Fix error after extractor loading

* Do not use pre-computed mel filters

* Save the full preprocessor properly

* Update docs

* Remove comment

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Add alignment heads consistent with each Whisper version

* Remove alignment heads calculation

* Save fast tokenizer format as well

* Fix slow to fast conversion

* Fix bos/eos/pad token IDs in the model config

* Add decoder_start_token_id to config

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-11-20 17:36:48 +01:00
93f2de858b timm to pytorch conversion for vit model fix (#26908)
* timm to pytorch conversion for vit model fix

* remove unecessary print statments

* Detect non-supported ViTs in transformers & better handle id2label mapping

* detect non supported hybrid resnet-vit models in conversion script

* remove check for overlap between cls token and pos embed
2023-11-20 17:00:30 +01:00
e66984f995 [FA-2] Add fa2 support for from_config (#26914)
* add fa2 support for from_config

* Update test_modeling_common.py
2023-11-20 16:45:55 +01:00
f31af3927f [ examples] fix loading jsonl with load dataset in run translation example (#26924)
* Renamed variable extension to builder_name

* If builder name is jsonl change to json to align with load_datasets

* Apply suggestions from code review

Co-authored-by: Quentin Lhoest <42851186+lhoestq@users.noreply.github.com>

---------

Co-authored-by: Quentin Lhoest <42851186+lhoestq@users.noreply.github.com>
2023-11-20 15:45:42 +01:00
e4280d650c docs: fix 404 link (#27529)
Signed-off-by: Peter Pan <Peter.Pan@daocloud.io>
2023-11-20 12:24:38 +00:00
ee29261555 Add convert_hf_to_openai.py script to Whisper documentation resources (#27590)
Add `convert_hf_to_openai.py` script to Whisper documentation resources.
2023-11-20 08:08:40 +01:00
dbf7bfafa7 Fix idx2sym not loaded from pretrained vocab file in Transformer XL (#27589)
* Load idx2sym from pretrained vocab file in Transformer XL

When loading vocab file from a pretrained tokenizer for Transformer XL,
although the pickled vocabulary file contains a idx2sym key, it isn't
loaded, because it is discarded as the empty list already exists as
an attribute.

Solution is to explicitly take it into account, just like for sym2idx.

* ran make style
2023-11-20 07:56:18 +01:00
dc68a39c81 Adding leaky relu in dict ACT2CLS (#27574)
Co-authored-by: Rafael Padilla <rafael.padilla@huggingface.co>
2023-11-19 12:42:01 -03:00
25b0f2033b Fix broken distilbert url (#27579) 2023-11-18 17:22:52 +00:00
d1a00f9dd0 translate deepspeed.md to chinese (#27495)
* translate deepspeed.md

* update
2023-11-17 13:49:31 -08:00
ffbcfc0166 Broken links fixed related to datasets docs (#27569)
fixed the broken links belogs to dataset library of transformers
2023-11-17 13:44:09 -08:00
638d49983f fixed broken link (#27560) 2023-11-17 08:20:42 -08:00
5330b83bc5 Generate: update compute transition scores doctest (#27558) 2023-11-17 11:23:09 +00:00
913d03dc5e Generate: fix flaky tests (#27543) 2023-11-17 10:15:00 +00:00
d903abfccc Fix AMD CI not showing GPU (#27555)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-11-17 10:44:37 +01:00
fe3ce061c4 Skip some fuyu tests (#27553)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-11-17 10:35:04 +01:00
b074461ef0 translate Trainer.md to chinese (#27527)
* translate

* update

* update
2023-11-16 12:07:15 -08:00
93f31e0e78 Updated albert.md doc for ALBERT model (#27223)
* Updated albert.md doc for ALBERT model

* Update docs/source/en/model_doc/albert.md

Fixed Resources heading

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update the ALBERT model doc resources

Fixed resource example for fine-tuning the ALBERT sentence-pair classification.

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/albert.md

Removed resource duplicate

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Updated albert.md doc with reviewed changes

* Updated albert.md doc for ALBERT

* Update docs/source/en/model_doc/albert.md

Removed duplicates from  updated docs/source/en/model_doc/albert.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/albert.md

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-11-16 11:44:36 -08:00
12b50c6130 Generate: improve assisted generation tests (#27540) 2023-11-16 18:54:20 +00:00
651408a077 [Styling] stylify using ruff (#27144)
* try to stylify using ruff

* might need to remove these changes?

* use ruf format andruff check

* use isinstance instead of type comparision

* use # fmt: skip

* use # fmt: skip

* nits

* soem styling changes

* update ci job

* nits isinstance

* more files update

* nits

* more nits

* small nits

* check and format

* revert wrong changes

* actually use formatter instead of checker

* nits

* well docbuilder is overwriting this commit

* revert notebook changes

* try to nuke docbuilder

* style

* fix feature exrtaction test

* remve `indent-width = 4`

* fixup

* more nits

* update the ruff version that we use

* style

* nuke docbuilder styling

* leve the print for detected changes

* nits

* Remove file I/O

Co-authored-by: charliermarsh
 <charlie.r.marsh@gmail.com>

* style

* nits

* revert notebook changes

* Add # fmt skip when possible

* Add # fmt skip when possible

* Fix

* More `  # fmt: skip` usage

* More `  # fmt: skip` usage

* More `  # fmt: skip` usage

* NIts

* more fixes

* fix tapas

* Another way to skip

* Recommended way

* Fix two more fiels

* Remove asynch
Remove asynch

---------

Co-authored-by: charliermarsh <charlie.r.marsh@gmail.com>
2023-11-16 17:43:19 +01:00
acb5b4aff5 Disable docker image build job latest-pytorch-amd for now (#27541)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-11-16 17:00:46 +01:00
6b39470b74 Raise error when quantizing a quantized model (#27500)
add error msg
2023-11-16 10:35:40 -05:00
fd65aa9818 Set usedforsecurity=False in hashlib methods (FIPS compliance) (#27483)
* Set usedforsecurity=False in hashlib methods (FIPS compliance)

* trigger ci

* tokenizers version

* deps

* bump hfh version

* let's try this
2023-11-16 14:29:53 +00:00
5603fad247 Revert "add attention_mask and position_ids in assisted model" (#27523)
* Revert "add attention_mask and position_ids in assisted model (#26892)"

This reverts commit 184f60dcec6f7f664687a9e211e8d2216052b05d.

* more debug
2023-11-16 14:50:39 +01:00
4989e73e2f Update the TF pin for 2.15 (#27375)
* Move the TF pin for 2.15

* make fixup
2023-11-16 13:47:43 +00:00
69c9b89fcb docs: add docs for map, and add num procs to load_dataset (#27520) 2023-11-16 13:16:19 +00:00
85fde09c97 [pytest] Avoid flash attn test marker warning (#27509)
add flash attn markers
2023-11-16 11:13:07 +01:00
1394e08cf0 Support ONNX export for causal LM sequence classifiers (#27450)
support onnx for causal lm sequence classification
2023-11-16 18:56:34 +09:00
06343b0633 translate model.md to chinese (#27518)
* translate model.md to chinese

* apply review suggestion

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-11-15 16:59:03 -08:00
1ac599d90f Fix offload disk for loading derivated model checkpoint into base model (#27253)
* fix

* style

* add test
2023-11-15 14:58:08 -05:00
b71c38a094 Fix bug for T5x to PyTorch convert script with varying encoder and decoder layers (#27448)
* Fix bug in handling varying encoder and decoder layers

This commit resolves an issue where the script failed to convert T5x models to PyTorch models when the number of decoder layers differed from the number of encoder layers.  I've addressed this issue by passing an additional 'num_decoder_layers' parameter to the relevant function.

* Fix bug in handling varying encoder and decoder layers
2023-11-15 19:00:22 +00:00
2e72bbab2c Incorrect setting for num_beams in translation and summarization examples (#27519)
* Remove the torch main_process_first context manager from TF examples

* Correctly set num_beams=1 in our examples, and add a guard in GenerationConfig.validate()

* Update src/transformers/generation/configuration_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-11-15 18:18:54 +00:00
e6522e49a7 Fixing the failure of models without max_position_embeddings attribute. (#27499)
fix max pos issue

Co-authored-by: Adam Louly <adamlouly@microsoft.com@orttrainingdev9.d32nl1ml4oruzj4qz3bqlggovf.px.internal.cloudapp.net>
2023-11-15 18:16:42 +00:00
a0633c4483 Translating en/model_doc docs to Japanese. (#27401)
* update _toctree.yml & add albert-autoformer

* Fixed typo in docs/source/ja/model_doc/audio-spectrogram-transformer.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Delete duplicated sentence docs/source/ja/model_doc/autoformer.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Reflect reviews

* delete untranslated models from toctree

* delete all comments

* add abstract translation

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-11-15 10:13:52 -08:00
a85ea4b19a Fix wav2vec2 params (#27515)
Fix test
2023-11-15 09:24:03 -05:00
48ba1e074f [ PretrainedConfig] Improve messaging (#27438)
* import hf error

* nits

* fixup

* catch the error at the correct place

* style

* improve message a tiny bit

* Update src/transformers/utils/hub.py

Co-authored-by: Lucain <lucainp@gmail.com>

* add a test

---------

Co-authored-by: Lucain <lucainp@gmail.com>
2023-11-15 14:10:39 +01:00
453079c7f8 🚨🚨 Fix beam score calculation issue for decoder-only models (#27351)
* Fix beam score calculation issue for decoder-only models

* Update beam search test and fix code quality issue

* Fix beam_sample, group_beam_search and constrained_beam_search

* Split test for pytorch and TF, add documentation

---------

Co-authored-by: Xin Qiu <xin.qiu@sentient.ai>
2023-11-15 12:49:14 +00:00
3d1a7bf476 [tokenizers] update tokenizers version pin (#27494)
* update `tokenizers` version pin

* force tokenizers>=0.15

* use  0.14

Co-authored-by: Lysandre <lysandre@huggingface.co>

---------

Co-authored-by: Lysandre <lysandre@huggingface.co>
2023-11-15 10:46:02 +01:00
64e21ca2a4 Make some jobs run on the GitHub Actions runners (#27512)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-11-15 10:43:16 +01:00
1e0e2dd376 [CircleCI] skip test_assisted_decoding_sample for everyone (#27511)
* skip 4 tests

* nits

* style

* wow it's not my day

* skip new failing tests

* style

* skip for NLLB MoE as well

* skip `test_assisted_decoding_sample` for everyone
2023-11-15 10:17:51 +01:00
7ddb21b4db Update spelling mistake (#27506)
thoroughly was misspelled thouroughly
2023-11-15 09:50:45 +01:00
72f531ab6b [Table Transformer] Add Transformers-native checkpoints (#26928)
* Improve conversion scripts

* Fix paths

* Fix style
2023-11-15 09:35:53 +01:00
cc0dc24bc9 [Fuyu] Add tests (#27001)
* Add tests

* Add integration test

* More improvements

* Fix tests

* Fix style

* Skip gradient checkpointing tests

* Update script

* Remove scripts

* Remove Fuyu from auto mapping

* Fix integration test

* More improvements

* Remove file

* Add Fuyu to slow documentation tests

* Address comments

* Clarify comment
2023-11-15 09:33:04 +01:00
186c077513 [CI-test_torch] skip test_tf_from_pt_safetensors and test_assisted_decoding_sample (#27508)
* skip 4 tests

* nits

* style

* wow it's not my day

* skip new failing tests

* style

* skip for NLLB MoE as well
2023-11-15 08:39:29 +01:00
2fc33ebead Track the number of tokens seen to metrics (#27274)
* Add tokens seen

* Address comments, add to TrainingArgs

* Update log

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Use self.args

* Fix docstring

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-11-14 15:31:04 -05:00
303c1d69f3 Update processor mapping for hub snippets (#27477) 2023-11-14 20:05:54 +00:00
067c4a310d Have seq2seq just use gather (#27025)
* Have seq2seq just use gather

* Change

* Reset after

* Make slow

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Clean

* Simplify and just use gather

* Update tests/trainer/test_trainer_seq2seq.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* gather always for seq2seq

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-11-14 14:54:44 -05:00
250032e974 Minor type annotation fix (#27276)
* Minor type annotation fix

* Trigger Build
2023-11-14 19:09:21 +00:00
a53a0c5159 Generate: GenerationConfig.from_pretrained can return unused kwargs (#27488) 2023-11-14 18:40:57 +00:00
5468ab3555 Update and reorder docs for chat templates (#27443)
* Update and reorder docs for chat templates

* Fix Mistral docstring

* Add section link and small fixes

* Remove unneeded line in Mistral example

* Add comment on saving memory

* Fix generation prompts linl

* Fix code block languages
2023-11-14 18:26:13 +00:00
fe472b1db4 Generate: fix ExponentialDecayLengthPenalty doctest (#27485)
fix exponential doctest
2023-11-14 18:21:50 +00:00
73bc0c9e88 translate hpo_train.md and perf_hardware.md to chinese (#27431)
* translate

* translate

* update
2023-11-14 09:57:17 -08:00
78f6ed6c70 Revert "[time series] Add PatchTST (#25927)" (#27486)
The model was merged before final review and approval.

This reverts commit 2ac5b9325ed3b54950c6c61fd5838ac6e55a9fe1.
2023-11-14 12:24:00 +00:00
a4616c6767 [Whisper] Fix pipeline test (#27442) 2023-11-14 11:18:26 +00:00
b86c54d9ff Clap processor: remove wasteful np.stack operations (#27454)
remove wasteful np.stack

Np.stack on large 1-D tensor, causing ~0.5s processing time on short audio (<10s). Compared to 0.02s for medium length audio
2023-11-14 10:41:12 +00:00
4309abedbc Add speecht5 batch generation and fix wrong attention mask when padding (#25943)
* fix speecht5 wrong attention mask when padding

* enable batch generation and add parameter attention_mask

* fix doc

* fix format

* batch postnet inputs, return batched lengths, and consistent to old api

* fix format

* fix format

* fix the format

* fix doc-builder error

* add test, cross attention and docstring

* optimize code based on reviews

* docbuild

* refine

* not skip slow test

* add consistent dropout for batching

* loose atol

* add another test regarding to the consistency of vocoder

* fix format

* refactor

* add return_concrete_lengths as parameter for consistency w/wo batching

* fix review issues

* fix cross_attention issue
2023-11-14 09:54:09 +00:00
ee4fb326c7 Fix M4T weights tying (#27395)
fix seamless m4t weights tying
2023-11-14 09:52:11 +00:00
e107ae364e [CI-test_torch] skip test_tf_from_pt_safetensors for 4 models (#27481)
* skip 4 tests

* nits

* style

* wow it's not my day
2023-11-14 10:34:03 +01:00
d71fa9f618 [Peft] modules_to_save support for peft integration (#27466)
* `modules_to_save` support for peft integration

* Update docs/source/en/peft.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* slightly elaborate test

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-11-14 10:32:57 +01:00
721d1c8ca6 Fix FA2 import + deprecation cycle (#27330)
* put back import

* switch to logger.warnings instead
2023-11-14 09:20:29 +00:00
2ac5b9325e [time series] Add PatchTST (#25927)
* Initial commit of PatchTST model classes

Co-authored-by: Phanwadee Sinthong <phsinthong@gmail.com>
Co-authored-by: Nam Nguyen <namctin@gmail.com>
Co-authored-by: Vijay Ekambaram <vijaykr.e@gmail.com>
Co-authored-by: Ngoc Diep Do <55230119+diepi@users.noreply.github.com>
Co-authored-by: Wesley Gifford <79663411+wgifford@users.noreply.github.com>

* Add PatchTSTForPretraining

* update to include classification

Co-authored-by: Phanwadee Sinthong <phsinthong@gmail.com>
Co-authored-by: Nam Nguyen <namctin@gmail.com>
Co-authored-by: Vijay Ekambaram <vijaykr.e@gmail.com>
Co-authored-by: Ngoc Diep Do <55230119+diepi@users.noreply.github.com>
Co-authored-by: Wesley Gifford <79663411+wgifford@users.noreply.github.com>

* clean up auto files

* Add PatchTSTForPrediction

* Fix relative import

* Replace original PatchTSTEncoder with ChannelAttentionPatchTSTEncoder

* temporary adding absolute path + add PatchTSTForForecasting class

* Update base PatchTSTModel + Unittest

* Update ForecastHead to use the config class

* edit cv_random_masking, add mask to model output

* Update configuration_patchtst.py

* add masked_loss to the pretraining

* add PatchEmbeddings

* Update configuration_patchtst.py

* edit loss which considers mask in the pretraining

* remove patch_last option

* Add commits from internal repo

* Update ForecastHead

* Add model weight initilization + unittest

* Update PatchTST unittest to use local import

* PatchTST integration tests for pretraining and prediction

* Added PatchTSTForRegression + update unittest to include label generation

* Revert unrelated model test file

* Combine similar output classes

* update PredictionHead

* Update configuration_patchtst.py

* Add Revin

* small edit to PatchTSTModelOutputWithNoAttention

* Update modeling_patchtst.py

* Updating integration test for forecasting

* Fix unittest after class structure changed

* docstring updates

* change input_size to num_input_channels

* more formatting

* Remove some unused params

* Add a comment for pretrained models

* add channel_attention option

add channel_attention option and remove unused positional encoders.

* Update PatchTST models to use HF's MultiHeadAttention module

* Update paper + github urls

* Fix hidden_state return value

* Update integration test to use PatchTSTForForecasting

* Adding dataclass decorator for model output classes

* Run fixup script

* Rename model repos for integration test

* edit argument explanation

* change individual option to shared_projection

* style

* Rename integration test + import cleanup

* Fix outpu_hidden_states return value

* removed unused mode

* added std, mean and nops scaler

* add initial distributional loss for predition

* fix typo in docs

* add generate function

* formatting

* add num_parallel_samples

* Fix a typo

* copy weighted_average function, edit PredictionHead

* edit PredictionHead

* add distribution head to forecasting

* formatting

* Add generate function for forecasting

* Add generate function to prediction task

* formatting

* use argsort

* add past_observed_mask ordering

* fix arguments

* docs

* add back test_model_outputs_equivalence test

* formatting

* cleanup

* formatting

* use ACT2CLS

* formatting

* fix add_start_docstrings decorator

* add distribution head and generate function to regression task

add distribution head and generate function to regression task. Also made add PatchTSTForForecastingOutput,  PatchTSTForRegressionOutput.

* add distribution head and generate function to regression task

add distribution head and generate function to regression task. Also made add PatchTSTForForecastingOutput,  PatchTSTForRegressionOutput.

* fix typos

* add forecast_masking

* fixed tests

* use set_seed

* fix doc test

* formatting

* Update docs/source/en/model_doc/patchtst.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* better var names

* rename PatchTSTTranspose

* fix argument names and docs string

* remove compute_num_patches and unused class

* remove assert

* renamed to PatchTSTMasking

* use num_labels for classification

* use num_labels

* use default num_labels from super class

* move model_type after docstring

* renamed PatchTSTForMaskPretraining

* bs -> batch_size

* more review fixes

* use hidden_state

* rename encoder layer and block class

* remove commented seed_number

* edit docstring

* Add docstring

* formatting

* use past_observed_mask

* doc suggestion

* make fix-copies

* use Args:

* add docstring

* add docstring

* change some variable names and add PatchTST before some class names

* formatting

* fix argument types

* fix tests

* change x variable to patch_input

* format

* formatting

* fix-copies

* Update tests/models/patchtst/test_modeling_patchtst.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* move loss to forward

* Update src/transformers/models/patchtst/modeling_patchtst.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/patchtst/modeling_patchtst.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/patchtst/modeling_patchtst.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/patchtst/modeling_patchtst.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/patchtst/modeling_patchtst.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* formatting

* fix a bug when pre_norm is set to True

* output_hidden_states is set to False as default

* set pre_norm=True as default

* format docstring

* format

* output_hidden_states is None by default

* add missing docs

* better var names

* docstring: remove default to False in output_hidden_states

* change labels name to target_values in regression task

* format

* fix tests

* change to forecast_mask_ratios and random_mask_ratio

* change mask names

* change future_values to target_values param in the prediction class

* remove nn.Sequential and make PatchTSTBatchNorm class

* black

* fix argument name for prediction

* add output_attentions option

* add output_attentions to PatchTSTEncoder

* formatting

* Add attention output option to all classes

* Remove PatchTSTEncoderBlock

* create PatchTSTEmbedding class

* use config in PatchTSTPatchify

* Use config in PatchTSTMasking class

* add channel_attn_weights

* Add PatchTSTScaler class

* add output_attentions arg to test function

* format

* Update doc with image patchtst.md

* fix-copies

* rename Forecast <-> Prediction

* change name of a few parameters to match with PatchTSMixer.

* Remove *ForForecasting class to match with other time series models.

* make style

* Remove PatchTSTForForecasting in the test

* remove PatchTSTForForecastingOutput class

* change test_forecast_head to test_prediction_head

* style

* fix docs

* fix tests

* change num_labels to num_targets

* Remove PatchTSTTranspose

* remove arguments in PatchTSTMeanScaler

* remove arguments in PatchTSTStdScaler

* add config as an argument to all the scaler classes

* reformat

* Add norm_eps for batchnorm and layernorm

* reformat.

* reformat

* edit docstring

* update docstring

* change variable name pooling to pooling_type

* fix output_hidden_states as tuple

* fix bug when calling PatchTSTBatchNorm

* change stride to patch_stride

* create PatchTSTPositionalEncoding class and restructure the PatchTSTEncoder

* formatting

* initialize scalers with configs

* edit output_hidden_states

* style

* fix forecast_mask_patches doc string

---------

Co-authored-by: Gift Sinthong <gift.sinthong@ibm.com>
Co-authored-by: Nam Nguyen <namctin@gmail.com>
Co-authored-by: Vijay Ekambaram <vijaykr.e@gmail.com>
Co-authored-by: Ngoc Diep Do <55230119+diepi@users.noreply.github.com>
Co-authored-by: Wesley Gifford <79663411+wgifford@users.noreply.github.com>
Co-authored-by: Wesley M. Gifford <wmgifford@us.ibm.com>
Co-authored-by: nnguyen <nnguyen@us.ibm.com>
Co-authored-by: Ngoc Diep Do <diiepy@gmail.com>
Co-authored-by: Kashif Rasul <kashif.rasul@gmail.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-11-13 19:06:32 +01:00
8017a59091 Fixed typo in pipelines.md documentation (#27455)
Update pipelines.md
2023-11-13 17:50:40 +00:00
eb79b55bf3 Perf torch compile (#27422)
* translate perrf_torch_compile.md

* translate tf_xla.md

* update
2023-11-13 09:46:40 -08:00
7b139023c3 [AWQ ] Addresses TODO for awq tests (#27467)
addresses todo for awq tests
2023-11-13 18:18:41 +01:00
04af4b90d6 Fix Falcon tokenizer loading in pipeline (#27316)
* Improve pipeline tokenizer loading and hope nothing breaks

* Let's try a hacky solution

* Revert the changes to init

* Add a falcon hack to the automapping

* Add a falcon hack to the automapping
2023-11-13 17:01:59 +00:00
1af766e104 Add version check for Jinja (#27403)
* Add version check for Jinja

* Update src/transformers/tokenization_utils_base.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* make fixup

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-11-13 17:01:30 +00:00
2422c38de6 Add DINOv2 depth estimation (#26092)
* First draft

* Fix style

* More improvements

* Fix tests

* Fix tests

* Convert checkpoint

* Improve DPTImageProcessor

* Remove scripts, improve conversion script

* Remove print statements

* Fix test

* Improve docstring

* More improvements

* Fix style

* Fix image processor

* Add tests

* Address comments

* Address comments

* Make bias backwards compatible

* Address comment

* Address comment

* Address comment

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Address comments

* Add flag

* Add tests

* Make tests smaller

* Use regular BackboneOutput

* Fix all tests

* Update test

* Convert more checkpoints

* Convert giant checkpoints, add integration test

* Rename size_divisibility to size_divisor

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-11-13 16:20:42 +00:00
3b59621310 Install python-Levenshtein for nougat in CI image (#27465)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-11-13 16:38:13 +01:00
2dc29cfc98 Fix docstring for gradient_checkpointing_kwargs (#27470)
Docstring entry for `gradient_checkpointing_kwargs` was
`gradient_checkpointing_args`. This is incorrect.
2023-11-13 15:32:03 +00:00
20abdacbef OWLv2: bug fix in post_process_object_detection() when using cuda device (#27468)
* OWLv2: bug fix in post_process_object_detection() when using cuda device

* fix copies issue by fixing original function in owlvit
2023-11-13 15:31:44 +00:00
68ae3be7f5 Fix from_pt flag when loading with safetensors (#27394)
* Fix

* Tests

* Fix
2023-11-13 15:18:19 +01:00
9dc8fe1b32 Default to msgpack for safetensors (#27460)
* Default to msgpack for safetensors

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-11-13 15:17:01 +01:00
210e38d83f [Llama + Mistral] Add attention dropout (#27315)
* add droppouts

* add the dropout

* add doc in the config

* nits

* fix mistral config

* nits
2023-11-13 14:51:48 +01:00
b97cab7e6d Remove-auth-token (#27060)
* don't use `use_auth_token`internally

* let's use token everywhere

* fixup
2023-11-13 14:20:54 +01:00
8f577dca4f Fixed typo in error message (#27461)
"past key much have a shape" -> "past key must have a shape"
2023-11-13 11:43:01 +00:00
7b998cabee Fix some Wav2Vec2 related models' doctest (#27462)
* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-11-13 12:37:46 +01:00
9d87cd2ce2 Fix line ending in utils/not_doctested.txt (#27459)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-11-13 12:35:51 +01:00
7ee995fd9c Make examples_torch_job faster (#27437)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-11-10 20:05:05 +01:00
ed115b3473 Normalize floating point cast (#27249)
* Normalize image - cast input images to float32.

This is done if the input image isn't of floating type. Issues can occur when do_rescale=False is set in an image processor. When this happens, the image passed to the call is of type uint8 becuase of the type casting that happens in resize because of the PIL image library. As the mean and std values are cast to match the image dtype, this can cause NaNs and infs to appear in the normalized image, as the floating values being used to divide the image are now set to 0.

The reason the mean and std values are cast is because previously they were set as float32 by default. However, if the input image was of type float16, the normalization would result in the image being upcast to float32 too.

* Add tests

* Remove float32 cast
2023-11-10 15:35:27 +00:00
e1c3ac2551 Add Phi-1 and Phi-1_5 (#26170)
* only dir not even init

* init

* tokenizer removed and reference of codegen added

* modeling file updated a lot remaining app_rotary_emb

* conversion script done

* conversion script fixed, a lot of factoring done and most tests pass

* added token_clf and extractive_QA_head

* integration tests pass

* flash attn tests pass!

* config done

* more docs in modeling file

* some style fix

* style and others

* doc test error fix

* more doc fix

* some attention fixes

* most fixes

* style and other fixes

* docs fix and config

* doc fix

* some comments

* conversion script updated

* conversion script updated

* Revert "conversion script updated"

This reverts commit e92378c54084ec0747041b113083d1746ecb6c7f.

* final comments

* add Phi to language_modeling.md

* edit phi.md file

* rebase and fix

* removed phi-1.5 example

* changed model_type from 'phi'->'mixformer-sequential'

* small change

* small change

* revert \small change

* changed mixformer-sequential->phi

* small change

* added phi-1.5 example instead of phi-1

* doc test might pass now

* rebase and small change

* added the dropout layer

* more fixes

* modified .md file

* very very small doc change
2023-11-10 15:28:30 +00:00
00dc856233 At most 2 GPUs for CI (#27435)
At most 2 GPUs

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-11-10 16:19:06 +01:00
68afca3e69 [AttentionMaskConverter] ]Fix-mask-inf (#27114)
* fix?

* actual fix

* fixups

* add dataclass to the attention mask converter

* refine testing suite

* make sure there are no overflows

* update the test
2023-11-10 15:22:43 +01:00
7e9f10ac94 Add CLVP (#24745)
* init commit

* attention arch done except rotary emb

* rotary emb done

* text encoder working

* outputs matching

* arch first pass done

* make commands done, tests and docs remaining

* all tests passed, only docs remaining

* docs done

* doc-builder fix

* convert script removed(not relevant)

* minor comments done

* added ckpt conversion script

* tokenizer done

* very minor fix of index.md 2

* mostly make fixup related

* all done except fe and rotary emb

* very small change

* removed unidecode dependency

* style changes

* tokenizer removed require_backends

* added require_inflect to tokenizer tests

* removed VOCAB_FILES in tokenizer test

* inflect dependency removed

* added rotary pos emb cache and simplified the apply method

* style

* little doc change

* more comments

* feature extractor added

* added processor

* auto-regressive config added

* added CLVPConditioningEncoder

* comments done except the test one

* weights added successfull(NOT tested)

* tokenizer fix with numbers

* generate outputs matching

* almost tests passing Integ tests not written

* Integ tests added

* major CUDA error fixed

* docs done

* rebase and multiple fixes

* fixed rebase overwrites

* generate code simplified and tests for AutoRegressive model added

* minor changes

* refectored gpt2 code in clvp file

* weights done and all code refactored

* mostly done except the fast_tokenizer

* doc test fix

* config file's doc fixes

* more config fix

* more comments

* tokenizer comments mostly done

* modeling file mostly refactored and can load modules

* ClvpEncoder tested

* ClvpDecoder, ClvpModel and ClvpForCausalLM tested

* integration and all tests passed

* more fixes

* docs almost done

* ckpt conversion refectored

* style and some failing tests fix

* comments

* temporary output fix but test_assisted_decoding_matches_greedy_search test fails

* majority changes done

* use_cache outputs same now! Along with the asisted_greedy_decoding test fix

* more comments

* more comments

* prepare_inputs_for_generation fixed and _prepare_model_inputs added

* style fix

* clvp.md change

* moved clvpconditionalencoder norms

* add model to new index

* added tokenizer input_ids_with_special_tokens

* small fix

* config mostly done

* added config-tester and changed conversion script

* more comments

* comments

* style fix

* some comments

* tokenizer changed back to prev state

* small commnets

* added output hidden states for the main model

* style fix

* comments

* small change

* revert small change

* .

* Update clvp.md

* Update test_modeling_clvp.py

* :)

* some minor change

* new fixes

* remove to_dict from FE
2023-11-10 13:49:10 +00:00
9dd58c53dd update Bark FA2 docs (#27400)
* update Bark FA2 docs

* update benchmark section

* Update bark.md

* Apply suggestions from code review

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* rephrase

---------

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
2023-11-10 13:40:30 +00:00
fd685cfd59 [Quantization] Add str to enum conversion for AWQ (#27320)
* add str to enum conversion

* fixup

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-11-10 13:45:00 +01:00
184f60dcec add attention_mask and position_ids in assisted model (#26892)
* add attention_mask and position_ids in assisted model

* fix bug

* fix attention mask

* fix attention_mask

* check assist inputs

* check assist input ids length

* fix assist model type

* set assist attention mask device
2023-11-10 11:05:15 +00:00
cf32c94135 Run all tests if circleci/create_circleci_config.py is modified (#27413)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-11-09 22:01:06 +01:00
740cd93590 Fix Owlv2 checkpoint name and a default value in Owlv2VisionConfig (#27402)
* fix

* fix

* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-11-09 21:39:03 +01:00
51a98c40ee remove failing tests and clean FE files (#27414)
* remove failing tests and clean FE files

* remove same similar text from tvlt
2023-11-09 18:35:42 +00:00
e38348ae8f Fix RequestCounter to make it more future-proof (#27406)
* Fix RequestCounter to make it more future-proof

* code quality
2023-11-09 18:53:26 +01:00
c8b6052ff6 Final fix of the accelerate installation issue (#27408)
* fix

* [test-all] commit

* fix

* [test-all] commit

* [test-all] commit

* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-11-09 18:52:29 +01:00
c5037b459e Use editable install for git deps (#27404)
* Use editable install

* Full command
2023-11-09 10:20:12 -05:00
cf2a3f37bf Fix fuyu checkpoint repo in FuyuConfig (#27399)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-11-09 15:47:46 +01:00
3258ff9330 use pytest.mark directly (#27390)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-11-09 13:32:54 +01:00
791ec370d1 Adds dvclive callback (#27352)
* dvclive trainer callback

* style fixes

* dvclive link fixes
2023-11-09 12:19:31 +00:00
c5d7754b11 device-agnostic deepspeed testing (#27342) 2023-11-09 12:34:13 +01:00
9999b73968 Skip failing cache call tests (#27393)
* Skip failing cache call tests

* Fixup
2023-11-09 11:03:37 +00:00
bc086a2516 Put doctest options back to pyproject.toml (#27366)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-11-09 11:50:19 +01:00
e9adb0c9cf Change thresh in test (#27378)
Change thresh
2023-11-09 04:44:36 -05:00
085ea7e56c [CodeLlamaTokenizer] Nit, update __init__ to make sure the AddedTokens are not normalized because they are special (#27359)
* make sure tokens are properly initialized for codellama slow

* add m ore pretrained models

* style

* test more tokenizers checkpoints
2023-11-09 10:15:10 +01:00
7ecd229ba4 Smangrul/fix failing ds ci tests (#27358)
* fix failing DeepSpeed CI tests due to `safetensors` being default

* debug

* remove debug statements

* resolve comments

* Update test_deepspeed.py
2023-11-09 11:47:24 +05:30
ced9fd86f5 translate debugging.md to chinese (#27374)
* update

* update
2023-11-08 14:04:06 -08:00
0e402e1478 Update deprecated torch.range in test_modeling_ibert.py (#27355)
* Update deprecated torch.range

* Remove comment
2023-11-08 20:58:36 +01:00
a5bee89c9d Add Flash Attention 2 support to Bark (#27364)
* change handmade attention mask to _prepare_4d_attention_mask

* add flashattention2 support in Bark

* add flashattention2 tests on BarkSemanticModel

* make style

* fix flashattention and tests + make style

* fix memory leak and allow Bark to pass flash attention to sub-models

* make style

* Apply suggestions from code review

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* remove unecessary code from tests + justify overriding

* Update tests/models/bark/test_modeling_bark.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* make style

---------

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-11-08 17:06:35 +00:00
ef71673616 translate big_models.md and performance.md to chinese (#27334)
* translate performance.md

* tranlsate performance.md and big_models.md

* update translation

* update review
2023-11-08 08:48:46 -08:00
bd8f45b167 Fix tiny model script: not using from_pt=True (#27372)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-11-08 17:15:57 +01:00
7b175cfaa7 [Flax Whisper] large-v3 compatibility (#27360) 2023-11-08 15:11:38 +00:00
845aa832b7 Remove unused param from example script tests (#27354)
Unused param
2023-11-08 09:07:32 -05:00
eb30a49b20 Translate index.md to Turkish (#27093)
* Add index.md for tukish language

* Fix index.md (huggingface/transformers#27088)

* Add 'tr' to additional files

* Update docs/source/tr/_toctree.yml

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update index.md

---------

Co-authored-by: Mert Yanık <mert.yanik@lcwaikiki.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-11-08 08:35:20 -05:00
f16ff0f07e MusicGen Update (#27084)
* [MusicGen] Add stereo model

* safe serialization

* Update src/transformers/models/musicgen/modeling_musicgen.py

* split over 2 lines

* fix slow tests on cuda
2023-11-08 13:26:02 +00:00
5ef650b0ae Fix Kosmos-2 device issue (#27346)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-11-08 14:14:45 +01:00
efa57cb234 Fix example tests from failing (#27353)
* Fix example tests from failing

* CHange thresh
2023-11-08 07:45:21 -05:00
b6dbfee0a2 moving example of benchmarking to legacy dir (#27337)
move example of benchmarking to legacy
2023-11-08 09:27:37 +01:00
be74b2ead6 Add numpy alternative to FE using torchaudio (#26339)
* add audio_utils usage in the FE of SpeechToText

* clean unecessary parameters of AudioSpectrogramTransformer FE

* add audio_utils usage in AST

* add serialization tests and function to FEs

* make style

* remove use_torchaudio and move to_dict to FE

* test audio_utils usage

* make style and fix import (remove torchaudio dependency import)

* fix torch dependency for jax and tensor tests

* fix typo

* clean tests with suggestions

* add lines to test if is_speech_availble is False
2023-11-08 07:39:37 +00:00
e264745051 translate model_sharing.md and llm_tutorial.md to chinese (#27283)
* translate model_sharing.md

* translate llm_tutorial.md to chiense

* update wrong translation

* update _torctree.yml

* update typos

* update
2023-11-07 15:34:33 -08:00
f213d5dd8c translate the en tokenizer_summary.md to Chinese (#27291)
* translate the en tokenizer_summary.md to Chinese

* revise WordPiece

* add to source/zh/_toctree.yml
2023-11-07 15:31:51 -08:00
7e1eff7600 Allow scheduler parameters (#26480)
* Allow for scheduler kwargs

* Formatting

* Arguments checks, passing the tests

* Black failed somehow

---------

Co-authored-by: Pierre <pierre@avatarin.com>
2023-11-07 21:40:00 +00:00
ac5d4cf6de FIx Bark batching feature (#27271)
* fix bark batching

* make style

* add tests and make style
2023-11-07 18:32:00 +00:00
8f840edd31 [Whisper] Nit converting the tokenizer (#27349)
* `nospeech` instead of `nocaption` for the no speech token

* oups
2023-11-07 18:43:26 +01:00
cc9f27bb1e Remove padding_masks from gpt_bigcode. (#27348)
Update modeling_gpt_bigcode.py
2023-11-07 17:24:43 +00:00
8c91f15ae5 Resolve AttributeError by utilizing device calculation at the start of the forward function (#27347)
This commit addresses the 'NoneType' object AttributeError within the IdeficsModel forward function. Previously, the 'device' attribute was accessed directly from input_ids, resulting in a potential 'NoneType' error. Now, the device is properly calculated at the beginning of the forward function and utilized consistently throughout, ensuring the 'image_hidden_states' are derived from the correct device. This modification enables smoother processing and compatibility, ensuring the correct device attribution for 'image_encoder_embeddings' in the IdeficsModel forward pass.
2023-11-07 16:26:15 +00:00
Chi
9459d821d1 Remove a redundant variable. (#27288)
* Removed the redundant SiLUActivation class and now use nn.functional.silu directly.

* I apologize for adding torch.functional.silu. I have replaced it with nn.SiLU.

* Remove redundant variable in feature_extraction file
2023-11-07 15:57:48 +00:00
88832c01c8 [Whisper] Add conversion script for the tokenizer (#27338)
* draft

* updates

* full conversion taken from `https://gist.github.com/xenova/a452a6474428de0182b17605a98631ee`

* psuh

* nits

* updates

* more nits

* Add co author

Co-authored-by: Joshua Lochner <admin@xenova.com>

* fixup

* cleanup

* styling

* add proper path

* update

* nits

* don't  push the exit

* clean

* update whisper doc

* don't error out if tiktoken is not here

* make sure we are BC with conversion

* nit

* Update docs/source/en/model_doc/whisper.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* merge and update

* update markdwon

* Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

---------

Co-authored-by: Joshua Lochner <admin@xenova.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-11-07 15:07:55 +01:00
0ded281557 [FA2] Add flash attention for GPT-Neo (#26486)
* added flash attention for gpt-neo

* small change

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* readme updated

* .

* changes

* removed padding_mask

* Update src/transformers/models/gpt_neo/modeling_gpt_neo.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-11-07 13:54:01 +00:00
606d90845f Fix Whisper Conversion Script: Correct decoder_attention_heads and _download function (#26834)
* Fix error in convert_openai_to_hf.py: "_download() missing 1 required positional argument: root"

* Fix error in convert_openai_to_hf.py: "TypeError: byte indices must be integers or slices, not str"

* Fix decoder_attention_heads value in convert_openai_to_hf.py.

Correct the assignment for `decoder_attention_heads` in the conversion script for the Whisper model.

* Black reformat convert_openai_to_hf.py file.

* Fix Whisper model configuration defaults (for Tiny).

- Correct encoder/decoder layers and attention heads count.
- Update model width (`d_model`) to 384.

* Add docstring to the convert_openai_to_hf.py script with a doctest

* Add shebang and +x permission to the convert_openai_to_hf.py

* convert_openai_to_hf.py: reuse the read model_bytes in the _download() function

* Move convert_openai_to_hf.py doctest example to whisper.md

* whisper.md: Add an inference example to the Conversion section.

* whisper.md: remove `model.config.forced_decoder_ids` from examples (deprecated)

* whisper.md: Remove "## Format Conversion" section; not used by users

* whisper.md: Use librispeech_asr_dummy dataset and load_dataset()
2023-11-07 13:39:42 +01:00
90b4adc1f1 Generate: skip tests on unsupported models instead of passing (#27265) 2023-11-07 12:08:28 +00:00
26d8d5f211 Fix autoawq docker image (#27339)
* Update Dockerfile

* Update docker/transformers-all-latest-gpu/Dockerfile
2023-11-07 11:21:04 +01:00
da7ea9a4e3 [Whisper] Block language/task args for English-only (#27322)
* [Whisper] Block language/task args for English-only

* Update src/transformers/models/whisper/modeling_whisper.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-11-07 10:04:23 +00:00
9beb2737d7 [docs] fixed links with 404 (#27327)
* fixed links with 404

* make style
2023-11-06 19:45:03 +00:00
1b20e2bb42 Fix Kosmos2Processor batch mode (#27323)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-11-06 19:05:50 +01:00
a6e0d5a219 Fix VideoMAEforPretrained dtype error (#27296)
* Fix dtype error

* Fix mean and std dtype

* make style
2023-11-06 17:20:06 +00:00
e9dbd39263 Update sequence_classification.md (#27281)
I'm adding accelerate as one of the libraries to install because otherwise when running the Trainer, the model errorr out with the error. 

ImportError: Using the `Trainer` with `PyTorch` requires `accelerate>=0.20.1`: Please run `pip install transformers[torch]` or `pip install accelerate -U`

Further context: 
1. I've tried this across different environments so I believe that the environment is not the issue. 
2. I had the latest transformers library version running. 
3. Typically even after install accelerate and import it, it wouldn't resolve the issue until I restart the notebook and try again.
2023-11-06 14:21:48 +00:00
147f774671 [PretrainedTokenizer] add some of the most important functions to the doc (#27313) 2023-11-06 15:11:00 +01:00
1ffc4dee5b enable memory tracker metrics for npu (#27280) 2023-11-06 13:44:21 +00:00
d7dcfa8917 Remove an unexpected argument for FlaxResNetBasicLayerCollection (#27272)
Remove unexpected argument for FlaxResNetBasicLayerCollection
2023-11-06 12:16:03 +00:00
eef7ea98c3 Update doctest workflow file (#27306)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-11-06 11:27:48 +01:00
d788d37d24 Fix daily CI image build (#27307)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-11-06 11:27:22 +01:00
b026b5ca6d Fix tokenizer export for LLamaTokenizerFast (#27222)
* fix tokenizer

* fix tokenizer
2023-11-06 10:26:18 +01:00
cc3e478185 translate run_scripts.md to chinese (#27246)
* translate run_scripts.md to chinese

* translate run_scripts.md to chinese

* translate run_scripts.md to chinese
2023-11-03 10:19:41 -07:00
bf7cfac20a translate autoclass_tutorial to chinese (#27269)
* translate autoclass_tutorial.md  to chinese

* translate update
2023-11-03 09:16:55 -07:00
1ac2463dfe [FA2] Add flash attention for for DistilBert (#26489)
* flash attention added for DistilBert

* fixes

* removed padding_masks

* Update modeling_distilbert.py

* Update test_modeling_distilbert.py

* style fix
2023-11-03 16:07:54 +00:00
5964f820db [Docs] Model_doc structure/clarity improvements (#26876)
* first batch of structure improvements for model_docs

* second batch of structure improvements for model_docs

* more structure improvements for model_docs

* more structure improvements for model_docs

* structure improvements for cv model_docs

* more structural refactoring

* addressed feedback about image processors
2023-11-03 10:57:03 -04:00
ad8ff96224 [Docs / SAM ] Reflect correct changes to run inference without OOM (#27268)
Update sam.md
2023-11-03 15:23:13 +01:00
f13f544ad9 Fix switch transformer mixed precision issue (#27220)
* Fix mixed precision error for switch transformer

* Fixup
2023-11-03 14:00:33 +00:00
db69bd88fb Update the ConversationalPipeline docstring for chat templates (#27250)
* Update the ConversationalPipeline docstring now that we're using chat templates

* Direct access to conversation.messages

* Explain the string init
2023-11-03 13:17:46 +00:00
011b15c1c7 [docs] Custom model doc update (#27213)
doc update
2023-11-03 08:03:13 -04:00
af8d1dc309 Avoid many failing tests in doctesting (#27262)
* fix

* update

* update

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-11-03 12:47:07 +01:00
8f1a43cd91 [PEFT / Tests ] Fix peft integration failing tests (#27258)
fix peft integration issues
2023-11-03 12:23:02 +01:00
05ea7b79e6 Refactor: Use Llama RoPE implementation for Falcon (#26933)
* Use Llama RoPE implementation for Falcon

+ Add copy functionalities

* Use standard cache format for Falcon

* Simplify apply_rotary_pos_emb, copy from Llama

* Remove unnecessary cache conversion test

We don't need to convert any caches anymore!

* Resolve copy complaint
2023-11-03 11:05:55 +00:00
e9a6c72b5e Fuyu protection (#27248) 2023-11-03 08:45:05 +01:00
552ff24488 Fixed base model class name extraction from PeftModels (#27162)
* Fixed base model class name extraction from PeftModels

* Changes to first unwrap the model then extract the base model name

* Changed base_model to base_model.model to stay consistent with peft model abstractions
2023-11-02 20:08:03 +00:00
Chi
4991216841 Removed the redundant SiLUActivation class. (#27136)
* Removed the redundant SiLUActivation class and now use nn.functional.silu directly.

* I apologize for adding torch.functional.silu. I have replaced it with nn.SiLU.
2023-11-02 18:13:57 +00:00
00d8502b7a translate peft.md to chinese (#27215)
* tranlsate peft.md to chinese

* translate peft.md to chinese

* fix missing link
2023-11-02 10:42:29 -07:00
bc78fd1274 Dev version 2023-11-02 18:15:36 +01:00
0ed6729bb1 Enrich TTS pipeline parameters naming (#26473)
* enrich TTS pipeline docstring for clearer forward_params use

* change token leghts

* update Pipeline parameters

* correct docstring and make style

* fix tests

* make style

* change music prompt

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* raise errors if generate_kwargs with forward-only models

* make style

---------

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-11-02 17:06:56 +00:00
147e8ce4ae Remove redundant code from T5 encoder mask creation (#27216)
* remove redundant code

* update

* add typecasting

* make `attention_mask` float again
2023-11-02 16:01:41 +00:00
a6c82d4567 Generate: return past_key_values (#25086) 2023-11-02 15:39:21 +00:00
441c3e0dd2 fix-deprecated-exllama-arg (#27243)
fix-exllama
2023-11-02 11:23:31 -04:00
8801861d2d Fixing m4t. (#27240)
* Fixing m4t.

* Trying to remove comparison ? Odd test failure.

* Adding shared. But why on earth does it hang ????

* Putting back the model weights checks the test is silently failing on
cuda.

* Fix style + unremoved comment.
2023-11-02 15:32:17 +01:00
443bf5e9e2 Fix safetensors failing tests (#27231)
* Fix Kosmos2

* Fix ProphetNet

* Fix MarianMT

* Fix M4T

* XLM ProphetNet

* ProphetNet fix

* XLM ProphetNet

* Final M4T fixes

* Tied weights keys

* Revert M4T changes

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-11-02 15:03:09 +01:00
4557a0dede Wrap _prepare_4d_causal_attention_mask as a leaf function (#27236)
Wrap _prepare_4d_causal_attention_mask as a leaf function
2023-11-02 12:03:30 +00:00
8a312956fd Fuyu: improve image processing (#27007)
* Fix Fuyu image scaling bug

It could produce negative padding and hence inference errors for certain
image sizes.

* initial rework commit

* add batching capabilities, refactor image processing

* add functional batching for a list of images and texts

* make args explicit

* Fuyu processing update (#27133)

* Add file headers

* Add file headers

* First pass - preprocess method with standard args

* First pass image processor rework

* Small tweaks

* More args and docstrings

* Tidying iterating over batch

* Tidying up

* Modify to have quick tests (for now)

* Fix up

* BatchFeature

* Passing tests

* Add tests for processor

* Sense check when patchifying

* Add some tests

* FuyuBatchFeature

* Post-process box coordinates

* Update to `size` in processor

* Remove unused and duplicate constants

* Store unpadded dims after resize

* Fix up

* Return FuyuBatchFeature

* Get unpadded sizes after resize

* Update exception

* Fix return

* Convert input `<box>` coordinates to model format.

* Post-process point coords, support multiple boxes/points in a single
sequence

* Replace constants

* Update src/transformers/models/fuyu/image_processing_fuyu.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Preprocess List[List[image]]

* Update src/transformers/models/fuyu/image_processing_fuyu.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update to Amy's latest state.

* post-processing returns a list of tensors

* Fix error when target_sizes is None

Co-authored-by: Pablo Montalvo <pablo.montalvo.leroux@gmail.com>

* Update src/transformers/models/fuyu/image_processing_fuyu.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update src/transformers/models/fuyu/image_processing_fuyu.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update src/transformers/models/fuyu/image_processing_fuyu.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update src/transformers/models/fuyu/image_processing_fuyu.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Review comments

* Update src/transformers/models/fuyu/image_processing_fuyu.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Fix up

* Fix up

---------

Co-authored-by: Ubuntu <ubuntu@ip-172-31-72-126.ec2.internal>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
Co-authored-by: Pablo Montalvo <pablo.montalvo.leroux@gmail.com>

* Fix conflicts in fuyu_follow_up_image_processing (#27228)

fixing conflicts and updating on main

* Revert "Fix conflicts in fuyu_follow_up_image_processing" (#27232)

Revert "Fix conflicts in fuyu_follow_up_image_processing (#27228)"

This reverts commit acce10b6c653dc7041fb9d18cfed55775afd6207.

---------

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Ubuntu <ubuntu@ip-172-31-72-126.ec2.internal>
2023-11-02 12:25:41 +01:00
9b25c164bd [core / Quantization] Fix for 8bit serialization tests (#27234)
* fix for 8bit serialization

* added regression tests.

* fixup
2023-11-02 12:03:51 +01:00
c52e429b1c Reproducible checkpoint for npu (#27208)
* save NPU's RNG states when saving a checkpoint and set after all the
data skip phase when resuming training.

* re-trigger ci

* re-trigger ci
2023-11-02 10:27:13 +00:00
7adaefe2bc support bf16 (#25879)
* added bf16 support

* added cuda availability check

* applied make style, quality
2023-11-02 11:05:20 +01:00
af3de8d87c [Whisper, Bart, MBart] Add Flash Attention 2 (#27203)
* add whisper fa2

* correct

* change all

* correct

* correct

* fix more

* fix more

* fix more

* fix more

* fix more

* fix more

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* fix more

* fix more

* fix more

* fix more

* fix more

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-11-01 21:03:01 +01:00
3520e37e86 Enable split_batches through TrainingArguments (#26798)
* Enable split_batches through TrainingArguments

* Extra dispatch_batches

* Keep as default false

* Add to docstring

* Add to docstring

* Remove the capturewarnings change

* Comma
2023-11-01 14:42:38 -04:00
95020f208e Fix CPU offload + disk offload tests (#27204)
Fix disk offload tests + weight sharing issues
2023-11-01 19:25:23 +01:00
c9e72f55b2 Add exllamav2 better (#27111)
* add_ xllamav2 arg

* add test

* style

* add check

* add doc

* replace by use_exllama_v2

* fix tests

* fix doc

* style

* better condition

* fix logic

* add deprecate msg

* deprecate exllama

* remove disable_exllama from the linter

* remove

* fix warning

* Revert the commits deprecating exllama

* deprecate disable_exllama for use_exllama

* fix

* fix loading attribute

* better handling of args

* remove disable_exllama from init and linter

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* better arg

* fix warning

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* switch to dict

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* style

* nits

* style

* better tests

* style

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-11-01 13:09:21 -04:00
239cd0eaa2 Translate task summary to chinese (#27180)
* translate task_summary.md to chinese

* update translation

* update translation

* fix _toctree.yml
2023-11-01 09:28:34 -07:00
1e32b05e06 improving TimmBackbone to support FrozenBatchNorm2d (#27160)
* supporting freeze_batch_norm_2d

* supporting freeze_batch_norm_2d

* including unfreeze + separate into methods

* fix typo

* calling unfreeze

* lint

* Update src/transformers/models/timm_backbone/modeling_timm_backbone.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: Rafael Padilla <rafael.padilla@huggingface.co>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-11-01 12:58:35 -03:00
21a2fbaf48 Fix docstring in get_oneformer_resize_output_image_size func (#27207) 2023-11-01 15:31:13 +00:00
f8afb2b2ec Add TensorFlow implementation of ConvNeXTv2 (#25558)
* Add type annotations to TFConvNextDropPath

* Use tf.debugging.assert_equal for TFConvNextEmbeddings shape check

* Add TensorFlow implementation of ConvNeXTV2

* check_docstrings: add TFConvNextV2Model to exclusions

TFConvNextV2Model and TFConvNextV2ForImageClassification have docstrings
which are equivalent to their PyTorch cousins, but a parsing issue prevents them
from passing the test.

Adding exclusions for these two classes as discussed in #25558.
2023-11-01 15:09:55 +00:00
391d14e810 [WhisperForCausalLM] Add WhisperForCausalLM for speculative decoding (#27195)
* finish

* add tests

* fix all tests

* [Assistant Decoding] Add test

* fix more

* better

* finish

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* finish

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-11-01 16:01:53 +01:00
f9b4bea0a6 Added cache_block_outputs option to enable GPTQ for non-regular models (#27032)
* Added cache_block_outputs option to enable GPTQ for non-regular models

* Update src/transformers/utils/quantization_config.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* Update src/transformers/utils/quantization_config.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* Fixed style

* Update src/transformers/utils/quantization_config.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-11-01 14:37:19 +00:00
037fb7d0e1 added unsqueeze_dim to apply_rotary_pos_emb (#27117)
* added unsqueeze_dim to apply_rotary_pos_emb

* Added docstring

* Modified docstring

* Modified docstring

* Modified docstring

* Modified docstring

* Modified docstring

* ran make fix-copies and make fixup

* Update src/transformers/models/llama/modeling_llama.py

Accepting the proposed changes in formatting.

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* incorporating PR suggestions

* incorporating PR suggestions

* incorporating PR suggestions

* incorporating PR suggestions

* ..

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-11-01 14:16:57 +00:00
f3c1a172bb Fixing docstring in get_resize_output_image_size function (#27191) 2023-11-01 12:42:41 +00:00
636f704d0b Fix the typos and grammar mistakes in CONTRIBUTING.md. (#27193)
Fix the typos and grammar mistakes in CONTRIBUTING.md
2023-11-01 12:42:22 +00:00
71025520bc Fix docstring get maskformer resize output image size (#27196)
* fix docstring in get_maskformer_resize_output_image_size

* fix  functions docstring

* fix 'copied from' functions docstring

* fix docstring

* fix return type

* fix docstring resize
2023-11-01 12:26:14 +00:00
ae093eef01 [core / Quantization ] AWQ integration (#27045)
* working v1

* oops

* Update src/transformers/modeling_utils.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* fixup

* oops

* push

* more changes

* add docs

* some fixes

* fix copies

* add v1 doc

* added installation guide

* relax constraints

* revert

* attempt llm-awq

* oops

* oops

* fixup

* raise error when incorrect cuda compute capability

* nit

* add instructions for llm-awq

* fixup

* fix copies

* fixup and docs

* change

* few changes + add demo

* add v1 tests

* add autoawq in dockerfile

* finalize

* Update tests/quantization/autoawq/test_awq.py

* fix test

* fix

* fix issue

* Update src/transformers/integrations/awq.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update docs/source/en/main_classes/quantization.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update docs/source/en/main_classes/quantization.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/integrations/awq.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/integrations/awq.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* add link to example script

* Update docs/source/en/main_classes/quantization.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* add more content

* add more details

* add link to quantization docs

* camel case + change backend class name

* change to string

* fixup

* raise errors if libs not installed

* change to `bits` and `group_size`

* nit

* nit

* Apply suggestions from code review

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* disable training

* address some comments and fix nits

* fix

* final nits and fix tests

* adapt to our new runners

* make fix-copies

* Update src/transformers/utils/quantization_config.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/utils/quantization_config.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/integrations/awq.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/integrations/awq.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* move to top

* add conversion test

* final nit

* add more elaborated test

---------

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-11-01 09:06:31 +01:00
82c7e87987 device agnostic fsdp testing (#27120)
* make fsdp test cases device agnostic

* make style
2023-11-01 07:17:06 +01:00
7d8ff3629b 🌐 [i18n-ZH] Translate tflite.md into Chinese (#27134)
* docs(zh): translate tflite.md

* docs(zh): add space around links

* Update docs/source/zh/tflite.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-10-31 12:50:48 -07:00
113ebf80ac Safetensors serialization by default (#27064)
* Safetensors serialization by default

* First pass on the tests

* Second pass on the tests

* Third pass on the tests

* Fix TF weight loading from TF-format safetensors

* Specific encoder-decoder fixes for weight crossloading

* Add VisionEncoderDecoder fixes for TF too

* Change filename test for pt-to-tf

* One missing fix for TFVisionEncoderDecoder

* Fix the other crossload test

* Support for flax + updated tests

* Apply suggestions from code review

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Sanchit's comments

* Sanchit's comments 2

* Nico's comments

* Fix tests

* cleanup

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: Matt <rocketknight1@gmail.com>
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-10-31 19:16:49 +01:00
25e6e9418c Unify warning styles for better readability (#27184) 2023-10-31 18:12:14 +00:00
50378cbf6c device agnostic models testing (#27146)
* device agnostic models testing

* add decorator `require_torch_fp16`

* make style

* apply review suggestion

* Oops, the fp16 decorator was misused
2023-10-31 18:12:14 +01:00
77930f8a01 [docs] Update CPU/GPU inference docs (#26881)
* first draft

* remove non-existent paths

* edits

* feedback

* feedback and optimum

* Apply suggestions from code review

Co-authored-by: regisss <15324346+regisss@users.noreply.github.com>
Co-authored-by: Ella Charlaix <80481427+echarlaix@users.noreply.github.com>

* redirect to correct doc

* _redirects.yml

---------

Co-authored-by: regisss <15324346+regisss@users.noreply.github.com>
Co-authored-by: Ella Charlaix <80481427+echarlaix@users.noreply.github.com>
2023-10-31 09:44:51 -07:00
6b7f8ff1f3 translate traning.md to chinese (#27122)
* translate traning.md

* update _tocree.yml

* update _tocree.yml

* update _tocree.yml
2023-10-31 08:57:37 -07:00
e22b7ced9a Fix dropout in StarCoder (#27182)
fix dropout in modeling_gpt_bigcode.py
2023-10-31 16:44:57 +01:00
4bb50aa212 [Quantization / tests ] Fix bnb MPT test (#27178)
fix bnb mpt test
2023-10-31 16:25:53 +01:00
05f2290114 Backward compatibility fix for the Conversation class (#27176)
* Backward compatibility fix for the Conversation class

* Explain what's going on in the conditional
2023-10-31 15:12:06 +00:00
309a90664f [FEAT] Add Neftune into transformers Trainer (#27141)
* add v1 neftune

* use `unwrap_model` instead

* add test + docs

* Apply suggestions from code review

Co-authored-by: Zach Mueller <muellerzr@gmail.com>

* more details

* fixup

* Update docs/source/en/main_classes/trainer.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* refactor a bit

* more elaborated test

* fix unwrap issue

---------

Co-authored-by: Zach Mueller <muellerzr@gmail.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-10-31 16:03:59 +01:00
f53041a753 device agnostic pipelines testing (#27129)
* device agnostic pipelines testing

* pass torch_device
2023-10-31 15:46:31 +01:00
08fadc8085 Shorten the conversation tests for speed + fixing position overflows (#26960)
* Shorten the conversation tests for speed + fixing position overflows

* Put max_new_tokens back to 5

* Remove test skips

* Increase max_position_embeddings in blenderbot tests

* Add skips for blenderbot_small

* Correct TF test skip

* make fixup

* Reformat skips to use is_pipeline_test_to_skip

* Update tests/models/blenderbot_small/test_modeling_blenderbot_small.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/blenderbot_small/test_modeling_flax_blenderbot_small.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/blenderbot_small/test_modeling_tf_blenderbot_small.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-10-31 14:20:04 +00:00
a8e74ebdc5 Trigger CI if tiny_model_summary.json is modified (#27175)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-10-31 14:49:02 +01:00
2963e196ee Add support for loading GPTQ models on CPU (#26719)
* Add support for loading GPTQ models on CPU

Right now, we can only load the GPTQ Quantized model on the CUDA
device. The attribute `gptq_supports_cpu` checks if the current
auto_gptq version is the one which has the cpu support for the
model or not.
The larger variants of the model are hard to load/run/trace on
the GPU and that's the rationale behind adding this attribute.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>

* Update quantization.md

* Update quantization.md

* Update quantization.md
2023-10-31 13:45:23 +00:00
3cd3eaf960 fix: Fix typical_p behaviour broken in recent change (#27165)
A recent PR https://github.com/huggingface/transformers/pull/26579 fixed an edge case out-of-bounds tensor indexing error in TypicalLogitsWarper, and a related behaviour change was made that we thought fixed a long-standing bug w.r.t. the token inclusion cutoff.

However after looking more closely, I am pretty certain that the original logic was correct and that the OOB fix should have been made differently.

Specifically the docs state that it should include the "smallest set of tokens that add up to P or higher" and so `last_ind` should actually be one more than the index of the last token satisfying (cumulative_probs < self.mass).

We still need a max clamp in case that last token is the very last one in the tensor.
2023-10-31 13:09:56 +00:00
b5db8ca66f Add flash attention for gpt_bigcode (#26479)
* added flash attention of gpt_bigcode

* changed docs

* Update src/transformers/models/gpt_bigcode/modeling_gpt_bigcode.py

* add FA-2 docs

* oops

* Update docs/source/en/perf_infer_gpu_one.md Last Nit

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fix

* oops

* remove padding_mask

* change getattr->hasattr logic

* changed .md file

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: younesbelkada <younesbelkada@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-10-31 11:21:02 +00:00
9dc4ce9ea7 Disable CI runner check (#27170)
Disable runner check

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-10-31 11:59:21 +01:00
14bb196cc8 [doctring] Fix docstring for BlipTextConfig, BlipVisionConfig (#27173)
Update configuration_blip.py

edit docstrings
2023-10-31 10:41:56 +00:00
9234caefb0 [docstring] Fix docstring for AltCLIPTextConfig, AltCLIPVisionConfig and AltCLIPConfig (#27128)
* [docstring] Fix docstring for AltCLIPVisionConfig, AltCLIPTextConfig + cleaned some docstring

* Removed entries from check_docstring.py

* Removed entries from check_docstring.py

* Removed entry from check_docstring.py

* [docstring] Fix docstring for AltCLIPTextConfig, AltCLIPVisionConfig and AltCLIPConfig
2023-10-31 10:20:14 +00:00
b5c8e23f0f Remove broken links to s-JoL/Open-Llama (#27164) 2023-10-31 10:17:54 +00:00
df6f36a171 deprecate function get_default_device in tools/base.py (#26774)
* get default device through `PartialState().default_device` as is has
been officially released

* apply code review suggestion

* apply code review suggestion

Co-authored-by: Zach Mueller <muellerzr@gmail.com>

---------

Co-authored-by: Zach Mueller <muellerzr@gmail.com>
2023-10-31 09:15:39 +00:00
8211c59b9a [KOSMOS-2] Update docs (#27157)
Update docs
2023-10-30 21:42:19 +01:00
d39352d12c Fix import of torch.utils.checkpoint (#27155)
* Fix import

* Apply suggestions from code review

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2023-10-30 20:08:29 +00:00
e971486d89 Fix: typos in README.md (#27154) 2023-10-30 19:12:09 +00:00
f7ea959b96 [core/ GC / tests] Stronger GC tests (#27124)
* stronger GC tests

* better tests and skip failing tests

* break down into 3 sub-tests

* break down into 3 sub-tests

* refactor a bit

* more refactor

* fix

* last nit

* credits contrib and suggestions

* credits contrib and suggestions

---------

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-10-30 19:53:46 +01:00
5bbf671276 Device agnostic trainer testing (#27131) 2023-10-30 18:16:40 +00:00
84724efd10 Translating en/main_classes folder docs to Japanese 🇯🇵 (#26894)
* add

* add

* add

* Add deepspeed.md

* Add

* add

* Update docs/source/ja/main_classes/callback.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/main_classes/output.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/main_classes/pipelines.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/main_classes/processors.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/main_classes/processors.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/main_classes/text_generation.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/main_classes/processors.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update  logging.md

* Update toctree.yml

* Update docs/source/ja/main_classes/deepspeed.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Add suggesitons

* m

* Update docs/source/ja/main_classes/trainer.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update toctree.yml

* Update Quantization.md

* Update docs/source/ja/_toctree.yml

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update toctree.yml

* Update docs/source/en/main_classes/deepspeed.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/main_classes/deepspeed.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-10-30 09:39:14 -07:00
9093b19b13 🌐 [i18n-ZH] Translate serialization.md into Chinese (#27076)
* docs(zh): translate serialization.md

* docs(zh): add space around links
2023-10-30 08:50:29 -07:00
3224c0c13f Remove some Kosmos-2 copied from (#27149)
* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-10-30 16:07:27 +01:00
cd19b19378 make tests of pytorch_example device agnostic (#27081) 2023-10-30 14:56:41 +00:00
6b466771b0 [tests / Quantization] Fix bnb test (#27145)
* fix bnb test

* link to GH issue
2023-10-30 15:43:08 +01:00
576994963f Fix some tests using "common_voice" (#27147)
* Use mozilla-foundation/common_voice_11_0

* Update expected values

* Update expected values

* For test_word_time_stamp_integration

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-10-30 15:27:15 +01:00
691fd8fdde Add Kosmos-2 model (#24709)
* Add KOSMOS-2 model

* update

* update

* update

* address review comment - 001

* address review comment - 002

* address review comment - 003

* style

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* fix

* address review comment - 004

* address review comment - 005

* address review comment - 006

* address review comment - 007

* address review comment - 008

* address review comment - 009

* address review comment - 010

* address review comment - 011

* update readme

* fix

* fix

* fix

* [skip ci] fix

* revert the change in _decode

* fix docstring

* fix docstring

* Update docs/source/en/model_doc/kosmos-2.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* no more Kosmos2Tokenizer

* style

* remove "returned when being computed by the model"

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* UTM5 Atten

* fix attn mask

* use present_key_value_states instead of next_decoder_cache

* style

* conversion scripts

* conversion scripts

* conversion scripts

* Add _reorder_cache

* fix doctest and copies

* rename 1

* rename 2

* rename 3

* make fixup

* fix table

* fix docstring

* rename 4

* change repo_id

* remove tip

* update md file

* make style

* update md file

* put docs/source/en/model_doc/kosmos-2.md to slow

* update conversion script

* Use CLIPImageProcessor in Kosmos2Processor

* Remove Kosmos2ImageProcessor

* Remove to_dict in Kosmos2Config

* Remove files

* fix import

* Update conversion

* normalized=False

* Not using hardcoded values like <image>

* elt --> element

* Apply suggestion

* Not using hardcoded values like </image>

* No assert

* No nested functions

* Fix md file

* copy

* update doc

* fix docstring

* fix name

* Remove _add_remove_spaces_around_tag_tokens

* Remove dummy docstring of _preprocess_single_example

* Use `BatchEncoding`

* temp

* temp

* temp

* Update

* Update

* Make Kosmos2ProcessorTest a bit pretty

* Update gradient checkpointing

* Fix gradient checkpointing test

* Remove one liner remove_special_fields

* Simplify conversion script

* fix add_eos_token

* update readme

* update tests

* Change to microsoft/kosmos-2-patch14-224

* style

* Fix doc

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-10-30 13:32:17 +01:00
d751dbecb2 remove the obsolete code related to fairscale FSDP (#26651)
* remove the obsolete code related to fairscale FSDP

* apple review suggestion
2023-10-30 11:55:03 +00:00
5fbed2d7ca [Trainer / GC] Add gradient_checkpointing_kwargs in trainer and training arguments (#27068)
* add `gradient_checkpointing_kwargs` in trainer and training arguments

* add comment

* add test - currently failing

* now tests pass
2023-10-30 12:41:48 +01:00
e830495c1c Fix data2vec-audio note about attention mask (#27116)
fix data2vec audio note about attention mask
2023-10-30 10:52:24 +00:00
160432110c [FA2/ Mistral] Revert previous behavior with right padding + forward (#27125)
Update modeling_mistral.py
2023-10-30 11:04:50 +01:00
211ad4c9cc Fix slack report failing for doctest (#27042)
* fix slack report for doctest

* separate reports

* style

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-10-30 10:48:24 +01:00
722e936491 [Typo fix] flag config in WANDB (#27130)
typo fix flag config
2023-10-29 18:22:26 +00:00
9e87618f2b Fix docstring and type hint for resize (#27104)
fix docstring and type hint for resize
2023-10-27 16:50:10 -03:00
ef23b68ebf translate transformers_agents.md to Chinese (#27046)
* update translation

* fix problems mentioned in reviews
2023-10-27 12:45:43 -07:00
96f9e78f4c Added Telugu [te] translation for README.md in main (#27077)
* Create index.md

* Create _toctree.yml

* Updated index.md in telugu

* Update _toctree.yml

* Create quicktour.md

* Update quicktour.md

* Create index.md

* Update quicktour.md

* Update docs/source/te/quicktour.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Delete docs/source/hi/index.md

* Update docs/source/te/quicktour.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/te/quicktour.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/te/quicktour.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/te/quicktour.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/te/quicktour.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/te/quicktour.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/te/quicktour.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/te/quicktour.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update build_documentation.yml

Added telugu [te]

* Update build_pr_documentation.yml

Added Telugu [te]

* Update _toctree.yml

* Create README_te.md

Telugu translation for README.md

* Update README_te.md

Added Telugu translation for Readme.md

* Update README_te.md

* Update README_te.md

* Update README_te.md

* Update README_te.md

* Update README.md

* Update README_es.md

* Update README_es.md

* Update README_hd.md

* Update README_ja.md

* Update README_ko.md

* Update README_pt-br.md

* Update README_ru.md

* Update README_zh-hans.md

* Update README_zh-hant.md

* Update README_te.md

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-10-27 11:40:10 -07:00
ac5893756b [Attention Mask] Refactor all encoder-decoder attention mask (#27086)
* [FA2 Bart] Add FA2 to all Bart-like

* better

* Refactor attention mask

* remove all customized atteniton logic

* format

* mass rename

* replace _expand_mask

* replace _expand_mask

* mass rename

* add pt files

* mass replace & rename

* mass replace & rename

* mass replace & rename

* mass replace & rename

* Update src/transformers/models/idefics/modeling_idefics.py

* fix more

* clean more

* fix more

* make style

* fix again

* finish

* finish

* finish

* finish

* finish

* finish

* finish

* finish

* finish

* finish

* Apply suggestions from code review

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* small fix mistral

* finish

* finish

* finish

* finish

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-10-27 16:42:01 +02:00
29c74f58ae fix detr device map (#27089)
* fix detr device map

* add comments
2023-10-27 10:28:12 -04:00
ffff9e70ab [core/ gradient_checkpointing] Refactor GC - part 2 (#27073)
* fix

* more fixes

* fix other models

* fix long t5

* use `gradient_checkpointing_func` instead

* fix copies

* set `gradient_checkpointing_func` as a private attribute and retrieve previous behaviour

* Update src/transformers/modeling_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* replace it with `is_gradient_checkpointing_set`

* remove default

* Update src/transformers/modeling_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fixup

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-10-27 16:15:22 +02:00
5be1fb6d1f Fix no split modules underlying modules (#27090)
* fix no split

* style

* remove comm

* Update src/transformers/modeling_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* rename modules

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-10-27 09:49:20 -04:00
66b088faf0 Provide alternative when warning on use_auth_token (#27105) 2023-10-27 14:32:54 +02:00
e2bffcfafd Add early stopping for Bark generation via logits processor (#26675)
* add early stopping logits processor

* black formmated

* indent

* follow method signature

* actual logic

* check for None

* address comments on docstrings and method signature

* add unit test under `LogitsProcessorTest` wip

* unit test passing

* black formatted

* condition per sample

* add to BarkModelIntegrationTests

* wip BarkSemanticModelTest

* rename and add to kwargs handling

* not add to BarkSemanticModelTest

* correct logic and assert last outputs tokens different in test

* doc-builder style

* read from kwargs as well

* assert len of with less than that of without

* ruff

* add back seed and test case

* add original impl default suggestion

* doc-builder

* rename and use softmax

* switch back to LogitsProcessor and update docs wording

* camelCase and spelling and saving compute

* assert strictly less than

* assert less than

* expand test_generate_semantic_early_stop instead
2023-10-27 11:07:33 +01:00
90ee9cea19 Revert "add exllamav2 arg" (#27102)
Revert "add exllamav2 arg (#26437)"

This reverts commit 8214d6e7b1d6ac25859ad745ccebdf73434e166d.
2023-10-27 11:23:06 +02:00
aa4198a238 [T5Tokenizer] Fix fast and extra tokens (#27085)
* v4.35.dev.0

* nit t5fast match t5 slow
2023-10-27 08:18:24 +02:00
6f31601687 Added huggingface emoji instead of the markdown format (#27091)
Added huggingface emoji instead of the markdown format as it was not displaying the required emoji in that format
2023-10-26 14:10:16 -07:00
34a640642b Save TB logs as part of push_to_hub (#27022)
* Support runs/

* Upload runs folder as part of push to hub

* Add a test

* Add to test deps

* Update with proposed solution from Slack

* Ensure that repo gets deleted in tests
2023-10-26 12:13:19 -04:00
1892592530 Correct docstrings and a typo in comments (#27047)
* docs(training_args): correct docstrings

Correct docstrings of these methods in `TrainingArguments`:

- `set_save`
- `set_logging`

* docs(training_args): adjust words in docstrings

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* docs(trainer): correct a typo in comments

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-10-26 08:46:17 -07:00
8214d6e7b1 add exllamav2 arg (#26437)
* add_ xllamav2 arg

* add test

* style

* add check

* add doc

* replace by use_exllama_v2

* fix tests

* fix doc

* style

* better condition

* fix logic

* add deprecate msg
2023-10-26 10:15:05 -04:00
d7cb5e138e [Llama FA2] Re-add _expand_attention_mask and clean a couple things (#27074)
* clean

* clean llama

* fix more

* make style

* Apply suggestions from code review

* Apply suggestions from code review

* Update src/transformers/models/llama/modeling_llama.py

* Update src/transformers/models/llama/modeling_llama.py

* Apply suggestions from code review

* finish

* make style
2023-10-26 13:06:21 +02:00
4864d08d3e Add-support for commit description (#26704)
* fix

* update

* revert

* add dosctring

* good to go

* update

* add a test
2023-10-26 12:37:09 +02:00
15cd096288 Create SECURITY.md 2023-10-26 12:26:47 +02:00
fe2877ce21 Remove unneeded prints in modeling_gpt_neox.py (#27080) 2023-10-26 11:55:31 +02:00
efba1a1744 Bumpflash_attn version to 2.1 (#27079)
* pin FA-2 to `2.1`

* fix on modeling
2023-10-26 11:21:04 +02:00
90412401e6 Bring back set_epoch for Accelerate-based dataloaders (#26850)
* Working tests!

* Fix sampler

* Fix

* Update src/transformers/trainer.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Fix check

* Clean

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-10-26 11:20:11 +02:00
3c2692407d Bump urllib3 from 1.26.17 to 1.26.18 in /examples/research_projects/lxmert (#26888)
Bump urllib3 in /examples/research_projects/lxmert

Bumps [urllib3](https://github.com/urllib3/urllib3) from 1.26.17 to 1.26.18.
- [Release notes](https://github.com/urllib3/urllib3/releases)
- [Changelog](https://github.com/urllib3/urllib3/blob/main/CHANGES.rst)
- [Commits](https://github.com/urllib3/urllib3/compare/1.26.17...1.26.18)

---
updated-dependencies:
- dependency-name: urllib3
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-10-26 09:10:29 +02:00
9c5240af14 Bump werkzeug from 2.2.3 to 3.0.1 in /examples/research_projects/decision_transformer (#27072)
Bump werkzeug in /examples/research_projects/decision_transformer

Bumps [werkzeug](https://github.com/pallets/werkzeug) from 2.2.3 to 3.0.1.
- [Release notes](https://github.com/pallets/werkzeug/releases)
- [Changelog](https://github.com/pallets/werkzeug/blob/main/CHANGES.rst)
- [Commits](https://github.com/pallets/werkzeug/compare/2.2.3...3.0.1)

---
updated-dependencies:
- dependency-name: werkzeug
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-10-26 08:56:28 +02:00
df2eebf1e7 Handle unsharded Llama2 model types in conversion script (#27069)
Handle all unshared models types
2023-10-26 08:41:07 +02:00
a2f55a65cd Hindi translation of pipeline_tutorial.md (#26837)
* hindi translation of pipeline_tutorial.md

* Update pipeline_tutorial.md

* Update build_documentation.yml

* Update build_pr_documentation.yml

* Updated build_documentation.yml

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-10-25 11:21:49 -07:00
ba5144f7a9 🌐 [i18n-ZH] Translate custom_models.md into Chinese (#27065)
* docs(zh): translate custom_models.md

* minor fix in customer_models

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-10-25 11:20:32 -07:00
c34c50cdc0 [docs] Add MaskGenerationPipeline in docs (#27063)
* add `MaskGenerationPipeline` in docs

* Update __init__.py

* fix repo consistency and clarify docstring

* add on check docstirngs

* actually we do have a tf sam

* oops
2023-10-25 19:31:36 +02:00
ba073ea9e3 [DOCS] minor fixes in README.md (#27048)
minor fixes
2023-10-25 10:21:13 -07:00
a64f8c1f87 [docstring] fix incorrect llama docstring: encoder -> decoder (#27071)
fix incorrect docstring: encoder -> decoder
2023-10-25 18:09:04 +02:00
0baa9246cb Fix TypicalLogitsWarper tensor OOB indexing edge case (#26579)
* Fix TypicalLogitsWarper tensor OOB indexing edge case

This can be triggerd fairly quickly with low precision e.g. bfloat16 and typical_p = 0.99.

* Shift threshold index by one

* Use explicit named arg for clamp min
2023-10-25 11:36:43 +01:00
06e782da4e [core] Refactor of gradient_checkpointing (#27020)
* v1

* fix

* remove `create_custom_forward`

* fixup

* fixup

* add test and fix all failing GC tests

* remove all remaining `create_custom_forward` methods

* fix idefics bug

* fixup

* replace with `__call__`

* add comment

* quality
2023-10-25 12:16:15 +02:00
9286f0ac39 Skip-test (#27062)
* skip plbart test

* nits

* update
2023-10-25 10:47:33 +02:00
6cbc1369a3 Fix RoPE config validation for FalconConfig + various config typos (#26929)
* Resolve incorrect ValueError in RoPE config for Falcon

* Add broken codeblock tag in Falcon Config

* Fix typo: an float -> a float

* Implement copy functionality for Fuyu and Persimmon

for RoPE scaling validation

* Make style
2023-10-24 18:37:09 +01:00
a0fd34483f Add a default decoder_attention_mask for EncoderDecoderModel during training (#26752)
* Add a default decoder_attention_mask for EncoderDecoderModel during training

Since we are already creating the default decoder_input_ids from the labels, we should also
create a default decoder_attention_mask to go with it.

* Fix test constant that relied on manual_seed()

The test was changed to use a decoder_attention_mask that ignores padding instead (which is
the default one created by BERT when attention_mask is None).

* Create the decoder_attention_mask using decoder_input_ids instead of labels

* Fix formatting in test
2023-10-24 18:26:16 +01:00
9333bf0769 [docs] Performance docs refactor p.2 (#26791)
* initial edits

* improvements for clarity and flow

* improvements for clarity and flow, removed the repetead section

* removed two docs that had no content

* Revert "removed two docs that had no content"

This reverts commit e98fa2fa0d8e171163f15cb8a04bdada1053543b.

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* feedback addressed

* more feedback addressed

* feedback addressed

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-10-24 13:10:06 -04:00
13ef14e18e Fix config silent copy in from_pretrained (#27043)
* Fix config modeling utils

* fix more

* fix attn mask bug

* Update src/transformers/modeling_utils.py
2023-10-24 19:05:37 +02:00
9da451713d Device agnostic testing (#25870)
* adds agnostic decorators and availability fns

* renaming decorators and fixing imports

* updating some representative example tests
bloom, opt, and reformer for now

* wip device agnostic functions

* lru cache to device checking functions

* adds `TRANSFORMERS_TEST_DEVICE_SPEC`
if present, imports the target file and updates device to function
mappings

* comments `TRANSFORMERS_TEST_DEVICE_SPEC` code

* extra checks on device name

* `make style; make quality`

* updates default functions for agnostic calls

* applies suggestions from review

* adds `is_torch_available` guard

* Add spec file to docs, rename function dispatch names to backend_*

* add backend import to docs example for spec file

* change instances of  to

* Move register backend to before device check as per @statelesshz changes

* make style

* make opt test require fp16 to run

---------

Co-authored-by: arsalanu <arsalanu@graphcore.ai>
Co-authored-by: arsalanu <hzji210@gmail.com>
2023-10-24 16:49:26 +02:00
41496b95da Add fuyu device map (#26949)
* add _no_split_modules

* style

* fix _no_split_modules

* add doc
2023-10-24 09:10:23 -04:00
b18e31407c add info on TRL docs (#27024)
* add info on TRL docs

* add TRL link

* tweak text

* tweak text
2023-10-24 14:56:00 +02:00
cb0c68069d Safe import of rgb_to_id from FE modules (#27037)
Safe import from FE modules
2023-10-24 13:40:16 +01:00
7bde5d634f [TFxxxxForSequenceClassifciation] Fix the eager mode after #25085 (#25751)
* TODOS

* Switch .shape -> shape_list

---------

Co-authored-by: Matt <rocketknight1@gmail.com>
2023-10-24 13:33:05 +01:00
e2d6d5ce57 Normalize only if needed (#26049)
* Normalize only if needed

* Update examples/pytorch/image-classification/run_image_classification.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* if else in one line

* within block

* one more place, sorry for mess

* import order

* Update examples/pytorch/image-classification/run_image_classification.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update examples/pytorch/image-classification/run_image_classification_no_trainer.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-10-24 13:32:03 +01:00
JP
576e2823a3 Add descriptive docstring to WhisperTimeStampLogitsProcessor (#25642)
* adding in logit examples for Whisper processor

* adding in updated logits processor for Whisper

* adding in cleaned version of  logits processor for Whisper

* adding docstrings for whisper processor

* making sure the formatting is correct

* adding logits after doc builder

* Update src/transformers/generation/logits_process.py

Adding in suggested fix to the LogitProcessor description.

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/generation/logits_process.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/generation/logits_process.py

Removing tip per suggestion.

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/generation/logits_process.py

Removing redundant code per suggestion.

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* adding in revised version

* adding in version with timestamp examples

* Update src/transformers/generation/logits_process.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* enhanced paragraph on behavior of processor

* fixing doc quality issue

* removing the word poem from example

* adding in updated docstring

* adding in new version of file after doc-builder

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-10-24 12:02:06 +02:00
fc142bd775 Add default_to_square_for_size to CLIPImageProcessor (#26965)
* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-10-24 11:08:17 +02:00
cc7803c0a6 Register ModelOutput as supported torch pytree nodes (#26618)
* Register ModelOutput as supported torch pytree nodes

* Test ModelOutput as supported torch pytree nodes

* Update type hints for pytree unflatten functions
2023-10-24 11:02:40 +02:00
ede051f1b8 Fix key dtype in GPTJ and CodeGen (#26836)
* fix key dtype in gptj and codegen

* delay the key cast to a later point

* fix
2023-10-24 16:55:14 +09:00
32f799db0d 🌐 [i18n-ZH] Translate create_a_model.md into Chinese (#27026)
docs(zh): translate create_a_model.md
2023-10-23 15:44:42 -07:00
25c022d7c5 Fix little typo (#27028) 2023-10-23 15:36:42 -07:00
f370bebdc3 Bugfix device map detr model (#26849)
* Fixed replace_batch_norm when on meta device

* lint fix

* Adding coauthor

Co-authored-by: Pi Esposito <piero.skywalker@gmail.com>

* Removed tests

* Remove unused deps

* Try to fix copy issue

* try fix copy one more time

* Reverted import changes

---------

Co-authored-by: Pi Esposito <piero.skywalker@gmail.com>
2023-10-23 14:34:27 -04:00
b0d1d7f71a translate preprocessing.md to Chinese (#26955)
* translate preprocessing.md to Chinese

* update files fixing problems mentioned in review

* update files fixing problems mentioned in review

---------

Co-authored-by: jiaqiw <wangjiaqi50@huawei.com>
2023-10-23 10:36:24 -07:00
19ae0505ae 🌐 [i18n-ZH] Translate multilingual into Chinese (#26935)
translate multilingual into Chinese

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-10-23 10:35:17 -07:00
33f98cfded Remove ambiguous padding_mask and instead use a 2D->4D Attn Mask Mapper (#26792)
* [Attn Mask Converter] refactor attn mask

* up

* Apply suggestions from code review

Co-authored-by: fxmarty <9808326+fxmarty@users.noreply.github.com>

* improve

* rename

* better cache

* renaming

* improve more

* improve

* fix bug

* finalize

* make style & make fix-copies

* correct more

* start moving attention_mask

* fix llama

* improve falcon

* up

* improve more

* improve more

* Update src/transformers/models/owlv2/modeling_owlv2.py

* make style

* make style

* rename to converter

* Apply suggestions from code review

---------

Co-authored-by: fxmarty <9808326+fxmarty@users.noreply.github.com>
2023-10-23 18:54:00 +02:00
f09a081d27 Translate pipeline_tutorial.md to chinese (#26954)
* update translation of pipeline_tutorial and preprocessing(Version1.0)

* update translation of pipeline_tutorial and preprocessing(Version2.0)

* update translation docs

* update to fix problems mentioned in review

---------

Co-authored-by: jiaqiw <wangjiaqi50@huawei.com>
2023-10-23 08:58:00 -07:00
f7354a3bd6 Remove token_type_ids from default TF GPT-2 signature (#26962)
Remove token_type_ids from default GPT-2 signature
2023-10-23 16:18:02 +01:00
c0b5ad9473 small typos found (#26988)
just very small typos found
2023-10-23 11:08:39 -03:00
f9f27b0fc2 [SeamlessM4T] fix copies with NLLB MoE int8 (#27018)
fix copies on newly merged model
2023-10-23 15:25:06 +02:00
244a53e0f6 [NLLB-MoE] Fix NLLB MoE 4bit inference (#27012)
fix NLLB MoE 4bit
2023-10-23 14:54:22 +02:00
cb45f71c4d Add Seamless M4T model (#25693)
* first raw commit

* still POC

* tentative convert script

* almost working speech encoder conversion scripts

* intermediate code for encoder/decoders

* add modeling code

* first version of speech encoder

* make style

* add new adapter layer architecture

* add adapter block

* add first tentative config

* add working speech encoder conversion

* base model convert works now

* make style

* remove unnecessary classes

* remove unecessary functions

* add modeling code speech encoder

* rework logics

* forward pass of sub components work

* add modeling codes

* some config modifs and modeling code modifs

* save WIP

* new edits

* same output speech encoder

* correct attention mask

* correct attention mask

* fix generation

* new generation logics

* erase comments

* make style

* fix typo

* add some descriptions

* new state

* clean imports

* add tests

* make style

* make beam search and num_return_sequences>1 works

* correct edge case issue

* correct SeamlessM4TConformerSamePadLayer copied from

* replace ACT2FN relu by nn.relu

* remove unecessary return variable

* move back a class

* change name conformer_attention_mask ->conv_attention_mask

* better nit code

* add some Copied from statements

* small nits

* small nit in dict.get

* rename t2u model -> conditionalgeneration

* ongoing refactoring of structure

* update models architecture

* remove SeamlessM4TMultiModal classes

* add tests

* adapt tests

* some non-working code for vocoder

* add seamlessM4T vocoder

* remove buggy line

* fix some hifigan related bugs

* remove hifigan specifc config

* change

* add WIP tokenization

* add seamlessM4T working tokenzier

* update tokenization

* add tentative feature extractor

* Update converting script

* update working FE

* refactor input_values -> input_features

* update FE

* changes in generation, tokenizer and modeling

* make style and add t2u_decoder_input_ids

* add intermediate outputs for ToSpeech models

* add vocoder to speech models

* update valueerror

* update FE with languages

* add vocoder convert

* update config docstrings and names

* update generation code and configuration

* remove todos and update config.pad_token_id to generation_config.pad_token_id

* move block vocoder

* remove unecessary code and uniformize tospeech code

* add feature extractor import

* make style and fix some copies from

* correct consistency + make fix-copies

* add processor code

* remove comments

* add fast tokenizer support

* correct pad_token_id in M4TModel

* correct config

* update tests and codes  + make style

* make some suggested correstion - correct comments and change naming

* rename some attributes

* rename some attributes

* remove unecessary sequential

* remove option to use dur predictor

* nit

* refactor hifigan

* replace normalize_mean and normalize_var with do_normalize + save lang ids to generation config

* add tests

* change tgt_lang logic

* update generation ToSpeech

* add support import SeamlessM4TProcessor

* fix generate

* make tests

* update integration tests, add option to only return text and update tokenizer fast

* fix wrong function call

* update import and convert script

* update integration tests + update repo id

* correct paths and add first test

* update how new attention masks are computed

* update tests

* take first care of batching in vocoder code

* add batching with the vocoder

* add waveform lengths to model outputs

* make style

* add generate kwargs + forward kwargs of M4TModel

* add docstrings forward methods

* reformate docstrings

* add docstrings t2u model

* add another round of modeling docstrings + reformate speaker_id -> spkr_id

* make style

* fix check_repo

* make style

* add seamlessm4t to toctree

* correct check_config_attributes

* write config docstrings + some modifs

* make style

* add docstrings tokenizer

* add docstrings to processor, fe and tokenizers

* make style

* write first version of model docs

* fix FE + correct FE test

* fix tokenizer + add correct integration tests

* fix most tokenization tests

* make style

* correct most processor test

* add generation tests and fix num_return_sequences > 1

* correct integration tests -still one left

* make style

* correct position embedding

* change numbeams to 1

* refactor some modeling code and correct one test

* make style

* correct typo

* refactor intermediate fnn

* refactor feedforward conformer

* make style

* remove comments

* make style

* fix tokenizer tests

* make style

* correct processor tests

* make style

* correct S2TT integration

* Apply suggestions from Sanchit code review

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* correct typo

* replace torch.nn->nn + make style

* change Output naming (waveforms -> waveform) and ordering

* nit renaming and formating

* remove return None when not necessary

* refactor SeamlessM4TConformerFeedForward

* nit typo

* remove almost copied from comments

* add a copied from comment and remove an unecessary dropout

* remove inputs_embeds from speechencoder

* remove backward compatibiliy function

* reformate class docstrings for a few components

* remove unecessary methods

* split over 2 lines smthg hard to read

* make style

* replace two steps offset by one step as suggested

* nice typo

* move warnings

* remove useless lines from processor

* make generation non-standard test more robusts

* remove torch.inference_mode from tests

* split integration tests

* enrich md

* rename control_symbol_vocoder_offset->vocoder_offset

* clean convert file

* remove tgt_lang and src_lang from FE

* change generate docstring of ToText models

* update generate docstring of tospeech models

* unify how to deal withtext_decoder_input_ids

* add default spkr_id

* unify tgt_lang for t2u_model

* simplify tgt_lang verification

* remove a todo

* change config docstring

* make style

* simplify t2u_tgt_lang_id

* make style

* enrich/correct comments

* enrich .md

* correct typo in docstrings

* add torchaudio dependency

* update tokenizer

* make style and fix copies

* modify SeamlessM4TConverter with new tokenizer behaviour

* make style

* correct small typo docs

* fix import

* update docs and add requirement to tests

* add convert_fairseq2_to_hf in utils/not_doctested.txt

* update FE

* fix imports and make style

* remove torchaudio in FE test

* add seamless_m4t.md to utils/not_doctested.txt

* nits and change the way docstring dataset is loaded

* move checkpoints from ylacombe/ to facebook/ orga

* refactor warning/error to be in the 119 line width limit

* round overly precised floats

* add stereo audio behaviour

* refactor .md and make style

* enrich docs with more precised architecture description

* readd undocumented models

* make fix-copies

* apply some suggestions

* Apply suggestions from code review

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* correct bug from previous commit

* refactor a parameter allowing to clean the code + some small nits

* clean tokenizer

* make style and fix

* make style

* clean tokenizers arguments

* add precisions for some tests

* move docs from not_tested to slow

* modify tokenizer according to last comments

* add copied from statements in tests

* correct convert script

* correct parameter docstring style

* correct tokenization

* correct multi gpus

* make style

* clean modeling code

* make style

* add copied from statements

* add copied statements

* add support with ASR pipeline

* remove file added inadvertently

* fix docstrings seamlessM4TModel

* add seamlessM4TConfig to OBJECTS_TO_IGNORE due of unconventional markdown

* add seamlessm4t to assisted generation ignored models

---------

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-10-23 14:49:48 +02:00
50d0cf4f6b Change default max_shard_size to smaller value (#26942)
* Update modeling_utils.py

* fixup

* let's change it to 5GB

* fix
2023-10-23 14:25:48 +02:00
d33d313192 Nits in Llama2 docstring (#26996)
Update llama2.md
2023-10-23 14:19:59 +02:00
ef978d0a7b skip two tests (#27013)
* skip two tests

* skip torch as well

* fixup
2023-10-23 12:52:05 +02:00
45425660d0 python falcon doc-string example typo (#26995)
git python falcon typo
2023-10-23 12:51:35 +02:00
700329493d Limit to inferior fsspec version (#27010)
Pin fsspec
2023-10-23 12:34:21 +02:00
YQ
f71c9ccf59 fix logit-to-multi-hot conversion in example (#26936)
* fix logit to multi-hot converstion

* add comments

* typo
2023-10-23 12:33:05 +02:00
093848d3cc Added Telugu [te] translations (#26828)
* Create index.md

* Create _toctree.yml

* Updated index.md in telugu

* Update _toctree.yml

* Create quicktour.md

* Update quicktour.md

* Create index.md

* Update quicktour.md

* Update docs/source/te/quicktour.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Delete docs/source/hi/index.md

* Update docs/source/te/quicktour.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/te/quicktour.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/te/quicktour.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/te/quicktour.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/te/quicktour.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/te/quicktour.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/te/quicktour.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/te/quicktour.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update build_documentation.yml

Added telugu [te]

* Update build_pr_documentation.yml

Added Telugu [te]

* Update _toctree.yml

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-10-20 15:27:55 -07:00
224794b011 Update README_hd.md (#26872)
* Update README_hd.md

- Fixed broken links
I hope this small contribution adds value to this project.

* Update README_hd.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-10-20 14:23:41 -07:00
c030fc8913 Fix Fuyu image scaling bug (#26918)
* Fix Fuyu image scaling bug

It could produce negative padding and hence inference errors for certain
image sizes.

* Fix aspect ratio scaling test
2023-10-20 13:46:06 +02:00
9b1976697d fix set_transform link docs (#26856)
* fix set_transform link

* Update docs/source/en/preprocessing.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* use doc-builder sintax

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-10-20 11:16:37 +02:00
929134bf65 [docstring] Fix docstring for speech-to-text config (#26883)
* Fix docstring for speech-to-text config

* Refactor doc line len <= 119 char

* Remove Speech2TextConfig from OBJECTS_TO_IGNORE

* Fix Speech2TextConfig doc str

* Fix Speech2TextConfig doc using doc-builder

* Refactor Speech2TextConfig doc
2023-10-20 09:49:55 +02:00
08a2edfc66 Corrected modalities description in README_ru.md (#26913)
Update README_ru.md

Corrected modalities description in README
2023-10-19 09:30:27 -07:00
ae4fb84629 Generate: update basic llm tutorial (#26937) 2023-10-19 16:53:28 +01:00
bc4bbd9f6e [FA-2 / Mistral] Supprot fa-2 + right padding + forward (#26912)
supprot fa-2 + right padding + forward
2023-10-19 15:48:49 +02:00
cbd278f0f6 Pin Keras for now (#26904)
* Pin Keras for now out of paranoia

* Add the keras pin to _tests_requirements.txt too

* Make sure the Keras version matches the TF one

* make fixup
2023-10-19 14:39:31 +01:00
73dc23f786 Fix license (#26931) 2023-10-19 15:36:41 +02:00
ad08137e47 [docstring] Fix docstrings for CodeGen (#26821)
* remove docstrings CodeGen from objects_to_ignore

* autofix codegen docstrings

* fill in the missing types and docstrings

* fixup

* change descriptions to be in a separate line

* apply docstring suggestions from code review

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* update n_ctx description in CodeGenConfig

---------

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2023-10-19 14:21:40 +02:00
bdbcd5d482 Fix and re-enable ConversationalPipeline tests (#26907)
* Fix and re-enable conversationalpipeline tests

* Fix the batch test so the change only applies to conversational pipeline
2023-10-19 12:04:25 +01:00
734dd96e02 [Docs] Make sure important decode and generate method are nicely displayed in Whisper docs (#26927)
better docstrings whisper
2023-10-19 13:01:47 +02:00
816c2237c1 [docstring] Fix docstring for ChineseCLIP (#26880)
* Remove ChineseCLIPImageProcessor, ChineseCLIPTextConfig, ChineseCLIPVisionConfig from check_docstrings

* Run fix_and_overwrite for ChineseCLIPImageProcessor, ChineseCLIPTextConfig, ChineseCLIPVisionConfig

* Replace <fill_type> and <fill_docstring> in configuration_chinese_clip.py, image_processing_chinese_clip.py with type and docstring values

---------

Co-authored-by: vignesh-raghunathan <vignesh_raghunathan@intuit.com>
2023-10-19 10:52:14 +02:00
574a538455 [FA-2] Revert suggestion that broke FA2 fine-tuning with quantized models (#26916)
revert
2023-10-19 00:36:24 +02:00
caa0ff0bf1 Add fuyu model (#26911)
* initial commit

* add processor, add fuyu naming

* add draft processor

* fix processor

* remove dropout to fix loading of weights

* add image processing fixes from Pedro

* fix

* fix processor

* add basic processing fuyu test

* add documentation and TODO

* address comments, add tests, add doc

* replace assert with torch asserts

* add Mixins and fix tests

* clean imports

* add model tester, clean imports

* fix embedding test

* add updated tests from pre-release model

* Processor: return input_ids used for inference

* separate processing and model tests

* relax test tolerance for embeddings

* add test for logit comparison

* make sure fuyu image processor is imported in the init

* fix formattingh

* more formatting issues

* and more

* fixups

* remove some stuff

* nits

* update init

* remove the fuyu file

* Update integration test with release model

* Update conversion script.

The projection is not used, as confirmed by the authors.

* improve geenration

* Remove duplicate function

* Trickle down patches to model call

* processing fuyu updates

* remove things

* fix prepare_inputs_for_generation to fix generate()

* remove model_input

* update

* add generation tests

* nits

* draft leverage automodel and autoconfig

* nits

* fix dtype patch

* address comments, update READMEs and doc, include tests

* add working processing test, remove refs to subsequences

* add tests, remove Sequence classification

* processing

* update

* update the conversion script

* more processing cleanup

* safe import

* take out ModelTesterMixin for early release

* more cl;eanup

* more cleanup

* more cleanup

* and more

* register a buffer

* nits

* add postprocessing of generate output

* nits

* updates

* add one working test

* fix test

* make fixup works

* fixup

* Arthur's updates

* nits

* update

* update

* fix processor

* update tests

* passe more fixups

* fix

* nits

* don't import torch

* skip fuyu config for now

* fixup done

* fixup

* update

* oups

* nits

* Use input embeddings

* no buffer

* update

* styling processing fuyu

* fix test

* update licence

* protect torch import

* fixup and update not doctested

* kwargs should be passed

* udpates

* update the impofixuprts in the test

* protect import

* protecting imports

* protect imports in type checking

* add testing decorators

* protect top level import structure

* fix typo

* fix check init

* move requires_backend to functions

* Imports

* Protect types

---------

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
Co-authored-by: ArthurZucker <arthur.zucker@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Lysandre <lysandre@huggingface.co>
2023-10-18 15:24:11 -07:00
5a73316bed [FA-2] Final fix for FA2 dtype (#26846)
* final fix for FA2 dtype

* try

* oops

* Update src/transformers/models/falcon/modeling_falcon.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* apply fix everywhere

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-10-18 19:48:55 +02:00
732d2a8aac [i18n-ZH] Translated fast_tokenizers.md to Chinese (#26910)
docs: translate fast_tokenizers into Chinese
2023-10-18 10:45:41 -07:00
eec5a3a8d8 Refactor code part in documentation translated to japanese (#26900)
Refactor code in documentation
2023-10-18 10:35:58 -07:00
d933818d67 Add default template warning (#26637)
* Add default template warnings

* make fixup

* Move warnings to FutureWarning

* Move warnings to FutureWarning

* fix make fixup

* Remove futurewarning
2023-10-18 17:38:52 +01:00
de55ead1f1 Emergency PR to skip conversational tests to fix CI (#26906) 2023-10-18 15:33:43 +01:00
ef7e93699a [Tokenizer] Fix slow and fast serialization (#26570)
* fix

* last attempt

* current work

* fix forward compatibility

* save all special tokens

* current state

* revert additional changes

* updates

* remove tokenizer.model

* add a test and the fix

* nit

* revert one more break

* fix typefield issue

* quality

* more tests

* fix fields for FC

* more nits?

* new additional changes

* how

* some updates

* simplify all

* more nits

* revert some things to original

* nice

* nits

* a small hack

* more nits

* ahhaha

* fixup

* update

* make test run on ci

* use subtesting

* update

* Update .circleci/create_circleci_config.py

* updates

* fixup

* nits

* replace typo

* fix the test

* nits

* update

* None max dif pls

* a partial fix

* had to revert one thing

* test the fast

* updates

* fixup

* and more nits

* more fixes

* update

* Oupsy 👁️

* nits

* fix marian

* on our way to heaven

* Update src/transformers/models/t5/tokenization_t5.py

Co-authored-by: Lysandre Debut <hi@lysand.re>

* fixup

* Update src/transformers/tokenization_utils_fast.py

Co-authored-by: Leo Tronchon <leo.tronchon@gmail.com>

* Update src/transformers/tokenization_utils_base.py

Co-authored-by: Leo Tronchon <leo.tronchon@gmail.com>

* fix phobert

* skip some things, test more

* nits

* fixup

* fix deberta

* update

* update

* more updates

* skip one test

* more updates

* fix camembert

* can't test this one

* more good fixes

* kind of a major update

- seperate what is only done in fast in fast init and refactor
- add_token(AddedToken(..., speicla = True)) ignores it in fast
- better loading

* fixup

* more fixups

* fix pegasus and mpnet

* remove skipped tests

* fix phoneme tokenizer if self.verbose

* fix individual models

* update common tests

* update testing files

* all over again

* nits

* skip test for markup lm

* fixups

* fix order of addition in fast by sorting the added tokens decoder

* proper defaults for deberta

* correct default for fnet

* nits on add tokens, string initialized to special if special

* skip irrelevant herbert tests

* main fixes

* update test added_tokens_serialization

* the fix for bart like models and class instanciating

* update bart

* nit!

* update idefix test

* fix whisper!

* some fixup

* fixups

* revert some of the wrong chanegs

* fixup

* fixup

* skip marian

* skip the correct tests

* skip for tf and flax as well

---------

Co-authored-by: Lysandre Debut <hi@lysand.re>
Co-authored-by: Leo Tronchon <leo.tronchon@gmail.com>
2023-10-18 16:30:53 +02:00
34678db4a1 Fix Seq2seqTrainer decoder attention mask (#26841)
Don't drop decoder_input_ids without also dropping decoder_attention_mask
2023-10-18 13:28:15 +01:00
280c757f6c Knowledge distillation for vision guide (#25619)
* Knowledge distillation for vision guide

* Update knowledge_distillation_for_image_classification.md

* Update docs/source/en/tasks/knowledge_distillation_for_image_classification.md

Co-authored-by: Rafael Padilla <31217453+rafaelpadilla@users.noreply.github.com>

* Update docs/source/en/tasks/knowledge_distillation_for_image_classification.md

Co-authored-by: Rafael Padilla <31217453+rafaelpadilla@users.noreply.github.com>

* Iterated on Rafael's comments

* Added to toctree

* Update docs/source/en/tasks/knowledge_distillation_for_image_classification.md

Co-authored-by: Rafael Padilla <31217453+rafaelpadilla@users.noreply.github.com>

* Addressed comments

* Update knowledge_distillation_for_image_classification.md

* Update docs/source/en/tasks/knowledge_distillation_for_image_classification.md

Co-authored-by: Rafael Padilla <31217453+rafaelpadilla@users.noreply.github.com>

* Update docs/source/en/tasks/knowledge_distillation_for_image_classification.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/tasks/knowledge_distillation_for_image_classification.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/tasks/knowledge_distillation_for_image_classification.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/tasks/knowledge_distillation_for_image_classification.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/tasks/knowledge_distillation_for_image_classification.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/tasks/knowledge_distillation_for_image_classification.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/tasks/knowledge_distillation_for_image_classification.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/tasks/knowledge_distillation_for_image_classification.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update knowledge_distillation_for_image_classification.md

* Update knowledge_distillation_for_image_classification.md

* Update docs/source/en/tasks/knowledge_distillation_for_image_classification.md

Co-authored-by: Maria Khalusova <kafooster@gmail.com>

* Update docs/source/en/tasks/knowledge_distillation_for_image_classification.md

Co-authored-by: Maria Khalusova <kafooster@gmail.com>

* Update docs/source/en/tasks/knowledge_distillation_for_image_classification.md

Co-authored-by: Maria Khalusova <kafooster@gmail.com>

* Update docs/source/en/tasks/knowledge_distillation_for_image_classification.md

Co-authored-by: Maria Khalusova <kafooster@gmail.com>

* Address comments

* Update knowledge_distillation_for_image_classification.md

* Explain KL Div

---------

Co-authored-by: Rafael Padilla <31217453+rafaelpadilla@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Maria Khalusova <kafooster@gmail.com>
2023-10-18 04:42:32 -07:00
bece55d8f9 Bump urllib3 from 1.26.17 to 1.26.18 in /examples/research_projects/decision_transformer (#26889)
Bump urllib3 in /examples/research_projects/decision_transformer

Bumps [urllib3](https://github.com/urllib3/urllib3) from 1.26.17 to 1.26.18.
- [Release notes](https://github.com/urllib3/urllib3/releases)
- [Changelog](https://github.com/urllib3/urllib3/blob/main/CHANGES.rst)
- [Commits](https://github.com/urllib3/urllib3/compare/1.26.17...1.26.18)

---
updated-dependencies:
- dependency-name: urllib3
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-10-18 13:31:06 +02:00
6d644d6852 Bump urllib3 from 1.26.17 to 1.26.18 in /examples/research_projects/visual_bert (#26890)
Bump urllib3 in /examples/research_projects/visual_bert

Bumps [urllib3](https://github.com/urllib3/urllib3) from 1.26.17 to 1.26.18.
- [Release notes](https://github.com/urllib3/urllib3/releases)
- [Changelog](https://github.com/urllib3/urllib3/blob/main/CHANGES.rst)
- [Commits](https://github.com/urllib3/urllib3/compare/1.26.17...1.26.18)

---
updated-dependencies:
- dependency-name: urllib3
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-10-18 04:30:50 -07:00
e893b1efbb Generate: improve docstrings for custom stopping criteria (#26863)
improve docstrings
2023-10-18 09:55:01 +01:00
ef42cb6274 Fix TensorFlow pakage check (#26842)
Add tf-nightly-rocm to _is_tf_available check
2023-10-17 23:15:50 +01:00
b002353dca Translating en/internal folder docs to Japanese 🇯🇵 (#26747)
* Add translation to fitst 3 file of internal folder

* Update Toctree.md and add files

* Update docs/source/ja/internal/generation_utils

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Rename generation_utils file

* rename pipelines_utils.md

* Change file names

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-10-17 15:01:21 -07:00
46092f763d Fixed a typo in mistral.md (#26879)
Fix a typo in mistral.md
2023-10-17 14:06:37 -07:00
51042ae8e5 [docstring] Fix docstring for LukeConfig (#26858)
* Deleted LukeConfig and ran check_docstrings.py

* Filled docstring information

---------

Co-authored-by: louie <louisparizeau@Chicken.local>
2023-10-17 19:30:46 +02:00
db611aabee 🚨 🚨 Raise error when no speaker embeddings in speecht5._generate_speech (#26418)
* add warning when no speaker embeddings in speecht5._generate_speech

* modify warning to error

* adapt generation test
2023-10-17 15:59:35 +02:00
41c42f85f6 [FA2] Fix flash attention 2 fine-tuning with Falcon (#26852)
fix fa2 + dropout issue
2023-10-17 15:38:03 +02:00
4b423e6074 🚨🚨 Generate: change order of ops in beam sample to avoid nans (#26843)
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-10-17 10:32:49 +01:00
0b8604d002 Update logits_process.py docstrings to clarify penalty and reward cases (attempt #2) (#26784)
* Update logits_process.py docstrings + match arg fields to __init__'s

* Ran `make style`
2023-10-17 10:13:37 +02:00
85e9d64480 fix: when window_size is passes as array (#26800) 2023-10-17 09:26:03 +02:00
b3961f7291 Chore: Typo fixed in multiple files of docs/source/en/model_doc (#26833)
* Chore: Typo fixed in multiple files of docs/source/en/model_doc

* Update docs/source/en/model_doc/nllb-moe.md

Co-authored-by: Aryan V S <avs050602@gmail.com>

---------

Co-authored-by: Aryan V S <avs050602@gmail.com>
2023-10-17 07:10:08 +02:00
b8f1cde931 Fix Mistral OOM again (#26847)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-10-16 22:47:20 +02:00
fd6a0ade9b 🚨🚨🚨 [Quantization] Store the original dtype in the config as a private attribute 🚨🚨🚨 (#26761)
* First step

* fix

* add adjustements for gptq

* change to `_pre_quantization_dtype`

* Update src/transformers/modeling_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fix serialization

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fixup

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-10-16 19:56:53 +02:00
14b04b4b9c Conversation pipeline fixes (#26795)
* Adjust length limits and allow naked conversation list inputs

* Adjust length limits and allow naked conversation list inputs

* Maybe use a slightly more reasonable limit than 1024

* Skip tests for old models that never supported this anyway

* Cleanup input docstrings

* More docstring cleanup + skip failing TF test

* Make fixup
2023-10-16 17:27:45 +01:00
5c6b83cb69 [docstring] Fix bert generation tokenizer (#26820)
* Remove BertGenerationTokenizer from objects to ignore

The file BertGenerationTokenizer is removed from
objects to ignore as a first step to fix docstring.

* Docstrings fix for BertGenerationTokenizer

Docstring fix is generated for BertGenerationTokenizer
by using check_docstrings.py.

* Fix docstring for BertGenerationTokenizer

Added sep_token type and docstring in BertGenerationTokenizer.
2023-10-16 18:26:55 +02:00
12cc123359 Better way to run AMD CI with different flavors (#26634)
* Enable testing against mi250

* Change BERT to trigger tests

* Revert BERT's change

* AMD CI

* AMD CI

---------

Co-authored-by: Morgan Funtowicz <funtowiczmo@gmail.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-10-16 16:24:30 +02:00
3ef7134553 Llama tokenizer: remove space in template comment (#26788)
* Remove space in template comment

I think the space between the eos and bos tokens is not present in the actual template output. I'm using this documentation as a reference for everyone asking about prompting, so would like to clarify whether there's a space or not :)

* Update fast tokenizer too

* Apply to Code Llama

* Link to original code snippet.
2023-10-16 15:16:03 +01:00
805d5d2111 Add LLM doc (#26058)
* [WIP] Add LLM doc

* rename

* latex

* latex

* Fix more latex

* [LLMs] Getting most out of LLMS

* improve

* try again

* Apply suggestions from code review

Co-authored-by: Maria Khalusova <kafooster@gmail.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update docs/source/en/llm_tutorial_optimization.md

* Apply suggestions from code review

* Apply suggestions from code review

* Apply suggestions from code review

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Apply suggestions from code review

* move file

---------

Co-authored-by: Maria Khalusova <kafooster@gmail.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2023-10-16 16:09:50 +02:00
570b3f9cdd [OWL-ViT, OWLv2] Add resources (#26822)
Add resources
2023-10-16 15:47:44 +02:00
b91cff5a3e fix resume_from_checkpoint bug (#26739)
* fix resume_from_checkpoint bug

* update code
2023-10-16 15:29:47 +02:00
a5f5568d75 Make fsdp ram efficient loading optional (#26631)
make fsdp ram efficient loading optional
2023-10-16 06:29:01 -07:00
5d997f227c Image-to-Image Task Guide (#26595)
* img2img task guide

* Update year

* Add to toctree

* Update docs/source/en/tasks/image_to_image.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/tasks/image_to_image.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/tasks/image_to_image.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/tasks/image_to_image.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/tasks/image_to_image.md

Co-authored-by: Maria Khalusova <kafooster@gmail.com>

* Update docs/source/en/tasks/image_to_image.md

Co-authored-by: Maria Khalusova <kafooster@gmail.com>

* Addressed comments

* Update docs/source/en/tasks/image_to_image.md

Co-authored-by: Maria Khalusova <kafooster@gmail.com>

* Addressed comments

---------

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Maria Khalusova <kafooster@gmail.com>
2023-10-16 15:12:03 +02:00
5c081e2993 [docstring] Fix docstring for CodeLlamaTokenizerFast (#26666)
* remove from OBJECTS_TO_IGNORE

* run check_docstrings.py

* fill in information

* ignore CodeLlamaTokenizer
2023-10-16 10:11:45 +02:00
69a26c7ecd Add Japanese translation (#26799)
Translated into Japanese (README_ja)
2023-10-16 10:10:23 +02:00
0e52af4d7b [docstring] Fix docstring for CanineConfig (#26771)
* Remove CanineConfig from check_docstrings

* Run fix_and_overwrite for CanineConfig

* Replace <fill_type> and <fill_docstring> in configuration_canine.py with type and docstring values

---------

Co-authored-by: vignesh-raghunathan <vignesh_raghunathan@intuit.com>
2023-10-16 10:08:44 +02:00
0dd58d96a0 Fixed typos (#26810)
Update feature_extractor.md
2023-10-16 09:52:29 +02:00
21dc585942 translation brazilian portuguese (#26769)
* add translation brazilian portuguese

* add translation brazilian portuguese

* add translation brazilian portuguese title

* add translation portuguese tag

* Update README_pt-br.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update README_pt-br.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update README_pt-br.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update README_pt-br.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-10-13 11:13:47 -07:00
d6e5b02ef3 Add CLIP resources (#26534)
* docs: feat: model resources for CLIP

* fix: resolve suggestion

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* fix: resolve suggestion

* fix: resolve suggestion

* fix: resolve suggestion

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* fix: resolve suggestion

* fix: resolve suggestions

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-10-13 11:12:59 -07:00
7cc6f822a3 [Flava] Fix flava doc (#26789)
* fix flava doctest

* add shape

* adapt
2023-10-13 18:38:36 +02:00
8e05ad326b Fixed KeyError for Mistral (#26682)
* Fixed KeyError for Mistral

* Removed try block

* Removed whitespace
2023-10-13 17:20:26 +02:00
762af3e3c7 Add OWLv2, bis (#26668)
* First draft

* Update conversion script

* Update copied from statements

* Fix style

* Add copied from to config

* Add copied from to processor

* Run make fixup

* Add docstring

* Update docstrings

* Add method

* Improve docstrings

* Fix docstrings

* Improve docstrings

* Remove onnx

* Add flag

* Address comments

* Add copied from to model tests

* Add flag to conversion script

* Add code snippet

* Address more comments

* Address comment

* Improve conversion script

* More improvements

* Add expected objectness logits

* Skip test

* Improve conversion script

* Extend conversion script

* Convert large checkpoint

* Fix doc tests

* Convert all checkpoints, update integration tests

* Add checkpoint_path arg

* Fix repo_id
2023-10-13 16:41:24 +02:00
bdb391e9c6 Fix Falcon generation test (#26770) 2023-10-13 15:10:27 +01:00
c9785d956b Disable default system prompt for LLaMA (#26765)
* Disable default system prompt for LLaMA

* Update test to not expect default prompt
2023-10-13 14:48:38 +01:00
6df9179c1c [core] Fix fa-2 import (#26785)
* fix fa-2 import

* nit
2023-10-13 12:56:50 +02:00
5bfda28dd3 [docstring] fix docstring DPRConfig (#26674)
* fix docstring dpr config

* fix style

* Update descp

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

---------

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2023-10-13 12:13:43 +02:00
288bf5c1d2 Fix num. of minimal calls to the Hub with peft for pipeline (#26385)
* fix

* [skip-ci] fix

* [skip-ci] fix

* [skip-ci] fix

* [skip-ci] fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-10-13 11:03:14 +02:00
d085662c59 [docstring] Fix docstring for RwkvConfig (#26782)
* update check_docstrings

* update docstring
2023-10-13 10:20:30 +02:00
21da3b2461 Update expect outputs of IdeficsProcessorTest.test_tokenizer_padding (#26779)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-10-13 09:52:10 +02:00
7790943c91 🌐 [i18n-KO] Translated big_models.md to Korean (#26245)
* docs: ko: big_models.md

* feat: chatgpt draft

* fix: manual edits

* fix: resolve suggestions

Co-Authored-By: SeongWooChoi <46990061+nuatmochoi@users.noreply.github.com>
Co-Authored-By: heuristicwave <31366038+heuristicwave@users.noreply.github.com>
Co-Authored-By: SeongWooChoi <46990061+nuatmochoi@users.noreply.github.com>
Co-Authored-By: heuristicwave <31366038+heuristicwave@users.noreply.github.com>
Co-Authored-By: bolizabeth <68984363+bolizabeth@users.noreply.github.com>

---------

Co-authored-by: bolizabeth <68984363+bolizabeth@users.noreply.github.com>
Co-authored-by: SeongWooChoi <46990061+nuatmochoi@users.noreply.github.com>
Co-authored-by: heuristicwave <31366038+heuristicwave@users.noreply.github.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-10-12 15:00:12 -07:00
3e93dd295b Skip TrainerIntegrationFSDP::test_basic_run_with_cpu_offload if torch < 2.1 (#26764)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-10-12 18:22:09 +02:00
883ed4b344 chore: fix typos (#26756) 2023-10-12 18:00:27 +02:00
a243cdca2a Fix PerceiverModelIntegrationTest::test_inference_masked_lm (#26760)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-10-12 17:43:06 +02:00
33df09e71a [docstring] Fix docstring for 'BertGenerationConfig' (#26661)
* [docstring] Remove 'BertGenerationConfig' from OBJECTS_TO_IGNORE

* [docstring] Fix docstring for 'BertGenerationConfig' (#26638)
2023-10-12 17:01:13 +02:00
b4199c2dad [docstring] Update GPT2 and Whisper (#26642)
* [DOCS] Update docstrings for  and  tokenizer

* [DOCS] add pad_token argument to whisper tokenizer docstring

* [FIX] Reword pad_token description

* [CHORE] Apply style formatting

---------

Co-authored-by: jmcdonnell <jmcdonnell@fieldbox.ai>
2023-10-12 17:00:59 +02:00
eb734e5147 [docstring] Fix UniSpeech, UniSpeechSat, Wav2Vec2ForCTC (#26664)
* Remove UniSpeechConfig

* Remove , at the end otherwise check_docstring changes order

* Auto add new docstring

* Update docstring for UniSpeechConfig

* Remove from check_docstrings

* Remove UniSpeechSatConfig and UniSpeechSatForCTC from check_docstrings

* Remove , at the end

* Fix docstring

* Update docstring for Wav2Vec2ForCTC

* Update Wav2Vec2ForCTC docstring

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* fix style

---------

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2023-10-12 16:51:34 +02:00
0ebee8b933 [docs] LLM prompting guide (#26274)
* llm prompting guide

* updated code examples

* an attempt to fix the code example tests

* set seed in examples

* added a doctest comment

* added einops to the doc_test_job

* string formatting

* string formatting, again

* added the toc to slow_documentation_tests.txt

* minor list fix

* string formatting + pipe renamed

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* replaced max_length with max_new_tokens and updated the outputs to match

* minor formatting fix

* removed einops from circleci config

* Apply suggestions from code review

Co-authored-by: Lysandre Debut <hi@lysand.re>

* removed einops and trust_remote_code parameter

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Lysandre Debut <hi@lysand.re>
2023-10-12 08:48:01 -04:00
57632bf98c Fix backward compatibility of Conversation (#26741)
* Fix backward compatibility of Conversation

I ran into a case where an external library was depending on the `new_user_input` field of Conversation. https://github.com/SeldonIO/MLServer/blob/release/1.4.x/runtimes/huggingface/mlserver_huggingface/codecs/utils.py#L37 

This field was deprecated as part of the refactor, but if `transformers` wants to maintain backwards compatibility for now (which is mentioned in a few comments) then there's a good argument for supporting it. Some comments referred to it as an "internal" property, but it didn't start with `_` as is Python convention, so I think it's reasonable that other libraries were referencing it directly.

It's not difficult to add it to the other supported backwards-compatible properties. In addition, the implementation of `past_user_inputs` didn't actually match the past behavior (it would contain the most recent message as well) so I updated that as well.

* make style

---------

Co-authored-by: Matt <rocketknight1@gmail.com>
2023-10-12 13:19:23 +02:00
db5e0c3292 Fix MistralIntegrationTest OOM (#26754)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-10-12 12:31:11 +02:00
72256bc72a Fix PersimmonIntegrationTest OOM (#26750)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-10-12 11:24:18 +02:00
ab0ddc99e8 Warnings controlled by logger level (#26527)
* Logger level

Co-authored-by: Sahil Bhosale <sahilbhosale63@live.com>
Co-authored-by: Adithya4720 <hegdeadithyak@gmail.com>
Co-authored-by: Sachin Singh <sachinishu02@gmail.com>
Co-authored-by: Riya Dhanduke <113622644+riiyaa24@users.noreply.github.com>

* More comprehensive documentation

---------

Co-authored-by: Sahil Bhosale <sahilbhosale63@live.com>
Co-authored-by: Adithya4720 <hegdeadithyak@gmail.com>
Co-authored-by: Sachin Singh <sachinishu02@gmail.com>
Co-authored-by: Riya Dhanduke <113622644+riiyaa24@users.noreply.github.com>
2023-10-12 10:48:38 +02:00
40ea9ab2a1 Add many missing spaces in adjacent strings (#26751)
Add missing spaces in adjacent strings
2023-10-12 10:28:40 +02:00
3bc65505fc Fix doctest for Blip2ForConditionalGeneration (#26737)
* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-10-12 10:01:07 +02:00
e1cec43415 Translated the accelerate.md file of the documentation to Chinese (#26161)
* translate accelerate page

* Update docs/source/zh/accelerate.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-10-11 10:54:22 -07:00
9b7668c03a add japanese documentation (#26138)
* udpaet

* update

* Update docs/source/ja/autoclass_tutorial.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* add codes workflows/build_pr_documentation.yml

* Create preprocessing.md

* added traning.md

* Create Model_sharing.md

* add quicktour.md

* new

* ll

* Create benchmark.md

* Create Tensorflow_model

* add

* add community.md

* add create_a_model

* create custom_model.md

* create_custom_tools.md

* create fast_tokenizers.md

* create

* add

* Update docs/source/ja/_toctree.yml

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* md

* add

* commit

* add

* h

* Update docs/source/ja/peft.md

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update docs/source/ja/_toctree.yml

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update docs/source/ja/_toctree.yml

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Suggested Update

* add perf_train_gpu_one.md

* added perf based MD files

* Modify toctree.yml and Add transmartion to md codes

* Add `serialization.md` and edit `_toctree.yml`

* add task summary and tasks explained

* Add and Modify files starting from T

* Add testing.md

* Create main_classes files

* delete main_classes folder

* Add toctree.yml

* Update llm_tutorail.md

* Update docs/source/ja/_toctree.yml

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update misspelled filenames

* Update docs/source/ja/_toctree.yml

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/_toctree.yml

* Update docs/source/ja/_toctree.yml

* missplled file names inmrpovements

* Update _toctree.yml

* close tip block

* close another tip block

* Update docs/source/ja/quicktour.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/pipeline_tutorial.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/pipeline_tutorial.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/preprocessing.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/peft.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/add_new_model.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/testing.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/task_summary.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/tasks_explained.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update glossary.md

* Update docs/source/ja/transformers_agents.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/llm_tutorial.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/create_a_model.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/torchscript.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/benchmarks.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/troubleshooting.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/troubleshooting.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/troubleshooting.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ja/add_new_model.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update perf_torch_compile.md

* Update Year to default in en documentation

* Final Update

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2023-10-11 10:26:37 -07:00
797a1babf2 [docstring] Fix docstring for CodeLlamaTokenizer (#26709)
* update check_docstrings

* update docstring
2023-10-11 18:01:22 +02:00
aaccf1844e [docstring] Fix docstring for LlamaTokenizer and LlamaTokenizerFast (#26669)
* [docstring] Fix docstring for `LlamaTokenizer` and `LlamaTokenizerFast`

* [docstring] Fix docstring typo at `LlamaTokenizer` and `LlamaTokenizerFast`
2023-10-11 17:03:31 +02:00
e58cbed51d Revert #20715 (#26734)
* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-10-11 16:46:41 +02:00
b219ae6bd4 Update docker files to use torch==2.1.0 (#26735)
Update docker files to use torch 2.1

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-10-11 16:23:36 +02:00
1d6a84749b Fix checkpoint path in no_trainer scripts (#26733)
checkpoint path
2023-10-11 16:16:27 +02:00
6ecb2ab679 Fix stale bot for locked issues (#26711) 2023-10-11 16:08:55 +02:00
69873d529d fix the model card issue as use_cuda_amp is no more available (#26731) 2023-10-11 15:58:23 +02:00
cc44ca8017 [docstring] SwinModel docstring fix (#26679)
* remove from utils

* updated doc string

* only in the model

* Update src/transformers/models/swin/modeling_swin.py

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* Update src/transformers/models/swin/modeling_swin.py

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

---------

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2023-10-11 15:53:32 +02:00
da69de17e8 [Assistant Generation] Improve Encoder Decoder (#26701)
* [Assistant Generation] Improve enc dec

* save more

* Fix logit processor checks

* Clean

* make style

* fix deprecation

* fix generation test

* Apply suggestions from code review

* fix biogpt

* make style
2023-10-11 15:52:20 +02:00
5334796d20 Copied from for test files (#26713)
* copied statement for test files

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-10-11 14:12:09 +02:00
9f40639292 Update docs to explain disabling callbacks using report_to (#26155)
* feat: update callback doc to explain disabling callbacks using report_to

* docs: update report_to docstring
2023-10-11 07:50:23 -04:00
dcc49d8a7e In assisted decoding, pass model_kwargs to model's forward call (fix prepare_input_for_generation in all models) (#25242)
* In assisted decoding, pass model_kwargs to model's forward call

Previously, assisted decoding would ignore any additional kwargs
that it doesn't explicitly handle. This was inconsistent with other
generation methods, which pass the model_kwargs through
prepare_inputs_for_generation and forward the returned dict to the
model's forward call.

The prepare_inputs_for_generation method needs to be amended in all
models, as previously it only kept the last input ID when a past_key_values
was passed.

* Improve variable names in _extend_attention_mask

* Refactor extending token_type_ids into a function

* Replace deepcopy with copy to optimize performance

* Update new persimmon model with llama changes for assisted generation

* Update new mistral model for assisted generation with prepare_inputs_for_generation

* Update position_ids creation in falcon prepare_inputs_for_generation to support assisted generation
2023-10-11 13:18:42 +02:00
1e3c9ddacc Make Whisper Encoder's sinusoidal PE non-trainable by default (#26032)
* set encoder's PE as non-trainable

* freeze flax

* init sinusoids

* add test for non-trainable embed positions

* simplify TF encoder embed_pos

* revert tf

* clean up

* add sinusoidal init for jax

* make consistent sinusoidal function

* fix dtype

* add default dtype

* use numpy for sinusoids. fix jax

* add sinusoid init for TF

* fix

* use custom embedding

* use specialized init for each impl

* fix sinusoids init. add test for pytorch

* fix TF dtype

* simplify sinusoid init for flax and tf

* add tests for TF

* change default dtype to float32

* add sinusoid test for flax

* Update src/transformers/models/whisper/modeling_flax_whisper.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Update src/transformers/models/whisper/modeling_tf_whisper.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* move sinusoidal init to _init_weights

---------

Co-authored-by: sanchit-gandhi <sanchit@huggingface.co>
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
2023-10-11 09:08:54 +01:00
fc63914399 [JAX] Replace uses of jnp.array in types with jnp.ndarray. (#26703)
`jnp.array` is a function, not a type:
https://jax.readthedocs.io/en/latest/_autosummary/jax.numpy.array.html
so it never makes sense to use `jnp.array` in a type annotation. Presumably the intent was to write `jnp.ndarray` aka `jax.Array`.

Co-authored-by: Peter Hawkins <phawkins@google.com>
2023-10-10 21:35:16 +02:00
3eceaa3637 Fix source_prefix default value (#26654) 2023-10-10 20:49:10 +02:00
975003eacb fix a typo in flax T5 attention - attention_mask variable is misnamed (#26663)
* fix a typo in flax t5 attention

* fix the typo in flax longt5 attention
2023-10-10 20:36:32 +02:00
e8fdd7875d [docstring] Fix docstring for LlamaConfig (#26685)
* Your commit message here

* fix LlamaConfig docstring

* run make fixup

* fix formatting after review

reformat of the file to prevent script issues

* rerun make fixup after reformat
2023-10-10 17:05:48 +02:00
a9862a0f49 Fix Typo: table in deepspeed.md (#26705) 2023-10-10 11:50:10 +02:00
592f2eabd1 Control first downsample stride in ResNet (#26374)
* control first downsample stride

* reduce first only works for ResNetBottleNeckLayer

* fix param name

* fix style
2023-10-10 06:45:24 +02:00
a5e6df82c0 [docstring] Fix docstrings for CLIP (#26691)
fix docstrings for vanilla clip
2023-10-09 17:39:05 +02:00
87b4ade9e5 Fix stale bot (#26692)
* Fix stale bot

* Comments
2023-10-09 16:39:57 +02:00
3257946fb7 [docstring] Fix docstring for DonutImageProcessor (#26641)
* removed donutimageprocessor from objects_to_ignore

* added docstring for donutimageprocessor

* readding donut file

* moved docstring to correct location
2023-10-09 16:32:13 +02:00
d2f06dfffc [docstring] Fix docstring for CLIPImageProcessor (#26676)
fix docstring for CLIPImageProcessor
2023-10-09 14:22:44 +02:00
3763101f85 [docstring] Fix docstring CLIP configs (#26677)
* fix docstrings for CLIP configs

* black formatted
2023-10-09 12:34:01 +02:00
c7f01beece fix typos in idefics.md (#26648)
* fix typos in idefics.md

Two typos found in reviewing this documentation.

1) max_new_tokens=4, is not sufficient to generate "Vegetables" as indicated - you will get only "Veget". (incidentally - some mention of how to select this value might be useful as it seems to change in each example)

2) inputs = processor(prompts, return_tensors="pt").to(device) as inputs need to be on the same device (as they are in all other examples on the page)

* Update idefics.md

Change device to cuda explicitly to match other examples
2023-10-09 12:18:02 +02:00
740fc6a1da Avoid CI OOM (#26639)
fix avoid oom

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-10-09 11:42:08 +02:00
8835bff6a0 fix links in README.md for the GPT, GPT-2, and Llama2 Models (#26640)
* fix OpenAI GPT, GPT-2 links

* fix Llama2 link
2023-10-09 11:34:44 +02:00
86a4e5a96b Fixed malapropism error (#26660)
Update test_integration.py

Fixed malapropism clone>copy
2023-10-09 11:04:57 +02:00
2629c8f36a [DINOv2] Convert more checkpoints (#26177)
* Convert checkpoints

* Update doc test

* Address comment
2023-10-09 09:58:04 +02:00
897a826d83 docs(zh): review and punctuation & space fix (#26627) 2023-10-06 09:24:28 -07:00
360ea8fc72 [docstring] Fix docstring for AlbertConfig (#26636)
example fix docstring

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-10-06 17:36:22 +02:00
9ad815e412 [LlamaTokenizerFast] Adds edge cases for the template processor (#26606)
* make sure eos and bos are properly handled for fast tokenizer

* fix code llama as well

* nits

* fix the conversion script as well

* fix failing test
2023-10-06 16:40:54 +02:00
27597fea07 remove SharedDDP as it is deprecated (#25702)
* remove SharedDDP as it was drepracated

* apply review suggestion

* make style

* Oops,forgot to remove the compute_loss context manager in Seq2SeqTrainer.

* remove the unnecessary conditional statement

* keep the logic of IPEX

* clean code

* mix precision setup & make fixup

---------

Co-authored-by: statelesshz <jihuazhong1@huawei.com>
2023-10-06 16:03:11 +02:00
e840aa67e8 Fix failing MusicgenTest .test_pipeline_text_to_audio (#26586)
* fix

* fix

* Fix

* Fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-10-06 15:53:59 +02:00
87499420bf fix RoPE t range issue for fp16 (#26602) 2023-10-06 12:04:54 +01:00
ea52ed9dc8 Update chat template docs with more tips on writing a template (#26625) 2023-10-06 12:04:40 +01:00
64845307b3 Remove unnecessary unsqueeze - squeeze in rotary positional embedding (#26162)
* remove unnecessary unsqueeze-squeeze in llama

* correct other models

* fix

* revert gpt_neox_japanese

* fix copie

* fix test
2023-10-06 18:25:15 +09:00
65aabafe2f Update tokenization_code_llama_fast.py (#26576)
* Update tokenization_code_llama_fast.py

* Update test_tokenization_code_llama.py

* Update test_tokenization_code_llama.py
2023-10-06 10:49:02 +02:00
af38c837ee Fixed inconsistency in several fast tokenizers (#26561) 2023-10-06 10:40:47 +02:00
8878eb1bd9 Remove unnecessary views of position_ids (#26059)
* Remove unnecessary `view` of `position_ids` in `modeling_llama`

When `position_ids` is `None`, its value is generated using
`torch.arange`, which creates a tensor of size `(seq_length +
past_key_values_length) - past_key_values_length = seq_length`. The
tensor is then unsqueezed, resulting in a tensor of shape `(1,
seq_length)`. This means that the last `view` to a tensor of shape
`(-1, seq_length)` is a no-op.

This commit removes the unnecessary view.

* Remove no-op `view` of `position_ids` in rest of transformer models
2023-10-06 10:28:00 +02:00
75a33d60f2 Don't install pytorch-quantization in Doc Builder docker file (#26622)
Fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-10-05 16:57:50 +02:00
18fbeec824 [docs] Update to scripts building index.md (#26546)
* build the table in index.md with links to the model_doc

* removed list generation on index.md

* fixed missing models

* make style
2023-10-05 10:20:41 -04:00
9d20601259 Fix transformers-pytorch-gpu docker build (#26615)
Fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-10-05 15:33:35 +02:00
9e78c9acfb Don't close ClearML task if it was created externally (#26614)
don't close clearml task if it was created externally
2023-10-05 15:33:05 +02:00
0a3b9d02fe #26566 swin2 sr allow in out channels (#26568)
* feat: close #26566, changed model & config files to accept arbitary in and out channels

* updated docstrings

* fix: linter error

* fix: update Copy docstrings

* fix: linter update

* fix: rename num_channels_in to num_channels to prevent breaking changes

* fix: make num_channels_out None per default

* Update src/transformers/models/swin2sr/configuration_swin2sr.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fix: update tests to include num_channels_out

* fix:linter

* fix: remove normalization with precomputed rgb values when #input_channels!=#output_channels

---------

Co-authored-by: marvingabler <marvingabler@outlook.de>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-10-05 15:20:38 +02:00
e6d250e4cd [core] fix silent bug keep_in_fp32 modules (#26589)
* fix silent bug `keep_in_fp32` modules

* final fix

* added a common test.

* Trigger CI

* revert
2023-10-05 14:44:31 +02:00
19f0b7dd02 Make ModelOutput serializable (#26493)
* Make `ModelOutput` serializable

Original PR from diffusers : https://github.com/huggingface/diffusers/pull/5234

* Black
2023-10-05 11:08:44 +02:00
54e17a15dc Fix failing tests on main due to torch 2.1 (#26607)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-10-05 10:27:05 +02:00
2ab76c2c4f [Falcon] Set use_cache=False before creating presents which relies on use_cache (#26328)
* Set `presents=None` when `use_cache` is set to False for activation ckpt

* Update modeling_falcon.py

* fix black
2023-10-05 10:18:27 +02:00
253f9a3f97 [GPTNeoX] Faster rotary embedding for GPTNeoX (based on llama changes) (#25830)
* Faster rotary embedding for GPTNeoX

* there might be un-necessary moves from device

* fixup

* fix dtype issue

* add copied from statements

* fox copies

* oupsy

* add copied from Llama for scaled ones as well

* fixup

* fix

* fix copies
2023-10-05 10:05:39 +02:00
b4e66d7a67 [ NougatProcessor] Fix the default channel (#26608)
fix
2023-10-05 09:38:08 +02:00
43bfd093e1 add zh translation for installation (#26084)
* translate installation to zh

* fix translation typo
2023-10-04 09:39:02 -07:00
2d8ee9817c [Wav2Vec2] Fix tokenizer set lang (#26349)
* fix wav2vec2 doctest

* suggestion

* fix

* final fix

* revert since we need AddedTokens
2023-10-04 17:12:09 +01:00
f9ab07f920 Update mistral.md to update 404 link (#26590) 2023-10-04 17:48:11 +02:00
c037b2e340 skip flaky hub tests (#26594)
skip flaky
2023-10-04 17:47:55 +02:00
ca7912d191 Fix encoder->decoder typo bug in convert_t5x_checkpoint_to_pytorch.py (#26587)
Fix bug in convert_t5x_checkpoint_to_pytorch.py
2023-10-04 17:34:32 +02:00
8b03615b7b Fix embarrassing typo in the doc chat template! (#26596) 2023-10-04 16:28:53 +01:00
9deb18ca1a Add # Copied from statements to audio feature extractors that use the floats_list function (#26581)
Add # Copied from statements to audio feature extractors that use the floats_list function.
2023-10-04 17:09:48 +02:00
0a49f909bc [Mistral] Update config docstring (#26593)
* fix copies

* fix missing docstring

* make style

* oops
2023-10-04 16:02:34 +01:00
6015f91a5a refactor: change default block_size (#26229)
* refactor: change default block_size

* fix: return tf to origin

* fix: change files to origin

* rebase

* rebase

* rebase

* rebase

* rebase

* rebase

* rebase

* rebase

* refactor: add min block_size to files

* reformat: add min block_size for run_clm tf
2023-10-04 15:31:38 +01:00
8b46c5bcfc Add add_generation_prompt argument to apply_chat_template (#26573)
* Add add_generation_prompt argument to apply_chat_template

* Add add_generation_prompt argument to apply_chat_template and update default templates

* Fix typo

* Add generation prompts section to chat templating guide

* Add generation prompts section to chat templating guide

* Minor style fix
2023-10-04 15:15:29 +01:00
03af4c42a6 Docstring check (#26052)
* Fix number of minimal calls to the Hub with peft integration

* Alternate design

* And this way?

* Revert

* Nits to fix

* Add util

* Print when changes are made

* Add list to ignore

* Add more rules

* Manual fixes

* deal with kwargs

* deal with enum defaults

* avoid many digits for floats

* Manual fixes

* Fix regex

* Fix regex

* Auto fix

* Style

* Apply script

* Add ignored list

* Add check that templates are filled

* Adding to CI checks

* Add back semi-fix

* Ignore more objects

* More auto-fixes

* Ignore missing objects

* Remove temp semi-fix

* Fixes

* Update src/transformers/models/pvt/configuration_pvt.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update utils/check_docstrings.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/utils/quantization_config.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Deal with float defaults

* Fix small defaults

* Address review comment

* Treat

* Post-rebase cleanup

* Address review comment

* Update src/transformers/models/deprecated/mctct/configuration_mctct.py

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>

* Address review comment

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
2023-10-04 15:13:37 +02:00
122b2657f8 feat: add trainer label to wandb run upon initialization (#26466) 2023-10-04 14:57:41 +02:00
4fdf47cd3c Extend Trainer to enable Ascend NPU to use the fused Adamw optimizer when training (#26194) 2023-10-04 14:57:11 +02:00
fc296f419e Bump pillow from 9.3.0 to 10.0.1 in /examples/research_projects/decision_transformer (#26580)
Bump pillow in /examples/research_projects/decision_transformer

Bumps [pillow](https://github.com/python-pillow/Pillow) from 9.3.0 to 10.0.1.
- [Release notes](https://github.com/python-pillow/Pillow/releases)
- [Changelog](https://github.com/python-pillow/Pillow/blob/main/CHANGES.rst)
- [Commits](https://github.com/python-pillow/Pillow/compare/9.3.0...10.0.1)

---
updated-dependencies:
- dependency-name: pillow
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-10-04 11:52:46 +02:00
2f3ea08a07 docs: feat: add clip notebook resources from OSSCA community (#26505) 2023-10-03 11:20:22 -07:00
5c66378cea [Tokenizers] Skip tests temporarily (#26574)
* Skip tests temporarily

* style

* Add additional test
2023-10-03 19:43:42 +02:00
2c7b26f508 🌐 [i18n-KO] Translated semantic_segmentation.md to Korean (#26515)
* docs: ko: sementic_segmentation.md

* feat: manual draft

* fix: manual edits

* fix: resolve suggestions

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>

* fix: resolve suggestions

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* fix: edit the title

---------

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-10-03 10:25:50 -07:00
57f44dc428 [Whisper] Allow basic text normalization (#26149)
* [Whisper] Allow basic text normalization

* up

* style copies
2023-10-03 17:57:16 +01:00
bd6205919a v4.35.0.dev0 2023-10-03 16:54:37 +02:00
c26b2a29e5 [Nougat] from transformers import * (#26562)
* remove unprotected import to PIL

* cleanup

---------

Co-authored-by: Lysandre <lysandre@huggingface.co>
2023-10-03 16:32:12 +02:00
2aef9a9601 [PEFT] Final fixes (#26559)
* fix issues with PEFT

* logger warning futurewarning issues

* fixup

* adapt from suggestions

* oops

* rm test
2023-10-03 14:53:09 +02:00
ae9a344cce [Mistral] Add Flash Attention-2 support for mistral (#26464)
* add FA-2 support for mistral

* fixup

* add sliding windows

* fixing few nits

* v1 slicing cache - logits do not match

* add comment

* fix bugs

* more mem efficient

* add warning once

* add warning once

* oops

* fixup

* more comments

* copy

* add safety checker

* fixup

* Update src/transformers/models/mistral/modeling_mistral.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* copied from

* up

* raise when padding side is right

* fixup

* add doc + few minor changes

* fixup

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-10-03 13:44:46 +02:00
1a2e966cfe Nit-added-tokens (#26538)
* fix stripping

* nits

* fix another test

* styling

* fix?

* update

* revert bad merge

* found the bug

* YES SIR

* is that change really required?

* make fast even faster

* re order functions
2023-10-03 12:23:46 +02:00
245da7ed38 [Doctest] Add configuration_encoder_decoder.py (#26519)
* [Doctest] Add configuration_encoder_decoder.py

Added configuration_encoder_decoder.py to utils/documentation_tests.txt for doctest

* Revert "[Doctest] Add configuration_encoder_decoder.py"

This reverts commit bd653535a4356dc3c9f43e65883819079a2053b0.

* [Doctest] Add configuration_encoder_decoder.py

add configuration_encoder_decoder.py to utils/documentation_tests.txt

* [Doctest] Add configuration_encoder_decoder.py

add configuration_encoder_decoder.py to utils/documentation_tests.txt

* [Doctest] Add configuration_encoder_decoder.py

add configuration_encoder_decoder.py to utils/documentation_tests.txt

* changed as per request

* fixed line 46
2023-10-03 11:21:24 +02:00
3632fb3c25 [AMD] Add initial version for run_tests_multi_gpu (#26346)
* Add initial version for run_tests_multi_gpu

* Trigger change in BERT

* fix typo setup -> setup_gpu

* Add tag mi210

* Enable multi-gpu jobs

* One more

* Use dynamic device allocation

* Attempt to fix syntax for docker create

* fix script path

* fix

* temp machine type

* fix label

* Enable multi-gpu tests

* Rename multi-amd-gpu to multi-gpu

* Let's not be lazy dude

* Update rocm-smi output

* Add gpu_flavour in the matrix

* Fix typos

* merge single/multi dispatch into the matrix

* Format.

* Revert BERT's change

---------

Co-authored-by: Guillaume LEGENDRE <glegendre01@gmail.com>
2023-10-03 11:13:45 +02:00
768aa3d9cd [Wav2Vec2 and Co] Update init tests for PT 2.1 (#26494) 2023-10-03 10:52:34 +02:00
b5ca8fcd20 Add tokenizer kwargs to fill mask pipeline. (#26234)
* add tokenizer kwarg inputs

* Adding tokenizer_kwargs to _sanitize_parameters

* Add truncation=True example to tests

* Update test_pipelines_fill_mask.py

* Update test_pipelines_fill_mask.py

* make fix-copies and make style

* Update fill_mask.py

Replace single tick with double

* make fix-copies

* Style

---------

Co-authored-by: Lysandre <lysandre@huggingface.co>
2023-10-03 10:25:10 +02:00
df6a855e7b [RFC, Logging] Change warning to info (#26545)
[Logging] Change warning to info
2023-10-03 08:55:39 +02:00
cf345d5f38 Bump urllib3 from 1.26.9 to 1.26.17 in /examples/research_projects/decision_transformer (#26554)
Bump urllib3 in /examples/research_projects/decision_transformer

Bumps [urllib3](https://github.com/urllib3/urllib3) from 1.26.9 to 1.26.17.
- [Release notes](https://github.com/urllib3/urllib3/releases)
- [Changelog](https://github.com/urllib3/urllib3/blob/main/CHANGES.rst)
- [Commits](https://github.com/urllib3/urllib3/compare/1.26.9...1.26.17)

---
updated-dependencies:
- dependency-name: urllib3
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-10-03 08:55:12 +02:00
6de6fdd06d Bump urllib3 from 1.26.5 to 1.26.17 in /examples/research_projects/visual_bert (#26552)
Bump urllib3 in /examples/research_projects/visual_bert

Bumps [urllib3](https://github.com/urllib3/urllib3) from 1.26.5 to 1.26.17.
- [Release notes](https://github.com/urllib3/urllib3/releases)
- [Changelog](https://github.com/urllib3/urllib3/blob/main/CHANGES.rst)
- [Commits](https://github.com/urllib3/urllib3/compare/1.26.5...1.26.17)

---
updated-dependencies:
- dependency-name: urllib3
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-10-03 08:55:01 +02:00
e092b4ad68 Bump urllib3 from 1.26.5 to 1.26.17 in /examples/research_projects/lxmert (#26551)
Bump urllib3 in /examples/research_projects/lxmert

Bumps [urllib3](https://github.com/urllib3/urllib3) from 1.26.5 to 1.26.17.
- [Release notes](https://github.com/urllib3/urllib3/releases)
- [Changelog](https://github.com/urllib3/urllib3/blob/main/CHANGES.rst)
- [Commits](https://github.com/urllib3/urllib3/compare/1.26.5...1.26.17)

---
updated-dependencies:
- dependency-name: urllib3
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-10-03 08:54:50 +02:00
9ed538f2e6 [i18n-DE] contribute chapter (#26481)
* start working on next chapter

* finish testing

* Update docs/source/de/testing.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/de/testing.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/de/testing.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-10-02 09:56:40 -07:00
1470f731b6 🌐 [i18n-KO] Translated tokenizer_summary.md to Korean (#26243)
* docs: ko: toknenizer_summary.md

Co-Authored-By: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-Authored-By: Juntae <79131091+sronger@users.noreply.github.com>
Co-Authored-By: Injin Paek <71638597+eenzeenee@users.noreply.github.com>

* update review

* fix: resolve suggestions

Co-Authored-By: Nayeon Han <nayeon2.han@gmail.com>
Co-Authored-By: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* fix: resolve suggestions

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>

---------

Co-authored-by: HanNayeoniee <nayeon2.han@gmail.com>
Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: Juntae <79131091+sronger@users.noreply.github.com>
Co-authored-by: Injin Paek <71638597+eenzeenee@users.noreply.github.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>
2023-10-02 09:55:33 -07:00
c20d90d577 add build_inputs_with_special_tokens to LlamaFast (#26297)
* add build_inputs_with_special_tokens to LlamaFast

* fixup

* Update src/transformers/models/llama/tokenization_llama_fast.py
2023-10-02 18:30:44 +02:00
bab3331906 Code-llama-nit (#26300)
* fix encoding when the fill token is None

* add tests and edge cases

* fiuxp

* Update tests/models/code_llama/test_tokenization_code_llama.py
2023-10-02 18:29:27 +02:00
4b4c6aabfb [Doctest] Add configuration_roformer.py (#26530)
* [Doctest] Add configuration_roformer.py

* [Doctest] Add configuration_roformer.py

* [Doctest] Add configuration_roformer.py

* [Doctest] Add configuration_roformer.py

* Removed documentation_test.txt

* Removed configuration_roformer.py

* Update not_doctested.txt
2023-10-02 17:19:13 +02:00
e4dad4fe32 Remove-warns (#26483)
* fix stripping

* remove some warnings and update some warnings

* revert changes for other PR
2023-10-02 16:52:00 +02:00
1b8decb04c [PEFT] Protect adapter_kwargs check (#26537)
Update modeling_utils.py
2023-10-02 14:59:24 +02:00
63864e057f Fix model integration ci (#26322)
* fix wav2vec2

* nit

* stash

* one more file to update

* fix byt5

* vocab size is 256, don't change that!

* use other revision

* test persimon in smaller size

* style

* tests

* nits

* update add tokens from pretrained

* test tokenization

* nits

* potential fnet fix?

* more nits

* nits

* correct test

* assert close

* udpate

* ouch

* fix it

* some more nits

* FINALLU

* use `adept` checkpoints

* more adept checkpoints

* that was invlved!
2023-10-02 13:55:46 +02:00
6824461f2a [core/ auto ] Fix bnb test with code revision + bug with code revision (#26431)
* fix bnb test with code revision

* fix test

* Apply suggestions from code review

* Update src/transformers/models/auto/auto_factory.py

* Update src/transformers/models/auto/auto_factory.py

* Update src/transformers/models/auto/auto_factory.py
2023-10-02 11:35:07 +02:00
24178c2461 [PEFT] Pass token when calling find_adapter_config (#26488)
* try

* nit

* nits
2023-10-02 11:23:03 +02:00
7d6627d0d9 Fix broken link to video classification task (#26487) 2023-10-02 11:19:11 +02:00
6d02ca4bb9 Fix issue of canine forward requiring input_ids anyway (#26290)
* fix issue of canine forward requires input_ids anyway

The `forward` requires `input_ids` for deriving other variables in all cases. Change this to use the given one between `input_ids` and `inputs_embeds`

* fix canine forward

The current `forward` requires (the shape of) `input_ids` for deriving other variables whenever `input_ids` or `inputs_embeds` is provided. Change this to use the given one instead of `input_ids` all the time.

* fix format

* fix format
2023-10-02 11:06:40 +02:00
7d77d7f79c Fix requests connection error during modelcard creation (#26518)
fix requests connection error

Co-authored-by: Jan Philipp Harries <jphme@users.noreply.github.com>
2023-10-02 10:52:51 +02:00
ca0379b8c8 Fix num_heads in _upad_input (#26490)
* Fix num_heads in _upad_input

The variable num_key_value_heads has falsely been named num_heads, which led to reshaping the query_layer using the wrong attention head count. (It would have been enough to use the correct variable self.num_heads instead of num_heads, but I renamed num_heads to num_key_value_heads for clarity)

* fixed copies using make fix-copies and ran make fixup

---------

Co-authored-by: fseiler <f.seiler@jerocom.de>
2023-10-02 10:10:19 +02:00
67239f7360 Revert falcon exception (#26472)
* Revert "Falcon: fix revision propagation (#26006)"

This reverts commit 118c676ef3124423e5d062b665f05cde55bc9a90.

* Revert "Put Falcon back (#25960)"

This reverts commit 22a69f1d7d520d5fbccbdb163d05db56bf79724c.
2023-10-02 09:13:19 +02:00
0b192de1f3 [ASR Pipe] Improve docs and error messages (#26476)
* improve docs/errors

* why whisper

* Update docs/source/en/pipeline_tutorial.md

Co-authored-by: Lysandre Debut <hi@lysand.re>

* specify pt only

---------

Co-authored-by: Lysandre Debut <hi@lysand.re>
2023-09-29 18:32:37 +01:00
68e85fc822 [Flax Examples] Seq2Seq ASR Fine-Tuning Script (#21764)
* from seq2seq speech

* [Flax] Example script for speech seq2seq

* tests and fixes

* make style

* fix: label padding tokens

* fix: label padding tokens over list

* update ln names for Whisper

* try datasets iter loader

* create readme and append results

* style

* make style

* adjust lr

* use pt dataloader

* make fast

* pin gen max len

* finish

* add pt to requirements for test

* fix pt -> torch

* add accelerate
2023-09-29 16:42:58 +01:00
391177441b Avoid all-zeor attnetion mask used in testing (#26469)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-09-29 11:06:06 +02:00
9b23d0de0e Skip 2 failing persimmon pipeline tests for now (#26485)
skip

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-09-29 10:52:18 +02:00
14170b784b [docs] navigation improvement between text gen pipelines and text gen params (#26477)
* navigation improvement between text generation pipelines and text generation docs

* make style
2023-09-29 09:43:39 +02:00
7bb1c0c147 [docs] Update offline mode docs (#26478)
update
2023-09-29 09:42:21 +02:00
211f93aab9 [Whisper Tokenizer] Make decoding faster after adding timestamps (#26299)
make decoding faster
2023-09-28 19:02:27 +01:00
4e931a8eb3 Esm checkpointing (#26454)
* Fixed in-place operation error in EsmEmbeddings

* Fixed in-place operation error in EsmEmbeddings again

---------

Co-authored-by: Schreiber-Finance <amelie.schreiber.finance@gmail.com>
2023-09-28 18:49:39 +01:00
5e11d72d4d fix_mbart_tied_weights (#26422)
* fix_mbart_tied_weights

* add test
2023-09-28 15:08:35 +02:00
216dff7549 Do not warn about unexpected decoder weights when loading T5EncoderModel and LongT5EncoderModel (#26211)
Ignore decoder weights when using T5EncoderModel and LongT5EncoderModel

Both T5EncoderModel and LongT5EncoderModel do not have any decoder layers, so
loading a pretrained model checkpoint such as t5-small will give warnings about
keys found in the model checkpoint that are not in the model itself.

To prevent this log warning, r"decoder" has been added to _keys_to_ignore_on_load_unexpected for
both T5EncoderModel and LongT5EncoderModel
2023-09-28 11:27:43 +02:00
38e96324ef [PEFT] introducing adapter_kwargs for loading adapters from different Hub location (subfolder, revision) than the base model (#26270)
* make use of adapter_revision

* v1 adapter kwargs

* fix CI

* fix CI

* fix CI

* fixup

* add BC

* Update src/transformers/integrations/peft.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fixup

* change it to error

* Update src/transformers/modeling_utils.py

* Update src/transformers/modeling_utils.py

* fixup

* change

* Update src/transformers/integrations/peft.py

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-09-28 11:13:03 +02:00
52e2c13da3 [VITS] Fix speaker_embed device mismatch (#26115)
* [VITS] Fix speaker_embed device mismatch

- pass device arg to speaker_id tensor

* [VITS] put speaker_embed on device when int

* [VITS] device=self.device
instead of self.embed_speaker.weight.device

* [VITS] make tensor directly on device
using torch.full()
2023-09-28 10:56:36 +02:00
098c3f400c change mention of decoder_input_ids to input_ids and same with decode_inputs_embeds (#26406)
* change mention of decoder_input_ids to input_ids and same with decoder_input_embeds

* Style

---------

Co-authored-by: Lysandre <lysandre@huggingface.co>
2023-09-28 10:15:48 +02:00
ba47efbfe4 docs: change assert to raise and some small docs (#26232)
* docs: change assert to raise and some small docs

* docs: add rule and some document

* fix: fix bug

* fix: fix bug

* chorse: revert logging

* chorse: revert
2023-09-28 10:14:17 +02:00
375b4e0935 Fix cos_sin device issue in Falcon model (#26448)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-09-28 10:00:15 +02:00
a7e0ed829c optimize VRAM for calculating pos_bias in LayoutLM v2, v3 (#26139)
* optimize layoutv2, v3 for VRAM saving

* reformat codes

---------

Co-authored-by: NormXU <xunuo@datagrand.com>
2023-09-28 09:55:57 +02:00
ab37b801b1 🌐 [i18n-KO] Translated perf_train_gpu_many.md to Korean (#26244)
* dos: ko: perf_train_gpu_many.mdx

* feat: chatgpt draft

* fix: manual edits

* fix: resolve suggestions

Change description
Follow the glossary
Fix discrepancies

Co-Authored-By: SeongWooChoi <46990061+nuatmochoi@users.noreply.github.com>
Co-Authored-By: 이서정 <97655267+sjlee-wise@users.noreply.github.com>
Co-Authored-By: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Hyunho <105839613+hyunhp@users.noreply.github.com>
Co-authored-by: SeongWooChoi <46990061+nuatmochoi@users.noreply.github.com>
Co-authored-by: 이서정 <97655267+sjlee-wise@users.noreply.github.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-09-27 13:51:15 -07:00
a0922a538b 🌐 [i18n-KO] Translated debugging.md to Korean (#26246)
* docs:ko:Debugging.md

* feat: chatgpt draft

* fix: resolve suggestions

Co-Authored-By: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-Authored-By: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Jang KyuJin <106062329+kj021@users.noreply.github.com>
Co-authored-by: Sohyun Sim <96299403+sim-so@users.noreply.github.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-09-27 13:47:44 -07:00
ef81759e31 [i18n-DE] Complete first toc chapter (#26311)
* initial

* toctree

* add tf model

* run scripts

* peft

* llm and agents

* Update docs/source/de/peft.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/de/peft.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/de/peft.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/de/run_scripts.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/de/run_scripts.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/de/transformers_agents.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/de/transformers_agents.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-09-27 11:33:05 -07:00
6ae71ec836 Update runs-on in workflow files (#26435)
* update

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-09-27 19:25:52 +02:00
78dd120282 Fix failing doctest (#26450)
* Fix doctest

* Adding modeling also for now
2023-09-27 18:47:26 +02:00
72958fcd3c [Mistral] Mistral-7B-v0.1 support (#26447)
* [Mistral] Mistral-7B-v0.1 support

* fixing names

* slightly longer test

* fixups

* not_doctested

* wrongly formatted references

* make fixuped

---------

Co-authored-by: Timothee Lacroix <t@eugen.ai>
Co-authored-by: timlacroix <t@mistral.ai>
2023-09-27 18:30:46 +02:00
3ca18d6d09 [PEFT] Fix PEFT multi adapters support (#26407)
* fix PEFT multi adapters support

* refactor a bit

* save pretrained + BC + added tests

* Update src/transformers/integrations/peft.py

Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>

* add more tests

* add suggestion

* final changes

* adapt a bit

* fixup

* Update src/transformers/integrations/peft.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* adapt from suggestions

---------

Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-09-27 16:45:31 +02:00
946bac798c add bf16 mixed precision support for NPU (#26163)
Co-authored-by: statelesshz <jihuazhong1@huawei.com>
2023-09-27 12:28:40 +02:00
153755ee38 [FA / tests] Add use_cache tests for FA models (#26415)
* add use_cache tests for FA

* fixup
2023-09-27 12:21:54 +02:00
a0be960dcc Fixing tokenizer when transformers is installed without tokenizers (#26236)
* Fixing tokenizer when tokenizers is not installed

* Adding __repr__ function and repr=True in dataclass

* Revert "Adding __repr__ function and repr=True in dataclass"

This reverts commit 18839505d1cada3170ed623744d3e75008a18bdc.
2023-09-27 11:58:04 +02:00
777f2243f5 Update semantic_segmentation.md (#26419) 2023-09-27 11:51:44 +02:00
abd2531034 Fix padding for IDEFICS (#26396)
* fix

* fixup

* tests

* fixup
2023-09-27 10:56:07 +02:00
408b2b3c50 Add torch RMSProp optimizer (#26425)
add rmsprop
2023-09-26 19:27:09 +02:00
6ba63ac3a0 [InternLM] Add support for InternLM (#26302)
* Add config.bias to LLaMA to allow InternLM models to be ported as LLaMA checkpoints

* Rename bias -> attention_bias and add docstring
2023-09-26 16:52:19 +01:00
0ac3875011 Fix DeepSpeed issue with Idefics (#26393)
Fix deepspeed issue with Idefics
2023-09-26 10:19:00 +02:00
6ce6a5adb9 added support for gradient checkpointing in ESM models (#26386) 2023-09-26 10:15:53 +02:00
a8531f3bfd Deleted duplicate sentence (#26394) 2023-09-26 10:11:28 +02:00
a09130feee [ViTMatte] Add resources (#26317)
Add resource
2023-09-26 07:06:38 +02:00
ace74d16bd Add Nougat (#25942)
* Add conversion script

* Add NougatImageProcessor

* Add crop margin

* More improvements

* Add docs, READMEs

* Remove print statements

* Include model_max_length

* Add NougatTokenizerFast

* Fix imports

* Improve postprocessing

* Improve image processor

* Fix image processor

* Improve normalize method

* More improvements

* More improvements

* Add processor, improve docs

* Simplify fast tokenizer

* Remove test file

* Fix docstrings

* Use NougatProcessor in conversion script

* Add is_levensthein_available

* Add tokenizer tests

* More improvements

* Use numpy instead of opencv

* Add is_cv2_available

* Fix cv2_available

* Add is_nltk_available

* Add image processor tests, improve crop_margin

* Add integration tests

* Improve integration test

* Use do_rescale instead of hacks, thanks Amy

* Remove random_padding

* Address comments

* Address more comments

* Add import

* Address more comments

* Address more comments

* Address comment

* Address comment

* Set max_model_input_sizes

* Add tests

* Add requires_backends

* Add Nougat to exotic tests

* Use to_pil_image

* Address comment regarding nltk

* Add NLTK

* Improve variable names, integration test

* Add test

* refactor, document, and test regexes

* remove named capture groups, add comments

* format

* add non-markdown fixed tokenization

* format

* correct flakyness of args parse

* add regex comments

* test functionalities for crop_image, align long axis and expected output

* add regex tests

* remove cv2 dependency

* test crop_margin equality between cv2 and python

* refactor table regexes to markdown

add newline

* change print to log, improve doc

* fix high count tables correction

* address PR comments: naming, linting, asserts

* Address comments

* Add copied from

* Update conversion script

* Update conversion script to convert both small and base versions

* Add inference example

* Add more info

* Fix style

* Add require annotators to test

* Define all keyword arguments explicitly

* Move cv2 annotator

* Add tokenizer init method

* Transfer checkpoints

* Add reference to Donut

* Address comments

* Skip test

* Remove cv2 method

* Add copied from statements

* Use cached_property

* Fix docstring

* Add file to not doctested

---------

Co-authored-by: Pablo Montalvo <pablo.montalvo.leroux@gmail.com>
2023-09-26 07:06:04 +02:00
5e09af2acd 🌐 [i18n-KO] Translated audio_classification.mdx to Korean (#26200)
* 🌐 [i18n-KO] Translated  to Korean

* update translation

* fix some sentence editing and fixing punctuation

* Update docs/source/ko/_toctree.yml

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>

* Apply suggestions from code review

Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>

---------

Co-authored-by: Wonhyeong Seo <wonhseo@kakao.com>
Co-authored-by: Hyeonseo Yun <0525yhs@gmail.com>
2023-09-25 10:24:45 -07:00
033ec57c03 Add Russian localization for README (#26208)
* Add Russian localization

* typo

* mistake in link

* Update README_ru.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update README_ru.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
2023-09-25 09:42:23 -07:00
d9e4bc2895 Update tiny model information and pipeline tests (#26285)
* Update tiny model summary file

* add to pipeline tests

* revert

* fix import

* fix import

* fix

* fix

* update

* update

* update

* fix

* remove BarkModelTest

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2023-09-25 18:08:12 +02:00
546e7679e7 [docs] removed MaskFormerSwin and TimmBackbone from the table on index.md (#26347)
removed MaskFormerSwin and TimmBackbone from the table
2023-09-25 09:41:59 -04:00
0ee4590684 Fix MusicGen logging error (#26370)
* Fix logging error

* Update modeling_musicgen.py

* Update modeling_musicgen.py
2023-09-25 13:08:25 +02:00
6accd5effb Update add_new_model.md (#26365)
fixed typos
2023-09-25 12:58:11 +02:00
5936c8c57c Fixed unclosed p tags (#26240) 2023-09-22 11:39:28 -07:00
910faa3e1f feat: adding num_proc to load_dataset (#26326)
* feat: adding num_proc to load_dataset

* feat: add add_num_proc for run_mlm_flax

* feat: add num_proc for bart and t5

* chorse: remove
2023-09-22 19:22:47 +02:00
576cd45a57 Add image to image pipeline (#25393)
* Add image to image pipeline

Add image to image pipeline

* remove swin2sr from tf auto

* make ImageToImage importable

* make style

make style

make style

make style

* remove tf support

* remove nonused imports

* fix postprocessing

* add important comments; add unit tests

* add documentation

* remove support for TF

* make fixup

* fix typehint Image.Image

* fix documentation code

* address review request; fix unittest type checking

* address review request; fix unittest type checking

* make fixup

* address reviews

* Update src/transformers/pipelines/image_to_image.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* enhance docs

* make style

* make style

* improve docetest time

* improve docetest time

* Update tests/pipelines/test_pipelines_image_to_image.py

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>

* Update tests/pipelines/test_pipelines_image_to_image.py

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>

* make fixup

* undo faulty merge

* undo faulty merge

* add image-to-image to test pipeline mixin

* Update src/transformers/pipelines/image_to_image.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update tests/pipelines/test_pipelines_image_to_image.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* improve docs

---------

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-09-22 19:53:55 +03:00
914771cbfe [TTA Pipeline] Fix MusicGen test (#26348)
* fix musicgen pipeline test

* fix wav2vec2 doctest

* revert wav2vec2
2023-09-22 17:55:54 +02:00
368a58e61c [core ] Integrate Flash attention 2 in most used models (#25598)
* v1

* oops

* working v1

* fixup

* add some TODOs

* fixup

* padding support + try with module replacement

* nit

* alternative design

* oops

* add `use_cache` support for llama

* v1 falcon

* nit

* a bit of refactor

* nit

* nits nits

* add v1 padding support falcon (even though it seemed to work before)

* nit

* falcon works

* fixup

* v1 tests

* nit

* fix generation llama flash

* update tests

* fix tests + nits

* fix copies

* fix nit

* test- padding mask

* stype

* add more mem efficient support

* Update src/transformers/modeling_utils.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* fixup

* nit

* fixup

* remove it from config when saving

* fixup

* revert docstring

* add more checks

* use values

* oops

* new version

* fixup

* add same trick for falcon

* nit

* add another test

* change tests

* fix issues with GC and also falcon

* fixup

* oops

* Update src/transformers/models/falcon/modeling_falcon.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* add init_rope

* updates

* fix copies

* fixup

* fixup

* more clarification

* fixup

* right padding tests

* add docs

* add FA in docker image

* more clarifications

* add some figures

* add todo

* rectify comment

* Change to FA2

* Update docs/source/en/perf_infer_gpu_one.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* split in two lines

* change test name

* add more tests

* some clean up

* remove `rearrange` deps

* add more docs

* revert changes on dockerfile

* Revert "revert changes on dockerfile"

This reverts commit 8d72a66b4b9b771abc3f15a9b9506b4246d62d8e.

* revert changes on dockerfile

* Apply suggestions from code review

Co-authored-by: Lysandre Debut <hi@lysand.re>

* address some comments

* docs

* use inheritance

* Update src/transformers/testing_utils.py

Co-authored-by: Lysandre Debut <hi@lysand.re>

* fixup

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/modeling_utils.py

* final comments

* clean up

* style

* add cast + warning for PEFT models

* fixup

---------

Co-authored-by: Felix Marty <9808326+fxmarty@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Lysandre Debut <hi@lysand.re>
2023-09-22 17:42:10 +02:00
3642 changed files with 415688 additions and 99167 deletions

View File

@ -1,6 +1,6 @@
# Troubleshooting
This is a document explaining how to deal with various issues on Circle-CI. The entries may include actually solutions or pointers to Issues that cover those.
This is a document explaining how to deal with various issues on Circle-CI. The entries may include actual solutions or pointers to Issues that cover those.
## Circle CI

View File

@ -12,7 +12,7 @@ jobs:
# Ensure running with CircleCI/huggingface
check_circleci_user:
docker:
- image: cimg/python:3.8.12
- image: python:3.10-slim
parallelism: 1
steps:
- run: echo $CIRCLE_PROJECT_USERNAME
@ -26,13 +26,12 @@ jobs:
fetch_tests:
working_directory: ~/transformers
docker:
- image: cimg/python:3.8.12
- image: huggingface/transformers-quality
parallelism: 1
steps:
- checkout
- run: pip install --upgrade --upgrade-strategy eager pip
- run: pip install -U --upgrade-strategy eager GitPython
- run: pip install -U --upgrade-strategy eager .
- run: uv pip install -U -e .
- run: echo 'export "GIT_COMMIT_MESSAGE=$(git show -s --format=%s)"' >> "$BASH_ENV" && source "$BASH_ENV"
- run: mkdir -p test_preparation
- run: python utils/tests_fetcher.py | tee tests_fetched_summary.txt
- store_artifacts:
@ -82,31 +81,28 @@ jobs:
path: ~/transformers/test_preparation/filtered_test_list.txt
- store_artifacts:
path: test_preparation/examples_test_list.txt
- run: python .circleci/create_circleci_config.py --fetcher_folder test_preparation
- run: export "GIT_COMMIT_MESSAGE=$(git show -s --format=%s)" && echo $GIT_COMMIT_MESSAGE && python .circleci/create_circleci_config.py --fetcher_folder test_preparation
- run: |
if [ ! -s test_preparation/generated_config.yml ]; then
echo "No tests to run, exiting early!"
circleci-agent step halt
fi
- run: cp test_preparation/generated_config.yml test_preparation/generated_config.txt
- store_artifacts:
path: test_preparation/generated_config.txt
path: test_preparation/generated_config.yml
- store_artifacts:
path: test_preparation/filtered_test_list_cross_tests.txt
path: test_preparation/filtered_test_list_cross_tests.txt
- continuation/continue:
configuration_path: test_preparation/generated_config.yml
configuration_path: test_preparation/generated_config.yml
# To run all tests for the nightly build
fetch_all_tests:
working_directory: ~/transformers
docker:
- image: cimg/python:3.8.12
- image: huggingface/transformers-quality
parallelism: 1
steps:
- checkout
- run: pip install --upgrade --upgrade-strategy eager pip
- run: pip install -U --upgrade-strategy eager GitPython
- run: pip install -U --upgrade-strategy eager .
- run: uv pip install -e .
- run: |
mkdir test_preparation
echo -n "tests" > test_preparation/test_list.txt
@ -126,7 +122,7 @@ jobs:
check_code_quality:
working_directory: ~/transformers
docker:
- image: cimg/python:3.8.12
- image: huggingface/transformers-quality
resource_class: large
environment:
TRANSFORMERS_IS_CI: yes
@ -134,40 +130,24 @@ jobs:
parallelism: 1
steps:
- checkout
- restore_cache:
keys:
- v0.7-code_quality-pip-{{ checksum "setup.py" }}
- v0.7-code-quality-pip
- restore_cache:
keys:
- v0.7-code_quality-site-packages-{{ checksum "setup.py" }}
- v0.7-code-quality-site-packages
- run: pip install --upgrade --upgrade-strategy eager pip
- run: pip install -U --upgrade-strategy eager .[all,quality]
- save_cache:
key: v0.7-code_quality-pip-{{ checksum "setup.py" }}
paths:
- '~/.cache/pip'
- save_cache:
key: v0.7-code_quality-site-packages-{{ checksum "setup.py" }}
paths:
- '~/.pyenv/versions/'
- run: uv pip install -e .
- run:
name: Show installed libraries and their versions
command: pip freeze | tee installed.txt
- store_artifacts:
path: ~/transformers/installed.txt
- run: black --check examples tests src utils
- run: ruff examples tests src utils
- run: python -c "from transformers import *" || (echo '🚨 import failed, this means you introduced unprotected imports! 🚨'; exit 1)
- run: ruff check examples tests src utils
- run: ruff format tests src utils --check
- run: python utils/custom_init_isort.py --check_only
- run: python utils/sort_auto_mappings.py --check_only
- run: doc-builder style src/transformers docs/source --max_len 119 --check_only --path_to_docs docs/source
- run: python utils/check_doc_toc.py
- run: python utils/check_docstrings.py --check_all
check_repository_consistency:
working_directory: ~/transformers
docker:
- image: cimg/python:3.8.12
- image: huggingface/transformers-consistency
resource_class: large
environment:
TRANSFORMERS_IS_CI: yes
@ -175,24 +155,7 @@ jobs:
parallelism: 1
steps:
- checkout
- restore_cache:
keys:
- v0.7-repository_consistency-pip-{{ checksum "setup.py" }}
- v0.7-repository_consistency-pip
- restore_cache:
keys:
- v0.7-repository_consistency-site-packages-{{ checksum "setup.py" }}
- v0.7-repository_consistency-site-packages
- run: pip install --upgrade --upgrade-strategy eager pip
- run: pip install -U --upgrade-strategy eager .[all,quality]
- save_cache:
key: v0.7-repository_consistency-pip-{{ checksum "setup.py" }}
paths:
- '~/.cache/pip'
- save_cache:
key: v0.7-repository_consistency-site-packages-{{ checksum "setup.py" }}
paths:
- '~/.pyenv/versions/'
- run: uv pip install -e .
- run:
name: Show installed libraries and their versions
command: pip freeze | tee installed.txt
@ -208,7 +171,8 @@ jobs:
- run: python utils/check_doctest_list.py
- run: make deps_table_check_updated
- run: python utils/update_metadata.py --check-only
- run: python utils/check_task_guides.py
- run: python utils/check_docstrings.py
- run: python utils/check_support_list.py
workflows:
version: 2
@ -227,4 +191,4 @@ workflows:
- check_circleci_user
- check_code_quality
- check_repository_consistency
- fetch_all_tests
- fetch_all_tests

View File

@ -15,12 +15,11 @@
import argparse
import copy
import glob
import os
import random
from dataclasses import dataclass
from typing import Any, Dict, List, Optional
import glob
import yaml
@ -33,7 +32,7 @@ COMMON_ENV_VARIABLES = {
"RUN_PT_FLAX_CROSS_TESTS": False,
}
# Disable the use of {"s": None} as the output is way too long, causing the navigation on CircleCI impractical
COMMON_PYTEST_OPTIONS = {"max-worker-restart": 0, "dist": "loadfile"}
COMMON_PYTEST_OPTIONS = {"max-worker-restart": 0, "dist": "loadfile", "v": None}
DEFAULT_DOCKER_IMAGE = [{"image": "cimg/python:3.8.12"}]
@ -42,7 +41,6 @@ class EmptyJob:
def to_dict(self):
return {
"working_directory": "~/transformers",
"docker": copy.deepcopy(DEFAULT_DOCKER_IMAGE),
"steps":["checkout"],
}
@ -53,16 +51,15 @@ class CircleCIJob:
name: str
additional_env: Dict[str, Any] = None
cache_name: str = None
cache_version: str = "0.7"
cache_version: str = "0.8.2"
docker_image: List[Dict[str, str]] = None
install_steps: List[str] = None
marker: Optional[str] = None
parallelism: Optional[int] = 1
pytest_num_workers: int = 8
pytest_num_workers: int = 12
pytest_options: Dict[str, Any] = None
resource_class: Optional[str] = "xlarge"
resource_class: Optional[str] = "2xlarge"
tests_to_run: Optional[List[str]] = None
working_directory: str = "~/transformers"
# This should be only used for doctest job!
command_timeout: Optional[int] = None
@ -75,6 +72,12 @@ class CircleCIJob:
if self.docker_image is None:
# Let's avoid changing the default list and make a copy.
self.docker_image = copy.deepcopy(DEFAULT_DOCKER_IMAGE)
else:
# BIG HACK WILL REMOVE ONCE FETCHER IS UPDATED
print(os.environ.get("GIT_COMMIT_MESSAGE"))
if "[build-ci-image]" in os.environ.get("GIT_COMMIT_MESSAGE", "") or os.environ.get("GIT_COMMIT_MESSAGE", "") == "dev-ci":
self.docker_image[0]["image"] = f"{self.docker_image[0]['image']}:dev"
print(f"Using {self.docker_image} docker image")
if self.install_steps is None:
self.install_steps = []
if self.pytest_options is None:
@ -93,7 +96,6 @@ class CircleCIJob:
cache_branch_prefix = "pull"
job = {
"working_directory": self.working_directory,
"docker": self.docker_image,
"environment": env,
}
@ -103,48 +105,14 @@ class CircleCIJob:
job["parallelism"] = self.parallelism
steps = [
"checkout",
{"attach_workspace": {"at": "~/transformers/test_preparation"}},
{
"restore_cache": {
"keys": [
# check the fully-matched cache first
f"v{self.cache_version}-{self.cache_name}-{cache_branch_prefix}-pip-" + '{{ checksum "setup.py" }}',
# try the partially-matched cache from `main`
f"v{self.cache_version}-{self.cache_name}-main-pip-",
# try the general partially-matched cache
f"v{self.cache_version}-{self.cache_name}-{cache_branch_prefix}-pip-",
]
}
},
{
"restore_cache": {
"keys": [
f"v{self.cache_version}-{self.cache_name}-{cache_branch_prefix}-site-packages-" + '{{ checksum "setup.py" }}',
f"v{self.cache_version}-{self.cache_name}-main-site-packages-",
f"v{self.cache_version}-{self.cache_name}-{cache_branch_prefix}-site-packages-",
]
}
},
{"attach_workspace": {"at": "test_preparation"}},
]
steps.extend([{"run": l} for l in self.install_steps])
steps.append(
{
"save_cache": {
"key": f"v{self.cache_version}-{self.cache_name}-{cache_branch_prefix}-pip-" + '{{ checksum "setup.py" }}',
"paths": ["~/.cache/pip"],
}
}
)
steps.append(
{
"save_cache": {
"key": f"v{self.cache_version}-{self.cache_name}-{cache_branch_prefix}-site-packages-" + '{{ checksum "setup.py" }}',
"paths": ["~/.pyenv/versions/"],
}
}
)
steps.append({"run": {"name": "Show installed libraries and their versions", "command": "pip freeze | tee installed.txt"}})
steps.append({"store_artifacts": {"path": "~/transformers/installed.txt"}})
steps.append({"run": {"name": "Show installed libraries and their size", "command": """du -h -d 1 "$(pip -V | cut -d ' ' -f 4 | sed 's/pip//g')" | grep -vE "dist-info|_distutils_hack|__pycache__" | sort -h | tee installed.txt || true"""}})
steps.append({"run": {"name": "Show installed libraries and their versions", "command": """pip list --format=freeze | tee installed.txt || true"""}})
steps.append({"run":{"name":"Show biggest libraries","command":"""dpkg-query --show --showformat='${Installed-Size}\t${Package}\n' | sort -rh | head -25 | sort -h | awk '{ package=$2; sub(".*/", "", package); printf("%.5f GB %s\n", $1/1024/1024, package)}' || true"""}})
steps.append({"store_artifacts": {"path": "installed.txt"}})
all_options = {**COMMON_PYTEST_OPTIONS, **self.pytest_options}
pytest_flags = [f"--{key}={value}" if (value is not None or key in ["doctest-modules"]) else f"-{key}" for key, value in all_options.items()]
@ -153,11 +121,11 @@ class CircleCIJob:
)
steps.append({"run": {"name": "Create `test-results` directory", "command": "mkdir test-results"}})
test_command = ""
if self.command_timeout:
test_command = f"timeout {self.command_timeout} "
test_command += f"python -m pytest --junitxml=test-results/junit.xml -n {self.pytest_num_workers} " + " ".join(pytest_flags)
# junit familiy xunit1 is necessary to support splitting on test name or class name with circleci split
test_command += f"python3 -m pytest -rsfE -p no:warnings -o junit_family=xunit1 --tb=short --junitxml=test-results/junit.xml -n {self.pytest_num_workers} " + " ".join(pytest_flags)
if self.parallelism == 1:
if self.tests_to_run is None:
@ -170,7 +138,7 @@ class CircleCIJob:
if tests is None:
folder = os.environ["test_preparation_dir"]
test_file = os.path.join(folder, "filtered_test_list.txt")
if os.path.exists(test_file):
if os.path.exists(test_file): # We take this job's tests from the filtered test_list.txt
with open(test_file) as f:
tests = f.read().split(" ")
@ -182,17 +150,26 @@ class CircleCIJob:
if test.endswith(".py"):
expanded_tests.append(test)
elif test == "tests/models":
expanded_tests.extend([os.path.join(test, x) for x in os.listdir(test)])
if "tokenization" in self.name:
expanded_tests.extend(glob.glob("tests/models/**/test_tokenization*.py", recursive=True))
elif self.name in ["flax","torch","tf"]:
name = self.name if self.name != "torch" else ""
if self.name == "torch":
all_tests = glob.glob(f"tests/models/**/test_modeling_{name}*.py", recursive=True)
filtered = [k for k in all_tests if ("_tf_") not in k and "_flax_" not in k]
expanded_tests.extend(filtered)
else:
expanded_tests.extend(glob.glob(f"tests/models/**/test_modeling_{name}*.py", recursive=True))
else:
expanded_tests.extend(glob.glob("tests/models/**/test_modeling*.py", recursive=True))
elif test == "tests/pipelines":
expanded_tests.extend([os.path.join(test, x) for x in os.listdir(test)])
expanded_tests.extend(glob.glob("tests/models/**/test_modeling*.py", recursive=True))
else:
expanded_tests.append(test)
# Avoid long tests always being collected together
random.shuffle(expanded_tests)
tests = " ".join(expanded_tests)
# Each executor to run ~10 tests
n_executors = max(len(tests) // 10, 1)
n_executors = max(len(expanded_tests) // 10, 1)
# Avoid empty test list on some executor(s) or launching too many executors
if n_executors > self.parallelism:
n_executors = self.parallelism
@ -205,13 +182,13 @@ class CircleCIJob:
command = 'TESTS=$(circleci tests split tests.txt) && echo $TESTS > splitted_tests.txt'
steps.append({"run": {"name": "Split tests", "command": command}})
steps.append({"store_artifacts": {"path": "~/transformers/tests.txt"}})
steps.append({"store_artifacts": {"path": "~/transformers/splitted_tests.txt"}})
steps.append({"store_artifacts": {"path": "tests.txt"}})
steps.append({"store_artifacts": {"path": "splitted_tests.txt"}})
test_command = ""
if self.timeout:
test_command = f"timeout {self.timeout} "
test_command += f"python -m pytest -n {self.pytest_num_workers} " + " ".join(pytest_flags)
if self.command_timeout:
test_command = f"timeout {self.command_timeout} "
test_command += f"python3 -m pytest -rsfE -p no:warnings --tb=short -o junit_family=xunit1 --junitxml=test-results/junit.xml -n {self.pytest_num_workers} " + " ".join(pytest_flags)
test_command += " $(cat splitted_tests.txt)"
if self.marker is not None:
test_command += f" -m {self.marker}"
@ -226,43 +203,18 @@ class CircleCIJob:
# failure.
test_command = f"({test_command}) || true"
else:
test_command += " || true"
test_command = f"({test_command} | tee tests_output.txt)"
steps.append({"run": {"name": "Run tests", "command": test_command}})
# Deal with errors
check_test_command = f'if [ -s reports/{self.job_name}/errors.txt ]; '
check_test_command += 'then echo "Some tests errored out!"; echo ""; '
check_test_command += f'cat reports/{self.job_name}/errors.txt; '
check_test_command += 'echo ""; echo ""; '
py_command = f'import os; fp = open("reports/{self.job_name}/summary_short.txt"); failed = os.linesep.join([x for x in fp.read().split(os.linesep) if x.startswith("ERROR ")]); fp.close(); fp = open("summary_short.txt", "w"); fp.write(failed); fp.close()'
check_test_command += f"$(python3 -c '{py_command}'); "
check_test_command += f'cat summary_short.txt; echo ""; exit -1; '
# Deeal with failed tests
check_test_command += f'elif [ -s reports/{self.job_name}/failures_short.txt ]; '
check_test_command += 'then echo "Some tests failed!"; echo ""; '
check_test_command += f'cat reports/{self.job_name}/failures_short.txt; '
check_test_command += 'echo ""; echo ""; '
py_command = f'import os; fp = open("reports/{self.job_name}/summary_short.txt"); failed = os.linesep.join([x for x in fp.read().split(os.linesep) if x.startswith("FAILED ")]); fp.close(); fp = open("summary_short.txt", "w"); fp.write(failed); fp.close()'
check_test_command += f"$(python3 -c '{py_command}'); "
check_test_command += f'cat summary_short.txt; echo ""; exit -1; '
check_test_command += f'elif [ -s reports/{self.job_name}/stats.txt ]; then echo "All tests pass!"; '
# return code `124` means the previous (pytest run) step is timeout
if self.name == "pr_documentation_tests":
check_test_command += 'elif [ -f 124.txt ]; then echo "doctest timeout!"; '
check_test_command += 'else echo "other fatal error"; echo ""; exit -1; fi;'
steps.append({"run": {"name": "Check test results", "command": check_test_command}})
steps.append({"run": {"name": "Skipped tests", "when": "always", "command": f"python3 .circleci/parse_test_outputs.py --file tests_output.txt --skip"}})
steps.append({"run": {"name": "Failed tests", "when": "always", "command": f"python3 .circleci/parse_test_outputs.py --file tests_output.txt --fail"}})
steps.append({"run": {"name": "Errors", "when": "always", "command": f"python3 .circleci/parse_test_outputs.py --file tests_output.txt --errors"}})
steps.append({"store_test_results": {"path": "test-results"}})
steps.append({"store_artifacts": {"path": "tests_output.txt"}})
steps.append({"store_artifacts": {"path": "test-results/junit.xml"}})
steps.append({"store_artifacts": {"path": "reports"}})
steps.append({"store_artifacts": {"path": "~/transformers/tests_output.txt"}})
steps.append({"store_artifacts": {"path": "~/transformers/reports"}})
job["steps"] = steps
return job
@ -274,15 +226,9 @@ class CircleCIJob:
# JOBS
torch_and_tf_job = CircleCIJob(
"torch_and_tf",
docker_image=[{"image":"huggingface/transformers-torch-tf-light"}],
install_steps=["uv venv && uv pip install ."],
additional_env={"RUN_PT_TF_CROSS_TESTS": True},
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng git-lfs cmake",
"git lfs install",
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[sklearn,tf-cpu,torch,testing,sentencepiece,torch-speech,vision]",
"pip install -U --upgrade-strategy eager tensorflow_probability",
"pip install -U --upgrade-strategy eager git+https://github.com/huggingface/accelerate",
],
marker="is_pt_tf_cross_test",
pytest_options={"rA": None, "durations": 0},
)
@ -291,61 +237,52 @@ torch_and_tf_job = CircleCIJob(
torch_and_flax_job = CircleCIJob(
"torch_and_flax",
additional_env={"RUN_PT_FLAX_CROSS_TESTS": True},
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng",
"pip install -U --upgrade-strategy eager --upgrade pip",
"pip install -U --upgrade-strategy eager .[sklearn,flax,torch,testing,sentencepiece,torch-speech,vision]",
"pip install -U --upgrade-strategy eager git+https://github.com/huggingface/accelerate",
],
docker_image=[{"image":"huggingface/transformers-torch-jax-light"}],
install_steps=["uv venv && uv pip install ."],
marker="is_pt_flax_cross_test",
pytest_options={"rA": None, "durations": 0},
)
torch_job = CircleCIJob(
"torch",
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng time",
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[sklearn,torch,testing,sentencepiece,torch-speech,vision,timm]",
"pip install -U --upgrade-strategy eager git+https://github.com/huggingface/accelerate",
],
parallelism=1,
pytest_num_workers=8,
docker_image=[{"image": "huggingface/transformers-torch-light"}],
install_steps=["uv venv && uv pip install ."],
parallelism=6,
pytest_num_workers=4
)
tokenization_job = CircleCIJob(
"tokenization",
docker_image=[{"image": "huggingface/transformers-torch-light"}],
install_steps=["uv venv && uv pip install ."],
parallelism=6,
pytest_num_workers=4
)
tf_job = CircleCIJob(
"tf",
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng cmake",
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[sklearn,tf-cpu,testing,sentencepiece,tf-speech,vision]",
"pip install -U --upgrade-strategy eager tensorflow_probability",
],
parallelism=1,
docker_image=[{"image":"huggingface/transformers-tf-light"}],
install_steps=["uv venv", "uv pip install -e."],
parallelism=6,
pytest_num_workers=4,
)
flax_job = CircleCIJob(
"flax",
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng",
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[flax,testing,sentencepiece,flax-speech,vision]",
],
parallelism=1,
docker_image=[{"image":"huggingface/transformers-jax-light"}],
install_steps=["uv venv && uv pip install ."],
parallelism=6,
pytest_num_workers=4
)
pipelines_torch_job = CircleCIJob(
"pipelines_torch",
additional_env={"RUN_PIPELINE_TESTS": True},
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng",
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[sklearn,torch,testing,sentencepiece,torch-speech,vision,timm,video]",
],
docker_image=[{"image":"huggingface/transformers-torch-light"}],
install_steps=["uv venv && uv pip install ."],
marker="is_pipeline_test",
)
@ -353,12 +290,8 @@ pipelines_torch_job = CircleCIJob(
pipelines_tf_job = CircleCIJob(
"pipelines_tf",
additional_env={"RUN_PIPELINE_TESTS": True},
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y cmake",
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[sklearn,tf-cpu,testing,sentencepiece,vision]",
"pip install -U --upgrade-strategy eager tensorflow_probability",
],
docker_image=[{"image":"huggingface/transformers-tf-light"}],
install_steps=["uv venv && uv pip install ."],
marker="is_pipeline_test",
)
@ -366,22 +299,8 @@ pipelines_tf_job = CircleCIJob(
custom_tokenizers_job = CircleCIJob(
"custom_tokenizers",
additional_env={"RUN_CUSTOM_TOKENIZERS": True},
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y cmake",
{
"name": "install jumanpp",
"command":
"wget https://github.com/ku-nlp/jumanpp/releases/download/v2.0.0-rc3/jumanpp-2.0.0-rc3.tar.xz\n"
"tar xvf jumanpp-2.0.0-rc3.tar.xz\n"
"mkdir jumanpp-2.0.0-rc3/bld\n"
"cd jumanpp-2.0.0-rc3/bld\n"
"sudo cmake .. -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=/usr/local\n"
"sudo make install\n",
},
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[ja,testing,sentencepiece,jieba,spacy,ftfy,rjieba]",
"python -m unidic download",
],
docker_image=[{"image": "huggingface/transformers-custom-tokenizers"}],
install_steps=["uv venv","uv pip install -e ."],
parallelism=None,
resource_class=None,
tests_to_run=[
@ -394,48 +313,32 @@ custom_tokenizers_job = CircleCIJob(
examples_torch_job = CircleCIJob(
"examples_torch",
additional_env={"OMP_NUM_THREADS": 8},
cache_name="torch_examples",
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng",
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[sklearn,torch,sentencepiece,testing,torch-speech]",
"pip install -U --upgrade-strategy eager -r examples/pytorch/_tests_requirements.txt",
],
docker_image=[{"image":"huggingface/transformers-examples-torch"}],
# TODO @ArthurZucker remove this once docker is easier to build
install_steps=["uv venv && uv pip install . && uv pip install -r examples/pytorch/_tests_requirements.txt"],
pytest_num_workers=1,
)
examples_tensorflow_job = CircleCIJob(
"examples_tensorflow",
cache_name="tensorflow_examples",
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y cmake",
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[sklearn,tensorflow,sentencepiece,testing]",
"pip install -U --upgrade-strategy eager -r examples/tensorflow/_tests_requirements.txt",
],
)
examples_flax_job = CircleCIJob(
"examples_flax",
cache_name="flax_examples",
install_steps=[
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[flax,testing,sentencepiece]",
"pip install -U --upgrade-strategy eager -r examples/flax/_tests_requirements.txt",
],
docker_image=[{"image":"huggingface/transformers-examples-tf"}],
install_steps=["uv venv && uv pip install . && uv pip install -r examples/tensorflow/_tests_requirements.txt"],
parallelism=8
)
hub_job = CircleCIJob(
"hub",
additional_env={"HUGGINGFACE_CO_STAGING": True},
docker_image=[{"image":"huggingface/transformers-torch-light"}],
install_steps=[
"sudo apt-get -y update && sudo apt-get install git-lfs",
"uv venv && uv pip install .",
'git config --global user.email "ci@dummy.com"',
'git config --global user.name "ci"',
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[torch,sentencepiece,testing,vision]",
],
marker="is_staging_test",
pytest_num_workers=1,
@ -444,10 +347,11 @@ hub_job = CircleCIJob(
onnx_job = CircleCIJob(
"onnx",
docker_image=[{"image":"huggingface/transformers-torch-tf-light"}],
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y cmake",
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[torch,tf,testing,sentencepiece,onnxruntime,vision,rjieba]",
"uv venv && uv pip install .",
"uv pip install --upgrade eager pip",
"uv pip install .[torch,tf,testing,sentencepiece,onnxruntime,vision,rjieba]",
],
pytest_options={"k onnx": None},
pytest_num_workers=1,
@ -456,35 +360,25 @@ onnx_job = CircleCIJob(
exotic_models_job = CircleCIJob(
"exotic_models",
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev",
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[torch,testing,vision]",
"pip install -U --upgrade-strategy eager torchvision",
"pip install -U --upgrade-strategy eager scipy",
"pip install -U --upgrade-strategy eager 'git+https://github.com/facebookresearch/detectron2.git'",
"sudo apt install tesseract-ocr",
"pip install -U --upgrade-strategy eager pytesseract",
"pip install -U --upgrade-strategy eager natten",
# TODO (ydshieh): Remove this line once `https://github.com/facebookresearch/detectron2/issues/5010` is resolved
'pip install -U --upgrade-strategy eager "Pillow<10.0.0"',
],
install_steps=["uv venv && uv pip install ."],
docker_image=[{"image":"huggingface/transformers-exotic-models"}],
tests_to_run=[
"tests/models/*layoutlmv*",
"tests/models/*nat",
"tests/models/deta",
"tests/models/udop",
"tests/models/nougat",
],
pytest_num_workers=1,
pytest_num_workers=12,
parallelism=4,
pytest_options={"durations": 100},
)
repo_utils_job = CircleCIJob(
"repo_utils",
install_steps=[
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager .[quality,testing,torch]",
],
docker_image=[{"image":"huggingface/transformers-consistency"}],
install_steps=["uv venv && uv pip install ."],
parallelism=None,
pytest_num_workers=1,
resource_class="large",
@ -500,16 +394,9 @@ py_command = f"$(python3 -c '{py_command}')"
command = f'echo "{py_command}" > pr_documentation_tests_temp.txt'
doc_test_job = CircleCIJob(
"pr_documentation_tests",
docker_image=[{"image":"huggingface/transformers-consistency"}],
additional_env={"TRANSFORMERS_VERBOSITY": "error", "DATASETS_VERBOSITY": "error", "SKIP_CUDA_DOCTEST": "1"},
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng time ffmpeg",
"pip install --upgrade --upgrade-strategy eager pip",
"pip install -U --upgrade-strategy eager -e .[dev]",
"pip install -U --upgrade-strategy eager git+https://github.com/huggingface/accelerate",
"pip install --upgrade --upgrade-strategy eager pytest pytest-sugar",
"pip install -U --upgrade-strategy eager natten",
"find -name __pycache__ -delete",
"find . -name \*.pyc -delete",
# Add an empty file to keep the test step running correctly even no file is selected to be tested.
"touch dummy.py",
{
@ -543,11 +430,11 @@ REGULAR_TESTS = [
hub_job,
onnx_job,
exotic_models_job,
tokenization_job
]
EXAMPLES_TESTS = [
examples_torch_job,
examples_tensorflow_job,
examples_flax_job,
]
PIPELINE_TESTS = [
pipelines_torch_job,

View File

@ -0,0 +1,70 @@
import re
import argparse
def parse_pytest_output(file_path):
skipped_tests = {}
skipped_count = 0
with open(file_path, 'r') as file:
for line in file:
match = re.match(r'^SKIPPED \[(\d+)\] (tests/.*): (.*)$', line)
if match:
skipped_count += 1
test_file, test_line, reason = match.groups()
skipped_tests[reason] = skipped_tests.get(reason, []) + [(test_file, test_line)]
for k,v in sorted(skipped_tests.items(), key=lambda x:len(x[1])):
print(f"{len(v):4} skipped because: {k}")
print("Number of skipped tests:", skipped_count)
def parse_pytest_failure_output(file_path):
failed_tests = {}
failed_count = 0
with open(file_path, 'r') as file:
for line in file:
match = re.match(r'^FAILED (tests/.*) - (.*): (.*)$', line)
if match:
failed_count += 1
_, error, reason = match.groups()
failed_tests[reason] = failed_tests.get(reason, []) + [error]
for k,v in sorted(failed_tests.items(), key=lambda x:len(x[1])):
print(f"{len(v):4} failed because `{v[0]}` -> {k}")
print("Number of failed tests:", failed_count)
if failed_count>0:
exit(1)
def parse_pytest_errors_output(file_path):
print(file_path)
error_tests = {}
error_count = 0
with open(file_path, 'r') as file:
for line in file:
match = re.match(r'^ERROR (tests/.*) - (.*): (.*)$', line)
if match:
error_count += 1
_, test_error, reason = match.groups()
error_tests[reason] = error_tests.get(reason, []) + [test_error]
for k,v in sorted(error_tests.items(), key=lambda x:len(x[1])):
print(f"{len(v):4} errored out because of `{v[0]}` -> {k}")
print("Number of errors:", error_count)
if error_count>0:
exit(1)
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--file", help="file to parse")
parser.add_argument("--skip", action="store_true", help="show skipped reasons")
parser.add_argument("--fail", action="store_true", help="show failed tests")
parser.add_argument("--errors", action="store_true", help="show failed tests")
args = parser.parse_args()
if args.skip:
parse_pytest_output(args.file)
if args.fail:
parse_pytest_failure_output(args.file)
if args.errors:
parse_pytest_errors_output(args.file)
if __name__ == "__main__":
main()

View File

@ -1,6 +1,17 @@
name: "\U0001F41B Bug Report"
description: Submit a bug report to help us improve transformers
labels: [ "bug" ]
body:
- type: markdown
attributes:
value: |
Thanks for taking the time to fill out this bug report! 🤗
Before you submit your bug report:
- If it is your first time submitting, be sure to check our [bug report guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#did-you-find-a-bug)
- Try our [docs bot](https://huggingface.co/spaces/huggingchat/hf-docs-chat) -- it might be able to help you with your issue
- type: textarea
id: system-info
attributes:
@ -17,50 +28,50 @@ body:
description: |
Your issue will be replied to more quickly if you can figure out the right person to tag with @
If you know how to use git blame, that is the easiest way, otherwise, here is a rough guide of **who to tag**.
All issues are read by one of the core maintainers, so if you don't know who to tag, just leave this blank and
a core maintainer will ping the right person.
Please tag fewer than 3 people.
Models:
- text models: @ArthurZucker and @younesbelkada
- text models: @ArthurZucker
- vision models: @amyeroberts
- speech models: @sanchit-gandhi
- graph models: @clefourrier
Library:
- flax: @sanchit-gandhi
- generate: @gante
- generate: @zucchini-nlp (visual-language models) or @gante (all others)
- pipelines: @Narsil
- tensorflow: @gante and @Rocketknight1
- tokenizers: @ArthurZucker
- trainer: @muellerzr and @pacman100
- trainer: @muellerzr @SunMarc
Integrations:
- deepspeed: HF Trainer/Accelerate: @pacman100
- deepspeed: HF Trainer/Accelerate: @muellerzr
- ray/raytune: @richardliaw, @amogkam
- Big Model Inference: @SunMarc
- quantization (bitsandbytes, autogpt): @SunMarc and @younesbelkada
Documentation: @stevhliu and @MKhalusova
- quantization (bitsandbytes, autogpt): @SunMarc
Documentation: @stevhliu
Model hub:
- for issues with a model, report at https://discuss.huggingface.co/ and tag the model's creator.
HF projects:
- accelerate: [different repo](https://github.com/huggingface/accelerate)
- datasets: [different repo](https://github.com/huggingface/datasets)
- diffusers: [different repo](https://github.com/huggingface/diffusers)
- rust tokenizers: [different repo](https://github.com/huggingface/tokenizers)
Maintained examples (not research project or legacy):
- Flax: @sanchit-gandhi
- PyTorch: See Models above and tag the person corresponding to the modality of the example.
- TensorFlow: @Rocketknight1
@ -101,11 +112,11 @@ body:
placeholder: |
Steps to reproduce the behavior:
1.
2.
3.
- type: textarea
id: expected-behavior

View File

@ -1,6 +1,6 @@
name: "\U0001F680 Feature request"
description: Submit a proposal/request for a new transformers feature
labels: [ "feature" ]
labels: [ "Feature request" ]
body:
- type: textarea
id: feature-request
@ -19,7 +19,7 @@ body:
label: Motivation
description: |
Please outline the motivation for the proposal. Is your feature request related to a problem? e.g., I'm always frustrated when [...]. If this is related to another GitHub issue, please link here too.
- type: textarea
id: contribution

View File

@ -17,7 +17,7 @@ Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
- [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
- [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#create-a-pull-request),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
@ -39,7 +39,7 @@ members/contributors who may be interested in your PR.
Models:
- text models: @ArthurZucker and @younesbelkada
- text models: @ArthurZucker
- vision models: @amyeroberts
- speech models: @sanchit-gandhi
- graph models: @clefourrier
@ -47,20 +47,20 @@ Models:
Library:
- flax: @sanchit-gandhi
- generate: @gante
- generate: @zucchini-nlp (visual-language models) or @gante (all others)
- pipelines: @Narsil
- tensorflow: @gante and @Rocketknight1
- tokenizers: @ArthurZucker
- trainer: @muellerzr and @pacman100
- trainer: @muellerzr and @SunMarc
Integrations:
- deepspeed: HF Trainer/Accelerate: @pacman100
- deepspeed: HF Trainer/Accelerate: @muellerzr
- ray/raytune: @richardliaw, @amogkam
- Big Model Inference: @SunMarc
- quantization (bitsandbytes, autogpt): @SunMarc and @younesbelkada
- quantization (bitsandbytes, autogpt): @SunMarc
Documentation: @stevhliu and @MKhalusova
Documentation: @stevhliu
HF projects:

View File

@ -26,6 +26,8 @@ requirements:
- protobuf
- tokenizers >=0.11.1,!=0.11.3,<0.13
- pyyaml >=5.1
- safetensors
- fsspec
run:
- python
- numpy >=1.17
@ -40,6 +42,8 @@ requirements:
- protobuf
- tokenizers >=0.11.1,!=0.11.3,<0.13
- pyyaml >=5.1
- safetensors
- fsspec
test:
imports:

View File

@ -1,6 +1,6 @@
# Troubleshooting
This is a document explaining how to deal with various issues on github-actions self-hosted CI. The entries may include actually solutions or pointers to Issues that cover those.
This is a document explaining how to deal with various issues on github-actions self-hosted CI. The entries may include actual solutions or pointers to Issues that cover those.
## GitHub Actions (self-hosted CI)

View File

@ -14,9 +14,9 @@ on:
jobs:
run_tests_templates_like:
name: "Add new model like template tests"
runs-on: ubuntu-latest
runs-on: ubuntu-22.04
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
- name: Install dependencies
run: |
@ -74,7 +74,7 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v3
uses: actions/upload-artifact@v4
with:
name: run_all_tests_new_models_test_reports
path: reports/tests_new_models

42
.github/workflows/benchmark.yml vendored Normal file
View File

@ -0,0 +1,42 @@
name: Self-hosted runner (benchmark)
on:
schedule:
- cron: "17 2 * * *"
workflow_call:
env:
HF_HOME: /mnt/cache
TF_FORCE_GPU_ALLOW_GROWTH: true
jobs:
benchmark:
name: Benchmark
runs-on: [single-gpu, nvidia-gpu, a10, ci]
container:
image: huggingface/transformers-all-latest-gpu
options: --gpus all --privileged --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Update clone
working-directory: /transformers
run: |
git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Benchmark (daily)
if: github.event_name == 'schedule'
working-directory: /transformers
run: |
python3 -m pip install optimum-benchmark>=0.2.0
HF_TOKEN=${{ secrets.TRANSFORMERS_BENCHMARK_TOKEN }} python3 benchmark/benchmark.py --repo_id hf-internal-testing/benchmark_results --path_in_repo $(date +'%Y-%m-%d') --config-dir benchmark/config --config-name generation --commit=${{ github.sha }} backend.model=google/gemma-2b backend.cache_implementation=null,static backend.torch_compile=false,true --multirun
- name: Benchmark (merged to main event)
if: github.event_name == 'push' && github.ref_name == 'main'
working-directory: /transformers
run: |
python3 -m pip install optimum-benchmark>=0.2.0
HF_TOKEN=${{ secrets.TRANSFORMERS_BENCHMARK_TOKEN }} python3 benchmark/benchmark.py --repo_id hf-internal-testing/benchmark_results_merge_event --path_in_repo $(date +'%Y-%m-%d') --config-dir benchmark/config --config-name generation --commit=${{ github.sha }} backend.model=google/gemma-2b backend.cache_implementation=null,static backend.torch_compile=false,true --multirun

View File

@ -0,0 +1,77 @@
name: Build pr ci-docker
on:
push:
branches:
- push-ci-image # for now let's only build on this branch
repository_dispatch:
workflow_call:
inputs:
image_postfix:
required: true
type: string
schedule:
- cron: "6 0 * * *"
concurrency:
group: ${{ github.workflow }}
cancel-in-progress: true
jobs:
build:
runs-on: ubuntu-22.04
if: ${{ contains(github.event.head_commit.message, '[build-ci-image]') || contains(github.event.head_commit.message, '[push-ci-image]') && '!cancelled()' || github.event_name == 'schedule' }}
strategy:
matrix:
file: ["quality", "consistency", "custom-tokenizers", "torch-light", "tf-light", "exotic-models", "torch-tf-light", "torch-jax-light", "jax-light", "examples-torch", "examples-tf"]
continue-on-error: true
steps:
-
name: Set tag
run: |
if ${{contains(github.event.head_commit.message, '[build-ci-image]')}}; then
echo "TAG=huggingface/transformers-${{ matrix.file }}:dev" >> "$GITHUB_ENV"
echo "setting it to DEV!"
else
echo "TAG=huggingface/transformers-${{ matrix.file }}" >> "$GITHUB_ENV"
fi
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
-
name: Check out code
uses: actions/checkout@v4
-
name: Login to DockerHub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
-
name: Build ${{ matrix.file }}.dockerfile
uses: docker/build-push-action@v5
with:
context: ./docker
build-args: |
REF=${{ github.sha }}
file: "./docker/${{ matrix.file }}.dockerfile"
push: ${{ contains(github.event.head_commit.message, 'ci-image]') || github.event_name == 'schedule' }}
tags: ${{ env.TAG }}
notify:
runs-on: ubuntu-22.04
if: ${{ contains(github.event.head_commit.message, '[build-ci-image]') || contains(github.event.head_commit.message, '[push-ci-image]') && '!cancelled()' || github.event_name == 'schedule' }}
steps:
- name: Post to Slack
if: ${{ contains(github.event.head_commit.message, '[push-ci-image]') && github.event_name != 'schedule' }}
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: "#transformers-ci-circleci-images"
title: 🤗 New docker images for CircleCI are pushed.
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}

View File

@ -20,24 +20,14 @@ concurrency:
jobs:
latest-docker:
name: "Latest PyTorch + TensorFlow [dev]"
runs-on: ubuntu-latest
runs-on: [intel-cpu, 8-cpu, ci]
steps:
- name: Cleanup disk
run: |
sudo ls -l /usr/local/lib/
sudo ls -l /usr/share/
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
sudo rm -rf /usr/local/lib/android
sudo rm -rf /usr/share/dotnet
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
-
name: Check out code
uses: actions/checkout@v3
uses: actions/checkout@v4
-
name: Login to DockerHub
uses: docker/login-action@v3
@ -67,26 +57,25 @@ jobs:
push: true
tags: huggingface/transformers-all-latest-gpu-push-ci
- name: Post to Slack
if: always()
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ secrets.CI_SLACK_CHANNEL_DOCKER }}
title: 🤗 Results of the transformers-all-latest-gpu-push-ci docker build
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
latest-torch-deepspeed-docker:
name: "Latest PyTorch + DeepSpeed"
runs-on: ubuntu-latest
runs-on: [intel-cpu, 8-cpu, ci]
steps:
- name: Cleanup disk
run: |
sudo ls -l /usr/local/lib/
sudo ls -l /usr/share/
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
sudo rm -rf /usr/local/lib/android
sudo rm -rf /usr/share/dotnet
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
-
name: Check out code
uses: actions/checkout@v3
uses: actions/checkout@v4
-
name: Login to DockerHub
uses: docker/login-action@v3
@ -103,27 +92,26 @@ jobs:
push: true
tags: huggingface/transformers-pytorch-deepspeed-latest-gpu${{ inputs.image_postfix }}
- name: Post to Slack
if: always()
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ secrets.CI_SLACK_CHANNEL_DOCKER}}
title: 🤗 Results of the transformers-pytorch-deepspeed-latest-gpu docker build
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
# Can't build 2 images in a single job `latest-torch-deepspeed-docker` (for `nvcr.io/nvidia`)
latest-torch-deepspeed-docker-for-push-ci-daily-build:
name: "Latest PyTorch + DeepSpeed (Push CI - Daily Build)"
runs-on: ubuntu-latest
runs-on: [intel-cpu, 8-cpu, ci]
steps:
- name: Cleanup disk
run: |
sudo ls -l /usr/local/lib/
sudo ls -l /usr/share/
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
sudo rm -rf /usr/local/lib/android
sudo rm -rf /usr/share/dotnet
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
-
name: Check out code
uses: actions/checkout@v3
uses: actions/checkout@v4
-
name: Login to DockerHub
uses: docker/login-action@v3
@ -144,18 +132,27 @@ jobs:
push: true
tags: huggingface/transformers-pytorch-deepspeed-latest-gpu-push-ci
- name: Post to Slack
if: always()
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ secrets.CI_SLACK_CHANNEL_DOCKER }}
title: 🤗 Results of the transformers-pytorch-deepspeed-latest-gpu-push-ci docker build
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
doc-builder:
name: "Doc builder"
# Push CI doesn't need this image
if: inputs.image_postfix != '-push-ci'
runs-on: ubuntu-latest
runs-on: [intel-cpu, 8-cpu, ci]
steps:
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
-
name: Check out code
uses: actions/checkout@v3
uses: actions/checkout@v4
-
name: Login to DockerHub
uses: docker/login-action@v3
@ -170,28 +167,27 @@ jobs:
push: true
tags: huggingface/transformers-doc-builder
- name: Post to Slack
if: always()
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ secrets.CI_SLACK_CHANNEL_DOCKER }}
title: 🤗 Results of the huggingface/transformers-doc-builder docker build
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
latest-pytorch:
name: "Latest PyTorch [dev]"
# Push CI doesn't need this image
if: inputs.image_postfix != '-push-ci'
runs-on: ubuntu-latest
runs-on: [intel-cpu, 8-cpu, ci]
steps:
- name: Cleanup disk
run: |
sudo ls -l /usr/local/lib/
sudo ls -l /usr/share/
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
sudo rm -rf /usr/local/lib/android
sudo rm -rf /usr/share/dotnet
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
-
name: Check out code
uses: actions/checkout@v3
uses: actions/checkout@v4
-
name: Login to DockerHub
uses: docker/login-action@v3
@ -208,20 +204,33 @@ jobs:
push: true
tags: huggingface/transformers-pytorch-gpu
- name: Post to Slack
if: always()
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ secrets.CI_SLACK_CHANNEL_DOCKER }}
title: 🤗 Results of the huggingface/transformers-pytorch-gpudocker build
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
latest-pytorch-amd:
name: "Latest PyTorch (AMD) [dev]"
runs-on: [self-hosted, docker-gpu, amd-gpu, single-gpu, mi210]
runs-on: [intel-cpu, 8-cpu, ci]
steps:
- name: Set up Docker Buildx
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Check out code
uses: actions/checkout@v3
- name: Login to DockerHub
-
name: Check out code
uses: actions/checkout@v4
-
name: Login to DockerHub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
- name: Build and push
-
name: Build and push
uses: docker/build-push-action@v5
with:
context: ./docker/transformers-pytorch-amd-gpu
@ -243,18 +252,27 @@ jobs:
push: true
tags: huggingface/transformers-pytorch-amd-gpu-push-ci
- name: Post to Slack
if: always()
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ secrets.CI_SLACK_CHANNEL_DOCKER }}
title: 🤗 Results of the huggingface/transformers-pytorch-amd-gpu-push-ci build
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
latest-tensorflow:
name: "Latest TensorFlow [dev]"
# Push CI doesn't need this image
if: inputs.image_postfix != '-push-ci'
runs-on: ubuntu-latest
runs-on: [intel-cpu, 8-cpu, ci]
steps:
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
-
name: Check out code
uses: actions/checkout@v3
uses: actions/checkout@v4
-
name: Login to DockerHub
uses: docker/login-action@v3
@ -270,3 +288,97 @@ jobs:
REF=main
push: true
tags: huggingface/transformers-tensorflow-gpu
- name: Post to Slack
if: always()
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ secrets.CI_SLACK_CHANNEL_DOCKER }}
title: 🤗 Results of the huggingface/transformers-tensorflow-gpu build
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
latest-pytorch-deepspeed-amd:
name: "PyTorch + DeepSpeed (AMD) [dev]"
runs-on: [intel-cpu, 8-cpu, ci]
steps:
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
-
name: Check out code
uses: actions/checkout@v4
-
name: Login to DockerHub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
-
name: Build and push
uses: docker/build-push-action@v5
with:
context: ./docker/transformers-pytorch-deepspeed-amd-gpu
build-args: |
REF=main
push: true
tags: huggingface/transformers-pytorch-deepspeed-amd-gpu${{ inputs.image_postfix }}
# Push CI images still need to be re-built daily
-
name: Build and push (for Push CI) in a daily basis
# This condition allows `schedule` events, or `push` events that trigger this workflow NOT via `workflow_call`.
# The later case is useful for manual image building for debugging purpose. Use another tag in this case!
if: inputs.image_postfix != '-push-ci'
uses: docker/build-push-action@v5
with:
context: ./docker/transformers-pytorch-deepspeed-amd-gpu
build-args: |
REF=main
push: true
tags: huggingface/transformers-pytorch-deepspeed-amd-gpu-push-ci
- name: Post to Slack
if: always()
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ secrets.CI_SLACK_CHANNEL_DOCKER }}
title: 🤗 Results of the transformers-pytorch-deepspeed-amd-gpu build
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
latest-quantization-torch-docker:
name: "Latest Pytorch + Quantization [dev]"
# Push CI doesn't need this image
if: inputs.image_postfix != '-push-ci'
runs-on: [intel-cpu, 8-cpu, ci]
steps:
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
-
name: Check out code
uses: actions/checkout@v4
-
name: Login to DockerHub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
-
name: Build and push
uses: docker/build-push-action@v5
with:
context: ./docker/transformers-quantization-latest-gpu
build-args: |
REF=main
push: true
tags: huggingface/transformers-quantization-latest-gpu${{ inputs.image_postfix }}
- name: Post to Slack
if: always()
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ secrets.CI_SLACK_CHANNEL_DOCKER }}
title: 🤗 Results of the transformers-quantization-latest-gpu build
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}

View File

@ -13,24 +13,14 @@ concurrency:
jobs:
latest-with-torch-nightly-docker:
name: "Nightly PyTorch + Stable TensorFlow"
runs-on: ubuntu-latest
runs-on: [intel-cpu, 8-cpu, ci]
steps:
- name: Cleanup disk
run: |
sudo ls -l /usr/local/lib/
sudo ls -l /usr/share/
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
sudo rm -rf /usr/local/lib/android
sudo rm -rf /usr/share/dotnet
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v2
-
name: Check out code
uses: actions/checkout@v3
uses: actions/checkout@v4
-
name: Login to DockerHub
uses: docker/login-action@v2
@ -50,24 +40,14 @@ jobs:
nightly-torch-deepspeed-docker:
name: "Nightly PyTorch + DeepSpeed"
runs-on: ubuntu-latest
runs-on: [intel-cpu, 8-cpu, ci]
steps:
- name: Cleanup disk
run: |
sudo ls -l /usr/local/lib/
sudo ls -l /usr/share/
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
sudo rm -rf /usr/local/lib/android
sudo rm -rf /usr/share/dotnet
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v2
-
name: Check out code
uses: actions/checkout@v3
uses: actions/checkout@v4
-
name: Login to DockerHub
uses: docker/login-action@v2

View File

@ -15,15 +15,15 @@ jobs:
strategy:
fail-fast: false
matrix:
version: ["1.13", "1.12", "1.11", "1.10"]
runs-on: ubuntu-latest
version: ["1.13", "1.12", "1.11"]
runs-on: [intel-cpu, 8-cpu, ci]
steps:
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v2
-
name: Check out code
uses: actions/checkout@v3
uses: actions/checkout@v4
-
id: get-base-image
name: Get Base Image
@ -60,14 +60,14 @@ jobs:
fail-fast: false
matrix:
version: ["2.11", "2.10", "2.9", "2.8", "2.7", "2.6", "2.5"]
runs-on: ubuntu-latest
runs-on: [intel-cpu, 8-cpu, ci]
steps:
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v2
-
name: Check out code
uses: actions/checkout@v3
uses: actions/checkout@v4
-
id: get-base-image
name: Get Base Image

View File

@ -15,7 +15,8 @@ jobs:
commit_sha: ${{ github.sha }}
package: transformers
notebook_folder: transformers_doc
languages: de en es fr it ko pt zh
languages: de en es fr hi it ko pt tr zh ja te
custom_container: huggingface/transformers-doc-builder
secrets:
token: ${{ secrets.HUGGINGFACE_PUSH }}
hf_token: ${{ secrets.HF_DOC_BUILD_PUSH }}

View File

@ -14,4 +14,5 @@ jobs:
commit_sha: ${{ github.event.pull_request.head.sha }}
pr_number: ${{ github.event.number }}
package: transformers
languages: de en es fr it ko pt zh
languages: de en es fr hi it ko pt tr zh ja te
custom_container: huggingface/transformers-doc-builder

View File

@ -1,68 +0,0 @@
name: Self-hosted runner (check runner status)
# Note that each job's dependencies go into a corresponding docker file.
#
# For example for `run_all_tests_torch_cuda_extensions_gpu` the docker image is
# `huggingface/transformers-pytorch-deepspeed-latest-gpu`, which can be found at
# `docker/transformers-pytorch-deepspeed-latest-gpu/Dockerfile`
on:
repository_dispatch:
schedule:
# run per hour
- cron: "0 */1 * * *"
env:
TRANSFORMERS_IS_CI: yes
jobs:
check_runner_status:
name: Check Runner Status
runs-on: ubuntu-latest
outputs:
offline_runners: ${{ steps.set-offline_runners.outputs.offline_runners }}
steps:
- name: Checkout transformers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Check Runner Status
run: python utils/check_self_hosted_runner.py --target_runners single-gpu-ci-runner-docker,multi-gpu-ci-runner-docker,single-gpu-scheduled-ci-runner-docker,multi-scheduled-scheduled-ci-runner-docker,single-gpu-doctest-ci-runner-docker --token ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
- id: set-offline_runners
name: Set output for offline runners
if: ${{ always() }}
run: |
offline_runners=$(python3 -c 'fp = open("offline_runners.txt"); failed = fp.read(); fp.close(); print(failed)')
echo "offline_runners=$offline_runners" >> $GITHUB_OUTPUT
send_results:
name: Send results to webhook
runs-on: ubuntu-latest
needs: check_runner_status
if: ${{ failure() }}
steps:
- name: Preliminary job status
shell: bash
run: |
echo "Runner availability: ${{ needs.check_runner_status.result }}"
- uses: actions/checkout@v3
- uses: actions/download-artifact@v3
- name: Send message to Slack
env:
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
CI_SLACK_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID }}
CI_SLACK_CHANNEL_ID_DAILY: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY }}
CI_SLACK_CHANNEL_DUMMY_TESTS: ${{ secrets.CI_SLACK_CHANNEL_DUMMY_TESTS }}
CI_SLACK_REPORT_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY }}
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
CI_EVENT: runner status check
RUNNER_STATUS: ${{ needs.check_runner_status.result }}
OFFLINE_RUNNERS: ${{ needs.check_runner_status.outputs.offline_runners }}
# We pass `needs.setup.outputs.matrix` as the argument. A processing in `notification_service.py` to change
# `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`.
run: |
pip install slack_sdk
python utils/notification_service.py

View File

@ -14,14 +14,14 @@ env:
jobs:
check_tiny_models:
name: Check tiny models
runs-on: ubuntu-latest
runs-on: ubuntu-22.04
steps:
- name: Checkout transformers
uses: actions/checkout@v3
uses: actions/checkout@v4
with:
fetch-depth: 2
- uses: actions/checkout@v3
- uses: actions/checkout@v4
- name: Set up Python 3.8
uses: actions/setup-python@v4
with:
@ -36,7 +36,7 @@ jobs:
pip install --upgrade pip
python -m pip install -U .[sklearn,torch,testing,sentencepiece,torch-speech,vision,timm,video,tf-cpu]
pip install tensorflow_probability
python -m pip install -U natten
python -m pip install -U 'natten<0.15.0'
- name: Create all tiny models (locally)
run: |
@ -44,7 +44,7 @@ jobs:
- name: Local tiny model reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v3
uses: actions/upload-artifact@v4
with:
name: tiny_local_model_creation_reports
path: tiny_local_models/reports
@ -56,13 +56,13 @@ jobs:
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v3
uses: actions/upload-artifact@v4
with:
name: tiny_local_model_creation_reports
path: reports/tests_pipelines
- name: Create + Upload tiny models for new model architecture(s)
run: |
run: |
python utils/update_tiny_models.py --num_workers 2
- name: Full report
@ -76,7 +76,7 @@ jobs:
- name: New tiny model creation reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v3
uses: actions/upload-artifact@v4
with:
name: tiny_model_creation_reports
path: tiny_models/reports

View File

@ -1,14 +0,0 @@
name: Delete doc comment
on:
workflow_run:
workflows: ["Delete doc comment trigger"]
types:
- completed
jobs:
delete:
uses: huggingface/doc-builder/.github/workflows/delete_doc_comment.yml@main
secrets:
comment_bot_token: ${{ secrets.COMMENT_BOT_TOKEN }}

View File

@ -1,12 +0,0 @@
name: Delete doc comment trigger
on:
pull_request:
types: [ closed ]
jobs:
delete:
uses: huggingface/doc-builder/.github/workflows/delete_doc_comment_trigger.yml@main
with:
pr_number: ${{ github.event.number }}

82
.github/workflows/doctest_job.yml vendored Normal file
View File

@ -0,0 +1,82 @@
name: Doctest job
on:
workflow_call:
inputs:
job_splits:
required: true
type: string
split_keys:
required: true
type: string
env:
HF_HOME: /mnt/cache
TRANSFORMERS_IS_CI: yes
RUN_SLOW: yes
OMP_NUM_THREADS: 16
MKL_NUM_THREADS: 16
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
TF_FORCE_GPU_ALLOW_GROWTH: true
jobs:
run_doctests:
name: " "
strategy:
max-parallel: 8 # 8 jobs at a time
fail-fast: false
matrix:
split_keys: ${{ fromJson(inputs.split_keys) }}
runs-on: [single-gpu, nvidia-gpu, t4, ci]
container:
image: huggingface/transformers-all-latest-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .[flax]
- name: GPU visibility
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
run: pip freeze
- name: Get doctest files
working-directory: /transformers
run: |
echo "${{ toJson(fromJson(inputs.job_splits)[matrix.split_keys]) }}" > doc_tests.txt
cat doc_tests.txt
- name: Set `split_keys`
shell: bash
run: |
echo "${{ matrix.split_keys }}"
split_keys=${{ matrix.split_keys }}
split_keys=${split_keys//'/'/'_'}
echo "split_keys"
echo "split_keys=$split_keys" >> $GITHUB_ENV
- name: Run doctests
working-directory: /transformers
run: |
cat doc_tests.txt
python3 -m pytest -v --make-reports doc_tests_gpu_${{ env.split_keys }} --doctest-modules $(cat doc_tests.txt) -sv --doctest-continue-on-failure --doctest-glob="*.md"
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/doc_tests_gpu_${{ env.split_keys }}/failures_short.txt
- name: "Test suite reports artifacts: doc_tests_gpu_test_reports_${{ env.split_keys }}"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: doc_tests_gpu_test_reports_${{ env.split_keys }}
path: /transformers/reports/doc_tests_gpu_${{ env.split_keys }}

View File

@ -3,81 +3,86 @@ name: Doctests
on:
push:
branches:
- doctest*
- run_doctest*
repository_dispatch:
schedule:
- cron: "17 2 * * *"
env:
HF_HOME: /mnt/cache
TRANSFORMERS_IS_CI: yes
RUN_SLOW: yes
OMP_NUM_THREADS: 16
MKL_NUM_THREADS: 16
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
TF_FORCE_GPU_ALLOW_GROWTH: true
NUM_SLICES: 3
jobs:
run_doctests:
runs-on: [self-hosted, doc-tests-gpu]
setup:
name: Setup
runs-on: [single-gpu, nvidia-gpu, t4, ci]
container:
image: huggingface/transformers-all-latest-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
outputs:
job_splits: ${{ steps.set-matrix.outputs.job_splits }}
split_keys: ${{ steps.set-matrix.outputs.split_keys }}
steps:
- name: uninstall transformers (installed during docker image build)
run: python3 -m pip uninstall -y transformers
- uses: actions/checkout@v3
- name: NVIDIA-SMI
- name: Update clone
working-directory: /transformers
run: |
nvidia-smi
git fetch && git checkout ${{ github.sha }}
- name: Install transformers in edit mode
run: python3 -m pip install -e .[flax]
- name: GPU visibility
run: |
python3 utils/print_env.py
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Get doctest files
- name: Check values for matrix
working-directory: /transformers
run: |
$(python3 -c 'from utils.tests_fetcher import get_all_doctest_files; to_test = get_all_doctest_files(); to_test = " ".join(to_test); fp = open("doc_tests.txt", "w"); fp.write(to_test); fp.close()')
python3 utils/split_doctest_jobs.py
python3 utils/split_doctest_jobs.py --only_return_keys --num_splits ${{ env.NUM_SLICES }}
- name: Run doctests
- id: set-matrix
working-directory: /transformers
name: Set values for matrix
run: |
python3 -m pytest -v --make-reports doc_tests_gpu --doctest-modules $(cat doc_tests.txt) -sv --doctest-continue-on-failure --doctest-glob="*.md"
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat reports/doc_tests_gpu/failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v3
with:
name: doc_tests_gpu_test_reports
path: reports/doc_tests_gpu
echo "job_splits=$(python3 utils/split_doctest_jobs.py)" >> $GITHUB_OUTPUT
echo "split_keys=$(python3 utils/split_doctest_jobs.py --only_return_keys --num_splits ${{ env.NUM_SLICES }})" >> $GITHUB_OUTPUT
call_doctest_job:
name: "Call doctest jobs"
needs: setup
strategy:
max-parallel: 1 # 1 split at a time (in `doctest_job.yml`, we set `8` to run 8 jobs at the same time)
fail-fast: false
matrix:
split_keys: ${{ fromJson(needs.setup.outputs.split_keys) }}
uses: ./.github/workflows/doctest_job.yml
with:
job_splits: ${{ needs.setup.outputs.job_splits }}
split_keys: ${{ toJson(matrix.split_keys) }}
secrets: inherit
send_results:
name: Send results to webhook
runs-on: ubuntu-latest
runs-on: ubuntu-22.04
if: always()
needs: [run_doctests]
needs: [call_doctest_job]
steps:
- uses: actions/checkout@v3
- uses: actions/download-artifact@v3
- uses: actions/checkout@v4
- uses: actions/download-artifact@v4
- name: Send message to Slack
env:
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
CI_SLACK_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY_DOCS }}
CI_SLACK_CHANNEL_ID_DAILY: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY_DOCS }}
CI_SLACK_CHANNEL_DUMMY_TESTS: ${{ secrets.CI_SLACK_CHANNEL_DUMMY_TESTS }}
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
# Use `CI_SLACK_CHANNEL_DUMMY_TESTS` when doing experimentation
SLACK_REPORT_CHANNEL: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY_DOCS }}
run: |
pip install slack_sdk
python utils/notification_service_doc_tests.py
- name: "Upload results"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: doc_test_results
path: doc_test_results

View File

@ -1,81 +0,0 @@
name: Model templates runner
on:
repository_dispatch:
schedule:
- cron: "0 2 * * *"
jobs:
run_tests_templates:
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@v3
- name: Install dependencies
run: |
sudo apt -y update && sudo apt install -y libsndfile1-dev
- name: Load cached virtual environment
uses: actions/cache@v2
id: cache
with:
path: ~/venv/
key: v4-tests_templates-${{ hashFiles('setup.py') }}
- name: Create virtual environment on cache miss
if: steps.cache.outputs.cache-hit != 'true'
run: |
python -m venv ~/venv && . ~/venv/bin/activate
pip install --upgrade pip!=21.3
pip install -e .[dev]
- name: Check transformers location
# make `transformers` available as package (required since we use `-e` flag) and check it's indeed from the repo.
run: |
. ~/venv/bin/activate
python setup.py develop
transformer_loc=$(pip show transformers | grep "Location: " | cut -c11-)
transformer_repo_loc=$(pwd .)
if [ "$transformer_loc" != "$transformer_repo_loc/src" ]; then
echo "transformers is from $transformer_loc but it shoud be from $transformer_repo_loc/src."
echo "A fix is required. Stop testing."
exit 1
fi
- name: Create model files
run: |
. ~/venv/bin/activate
transformers-cli add-new-model --testing --testing_file=templates/adding_a_new_model/tests/encoder-bert-tokenizer.json --path=templates/adding_a_new_model
transformers-cli add-new-model --testing --testing_file=templates/adding_a_new_model/tests/pt-encoder-bert-tokenizer.json --path=templates/adding_a_new_model
transformers-cli add-new-model --testing --testing_file=templates/adding_a_new_model/tests/standalone.json --path=templates/adding_a_new_model
transformers-cli add-new-model --testing --testing_file=templates/adding_a_new_model/tests/tf-encoder-bert-tokenizer.json --path=templates/adding_a_new_model
transformers-cli add-new-model --testing --testing_file=templates/adding_a_new_model/tests/tf-seq-2-seq-bart-tokenizer.json --path=templates/adding_a_new_model
transformers-cli add-new-model --testing --testing_file=templates/adding_a_new_model/tests/pt-seq-2-seq-bart-tokenizer.json --path=templates/adding_a_new_model
transformers-cli add-new-model --testing --testing_file=templates/adding_a_new_model/tests/flax-encoder-bert-tokenizer.json --path=templates/adding_a_new_model
transformers-cli add-new-model --testing --testing_file=templates/adding_a_new_model/tests/flax-seq-2-seq-bart-tokenizer.json --path=templates/adding_a_new_model
make style
python utils/check_table.py --fix_and_overwrite
python utils/check_dummies.py --fix_and_overwrite
python utils/check_copies.py --fix_and_overwrite
- name: Run all non-slow tests
run: |
. ~/venv/bin/activate
python -m pytest -n 2 --dist=loadfile -s --make-reports=tests_templates tests/*template*
- name: Run style changes
run: |
. ~/venv/bin/activate
make style && make quality && make repo-consistency
- name: Failure short reports
if: ${{ always() }}
run: cat reports/tests_templates/failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v3
with:
name: run_all_tests_templates_test_reports
path: reports/tests_templates

121
.github/workflows/model_jobs.yml vendored Normal file
View File

@ -0,0 +1,121 @@
name: model jobs
on:
workflow_call:
inputs:
folder_slices:
required: true
type: string
machine_type:
required: true
type: string
slice_id:
required: true
type: number
runner:
required: true
type: string
docker:
required: true
type: string
env:
HF_HOME: /mnt/cache
TRANSFORMERS_IS_CI: yes
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
RUN_SLOW: yes
# For gated repositories, we still need to agree to share information on the Hub repo. page in order to get access.
# This token is created under the bot `hf-transformers-bot`.
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
TF_FORCE_GPU_ALLOW_GROWTH: true
RUN_PT_TF_CROSS_TESTS: 1
CUDA_VISIBLE_DEVICES: 0,1
jobs:
run_models_gpu:
name: " "
strategy:
max-parallel: 8
fail-fast: false
matrix:
folders: ${{ fromJson(inputs.folder_slices)[inputs.slice_id] }}
runs-on: ['${{ inputs.machine_type }}', nvidia-gpu, t4, '${{ inputs.runner }}']
container:
image: ${{ inputs.docker }}
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Echo input and matrix info
shell: bash
run: |
echo "${{ inputs.folder_slices }}"
echo "${{ matrix.folders }}"
echo "${{ toJson(fromJson(inputs.folder_slices)[inputs.slice_id]) }}"
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
# set the artifact folder names (because the character `/` is not allowed).
run: |
echo "${{ matrix.folders }}"
matrix_folders=${{ matrix.folders }}
matrix_folders=${matrix_folders/'models/'/'models_'}
echo "$matrix_folders"
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Update / Install some packages (for Past CI)
if: ${{ contains(inputs.docker, '-past-') }}
working-directory: /transformers
run: |
python3 -m pip install -U datasets
- name: Update / Install some packages (for Past CI)
if: ${{ contains(inputs.docker, '-past-') && contains(inputs.docker, '-pytorch-') }}
working-directory: /transformers
run: |
python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run all tests on GPU
working-directory: /transformers
run: python3 -m pytest -rsfE -v --make-reports=${{ inputs.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports tests/${{ matrix.folders }}
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ inputs.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports/failures_short.txt
- name: Run test
shell: bash
run: |
mkdir -p /transformers/reports/${{ inputs.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports
echo "hello" > /transformers/reports/${{ inputs.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports/hello.txt
echo "${{ inputs.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports"
- name: "Test suite reports artifacts: ${{ inputs.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ inputs.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ inputs.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports

View File

@ -0,0 +1,142 @@
name: Slow tests on important models (on Push - A10)
on:
push:
branches: [ main ]
env:
OUTPUT_SLACK_CHANNEL_ID: "C06L2SGMEEA"
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
HF_HOME: /mnt/cache
TRANSFORMERS_IS_CI: yes
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
RUN_SLOW: yes # For gated repositories, we still need to agree to share information on the Hub repo. page in order to get access. # This token is created under the bot `hf-transformers-bot`.
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
TF_FORCE_GPU_ALLOW_GROWTH: true
RUN_PT_TF_CROSS_TESTS: 1
jobs:
get_modified_models:
name: "Get all modified files"
runs-on: ubuntu-latest
outputs:
matrix: ${{ steps.set-matrix.outputs.matrix }}
steps:
- name: Check out code
uses: actions/checkout@v4
- name: Get changed files
id: changed-files
uses: tj-actions/changed-files@3f54ebb830831fc121d3263c1857cfbdc310cdb9 #v42
with:
files: src/transformers/models/**
- name: Run step if only the files listed above change
if: steps.changed-files.outputs.any_changed == 'true'
id: set-matrix
env:
ALL_CHANGED_FILES: ${{ steps.changed-files.outputs.all_changed_files }}
run: |
model_arrays=()
for file in $ALL_CHANGED_FILES; do
model_path="${file#*models/}"
model_path="models/${model_path%%/*}"
if grep -qFx "$model_path" utils/important_models.txt; then
# Append the file to the matrix string
model_arrays+=("$model_path")
fi
done
matrix_string=$(printf '"%s", ' "${model_arrays[@]}" | sed 's/, $//')
echo "matrix=[$matrix_string]" >> $GITHUB_OUTPUT
test_modified_files:
needs: get_modified_models
name: Slow & FA2 tests
runs-on: [single-gpu, nvidia-gpu, a10, ci]
container:
image: huggingface/transformers-all-latest-gpu
options: --gpus all --privileged --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
if: ${{ needs.get_modified_models.outputs.matrix != '[]' && needs.get_modified_models.outputs.matrix != '' && fromJson(needs.get_modified_models.outputs.matrix)[0] != null }}
strategy:
fail-fast: false
matrix:
model-name: ${{ fromJson(needs.get_modified_models.outputs.matrix) }}
steps:
- name: Check out code
uses: actions/checkout@v4
- name: Install locally transformers & other libs
run: |
apt install sudo
sudo -H pip install --upgrade pip
sudo -H pip uninstall -y transformers
sudo -H pip install -U -e ".[testing]"
MAX_JOBS=4 pip install flash-attn --no-build-isolation
pip install bitsandbytes
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Show installed libraries and their versions
run: pip freeze
- name: Run FA2 tests
id: run_fa2_tests
run:
pytest -rsfE -m "flash_attn_test" --make-reports=${{ matrix.model-name }}_fa2_tests/ tests/${{ matrix.model-name }}/test_modeling_*
- name: "Test suite reports artifacts: ${{ matrix.model-name }}_fa2_tests"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ matrix.model-name }}_fa2_tests
path: /transformers/reports/${{ matrix.model-name }}_fa2_tests
- name: Post to Slack
if: always()
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ env.OUTPUT_SLACK_CHANNEL_ID }}
title: 🤗 Results of the FA2 tests - ${{ matrix.model-name }}
status: ${{ steps.run_fa2_tests.conclusion}}
slack_token: ${{ secrets.CI_SLACK_BOT_TOKEN }}
- name: Run integration tests
id: run_integration_tests
if: always()
run:
pytest -rsfE -k "IntegrationTest" --make-reports=tests_integration_${{ matrix.model-name }} tests/${{ matrix.model-name }}/test_modeling_*
- name: "Test suite reports artifacts: tests_integration_${{ matrix.model-name }}"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: tests_integration_${{ matrix.model-name }}
path: /transformers/reports/tests_integration_${{ matrix.model-name }}
- name: Post to Slack
if: always()
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ env.OUTPUT_SLACK_CHANNEL_ID }}
title: 🤗 Results of the Integration tests - ${{ matrix.model-name }}
status: ${{ steps.run_integration_tests.conclusion}}
slack_token: ${{ secrets.CI_SLACK_BOT_TOKEN }}
- name: Tailscale # In order to be able to SSH when a test fails
if: ${{ runner.debug == '1'}}
uses: huggingface/tailscale-action@v1
with:
authkey: ${{ secrets.TAILSCALE_SSH_AUTHKEY }}
slackChannel: ${{ secrets.SLACK_CIFEEDBACK_CHANNEL }}
slackToken: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
waitForSSH: true
benchmark:
name: Benchmark workflow
needs: get_modified_models
if: ${{ needs.get_modified_models.outputs.matrix != '[]' && needs.get_modified_models.outputs.matrix != '' && fromJson(needs.get_modified_models.outputs.matrix)[0] != null }}
uses: ./.github/workflows/benchmark.yml
secrets: inherit

View File

@ -12,7 +12,7 @@ env:
jobs:
build_and_package:
runs-on: ubuntu-latest
runs-on: ubuntu-22.04
defaults:
run:
shell: bash -l {0}

View File

@ -0,0 +1,43 @@
name: Self-hosted runner (nightly-ci)
on:
repository_dispatch:
schedule:
- cron: "17 2 * * *"
push:
branches:
- run_nightly_ci*
jobs:
build_nightly_ci_images:
name: Build Nightly CI Docker Images
if: (github.event_name == 'schedule') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_nightly_ci'))
uses: ./.github/workflows/build-nightly-ci-docker-images.yml
secrets: inherit
model-ci:
name: Model CI
needs: [build_nightly_ci_images]
uses: ./.github/workflows/self-scheduled.yml
with:
job: run_models_gpu
slack_report_channel: "#transformers-ci-past-future"
runner: ci
docker: huggingface/transformers-all-latest-torch-nightly-gpu
ci_event: Nightly CI
secrets: inherit
deepspeed-ci:
name: DeepSpeed CI
needs: [build_nightly_ci_images]
uses: ./.github/workflows/self-scheduled.yml
with:
job: run_torch_cuda_extensions_gpu
slack_report_channel: "#transformers-ci-past-future"
runner: ci
# test deepspeed nightly build with the latest release torch
docker: huggingface/transformers-pytorch-deepspeed-latest-gpu
ci_event: Nightly CI
working-directory-prefix: /workspace
secrets: inherit

View File

@ -2,32 +2,30 @@ name: Self-hosted runner (nightly-past-ci-caller)
on:
schedule:
# 2:17 am on each Sunday and Thursday
- cron: "17 2 * * 0,4"
- cron: "17 2,14 * * *"
push:
branches:
- run_nightly_ci*
- run_past_ci*
jobs:
build_nightly_ci_images:
name: Build Nightly CI Docker Images
if: (github.event_name == 'schedule') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_nightly_ci'))
uses: ./.github/workflows/build-nightly-ci-docker-images.yml
secrets: inherit
run_nightly_ci:
name: Nightly CI
needs: [build_nightly_ci_images]
uses: ./.github/workflows/self-nightly-scheduled.yml
secrets: inherit
get_number:
name: Get number
runs-on: ubuntu-22.04
outputs:
run_number: ${{ steps.get_number.outputs.run_number }}
steps:
- name: Get number
id: get_number
run: |
echo "${{ github.run_number }}"
echo "$(python3 -c 'print(int(${{ github.run_number }}) % 10)')"
echo "run_number=$(python3 -c 'print(int(${{ github.run_number }}) % 10)')" >> $GITHUB_OUTPUT
run_past_ci_pytorch_1-13:
name: PyTorch 1.13
if: (cancelled() != true) && ((github.event_name == 'schedule') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci')))
needs: [run_nightly_ci]
uses: ./.github/workflows/self-past.yml
needs: get_number
if: needs.get_number.outputs.run_number == 0 && (cancelled() != true) && ((github.event_name == 'schedule') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci')))
uses: ./.github/workflows/self-past-caller.yml
with:
framework: pytorch
version: "1.13"
@ -36,9 +34,9 @@ jobs:
run_past_ci_pytorch_1-12:
name: PyTorch 1.12
if: (cancelled() != true) && ((github.event_name == 'schedule') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci')))
needs: [run_past_ci_pytorch_1-13]
uses: ./.github/workflows/self-past.yml
needs: get_number
if: needs.get_number.outputs.run_number == 1 && (cancelled() != true) && ((github.event_name == 'schedule') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci')))
uses: ./.github/workflows/self-past-caller.yml
with:
framework: pytorch
version: "1.12"
@ -47,31 +45,20 @@ jobs:
run_past_ci_pytorch_1-11:
name: PyTorch 1.11
if: (cancelled() != true) && ((github.event_name == 'schedule') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci')))
needs: [run_past_ci_pytorch_1-12]
uses: ./.github/workflows/self-past.yml
needs: get_number
if: needs.get_number.outputs.run_number == 2 && (cancelled() != true) && ((github.event_name == 'schedule') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci')))
uses: ./.github/workflows/self-past-caller.yml
with:
framework: pytorch
version: "1.11"
sha: ${{ github.sha }}
secrets: inherit
run_past_ci_pytorch_1-10:
name: PyTorch 1.10
if: (cancelled() != true) && ((github.event_name == 'schedule') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci')))
needs: [run_past_ci_pytorch_1-11]
uses: ./.github/workflows/self-past.yml
with:
framework: pytorch
version: "1.10"
sha: ${{ github.sha }}
secrets: inherit
run_past_ci_tensorflow_2-11:
name: TensorFlow 2.11
if: (cancelled() != true) && ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci'))
needs: [run_past_ci_pytorch_1-10]
uses: ./.github/workflows/self-past.yml
needs: get_number
if: needs.get_number.outputs.run_number == 3 && (cancelled() != true) && ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci'))
uses: ./.github/workflows/self-past-caller.yml
with:
framework: tensorflow
version: "2.11"
@ -80,9 +67,9 @@ jobs:
run_past_ci_tensorflow_2-10:
name: TensorFlow 2.10
if: (cancelled() != true) && ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci'))
needs: [run_past_ci_tensorflow_2-11]
uses: ./.github/workflows/self-past.yml
needs: get_number
if: needs.get_number.outputs.run_number == 4 && (cancelled() != true) && ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci'))
uses: ./.github/workflows/self-past-caller.yml
with:
framework: tensorflow
version: "2.10"
@ -91,9 +78,9 @@ jobs:
run_past_ci_tensorflow_2-9:
name: TensorFlow 2.9
if: (cancelled() != true) && ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci'))
needs: [run_past_ci_tensorflow_2-10]
uses: ./.github/workflows/self-past.yml
needs: get_number
if: needs.get_number.outputs.run_number == 5 && (cancelled() != true) && ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci'))
uses: ./.github/workflows/self-past-caller.yml
with:
framework: tensorflow
version: "2.9"
@ -102,9 +89,9 @@ jobs:
run_past_ci_tensorflow_2-8:
name: TensorFlow 2.8
if: (cancelled() != true) && ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci'))
needs: [run_past_ci_tensorflow_2-9]
uses: ./.github/workflows/self-past.yml
needs: get_number
if: needs.get_number.outputs.run_number == 6 && (cancelled() != true) && ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci'))
uses: ./.github/workflows/self-past-caller.yml
with:
framework: tensorflow
version: "2.8"
@ -113,9 +100,9 @@ jobs:
run_past_ci_tensorflow_2-7:
name: TensorFlow 2.7
if: (cancelled() != true) && ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci'))
needs: [run_past_ci_tensorflow_2-8]
uses: ./.github/workflows/self-past.yml
needs: get_number
if: needs.get_number.outputs.run_number == 7 && (cancelled() != true) && ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci'))
uses: ./.github/workflows/self-past-caller.yml
with:
framework: tensorflow
version: "2.7"
@ -124,9 +111,9 @@ jobs:
run_past_ci_tensorflow_2-6:
name: TensorFlow 2.6
if: (cancelled() != true) && ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci'))
needs: [run_past_ci_tensorflow_2-7]
uses: ./.github/workflows/self-past.yml
needs: get_number
if: needs.get_number.outputs.run_number == 8 && (cancelled() != true) && ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci'))
uses: ./.github/workflows/self-past-caller.yml
with:
framework: tensorflow
version: "2.6"
@ -135,9 +122,9 @@ jobs:
run_past_ci_tensorflow_2-5:
name: TensorFlow 2.5
if: (cancelled() != true) && ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci'))
needs: [run_past_ci_tensorflow_2-6]
uses: ./.github/workflows/self-past.yml
needs: get_number
if: needs.get_number.outputs.run_number == 9 && (cancelled() != true) && ((github.event_name == 'push') && startsWith(github.ref_name, 'run_past_ci'))
uses: ./.github/workflows/self-past-caller.yml
with:
framework: tensorflow
version: "2.5"

View File

@ -1,322 +0,0 @@
name: Self-hosted runner (nightly-ci)
# Note that each job's dependencies go into a corresponding docker file.
#
# For example for `run_all_tests_torch_cuda_extensions_gpu` the docker image is
# `huggingface/transformers-pytorch-deepspeed-latest-gpu`, which can be found at
# `docker/transformers-pytorch-deepspeed-latest-gpu/Dockerfile`
on:
repository_dispatch:
workflow_call:
env:
HF_HOME: /mnt/cache
TRANSFORMERS_IS_CI: yes
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
RUN_SLOW: yes
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
TF_FORCE_GPU_ALLOW_GROWTH: true
RUN_PT_TF_CROSS_TESTS: 1
jobs:
check_runner_status:
name: Check Runner Status
runs-on: ubuntu-latest
steps:
- name: Checkout transformers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Check Runner Status
run: python utils/check_self_hosted_runner.py --target_runners single-gpu-past-ci-runner-docker,multi-gpu-past-ci-runner-docker --token ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
check_runners:
name: Check Runners
needs: check_runner_status
strategy:
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker-past-ci') }}
container:
image: huggingface/transformers-all-latest-torch-nightly-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: NVIDIA-SMI
run: |
nvidia-smi
setup:
name: Setup
needs: check_runners
strategy:
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker-past-ci') }}
container:
image: huggingface/transformers-all-latest-torch-nightly-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
outputs:
matrix: ${{ steps.set-matrix.outputs.matrix }}
steps:
- name: Update clone
working-directory: /transformers
run: |
git fetch && git checkout ${{ github.sha }}
- name: Cleanup
working-directory: /transformers
run: |
rm -rf tests/__pycache__
rm -rf tests/models/__pycache__
rm -rf reports
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- id: set-matrix
name: Identify models to test
working-directory: /transformers/tests
run: |
echo "matrix=$(python3 -c 'import os; tests = os.getcwd(); model_tests = os.listdir(os.path.join(tests, "models")); d1 = sorted(list(filter(os.path.isdir, os.listdir(tests)))); d2 = sorted(list(filter(os.path.isdir, [f"models/{x}" for x in model_tests]))); d1.remove("models"); d = d2 + d1; print(d)')" >> $GITHUB_OUTPUT
- name: NVIDIA-SMI
run: |
nvidia-smi
run_tests_single_gpu:
name: Model tests
strategy:
fail-fast: false
matrix:
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
machine_type: [single-gpu]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker-past-ci') }}
container:
image: huggingface/transformers-all-latest-torch-nightly-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
needs: setup
steps:
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
# set the artifact folder names (because the character `/` is not allowed).
run: |
echo "${{ matrix.folders }}"
matrix_folders=${{ matrix.folders }}
matrix_folders=${matrix_folders/'models/'/'models_'}
echo "$matrix_folders"
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run all tests on GPU
working-directory: /transformers
run: python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} tests/${{ matrix.folders }}
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v3
with:
name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports_postfix_nightly
path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}
run_tests_multi_gpu:
name: Model tests
strategy:
fail-fast: false
matrix:
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
machine_type: [multi-gpu]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker-past-ci') }}
container:
image: huggingface/transformers-all-latest-torch-nightly-gpu
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
needs: setup
steps:
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
# set the artifact folder names (because the character `/` is not allowed).
run: |
echo "${{ matrix.folders }}"
matrix_folders=${{ matrix.folders }}
matrix_folders=${matrix_folders/'models/'/'models_'}
echo "$matrix_folders"
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run all tests on GPU
working-directory: /transformers
run: python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} tests/${{ matrix.folders }}
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v3
with:
name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports_postfix_nightly
path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}
run_all_tests_torch_cuda_extensions_gpu:
name: Torch CUDA extension tests
strategy:
fail-fast: false
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker-past-ci') }}
needs: setup
container:
image: huggingface/transformers-pytorch-deepspeed-nightly-gpu
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Update clone
working-directory: /workspace/transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /workspace/transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Remove cached torch extensions
run: rm -rf /github/home/.cache/torch_extensions/
# To avoid unknown test failures
- name: Pre build DeepSpeed *again*
working-directory: /workspace
run: |
python3 -m pip uninstall -y deepspeed
rm -rf DeepSpeed
git clone https://github.com/microsoft/DeepSpeed && cd DeepSpeed && rm -rf build
DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 DS_BUILD_UTILS=1 python3 -m pip install . --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Environment
working-directory: /workspace/transformers
run: |
python utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /workspace/transformers
run: pip freeze
- name: Run all tests on GPU
working-directory: /workspace/transformers
run: |
python -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu tests/deepspeed tests/extended
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /workspace/transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu/failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v3
with:
name: ${{ matrix.machine_type }}_run_tests_torch_cuda_extensions_gpu_test_reports_postfix_nightly
path: /workspace/transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu
send_results:
name: Send results to webhook
runs-on: ubuntu-latest
if: always()
needs: [
check_runner_status,
check_runners,
setup,
run_tests_single_gpu,
run_tests_multi_gpu,
run_all_tests_torch_cuda_extensions_gpu
]
steps:
- name: Preliminary job status
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
echo "Runner availability: ${{ needs.check_runner_status.result }}"
echo "Runner status: ${{ needs.check_runners.result }}"
echo "Setup status: ${{ needs.setup.result }}"
- uses: actions/checkout@v3
- uses: actions/download-artifact@v3
- name: Send message to Slack
env:
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
CI_SLACK_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID }}
CI_SLACK_CHANNEL_ID_DAILY: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY }}
CI_SLACK_CHANNEL_DUMMY_TESTS: ${{ secrets.CI_SLACK_CHANNEL_DUMMY_TESTS }}
CI_SLACK_REPORT_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID_PAST_FUTURE }}
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
CI_EVENT: Nightly CI
RUNNER_STATUS: ${{ needs.check_runner_status.result }}
RUNNER_ENV_STATUS: ${{ needs.check_runners.result }}
SETUP_STATUS: ${{ needs.setup.result }}
# We pass `needs.setup.outputs.matrix` as the argument. A processing in `notification_service.py` to change
# `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`.
run: |
pip install slack_sdk
pip show slack_sdk
python utils/notification_service.py "${{ needs.setup.outputs.matrix }}"
# delete-artifact
- uses: geekyeggo/delete-artifact@v2
with:
name: |
single-*
multi-*

40
.github/workflows/self-past-caller.yml vendored Normal file
View File

@ -0,0 +1,40 @@
name: Self-hosted runner (past-ci)
on:
workflow_call:
inputs:
framework:
required: true
type: string
version:
required: true
type: string
# Use this to control the commit to test against
sha:
default: 'main'
required: false
type: string
jobs:
model-ci:
name: Model CI
uses: ./.github/workflows/self-scheduled.yml
with:
job: run_models_gpu
slack_report_channel: "#transformers-ci-past-future"
runner: past-ci
docker: huggingface/transformers-${{ inputs.framework }}-past-${{ inputs.version }}-gpu
ci_event: Past CI - ${{ inputs.framework }}-${{ inputs.version }}
secrets: inherit
deepspeed-ci:
name: DeepSpeed CI
uses: ./.github/workflows/self-scheduled.yml
with:
job: run_torch_cuda_extensions_gpu
slack_report_channel: "#transformers-ci-past-future"
runner: past-ci
docker: huggingface/transformers-${{ inputs.framework }}-past-${{ inputs.version }}-gpu
ci_event: Past CI - ${{ inputs.framework }}-${{ inputs.version }}
secrets: inherit

View File

@ -1,377 +0,0 @@
name: Self-hosted runner (past-ci)
# Note that each job's dependencies go into a corresponding docker file.
#
# For example for `run_all_tests_torch_cuda_extensions_gpu` the docker image is
# `huggingface/transformers-pytorch-deepspeed-latest-gpu`, which can be found at
# `docker/transformers-pytorch-deepspeed-latest-gpu/Dockerfile`
on:
workflow_call:
inputs:
framework:
required: true
type: string
version:
required: true
type: string
# Use this to control the commit to test against
sha:
default: 'main'
required: false
type: string
env:
HF_HOME: /mnt/cache
TRANSFORMERS_IS_CI: yes
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
RUN_SLOW: yes
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
TF_FORCE_GPU_ALLOW_GROWTH: true
RUN_PT_TF_CROSS_TESTS: 1
jobs:
check_runner_status:
name: Check Runner Status
runs-on: ubuntu-latest
steps:
- name: Checkout transformers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Check Runner Status
run: python utils/check_self_hosted_runner.py --target_runners single-gpu-past-ci-runner-docker,multi-gpu-past-ci-runner-docker --token ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
check_runners:
name: Check Runners
needs: check_runner_status
strategy:
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker-past-ci') }}
container:
image: huggingface/transformers-${{ inputs.framework }}-past-${{ inputs.version }}-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: NVIDIA-SMI
run: |
nvidia-smi
setup:
name: Setup
needs: check_runners
strategy:
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker-past-ci') }}
container:
image: huggingface/transformers-${{ inputs.framework }}-past-${{ inputs.version }}-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
outputs:
matrix: ${{ steps.set-matrix.outputs.matrix }}
steps:
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ inputs.sha }}
- name: Cleanup
working-directory: /transformers
run: |
rm -rf tests/__pycache__
rm -rf tests/models/__pycache__
rm -rf reports
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- id: set-matrix
working-directory: /transformers
name: Identify models to test
run: |
cd tests
echo "matrix=$(python3 -c 'import os; tests = os.getcwd(); model_tests = os.listdir(os.path.join(tests, "models")); d1 = sorted(list(filter(os.path.isdir, os.listdir(tests)))); d2 = sorted(list(filter(os.path.isdir, [f"models/{x}" for x in model_tests]))); d1.remove("models"); d = d2 + d1; print(d)')" >> $GITHUB_OUTPUT
run_tests_single_gpu:
name: Model tests
strategy:
fail-fast: false
matrix:
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
machine_type: [single-gpu]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker-past-ci') }}
container:
image: huggingface/transformers-${{ inputs.framework }}-past-${{ inputs.version }}-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
needs: setup
steps:
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ inputs.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
# set the artifact folder names (because the character `/` is not allowed).
run: |
echo "${{ matrix.folders }}"
matrix_folders=${{ matrix.folders }}
matrix_folders=${matrix_folders/'models/'/'models_'}
echo "$matrix_folders"
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Install
if: inputs.framework == 'pytorch'
working-directory: /transformers
run: |
python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run all tests on GPU
working-directory: /transformers
run: python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} tests/${{ matrix.folders }}
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
- name: Save job name
if: ${{ always() }}
shell: bash
run: |
matrix_folders=${matrix_folders/'models_'/'models/'}
job_name="Model tests ($matrix_folders, ${{ matrix.machine_type }})"
echo "$job_name"
echo "$job_name" > /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/job_name.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v3
with:
name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports_postfix_${{ inputs.framework }}-${{ inputs.version }}
path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}
run_tests_multi_gpu:
name: Model tests
strategy:
fail-fast: false
matrix:
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
machine_type: [multi-gpu]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker-past-ci') }}
container:
image: huggingface/transformers-${{ inputs.framework }}-past-${{ inputs.version }}-gpu
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
needs: setup
steps:
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ inputs.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
# set the artifact folder names (because the character `/` is not allowed).
run: |
echo "${{ matrix.folders }}"
matrix_folders=${{ matrix.folders }}
matrix_folders=${matrix_folders/'models/'/'models_'}
echo "$matrix_folders"
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Install
if: inputs.framework == 'pytorch'
working-directory: /transformers
run: |
python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run all tests on GPU
working-directory: /transformers
run: python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} tests/${{ matrix.folders }}
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
- name: Save job name
if: ${{ always() }}
shell: bash
run: |
matrix_folders=${matrix_folders/'models_'/'models/'}
job_name="Model tests ($matrix_folders, ${{ matrix.machine_type }})"
echo "$job_name"
echo "$job_name" > /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/job_name.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v3
with:
name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports_postfix_${{ inputs.framework }}-${{ inputs.version }}
path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}
run_all_tests_torch_cuda_extensions_gpu:
name: Torch CUDA extension tests
if: inputs.framework == 'pytorch'
strategy:
fail-fast: false
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker-past-ci') }}
needs: setup
container:
image: huggingface/transformers-${{ inputs.framework }}-past-${{ inputs.version }}-gpu
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Install
working-directory: /transformers
run: |
python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate
- name: Remove cached torch extensions
run: rm -rf /github/home/.cache/torch_extensions/
# To avoid unknown test failures
- name: Pre build DeepSpeed *again*
working-directory: /
run: |
python3 -m pip uninstall -y deepspeed
rm -rf DeepSpeed
git clone https://github.com/microsoft/DeepSpeed && cd DeepSpeed && rm -rf build
DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 DS_BUILD_UTILS=1 python3 -m pip install . --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run all tests on GPU
working-directory: /transformers
run: |
python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu tests/deepspeed tests/extended
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu/failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v3
with:
name: ${{ matrix.machine_type }}_run_tests_torch_cuda_extensions_gpu_test_reports_postfix_${{ inputs.framework }}-${{ inputs.version }}
path: /transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu
send_results:
name: Send results to webhook
runs-on: ubuntu-latest
if: always()
needs: [
check_runner_status,
check_runners,
setup,
run_tests_single_gpu,
run_tests_multi_gpu,
run_all_tests_torch_cuda_extensions_gpu
]
steps:
- name: Preliminary job status
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
echo "Runner availability: ${{ needs.check_runner_status.result }}"
echo "Runner status: ${{ needs.check_runners.result }}"
echo "Setup status: ${{ needs.setup.result }}"
- uses: actions/checkout@v3
- uses: actions/download-artifact@v3
# Create a directory to store test failure tables in the next step
- name: Create directory
run: mkdir test_failure_tables
- name: Send message to Slack
env:
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
CI_SLACK_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID }}
CI_SLACK_CHANNEL_ID_DAILY: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY }}
CI_SLACK_CHANNEL_DUMMY_TESTS: ${{ secrets.CI_SLACK_CHANNEL_DUMMY_TESTS }}
CI_SLACK_REPORT_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID_PAST_FUTURE }}
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
CI_EVENT: Past CI - ${{ inputs.framework }}-${{ inputs.version }}
RUNNER_STATUS: ${{ needs.check_runner_status.result }}
RUNNER_ENV_STATUS: ${{ needs.check_runners.result }}
SETUP_STATUS: ${{ needs.setup.result }}
# We pass `needs.setup.outputs.matrix` as the argument. A processing in `notification_service.py` to change
# `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`.
run: |
pip install slack_sdk
pip show slack_sdk
python utils/notification_service.py "${{ needs.setup.outputs.matrix }}"
# Upload complete failure tables, as they might be big and only truncated versions could be sent to Slack.
- name: Failure table artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v3
with:
name: test_failure_tables_${{ inputs.framework }}-${{ inputs.version }}
path: test_failure_tables
# delete-artifact
- uses: geekyeggo/delete-artifact@v2
with:
name: |
single-*
multi-*

135
.github/workflows/self-pr-slow-ci.yml vendored Normal file
View File

@ -0,0 +1,135 @@
name: PR slow CI
on:
pull_request:
paths:
- "src/transformers/models/*/modeling_*.py"
- "tests/**/test_*.py"
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
env:
HF_HOME: /mnt/cache
TRANSFORMERS_IS_CI: yes
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
RUN_SLOW: yes
# For gated repositories, we still need to agree to share information on the Hub repo. page in order to get access.
# This token is created under the bot `hf-transformers-bot`.
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
TF_FORCE_GPU_ALLOW_GROWTH: true
RUN_PT_TF_CROSS_TESTS: 1
CUDA_VISIBLE_DEVICES: 0,1
jobs:
find_models_to_run:
runs-on: ubuntu-22.04
name: Find models to run slow tests
# Triggered only if the required label `run-slow` is added
if: ${{ contains(github.event.pull_request.labels.*.name, 'run-slow') }}
outputs:
models: ${{ steps.models_to_run.outputs.models }}
steps:
- uses: actions/checkout@v4
with:
fetch-depth: "0"
ref: ${{ github.event.pull_request.head.sha }}
- name: Get commit message
run: |
echo "commit_message=$(git show -s --format=%s)" >> $GITHUB_ENV
- name: Get models to run slow tests
run: |
echo "${{ env.commit_message }}"
python -m pip install GitPython
python utils/pr_slow_ci_models.py --commit_message "${{ env.commit_message }}" | tee output.txt
echo "models=$(tail -n 1 output.txt)" >> $GITHUB_ENV
- name: Models to run slow tests
id: models_to_run
run: |
echo "${{ env.models }}"
echo "models=${{ env.models }}" >> $GITHUB_OUTPUT
run_models_gpu:
name: Run all tests for the model
# Triggered only `find_models_to_run` is triggered (label `run-slow` is added) which gives the models to run
# (either a new model PR or via a commit message)
if: ${{ needs.find_models_to_run.outputs.models != '[]' }}
needs: find_models_to_run
strategy:
fail-fast: false
matrix:
folders: ${{ fromJson(needs.find_models_to_run.outputs.models) }}
machine_type: [single-gpu, multi-gpu]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, ci]
container:
image: huggingface/transformers-all-latest-gpu
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Echo input and matrix info
shell: bash
run: |
echo "${{ matrix.folders }}"
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
# set the artifact folder names (because the character `/` is not allowed).
run: |
echo "${{ matrix.folders }}"
matrix_folders=${{ matrix.folders }}
matrix_folders=${matrix_folders/'models/'/'models_'}
echo "$matrix_folders"
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
- name: Update clone
working-directory: /transformers
run: git fetch && git fetch origin pull/${{ github.event.pull_request.number }}/head:pull/${{ github.event.pull_request.number }}/merge && git checkout pull/${{ github.event.pull_request.number }}/merge
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run all tests on GPU
working-directory: /transformers
run: |
export CUDA_VISIBLE_DEVICES="$(python3 utils/set_cuda_devices_for_ci.py --test_folder ${{ matrix.folders }})"
echo $CUDA_VISIBLE_DEVICES
python3 -m pytest -v -rsfE --make-reports=${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports tests/${{ matrix.folders }}
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports/failures_short.txt
- name: Make sure report directory exists
shell: bash
run: |
mkdir -p /transformers/reports/${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports
echo "hello" > /transformers/reports/${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports/hello.txt
echo "${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports"
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ matrix.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports

View File

@ -0,0 +1,25 @@
name: Self-hosted runner (AMD mi210 CI caller)
on:
workflow_run:
workflows: ["Self-hosted runner (push-caller)"]
branches: ["main"]
types: [completed]
push:
branches:
- run_amd_push_ci_caller*
paths:
- "src/**"
- "tests/**"
- ".github/**"
- "templates/**"
- "utils/**"
jobs:
run_amd_ci:
name: AMD mi210
if: (cancelled() != true) && ((github.event_name == 'workflow_run') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_amd_push_ci_caller')))
uses: ./.github/workflows/self-push-amd.yml
with:
gpu_flavor: mi210
secrets: inherit

View File

@ -0,0 +1,25 @@
name: Self-hosted runner (AMD mi250 CI caller)
on:
workflow_run:
workflows: ["Self-hosted runner (push-caller)"]
branches: ["main"]
types: [completed]
push:
branches:
- run_amd_push_ci_caller*
paths:
- "src/**"
- "tests/**"
- ".github/**"
- "templates/**"
- "utils/**"
jobs:
run_amd_ci:
name: AMD mi250
if: (cancelled() != true) && ((github.event_name == 'workflow_run') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_amd_push_ci_caller')))
uses: ./.github/workflows/self-push-amd.yml
with:
gpu_flavor: mi250
secrets: inherit

View File

@ -0,0 +1,25 @@
name: Self-hosted runner (AMD mi300 CI caller)
on:
workflow_run:
workflows: ["Self-hosted runner (push-caller)"]
branches: ["main"]
types: [completed]
push:
branches:
- run_amd_push_ci_caller*
paths:
- "src/**"
- "tests/**"
- ".github/**"
- "templates/**"
- "utils/**"
jobs:
run_amd_ci:
name: AMD mi300
if: (cancelled() != true) && ((github.event_name == 'workflow_run') || ((github.event_name == 'push') && (startsWith(github.ref_name, 'run_amd_push_ci_caller') || startsWith(github.ref_name, 'mi300-ci'))))
uses: ./.github/workflows/self-push-amd.yml
with:
gpu_flavor: mi300
secrets: inherit

View File

@ -1,21 +1,11 @@
name: Self-hosted runner AMD GPU (push)
on:
workflow_run:
workflows: ["Self-hosted runner (push-caller)"]
branches: ["main"]
types: [completed]
push:
branches:
- ci_*
- ci-*
paths:
- "src/**"
- "tests/**"
- ".github/**"
- "templates/**"
- "utils/**"
repository_dispatch:
workflow_call:
inputs:
gpu_flavor:
required: true
type: string
env:
HF_HOME: /mnt/cache
@ -25,14 +15,15 @@ env:
PYTEST_TIMEOUT: 60
TF_FORCE_GPU_ALLOW_GROWTH: true
RUN_PT_TF_CROSS_TESTS: 1
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
jobs:
check_runner_status:
name: Check Runner Status
runs-on: ubuntu-latest
runs-on: ubuntu-22.04
steps:
- name: Checkout transformers
uses: actions/checkout@v3
uses: actions/checkout@v4
with:
fetch-depth: 2
@ -44,28 +35,32 @@ jobs:
needs: check_runner_status
strategy:
matrix:
machine_type: [single-gpu]
runs-on: [self-hosted, docker-gpu, amd-gpu, '${{ matrix.machine_type }}', mi210]
machine_type: [single-gpu, multi-gpu]
runs-on: [self-hosted, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
container:
# --device /dev/dri/renderD128 == AMDGPU:0 (indexing for AMDGPU starts at 128 ...)
image: huggingface/transformers-pytorch-amd-gpu-push-ci # <--- We test only for PyTorch for now
options: --device /dev/kfd --device /dev/dri/renderD128 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: ROCM-SMI
run: |
rocm-smi
- name: ROCM-INFO
run: |
rocminfo | grep "Agent" -A 14
- name: Show ROCR environment
run: |
echo "ROCR: $ROCR_VISIBLE_DEVICES"
setup_gpu:
name: Setup
needs: check_runners
strategy:
matrix:
machine_type: [single-gpu]
runs-on: [self-hosted, docker-gpu, amd-gpu, '${{ matrix.machine_type }}', mi210]
machine_type: [single-gpu, multi-gpu]
runs-on: [self-hosted, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
container:
# --device /dev/dri/renderD128 == AMDGPU:0 (indexing for AMDGPU starts at 128 ...)
image: huggingface/transformers-pytorch-amd-gpu-push-ci # <--- We test only for PyTorch for now
options: --device /dev/kfd --device /dev/dri/renderD128 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
outputs:
matrix: ${{ steps.set-matrix.outputs.matrix }}
test_map: ${{ steps.set-matrix.outputs.test_map }}
@ -126,7 +121,7 @@ jobs:
python3 utils/tests_fetcher.py --diff_with_last_commit | tee test_preparation.txt
- name: Report fetched tests
uses: actions/upload-artifact@v3
uses: actions/upload-artifact@v4
with:
name: test_fetched
path: /transformers/test_preparation.txt
@ -150,7 +145,7 @@ jobs:
echo "matrix=$keys" >> $GITHUB_OUTPUT
echo "test_map=$test_map" >> $GITHUB_OUTPUT
run_tests_single_gpu:
run_models_gpu:
name: Model tests
needs: setup_gpu
# `dummy` means there is no test to run
@ -159,12 +154,11 @@ jobs:
fail-fast: false
matrix:
folders: ${{ fromJson(needs.setup_gpu.outputs.matrix) }}
machine_type: [single-gpu]
runs-on: [self-hosted, docker-gpu, amd-gpu, '${{ matrix.machine_type }}', mi210]
machine_type: [single-gpu, multi-gpu]
runs-on: [self-hosted, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
container:
# --device /dev/dri/renderD128 == AMDGPU:0 (indexing for AMDGPU starts at 128 ...)
image: huggingface/transformers-pytorch-amd-gpu-push-ci # <--- We test only for PyTorch for now
options: --device /dev/kfd --device /dev/dri/renderD128 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
# We also take into account the `push` event (we might want to test some changes in a branch)
@ -217,6 +211,12 @@ jobs:
- name: ROCM-SMI
run: |
rocm-smi
- name: ROCM-INFO
run: |
rocminfo | grep "Agent" -A 14
- name: Show ROCR environment
run: |
echo "ROCR: $ROCR_VISIBLE_DEVICES"
- name: Environment
working-directory: /transformers
@ -230,30 +230,29 @@ jobs:
- name: Run all non-slow selected tests on GPU
working-directory: /transformers
run: |
python3 -m pytest -n 2 --dist=loadfile -v --make-reports=${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} ${{ fromJson(needs.setup_gpu.outputs.test_map)[matrix.folders] }}
python3 -m pytest -n 2 --dist=loadfile -v --make-reports=${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports ${{ fromJson(needs.setup_gpu.outputs.test_map)[matrix.folders] }} -m "not not_device_test"
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
run: cat /transformers/reports/${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports/failures_short.txt
- name: Test suite reports artifacts
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v3
uses: actions/upload-artifact@v4
with:
name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}
name: ${{ matrix.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports
send_results:
name: Send results to webhook
runs-on: ubuntu-latest
runs-on: ubuntu-22.04
if: always()
needs: [
check_runner_status,
check_runners,
setup_gpu,
run_tests_single_gpu,
# run_tests_multi_gpu,
run_models_gpu,
# run_tests_torch_cuda_extensions_single_gpu,
# run_tests_torch_cuda_extensions_multi_gpu
]
@ -289,7 +288,7 @@ jobs:
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
echo "env.CI_SHA = ${{ env.CI_SHA }}"
- uses: actions/checkout@v3
- uses: actions/checkout@v4
# To avoid failure when multiple commits are merged into `main` in a short period of time.
# Checking out to an old commit beyond the fetch depth will get an error `fatal: reference is not a tree: ...
# (Only required for `workflow_run` event, where we get the latest HEAD on `main` instead of the event commit)
@ -304,7 +303,7 @@ jobs:
git checkout ${{ env.CI_SHA }}
echo "log = $(git log -n 1)"
- uses: actions/download-artifact@v3
- uses: actions/download-artifact@v4
- name: Send message to Slack
env:
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
@ -314,7 +313,7 @@ jobs:
CI_SLACK_CHANNEL_DUMMY_TESTS: ${{ secrets.CI_SLACK_CHANNEL_DUMMY_TESTS }}
CI_SLACK_REPORT_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID_AMD }}
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
CI_EVENT: push
CI_EVENT: Push CI (AMD) - ${{ inputs.gpu_flavor }}
CI_TITLE_PUSH: ${{ github.event.head_commit.message }}
CI_TITLE_WORKFLOW_RUN: ${{ github.event.workflow_run.head_commit.message }}
CI_SHA: ${{ env.CI_SHA }}

View File

@ -14,18 +14,18 @@ on:
jobs:
check-for-setup:
runs-on: ubuntu-latest
runs-on: ubuntu-22.04
name: Check if setup was changed
outputs:
changed: ${{ steps.was_changed.outputs.changed }}
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
with:
fetch-depth: "2"
- name: Get changed files
id: changed-files
uses: tj-actions/changed-files@v22.2
uses: tj-actions/changed-files@v41
- name: Was setup changed
id: was_changed
@ -46,7 +46,7 @@ jobs:
run_push_ci:
name: Trigger Push CI
runs-on: ubuntu-latest
runs-on: ubuntu-22.04
if: ${{ always() }}
needs: build-docker-containers
steps:

View File

@ -25,42 +25,15 @@ env:
PYTEST_TIMEOUT: 60
TF_FORCE_GPU_ALLOW_GROWTH: true
RUN_PT_TF_CROSS_TESTS: 1
CUDA_VISIBLE_DEVICES: 0,1
jobs:
check_runner_status:
name: Check Runner Status
runs-on: ubuntu-latest
steps:
- name: Checkout transformers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Check Runner Status
run: python utils/check_self_hosted_runner.py --target_runners single-gpu-ci-runner-docker,multi-gpu-ci-runner-docker --token ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
check_runners:
name: Check Runners
needs: check_runner_status
strategy:
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: [self-hosted, docker-gpu, '${{ matrix.machine_type }}']
container:
image: huggingface/transformers-all-latest-gpu-push-ci
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: NVIDIA-SMI
run: |
nvidia-smi
setup:
name: Setup
needs: check_runners
strategy:
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: [self-hosted, docker-gpu, '${{ matrix.machine_type }}']
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, push-ci]
container:
image: huggingface/transformers-all-latest-gpu-push-ci
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
@ -124,7 +97,7 @@ jobs:
python3 utils/tests_fetcher.py --diff_with_last_commit | tee test_preparation.txt
- name: Report fetched tests
uses: actions/upload-artifact@v3
uses: actions/upload-artifact@v4
with:
name: test_fetched
path: /transformers/test_preparation.txt
@ -158,7 +131,7 @@ jobs:
matrix:
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
machine_type: [single-gpu]
runs-on: [self-hosted, docker-gpu, '${{ matrix.machine_type }}']
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, push-ci]
container:
image: huggingface/transformers-all-latest-gpu-push-ci
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
@ -234,9 +207,9 @@ jobs:
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
- name: Test suite reports artifacts
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v3
uses: actions/upload-artifact@v4
with:
name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}
@ -251,7 +224,7 @@ jobs:
matrix:
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
machine_type: [multi-gpu]
runs-on: [self-hosted, docker-gpu, '${{ matrix.machine_type }}']
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, push-ci]
container:
image: huggingface/transformers-all-latest-gpu-push-ci
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
@ -329,9 +302,9 @@ jobs:
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
- name: Test suite reports artifacts
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v3
uses: actions/upload-artifact@v4
with:
name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}
@ -344,7 +317,7 @@ jobs:
fail-fast: false
matrix:
machine_type: [single-gpu]
runs-on: [self-hosted, docker-gpu, '${{ matrix.machine_type }}']
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, push-ci]
container:
image: huggingface/transformers-pytorch-deepspeed-latest-gpu-push-ci
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
@ -393,7 +366,7 @@ jobs:
working-directory: /workspace
run: |
python3 -m pip uninstall -y deepspeed
DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 DS_BUILD_UTILS=1 python3 -m pip install deepspeed --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check
DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 python3 -m pip install deepspeed --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check
- name: NVIDIA-SMI
run: |
@ -412,19 +385,19 @@ jobs:
working-directory: /workspace/transformers
# TODO: Here we pass all tests in the 2 folders for simplicity. It's better to pass only the identified tests.
run: |
python -m pytest -n 1 --dist=loadfile -v --make-reports=${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu tests/deepspeed tests/extended
python -m pytest -n 1 --dist=loadfile -v --make-reports=${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports tests/deepspeed tests/extended
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /workspace/transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu/failures_short.txt
run: cat /workspace/transformers/reports/${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports/failures_short.txt
- name: Test suite reports artifacts
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v3
uses: actions/upload-artifact@v4
with:
name: ${{ matrix.machine_type }}_run_tests_torch_cuda_extensions_gpu_test_reports
path: /workspace/transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu
name: ${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports
path: /workspace/transformers/reports/${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports
run_tests_torch_cuda_extensions_multi_gpu:
name: Torch CUDA extension tests
@ -434,7 +407,7 @@ jobs:
fail-fast: false
matrix:
machine_type: [multi-gpu]
runs-on: [self-hosted, docker-gpu, '${{ matrix.machine_type }}']
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, push-ci]
container:
image: huggingface/transformers-pytorch-deepspeed-latest-gpu-push-ci
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
@ -483,7 +456,7 @@ jobs:
working-directory: /workspace
run: |
python3 -m pip uninstall -y deepspeed
DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 DS_BUILD_UTILS=1 python3 -m pip install deepspeed --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check
DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 python3 -m pip install deepspeed --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check
- name: NVIDIA-SMI
run: |
@ -502,27 +475,25 @@ jobs:
working-directory: /workspace/transformers
# TODO: Here we pass all tests in the 2 folders for simplicity. It's better to pass only the identified tests.
run: |
python -m pytest -n 1 --dist=loadfile -v --make-reports=${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu tests/deepspeed tests/extended
python -m pytest -n 1 --dist=loadfile -v --make-reports=${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports tests/deepspeed tests/extended
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /workspace/transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu/failures_short.txt
run: cat /workspace/transformers/reports/${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports/failures_short.txt
- name: Test suite reports artifacts
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v3
uses: actions/upload-artifact@v4
with:
name: ${{ matrix.machine_type }}_run_tests_torch_cuda_extensions_gpu_test_reports
path: /workspace/transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu
name: ${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports
path: /workspace/transformers/reports/${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports
send_results:
name: Send results to webhook
runs-on: ubuntu-latest
runs-on: ubuntu-22.04
if: always()
needs: [
check_runner_status,
check_runners,
setup,
run_tests_single_gpu,
run_tests_multi_gpu,
@ -534,9 +505,7 @@ jobs:
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
echo "Runner availability: ${{ needs.check_runner_status.result }}"
echo "Setup status: ${{ needs.setup.result }}"
echo "Runner status: ${{ needs.check_runners.result }}"
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
# We also take into account the `push` event (we might want to test some changes in a branch)
@ -561,7 +530,7 @@ jobs:
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
echo "env.CI_SHA = ${{ env.CI_SHA }}"
- uses: actions/checkout@v3
- uses: actions/checkout@v4
# To avoid failure when multiple commits are merged into `main` in a short period of time.
# Checking out to an old commit beyond the fetch depth will get an error `fatal: reference is not a tree: ...
# (Only required for `workflow_run` event, where we get the latest HEAD on `main` instead of the event commit)
@ -576,7 +545,7 @@ jobs:
git checkout ${{ env.CI_SHA }}
echo "log = $(git log -n 1)"
- uses: actions/download-artifact@v3
- uses: actions/download-artifact@v4
- name: Send message to Slack
env:
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
@ -589,8 +558,6 @@ jobs:
CI_TITLE_PUSH: ${{ github.event.head_commit.message }}
CI_TITLE_WORKFLOW_RUN: ${{ github.event.workflow_run.head_commit.message }}
CI_SHA: ${{ env.CI_SHA }}
RUNNER_STATUS: ${{ needs.check_runner_status.result }}
RUNNER_ENV_STATUS: ${{ needs.check_runners.result }}
SETUP_STATUS: ${{ needs.setup.result }}
# We pass `needs.setup.outputs.matrix` as the argument. A processing in `notification_service.py` to change

View File

@ -0,0 +1,14 @@
name: Self-hosted runner (AMD scheduled CI caller)
on:
schedule:
- cron: "17 2 * * *"
jobs:
run_scheduled_amd_ci:
name: Trigger Scheduled AMD CI
runs-on: ubuntu-22.04
if: ${{ always() }}
steps:
- name: Trigger scheduled AMD CI via workflow_run
run: echo "Trigger scheduled AMD CI via workflow_run"

View File

@ -0,0 +1,20 @@
name: Self-hosted runner (AMD mi210 scheduled CI caller)
on:
workflow_run:
workflows: ["Self-hosted runner (AMD scheduled CI caller)"]
branches: ["main"]
types: [completed]
push:
branches:
- run_amd_scheduled_ci_caller*
jobs:
run_amd_ci:
name: AMD mi210
if: (cancelled() != true) && ((github.event_name == 'workflow_run') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_amd_scheduled_ci_caller')))
uses: ./.github/workflows/self-scheduled-amd.yml
with:
gpu_flavor: mi210
slack_report_channel: "#transformers-ci-daily-amd"
secrets: inherit

View File

@ -0,0 +1,20 @@
name: Self-hosted runner (AMD mi250 scheduled CI caller)
on:
workflow_run:
workflows: ["Self-hosted runner (AMD scheduled CI caller)"]
branches: ["main"]
types: [completed]
push:
branches:
- run_amd_scheduled_ci_caller*
jobs:
run_amd_ci:
name: AMD mi250
if: (cancelled() != true) && ((github.event_name == 'workflow_run') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_amd_scheduled_ci_caller')))
uses: ./.github/workflows/self-scheduled-amd.yml
with:
gpu_flavor: mi250
slack_report_channel: "#transformers-ci-daily-amd"
secrets: inherit

View File

@ -0,0 +1,21 @@
name: Self-hosted runner (AMD mi300 scheduled CI caller)
on:
workflow_run:
workflows: ["Self-hosted runner (AMD scheduled CI caller)"]
branches: ["main"]
types: [completed]
push:
branches:
- run_amd_scheduled_ci_caller*
jobs:
run_amd_ci:
name: AMD mi300
needs: build-docker-containers
if: (cancelled() != true) && ((github.event_name == 'workflow_run') || ((github.event_name == 'push') && (startsWith(github.ref_name, 'run_amd_push_ci_caller') || startsWith(github.ref_name, 'mi300-ci'))))
uses: ./.github/workflows/self-scheduled-amd.yml
with:
gpu_flavor: mi300
slack_report_channel: "#transformers-ci-daily-amd"
secrets: inherit

519
.github/workflows/self-scheduled-amd.yml vendored Normal file
View File

@ -0,0 +1,519 @@
name: Self-hosted runner (scheduled-amd)
# Note: For the AMD CI, we rely on a caller workflow and on the workflow_call event to trigger the
# CI in order to run it on both MI210 and MI250, without having to use matrix here which pushes
# us towards the limit of allowed jobs on GitHub Actions.
on:
workflow_call:
inputs:
gpu_flavor:
required: true
type: string
env:
HF_HOME: /mnt/cache
TRANSFORMERS_IS_CI: yes
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
RUN_SLOW: yes
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
# Important note: each job (run_tests_single_gpu, run_tests_multi_gpu, run_examples_gpu, run_pipelines_torch_gpu) requires all the previous jobs before running.
# This is done so that we avoid parallelizing the scheduled tests, to leave available
# runners for the push CI that is running on the same machine.
jobs:
check_runner_status:
name: Check Runner Status
runs-on: ubuntu-22.04
steps:
- name: Checkout transformers
uses: actions/checkout@v4
with:
fetch-depth: 2
- name: Check Runner Status
run: python utils/check_self_hosted_runner.py --target_runners hf-amd-mi210-ci-1gpu-1,hf-amd-mi250-ci-1gpu-1,hf-amd-mi300-ci-1gpu-1 --token ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
check_runners:
name: Check Runners
needs: check_runner_status
strategy:
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: [self-hosted, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
container:
image: huggingface/transformers-pytorch-amd-gpu
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: ROCM-SMI
run: |
rocm-smi
- name: ROCM-INFO
run: |
rocminfo | grep "Agent" -A 14
- name: Show ROCR environment
run: |
echo "ROCR: $ROCR_VISIBLE_DEVICES"
setup:
name: Setup
needs: check_runners
strategy:
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: [self-hosted, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
container:
image: huggingface/transformers-pytorch-amd-gpu
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
outputs:
matrix: ${{ steps.set-matrix.outputs.matrix }}
steps:
- name: Update clone
working-directory: /transformers
run: |
git fetch && git checkout ${{ github.sha }}
- name: Cleanup
working-directory: /transformers
run: |
rm -rf tests/__pycache__
rm -rf tests/models/__pycache__
rm -rf reports
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- id: set-matrix
name: Identify models to test
working-directory: /transformers/tests
run: |
echo "matrix=$(python3 -c 'import os; tests = os.getcwd(); model_tests = os.listdir(os.path.join(tests, "models")); d1 = sorted(list(filter(os.path.isdir, os.listdir(tests)))); d2 = sorted(list(filter(os.path.isdir, [f"models/{x}" for x in model_tests]))); d1.remove("models"); d = d2 + d1; print(d)')" >> $GITHUB_OUTPUT
- name: ROCM-SMI
run: |
rocm-smi
- name: ROCM-INFO
run: |
rocminfo | grep "Agent" -A 14
- name: Show ROCR environment
run: |
echo "ROCR: $ROCR_VISIBLE_DEVICES"
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
run_models_gpu_single_gpu:
name: Single GPU tests
strategy:
max-parallel: 1 # For now, not to parallelize. Can change later if it works well.
fail-fast: false
matrix:
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
machine_type: [single-gpu]
runs-on: [self-hosted, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
container:
image: huggingface/transformers-pytorch-amd-gpu
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
needs: setup
steps:
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
# set the artifact folder names (because the character `/` is not allowed).
run: |
echo "${{ matrix.folders }}"
matrix_folders=${{ matrix.folders }}
matrix_folders=${matrix_folders/'models/'/'models_'}
echo "$matrix_folders"
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: ROCM-SMI
run: |
rocm-smi
- name: ROCM-INFO
run: |
rocminfo | grep "Agent" -A 14
- name: Show ROCR environment
run: |
echo "ROCR: $ROCR_VISIBLE_DEVICES"
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run all tests on GPU
working-directory: /transformers
run: python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports tests/${{ matrix.folders }} -m "not not_device_test"
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports/failures_short.txt
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ matrix.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports
run_models_gpu_multi_gpu:
name: Multi GPU tests
strategy:
max-parallel: 1
fail-fast: false
matrix:
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
machine_type: [multi-gpu]
runs-on: [self-hosted, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
container:
image: huggingface/transformers-pytorch-amd-gpu
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
needs: setup
steps:
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
# set the artifact folder names (because the character `/` is not allowed).
run: |
echo "${{ matrix.folders }}"
matrix_folders=${{ matrix.folders }}
matrix_folders=${matrix_folders/'models/'/'models_'}
echo "$matrix_folders"
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: ROCM-SMI
run: |
rocm-smi
- name: ROCM-INFO
run: |
rocminfo | grep "Agent" -A 14
- name: Show ROCR environment
run: |
echo "ROCR: $ROCR_VISIBLE_DEVICES"
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run all tests on GPU
working-directory: /transformers
run: python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports tests/${{ matrix.folders }} -m "not not_device_test"
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports/failures_short.txt
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ matrix.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports
run_examples_gpu:
name: Examples tests
strategy:
fail-fast: false
matrix:
machine_type: [single-gpu]
runs-on: [self-hosted, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
container:
image: huggingface/transformers-pytorch-amd-gpu
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
needs: setup
steps:
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: ROCM-SMI
run: |
rocm-smi
- name: ROCM-INFO
run: |
rocminfo | grep "Agent" -A 14
- name: Show ROCR environment
run: |
echo "ROCR: $ROCR_VISIBLE_DEVICES"
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run examples tests on GPU
working-directory: /transformers
run: |
pip install -r examples/pytorch/_tests_requirements.txt
python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_run_examples_gpu_test_reports examples/pytorch -m "not not_device_test"
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_run_examples_gpu_test_reports/failures_short.txt
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_examples_gpu_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ matrix.machine_type }}_run_examples_gpu_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_run_examples_gpu_test_reports
run_pipelines_torch_gpu:
name: PyTorch pipelines tests
strategy:
fail-fast: false
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: [self-hosted, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
container:
image: huggingface/transformers-pytorch-amd-gpu
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
needs: setup
steps:
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: ROCM-SMI
run: |
rocm-smi
- name: ROCM-INFO
run: |
rocminfo | grep "Agent" -A 14
- name: Show ROCR environment
run: |
echo "ROCR: $ROCR_VISIBLE_DEVICES"
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run all pipeline tests on GPU
working-directory: /transformers
run: |
python3 -m pytest -n 1 -v --dist=loadfile --make-reports=${{ matrix.machine_type }}_run_pipelines_torch_gpu_test_reports tests/pipelines -m "not not_device_test"
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_run_pipelines_torch_gpu_test_reports/failures_short.txt
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_pipelines_torch_gpu_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ matrix.machine_type }}_run_pipelines_torch_gpu_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_run_pipelines_torch_gpu_test_reports
run_torch_cuda_extensions_gpu:
name: Torch ROCm deepspeed tests
strategy:
fail-fast: false
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: [self-hosted, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
needs: setup
container:
image: huggingface/transformers-pytorch-deepspeed-amd-gpu
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: ROCM-SMI
run: |
rocm-smi
- name: ROCM-INFO
run: |
rocminfo | grep "Agent" -A 14
- name: Show ROCR environment
run: |
echo "ROCR: $ROCR_VISIBLE_DEVICES"
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run all tests on GPU
working-directory: /transformers
run: python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports tests/deepspeed tests/extended -m "not not_device_test"
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports/failures_short.txt
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports
run_extract_warnings:
name: Extract warnings in CI artifacts
runs-on: ubuntu-22.04
if: always()
needs: [
check_runner_status,
check_runners,
setup,
run_models_gpu_single_gpu,
run_models_gpu_multi_gpu,
run_examples_gpu,
run_pipelines_torch_gpu,
run_torch_cuda_extensions_gpu
]
steps:
- name: Checkout transformers
uses: actions/checkout@v4
with:
fetch-depth: 2
- name: Install transformers
run: pip install transformers
- name: Show installed libraries and their versions
run: pip freeze
- name: Create output directory
run: mkdir warnings_in_ci
- uses: actions/download-artifact@v4
with:
path: warnings_in_ci
- name: Show artifacts
run: echo "$(python3 -c 'import os; d = os.listdir(); print(d)')"
working-directory: warnings_in_ci
- name: Extract warnings in CI artifacts
run: |
python3 utils/extract_warnings.py --workflow_run_id ${{ github.run_id }} --output_dir warnings_in_ci --token ${{ secrets.ACCESS_REPO_INFO_TOKEN }} --from_gh
echo "$(python3 -c 'import os; import json; fp = open("warnings_in_ci/selected_warnings.json"); d = json.load(fp); d = "\n".join(d) ;print(d)')"
- name: Upload artifact
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: warnings_in_ci
path: warnings_in_ci/selected_warnings.json
send_results:
name: Send results to webhook
runs-on: ubuntu-22.04
if: always()
needs: [
check_runner_status,
check_runners,
setup,
run_models_gpu_single_gpu,
run_models_gpu_multi_gpu,
run_examples_gpu,
run_pipelines_torch_gpu,
run_torch_cuda_extensions_gpu,
run_extract_warnings
]
steps:
- name: Preliminary job status
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
echo "Runner availability: ${{ needs.check_runner_status.result }}"
echo "Runner status: ${{ needs.check_runners.result }}"
echo "Setup status: ${{ needs.setup.result }}"
- uses: actions/checkout@v4
- uses: actions/download-artifact@v4
- name: Send message to Slack
env:
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
CI_SLACK_CHANNEL_ID_DAILY_AMD: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY_AMD }}
CI_SLACK_CHANNEL_DUMMY_TESTS: ${{ secrets.CI_SLACK_CHANNEL_DUMMY_TESTS }}
CI_SLACK_REPORT_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY_AMD }}
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
CI_EVENT: Scheduled CI (AMD) - ${{ inputs.gpu_flavor }}
CI_SHA: ${{ github.sha }}
CI_WORKFLOW_REF: ${{ github.workflow_ref }}
RUNNER_STATUS: ${{ needs.check_runner_status.result }}
RUNNER_ENV_STATUS: ${{ needs.check_runners.result }}
SETUP_STATUS: ${{ needs.setup.result }}
# We pass `needs.setup.outputs.matrix` as the argument. A processing in `notification_service.py` to change
# `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`.
run: |
sudo apt-get install -y curl
pip install slack_sdk
pip show slack_sdk
python utils/notification_service.py "${{ needs.setup.outputs.matrix }}"
# Upload complete failure tables, as they might be big and only truncated versions could be sent to Slack.
- name: Failure table artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: test_failure_tables
path: test_failure_tables

View File

@ -0,0 +1,78 @@
name: Self-hosted runner (scheduled)
on:
repository_dispatch:
schedule:
- cron: "17 2 * * *"
push:
branches:
- run_scheduled_ci*
jobs:
model-ci:
name: Model CI
uses: ./.github/workflows/self-scheduled.yml
with:
job: run_models_gpu
slack_report_channel: "#transformers-ci-daily-models"
runner: daily-ci
docker: huggingface/transformers-all-latest-gpu
ci_event: Daily CI
secrets: inherit
torch-pipeline:
name: Torch pipeline CI
uses: ./.github/workflows/self-scheduled.yml
with:
job: run_pipelines_torch_gpu
slack_report_channel: "#transformers-ci-daily-pipeline-torch"
runner: daily-ci
docker: huggingface/transformers-pytorch-gpu
ci_event: Daily CI
secrets: inherit
tf-pipeline:
name: TF pipeline CI
uses: ./.github/workflows/self-scheduled.yml
with:
job: run_pipelines_tf_gpu
slack_report_channel: "#transformers-ci-daily-pipeline-tf"
runner: daily-ci
docker: huggingface/transformers-tensorflow-gpu
ci_event: Daily CI
secrets: inherit
example-ci:
name: Example CI
uses: ./.github/workflows/self-scheduled.yml
with:
job: run_examples_gpu
slack_report_channel: "#transformers-ci-daily-examples"
runner: daily-ci
docker: huggingface/transformers-all-latest-gpu
ci_event: Daily CI
secrets: inherit
deepspeed-ci:
name: DeepSpeed CI
uses: ./.github/workflows/self-scheduled.yml
with:
job: run_torch_cuda_extensions_gpu
slack_report_channel: "#transformers-ci-daily-deepspeed"
runner: daily-ci
docker: huggingface/transformers-pytorch-deepspeed-latest-gpu
ci_event: Daily CI
working-directory-prefix: /workspace
secrets: inherit
quantization-ci:
name: Quantization CI
uses: ./.github/workflows/self-scheduled.yml
with:
job: run_quantization_torch_gpu
slack_report_channel: "#transformers-ci-daily-quantization"
runner: daily-ci
docker: huggingface/transformers-quantization-latest-gpu
ci_event: Daily CI
secrets: inherit

View File

@ -2,17 +2,32 @@ name: Self-hosted runner (scheduled)
# Note that each job's dependencies go into a corresponding docker file.
#
# For example for `run_all_tests_torch_cuda_extensions_gpu` the docker image is
# For example for `run_torch_cuda_extensions_gpu` the docker image is
# `huggingface/transformers-pytorch-deepspeed-latest-gpu`, which can be found at
# `docker/transformers-pytorch-deepspeed-latest-gpu/Dockerfile`
on:
repository_dispatch:
schedule:
- cron: "17 2 * * *"
push:
branches:
- run_scheduled_ci*
workflow_call:
inputs:
job:
required: true
type: string
slack_report_channel:
required: true
type: string
runner:
required: true
type: string
docker:
required: true
type: string
ci_event:
required: true
type: string
working-directory-prefix:
default: ''
required: false
type: string
env:
HF_HOME: /mnt/cache
@ -20,50 +35,30 @@ env:
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
RUN_SLOW: yes
# For gated repositories, we still need to agree to share information on the Hub repo. page in order to get access.
# This token is created under the bot `hf-transformers-bot`.
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
TF_FORCE_GPU_ALLOW_GROWTH: true
RUN_PT_TF_CROSS_TESTS: 1
CUDA_VISIBLE_DEVICES: 0,1
NUM_SLICES: 2
jobs:
check_runner_status:
name: Check Runner Status
runs-on: ubuntu-latest
steps:
- name: Checkout transformers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Check Runner Status
run: python utils/check_self_hosted_runner.py --target_runners single-gpu-scheduled-ci-runner-docker,multi-gpu-scheduled-ci-runner-docker --token ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
check_runners:
name: Check Runners
needs: check_runner_status
strategy:
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker') }}
container:
image: huggingface/transformers-all-latest-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: NVIDIA-SMI
run: |
nvidia-smi
setup:
if: contains(fromJSON('["run_models_gpu", "run_quantization_torch_gpu"]'), inputs.job)
name: Setup
needs: check_runners
strategy:
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker') }}
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, '${{ inputs.runner }}']
container:
image: huggingface/transformers-all-latest-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
outputs:
matrix: ${{ steps.set-matrix.outputs.matrix }}
folder_slices: ${{ steps.set-matrix.outputs.folder_slices }}
slice_ids: ${{ steps.set-matrix.outputs.slice_ids }}
quantization_matrix: ${{ steps.set-matrix-quantization.outputs.quantization_matrix }}
steps:
- name: Update clone
working-directory: /transformers
@ -82,100 +77,54 @@ jobs:
run: pip freeze
- id: set-matrix
if: ${{ inputs.job == 'run_models_gpu' }}
name: Identify models to test
working-directory: /transformers/tests
run: |
echo "matrix=$(python3 -c 'import os; tests = os.getcwd(); model_tests = os.listdir(os.path.join(tests, "models")); d1 = sorted(list(filter(os.path.isdir, os.listdir(tests)))); d2 = sorted(list(filter(os.path.isdir, [f"models/{x}" for x in model_tests]))); d1.remove("models"); d = d2 + d1; print(d)')" >> $GITHUB_OUTPUT
echo "folder_slices=$(python3 ../utils/split_model_tests.py --num_splits ${{ env.NUM_SLICES }})" >> $GITHUB_OUTPUT
echo "slice_ids=$(python3 -c 'd = list(range(${{ env.NUM_SLICES }})); print(d)')" >> $GITHUB_OUTPUT
- id: set-matrix-quantization
if: ${{ inputs.job == 'run_quantization_torch_gpu' }}
name: Identify quantization method to test
working-directory: /transformers/tests
run: |
echo "quantization_matrix=$(python3 -c 'import os; tests = os.getcwd(); quantization_tests = os.listdir(os.path.join(tests, "quantization")); d = sorted(list(filter(os.path.isdir, [f"quantization/{x}" for x in quantization_tests]))) ; print(d)')" >> $GITHUB_OUTPUT
- name: NVIDIA-SMI
run: |
nvidia-smi
run_tests_single_gpu:
name: Model tests
strategy:
fail-fast: false
matrix:
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
machine_type: [single-gpu]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker') }}
container:
image: huggingface/transformers-all-latest-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
run_models_gpu:
if: ${{ inputs.job == 'run_models_gpu' }}
name: " "
needs: setup
steps:
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
# set the artifact folder names (because the character `/` is not allowed).
run: |
echo "${{ matrix.folders }}"
matrix_folders=${{ matrix.folders }}
matrix_folders=${matrix_folders/'models/'/'models_'}
echo "$matrix_folders"
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run all tests on GPU
working-directory: /transformers
run: python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} tests/${{ matrix.folders }}
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v3
with:
name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}
run_tests_multi_gpu:
name: Model tests
strategy:
fail-fast: false
matrix:
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
machine_type: [multi-gpu]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker') }}
machine_type: [single-gpu, multi-gpu]
slice_id: ${{ fromJSON(needs.setup.outputs.slice_ids) }}
uses: ./.github/workflows/model_jobs.yml
with:
folder_slices: ${{ needs.setup.outputs.folder_slices }}
machine_type: ${{ matrix.machine_type }}
slice_id: ${{ matrix.slice_id }}
runner: ${{ inputs.runner }}
docker: ${{ inputs.docker }}
secrets: inherit
run_pipelines_torch_gpu:
if: ${{ inputs.job == 'run_pipelines_torch_gpu' }}
name: PyTorch pipelines
strategy:
fail-fast: false
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, '${{ inputs.runner }}']
container:
image: huggingface/transformers-all-latest-gpu
image: huggingface/transformers-pytorch-gpu
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
needs: setup
steps:
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
# set the artifact folder names (because the character `/` is not allowed).
run: |
echo "${{ matrix.folders }}"
matrix_folders=${{ matrix.folders }}
matrix_folders=${matrix_folders/'models/'/'models_'}
echo "$matrix_folders"
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
@ -197,33 +146,85 @@ jobs:
working-directory: /transformers
run: pip freeze
- name: Run all tests on GPU
- name: Run all pipeline tests on GPU
working-directory: /transformers
run: python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} tests/${{ matrix.folders }}
run: |
python3 -m pytest -n 1 -v --dist=loadfile --make-reports=${{ matrix.machine_type }}_run_pipelines_torch_gpu_test_reports tests/pipelines
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
run: cat /transformers/reports/${{ matrix.machine_type }}_run_pipelines_torch_gpu_test_reports/failures_short.txt
- name: Test suite reports artifacts
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_pipelines_torch_gpu_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v3
uses: actions/upload-artifact@v4
with:
name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}
name: ${{ matrix.machine_type }}_run_pipelines_torch_gpu_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_run_pipelines_torch_gpu_test_reports
run_pipelines_tf_gpu:
if: ${{ inputs.job == 'run_pipelines_tf_gpu' }}
name: TensorFlow pipelines
strategy:
fail-fast: false
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, '${{ inputs.runner }}']
container:
image: huggingface/transformers-tensorflow-gpu
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Update clone
working-directory: /transformers
run: |
git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run all pipeline tests on GPU
working-directory: /transformers
run: |
python3 -m pytest -n 1 -v --dist=loadfile --make-reports=${{ matrix.machine_type }}_run_pipelines_tf_gpu_test_reports tests/pipelines
- name: Failure short reports
if: ${{ always() }}
run: |
cat /transformers/reports/${{ matrix.machine_type }}_run_pipelines_tf_gpu_test_reports/failures_short.txt
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_pipelines_tf_gpu_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ matrix.machine_type }}_run_pipelines_tf_gpu_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_run_pipelines_tf_gpu_test_reports
run_examples_gpu:
if: ${{ inputs.job == 'run_examples_gpu' }}
name: Examples directory
strategy:
fail-fast: false
matrix:
machine_type: [single-gpu]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker') }}
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, '${{ inputs.runner }}']
container:
image: huggingface/transformers-all-latest-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
needs: setup
steps:
- name: Update clone
working-directory: /transformers
@ -250,199 +251,169 @@ jobs:
working-directory: /transformers
run: |
pip install -r examples/pytorch/_tests_requirements.txt
python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_examples_gpu examples/pytorch
python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_run_examples_gpu_test_reports examples/pytorch
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_examples_gpu/failures_short.txt
run: cat /transformers/reports/${{ matrix.machine_type }}_run_examples_gpu_test_reports/failures_short.txt
- name: Test suite reports artifacts
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_examples_gpu_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v3
uses: actions/upload-artifact@v4
with:
name: ${{ matrix.machine_type }}_run_examples_gpu
path: /transformers/reports/${{ matrix.machine_type }}_examples_gpu
name: ${{ matrix.machine_type }}_run_examples_gpu_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_run_examples_gpu_test_reports
run_pipelines_torch_gpu:
name: PyTorch pipelines
strategy:
fail-fast: false
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker') }}
container:
image: huggingface/transformers-pytorch-gpu
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
needs: setup
steps:
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run all pipeline tests on GPU
working-directory: /transformers
run: |
python3 -m pytest -n 1 -v --dist=loadfile --make-reports=${{ matrix.machine_type }}_tests_torch_pipeline_gpu tests/pipelines
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_torch_pipeline_gpu/failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v3
with:
name: ${{ matrix.machine_type }}_run_tests_torch_pipeline_gpu
path: /transformers/reports/${{ matrix.machine_type }}_tests_torch_pipeline_gpu
run_pipelines_tf_gpu:
name: TensorFlow pipelines
strategy:
fail-fast: false
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker') }}
container:
image: huggingface/transformers-tensorflow-gpu
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
needs: setup
steps:
- name: Update clone
working-directory: /transformers
run: |
git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run all pipeline tests on GPU
working-directory: /transformers
run: |
python3 -m pytest -n 1 -v --dist=loadfile --make-reports=${{ matrix.machine_type }}_tests_tf_pipeline_gpu tests/pipelines
- name: Failure short reports
if: ${{ always() }}
run: |
cat /transformers/reports/${{ matrix.machine_type }}_tests_tf_pipeline_gpu/failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v3
with:
name: ${{ matrix.machine_type }}_run_tests_tf_pipeline_gpu
path: /transformers/reports/${{ matrix.machine_type }}_tests_tf_pipeline_gpu
run_all_tests_torch_cuda_extensions_gpu:
run_torch_cuda_extensions_gpu:
if: ${{ inputs.job == 'run_torch_cuda_extensions_gpu' }}
name: Torch CUDA extension tests
strategy:
fail-fast: false
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker') }}
needs: setup
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, '${{ inputs.runner }}']
container:
image: huggingface/transformers-pytorch-deepspeed-latest-gpu
image: ${{ inputs.docker }}
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Update clone
working-directory: /workspace/transformers
working-directory: ${{ inputs.working-directory-prefix }}/transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /workspace/transformers
working-directory: ${{ inputs.working-directory-prefix }}/transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Update / Install some packages (for Past CI)
if: ${{ contains(inputs.docker, '-past-') && contains(inputs.docker, '-pytorch-') }}
working-directory: ${{ inputs.working-directory-prefix }}/transformers
run: |
python3 -m pip install -U datasets
python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate
- name: Remove cached torch extensions
run: rm -rf /github/home/.cache/torch_extensions/
# To avoid unknown test failures
- name: Pre build DeepSpeed *again*
working-directory: /workspace
- name: Pre build DeepSpeed *again* (for daily CI)
if: ${{ contains(inputs.ci_event, 'Daily CI') }}
working-directory: ${{ inputs.working-directory-prefix }}/
run: |
python3 -m pip uninstall -y deepspeed
DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 DS_BUILD_UTILS=1 python3 -m pip install deepspeed --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check
DS_DISABLE_NINJA=1 DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 python3 -m pip install deepspeed --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check
# To avoid unknown test failures
- name: Pre build DeepSpeed *again* (for nightly & Past CI)
if: ${{ contains(inputs.ci_event, 'Nightly CI') || contains(inputs.ci_event, 'Past CI') }}
working-directory: ${{ inputs.working-directory-prefix }}/
run: |
python3 -m pip uninstall -y deepspeed
rm -rf DeepSpeed
git clone https://github.com/microsoft/DeepSpeed && cd DeepSpeed && rm -rf build
DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 python3 -m pip install . --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Environment
working-directory: /workspace/transformers
working-directory: ${{ inputs.working-directory-prefix }}/transformers
run: |
python utils/print_env.py
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /workspace/transformers
working-directory: ${{ inputs.working-directory-prefix }}/transformers
run: pip freeze
- name: Run all tests on GPU
working-directory: /workspace/transformers
working-directory: ${{ inputs.working-directory-prefix }}/transformers
run: |
python -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu tests/deepspeed tests/extended
python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports tests/deepspeed tests/extended
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /workspace/transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu/failures_short.txt
run: cat ${{ inputs.working-directory-prefix }}/transformers/reports/${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports/failures_short.txt
- name: Test suite reports artifacts
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v3
uses: actions/upload-artifact@v4
with:
name: ${{ matrix.machine_type }}_run_tests_torch_cuda_extensions_gpu_test_reports
path: /workspace/transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu
name: ${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports
path: ${{ inputs.working-directory-prefix }}/transformers/reports/${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports
run_quantization_torch_gpu:
if: ${{ inputs.job == 'run_quantization_torch_gpu' }}
name: " "
needs: setup
strategy:
max-parallel: 4
fail-fast: false
matrix:
folders: ${{ fromJson(needs.setup.outputs.quantization_matrix) }}
machine_type: [single-gpu, multi-gpu]
runs-on: ['${{ matrix.machine_type }}', nvidia-gpu, t4, '${{ inputs.runner }}']
container:
image: huggingface/transformers-quantization-latest-gpu
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Echo folder ${{ matrix.folders }}
shell: bash
run: |
echo "${{ matrix.folders }}"
matrix_folders=${{ matrix.folders }}
matrix_folders=${matrix_folders/'quantization/'/'quantization_'}
echo "$matrix_folders"
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run quantization tests on GPU
working-directory: /transformers
run: |
python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_run_quantization_torch_gpu_${{ matrix.folders }}_test_reports tests/${{ matrix.folders }}
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_run_quantization_torch_gpu_${{ matrix.folders }}_test_reports/failures_short.txt
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_quantization_torch_gpu_${{ env.matrix_folders }}_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ matrix.machine_type }}_run_quantization_torch_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_run_quantization_torch_gpu_${{ matrix.folders }}_test_reports
run_extract_warnings:
# Let's only do this for the job `run_models_gpu` to simplify the (already complex) logic.
if: ${{ always() && inputs.job == 'run_models_gpu' }}
name: Extract warnings in CI artifacts
runs-on: ubuntu-latest
if: always()
needs: [
check_runner_status,
check_runners,
setup,
run_tests_single_gpu,
run_tests_multi_gpu,
run_examples_gpu,
run_pipelines_tf_gpu,
run_pipelines_torch_gpu,
run_all_tests_torch_cuda_extensions_gpu
]
runs-on: ubuntu-22.04
needs: [setup, run_models_gpu]
steps:
- name: Checkout transformers
uses: actions/checkout@v3
uses: actions/checkout@v4
with:
fetch-depth: 2
@ -455,7 +426,7 @@ jobs:
- name: Create output directory
run: mkdir warnings_in_ci
- uses: actions/download-artifact@v3
- uses: actions/download-artifact@v4
with:
path: warnings_in_ci
@ -470,64 +441,33 @@ jobs:
- name: Upload artifact
if: ${{ always() }}
uses: actions/upload-artifact@v3
uses: actions/upload-artifact@v4
with:
name: warnings_in_ci
path: warnings_in_ci/selected_warnings.json
send_results:
name: Send results to webhook
runs-on: ubuntu-latest
if: always()
name: Slack Report
needs: [
check_runner_status,
check_runners,
setup,
run_tests_single_gpu,
run_tests_multi_gpu,
run_examples_gpu,
run_pipelines_tf_gpu,
run_models_gpu,
run_pipelines_torch_gpu,
run_all_tests_torch_cuda_extensions_gpu,
run_pipelines_tf_gpu,
run_examples_gpu,
run_torch_cuda_extensions_gpu,
run_quantization_torch_gpu,
run_extract_warnings
]
steps:
- name: Preliminary job status
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
echo "Runner availability: ${{ needs.check_runner_status.result }}"
echo "Runner status: ${{ needs.check_runners.result }}"
echo "Setup status: ${{ needs.setup.result }}"
if: ${{ always() }}
uses: ./.github/workflows/slack-report.yml
with:
job: ${{ inputs.job }}
# This would be `skipped` if `setup` is skipped.
setup_status: ${{ needs.setup.result }}
slack_report_channel: ${{ inputs.slack_report_channel }}
# This would be an empty string if `setup` is skipped.
folder_slices: ${{ needs.setup.outputs.folder_slices }}
quantization_matrix: ${{ needs.setup.outputs.quantization_matrix }}
ci_event: ${{ inputs.ci_event }}
- uses: actions/checkout@v3
- uses: actions/download-artifact@v3
- name: Send message to Slack
env:
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
CI_SLACK_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID }}
CI_SLACK_CHANNEL_ID_DAILY: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY }}
CI_SLACK_CHANNEL_DUMMY_TESTS: ${{ secrets.CI_SLACK_CHANNEL_DUMMY_TESTS }}
CI_SLACK_REPORT_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY }}
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
CI_EVENT: scheduled
CI_SHA: ${{ github.sha }}
CI_WORKFLOW_REF: ${{ github.workflow_ref }}
RUNNER_STATUS: ${{ needs.check_runner_status.result }}
RUNNER_ENV_STATUS: ${{ needs.check_runners.result }}
SETUP_STATUS: ${{ needs.setup.result }}
# We pass `needs.setup.outputs.matrix` as the argument. A processing in `notification_service.py` to change
# `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`.
run: |
sudo apt-get install -y curl
pip install slack_sdk
pip show slack_sdk
python utils/notification_service.py "${{ needs.setup.outputs.matrix }}"
# Upload complete failure tables, as they might be big and only truncated versions could be sent to Slack.
- name: Failure table artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v3
with:
name: test_failure_tables
path: test_failure_tables
secrets: inherit

101
.github/workflows/slack-report.yml vendored Normal file
View File

@ -0,0 +1,101 @@
name: CI slack report
on:
workflow_call:
inputs:
job:
required: true
type: string
slack_report_channel:
required: true
type: string
setup_status:
required: true
type: string
folder_slices:
required: true
type: string
quantization_matrix:
required: true
type: string
ci_event:
required: true
type: string
env:
TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN: ${{ secrets.TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN }}
jobs:
send_results:
name: Send results to webhook
runs-on: ubuntu-22.04
if: always()
steps:
- name: Preliminary job status
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
echo "Setup status: ${{ inputs.setup_status }}"
- uses: actions/checkout@v4
- uses: actions/download-artifact@v4
- name: Send message to Slack
if: ${{ inputs.job != 'run_quantization_torch_gpu' }}
env:
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
CI_SLACK_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID }}
CI_SLACK_CHANNEL_ID_DAILY: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY }}
CI_SLACK_CHANNEL_DUMMY_TESTS: ${{ secrets.CI_SLACK_CHANNEL_DUMMY_TESTS }}
SLACK_REPORT_CHANNEL: ${{ inputs.slack_report_channel }}
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
CI_EVENT: ${{ inputs.ci_event }}
CI_SHA: ${{ github.sha }}
CI_WORKFLOW_REF: ${{ github.workflow_ref }}
CI_TEST_JOB: ${{ inputs.job }}
SETUP_STATUS: ${{ inputs.setup_status }}
# We pass `needs.setup.outputs.matrix` as the argument. A processing in `notification_service.py` to change
# `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`.
# For a job that doesn't depend on (i.e. `needs`) `setup`, the value for `inputs.folder_slices` would be an
# empty string, and the called script still get one argument (which is the emtpy string).
run: |
sudo apt-get install -y curl
pip install huggingface_hub
pip install slack_sdk
pip show slack_sdk
python utils/notification_service.py "${{ inputs.folder_slices }}"
# Upload complete failure tables, as they might be big and only truncated versions could be sent to Slack.
- name: Failure table artifacts
uses: actions/upload-artifact@v4
with:
name: ci_results_${{ inputs.job }}
path: ci_results_${{ inputs.job }}
- uses: actions/checkout@v4
- uses: actions/download-artifact@v4
- name: Send message to Slack for quantization workflow
if: ${{ inputs.job == 'run_quantization_torch_gpu' }}
env:
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
SLACK_REPORT_CHANNEL: ${{ inputs.slack_report_channel }}
CI_EVENT: ${{ inputs.ci_event }}
CI_SHA: ${{ github.sha }}
CI_TEST_JOB: ${{ inputs.job }}
SETUP_STATUS: ${{ inputs.setup_status }}
# We pass `needs.setup.outputs.quantization_matrix` as the argument. A processing in `notification_service_quantization.py` to change
# `quantization/bnb` to `quantization_bnb` is required, as the artifact names use `_` instead of `/`.
run: |
sudo apt-get install -y curl
pip install huggingface_hub
pip install slack_sdk
pip show slack_sdk
python utils/notification_service_quantization.py "${{ inputs.quantization_matrix }}"
# Upload complete failure tables, as they might be big and only truncated versions could be sent to Slack.
- name: Failure table artifacts
if: ${{ inputs.job == 'run_quantization_torch_gpu' }}
uses: actions/upload-artifact@v4
with:
name: ci_results_${{ inputs.job }}
path: ci_results_${{ inputs.job }}

63
.github/workflows/ssh-runner.yml vendored Normal file
View File

@ -0,0 +1,63 @@
name: SSH into our runners
on:
workflow_dispatch:
inputs:
runner_type:
description: 'Type of runner to test (a10 or t4)'
required: true
docker_image:
description: 'Name of the Docker image'
required: true
num_gpus:
description: 'Type of the number of gpus to use (`single` or `multi`)'
required: true
env:
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
HF_HOME: /mnt/cache
TRANSFORMERS_IS_CI: yes
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
RUN_SLOW: yes # For gated repositories, we still need to agree to share information on the Hub repo. page in order to get access. # This token is created under the bot `hf-transformers-bot`.
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
TF_FORCE_GPU_ALLOW_GROWTH: true
CUDA_VISIBLE_DEVICES: 0,1
RUN_PT_TF_CROSS_TESTS: 1
jobs:
ssh_runner:
name: "SSH"
runs-on: ["${{ github.event.inputs.num_gpus }}-gpu", nvidia-gpu, "${{ github.event.inputs.runner_type }}", ci]
container:
image: ${{ github.event.inputs.docker_image }}
options: --gpus all --privileged --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Update clone
working-directory: /transformers
run: |
git fetch && git checkout ${{ github.sha }}
- name: Cleanup
working-directory: /transformers
run: |
rm -rf tests/__pycache__
rm -rf tests/models/__pycache__
rm -rf reports
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Tailscale # In order to be able to SSH when a test fails
uses: huggingface/tailscale-action@main
with:
authkey: ${{ secrets.TAILSCALE_SSH_AUTHKEY }}
slackChannel: ${{ secrets.SLACK_CIFEEDBACK_CHANNEL }}
slackToken: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
waitForSSH: true

View File

@ -8,11 +8,11 @@ jobs:
close_stale_issues:
name: Close Stale Issues
if: github.repository == 'huggingface/transformers'
runs-on: ubuntu-latest
runs-on: ubuntu-22.04
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
- name: Setup Python
uses: actions/setup-python@v4

18
.github/workflows/trufflehog.yml vendored Normal file
View File

@ -0,0 +1,18 @@
on:
push:
name: Secret Leaks
permissions:
contents: read
jobs:
trufflehog:
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Secret Scanning
uses: trufflesecurity/trufflehog@main

View File

@ -8,13 +8,13 @@ on:
jobs:
build_and_package:
runs-on: ubuntu-latest
runs-on: ubuntu-22.04
defaults:
run:
shell: bash -l {0}
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
- name: Setup environment
run: |

View File

@ -40,8 +40,7 @@ There are several ways you can contribute to 🤗 Transformers:
If you don't know where to start, there is a special [Good First
Issue](https://github.com/huggingface/transformers/contribute) listing. It will give you a list of
open issues that are beginner-friendly and help you start contributing to open-source. Just comment in the issue that you'd like to work
on it.
open issues that are beginner-friendly and help you start contributing to open-source. The best way to do that is to open a Pull Request and link it to the issue that you'd like to work on. We try to give priority to opened PRs as we can easily track the progress of the fix, and if the contributor does not have time anymore, someone else can take the PR over.
For something slightly more challenging, you can also take a look at the [Good Second Issue](https://github.com/huggingface/transformers/labels/Good%20Second%20Issue) list. In general though, if you feel like you know what you're doing, go for it and we'll help you get there! 🚀
@ -49,7 +48,7 @@ For something slightly more challenging, you can also take a look at the [Good S
## Fixing outstanding issues
If you notice an issue with the existing code and have a fix in mind, feel free to [start contributing](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md/#create-a-pull-request) and open a Pull Request!
If you notice an issue with the existing code and have a fix in mind, feel free to [start contributing](#create-a-pull-request) and open a Pull Request!
## Submitting a bug-related issue or feature request
@ -62,7 +61,10 @@ feedback.
The 🤗 Transformers library is robust and reliable thanks to users who report the problems they encounter.
Before you report an issue, we would really appreciate it if you could **make sure the bug was not
already reported** (use the search bar on GitHub under Issues). Your issue should also be related to bugs in the library itself, and not your code. If you're unsure whether the bug is in your code or the library, please ask on the [forum](https://discuss.huggingface.co/) first. This helps us respond quicker to fixing issues related to the library versus general questions.
already reported** (use the search bar on GitHub under Issues). Your issue should also be related to bugs in the library itself, and not your code. If you're unsure whether the bug is in your code or the library, please ask in the [forum](https://discuss.huggingface.co/) or on our [discord](https://discord.com/invite/hugging-face-879548962464493619) first. This helps us respond quicker to fixing issues related to the library versus general questions.
> [!TIP]
> We have a [docs bot](https://huggingface.co/spaces/huggingchat/hf-docs-chat), and we highly encourage you to ask all your questions there. There is always a chance your bug can be fixed with a simple flag 👾🔫
Once you've confirmed the bug hasn't already been reported, please include the following information in your issue so we can quickly resolve it:
@ -103,15 +105,15 @@ We have added [templates](https://github.com/huggingface/transformers/tree/main/
## Do you want to implement a new model?
New models are constantly released and if you want to implement a new model, please provide the following information
New models are constantly released and if you want to implement a new model, please provide the following information:
* A short description of the model and link to the paper.
* A short description of the model and a link to the paper.
* Link to the implementation if it is open-sourced.
* Link to the model weights if they are available.
If you are willing to contribute the model yourself, let us know so we can help you add it to 🤗 Transformers!
We have added a [detailed guide and templates](https://github.com/huggingface/transformers/tree/main/templates) to help you get started with adding a new model, and we also have a more technical guide for [how to add a model to 🤗 Transformers](https://huggingface.co/docs/transformers/add_new_model).
We have a technical guide for [how to add a model to 🤗 Transformers](https://huggingface.co/docs/transformers/add_new_model).
## Do you want to add documentation?
@ -130,7 +132,7 @@ You will need basic `git` proficiency to contribute to
manual. Type `git --help` in a shell and enjoy! If you prefer books, [Pro
Git](https://git-scm.com/book/en/v2) is a very good reference.
You'll need **[Python 3.8]((https://github.com/huggingface/transformers/blob/main/setup.py#L426))** or above to contribute to 🤗 Transformers. Follow the steps below to start contributing:
You'll need **[Python 3.8](https://github.com/huggingface/transformers/blob/main/setup.py#L449)** or above to contribute to 🤗 Transformers. Follow the steps below to start contributing:
1. Fork the [repository](https://github.com/huggingface/transformers) by
clicking on the **[Fork](https://github.com/huggingface/transformers/fork)** button on the repository's page. This creates a copy of the code
@ -161,7 +163,7 @@ You'll need **[Python 3.8]((https://github.com/huggingface/transformers/blob/mai
If 🤗 Transformers was already installed in the virtual environment, remove
it with `pip uninstall transformers` before reinstalling it in editable
mode with the `-e` flag.
Depending on your OS, and since the number of optional dependencies of Transformers is growing, you might get a
failure with this command. If that's the case make sure to install the Deep Learning framework you are working with
(PyTorch, TensorFlow and/or Flax) then do:
@ -172,7 +174,7 @@ You'll need **[Python 3.8]((https://github.com/huggingface/transformers/blob/mai
which should be enough for most use cases.
5. Develop the features on your branch.
5. Develop the features in your branch.
As you work on your code, you should make sure the test suite
passes. Run the tests impacted by your changes like this:
@ -208,7 +210,7 @@ You'll need **[Python 3.8]((https://github.com/huggingface/transformers/blob/mai
make quality
```
Finally, we have a lot of scripts to make sure we didn't forget to update
Finally, we have a lot of scripts to make sure we don't forget to update
some files when adding a new model. You can run these scripts with:
```bash
@ -218,9 +220,9 @@ You'll need **[Python 3.8]((https://github.com/huggingface/transformers/blob/mai
To learn more about those checks and how to fix any issues with them, check out the
[Checks on a Pull Request](https://huggingface.co/docs/transformers/pr_checks) guide.
If you're modifying documents under `docs/source` directory, make sure the documentation can still be built. This check will also run in the CI when you open a pull request. To run a local check
If you're modifying documents under the `docs/source` directory, make sure the documentation can still be built. This check will also run in the CI when you open a pull request. To run a local check
make sure you install the documentation builder:
```bash
pip install ".[docs]"
```
@ -234,7 +236,7 @@ You'll need **[Python 3.8]((https://github.com/huggingface/transformers/blob/mai
This will build the documentation in the `~/tmp/test-build` folder where you can inspect the generated
Markdown files with your favorite editor. You can also preview the docs on GitHub when you open a pull request.
Once you're happy with your changes, add changed files with `git add` and
Once you're happy with your changes, add the changed files with `git add` and
record your changes locally with `git commit`:
```bash
@ -261,7 +263,7 @@ You'll need **[Python 3.8]((https://github.com/huggingface/transformers/blob/mai
If you've already opened a pull request, you'll need to force push with the `--force` flag. Otherwise, if the pull request hasn't been opened yet, you can just push your changes normally.
6. Now you can go to your fork of the repository on GitHub and click on **Pull request** to open a pull request. Make sure you tick off all the boxes in our [checklist](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md/#pull-request-checklist) below. When you're ready, you can send your changes to the project maintainers for review.
6. Now you can go to your fork of the repository on GitHub and click on **Pull Request** to open a pull request. Make sure you tick off all the boxes on our [checklist](#pull-request-checklist) below. When you're ready, you can send your changes to the project maintainers for review.
7. It's ok if maintainers request changes, it happens to our core contributors
too! So everyone can see the changes in the pull request, work in your local
@ -295,7 +297,7 @@ repository such as [`hf-internal-testing`](https://huggingface.co/hf-internal-te
to host these files and reference them by URL. We recommend placing documentation
related images in the following repository:
[huggingface/documentation-images](https://huggingface.co/datasets/huggingface/documentation-images).
You can open a PR on this dataset repostitory and ask a Hugging Face member to merge it.
You can open a PR on this dataset repository and ask a Hugging Face member to merge it.
For more information about the checks run on a pull request, take a look at our [Checks on a Pull Request](https://huggingface.co/docs/transformers/pr_checks) guide.
@ -306,7 +308,7 @@ the [tests](https://github.com/huggingface/transformers/tree/main/tests) folder
[examples](https://github.com/huggingface/transformers/tree/main/examples) folder.
We like `pytest` and `pytest-xdist` because it's faster. From the root of the
repository, specify a *path to a subfolder or a test file* to run the test.
repository, specify a *path to a subfolder or a test file* to run the test:
```bash
python -m pytest -n auto --dist=loadfile -s -v ./tests/models/my_new_model
@ -339,12 +341,12 @@ RUN_SLOW=yes python -m pytest -n auto --dist=loadfile -s -v ./tests/models/my_ne
RUN_SLOW=yes python -m pytest -n auto --dist=loadfile -s -v ./examples/pytorch/text-classification
```
Like the slow tests, there are other environment variables available which not enabled by default during testing:
Like the slow tests, there are other environment variables available which are not enabled by default during testing:
- `RUN_CUSTOM_TOKENIZERS`: Enables tests for custom tokenizers.
- `RUN_PT_FLAX_CROSS_TESTS`: Enables tests for PyTorch + Flax integration.
- `RUN_PT_TF_CROSS_TESTS`: Enables tests for TensorFlow + PyTorch integration.
More environment variables and additional information can be found in the [testing_utils.py](src/transformers/testing_utils.py).
More environment variables and additional information can be found in the [testing_utils.py](https://github.com/huggingface/transformers/blob/main/src/transformers/testing_utils.py).
🤗 Transformers uses `pytest` as a test runner only. It doesn't use any
`pytest`-specific features in the test suite itself.
@ -378,7 +380,7 @@ One way to run the `make` command on Windows is with MSYS2:
3. Run in the shell: `pacman -Syu` and install `make` with `pacman -S make`.
4. Add `C:\msys64\usr\bin` to your PATH environment variable.
You can now use `make` from any terminal (Powershell, cmd.exe, etc.)! 🎉
You can now use `make` from any terminal (PowerShell, cmd.exe, etc.)! 🎉
### Sync a forked repository with upstream main (the Hugging Face repository)
@ -387,9 +389,9 @@ When updating the main branch of a forked repository, please follow these steps
1. When possible, avoid syncing with the upstream using a branch and PR on the forked repository. Instead, merge directly into the forked main.
2. If a PR is absolutely necessary, use the following steps after checking out your branch:
```bash
git checkout -b your-branch-for-syncing
git pull --squash --no-commit upstream main
git commit -m '<your message without GitHub references>'
git push --set-upstream origin your-branch-for-syncing
```
```bash
git checkout -b your-branch-for-syncing
git pull --squash --no-commit upstream main
git commit -m '<your message without GitHub references>'
git push --set-upstream origin your-branch-for-syncing
```

View File

@ -152,7 +152,7 @@ You are not required to read the following guidelines before opening an issue. H
```bash
cd examples/seq2seq
python -m torch.distributed.launch --nproc_per_node=2 ./finetune_trainer.py \
torchrun --nproc_per_node=2 ./finetune_trainer.py \
--model_name_or_path sshleifer/distill-mbart-en-ro-12-4 --data_dir wmt_en_ro \
--output_dir output_dir --overwrite_output_dir \
--do_train --n_train 500 --num_train_epochs 1 \

View File

@ -1,16 +1,18 @@
.PHONY: deps_table_update modified_only_fixup extra_style_checks quality style fixup fix-copies test test-examples
.PHONY: deps_table_update modified_only_fixup extra_style_checks quality style fixup fix-copies test test-examples benchmark
# make sure to test the local checkout in scripts and not the pre-installed one (don't use quotes!)
export PYTHONPATH = src
check_dirs := examples tests src utils
exclude_folders := ""
modified_only_fixup:
$(eval modified_py_files := $(shell python utils/get_modified_files.py $(check_dirs)))
@if test -n "$(modified_py_files)"; then \
echo "Checking/fixing $(modified_py_files)"; \
black $(modified_py_files); \
ruff $(modified_py_files) --fix; \
ruff check $(modified_py_files) --fix --exclude $(exclude_folders); \
ruff format $(modified_py_files) --exclude $(exclude_folders);\
else \
echo "No library .py files were modified"; \
fi
@ -42,31 +44,33 @@ repo-consistency:
python utils/check_config_attributes.py
python utils/check_doctest_list.py
python utils/update_metadata.py --check-only
python utils/check_task_guides.py
python utils/check_docstrings.py
python utils/check_support_list.py
# this target runs checks on all files
quality:
black --check $(check_dirs) setup.py conftest.py
@python -c "from transformers import *" || (echo '🚨 import failed, this means you introduced unprotected imports! 🚨'; exit 1)
ruff check $(check_dirs) setup.py conftest.py
ruff format --check $(check_dirs) setup.py conftest.py
python utils/custom_init_isort.py --check_only
python utils/sort_auto_mappings.py --check_only
ruff $(check_dirs) setup.py conftest.py
doc-builder style src/transformers docs/source --max_len 119 --check_only --path_to_docs docs/source
python utils/check_doc_toc.py
python utils/check_docstrings.py --check_all
# Format source code automatically and check is there are any problems left that need manual fixing
extra_style_checks:
python utils/custom_init_isort.py
python utils/sort_auto_mappings.py
doc-builder style src/transformers docs/source --max_len 119 --path_to_docs docs/source
python utils/check_doc_toc.py --fix_and_overwrite
# this target runs checks on all files and potentially modifies some of them
style:
black $(check_dirs) setup.py conftest.py
ruff $(check_dirs) setup.py conftest.py --fix
ruff check $(check_dirs) setup.py conftest.py --fix --exclude $(exclude_folders)
ruff format $(check_dirs) setup.py conftest.py --exclude $(exclude_folders)
${MAKE} autogenerate_code
${MAKE} extra_style_checks
@ -81,7 +85,7 @@ fix-copies:
python utils/check_table.py --fix_and_overwrite
python utils/check_dummies.py --fix_and_overwrite
python utils/check_doctest_list.py --fix_and_overwrite
python utils/check_task_guides.py --fix_and_overwrite
python utils/check_docstrings.py --fix_and_overwrite
# Run tests for the library
@ -93,6 +97,11 @@ test:
test-examples:
python -m pytest -n auto --dist=loadfile -s -v ./examples/pytorch/
# Run benchmark
benchmark:
python3 benchmark/benchmark.py --config-dir benchmark/config --config-name generation --commit=diff backend.model=google/gemma-2b backend.cache_implementation=null,static backend.torch_compile=false,true --multirun
# Run tests for SageMaker DLC release
test-sagemaker: # install sagemaker dependencies in advance with pip install .[sagemaker]

331
README.md
View File

@ -25,34 +25,30 @@ limitations under the License.
</p>
<p align="center">
<a href="https://circleci.com/gh/huggingface/transformers">
<img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/main">
</a>
<a href="https://github.com/huggingface/transformers/blob/main/LICENSE">
<img alt="GitHub" src="https://img.shields.io/github/license/huggingface/transformers.svg?color=blue">
</a>
<a href="https://huggingface.co/docs/transformers/index">
<img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/docs/transformers/index.svg?down_color=red&down_message=offline&up_message=online">
</a>
<a href="https://github.com/huggingface/transformers/releases">
<img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/transformers.svg">
</a>
<a href="https://github.com/huggingface/transformers/blob/main/CODE_OF_CONDUCT.md">
<img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg">
</a>
<a href="https://circleci.com/gh/huggingface/transformers"><img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/main"></a>
<a href="https://github.com/huggingface/transformers/blob/main/LICENSE"><img alt="GitHub" src="https://img.shields.io/github/license/huggingface/transformers.svg?color=blue"></a>
<a href="https://huggingface.co/docs/transformers/index"><img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/docs/transformers/index.svg?down_color=red&down_message=offline&up_message=online"></a>
<a href="https://github.com/huggingface/transformers/releases"><img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/transformers.svg"></a>
<a href="https://github.com/huggingface/transformers/blob/main/CODE_OF_CONDUCT.md"><img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg"></a>
<a href="https://zenodo.org/badge/latestdoi/155220641"><img src="https://zenodo.org/badge/155220641.svg" alt="DOI"></a>
</p>
<h4 align="center">
<p>
<b>English</b> |
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hans.md">简体中文</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hant.md">繁體中文</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ko.md">한국어</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_es.md">Español</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ja.md">日本語</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_hd.md">हिन्दी</a>
<p>
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_zh-hans.md">简体中文</a> |
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_zh-hant.md">繁體中文</a> |
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_ko.md">한국어</a> |
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_es.md">Español</a> |
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_ja.md">日本語</a> |
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_hd.md">हिन्दी</a> |
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_ru.md">Русский</a> |
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_pt-br.md">Рortuguês</a> |
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_te.md">తెలుగు</a> |
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_fr.md">Français</a> |
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_de.md">Deutsch</a> |
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_vi.md">Tiếng Việt</a> |
</p>
</h4>
<h3 align="center">
@ -67,7 +63,7 @@ limitations under the License.
These models can be applied on:
* 📝 Text, for tasks like text classification, information extraction, question answering, summarization, translation, text generation, in over 100 languages.
* 📝 Text, for tasks like text classification, information extraction, question answering, summarization, translation, and text generation, in over 100 languages.
* 🖼️ Images, for tasks like image classification, object detection, and segmentation.
* 🗣️ Audio, for tasks like speech recognition and audio classification.
@ -83,35 +79,39 @@ You can test most of our models directly on their pages from the [model hub](htt
Here are a few examples:
In Natural Language Processing:
- [Masked word completion with BERT](https://huggingface.co/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France)
- [Name Entity Recognition with Electra](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city)
- [Text generation with GPT-2](https://huggingface.co/gpt2?text=A+long+time+ago%2C+)
- [Natural Language Inference with RoBERTa](https://huggingface.co/roberta-large-mnli?text=The+dog+was+lost.+Nobody+lost+any+animal)
In Natural Language Processing:
- [Masked word completion with BERT](https://huggingface.co/google-bert/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France)
- [Named Entity Recognition with Electra](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city)
- [Text generation with Mistral](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2)
- [Natural Language Inference with RoBERTa](https://huggingface.co/FacebookAI/roberta-large-mnli?text=The+dog+was+lost.+Nobody+lost+any+animal)
- [Summarization with BART](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct)
- [Question answering with DistilBERT](https://huggingface.co/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species)
- [Translation with T5](https://huggingface.co/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin)
- [Question answering with DistilBERT](https://huggingface.co/distilbert/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species)
- [Translation with T5](https://huggingface.co/google-t5/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin)
In Computer Vision:
- [Image classification with ViT](https://huggingface.co/google/vit-base-patch16-224)
- [Object Detection with DETR](https://huggingface.co/facebook/detr-resnet-50)
- [Semantic Segmentation with SegFormer](https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512)
- [Panoptic Segmentation with MaskFormer](https://huggingface.co/facebook/maskformer-swin-small-coco)
- [Depth Estimation with DPT](https://huggingface.co/docs/transformers/model_doc/dpt)
- [Panoptic Segmentation with Mask2Former](https://huggingface.co/facebook/mask2former-swin-large-coco-panoptic)
- [Depth Estimation with Depth Anything](https://huggingface.co/docs/transformers/main/model_doc/depth_anything)
- [Video Classification with VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)
- [Universal Segmentation with OneFormer](https://huggingface.co/shi-labs/oneformer_ade20k_dinat_large)
In Audio:
- [Automatic Speech Recognition with Wav2Vec2](https://huggingface.co/facebook/wav2vec2-base-960h)
- [Automatic Speech Recognition with Whisper](https://huggingface.co/openai/whisper-large-v3)
- [Keyword Spotting with Wav2Vec2](https://huggingface.co/superb/wav2vec2-base-superb-ks)
- [Audio Classification with Audio Spectrogram Transformer](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593)
In Multimodal tasks:
- [Table Question Answering with TAPAS](https://huggingface.co/google/tapas-base-finetuned-wtq)
- [Visual Question Answering with ViLT](https://huggingface.co/dandelin/vilt-b32-finetuned-vqa)
- [Zero-shot Image Classification with CLIP](https://huggingface.co/openai/clip-vit-large-patch14)
- [Image captioning with LLaVa](https://huggingface.co/llava-hf/llava-1.5-7b-hf)
- [Zero-shot Image Classification with SigLIP](https://huggingface.co/google/siglip-so400m-patch14-384)
- [Document Question Answering with LayoutLM](https://huggingface.co/impira/layoutlm-document-qa)
- [Zero-shot Video Classification with X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)
- [Zero-shot Object Detection with OWLv2](https://huggingface.co/docs/transformers/en/model_doc/owlv2)
- [Zero-shot Image Segmentation with CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)
- [Automatic Mask Generation with SAM](https://huggingface.co/docs/transformers/model_doc/sam)
## 100 projects using Transformers
@ -145,7 +145,7 @@ To immediately use a model on a given input (text, image, audio, ...), we provid
[{'label': 'POSITIVE', 'score': 0.9996980428695679}]
```
The second line of code downloads and caches the pretrained model used by the pipeline, while the third evaluates it on the given text. Here the answer is "positive" with a confidence of 99.97%.
The second line of code downloads and caches the pretrained model used by the pipeline, while the third evaluates it on the given text. Here, the answer is "positive" with a confidence of 99.97%.
Many tasks have a pre-trained `pipeline` ready to go, in NLP but also in computer vision and speech. For example, we can easily extract detected objects in an image:
@ -179,7 +179,7 @@ Many tasks have a pre-trained `pipeline` ready to go, in NLP but also in compute
'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}]
```
Here we get a list of objects detected in the image, with a box surrounding the object and a confidence score. Here is the original image on the left, with the predictions displayed on the right:
Here, we get a list of objects detected in the image, with a box surrounding the object and a confidence score. Here is the original image on the left, with the predictions displayed on the right:
<h3 align="center">
<a><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample.png" width="400"></a>
@ -192,8 +192,8 @@ In addition to `pipeline`, to download and use any of the pretrained models on y
```python
>>> from transformers import AutoTokenizer, AutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = AutoModel.from_pretrained("bert-base-uncased")
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> model = AutoModel.from_pretrained("google-bert/bert-base-uncased")
>>> inputs = tokenizer("Hello world!", return_tensors="pt")
>>> outputs = model(**inputs)
@ -203,14 +203,14 @@ And here is the equivalent code for TensorFlow:
```python
>>> from transformers import AutoTokenizer, TFAutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = TFAutoModel.from_pretrained("bert-base-uncased")
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> model = TFAutoModel.from_pretrained("google-bert/bert-base-uncased")
>>> inputs = tokenizer("Hello world!", return_tensors="tf")
>>> outputs = model(**inputs)
```
The tokenizer is responsible for all the preprocessing the pretrained model expects, and can be called directly on a single string (as in the above examples) or a list. It will output a dictionary that you can use in downstream code or simply directly pass to your model using the ** argument unpacking operator.
The tokenizer is responsible for all the preprocessing the pretrained model expects and can be called directly on a single string (as in the above examples) or a list. It will output a dictionary that you can use in downstream code or simply directly pass to your model using the ** argument unpacking operator.
The model itself is a regular [Pytorch `nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) or a [TensorFlow `tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) (depending on your backend) which you can use as usual. [This tutorial](https://huggingface.co/docs/transformers/training) explains how to integrate such a model into a classic PyTorch or TensorFlow training loop, or how to use our `Trainer` API to quickly fine-tune on a new dataset.
@ -225,12 +225,12 @@ The model itself is a regular [Pytorch `nn.Module`](https://pytorch.org/docs/sta
1. Lower compute costs, smaller carbon footprint:
- Researchers can share trained models instead of always retraining.
- Practitioners can reduce compute time and production costs.
- Dozens of architectures with over 60,000 pretrained models across all modalities.
- Dozens of architectures with over 400,000 pretrained models across all modalities.
1. Choose the right framework for every part of a model's lifetime:
- Train state-of-the-art models in 3 lines of code.
- Move a single model between TF2.0/PyTorch/JAX frameworks at will.
- Seamlessly pick the right framework for training, evaluation and production.
- Seamlessly pick the right framework for training, evaluation, and production.
1. Easily customize a model or an example to your needs:
- We provide examples for each architecture to reproduce the results published by its original authors.
@ -241,19 +241,19 @@ The model itself is a regular [Pytorch `nn.Module`](https://pytorch.org/docs/sta
- This library is not a modular toolbox of building blocks for neural nets. The code in the model files is not refactored with additional abstractions on purpose, so that researchers can quickly iterate on each of the models without diving into additional abstractions/files.
- The training API is not intended to work on any model but is optimized to work with the models provided by the library. For generic machine learning loops, you should use another library (possibly, [Accelerate](https://huggingface.co/docs/accelerate)).
- While we strive to present as many use cases as possible, the scripts in our [examples folder](https://github.com/huggingface/transformers/tree/main/examples) are just that: examples. It is expected that they won't work out-of-the box on your specific problem and that you will be required to change a few lines of code to adapt them to your needs.
- While we strive to present as many use cases as possible, the scripts in our [examples folder](https://github.com/huggingface/transformers/tree/main/examples) are just that: examples. It is expected that they won't work out-of-the-box on your specific problem and that you will be required to change a few lines of code to adapt them to your needs.
## Installation
### With pip
This repository is tested on Python 3.8+, Flax 0.4.1+, PyTorch 1.10+ and TensorFlow 2.6+.
This repository is tested on Python 3.8+, Flax 0.4.1+, PyTorch 1.11+, and TensorFlow 2.6+.
You should install 🤗 Transformers in a [virtual environment](https://docs.python.org/3/library/venv.html). If you're unfamiliar with Python virtual environments, check out the [user guide](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/).
First, create a virtual environment with the version of Python you're going to use and activate it.
Then, you will need to install at least one of Flax, PyTorch or TensorFlow.
Then, you will need to install at least one of Flax, PyTorch, or TensorFlow.
Please refer to [TensorFlow installation page](https://www.tensorflow.org/install/), [PyTorch installation page](https://pytorch.org/get-started/locally/#start-locally) and/or [Flax](https://github.com/google/flax#quick-install) and [Jax](https://github.com/google/jax#installation) installation pages regarding the specific installation command for your platform.
When one of those backends has been installed, 🤗 Transformers can be installed using pip as follows:
@ -266,254 +266,25 @@ If you'd like to play with the examples or need the bleeding edge of the code an
### With conda
Since Transformers version v4.0.0, we now have a conda channel: `huggingface`.
🤗 Transformers can be installed using conda as follows:
```shell script
conda install -c huggingface transformers
conda install conda-forge::transformers
```
> **_NOTE:_** Installing `transformers` from the `huggingface` channel is deprecated.
Follow the installation pages of Flax, PyTorch or TensorFlow to see how to install them with conda.
> **_NOTE:_** On Windows, you may be prompted to activate Developer Mode in order to benefit from caching. If this is not an option for you, please let us know in [this issue](https://github.com/huggingface/huggingface_hub/issues/1062).
## Model architectures
**[All the model checkpoints](https://huggingface.co/models)** provided by 🤗 Transformers are seamlessly integrated from the huggingface.co [model hub](https://huggingface.co/models) where they are uploaded directly by [users](https://huggingface.co/users) and [organizations](https://huggingface.co/organizations).
**[All the model checkpoints](https://huggingface.co/models)** provided by 🤗 Transformers are seamlessly integrated from the huggingface.co [model hub](https://huggingface.co/models), where they are uploaded directly by [users](https://huggingface.co/users) and [organizations](https://huggingface.co/organizations).
Current number of checkpoints: ![](https://img.shields.io/endpoint?url=https://huggingface.co/api/shields/models&color=brightgreen)
🤗 Transformers currently provides the following architectures (see [here](https://huggingface.co/docs/transformers/model_summary) for a high-level summary of each them):
1. **[ALBERT](https://huggingface.co/docs/transformers/model_doc/albert)** (from Google Research and the Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.
1. **[ALIGN](https://huggingface.co/docs/transformers/model_doc/align)** (from Google Research) released with the paper [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918) by Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig.
1. **[AltCLIP](https://huggingface.co/docs/transformers/model_doc/altclip)** (from BAAI) released with the paper [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) by Chen, Zhongzhi and Liu, Guang and Zhang, Bo-Wen and Ye, Fulong and Yang, Qinghong and Wu, Ledell.
1. **[Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer)** (from MIT) released with the paper [AST: Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778) by Yuan Gong, Yu-An Chung, James Glass.
1. **[Autoformer](https://huggingface.co/docs/transformers/model_doc/autoformer)** (from Tsinghua University) released with the paper [Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://arxiv.org/abs/2106.13008) by Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long.
1. **[Bark](https://huggingface.co/docs/transformers/model_doc/bark)** (from Suno) released in the repository [suno-ai/bark](https://github.com/suno-ai/bark) by Suno AI team.
1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (from Facebook) released with the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer.
1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (from École polytechnique) released with the paper [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis.
1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (from VinAI Research) released with the paper [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen.
1. **[BEiT](https://huggingface.co/docs/transformers/model_doc/beit)** (from Microsoft) released with the paper [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) by Hangbo Bao, Li Dong, Furu Wei.
1. **[BERT](https://huggingface.co/docs/transformers/model_doc/bert)** (from Google) released with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova.
1. **[BERT For Sequence Generation](https://huggingface.co/docs/transformers/model_doc/bert-generation)** (from Google) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[BERTweet](https://huggingface.co/docs/transformers/model_doc/bertweet)** (from VinAI Research) released with the paper [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) by Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen.
1. **[BigBird-Pegasus](https://huggingface.co/docs/transformers/model_doc/bigbird_pegasus)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[BigBird-RoBERTa](https://huggingface.co/docs/transformers/model_doc/big_bird)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[BioGpt](https://huggingface.co/docs/transformers/model_doc/biogpt)** (from Microsoft Research AI4Science) released with the paper [BioGPT: generative pre-trained transformer for biomedical text generation and mining](https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbac409/6713511?guestAccessKey=a66d9b5d-4f83-4017-bb52-405815c907b9) by Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon and Tie-Yan Liu.
1. **[BiT](https://huggingface.co/docs/transformers/model_doc/bit)** (from Google AI) released with the paper [Big Transfer (BiT): General Visual Representation Learning](https://arxiv.org/abs/1912.11370) by Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil Houlsby.
1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BLIP](https://huggingface.co/docs/transformers/model_doc/blip)** (from Salesforce) released with the paper [BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation](https://arxiv.org/abs/2201.12086) by Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi.
1. **[BLIP-2](https://huggingface.co/docs/transformers/model_doc/blip-2)** (from Salesforce) released with the paper [BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models](https://arxiv.org/abs/2301.12597) by Junnan Li, Dongxu Li, Silvio Savarese, Steven Hoi.
1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (from BigScience workshop) released by the [BigScience Workshop](https://bigscience.huggingface.co/).
1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (from Alexa) released with the paper [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) by Adrian de Wynter and Daniel J. Perry.
1. **[BridgeTower](https://huggingface.co/docs/transformers/model_doc/bridgetower)** (from Harbin Institute of Technology/Microsoft Research Asia/Intel Labs) released with the paper [BridgeTower: Building Bridges Between Encoders in Vision-Language Representation Learning](https://arxiv.org/abs/2206.08657) by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan.
1. **[BROS](https://huggingface.co/docs/transformers/model_doc/bros)** (from NAVER CLOVA) released with the paper [BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents](https://arxiv.org/abs/2108.04539) by Teakgyu Hong, Donghyun Kim, Mingi Ji, Wonseok Hwang, Daehyun Nam, Sungrae Park.
1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (from Google Research) released with the paper [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel.
1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (from Inria/Facebook/Sorbonne) released with the paper [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (from Google Research) released with the paper [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting.
1. **[Chinese-CLIP](https://huggingface.co/docs/transformers/model_doc/chinese_clip)** (from OFA-Sys) released with the paper [Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese](https://arxiv.org/abs/2211.01335) by An Yang, Junshu Pan, Junyang Lin, Rui Men, Yichang Zhang, Jingren Zhou, Chang Zhou.
1. **[CLAP](https://huggingface.co/docs/transformers/model_doc/clap)** (from LAION-AI) released with the paper [Large-scale Contrastive Language-Audio Pretraining with Feature Fusion and Keyword-to-Caption Augmentation](https://arxiv.org/abs/2211.06687) by Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, Shlomo Dubnov.
1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (from OpenAI) released with the paper [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever.
1. **[CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)** (from University of Göttingen) released with the paper [Image Segmentation Using Text and Image Prompts](https://arxiv.org/abs/2112.10003) by Timo Lüddecke and Alexander Ecker.
1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (from Salesforce) released with the paper [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong.
1. **[CodeLlama](https://huggingface.co/docs/transformers/model_doc/llama_code)** (from MetaAI) released with the paper [Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/) by Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, Gabriel Synnaeve.
1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (from Microsoft Research Asia) released with the paper [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) by Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang.
1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (from YituTech) released with the paper [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan.
1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (from Facebook AI) released with the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie.
1. **[ConvNeXTV2](https://huggingface.co/docs/transformers/model_doc/convnextv2)** (from Facebook AI) released with the paper [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://arxiv.org/abs/2301.00808) by Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, Saining Xie.
1. **[CPM](https://huggingface.co/docs/transformers/model_doc/cpm)** (from Tsinghua University) released with the paper [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) by Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun.
1. **[CPM-Ant](https://huggingface.co/docs/transformers/model_doc/cpmant)** (from OpenBMB) released by the [OpenBMB](https://www.openbmb.org/).
1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (from Microsoft) released with the paper [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang.
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (from Facebook) released with the paper [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli.
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (from Berkeley/Facebook/Google) released with the paper [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch.
1. **[Deformable DETR](https://huggingface.co/docs/transformers/model_doc/deformable_detr)** (from SenseTime Research) released with the paper [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159) by Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai.
1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (from Facebook) released with the paper [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou.
1. **[DePlot](https://huggingface.co/docs/transformers/model_doc/deplot)** (from Google AI) released with the paper [DePlot: One-shot visual language reasoning by plot-to-table translation](https://arxiv.org/abs/2212.10505) by Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, Yasemin Altun.
1. **[DETA](https://huggingface.co/docs/transformers/model_doc/deta)** (from The University of Texas at Austin) released with the paper [NMS Strikes Back](https://arxiv.org/abs/2212.06137) by Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, Philipp Krähenbühl.
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (from Facebook) released with the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (from Microsoft Research) released with the paper [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
1. **[DiNAT](https://huggingface.co/docs/transformers/model_doc/dinat)** (from SHI Labs) released with the paper [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) by Ali Hassani and Humphrey Shi.
1. **[DINOv2](https://huggingface.co/docs/transformers/model_doc/dinov2)** (from Meta AI) released with the paper [DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193) by Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, Piotr Bojanowski.
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation) and a German version of DistilBERT.
1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (from Microsoft Research) released with the paper [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) by Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei.
1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (from NAVER), released together with the paper [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) by Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park.
1. **[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (from Facebook) released with the paper [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) by Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
1. **[DPT](https://huggingface.co/docs/transformers/master/model_doc/dpt)** (from Intel Labs) released with the paper [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) by René Ranftl, Alexey Bochkovskiy, Vladlen Koltun.
1. **[EfficientFormer](https://huggingface.co/docs/transformers/model_doc/efficientformer)** (from Snap Research) released with the paper [EfficientFormer: Vision Transformers at MobileNetSpeed](https://arxiv.org/abs/2206.01191) by Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren.
1. **[EfficientNet](https://huggingface.co/docs/transformers/model_doc/efficientnet)** (from Google Brain) released with the paper [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan, Quoc V. Le.
1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
1. **[EnCodec](https://huggingface.co/docs/transformers/model_doc/encodec)** (from Meta AI) released with the paper [High Fidelity Neural Audio Compression](https://arxiv.org/abs/2210.13438) by Alexandre Défossez, Jade Copet, Gabriel Synnaeve, Yossi Adi.
1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (from Google Research) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)** (from Baidu) released with the paper [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) by Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu.
1. **[ErnieM](https://huggingface.co/docs/transformers/model_doc/ernie_m)** (from Baidu) released with the paper [ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora](https://arxiv.org/abs/2012.15674) by Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang.
1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (from Meta AI) are transformer protein language models. **ESM-1b** was released with the paper [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. **ESM-1v** was released with the paper [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648) by Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives. **ESM-2 and ESMFold** were released with the paper [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902) by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives.
1. **[Falcon](https://huggingface.co/docs/transformers/model_doc/falcon)** (from Technology Innovation Institute) by Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme.
1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FLAN-UL2](https://huggingface.co/docs/transformers/model_doc/flan-ul2)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-ul2-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (from Facebook AI) released with the paper [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela.
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
1. **[FocalNet](https://huggingface.co/docs/transformers/model_doc/focalnet)** (from Microsoft Research) released with the paper [Focal Modulation Networks](https://arxiv.org/abs/2203.11926) by Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao.
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (from Microsoft Research) released with the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang.
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (from KAIST) released with the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim.
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (from EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy.
1. **[GPT NeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox)** (from EleutherAI) released with the paper [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) by Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach
1. **[GPT NeoX Japanese](https://huggingface.co/docs/transformers/model_doc/gpt_neox_japanese)** (from ABEJA) released by Shinya Otani, Takayoshi Makabe, Anuj Arora, and Kyo Hattori.
1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (from OpenAI) released with the paper [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/) by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**.
1. **[GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj)** (from EleutherAI) released in the repository [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) by Ben Wang and Aran Komatsuzaki.
1. **[GPT-Sw3](https://huggingface.co/docs/transformers/model_doc/gpt-sw3)** (from AI-Sweden) released with the paper [Lessons Learned from GPT-SW3: Building the First Large-Scale Generative Language Model for Swedish](http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.376.pdf) by Ariel Ekgren, Amaru Cuba Gyllensten, Evangelia Gogoulou, Alice Heiman, Severine Verlinden, Joey Öhman, Fredrik Carlsson, Magnus Sahlgren.
1. **[GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode)** (from BigCode) released with the paper [SantaCoder: don't reach for the stars!](https://arxiv.org/abs/2301.03988) by Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, Logesh Kumar Umapathi, Carolyn Jane Anderson, Yangtian Zi, Joel Lamy Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry Abulkhanov, Manuel Romero, Michael Lappert, Francesco De Toni, Bernardo García del Río, Qian Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab Mangrulkar, David Lansky, Huu Nguyen, Danish Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau, Yacine Jernite, Sean Hughes, Daniel Fried, Arjun Guha, Harm de Vries, Leandro von Werra.
1. **[GPTSAN-japanese](https://huggingface.co/docs/transformers/model_doc/gptsan-japanese)** released in the repository [tanreinama/GPTSAN](https://github.com/tanreinama/GPTSAN/blob/main/report/model.md) by Toshiyuki Sakamoto(tanreinama).
1. **[Graphormer](https://huggingface.co/docs/transformers/model_doc/graphormer)** (from Microsoft) released with the paper [Do Transformers Really Perform Bad for Graph Representation?](https://arxiv.org/abs/2106.05234) by Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu.
1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (from UCSD, NVIDIA) released with the paper [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) by Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang.
1. **[HerBERT](https://huggingface.co/docs/transformers/model_doc/herbert)** (from Allegro.pl, AGH University of Science and Technology) released with the paper [KLEJ: Comprehensive Benchmark for Polish Language Understanding](https://www.aclweb.org/anthology/2020.acl-main.111.pdf) by Piotr Rybak, Robert Mroczkowski, Janusz Tracz, Ireneusz Gawlik.
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (from Facebook) released with the paper [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed.
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (from Berkeley) released with the paper [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer.
1. **[IDEFICS](https://huggingface.co/docs/transformers/model_doc/idefics)** (from HuggingFace) released with the paper [OBELICS: An Open Web-Scale Filtered Dataset of Interleaved Image-Text Documents](https://huggingface.co/papers/2306.16527) by Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov, Thomas Wang, Siddharth Karamcheti, Alexander M. Rush, Douwe Kiela, Matthieu Cord, Victor Sanh.
1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (from OpenAI) released with the paper [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever.
1. **[Informer](https://huggingface.co/docs/transformers/model_doc/informer)** (from Beihang University, UC Berkeley, Rutgers University, SEDD Company) released with the paper [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting](https://arxiv.org/abs/2012.07436) by Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
1. **[InstructBLIP](https://huggingface.co/docs/transformers/model_doc/instructblip)** (from Salesforce) released with the paper [InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning](https://arxiv.org/abs/2305.06500) by Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, Steven Hoi.
1. **[Jukebox](https://huggingface.co/docs/transformers/model_doc/jukebox)** (from OpenAI) released with the paper [Jukebox: A Generative Model for Music](https://arxiv.org/pdf/2005.00341.pdf) by Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever.
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou.
1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (from Microsoft Research Asia) released with the paper [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) by Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei.
1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutxlm)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (from Meta AI) released with the paper [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) by Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze.
1. **[LiLT](https://huggingface.co/docs/transformers/model_doc/lilt)** (from South China University of Technology) released with the paper [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669) by Jiapeng Wang, Lianwen Jin, Kai Ding.
1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (from The FAIR team of Meta AI) released with the paper [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971) by Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample.
1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (from The FAIR team of Meta AI) released with the paper [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/XXX) by Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom.
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (from Google AI) released with the paper [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang.
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (from Studio Ousia) released with the paper [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.
1. **[LXMERT](https://huggingface.co/docs/transformers/model_doc/lxmert)** (from UNC Chapel Hill) released with the paper [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal.
1. **[M-CTC-T](https://huggingface.co/docs/transformers/model_doc/mctct)** (from Facebook) released with the paper [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) by Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert.
1. **[M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100)** (from Facebook) released with the paper [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) by Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin.
1. **[MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)** Machine translation models trained using [OPUS](http://opus.nlpl.eu/) data by Jörg Tiedemann. The [Marian Framework](https://marian-nmt.github.io/) is being developed by the Microsoft Translator Team.
1. **[MarkupLM](https://huggingface.co/docs/transformers/model_doc/markuplm)** (from Microsoft Research Asia) released with the paper [MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document Understanding](https://arxiv.org/abs/2110.08518) by Junlong Li, Yiheng Xu, Lei Cui, Furu Wei.
1. **[Mask2Former](https://huggingface.co/docs/transformers/model_doc/mask2former)** (from FAIR and UIUC) released with the paper [Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527) by Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Rohit Girdhar.
1. **[MaskFormer](https://huggingface.co/docs/transformers/model_doc/maskformer)** (from Meta and UIUC) released with the paper [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) by Bowen Cheng, Alexander G. Schwing, Alexander Kirillov.
1. **[MatCha](https://huggingface.co/docs/transformers/model_doc/matcha)** (from Google AI) released with the paper [MatCha: Enhancing Visual Language Pretraining with Math Reasoning and Chart Derendering](https://arxiv.org/abs/2212.09662) by Fangyu Liu, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Yasemin Altun, Nigel Collier, Julian Martin Eisenschlos.
1. **[mBART](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
1. **[mBART-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan.
1. **[MEGA](https://huggingface.co/docs/transformers/model_doc/mega)** (from Meta/USC/CMU/SJTU) released with the paper [Mega: Moving Average Equipped Gated Attention](https://arxiv.org/abs/2209.10655) by Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and Luke Zettlemoyer.
1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[MGP-STR](https://huggingface.co/docs/transformers/model_doc/mgp-str)** (from Alibaba Research) released with the paper [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592) by Peng Wang, Cheng Da, and Cong Yao.
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (from Studio Ousia) released with the paper [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka.
1. **[MMS](https://huggingface.co/docs/transformers/model_doc/mms)** (from Facebook) released with the paper [Scaling Speech Technology to 1,000+ Languages](https://arxiv.org/abs/2305.13516) by Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky, Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi, Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning Hsu, Alexis Conneau, Michael Auli.
1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (from CMU/Google Brain) released with the paper [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou.
1. **[MobileNetV1](https://huggingface.co/docs/transformers/model_doc/mobilenet_v1)** (from Google Inc.) released with the paper [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) by Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam.
1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (from Google Inc.) released with the paper [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) by Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen.
1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (from Apple) released with the paper [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari.
1. **[MobileViTV2](https://huggingface.co/docs/transformers/model_doc/mobilevitv2)** (from Apple) released with the paper [Separable Self-attention for Mobile Vision Transformers](https://arxiv.org/abs/2206.02680) by Sachin Mehta and Mohammad Rastegari.
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
1. **[MPT](https://huggingface.co/docs/transformers/model_doc/mpt)** (from MosaiML) released with the repository [llm-foundry](https://github.com/mosaicml/llm-foundry/) by the MosaicML NLP Team.
1. **[MRA](https://huggingface.co/docs/transformers/model_doc/mra)** (from the University of Wisconsin - Madison) released with the paper [Multi Resolution Analysis (MRA) for Approximate Self-Attention](https://arxiv.org/abs/2207.10284) by Zhanpeng Zeng, Sourav Pal, Jeffery Kline, Glenn M Fung, Vikas Singh.
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
1. **[MusicGen](https://huggingface.co/docs/transformers/model_doc/musicgen)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (from RUC AI Box) released with the paper [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen.
1. **[NAT](https://huggingface.co/docs/transformers/model_doc/nat)** (from SHI Labs) released with the paper [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143) by Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi.
1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (from Huawei Noahs Ark Lab) released with the paper [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) by Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu.
1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (from the University of Wisconsin - Madison) released with the paper [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh.
1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (from SHI Labs) released with the paper [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) by Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi.
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released in [Open-Llama](https://github.com/s-JoL/Open-Llama).
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al.
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (from Google AI) released with the paper [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby.
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (from Google) released with the paper [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) by Jason Phang, Yao Zhao, and Peter J. Liu.
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (from Deepmind) released with the paper [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) by Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira.
1. **[Persimmon](https://huggingface.co/docs/transformers/main/model_doc/persimmon)** (from ADEPT) released in a [blog post](https://www.adept.ai/blog/persimmon-8b) by Erich Elsen, Augustus Odena, Maxwell Nye, Sağnak Taşırlar, Tri Dao, Curtis Hawthorne, Deepak Moparthi, Arushi Somani.
1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen.
1. **[Pix2Struct](https://huggingface.co/docs/transformers/model_doc/pix2struct)** (from Google) released with the paper [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding](https://arxiv.org/abs/2210.03347) by Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova.
1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (from UCLA NLP) released with the paper [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) by Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang.
1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (from Sea AI Labs) released with the paper [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) by Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng.
1. **[Pop2Piano](https://huggingface.co/docs/transformers/model_doc/pop2piano)** released with the paper [Pop2Piano : Pop Audio-based Piano Cover Generation](https://arxiv.org/abs/2211.00895) by Jongho Choi and Kyogu Lee.
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[PVT](https://huggingface.co/docs/transformers/model_doc/pvt)** (from Nanjing University, The University of Hong Kong etc.) released with the paper [Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions](https://arxiv.org/pdf/2102.12122.pdf) by Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao.
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (from NVIDIA) released with the paper [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) by Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius.
1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (from Facebook) released with the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) by Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela.
1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (from Google Research) released with the paper [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) by Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang.
1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (from Google Research) released with the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
1. **[RegNet](https://huggingface.co/docs/transformers/model_doc/regnet)** (from META Platforms) released with the paper [Designing Network Design Space](https://arxiv.org/abs/2003.13678) by Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár.
1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (from Google Research) released with the paper [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/abs/2010.12821) by Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder.
1. **[ResNet](https://huggingface.co/docs/transformers/model_doc/resnet)** (from Microsoft Research) released with the paper [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) by Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun.
1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (from Facebook), released together with the paper [RoBERTa: A Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
1. **[RoBERTa-PreLayerNorm](https://huggingface.co/docs/transformers/model_doc/roberta-prelayernorm)** (from Facebook) released with the paper [fairseq: A Fast, Extensible Toolkit for Sequence Modeling](https://arxiv.org/abs/1904.01038) by Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli.
1. **[RoCBert](https://huggingface.co/docs/transformers/model_doc/roc_bert)** (from WeChatAI) released with the paper [RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining](https://aclanthology.org/2022.acl-long.65.pdf) by HuiSu, WeiweiShi, XiaoyuShen, XiaoZhou, TuoJi, JiaruiFang, JieZhou.
1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (from ZhuiyiTechnology), released together with the paper [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/abs/2104.09864) by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu.
1. **[RWKV](https://huggingface.co/docs/transformers/model_doc/rwkv)** (from Bo Peng), released on [this repo](https://github.com/BlinkDL/RWKV-LM) by Bo Peng.
1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (from NVIDIA) released with the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo.
1. **[Segment Anything](https://huggingface.co/docs/transformers/model_doc/sam)** (from Meta AI) released with the paper [Segment Anything](https://arxiv.org/pdf/2304.02643v1.pdf) by Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alex Berg, Wan-Yen Lo, Piotr Dollar, Ross Girshick.
1. **[SEW](https://huggingface.co/docs/transformers/model_doc/sew)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SEW-D](https://huggingface.co/docs/transformers/model_doc/sew_d)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SpeechT5](https://huggingface.co/docs/transformers/model_doc/speecht5)** (from Microsoft Research) released with the paper [SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing](https://arxiv.org/abs/2110.07205) by Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li, Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, Furu Wei.
1. **[SpeechToTextTransformer](https://huggingface.co/docs/transformers/model_doc/speech_to_text)** (from Facebook), released together with the paper [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino.
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (from Facebook), released together with the paper [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau.
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (from Tel Aviv University), released together with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy.
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (from MBZUAI) released with the paper [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) by Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan.
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (from Microsoft) released with the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (from Microsoft) released with the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo.
1. **[Swin2SR](https://huggingface.co/docs/transformers/model_doc/swin2sr)** (from University of Würzburg) released with the paper [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345) by Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte.
1. **[SwitchTransformers](https://huggingface.co/docs/transformers/model_doc/switch_transformers)** (from Google) released with the paper [Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity](https://arxiv.org/abs/2101.03961) by William Fedus, Barret Zoph, Noam Shazeer.
1. **[T5](https://huggingface.co/docs/transformers/model_doc/t5)** (from Google AI) released with the paper [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (from Google AI) released in the repository [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[Table Transformer](https://huggingface.co/docs/transformers/model_doc/table-transformer)** (from Microsoft Research) released with the paper [PubTables-1M: Towards Comprehensive Table Extraction From Unstructured Documents](https://arxiv.org/abs/2110.00061) by Brandon Smock, Rohith Pesala, Robin Abraham.
1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (from Google AI) released with the paper [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos.
1. **[TAPEX](https://huggingface.co/docs/transformers/model_doc/tapex)** (from Microsoft Research) released with the paper [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou.
1. **[Time Series Transformer](https://huggingface.co/docs/transformers/model_doc/time_series_transformer)** (from HuggingFace).
1. **[TimeSformer](https://huggingface.co/docs/transformers/model_doc/timesformer)** (from Facebook) released with the paper [Is Space-Time Attention All You Need for Video Understanding?](https://arxiv.org/abs/2102.05095) by Gedas Bertasius, Heng Wang, Lorenzo Torresani.
1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/model_doc/trajectory_transformers)** (from the University of California at Berkeley) released with the paper [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine
1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (from Microsoft), released together with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
1. **[TVLT](https://huggingface.co/docs/transformers/model_doc/tvlt)** (from UNC Chapel Hill) released with the paper [TVLT: Textless Vision-Language Transformer](https://arxiv.org/abs/2209.14156) by Zineng Tang, Jaemin Cho, Yixin Nie, Mohit Bansal.
1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
1. **[UMT5](https://huggingface.co/docs/transformers/model_doc/umt5)** (from Google Research) released with the paper [UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining](https://openreview.net/forum?id=kXwdL1cWOAi) by Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, Noah Constant.
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (from Microsoft Research) released with the paper [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (from Microsoft Research) released with the paper [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu.
1. **[UPerNet](https://huggingface.co/docs/transformers/model_doc/upernet)** (from Peking University) released with the paper [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221) by Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun.
1. **[VAN](https://huggingface.co/docs/transformers/model_doc/van)** (from Tsinghua University and Nankai University) released with the paper [Visual Attention Network](https://arxiv.org/abs/2202.09741) by Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu.
1. **[VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)** (from Multimedia Computing Group, Nanjing University) released with the paper [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602) by Zhan Tong, Yibing Song, Jue Wang, Limin Wang.
1. **[ViLT](https://huggingface.co/docs/transformers/model_doc/vilt)** (from NAVER AI Lab/Kakao Enterprise/Kakao Brain) released with the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Wonjae Kim, Bokyung Son, Ildoo Kim.
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VitDet](https://huggingface.co/docs/transformers/model_doc/vitdet)** (from Meta AI) released with the paper [Exploring Plain Vision Transformer Backbones for Object Detection](https://arxiv.org/abs/2203.16527) by Yanghao Li, Hanzi Mao, Ross Girshick, Kaiming He.
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (from Meta AI) released with the paper [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick.
1. **[ViTMatte](https://huggingface.co/docs/transformers/main/model_doc/vitmatte)** (from HUST-VL) rreleased with the paper [ViTMatte: Boosting Image Matting with Pretrained Plain Vision Transformers](https://arxiv.org/abs/2305.15272) by Jingfeng Yao, Xinggang Wang, Shusheng Yang, Baoyuan Wang.
1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (from Meta AI) released with the paper [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas.
1. **[VITS](https://huggingface.co/docs/transformers/model_doc/vits)** (from Kakao Enterprise) released with the paper [Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech](https://arxiv.org/abs/2106.06103) by Jaehyeon Kim, Jungil Kong, Juhee Son.
1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (from Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) by Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid.
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (from Facebook AI) released with the paper [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (from Facebook AI) released with the paper [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino.
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (from Facebook AI) released with the paper [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) by Qiantong Xu, Alexei Baevski, Michael Auli.
1. **[WavLM](https://huggingface.co/docs/transformers/model_doc/wavlm)** (from Microsoft Research) released with the paper [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei.
1. **[Whisper](https://huggingface.co/docs/transformers/model_doc/whisper)** (from OpenAI) released with the paper [Robust Speech Recognition via Large-Scale Weak Supervision](https://cdn.openai.com/papers/whisper.pdf) by Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, Ilya Sutskever.
1. **[X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)** (from Microsoft Research) released with the paper [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816) by Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang, Gaofeng Meng, Jianlong Fu, Shiming Xiang, Haibin Ling.
1. **[X-MOD](https://huggingface.co/docs/transformers/model_doc/xmod)** (from Meta AI) released with the paper [Lifting the Curse of Multilinguality by Pre-training Modular Transformers](http://dx.doi.org/10.18653/v1/2022.naacl-main.255) by Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James Cross, Sebastian Riedel, Mikel Artetxe.
1. **[XGLM](https://huggingface.co/docs/transformers/model_doc/xglm)** (From Facebook AI) released with the paper [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li.
1. **[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (from Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau.
1. **[XLM-ProphetNet](https://huggingface.co/docs/transformers/model_doc/xlm-prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[XLM-RoBERTa](https://huggingface.co/docs/transformers/model_doc/xlm-roberta)** (from Facebook AI), released together with the paper [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov.
1. **[XLM-RoBERTa-XL](https://huggingface.co/docs/transformers/model_doc/xlm-roberta-xl)** (from Facebook AI), released together with the paper [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) by Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau.
1. **[XLM-V](https://huggingface.co/docs/transformers/model_doc/xlm-v)** (from Meta AI) released with the paper [XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models](https://arxiv.org/abs/2301.10472) by Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Naman Goyal, Marjan Ghazvininejad, Luke Zettlemoyer, Madian Khabsa.
1. **[XLNet](https://huggingface.co/docs/transformers/model_doc/xlnet)** (from Google/CMU) released with the paper [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
1. **[XLS-R](https://huggingface.co/docs/transformers/model_doc/xls_r)** (from Facebook AI) released with the paper [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) by Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli.
1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (from Facebook AI) released with the paper [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) by Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli.
1. **[YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos)** (from Huazhong University of Science & Technology) released with the paper [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) by Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu.
1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (from the University of Wisconsin - Madison) released with the paper [You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling](https://arxiv.org/abs/2111.09714) by Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh.
1. Want to contribute a new model? We have added a **detailed guide and templates** to guide you in the process of adding a new model. You can find them in the [`templates`](./templates) folder of the repository. Be sure to check the [contributing guidelines](./CONTRIBUTING.md) and contact the maintainers or open an issue to collect feedbacks before starting your PR.
🤗 Transformers currently provides the following architectures: see [here](https://huggingface.co/docs/transformers/model_summary) for a high-level summary of each them.
To check if each model has an implementation in Flax, PyTorch or TensorFlow, or has an associated tokenizer backed by the 🤗 Tokenizers library, refer to [this table](https://huggingface.co/docs/transformers/index#supported-frameworks).

View File

@ -1,527 +0,0 @@
<!---
Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
<p align="center">
<br>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers_logo_name.png" width="400"/>
<br>
<p>
<p align="center">
<a href="https://circleci.com/gh/huggingface/transformers">
<img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/main">
</a>
<a href="https://github.com/huggingface/transformers/blob/main/LICENSE">
<img alt="GitHub" src="https://img.shields.io/github/license/huggingface/transformers.svg?color=blue">
</a>
<a href="https://huggingface.co/docs/transformers/index">
<img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/docs/transformers/index.svg?down_color=red&down_message=offline&up_message=online">
</a>
<a href="https://github.com/huggingface/transformers/releases">
<img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/transformers.svg">
</a>
<a href="https://github.com/huggingface/transformers/blob/main/CODE_OF_CONDUCT.md">
<img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg">
</a>
<a href="https://zenodo.org/badge/latestdoi/155220641"><img src="https://zenodo.org/badge/155220641.svg" alt="DOI"></a>
</p>
<h4 align="center">
<p>
<a href="https://github.com/huggingface/transformers/">English</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hans.md">简体中文</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hant.md">繁體中文</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ko.md">한국어</a> |
<b>Español</b> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ja.md">日本語</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_hd.md">हिन्दी</a>
<p>
</h4>
<h3 align="center">
<p>Lo último de Machine Learning para JAX, PyTorch y TensorFlow</p>
</h3>
<h3 align="center">
<a href="https://hf.co/course"><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/course_banner.png"></a>
</h3>
🤗 Transformers aporta miles de modelos preentrenados Para realizar tareas en diferentes modalidades como texto, vision, y audio.
Estos modelos pueden ser aplicados en:
* 📝 Texto, Para tareas como clasificación de texto, extracción de información, responder preguntas, resumir, traducir, generación de texto, en más de 100 idiomas.
* 🖼️ Imágenes, para tareas como clasificación de imágenes, detección the objetos, y segmentación.
* 🗣️ Audio, para tareas como reconocimiento de voz y clasificación de audio.
Los modelos de Transformer también pueden realizar tareas en **muchas modalidades combinadas**, como responder pregunstas, reconocimiento de carácteres ópticos,extracción de información de documentos escaneados, clasificación de video, y respuesta de preguntas visuales.
🤗 Transformers aporta APIs para descargar rápidamente y usar estos modelos preentrenados en un texto dado, afinarlos en tus propios sets de datos y compartirlos con la comunidad en nuestro [centro de modelos](https://huggingface.co/models). Al mismo tiempo, cada módulo de Python que define una arquitectura es completamente independiente y se puede modificar para permitir experimentos de investigación rápidos.
🤗 Transformers está respaldado por las tres bibliotecas de deep learning más populares — [Jax](https://jax.readthedocs.io/en/latest/), [PyTorch](https://pytorch.org/) y [TensorFlow](https://www.tensorflow.org/) — con una perfecta integración entre ellos. Es sencillo entrenar sus modelos con uno antes de cargarlos para la inferencia con el otro.
## Demostraciones en línea
Puedes probar la mayoría de nuestros modelos directamente en sus páginas desde el [centro de modelos](https://huggingface.co/models). También ofrecemos [alojamiento de modelos privados, control de versiones y una API de inferencia](https://huggingface.co/pricing) para modelos públicos y privados.
Aquí hay algunos ejemplos:
En procesamiento del lenguaje natural:
- [Terminación de palabras enmascaradas con BERT](https://huggingface.co/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France)
- [Reconocimiento del nombre de la entidad con Electra](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city)
- [Generación de texto con GPT-2](https://huggingface.co/gpt2?text=A+long+time+ago%2C+)
- [Inferencia del lenguaje natural con RoBERTa](https://huggingface.co/roberta-large-mnli?text=The+dog+was+lost.+Nobody+lost+any+animal)
- [Resumen con BART](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct)
- [Responder a preguntas con DistilBERT](https://huggingface.co/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species)
- [Traducción con T5](https://huggingface.co/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin)
En visión de ordenador:
- [Clasificación de imágenes con ViT](https://huggingface.co/google/vit-base-patch16-224)
- [Detección de objetos con DETR](https://huggingface.co/facebook/detr-resnet-50)
- [Segmentación semántica con SegFormer](https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512)
- [Segmentación panóptica con DETR](https://huggingface.co/facebook/detr-resnet-50-panoptic)
- [Segmentación Universal con OneFormer (Segmentación Semántica, de Instancia y Panóptica con un solo modelo)](https://huggingface.co/shi-labs/oneformer_ade20k_dinat_large)
En Audio:
- [Reconocimiento de voz automático con Wav2Vec2](https://huggingface.co/facebook/wav2vec2-base-960h)
- [Detección de palabras clave con Wav2Vec2](https://huggingface.co/superb/wav2vec2-base-superb-ks)
En tareas multimodales:
- [Respuesta visual a preguntas con ViLT](https://huggingface.co/dandelin/vilt-b32-finetuned-vqa)
**[Escribe con Transformer](https://transformer.huggingface.co)**, construido por el equipo de Hugging Face, es la demostración oficial de las capacidades de generación de texto de este repositorio.
## Si está buscando soporte personalizado del equipo de Hugging Face
<a target="_blank" href="https://huggingface.co/support">
<img alt="HuggingFace Expert Acceleration Program" src="https://cdn-media.huggingface.co/marketing/transformers/new-support-improved.png" style="max-width: 600px; border: 1px solid #eee; border-radius: 4px; box-shadow: 0 1px 2px 0 rgba(0, 0, 0, 0.05);">
</a><br>
## Tour rápido
Para usar inmediatamente un modelo en una entrada determinada (texto, imagen, audio, ...), proporcionamos la API de `pipeline`. Los pipelines agrupan un modelo previamente entrenado con el preprocesamiento que se usó durante el entrenamiento de ese modelo. Aquí se explica cómo usar rápidamente un pipeline para clasificar textos positivos frente a negativos:
```python
>>> from transformers import pipeline
# Allocate a pipeline for sentiment-analysis
>>> classifier = pipeline('sentiment-analysis')
>>> classifier('We are very happy to introduce pipeline to the transformers repository.')
[{'label': 'POSITIVE', 'score': 0.9996980428695679}]
```
La segunda línea de código descarga y almacena en caché el modelo previamente entrenado que usa la canalización, mientras que la tercera lo evalúa en el texto dado. Aquí la respuesta es "positiva" con una confianza del 99,97%.
Muchas tareas tienen un `pipeline` preentrenado listo para funcionar, en NLP pero también en visión por ordenador y habla. Por ejemplo, podemos extraer fácilmente los objetos detectados en una imagen:
``` python
>>> import requests
>>> from PIL import Image
>>> from transformers import pipeline
# Download an image with cute cats
>>> url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample.png"
>>> image_data = requests.get(url, stream=True).raw
>>> image = Image.open(image_data)
# Allocate a pipeline for object detection
>>> object_detector = pipeline('object_detection')
>>> object_detector(image)
[{'score': 0.9982201457023621,
'label': 'remote',
'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
{'score': 0.9960021376609802,
'label': 'remote',
'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
{'score': 0.9954745173454285,
'label': 'couch',
'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
{'score': 0.9988006353378296,
'label': 'cat',
'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9986783862113953,
'label': 'cat',
'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}]
```
Aquí obtenemos una lista de objetos detectados en la imagen, con un cuadro que rodea el objeto y una puntuación de confianza. Aquí está la imagen original a la derecha, con las predicciones mostradas a la izquierda:
<h3 align="center">
<a><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample.png" width="400"></a>
<a><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample_post_processed.png" width="400"></a>
</h3>
Puedes obtener más información sobre las tareas admitidas por la API de `pipeline` en [este tutorial](https://huggingface.co/docs/transformers/task_summary).
Además de `pipeline`, para descargar y usar cualquiera de los modelos previamente entrenados en su tarea dada, todo lo que necesita son tres líneas de código. Aquí está la versión de PyTorch:
```python
>>> from transformers import AutoTokenizer, AutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = AutoModel.from_pretrained("bert-base-uncased")
>>> inputs = tokenizer("Hello world!", return_tensors="pt")
>>> outputs = model(**inputs)
```
Y aquí está el código equivalente para TensorFlow:
```python
>>> from transformers import AutoTokenizer, TFAutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = TFAutoModel.from_pretrained("bert-base-uncased")
>>> inputs = tokenizer("Hello world!", return_tensors="tf")
>>> outputs = model(**inputs)
```
El tokenizador es responsable de todo el preprocesamiento que espera el modelo preentrenado y se puede llamar directamente en una sola cadena (como en los ejemplos anteriores) o en una lista. Dará como resultado un diccionario que puedes usar en el código descendente o simplemente pasarlo directamente a su modelo usando el operador de desempaquetado de argumento **.
El modelo en si es un [Pytorch `nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) normal o un [TensorFlow `tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) (dependiendo De tu backend) que puedes usar de forma habitual. [Este tutorial](https://huggingface.co/docs/transformers/training) explica cómo integrar un modelo de este tipo en un ciclo de entrenamiento PyTorch o TensorFlow clásico, o como usar nuestra API `Trainer` para ajustar rápidamente un nuevo conjunto de datos.
## ¿Por qué debo usar transformers?
1. Modelos de última generación fáciles de usar:
- Alto rendimiento en comprensión y generación de lenguaje natural, visión artificial y tareas de audio.
- Baja barrera de entrada para educadores y profesionales.
- Pocas abstracciones de cara al usuario con solo tres clases para aprender.
- Una API unificada para usar todos nuestros modelos preentrenados.
1. Menores costes de cómputo, menor huella de carbono:
- Los investigadores pueden compartir modelos entrenados en lugar de siempre volver a entrenar.
- Los profesionales pueden reducir el tiempo de cómputo y los costos de producción.
- Docenas de arquitecturas con más de 60 000 modelos preentrenados en todas las modalidades.
1. Elija el marco adecuado para cada parte de la vida útil de un modelo:
- Entrene modelos de última generación en 3 líneas de código.
- Mueva un solo modelo entre los marcos TF2.0/PyTorch/JAX a voluntad.
- Elija sin problemas el marco adecuado para la formación, la evaluación y la producción.
1. Personalice fácilmente un modelo o un ejemplo según sus necesidades:
- Proporcionamos ejemplos de cada arquitectura para reproducir los resultados publicados por sus autores originales..
- Los internos del modelo están expuestos lo más consistentemente posible..
- Los archivos modelo se pueden usar independientemente de la biblioteca para experimentos rápidos.
## ¿Por qué no debería usar transformers?
- Esta biblioteca no es una caja de herramientas modular de bloques de construcción para redes neuronales. El código en los archivos del modelo no se refactoriza con abstracciones adicionales a propósito, de modo que los investigadores puedan iterar rápidamente en cada uno de los modelos sin sumergirse en abstracciones/archivos adicionales.
- La API de entrenamiento no está diseñada para funcionar en ningún modelo, pero está optimizada para funcionar con los modelos proporcionados por la biblioteca. Para bucles genéricos de aprendizaje automático, debe usar otra biblioteca (posiblemente, [Accelerate](https://huggingface.co/docs/accelerate)).
- Si bien nos esforzamos por presentar tantos casos de uso como sea posible, los scripts en nuestra [carpeta de ejemplos](https://github.com/huggingface/transformers/tree/main/examples) son solo eso: ejemplos. Se espera que no funcionen de forma inmediata en su problema específico y que deba cambiar algunas líneas de código para adaptarlas a sus necesidades.
## Instalación
### Con pip
Este repositorio está probado en Python 3.8+, Flax 0.4.1+, PyTorch 1.10+ y TensorFlow 2.6+.
Deberías instalar 🤗 Transformers en un [ambiente virtual](https://docs.python.org/3/library/venv.html). Si no estas familiarizado con los entornos virtuales de Python, consulta la [guía de usuario](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/).
Primero, crea un entorno virtual con la versión de Python que vas a usar y actívalo.
Luego, deberás instalar al menos uno de Flax, PyTorch o TensorFlow.
Por favor, ve a la [página de instalación de TensorFlow](https://www.tensorflow.org/install/), [página de instalación de PyTorch](https://pytorch.org/get-started/locally/#start-locally) y/o las páginas de instalación de [Flax](https://github.com/google/flax#quick-install) y [Jax](https://github.com/google/jax#installation) con respecto al comando de instalación específico para tu plataforma.
Cuando se ha instalado uno de esos backends, los 🤗 Transformers se pueden instalar usando pip de la siguiente manera:
```bash
pip install transformers
```
Si deseas jugar con los ejemplos o necesitas la última versión del código y no puedes esperar a una nueva versión, tienes que [instalar la librería de la fuente](https://huggingface.co/docs/transformers/installation#installing-from-source).
### Con conda
Desde la versión v4.0.0 de Transformers, ahora tenemos un canal conda: `huggingface`.
🤗 Transformers se puede instalar usando conda de la siguiente manera:
```shell script
conda install -c huggingface transformers
```
Sigue las páginas de instalación de Flax, PyTorch o TensorFlow para ver cómo instalarlos con conda.
> **_NOTA:_** En Windows, es posible que se le pida que active el modo de desarrollador para beneficiarse del almacenamiento en caché. Si esta no es una opción para usted, háganoslo saber en [esta issue](https://github.com/huggingface/huggingface_hub/issues/1062).
## Arquitecturas modelo
**[Todos los puntos de control del modelo](https://huggingface.co/models)** aportados por 🤗 Transformers están perfectamente integrados desde huggingface.co [Centro de modelos](https://huggingface.co) donde son subidos directamente por los [usuarios](https://huggingface.co/users) y [organizaciones](https://huggingface.co/organizations).
Número actual de puntos de control: ![](https://img.shields.io/endpoint?url=https://huggingface.co/api/shields/models&color=brightgreen)
🤗 Transformers actualmente proporciona las siguientes arquitecturas (ver [aquí](https://huggingface.co/docs/transformers/model_summary) para un resumen de alto nivel de cada uno de ellas.):
1. **[ALBERT](https://huggingface.co/docs/transformers/model_doc/albert)** (from Google Research and the Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.
1. **[ALIGN](https://huggingface.co/docs/transformers/model_doc/align)** (from Google Research) released with the paper [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918) by Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig.
1. **[AltCLIP](https://huggingface.co/docs/transformers/model_doc/altclip)** (from BAAI) released with the paper [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) by Chen, Zhongzhi and Liu, Guang and Zhang, Bo-Wen and Ye, Fulong and Yang, Qinghong and Wu, Ledell.
1. **[Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer)** (from MIT) released with the paper [AST: Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778) by Yuan Gong, Yu-An Chung, James Glass.
1. **[Autoformer](https://huggingface.co/docs/transformers/model_doc/autoformer)** (from Tsinghua University) released with the paper [Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://arxiv.org/abs/2106.13008) by Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long.
1. **[Bark](https://huggingface.co/docs/transformers/model_doc/bark)** (from Suno) released in the repository [suno-ai/bark](https://github.com/suno-ai/bark) by Suno AI team.
1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (from Facebook) released with the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer.
1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (from École polytechnique) released with the paper [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis.
1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (from VinAI Research) released with the paper [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen.
1. **[BEiT](https://huggingface.co/docs/transformers/model_doc/beit)** (from Microsoft) released with the paper [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) by Hangbo Bao, Li Dong, Furu Wei.
1. **[BERT](https://huggingface.co/docs/transformers/model_doc/bert)** (from Google) released with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova.
1. **[BERT For Sequence Generation](https://huggingface.co/docs/transformers/model_doc/bert-generation)** (from Google) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[BERTweet](https://huggingface.co/docs/transformers/model_doc/bertweet)** (from VinAI Research) released with the paper [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) by Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen.
1. **[BigBird-Pegasus](https://huggingface.co/docs/transformers/model_doc/bigbird_pegasus)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[BigBird-RoBERTa](https://huggingface.co/docs/transformers/model_doc/big_bird)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[BioGpt](https://huggingface.co/docs/transformers/model_doc/biogpt)** (from Microsoft Research AI4Science) released with the paper [BioGPT: generative pre-trained transformer for biomedical text generation and mining](https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbac409/6713511?guestAccessKey=a66d9b5d-4f83-4017-bb52-405815c907b9) by Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon and Tie-Yan Liu.
1. **[BiT](https://huggingface.co/docs/transformers/model_doc/bit)** (from Google AI) released with the paper [Big Transfer (BiT) by Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil Houlsby.
1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BLIP](https://huggingface.co/docs/transformers/model_doc/blip)** (from Salesforce) released with the paper [BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation](https://arxiv.org/abs/2201.12086) by Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi.
1. **[BLIP-2](https://huggingface.co/docs/transformers/model_doc/blip-2)** (from Salesforce) released with the paper [BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models](https://arxiv.org/abs/2301.12597) by Junnan Li, Dongxu Li, Silvio Savarese, Steven Hoi.
1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (from BigScience workshop) released by the [BigScience Workshop](https://bigscience.huggingface.co/).
1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (from Alexa) released with the paper [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) by Adrian de Wynter and Daniel J. Perry.
1. **[BridgeTower](https://huggingface.co/docs/transformers/model_doc/bridgetower)** (from Harbin Institute of Technology/Microsoft Research Asia/Intel Labs) released with the paper [BridgeTower: Building Bridges Between Encoders in Vision-Language Representation Learning](https://arxiv.org/abs/2206.08657) by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan.
1. **[BROS](https://huggingface.co/docs/transformers/model_doc/bros)** (from NAVER CLOVA) released with the paper [BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents](https://arxiv.org/abs/2108.04539) by Teakgyu Hong, Donghyun Kim, Mingi Ji, Wonseok Hwang, Daehyun Nam, Sungrae Park.
1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (from Google Research) released with the paper [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel.
1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (from Inria/Facebook/Sorbonne) released with the paper [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (from Google Research) released with the paper [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting.
1. **[Chinese-CLIP](https://huggingface.co/docs/transformers/model_doc/chinese_clip)** (from OFA-Sys) released with the paper [Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese](https://arxiv.org/abs/2211.01335) by An Yang, Junshu Pan, Junyang Lin, Rui Men, Yichang Zhang, Jingren Zhou, Chang Zhou.
1. **[CLAP](https://huggingface.co/docs/transformers/model_doc/clap)** (from LAION-AI) released with the paper [Large-scale Contrastive Language-Audio Pretraining with Feature Fusion and Keyword-to-Caption Augmentation](https://arxiv.org/abs/2211.06687) by Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, Shlomo Dubnov.
1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (from OpenAI) released with the paper [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever.
1. **[CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)** (from University of Göttingen) released with the paper [Image Segmentation Using Text and Image Prompts](https://arxiv.org/abs/2112.10003) by Timo Lüddecke and Alexander Ecker.
1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (from Salesforce) released with the paper [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong.
1. **[CodeLlama](https://huggingface.co/docs/transformers/model_doc/llama_code)** (from MetaAI) released with the paper [Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/) by Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, Gabriel Synnaeve.
1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (from Microsoft Research Asia) released with the paper [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) by Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang.
1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (from YituTech) released with the paper [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan.
1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (from Facebook AI) released with the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie.
1. **[ConvNeXTV2](https://huggingface.co/docs/transformers/model_doc/convnextv2)** (from Facebook AI) released with the paper [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://arxiv.org/abs/2301.00808) by Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, Saining Xie.
1. **[CPM](https://huggingface.co/docs/transformers/model_doc/cpm)** (from Tsinghua University) released with the paper [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) by Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun.
1. **[CPM-Ant](https://huggingface.co/docs/transformers/model_doc/cpmant)** (from OpenBMB) released by the [OpenBMB](https://www.openbmb.org/).
1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (from Microsoft) released with the paper [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang.
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (from Facebook) released with the paper [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli.
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (from Berkeley/Facebook/Google) released with the paper [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch.
1. **[Deformable DETR](https://huggingface.co/docs/transformers/model_doc/deformable_detr)** (from SenseTime Research) released with the paper [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159) by Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai.
1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (from Facebook) released with the paper [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou.
1. **[DePlot](https://huggingface.co/docs/transformers/model_doc/deplot)** (from Google AI) released with the paper [DePlot: One-shot visual language reasoning by plot-to-table translation](https://arxiv.org/abs/2212.10505) by Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, Yasemin Altun.
1. **[DETA](https://huggingface.co/docs/transformers/model_doc/deta)** (from The University of Texas at Austin) released with the paper [NMS Strikes Back](https://arxiv.org/abs/2212.06137) by Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, Philipp Krähenbühl.
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (from Facebook) released with the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (from Microsoft Research) released with the paper [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
1. **[DiNAT](https://huggingface.co/docs/transformers/model_doc/dinat)** (from SHI Labs) released with the paper [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) by Ali Hassani and Humphrey Shi.
1. **[DINOv2](https://huggingface.co/docs/transformers/model_doc/dinov2)** (from Meta AI) released with the paper [DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193) by Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, Piotr Bojanowski.
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation) and a German version of DistilBERT.
1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (from Microsoft Research) released with the paper [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) by Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei.
1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (from NAVER), released together with the paper [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) by Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park.
1. **[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (from Facebook) released with the paper [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) by Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
1. **[DPT](https://huggingface.co/docs/transformers/master/model_doc/dpt)** (from Intel Labs) released with the paper [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) by René Ranftl, Alexey Bochkovskiy, Vladlen Koltun.
1. **[EfficientFormer](https://huggingface.co/docs/transformers/model_doc/efficientformer)** (from Snap Research) released with the paper [EfficientFormer: Vision Transformers at MobileNetSpeed](https://arxiv.org/abs/2206.01191) by Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren.
1. **[EfficientNet](https://huggingface.co/docs/transformers/model_doc/efficientnet)** (from Google Brain) released with the paper [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan, Quoc V. Le.
1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
1. **[EnCodec](https://huggingface.co/docs/transformers/model_doc/encodec)** (from Meta AI) released with the paper [High Fidelity Neural Audio Compression](https://arxiv.org/abs/2210.13438) by Alexandre Défossez, Jade Copet, Gabriel Synnaeve, Yossi Adi.
1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (from Google Research) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)** (from Baidu) released with the paper [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) by Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu.
1. **[ErnieM](https://huggingface.co/docs/transformers/model_doc/ernie_m)** (from Baidu) released with the paper [ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora](https://arxiv.org/abs/2012.15674) by Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang.
1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (from Meta AI) are transformer protein language models. **ESM-1b** was released with the paper [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. **ESM-1v** was released with the paper [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648) by Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives. **ESM-2** was released with the paper [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902) by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives.
1. **[Falcon](https://huggingface.co/docs/transformers/model_doc/falcon)** (from Technology Innovation Institute) by Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme.
1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FLAN-UL2](https://huggingface.co/docs/transformers/model_doc/flan-ul2)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-ul2-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (from Facebook AI) released with the paper [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela.
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
1. **[FocalNet](https://huggingface.co/docs/transformers/model_doc/focalnet)** (from Microsoft Research) released with the paper [Focal Modulation Networks](https://arxiv.org/abs/2203.11926) by Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao.
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (from Microsoft Research) released with the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang.
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (from KAIST) released with the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim.
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (from EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy.
1. **[GPT NeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox)** (from EleutherAI) released with the paper [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) by Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach
1. **[GPT NeoX Japanese](https://huggingface.co/docs/transformers/model_doc/gpt_neox_japanese)** (from ABEJA) released by Shinya Otani, Takayoshi Makabe, Anuj Arora, and Kyo Hattori.
1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (from OpenAI) released with the paper [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/) by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**.
1. **[GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj)** (from EleutherAI) released in the repository [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) by Ben Wang and Aran Komatsuzaki.
1. **[GPT-Sw3](https://huggingface.co/docs/transformers/model_doc/gpt-sw3)** (from AI-Sweden) released with the paper [Lessons Learned from GPT-SW3: Building the First Large-Scale Generative Language Model for Swedish](http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.376.pdf) by Ariel Ekgren, Amaru Cuba Gyllensten, Evangelia Gogoulou, Alice Heiman, Severine Verlinden, Joey Öhman, Fredrik Carlsson, Magnus Sahlgren.
1. **[GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode)** (from BigCode) released with the paper [SantaCoder: don't reach for the stars!](https://arxiv.org/abs/2301.03988) by Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, Logesh Kumar Umapathi, Carolyn Jane Anderson, Yangtian Zi, Joel Lamy Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry Abulkhanov, Manuel Romero, Michael Lappert, Francesco De Toni, Bernardo García del Río, Qian Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab Mangrulkar, David Lansky, Huu Nguyen, Danish Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau, Yacine Jernite, Sean Hughes, Daniel Fried, Arjun Guha, Harm de Vries, Leandro von Werra.
1. **[GPTSAN-japanese](https://huggingface.co/docs/transformers/model_doc/gptsan-japanese)** released in the repository [tanreinama/GPTSAN](https://github.com/tanreinama/GPTSAN/blob/main/report/model.md) by Toshiyuki Sakamoto(tanreinama).
1. **[Graphormer](https://huggingface.co/docs/transformers/model_doc/graphormer)** (from Microsoft) released with the paper [Do Transformers Really Perform Bad for Graph Representation?](https://arxiv.org/abs/2106.05234) by Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu.
1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (from UCSD, NVIDIA) released with the paper [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) by Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang.
1. **[HerBERT](https://huggingface.co/docs/transformers/model_doc/herbert)** (from Allegro.pl, AGH University of Science and Technology) released with the paper [KLEJ: Comprehensive Benchmark for Polish Language Understanding](https://www.aclweb.org/anthology/2020.acl-main.111.pdf) by Piotr Rybak, Robert Mroczkowski, Janusz Tracz, Ireneusz Gawlik.
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (from Facebook) released with the paper [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed.
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (from Berkeley) released with the paper [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer.
1. **[IDEFICS](https://huggingface.co/docs/transformers/model_doc/idefics)** (from HuggingFace) released with the paper [OBELICS: An Open Web-Scale Filtered Dataset of Interleaved Image-Text Documents](https://huggingface.co/papers/2306.16527) by Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov, Thomas Wang, Siddharth Karamcheti, Alexander M. Rush, Douwe Kiela, Matthieu Cord, Victor Sanh.
1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (from OpenAI) released with the paper [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever.
1. **[Informer](https://huggingface.co/docs/transformers/model_doc/informer)** (from Beihang University, UC Berkeley, Rutgers University, SEDD Company) released with the paper [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting](https://arxiv.org/abs/2012.07436) by Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
1. **[InstructBLIP](https://huggingface.co/docs/transformers/model_doc/instructblip)** (from Salesforce) released with the paper [InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning](https://arxiv.org/abs/2305.06500) by Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, Steven Hoi.
1. **[Jukebox](https://huggingface.co/docs/transformers/model_doc/jukebox)** (from OpenAI) released with the paper [Jukebox: A Generative Model for Music](https://arxiv.org/pdf/2005.00341.pdf) by Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever.
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou.
1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (from Microsoft Research Asia) released with the paper [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) by Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei.
1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutxlm)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (from Meta AI) released with the paper [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) by Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze.
1. **[LiLT](https://huggingface.co/docs/transformers/model_doc/lilt)** (from South China University of Technology) released with the paper [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669) by Jiapeng Wang, Lianwen Jin, Kai Ding.
1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (from The FAIR team of Meta AI) released with the paper [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971) by Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample.
1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (from The FAIR team of Meta AI) released with the paper [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/XXX) by Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom..
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (from Google AI) released with the paper [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang.
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (from Studio Ousia) released with the paper [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.
1. **[LXMERT](https://huggingface.co/docs/transformers/model_doc/lxmert)** (from UNC Chapel Hill) released with the paper [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal.
1. **[M-CTC-T](https://huggingface.co/docs/transformers/model_doc/mctct)** (from Facebook) released with the paper [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) by Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert.
1. **[M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100)** (from Facebook) released with the paper [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) by Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin.
1. **[MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)** Machine translation models trained using [OPUS](http://opus.nlpl.eu/) data by Jörg Tiedemann. The [Marian Framework](https://marian-nmt.github.io/) is being developed by the Microsoft Translator Team.
1. **[MarkupLM](https://huggingface.co/docs/transformers/model_doc/markuplm)** (from Microsoft Research Asia) released with the paper [MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document Understanding](https://arxiv.org/abs/2110.08518) by Junlong Li, Yiheng Xu, Lei Cui, Furu Wei.
1. **[Mask2Former](https://huggingface.co/docs/transformers/model_doc/mask2former)** (from FAIR and UIUC) released with the paper [Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527) by Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Rohit Girdhar.
1. **[MaskFormer](https://huggingface.co/docs/transformers/model_doc/maskformer)** (from Meta and UIUC) released with the paper [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) by Bowen Cheng, Alexander G. Schwing, Alexander Kirillov.
1. **[MatCha](https://huggingface.co/docs/transformers/model_doc/matcha)** (from Google AI) released with the paper [MatCha: Enhancing Visual Language Pretraining with Math Reasoning and Chart Derendering](https://arxiv.org/abs/2212.09662) by Fangyu Liu, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Yasemin Altun, Nigel Collier, Julian Martin Eisenschlos.
1. **[mBART](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
1. **[mBART-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan.
1. **[MEGA](https://huggingface.co/docs/transformers/model_doc/mega)** (from Facebook) released with the paper [Mega: Moving Average Equipped Gated Attention](https://arxiv.org/abs/2209.10655) by Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and Luke Zettlemoyer.
1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[MGP-STR](https://huggingface.co/docs/transformers/model_doc/mgp-str)** (from Alibaba Research) released with the paper [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592) by Peng Wang, Cheng Da, and Cong Yao.
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (from Studio Ousia) released with the paper [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka.
1. **[MMS](https://huggingface.co/docs/transformers/model_doc/mms)** (from Facebook) released with the paper [Scaling Speech Technology to 1,000+ Languages](https://arxiv.org/abs/2305.13516) by Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky, Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi, Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning Hsu, Alexis Conneau, Michael Auli.
1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (from CMU/Google Brain) released with the paper [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou.
1. **[MobileNetV1](https://huggingface.co/docs/transformers/model_doc/mobilenet_v1)** (from Google Inc.) released with the paper [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) by Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam.
1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (from Google Inc.) released with the paper [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) by Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen.
1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (from Apple) released with the paper [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari.
1. **[MobileViTV2](https://huggingface.co/docs/transformers/model_doc/mobilevitv2)** (from Apple) released with the paper [Separable Self-attention for Mobile Vision Transformers](https://arxiv.org/abs/2206.02680) by Sachin Mehta and Mohammad Rastegari.
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
1. **[MPT](https://huggingface.co/docs/transformers/model_doc/mpt)** (from MosaiML) released with the repository [llm-foundry](https://github.com/mosaicml/llm-foundry/) by the MosaicML NLP Team.
1. **[MRA](https://huggingface.co/docs/transformers/model_doc/mra)** (from the University of Wisconsin - Madison) released with the paper [Multi Resolution Analysis (MRA)](https://arxiv.org/abs/2207.10284) by Zhanpeng Zeng, Sourav Pal, Jeffery Kline, Glenn M Fung, Vikas Singh.
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
1. **[MusicGen](https://huggingface.co/docs/transformers/model_doc/musicgen)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (from RUC AI Box) released with the paper [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen.
1. **[NAT](https://huggingface.co/docs/transformers/model_doc/nat)** (from SHI Labs) released with the paper [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143) by Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi.
1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (from Huawei Noahs Ark Lab) released with the paper [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) by Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu.
1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (from the University of Wisconsin - Madison) released with the paper [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh.
1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (from SHI Labs) released with the paper [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) by Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi.
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released in [Open-Llama](https://github.com/s-JoL/Open-Llama).
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al.
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (from Google AI) released with the paper [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby.
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (from Google) released with the paper [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) by Jason Phang, Yao Zhao, and Peter J. Liu.
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (from Deepmind) released with the paper [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) by Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira.
1. **[Persimmon](https://huggingface.co/docs/transformers/main/model_doc/persimmon)** (from ADEPT) released with the paper [blog post](https://www.adept.ai/blog/persimmon-8b) by Erich Elsen, Augustus Odena, Maxwell Nye, Sağnak Taşırlar, Tri Dao, Curtis Hawthorne, Deepak Moparthi, Arushi Somani.
1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen.
1. **[Pix2Struct](https://huggingface.co/docs/transformers/model_doc/pix2struct)** (from Google) released with the paper [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding](https://arxiv.org/abs/2210.03347) by Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova.
1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (from UCLA NLP) released with the paper [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) by Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang.
1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (from Sea AI Labs) released with the paper [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) by Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng.
1. **[Pop2Piano](https://huggingface.co/docs/transformers/model_doc/pop2piano)** released with the paper [Pop2Piano : Pop Audio-based Piano Cover Generation](https://arxiv.org/abs/2211.00895) by Jongho Choi, Kyogu Lee.
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[PVT](https://huggingface.co/docs/transformers/model_doc/pvt)** (from Nanjing University, The University of Hong Kong etc.) released with the paper [Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions](https://arxiv.org/pdf/2102.12122.pdf) by Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao.
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (from NVIDIA) released with the paper [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) by Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius.
1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (from Facebook) released with the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) by Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela.
1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (from Google Research) released with the paper [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) by Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang.
1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (from Google Research) released with the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
1. **[RegNet](https://huggingface.co/docs/transformers/model_doc/regnet)** (from META Platforms) released with the paper [Designing Network Design Space](https://arxiv.org/abs/2003.13678) by Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár.
1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (from Google Research) released with the paper [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/abs/2010.12821) by Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder.
1. **[ResNet](https://huggingface.co/docs/transformers/model_doc/resnet)** (from Microsoft Research) released with the paper [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) by Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun.
1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (from Facebook), released together with the paper [RoBERTa: A Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
1. **[RoBERTa-PreLayerNorm](https://huggingface.co/docs/transformers/model_doc/roberta-prelayernorm)** (from Facebook) released with the paper [fairseq: A Fast, Extensible Toolkit for Sequence Modeling](https://arxiv.org/abs/1904.01038) by Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli.
1. **[RoCBert](https://huggingface.co/docs/transformers/model_doc/roc_bert)** (from WeChatAI) released with the paper [RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining](https://aclanthology.org/2022.acl-long.65.pdf) by HuiSu, WeiweiShi, XiaoyuShen, XiaoZhou, TuoJi, JiaruiFang, JieZhou.
1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (from ZhuiyiTechnology), released together with the paper [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/abs/2104.09864) by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu.
1. **[RWKV](https://huggingface.co/docs/transformers/model_doc/rwkv)** (from Bo Peng) released with the paper [this repo](https://github.com/BlinkDL/RWKV-LM) by Bo Peng.
1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (from NVIDIA) released with the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo.
1. **[Segment Anything](https://huggingface.co/docs/transformers/model_doc/sam)** (from Meta AI) released with the paper [Segment Anything](https://arxiv.org/pdf/2304.02643v1.pdf) by Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alex Berg, Wan-Yen Lo, Piotr Dollar, Ross Girshick.
1. **[SEW](https://huggingface.co/docs/transformers/model_doc/sew)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SEW-D](https://huggingface.co/docs/transformers/model_doc/sew_d)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SpeechT5](https://huggingface.co/docs/transformers/model_doc/speecht5)** (from Microsoft Research) released with the paper [SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing](https://arxiv.org/abs/2110.07205) by Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li, Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, Furu Wei.
1. **[SpeechToTextTransformer](https://huggingface.co/docs/transformers/model_doc/speech_to_text)** (from Facebook), released together with the paper [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino.
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (from Facebook), released together with the paper [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau.
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (from Tel Aviv University), released together with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy.
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (from MBZUAI) released with the paper [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) by Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan.
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (from Microsoft) released with the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (from Microsoft) released with the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo.
1. **[Swin2SR](https://huggingface.co/docs/transformers/model_doc/swin2sr)** (from University of Würzburg) released with the paper [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345) by Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte.
1. **[SwitchTransformers](https://huggingface.co/docs/transformers/model_doc/switch_transformers)** (from Google) released with the paper [Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity](https://arxiv.org/abs/2101.03961) by William Fedus, Barret Zoph, Noam Shazeer.
1. **[T5](https://huggingface.co/docs/transformers/model_doc/t5)** (from Google AI) released with the paper [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (from Google AI) released in the repository [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[Table Transformer](https://huggingface.co/docs/transformers/model_doc/table-transformer)** (from Microsoft Research) released with the paper [PubTables-1M: Towards Comprehensive Table Extraction From Unstructured Documents](https://arxiv.org/abs/2110.00061) by Brandon Smock, Rohith Pesala, Robin Abraham.
1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (from Google AI) released with the paper [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos.
1. **[TAPEX](https://huggingface.co/docs/transformers/model_doc/tapex)** (from Microsoft Research) released with the paper [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou.
1. **[Time Series Transformer](https://huggingface.co/docs/transformers/model_doc/time_series_transformer)** (from HuggingFace).
1. **[TimeSformer](https://huggingface.co/docs/transformers/model_doc/timesformer)** (from Facebook) released with the paper [Is Space-Time Attention All You Need for Video Understanding?](https://arxiv.org/abs/2102.05095) by Gedas Bertasius, Heng Wang, Lorenzo Torresani.
1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/model_doc/trajectory_transformers)** (from the University of California at Berkeley) released with the paper [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine
1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (from Microsoft), released together with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
1. **[TVLT](https://huggingface.co/docs/transformers/model_doc/tvlt)** (from UNC Chapel Hill) released with the paper [TVLT: Textless Vision-Language Transformer](https://arxiv.org/abs/2209.14156) by Zineng Tang, Jaemin Cho, Yixin Nie, Mohit Bansal.
1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
1. **[UMT5](https://huggingface.co/docs/transformers/model_doc/umt5)** (from Google Research) released with the paper [UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining](https://openreview.net/forum?id=kXwdL1cWOAi) by Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, Noah Constant.
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (from Microsoft Research) released with the paper [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (from Microsoft Research) released with the paper [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu.
1. **[UPerNet](https://huggingface.co/docs/transformers/model_doc/upernet)** (from Peking University) released with the paper [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221) by Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun.
1. **[VAN](https://huggingface.co/docs/transformers/model_doc/van)** (from Tsinghua University and Nankai University) released with the paper [Visual Attention Network](https://arxiv.org/abs/2202.09741) by Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu.
1. **[VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)** (from Multimedia Computing Group, Nanjing University) released with the paper [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602) by Zhan Tong, Yibing Song, Jue Wang, Limin Wang.
1. **[ViLT](https://huggingface.co/docs/transformers/model_doc/vilt)** (from NAVER AI Lab/Kakao Enterprise/Kakao Brain) released with the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Wonjae Kim, Bokyung Son, Ildoo Kim.
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VitDet](https://huggingface.co/docs/transformers/model_doc/vitdet)** (from Meta AI) released with the paper [Exploring Plain Vision Transformer Backbones for Object Detection](https://arxiv.org/abs/2203.16527) by Yanghao Li, Hanzi Mao, Ross Girshick, Kaiming He.
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (from Meta AI) released with the paper [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick.
1. **[ViTMatte](https://huggingface.co/docs/transformers/main/model_doc/vitmatte)** (from HUST-VL) released with the paper [ViTMatte: Boosting Image Matting with Pretrained Plain Vision Transformers](https://arxiv.org/abs/2305.15272) by Jingfeng Yao, Xinggang Wang, Shusheng Yang, Baoyuan Wang.
1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (from Meta AI) released with the paper [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas.
1. **[VITS](https://huggingface.co/docs/transformers/model_doc/vits)** (from Kakao Enterprise) released with the paper [Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech](https://arxiv.org/abs/2106.06103) by Jaehyeon Kim, Jungil Kong, Juhee Son.
1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (from Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) by Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid.
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (from Facebook AI) released with the paper [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (from Facebook AI) released with the paper [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino.
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (from Facebook AI) released with the paper [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) by Qiantong Xu, Alexei Baevski, Michael Auli.
1. **[WavLM](https://huggingface.co/docs/transformers/model_doc/wavlm)** (from Microsoft Research) released with the paper [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei.
1. **[Whisper](https://huggingface.co/docs/transformers/model_doc/whisper)** (from OpenAI) released with the paper [Robust Speech Recognition via Large-Scale Weak Supervision](https://cdn.openai.com/papers/whisper.pdf) by Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, Ilya Sutskever.
1. **[X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)** (from Microsoft Research) released with the paper [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816) by Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang, Gaofeng Meng, Jianlong Fu, Shiming Xiang, Haibin Ling.
1. **[X-MOD](https://huggingface.co/docs/transformers/model_doc/xmod)** (from Meta AI) released with the paper [Lifting the Curse of Multilinguality by Pre-training Modular Transformers](http://dx.doi.org/10.18653/v1/2022.naacl-main.255) by Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James Cross, Sebastian Riedel, Mikel Artetxe.
1. **[XGLM](https://huggingface.co/docs/transformers/model_doc/xglm)** (From Facebook AI) released with the paper [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li.
1. **[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (from Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau.
1. **[XLM-ProphetNet](https://huggingface.co/docs/transformers/model_doc/xlm-prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[XLM-RoBERTa](https://huggingface.co/docs/transformers/model_doc/xlm-roberta)** (from Facebook AI), released together with the paper [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov.
1. **[XLM-RoBERTa-XL](https://huggingface.co/docs/transformers/model_doc/xlm-roberta-xl)** (from Facebook AI), released together with the paper [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) by Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau.
1. **[XLM-V](https://huggingface.co/docs/transformers/model_doc/xlm-v)** (from Meta AI) released with the paper [XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models](https://arxiv.org/abs/2301.10472) by Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Naman Goyal, Marjan Ghazvininejad, Luke Zettlemoyer, Madian Khabsa.
1. **[XLNet](https://huggingface.co/docs/transformers/model_doc/xlnet)** (from Google/CMU) released with the paper [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
1. **[XLS-R](https://huggingface.co/docs/transformers/model_doc/xls_r)** (from Facebook AI) released with the paper [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) by Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli.
1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (from Facebook AI) released with the paper [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) by Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli.
1. **[YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos)** (from Huazhong University of Science & Technology) released with the paper [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) by Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu.
1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (from the University of Wisconsin - Madison) released with the paper [You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling](https://arxiv.org/abs/2111.09714) by Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh.
1. ¿Quieres aportar un nuevo modelo? Hemos agregado una **guía detallada y plantillas** para guiarte en el proceso de agregar un nuevo modelo. Puedes encontrarlos en la carpeta de [`templates`](./templates) del repositorio. Asegúrate de revisar las [pautas de contribución](./CONTRIBUTING.md) y comunícate con los mantenedores o abra un problema para recopilar comentarios antes de comenzar su PR.
Para comprobar si cada modelo tiene una implementación en Flax, PyTorch o TensorFlow, o tiene un tokenizador asociado respaldado por la librería 🤗 Tokenizers , ve a [esta tabla](https://huggingface.co/docs/transformers/index#supported-frameworks).
Estas implementaciones se han probado en varios conjuntos de datos (consulte los scripts de ejemplo) y deberían coincidir con el rendimiento de las implementaciones originales. Puede encontrar más detalles sobre el rendimiento en la sección Examples de la [documentación](https://github.com/huggingface/transformers/tree/main/examples).
## Aprender más
| Sección | Descripción |
|-|-|
| [Documentación](https://huggingface.co/docs/transformers/) | Toda la documentación de la API y tutoriales |
| [Resumen de tareas](https://huggingface.co/docs/transformers/task_summary) | Tareas soportadas 🤗 Transformers |
| [Tutorial de preprocesAmiento](https://huggingface.co/docs/transformers/preprocessing) | Usando la clase `Tokenizer` para preparar datos para los modelos |
| [Entrenamiento y puesta a punto](https://huggingface.co/docs/transformers/training) | Usando los modelos aportados por 🤗 Transformers en un bucle de entreno de PyTorch/TensorFlow y la API de `Trainer` |
| [Recorrido rápido: secuencias de comandos de ajuste/uso](https://github.com/huggingface/transformers/tree/main/examples) | Scripts de ejemplo para ajustar modelos en una amplia gama de tareas |
| [Compartir y subir modelos](https://huggingface.co/docs/transformers/model_sharing) | Carga y comparte tus modelos perfeccionados con la comunidad |
| [Migración](https://huggingface.co/docs/transformers/migration) | Migra a 🤗 Transformers desde `pytorch-transformers` o `pytorch-pretrained-bert` |
## Citación
Ahora nosotros tenemos un [papel](https://www.aclweb.org/anthology/2020.emnlp-demos.6/) que puedes citar para la librería de 🤗 Transformers:
```bibtex
@inproceedings{wolf-etal-2020-transformers,
title = "Transformers: State-of-the-Art Natural Language Processing",
author = "Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and Rémi Louf and Morgan Funtowicz and Joe Davison and Sam Shleifer and Patrick von Platen and Clara Ma and Yacine Jernite and Julien Plu and Canwen Xu and Teven Le Scao and Sylvain Gugger and Mariama Drame and Quentin Lhoest and Alexander M. Rush",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = oct,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.emnlp-demos.6",
pages = "38--45"
}
```

View File

@ -1,499 +0,0 @@
<!---
Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
<!---
A useful guide for English-Hindi translation of Hugging Face documentation
- Add space around English words and numbers when they appear between Hindi characters. E.g., कुल मिलाकर 100 से अधिक भाषाएँ; ट्रांसफॉर्मर लाइब्रेरी का उपयोग करता है।
- वर्गाकार उद्धरणों का प्रयोग करें, जैसे, "उद्धरण"
Dictionary
Hugging Face: गले लगाओ चेहरा
token: शब्द (और मूल अंग्रेजी को कोष्ठक में चिह्नित करें)
tokenize: टोकननाइज़ करें (और मूल अंग्रेज़ी को चिह्नित करने के लिए कोष्ठक का उपयोग करें)
tokenizer: Tokenizer (मूल अंग्रेजी में कोष्ठक के साथ)
transformer: transformer
pipeline: समनुक्रम
API: API (अनुवाद के बिना)
inference: विचार
Trainer: प्रशिक्षक। कक्षा के नाम के रूप में प्रस्तुत किए जाने पर अनुवादित नहीं किया गया।
pretrained/pretrain: पूर्व प्रशिक्षण
finetune: फ़ाइन ट्यूनिंग
community: समुदाय
example: जब विशिष्ट गोदाम example कैटलॉग करते समय "केस केस" के रूप में अनुवादित
Python data structures (e.g., list, set, dict): मूल अंग्रेजी को चिह्नित करने के लिए सूचियों, सेटों, शब्दकोशों में अनुवाद करें और कोष्ठक का उपयोग करें
NLP/Natural Language Processing: द्वारा NLP अनुवाद के बिना प्रकट होते हैं Natural Language Processing प्रस्तुत किए जाने पर प्राकृतिक भाषा संसाधन में अनुवाद करें
checkpoint: जाँच बिंदु
-->
<p align="center">
<br>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers_logo_name.png" width="400"/>
<br>
<p>
<p align="center">
<a href="https://circleci.com/gh/huggingface/transformers">
<img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/main">
</a>
<a href="https://github.com/huggingface/transformers/blob/main/LICENSE">
<img alt="GitHub" src="https://img.shields.io/github/license/huggingface/transformers.svg?color=blue">
</a>
<a href="https://huggingface.co/docs/transformers/index">
<img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/docs/transformers/index.svg?down_color=red&down_message=offline&up_message=online">
</a>
<a href="https://github.com/huggingface/transformers/releases">
<img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/transformers.svg">
</a>
<a href="https://github.com/huggingface/transformers/blob/main/CODE_OF_CONDUCT.md">
<img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg">
</a>
<a href="https://zenodo.org/badge/latestdoi/155220641"><img src="https://zenodo.org/badge/155220641.svg" alt="DOI"></a>
</p>
<h4 align="center">
<p>
<a href="https://github.com/huggingface/transformers/">English</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hans.md">简体中文</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hant.md">繁體中文</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ko.md">한국어</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_es.md">Español</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ja.md">日本語</a> |
<b>हिन्दी</b> |
<p>
</h4>
<h3 align="center">
<p>Jax, PyTorch और TensorFlow के लिए उन्नत मशीन लर्निंग</p>
</h3>
<h3 align="center">
<a href="https://hf.co/course"><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/course_banner.png"></a>
</h3>
🤗 Transformers 100 से अधिक भाषाओं में पाठ वर्गीकरण, सूचना निष्कर्षण, प्रश्न उत्तर, सारांशीकरण, अनुवाद, पाठ निर्माण का समर्थन करने के लिए हजारों पूर्व-प्रशिक्षित मॉडल प्रदान करता है। इसका उद्देश्य सबसे उन्नत एनएलपी तकनीक को सभी के लिए सुलभ बनाना है।
🤗 Transformers त्वरित डाउनलोड और उपयोग के लिए एक एपीआई प्रदान करता है, जिससे आप किसी दिए गए पाठ पर एक पूर्व-प्रशिक्षित मॉडल ले सकते हैं, इसे अपने डेटासेट पर ठीक कर सकते हैं और इसे [मॉडल हब] (https://huggingface.co/models) के माध्यम से समुदाय के साथ साझा कर सकते हैं। ) . इसी समय, प्रत्येक परिभाषित पायथन मॉड्यूल पूरी तरह से स्वतंत्र है, जो संशोधन और तेजी से अनुसंधान प्रयोगों के लिए सुविधाजनक है।
🤗 Transformers तीन सबसे लोकप्रिय गहन शिक्षण पुस्तकालयों का समर्थन करता है: [Jax](https://jax.readthedocs.io/en/latest/), [PyTorch](https://pytorch.org/) and [TensorFlow](https://www.tensorflow.org/) — और इसके साथ निर्बाध रूप से एकीकृत होता है। आप अपने मॉडल को सीधे एक ढांचे के साथ प्रशिक्षित कर सकते हैं और दूसरे के साथ लोड और अनुमान लगा सकते हैं।
## ऑनलाइन डेमो
आप सबसे सीधे मॉडल पृष्ठ पर परीक्षण कर सकते हैं [model hub](https://huggingface.co/models) मॉडल पर। हम [निजी मॉडल होस्टिंग, मॉडल संस्करण, और अनुमान एपीआई] भी प्रदान करते हैं।(https://huggingface.co/pricing)。
यहाँ कुछ उदाहरण हैं:
- [शब्द को भरने के लिए मास्क के रूप में BERT का प्रयोग करें](https://huggingface.co/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France)
- [इलेक्ट्रा के साथ नामित इकाई पहचान](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city)
- [जीपीटी-2 के साथ टेक्स्ट जनरेशन](https://huggingface.co/gpt2?text=A+long+time+ago%2C+)
- [रॉबर्टा के साथ प्राकृतिक भाषा निष्कर्ष](https://huggingface.co/roberta-large-mnli?text=The+dog+was+lost.+Nobody+lost+any+animal)
- [बार्ट के साथ पाठ सारांश](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct)
- [डिस्टिलबर्ट के साथ प्रश्नोत्तर](https://huggingface.co/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species)
- [अनुवाद के लिए T5 का प्रयोग करें](https://huggingface.co/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin)
**[Write With Transformer](https://transformer.huggingface.co)**,हगिंग फेस टीम द्वारा बनाया गया, यह एक आधिकारिक पाठ पीढ़ी है demo。
## यदि आप हगिंग फेस टीम से बीस्पोक समर्थन की तलाश कर रहे हैं
<a target="_blank" href="https://huggingface.co/support">
<img alt="HuggingFace Expert Acceleration Program" src="https://huggingface.co/front/thumbnails/support.png" style="max-width: 600px; border: 1px solid #eee; border-radius: 4px; box-shadow: 0 1px 2px 0 rgba(0, 0, 0, 0.05);">
</a><br>
## जल्दी शुरू करें
हम त्वरित उपयोग के लिए मॉडल प्रदान करते हैं `pipeline` (पाइपलाइन) एपीआई। पाइपलाइन पूर्व-प्रशिक्षित मॉडल और संबंधित पाठ प्रीप्रोसेसिंग को एकत्रित करती है। सकारात्मक और नकारात्मक भावना को निर्धारित करने के लिए पाइपलाइनों का उपयोग करने का एक त्वरित उदाहरण यहां दिया गया है:
```python
>>> from transformers import pipeline
# भावना विश्लेषण पाइपलाइन का उपयोग करना
>>> classifier = pipeline('sentiment-analysis')
>>> classifier('We are very happy to introduce pipeline to the transformers repository.')
[{'label': 'POSITIVE', 'score': 0.9996980428695679}]
```
कोड की दूसरी पंक्ति पाइपलाइन द्वारा उपयोग किए गए पूर्व-प्रशिक्षित मॉडल को डाउनलोड और कैश करती है, जबकि कोड की तीसरी पंक्ति दिए गए पाठ पर मूल्यांकन करती है। यहां उत्तर 99 आत्मविश्वास के स्तर के साथ "सकारात्मक" है।
कई एनएलपी कार्यों में आउट ऑफ़ द बॉक्स पाइपलाइनों का पूर्व-प्रशिक्षण होता है। उदाहरण के लिए, हम किसी दिए गए पाठ से किसी प्रश्न का उत्तर आसानी से निकाल सकते हैं:
``` python
>>> from transformers import pipeline
# प्रश्नोत्तर पाइपलाइन का उपयोग करना
>>> question_answerer = pipeline('question-answering')
>>> question_answerer({
... 'question': 'What is the name of the repository ?',
... 'context': 'Pipeline has been included in the huggingface/transformers repository'
... })
{'score': 0.30970096588134766, 'start': 34, 'end': 58, 'answer': 'huggingface/transformers'}
```
उत्तर देने के अलावा, पूर्व-प्रशिक्षित मॉडल संगत आत्मविश्वास स्कोर भी देता है, जहां उत्तर टोकनयुक्त पाठ में शुरू और समाप्त होता है। आप [इस ट्यूटोरियल](https://huggingface.co/docs/transformers/task_summary) से पाइपलाइन एपीआई द्वारा समर्थित कार्यों के बारे में अधिक जान सकते हैं।
अपने कार्य पर किसी भी पूर्व-प्रशिक्षित मॉडल को डाउनलोड करना और उसका उपयोग करना भी कोड की तीन पंक्तियों की तरह सरल है। यहाँ PyTorch संस्करण के लिए एक उदाहरण दिया गया है:
```python
>>> from transformers import AutoTokenizer, AutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = AutoModel.from_pretrained("bert-base-uncased")
>>> inputs = tokenizer("Hello world!", return_tensors="pt")
>>> outputs = model(**inputs)
```
यहाँ समकक्ष है TensorFlow कोड:
```python
>>> from transformers import AutoTokenizer, TFAutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = TFAutoModel.from_pretrained("bert-base-uncased")
>>> inputs = tokenizer("Hello world!", return_tensors="tf")
>>> outputs = model(**inputs)
```
टोकननाइज़र सभी पूर्व-प्रशिक्षित मॉडलों के लिए प्रीप्रोसेसिंग प्रदान करता है और इसे सीधे एक स्ट्रिंग (जैसे ऊपर दिए गए उदाहरण) या किसी सूची पर बुलाया जा सकता है। यह एक डिक्शनरी (तानाशाही) को आउटपुट करता है जिसे आप डाउनस्ट्रीम कोड में उपयोग कर सकते हैं या `**` अनपैकिंग एक्सप्रेशन के माध्यम से सीधे मॉडल को पास कर सकते हैं।
मॉडल स्वयं एक नियमित [Pytorch `nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) या [TensorFlow `tf.keras.Model`](https ://pytorch.org/docs/stable/nn.html#torch.nn.Module) ://www.tensorflow.org/api_docs/python/tf/keras/Model) (आपके बैकएंड के आधार पर), जो हो सकता है सामान्य तरीके से उपयोग किया जाता है। [यह ट्यूटोरियल](https://huggingface.co/transformers/training.html) बताता है कि इस तरह के मॉडल को क्लासिक PyTorch या TensorFlow प्रशिक्षण लूप में कैसे एकीकृत किया जाए, या हमारे `ट्रेनर` एपीआई का उपयोग कैसे करें ताकि इसे जल्दी से फ़ाइन ट्यून किया जा सके।एक नया डेटासेट पे।
## ट्रांसफार्मर का उपयोग क्यों करें?
1. उपयोग में आसानी के लिए उन्नत मॉडल:
- एनएलयू और एनएलजी पर बेहतर प्रदर्शन
- प्रवेश के लिए कम बाधाओं के साथ शिक्षण और अभ्यास के अनुकूल
- उपयोगकर्ता-सामना करने वाले सार तत्व, केवल तीन वर्गों को जानने की जरूरत है
- सभी मॉडलों के लिए एकीकृत एपीआई
1. कम कम्प्यूटेशनल ओवरहेड और कम कार्बन उत्सर्जन:
- शोधकर्ता हर बार नए सिरे से प्रशिक्षण देने के बजाय प्रशिक्षित मॉडल साझा कर सकते हैं
- इंजीनियर गणना समय और उत्पादन ओवरहेड को कम कर सकते हैं
- दर्जनों मॉडल आर्किटेक्चर, 2,000 से अधिक पूर्व-प्रशिक्षित मॉडल, 100 से अधिक भाषाओं का समर्थन
1.मॉडल जीवनचक्र के हर हिस्से को शामिल करता है:
- कोड की केवल 3 पंक्तियों में उन्नत मॉडलों को प्रशिक्षित करें
- मॉडल को मनमाने ढंग से विभिन्न डीप लर्निंग फ्रेमवर्क के बीच स्थानांतरित किया जा सकता है, जैसा आप चाहते हैं
- निर्बाध रूप से प्रशिक्षण, मूल्यांकन और उत्पादन के लिए सबसे उपयुक्त ढांचा चुनें
1. आसानी से अनन्य मॉडल को अनुकूलित करें और अपनी आवश्यकताओं के लिए मामलों का उपयोग करें:
- हम मूल पेपर परिणामों को पुन: पेश करने के लिए प्रत्येक मॉडल आर्किटेक्चर के लिए कई उपयोग के मामले प्रदान करते हैं
- मॉडल की आंतरिक संरचना पारदर्शी और सुसंगत रहती है
- मॉडल फ़ाइल को अलग से इस्तेमाल किया जा सकता है, जो संशोधन और त्वरित प्रयोग के लिए सुविधाजनक है
## मुझे ट्रांसफॉर्मर का उपयोग कब नहीं करना चाहिए?
- यह लाइब्रेरी मॉड्यूलर न्यूरल नेटवर्क टूलबॉक्स नहीं है। मॉडल फ़ाइल में कोड जानबूझकर अल्पविकसित है, बिना अतिरिक्त सार इनकैप्सुलेशन के, ताकि शोधकर्ता अमूर्तता और फ़ाइल जंपिंग में शामिल हुए जल्दी से पुनरावृति कर सकें।
- `ट्रेनर` एपीआई किसी भी मॉडल के साथ संगत नहीं है, यह केवल इस पुस्तकालय के मॉडल के लिए अनुकूलित है। यदि आप सामान्य मशीन लर्निंग के लिए उपयुक्त प्रशिक्षण लूप कार्यान्वयन की तलाश में हैं, तो कहीं और देखें।
- हमारे सर्वोत्तम प्रयासों के बावजूद, [उदाहरण निर्देशिका] (https://github.com/huggingface/transformers/tree/main/examples) में स्क्रिप्ट केवल उपयोग के मामले हैं। आपकी विशिष्ट समस्या के लिए, वे जरूरी नहीं कि बॉक्स से बाहर काम करें, और आपको कोड की कुछ पंक्तियों को सूट करने की आवश्यकता हो सकती है।
## स्थापित करना
### पिप का उपयोग करना
इस रिपॉजिटरी का परीक्षण Python 3.8+, Flax 0.4.1+, PyTorch 1.10+ और TensorFlow 2.6+ के तहत किया गया है।
आप [वर्चुअल एनवायरनमेंट] (https://docs.python.org/3/library/venv.html) में 🤗 ट्रांसफॉर्मर इंस्टॉल कर सकते हैं। यदि आप अभी तक पायथन के वर्चुअल एनवायरनमेंट से परिचित नहीं हैं, तो कृपया इसे [उपयोगकर्ता निर्देश] (https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/) पढ़ें।
सबसे पहले, पायथन के उस संस्करण के साथ एक आभासी वातावरण बनाएं जिसका आप उपयोग करने और उसे सक्रिय करने की योजना बना रहे हैं।
फिर, आपको Flax, PyTorch या TensorFlow में से किसी एक को स्थापित करने की आवश्यकता है। अपने प्लेटफ़ॉर्म पर इन फ़्रेमवर्क को स्थापित करने के लिए, [TensorFlow स्थापना पृष्ठ](https://www.tensorflow.org/install/), [PyTorch स्थापना पृष्ठ](https://pytorch.org/get-started /locally/# देखें) start-locally) या [Flax स्थापना पृष्ठ](https://github.com/google/flax#quick-install).
जब इनमें से कोई एक बैकएंड सफलतापूर्वक स्थापित हो जाता है, तो ट्रांसफॉर्मर निम्नानुसार स्थापित किए जा सकते हैं:
```bash
pip install transformers
```
यदि आप उपयोग के मामलों को आज़माना चाहते हैं या आधिकारिक रिलीज़ से पहले नवीनतम इन-डेवलपमेंट कोड का उपयोग करना चाहते हैं, तो आपको [सोर्स से इंस्टॉल करना होगा](https://huggingface.co/docs/transformers/installation#installing-from- स्रोत)।
### कोंडा का उपयोग करना
ट्रांसफॉर्मर संस्करण 4.0.0 के बाद से, हमारे पास एक कोंडा चैनल है: `हगिंगफेस`।
ट्रांसफॉर्मर कोंडा के माध्यम से निम्नानुसार स्थापित किया जा सकता है:
```shell script
conda install -c huggingface transformers
```
कोंडा के माध्यम से Flax, PyTorch, या TensorFlow में से किसी एक को स्थापित करने के लिए, निर्देशों के लिए उनके संबंधित स्थापना पृष्ठ देखें।
## मॉडल आर्किटेक्चर
[उपयोगकर्ता](https://huggingface.co/users) और [organization](https://huggingface.co) द्वारा ट्रांसफॉर्मर समर्थित [**सभी मॉडल चौकियों**](https://huggingface.co/models) /users) हगिंगफेस.को/ऑर्गनाइजेशन), सभी को बिना किसी बाधा के हगिंगफेस.को [मॉडल हब](https://huggingface.co) के साथ एकीकृत किया गया है।
चौकियों की वर्तमान संख्या: ![](https://img.shields.io/endpoint?url=https://huggingface.co/api/shields/models&color=brightgreen)
🤗 ट्रांसफॉर्मर वर्तमान में निम्नलिखित आर्किटेक्चर का समर्थन करते हैं (मॉडल के अवलोकन के लिए [यहां] देखें (https://huggingface.co/docs/transformers/model_summary))
1. **[ALBERT](https://huggingface.co/docs/transformers/model_doc/albert)** (Google Research and the Toyota Technological Institute at Chicago) साथ थीसिस [ALBERT: A Lite BERT for Self-supervised भाषा प्रतिनिधित्व सीखना](https://arxiv.org/abs/1909.11942), झेंझोंग लैन, मिंगदा चेन, सेबेस्टियन गुडमैन, केविन गिम्पेल, पीयूष शर्मा, राडू सोरिकट
1. **[ALIGN](https://huggingface.co/docs/transformers/model_doc/align)** (Google Research से) Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig. द्वाराअनुसंधान पत्र [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918) के साथ जारी किया गया
1. **[AltCLIP](https://huggingface.co/docs/transformers/model_doc/altclip)** (from BAAI) released with the paper [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) by Chen, Zhongzhi and Liu, Guang and Zhang, Bo-Wen and Ye, Fulong and Yang, Qinghong and Wu, Ledell.
1. **[Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer)** (from MIT) released with the paper [AST: Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778) by Yuan Gong, Yu-An Chung, James Glass.
1. **[Autoformer](https://huggingface.co/docs/transformers/model_doc/autoformer)** (from Tsinghua University) released with the paper [Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://arxiv.org/abs/2106.13008) by Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long.
1. **[Bark](https://huggingface.co/docs/transformers/model_doc/bark)** (from Suno) released in the repository [suno-ai/bark](https://github.com/suno-ai/bark) by Suno AI team.
1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (फेसबुक) साथ थीसिस [बार्ट: प्राकृतिक भाषा निर्माण, अनुवाद के लिए अनुक्रम-से-अनुक्रम पूर्व प्रशिक्षण , और समझ] (https://arxiv.org/pdf/1910.13461.pdf) पर निर्भर माइक लुईस, यिनहान लियू, नमन गोयल, मार्जन ग़ज़विनिनेजाद, अब्देलरहमान मोहम्मद, ओमर लेवी, वेस स्टोयानोव और ल्यूक ज़ेटलमॉयर
1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (से École polytechnique) साथ थीसिस [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) पर निर्भर Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis रिहाई।
1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (VinAI Research से) साथ में पेपर [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701)गुयेन लुओंग ट्रान, डुओंग मिन्ह ले और डाट क्वोक गुयेन द्वारा पोस्ट किया गया।
1. **[BEiT](https://huggingface.co/docs/transformers/model_doc/beit)** (Microsoft से) साथ में कागज [BEiT: BERT इमेज ट्रांसफॉर्मर्स का प्री-ट्रेनिंग](https://arxiv.org/abs/2106.08254) Hangbo Bao, Li Dong, Furu Wei द्वारा।
1. **[BERT](https://huggingface.co/docs/transformers/model_doc/bert)** (गूगल से) साथ वाला पेपर [बीईआरटी: प्री-ट्रेनिंग ऑफ डीप बिडायरेक्शनल ट्रांसफॉर्मर्स फॉर लैंग्वेज अंडरस्टैंडिंग](https://arxiv.org/abs/1810.04805) जैकब डेवलिन, मिंग-वेई चांग, ​​केंटन ली और क्रिस्टीना टौटानोवा द्वारा प्रकाशित किया गया था। .
1. **[BERT For Sequence Generation](https://huggingface.co/docs/transformers/model_doc/bert-generation)** (गूगल से) साथ देने वाला पेपर [सीक्वेंस जेनरेशन टास्क के लिए प्री-ट्रेंड चेकपॉइंट का इस्तेमाल करना](https ://arxiv.org/abs/1907.12461) साशा रोठे, शशि नारायण, अलियाक्सि सेवेरिन द्वारा।
1. **[BERTweet](https://huggingface.co/docs/transformers/model_doc/bertweet)** (VinAI Research से) साथ में पेपर [BERTweet: अंग्रेजी ट्वीट्स के लिए एक पूर्व-प्रशिक्षित भाषा मॉडल] (https://aclanthology.org/2020.emnlp-demos.2/) डाट क्वोक गुयेन, थान वु और अन्ह तुआन गुयेन द्वारा प्रकाशित।
1. **[BigBird-Pegasus](https://huggingface.co/docs/transformers/model_doc/bigbird_pegasus)** (गूगल रिसर्च से) साथ वाला पेपर [बिग बर्ड: ट्रांसफॉर्मर्स फॉर लॉन्गर सीक्वेंस](https://arxiv .org/abs/2007.14062) मंज़िल ज़हीर, गुरु गुरुगणेश, अविनावा दुबे, जोशुआ आइंस्ली, क्रिस अल्बर्टी, सैंटियागो ओंटानोन, फिलिप फाम, अनिरुद्ध रावुला, किफ़ान वांग, ली यांग, अमर अहमद द्वारा।
1. **[BigBird-RoBERTa](https://huggingface.co/docs/transformers/model_doc/big_bird)** (गूगल रिसर्च से) साथ में पेपर [बिग बर्ड: ट्रांसफॉर्मर्स फॉर लॉन्गर सीक्वेंस](https://arxiv.org/abs/2007.14062) मंज़िल ज़हीर, गुरु गुरुगणेश, अविनावा दुबे, जोशुआ आइंस्ली, क्रिस अल्बर्टी, सैंटियागो ओंटानन, फिलिप फाम द्वारा , अनिरुद्ध रावुला, किफ़ान वांग, ली यांग, अमर अहमद द्वारा पोस्ट किया गया।
1. **[BioGpt](https://huggingface.co/docs/transformers/model_doc/biogpt)** (from Microsoft Research AI4Science) released with the paper [BioGPT: generative pre-trained transformer for biomedical text generation and mining](https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbac409/6713511?guestAccessKey=a66d9b5d-4f83-4017-bb52-405815c907b9) by Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon and Tie-Yan Liu.
1. **[BiT](https://huggingface.co/docs/transformers/model_doc/bit)** (from Google AI) released with the paper [Big Transfer (BiT) by Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil Houlsby.
1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (फेसबुक से) साथ में कागज [एक ओपन-डोमेन चैटबॉट बनाने की विधि](https://arxiv.org /abs/2004.13637) स्टीफन रोलर, एमिली दीनन, नमन गोयल, दा जू, मैरी विलियमसन, यिनहान लियू, जिंग जू, मायल ओट, कर्ट शस्टर, एरिक एम। स्मिथ, वाई-लैन बॉरो, जेसन वेस्टन द्वारा।
1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (फेसबुक से) साथ में पेपर [एक ओपन-डोमेन चैटबॉट बनाने की रेसिपी](https://arxiv .org/abs/2004.13637) स्टीफन रोलर, एमिली दीनन, नमन गोयल, दा जू, मैरी विलियमसन, यिनहान लियू, जिंग जू, मायल ओट, कर्ट शस्टर, एरिक एम स्मिथ, वाई-लैन बॉरो, जेसन वेस्टन द्वारा।
1. **[BLIP](https://huggingface.co/docs/transformers/model_doc/blip)** (from Salesforce) released with the paper [BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation](https://arxiv.org/abs/2201.12086) by Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi.
1. **[BLIP-2](https://huggingface.co/docs/transformers/model_doc/blip-2)** (Salesforce से) Junnan Li, Dongxu Li, Silvio Savarese, Steven Hoi. द्वाराअनुसंधान पत्र [BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models](https://arxiv.org/abs/2301.12597) के साथ जारी किया गया
1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (from BigScience workshop) released by the [BigSicence Workshop](https://bigscience.huggingface.co/).
1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (एलेक्सा से) कागज के साथ [बीईआरटी के लिए ऑप्टिमल सबआर्किटेक्चर एक्सट्रैक्शन](https://arxiv.org/abs/ 2010.10499) एड्रियन डी विंटर और डैनियल जे पेरी द्वारा।
1. **[BridgeTower](https://huggingface.co/docs/transformers/model_doc/bridgetower)** (हरबिन इंस्टिट्यूट ऑफ़ टेक्नोलॉजी/माइक्रोसॉफ्ट रिसर्च एशिया/इंटेल लैब्स से) कागज के साथ [ब्रिजटॉवर: विजन-लैंग्वेज रिप्रेजेंटेशन लर्निंग में एनकोडर्स के बीच ब्रिज बनाना](<https://arxiv.org/abs/2206.08657>) by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan.
1. **[BROS](https://huggingface.co/docs/transformers/model_doc/bros)** (NAVER CLOVA से) Teakgyu Hong, Donghyun Kim, Mingi Ji, Wonseok Hwang, Daehyun Nam, Sungrae Park. द्वाराअनुसंधान पत्र [BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents](https://arxiv.org/abs/2108.04539) के साथ जारी किया गया
1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (Google अनुसंधान से) साथ में कागज [ByT5: पूर्व-प्रशिक्षित बाइट-टू-बाइट मॉडल के साथ एक टोकन-मुक्त भविष्य की ओर] (https://arxiv.org/abs/2105.13626) Linting Xue, Aditya Barua, Noah Constant, रामी अल-रफू, शरण नारंग, मिहिर काले, एडम रॉबर्ट्स, कॉलिन रैफेल द्वारा पोस्ट किया गया।
1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (इनरिया/फेसबुक/सोरबोन से) साथ में कागज [CamemBERT: एक टेस्टी फ्रेंच लैंग्वेज मॉडल](https:// arxiv.org/abs/1911.03894) लुई मार्टिन*, बेंजामिन मुलर*, पेड्रो जेवियर ऑर्टिज़ सुआरेज़*, योआन ड्यूपॉन्ट, लॉरेंट रोमरी, एरिक विलेमोन्टे डे ला क्लर्जरी, जैमे सेडाह और बेनोइट सगोट द्वारा।
1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (Google रिसर्च से) साथ में दिया गया पेपर [कैनाइन: प्री-ट्रेनिंग ए एफिशिएंट टोकनाइजेशन-फ्री एनकोडर फॉर लैंग्वेज रिप्रेजेंटेशन]( https://arxiv.org/abs/2103.06874) जोनाथन एच क्लार्क, डैन गैरेट, यूलिया टर्क, जॉन विएटिंग द्वारा।
1. **[Chinese-CLIP](https://huggingface.co/docs/transformers/model_doc/chinese_clip)** (from OFA-Sys) released with the paper [Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese](https://arxiv.org/abs/2211.01335) by An Yang, Junshu Pan, Junyang Lin, Rui Men, Yichang Zhang, Jingren Zhou, Chang Zhou.
1. **[CLAP](https://huggingface.co/docs/transformers/model_doc/clap)** (LAION-AI से) Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, Shlomo Dubnov. द्वाराअनुसंधान पत्र [Large-scale Contrastive Language-Audio Pretraining with Feature Fusion and Keyword-to-Caption Augmentation](https://arxiv.org/abs/2211.06687) के साथ जारी किया गया
1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (OpenAI से) साथ वाला पेपर [लर्निंग ट्रांसफरेबल विजुअल मॉडल फ्रॉम नेचुरल लैंग्वेज सुपरविजन](https://arxiv.org /abs/2103.00020) एलेक रैडफोर्ड, जोंग वूक किम, क्रिस हैलासी, आदित्य रमेश, गेब्रियल गोह, संध्या अग्रवाल, गिरीश शास्त्री, अमांडा एस्केल, पामेला मिश्किन, जैक क्लार्क, ग्रेचेन क्रुएगर, इल्या सुत्स्केवर द्वारा।
1. **[CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)** (from University of Göttingen) released with the paper [Image Segmentation Using Text and Image Prompts](https://arxiv.org/abs/2112.10003) by Timo Lüddecke and Alexander Ecker.
1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (सेल्सफोर्स से) साथ में पेपर [प्रोग्राम सिंथेसिस के लिए एक संवादात्मक प्रतिमान](https://arxiv.org/abs/2203.13474) एरिक निजकैंप, बो पैंग, हिरोआकी हयाशी, लिफू तू, हुआन वांग, यिंगबो झोउ, सिल्वियो सावरेस, कैमिंग जिओंग रिलीज।
1. **[CodeLlama](https://huggingface.co/docs/transformers/model_doc/llama_code)** (MetaAI से) Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, Gabriel Synnaeve. द्वाराअनुसंधान पत्र [Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/) के साथ जारी किया गया
1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (माइक्रोसॉफ्ट रिसर्च एशिया से) कागज के साथ [फास्ट ट्रेनिंग कन्वर्जेंस के लिए सशर्त डीईटीआर](https://arxiv. org/abs/2108.06152) डेपू मेंग, ज़ियाओकांग चेन, ज़ेजिया फैन, गैंग ज़ेंग, होउकियांग ली, युहुई युआन, लेई सन, जिंगडोंग वांग द्वारा।
1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (YituTech से) साथ में कागज [ConvBERT: स्पैन-आधारित डायनेमिक कनवल्शन के साथ BERT में सुधार](https://arxiv .org/abs/2008.02496) जिहांग जियांग, वीहाओ यू, डाकान झोउ, युनपेंग चेन, जियाशी फेंग, शुइचेंग यान द्वारा।
1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (Facebook AI से) साथ वाला पेपर [A ConvNet for the 2020s](https://arxiv.org/abs /2201.03545) ज़ुआंग लियू, हेंज़ी माओ, चाओ-युआन वू, क्रिस्टोफ़ फीचटेनहोफ़र, ट्रेवर डेरेल, सैनिंग ज़ी द्वारा।
1. **[ConvNeXTV2](https://huggingface.co/docs/transformers/model_doc/convnextv2)** (from Facebook AI) released with the paper [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://arxiv.org/abs/2301.00808) by Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, Saining Xie.
1. **[CPM](https://huggingface.co/docs/transformers/model_doc/cpm)** (सिंघुआ यूनिवर्सिटी से) साथ में पेपर [सीपीएम: ए लार्ज-स्केल जेनेरेटिव चाइनीज प्री-ट्रेंड लैंग्वेज मॉडल](https : //arxiv.org/abs/2012.00413) झेंग्यान झांग, जू हान, हाओ झोउ, पेई के, युक्सियन गु, डेमिंग ये, युजिया किन, युशेंग सु, हाओझे जी, जियान गुआन, फैंचाओ क्यूई, ज़ियाओझी वांग, यानान झेंग द्वारा , गुओयांग ज़ेंग, हुआनकी काओ, शेंगकी चेन, डाइक्सुआन ली, ज़ेनबो सन, ज़ियुआन लियू, मिनली हुआंग, वेंटाओ हान, जी तांग, जुआनज़ी ली, ज़ियाओयान झू, माओसोंग सन।
1. **[CPM-Ant](https://huggingface.co/docs/transformers/model_doc/cpmant)** (from OpenBMB) released by the [OpenBMB](https://www.openbmb.org/).
1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (सेल्सफोर्स से) साथ में पेपर [CTRL: ए कंडिशनल ट्रांसफॉर्मर लैंग्वेज मॉडल फॉर कंट्रोलेबल जेनरेशन](https://arxiv.org/abs/1909.05858) नीतीश शिरीष केसकर*, ब्रायन मैककैन*, लव आर. वार्ष्णेय, कैमिंग जिओंग और रिचर्ड द्वारा सोचर द्वारा जारी किया गया।
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (Microsoft से) साथ में दिया गया पेपर [CvT: इंट्रोड्यूसिंग कनवॉल्यूशन टू विजन ट्रांसफॉर्मर्स](https://arxiv.org/ एब्स/2103.15808) हैपिंग वू, बिन जिओ, नोएल कोडेला, मेंगचेन लियू, जियांग दाई, लू युआन, लेई झांग द्वारा।
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (फेसबुक से) साथ में कागज [Data2Vec: भाषण, दृष्टि और भाषा में स्व-पर्यवेक्षित सीखने के लिए एक सामान्य ढांचा] (https://arxiv.org/abs/2202.03555) एलेक्सी बाएव्स्की, वेई-निंग सू, कियानटोंग जू, अरुण बाबू, जियाताओ गु, माइकल औली द्वारा पोस्ट किया गया।
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (Microsoft से) साथ में दिया गया पेपर [DeBERta: डिकोडिंग-एन्हांस्ड BERT विद डिसेंटैंगल्ड अटेंशन](https://arxiv. org/abs/2006.03654) पेंगचेंग हे, ज़ियाओडोंग लियू, जियानफेंग गाओ, वीज़ू चेन द्वारा।
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (Microsoft से) साथ में दिया गया पेपर [DeBERTa: डिकोडिंग-एन्हांस्ड BERT विथ डिसेंन्गल्ड अटेंशन](https: //arxiv.org/abs/2006.03654) पेंगचेंग हे, ज़ियाओडोंग लियू, जियानफेंग गाओ, वीज़ू चेन द्वारा पोस्ट किया गया।
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (बर्कले/फेसबुक/गूगल से) पेपर के साथ [डिसीजन ट्रांसफॉर्मर: रीनफोर्समेंट लर्निंग वाया सीक्वेंस मॉडलिंग](https : //arxiv.org/abs/2106.01345) लिली चेन, केविन लू, अरविंद राजेश्वरन, किमिन ली, आदित्य ग्रोवर, माइकल लास्किन, पीटर एबील, अरविंद श्रीनिवास, इगोर मोर्डच द्वारा पोस्ट किया गया।
1. **[Deformable DETR](https://huggingface.co/docs/transformers/model_doc/deformable_detr)** (सेंसटाइम रिसर्च से) साथ में पेपर [डिफॉर्मेबल डीईटीआर: डिफॉर्मेबल ट्रांसफॉर्मर्स फॉर एंड-टू-एंड ऑब्जेक्ट डिटेक्शन] (https://arxiv.org/abs/2010.04159) Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, जिफेंग दाई द्वारा पोस्ट किया गया।
1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (फेसबुक से) साथ में पेपर [ट्रेनिंग डेटा-एफिशिएंट इमेज ट्रांसफॉर्मर और डिस्टिलेशन थ्रू अटेंशन](https://arxiv .org/abs/2012.12877) ह्यूगो टौव्रोन, मैथ्यू कॉर्ड, मैथिज्स डूज़, फ़्रांसिस्को मस्सा, एलेक्ज़ेंडर सबलेरोल्स, हर्वे जेगौ द्वारा।
1. **[DePlot](https://huggingface.co/docs/transformers/model_doc/deplot)** (Google AI से) Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, Yasemin Altun. द्वाराअनुसंधान पत्र [DePlot: One-shot visual language reasoning by plot-to-table translation](https://arxiv.org/abs/2212.10505) के साथ जारी किया गया
1. **[DETA](https://huggingface.co/docs/transformers/model_doc/deta)** (from The University of Texas at Austin) released with the paper [NMS Strikes Back](https://arxiv.org/abs/2212.06137) by Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, Philipp Krähenbühl.
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (फेसबुक से) साथ में कागज [ट्रांसफॉर्मर्स के साथ एंड-टू-एंड ऑब्जेक्ट डिटेक्शन](https://arxiv. org/abs/2005.12872) निकोलस कैरियन, फ़्रांसिस्को मस्सा, गेब्रियल सिनेव, निकोलस उसुनियर, अलेक्जेंडर किरिलोव, सर्गेई ज़ागोरुयको द्वारा।
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (माइक्रोसॉफ्ट रिसर्च से) कागज के साथ [DialoGPT: बड़े पैमाने पर जनरेटिव प्री-ट्रेनिंग फॉर कन्वर्सेशनल रिस्पांस जेनरेशन](https ://arxiv.org/abs/1911.00536) यिज़े झांग, सिकी सन, मिशेल गैली, येन-चुन चेन, क्रिस ब्रोकेट, जियांग गाओ, जियानफेंग गाओ, जिंगजिंग लियू, बिल डोलन द्वारा।
1. **[DiNAT](https://huggingface.co/docs/transformers/model_doc/dinat)** (from SHI Labs) released with the paper [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) by Ali Hassani and Humphrey Shi.
1. **[DINOv2](https://huggingface.co/docs/transformers/model_doc/dinov2)** (Meta AI से) Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, Piotr Bojanowski. द्वाराअनुसंधान पत्र [DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193) के साथ जारी किया गया
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (हगिंगफेस से), साथ में कागज [डिस्टिलबर्ट, बीईआरटी का डिस्टिल्ड वर्जन: छोटा, तेज, सस्ता और हल्का] (https://arxiv.org/abs/1910.01108) विक्टर सनह, लिसांड्रे डेब्यू और थॉमस वुल्फ द्वारा पोस्ट किया गया। यही तरीका GPT-2 को [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERta से [DistilRoBERta](https://github.com) पर कंप्रेस करने के लिए भी लागू किया जाता है। / हगिंगफेस/ट्रांसफॉर्मर्स/ट्री/मेन/उदाहरण/डिस्टिलेशन), बहुभाषी BERT से [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) और डिस्टिलबर्ट का जर्मन संस्करण।
1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (माइक्रोसॉफ्ट रिसर्च से) साथ में पेपर [DiT: सेल्फ सुपरवाइज्ड प्री-ट्रेनिंग फॉर डॉक्यूमेंट इमेज ट्रांसफॉर्मर](https://arxiv.org/abs/2203.02378) जुनलॉन्ग ली, यिहेंग जू, टेंगचाओ लव, लेई कुई, चा झांग द्वारा फुरु वेई द्वारा पोस्ट किया गया।
1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (NAVER से) साथ में कागज [OCR-मुक्त डॉक्यूमेंट अंडरस्टैंडिंग ट्रांसफॉर्मर](https://arxiv.org/abs /2111.15664) गीवूक किम, टीकग्यू होंग, मूनबिन यिम, जियोंग्योन नाम, जिनयॉन्ग पार्क, जिनयॉन्ग यिम, वोनसेओक ह्वांग, सांगडू यूं, डोंगयून हान, सेउंग्युन पार्क द्वारा।
1. **[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (फेसबुक से) साथ में पेपर [ओपन-डोमेन क्वेश्चन आंसरिंग के लिए डेंस पैसेज रिट्रीवल](https://arxiv. org/abs/2004.04906) व्लादिमीर करपुखिन, बरलास ओज़ुज़, सेवन मिन, पैट्रिक लुईस, लेडेल वू, सर्गेई एडुनोव, डैनकी चेन, और वेन-ताऊ यिह द्वारा।
1. **[DPT](https://huggingface.co/docs/transformers/master/model_doc/dpt)** (इंटेल लैब्स से) साथ में कागज [विज़न ट्रांसफॉर्मर्स फॉर डेंस प्रेडिक्शन](https://arxiv.org /abs/2103.13413) रेने रैनफ्टल, एलेक्सी बोचकोवस्की, व्लादलेन कोल्टन द्वारा।
1. **[EfficientFormer](https://huggingface.co/docs/transformers/model_doc/efficientformer)** (from Snap Research) released with the paper [EfficientFormer: Vision Transformers at MobileNetSpeed](https://arxiv.org/abs/2206.01191) by Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren.
1. **[EfficientNet](https://huggingface.co/docs/transformers/model_doc/efficientnet)** (from Google Brain) released with the paper [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan, Quoc V. Le.
1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (Google रिसर्च/स्टैनफोर्ड यूनिवर्सिटी से) साथ में दिया गया पेपर [इलेक्ट्रा: जेनरेटर के बजाय भेदभाव करने वाले के रूप में टेक्स्ट एन्कोडर्स का पूर्व-प्रशिक्षण] (https://arxiv.org/abs/2003.10555) केविन क्लार्क, मिन्ह-थांग लुओंग, क्वोक वी. ले, क्रिस्टोफर डी. मैनिंग द्वारा पोस्ट किया गया।
1. **[EnCodec](https://huggingface.co/docs/transformers/model_doc/encodec)** (Meta AI से) Alexandre Défossez, Jade Copet, Gabriel Synnaeve, Yossi Adi. द्वाराअनुसंधान पत्र [High Fidelity Neural Audio Compression](https://arxiv.org/abs/2210.13438) के साथ जारी किया गया
1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (Google रिसर्च से) साथ में दिया गया पेपर [सीक्वेंस जेनरेशन टास्क के लिए प्री-ट्रेंड चेकपॉइंट का इस्तेमाल करना](https:/ /arxiv.org/abs/1907.12461) साशा रोठे, शशि नारायण, अलियाक्सि सेवेरिन द्वारा।
1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)**(Baidu से) साथ देने वाला पेपर [ERNIE: एन्हांस्ड रिप्रेजेंटेशन थ्रू नॉलेज इंटीग्रेशन](https://arxiv.org/abs/1904.09223) यू सन, शुओहुआन वांग, युकुन ली, शिकुन फेंग, ज़ुई चेन, हान झांग, शिन तियान, डैनक्सियांग झू, हाओ तियान, हुआ वू द्वारा पोस्ट किया गया।
1. **[ErnieM](https://huggingface.co/docs/transformers/model_doc/ernie_m)** (Baidu से) Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang. द्वाराअनुसंधान पत्र [ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora](https://arxiv.org/abs/2012.15674) के साथ जारी किया गया
1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (मेटा AI से) ट्रांसफॉर्मर प्रोटीन भाषा मॉडल हैं। **ESM-1b** पेपर के साथ जारी किया गया था [ अलेक्जेंडर राइव्स, जोशुआ मेयर, टॉम सर्कु, सिद्धार्थ गोयल, ज़ेमिंग लिन द्वारा जैविक संरचना और कार्य असुरक्षित सीखने को 250 मिलियन प्रोटीन अनुक्रमों तक स्केल करने से उभरता है] (https://www.pnas.org/content/118/15/e2016239118) जेसन लियू, डेमी गुओ, मायल ओट, सी. लॉरेंस ज़िटनिक, जेरी मा और रॉब फर्गस। **ESM-1v** को पेपर के साथ जारी किया गया था [भाषा मॉडल प्रोटीन फ़ंक्शन पर उत्परिवर्तन के प्रभावों की शून्य-शॉट भविष्यवाणी को सक्षम करते हैं] (https://doi.org/10.1101/2021.07.09.450648) जोशुआ मेयर, रोशन राव, रॉबर्ट वेरकुइल, जेसन लियू, टॉम सर्कु और अलेक्जेंडर राइव्स द्वारा। **ESM-2** को पेपर के साथ जारी किया गया था [भाषा मॉडल विकास के पैमाने पर प्रोटीन अनुक्रम सटीक संरचना भविष्यवाणी को सक्षम करते हैं](https://doi.org/10.1101/2022.07.20.500902) ज़ेमिंग लिन, हलील अकिन, रोशन राव, ब्रायन ही, झोंगकाई झू, वेंटिंग लू, ए द्वारा लान डॉस सैंटोस कोस्टा, मरियम फ़ज़ल-ज़रंडी, टॉम सर्कू, साल कैंडिडो, अलेक्जेंडर राइव्स।
1. **[Falcon](https://huggingface.co/docs/transformers/model_doc/falcon)** (from Technology Innovation Institute) by Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme.
1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FLAN-UL2](https://huggingface.co/docs/transformers/model_doc/flan-ul2)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-ul2-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (CNRS से) साथ वाला पेपर [FlauBERT: Unsupervised Language Model Pre-training for फ़्रेंच](https://arxiv .org/abs/1912.05372) Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, बेंजामिन लेकोउटेक्स, अलेक्जेंड्रे अल्लाउज़ेन, बेनोइट क्रैबे, लॉरेंट बेसेसियर, डिडिएर श्वाब द्वारा।
1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (FLAVA: A फाउंडेशनल लैंग्वेज एंड विजन अलाइनमेंट मॉडल) (https://arxiv) साथ वाला पेपर .org/abs/2112.04482) अमनप्रीत सिंह, रोंगहांग हू, वेदानुज गोस्वामी, गुइल्यूम कुएरॉन, वोज्शिएक गालुबा, मार्कस रोहरबैक, और डौवे कीला द्वारा।
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (गूगल रिसर्च से) साथ वाला पेपर [FNet: मिक्सिंग टोकन विद फूरियर ट्रांसफॉर्म्स](https://arxiv.org /abs/2105.03824) जेम्स ली-थॉर्प, जोशुआ आइंस्ली, इल्या एकस्टीन, सैंटियागो ओंटानन द्वारा।
1. **[FocalNet](https://huggingface.co/docs/transformers/model_doc/focalnet)** (Microsoft Research से) Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao. द्वाराअनुसंधान पत्र [Focal Modulation Networks](https://arxiv.org/abs/2203.11926) के साथ जारी किया गया
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (सीएमयू/गूगल ब्रेन से) साथ में कागज [फ़नल-ट्रांसफॉर्मर: कुशल भाषा प्रसंस्करण के लिए अनुक्रमिक अतिरेक को छानना](https://arxiv.org/abs/2006.03236) जिहांग दाई, गुओकुन लाई, यिमिंग यांग, क्वोक वी. ले ​​द्वारा रिहाई।
1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (from Microsoft Research) released with the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang.
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (KAIST से) साथ वाला पेपर [वर्टिकल कटडेप्थ के साथ मोनोकुलर डेप्थ एस्टीमेशन के लिए ग्लोबल-लोकल पाथ नेटवर्क्स](https:/ /arxiv.org/abs/2201.07436) डोयोन किम, वूंगह्युन गा, प्युंगवान आह, डोंगग्यू जू, सेहवान चुन, जुनमो किम द्वारा।
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (OpenAI से) साथ में दिया गया पेपर [जेनरेटिव प्री-ट्रेनिंग द्वारा भाषा की समझ में सुधार](https://blog .openai.com/language-unsupervised/) एलेक रैडफोर्ड, कार्तिक नरसिम्हन, टिम सालिमन्स और इल्या सुत्स्केवर द्वारा।
1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (EleutherAI से) रिपॉजिटरी के साथ [EleutherAI/gpt-neo](https://github.com/ EleutherAI /gpt-neo) रिलीज। सिड ब्लैक, स्टेला बिडरमैन, लियो गाओ, फिल वांग और कॉनर लेही द्वारा पोस्ट किया गया।
1. **[GPT NeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox)** (EleutherAI से) पेपर के साथ जारी किया गया [GPT-NeoX-20B: एक ओपन-सोर्स ऑटोरेग्रेसिव लैंग्वेज मॉडल] (https://arxiv.org/abs/2204.06745) सिड ब्लैक, स्टेला बिडरमैन, एरिक हैलाहन, क्वेंटिन एंथोनी, लियो गाओ, लॉरेंस गोल्डिंग, होरेस हे, कॉनर लेही, काइल मैकडोनेल, जेसन फांग, माइकल पाइलर, यूएसवीएसएन साई प्रशांत द्वारा , शिवांशु पुरोहित, लारिया रेनॉल्ड्स, जोनाथन टो, बेन वांग, सैमुअल वेनबैक
1. **[GPT NeoX Japanese](https://huggingface.co/docs/transformers/model_doc/gpt_neox_japanese)** (अबेजा के जरिए) शिन्या ओटानी, ताकायोशी मकाबे, अनुज अरोड़ा, क्यो हटोरी द्वारा।
1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (ओपनएआई से) साथ में पेपर [लैंग्वेज मॉडल्स अनसुपरवाइज्ड मल्टीटास्क लर्नर्स हैं](https://blog.openai.com/better-language-models/) एलेक रैडफोर्ड*, जेफरी वू*, रेवन चाइल्ड, डेविड लुआन, डारियो एमोडी* द्वारा * और इल्या सुत्सकेवर** ने पोस्ट किया।
1. **[GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj)** (EleutherAI से) साथ वाला पेपर [kingoflolz/mesh-transformer-jax](https://github. com/kingoflolz/mesh-transformer-jax/) बेन वांग और अरन कोमात्सुजाकी द्वारा।
1. **[GPT-Sw3](https://huggingface.co/docs/transformers/model_doc/gpt-sw3)** (from AI-Sweden) released with the paper [Lessons Learned from GPT-SW3: Building the First Large-Scale Generative Language Model for Swedish](http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.376.pdf) by Ariel Ekgren, Amaru Cuba Gyllensten, Evangelia Gogoulou, Alice Heiman, Severine Verlinden, Joey Öhman, Fredrik Carlsson, Magnus Sahlgren.
1. **[GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode)** (BigCode से) Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, Logesh Kumar Umapathi, Carolyn Jane Anderson, Yangtian Zi, Joel Lamy Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry Abulkhanov, Manuel Romero, Michael Lappert, Francesco De Toni, Bernardo García del Río, Qian Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab Mangrulkar, David Lansky, Huu Nguyen, Danish Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau, Yacine Jernite, Sean Hughes, Daniel Fried, Arjun Guha, Harm de Vries, Leandro von Werra. द्वाराअनुसंधान पत्र [SantaCoder: don't reach for the stars!](https://arxiv.org/abs/2301.03988) के साथ जारी किया गया
1. **[GPTSAN-japanese](https://huggingface.co/docs/transformers/model_doc/gptsan-japanese)** released in the repository [tanreinama/GPTSAN](https://github.com/tanreinama/GPTSAN/blob/main/report/model.md) by Toshiyuki Sakamoto(tanreinama).
1. **[Graphormer](https://huggingface.co/docs/transformers/model_doc/graphormer)** (from Microsoft) released with the paper [Do Transformers Really Perform Bad for Graph Representation?](https://arxiv.org/abs/2106.05234) by Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu.
1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (UCSD, NVIDIA से) साथ में कागज [GroupViT: टेक्स्ट सुपरविजन से सिमेंटिक सेगमेंटेशन इमर्जेस](https://arxiv .org/abs/2202.11094) जियारुई जू, शालिनी डी मेलो, सिफ़ी लियू, वोनमिन बायन, थॉमस ब्रेउएल, जान कौट्ज़, ज़ियाओलोंग वांग द्वारा।
1. **[HerBERT](https://huggingface.co/docs/transformers/model_doc/herbert)** (Allegro.pl, AGH University of Science and Technology से) Piotr Rybak, Robert Mroczkowski, Janusz Tracz, Ireneusz Gawlik. द्वाराअनुसंधान पत्र [KLEJ: Comprehensive Benchmark for Polish Language Understanding](https://www.aclweb.org/anthology/2020.acl-main.111.pdf) के साथ जारी किया गया
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (फेसबुक से) साथ में पेपर [ह्यूबर्ट: सेल्फ सुपरवाइज्ड स्पीच रिप्रेजेंटेशन लर्निंग बाय मास्क्ड प्रेडिक्शन ऑफ हिडन यूनिट्स](https ://arxiv.org/abs/2106.07447) वेई-निंग सू, बेंजामिन बोल्टे, याओ-हंग ह्यूबर्ट त्साई, कुशाल लखोटिया, रुस्लान सालाखुतदीनोव, अब्देलरहमान मोहम्मद द्वारा।
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (बर्कले से) साथ में कागज [I-BERT: Integer-only BERT Quantization](https:// arxiv.org/abs/2101.01321) सेहून किम, अमीर घोलमी, ज़ेवेई याओ, माइकल डब्ल्यू महोनी, कर्ट केटज़र द्वारा।
1. **[IDEFICS](https://huggingface.co/docs/transformers/model_doc/idefics)** (from HuggingFace) released with the paper [OBELICS: An Open Web-Scale Filtered Dataset of Interleaved Image-Text Documents](https://huggingface.co/papers/2306.16527) by Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov, Thomas Wang, Siddharth Karamcheti, Alexander M. Rush, Douwe Kiela, Matthieu Cord, Victor Sanh.
1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (from OpenAI) released with the paper [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever.
1. **[Informer](https://huggingface.co/docs/transformers/model_doc/informer)** (from Beihang University, UC Berkeley, Rutgers University, SEDD Company) released with the paper [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting](https://arxiv.org/abs/2012.07436) by Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
1. **[InstructBLIP](https://huggingface.co/docs/transformers/model_doc/instructblip)** (Salesforce से) Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, Steven Hoi. द्वाराअनुसंधान पत्र [InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning](https://arxiv.org/abs/2305.06500) के साथ जारी किया गया
1. **[Jukebox](https://huggingface.co/docs/transformers/model_doc/jukebox)** (from OpenAI) released with the paper [Jukebox: A Generative Model for Music](https://arxiv.org/pdf/2005.00341.pdf) by Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever.
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou.
1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (माइक्रोसॉफ्ट रिसर्च एशिया से) साथ देने वाला पेपर [लेआउटएलएमवी3: यूनिफाइड टेक्स्ट और इमेज मास्किंग के साथ दस्तावेज़ एआई के लिए पूर्व-प्रशिक्षण](https://arxiv.org/abs/2204.08387) युपन हुआंग, टेंगचाओ लव, लेई कुई, युटोंग लू, फुरु वेई द्वारा पोस्ट किया गया।
1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutxlm)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (मेटा AI से) साथ वाला पेपर [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https:/ /arxiv.org/abs/2104.01136) बेन ग्राहम, अलाएल्डिन एल-नौबी, ह्यूगो टौवरन, पियरे स्टॉक, आर्मंड जौलिन, हर्वे जेगौ, मैथिज डूज़ द्वारा।
1. **[LiLT](https://huggingface.co/docs/transformers/model_doc/lilt)** (दक्षिण चीन प्रौद्योगिकी विश्वविद्यालय से) साथ में कागज [LiLT: एक सरल लेकिन प्रभावी भाषा-स्वतंत्र लेआउट ट्रांसफार्मर संरचित दस्तावेज़ समझ के लिए](https://arxiv.org/abs/2202.13669) जियापेंग वांग, लियानवेन जिन, काई डिंग द्वारा पोस्ट किया गया।
1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (The FAIR team of Meta AI से) Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample. द्वाराअनुसंधान पत्र [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971) के साथ जारी किया गया
1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (The FAIR team of Meta AI से) Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom.. द्वाराअनुसंधान पत्र [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/XXX) के साथ जारी किया गया
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (मैंडी गुओ, जोशुआ आइंस्ली, डेविड यूथस, सैंटियागो ओंटानन, जियानमो नि, यूं-हुआन सुंग, यिनफेई यांग द्वारा पोस्ट किया गया।
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (स्टूडियो औसिया से) साथ में पेपर [LUKE: डीप कॉन्टेक्स्टुअलाइज्ड एंटिटी रिप्रेजेंटेशन विद एंटिटी-अवेयर सेल्फ-अटेंशन](https ://arxiv.org/abs/2010.01057) Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto द्वारा।
1. **[LXMERT](https://huggingface.co/docs/transformers/model_doc/lxmert)** (UNC चैपल हिल से) साथ में पेपर [LXMERT: ओपन-डोमेन क्वेश्चन के लिए ट्रांसफॉर्मर से क्रॉस-मोडलिटी एनकोडर रिप्रेजेंटेशन सीखना Answering](https://arxiv.org/abs/1908.07490) हाओ टैन और मोहित बंसल द्वारा।
1. **[M-CTC-T](https://huggingface.co/docs/transformers/model_doc/mctct)** (from Facebook) released with the paper [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) by Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert.
1. **[M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100)** (फेसबुक से) साथ देने वाला पेपर [बियॉन्ड इंग्लिश-सेंट्रिक मल्टीलिंगुअल मशीन ट्रांसलेशन](https://arxiv.org/ एब्स/2010.11125) एंजेला फैन, श्रुति भोसले, होल्गर श्वेन्क, झी मा, अहमद अल-किश्की, सिद्धार्थ गोयल, मनदीप बैनेस, ओनूर सेलेबी, गुइल्लाम वेन्जेक, विश्रव चौधरी, नमन गोयल, टॉम बर्च, विटाली लिपचिंस्की, सर्गेई एडुनोव, एडौर्ड द्वारा ग्रेव, माइकल औली, आर्मंड जौलिन द्वारा पोस्ट किया गया।
1. **[MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)** Jörg द्वारा [OPUS](http://opus.nlpl.eu/) डेटा से प्रशिक्षित मशीनी अनुवाद मॉडल पोस्ट किया गया टाइडेमैन द्वारा। [मैरियन फ्रेमवर्क](https://marian-nmt.github.io/) माइक्रोसॉफ्ट ट्रांसलेटर टीम द्वारा विकसित।
1. **[MarkupLM](https://huggingface.co/docs/transformers/model_doc/markuplm)** (माइक्रोसॉफ्ट रिसर्च एशिया से) साथ में पेपर [मार्कअपएलएम: विजुअली-रिच डॉक्यूमेंट अंडरस्टैंडिंग के लिए टेक्स्ट और मार्कअप लैंग्वेज का प्री-ट्रेनिंग] (https://arxiv.org/abs/2110.08518) जुनलॉन्ग ली, यिहेंग जू, लेई कुई, फुरु द्वारा वी द्वारा पोस्ट किया गया।
1. **[Mask2Former](https://huggingface.co/docs/transformers/model_doc/mask2former)** (FAIR and UIUC से) Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Rohit Girdhar. द्वाराअनुसंधान पत्र [Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527) के साथ जारी किया गया
1. **[MaskFormer](https://huggingface.co/docs/transformers/model_doc/maskformer)** (मेटा और UIUC से) पेपर के साथ जारी किया गया [प्रति-पिक्सेल वर्गीकरण वह सब नहीं है जिसकी आपको सिमेंटिक सेगमेंटेशन की आवश्यकता है] (https://arxiv.org/abs/2107.06278) बोवेन चेंग, अलेक्जेंडर जी. श्विंग, अलेक्जेंडर किरिलोव द्वारा >>>>>> रिबेस ठीक करें
1. **[MatCha](https://huggingface.co/docs/transformers/model_doc/matcha)** (Google AI से) Fangyu Liu, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Yasemin Altun, Nigel Collier, Julian Martin Eisenschlos. द्वाराअनुसंधान पत्र [MatCha: Enhancing Visual Language Pretraining with Math Reasoning and Chart Derendering](https://arxiv.org/abs/2212.09662) के साथ जारी किया गया
1. **[mBART](https://huggingface.co/docs/transformers/model_doc/mbart)** (फेसबुक से) साथ में पेपर [न्यूरल मशीन ट्रांसलेशन के लिए मल्टीलिंगुअल डीनोइजिंग प्री-ट्रेनिंग](https://arxiv. org/abs/2001.08210) यिनहान लियू, जियाताओ गु, नमन गोयल, जियान ली, सर्गेई एडुनोव, मार्जन ग़ज़विनिनेजाद, माइक लुईस, ल्यूक ज़ेटलमॉयर द्वारा।
1. **[mBART-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (फेसबुक से) साथ में पेपर [एक्स्टेंसिबल बहुभाषी प्रीट्रेनिंग और फाइनट्यूनिंग के साथ बहुभाषी अनुवाद](https://arxiv युकिंग टैंग, चाउ ट्रान, जियान ली, पेंग-जेन चेन, नमन गोयल, विश्रव चौधरी, जियाताओ गु, एंजेला फैन द्वारा .org/abs/2008.00401)।
1. **[MEGA](https://huggingface.co/docs/transformers/model_doc/mega)** (Facebook से) Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and Luke Zettlemoyer. द्वाराअनुसंधान पत्र [Mega: Moving Average Equipped Gated Attention](https://arxiv.org/abs/2209.10655) के साथ जारी किया गया
1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (NVIDIA से) कागज के साथ [Megatron-LM: मॉडल का उपयोग करके बहु-अरब पैरामीटर भाषा मॉडल का प्रशिक्षण Parallelism](https://arxiv.org/abs/1909.08053) मोहम्मद शोएबी, मोस्टोफा पटवारी, राउल पुरी, पैट्रिक लेग्रेस्ले, जेरेड कैस्पर और ब्रायन कैटानज़ारो द्वारा।
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (NVIDIA से) साथ वाला पेपर [Megatron-LM: ट्रेनिंग मल्टी-बिलियन पैरामीटर लैंग्वेज मॉडल्स यूजिंग मॉडल पैरेललिज़्म] (https://arxiv.org/abs/1909.08053) मोहम्मद शोएबी, मोस्टोफा पटवारी, राउल पुरी, पैट्रिक लेग्रेस्ले, जेरेड कैस्पर और ब्रायन कैटानज़ारो द्वारा पोस्ट किया गया।
1. **[MGP-STR](https://huggingface.co/docs/transformers/model_doc/mgp-str)** (Alibaba Research से) Peng Wang, Cheng Da, and Cong Yao. द्वाराअनुसंधान पत्र [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592) के साथ जारी किया गया
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (फ्रॉम Studio Ousia) साथ में पेपर [mLUKE: द पावर ऑफ एंटिटी रिप्रेजेंटेशन इन मल्टीलिंगुअल प्रीट्रेन्ड लैंग्वेज मॉडल्स](https://arxiv.org/abs/2110.08151) रयोकन री, इकुया यामाडा, और योशिमासा त्सुरोका द्वारा।
1. **[MMS](https://huggingface.co/docs/transformers/model_doc/mms)** (Facebook से) Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky, Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi, Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning Hsu, Alexis Conneau, Michael Auli. द्वाराअनुसंधान पत्र [Scaling Speech Technology to 1,000+ Languages](https://arxiv.org/abs/2305.13516) के साथ जारी किया गया
1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (सीएमयू/गूगल ब्रेन से) साथ में कागज [मोबाइलबर्ट: संसाधन-सीमित उपकरणों के लिए एक कॉम्पैक्ट टास्क-अज्ञेय बीईआरटी] (https://arxiv.org/abs/2004.02984) Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, और Denny Zhou द्वारा पोस्ट किया गया।
1. **[MobileNetV1](https://huggingface.co/docs/transformers/model_doc/mobilenet_v1)** (from Google Inc.) released with the paper [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) by Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam.
1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (from Google Inc.) released with the paper [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) by Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen.
1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (Apple से) साथ में कागज [MobileViT: लाइट-वेट, जनरल-पर्पस, और मोबाइल-फ्रेंडली विजन ट्रांसफॉर्मर] (https://arxiv.org/abs/2110.02178) सचिन मेहता और मोहम्मद रस्तगरी द्वारा पोस्ट किया गया।
1. **[MobileViTV2](https://huggingface.co/docs/transformers/model_doc/mobilevitv2)** (Apple से) Sachin Mehta and Mohammad Rastegari. द्वाराअनुसंधान पत्र [Separable Self-attention for Mobile Vision Transformers](https://arxiv.org/abs/2206.02680) के साथ जारी किया गया
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
1. **[MPT](https://huggingface.co/docs/transformers/model_doc/mpt)** (MosaiML से) the MosaicML NLP Team. द्वाराअनुसंधान पत्र [llm-foundry](https://github.com/mosaicml/llm-foundry/) के साथ जारी किया गया
1. **[MRA](https://huggingface.co/docs/transformers/model_doc/mra)** (the University of Wisconsin - Madison से) Zhanpeng Zeng, Sourav Pal, Jeffery Kline, Glenn M Fung, Vikas Singh. द्वाराअनुसंधान पत्र [Multi Resolution Analysis (MRA)](https://arxiv.org/abs/2207.10284) के साथ जारी किया गया
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (Google AI से) साथ वाला पेपर [mT5: एक व्यापक बहुभाषी पूर्व-प्रशिक्षित टेक्स्ट-टू-टेक्स्ट ट्रांसफॉर्मर]( https://arxiv.org/abs/2010.11934) लिंटिंग ज़ू, नोआ कॉन्सटेंट, एडम रॉबर्ट्स, मिहिर काले, रामी अल-रफू, आदित्य सिद्धांत, आदित्य बरुआ, कॉलिन रैफेल द्वारा पोस्ट किया गया।
1. **[MusicGen](https://huggingface.co/docs/transformers/model_doc/musicgen)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (from RUC AI Box) released with the paper [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen.
1. **[NAT](https://huggingface.co/docs/transformers/model_doc/nat)** (from SHI Labs) released with the paper [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143) by Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi.
1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (हुआवेई नूह के आर्क लैब से) साथ में कागज़ [NEZHA: चीनी भाषा समझ के लिए तंत्रिका प्रासंगिक प्रतिनिधित्व](https :/ /arxiv.org/abs/1909.00204) जुन्किउ वेई, ज़ियाओज़े रेन, ज़िआओगुआंग ली, वेनयोंग हुआंग, यी लियाओ, याशेंग वांग, जियाशू लिन, शिन जियांग, जिओ चेन और कुन लियू द्वारा।
1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (फ्रॉम मेटा) साथ में पेपर [नो लैंग्वेज लेफ्ट बिहाइंड: स्केलिंग ह्यूमन-सेंटेड मशीन ट्रांसलेशन] (https://arxiv.org/abs/2207.04672) एनएलएलबी टीम द्वारा प्रकाशित।
1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (Meta से) the NLLB team. द्वाराअनुसंधान पत्र [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) के साथ जारी किया गया
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (विस्कॉन्सिन विश्वविद्यालय - मैडिसन से) साथ में कागज [Nyströmformer: A Nyström- आधारित एल्गोरिथम आत्म-ध्यान का अनुमान लगाने के लिए ](https://arxiv.org/abs/2102.03902) युनयांग ज़िओंग, झानपेंग ज़ेंग, रुद्रसिस चक्रवर्ती, मिंगक्सिंग टैन, ग्लेन फंग, यिन ली, विकास सिंह द्वारा पोस्ट किया गया।
1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (SHI Labs से) पेपर [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) जितेश जैन, जिआचेन ली, मांगटिक चिउ, अली हसनी, निकिता ओरलोव, हम्फ्री शि के द्वारा जारी किया गया है।
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released in [Open-Llama](https://github.com/s-JoL/Open-Llama).
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al.
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (Google AI से) साथ में कागज [विज़न ट्रांसफॉर्मर्स के साथ सिंपल ओपन-वोकैबुलरी ऑब्जेक्ट डिटेक्शन](https:/ /arxiv.org/abs/2205.06230) मैथियास मिंडरर, एलेक्सी ग्रिट्सेंको, ऑस्टिन स्टोन, मैक्सिम न्यूमैन, डिर्क वीसेनबोर्न, एलेक्सी डोसोवित्स्की, अरविंद महेंद्रन, अनुराग अर्नब, मुस्तफा देहघानी, ज़ुओरन शेन, जिओ वांग, ज़ियाओहुआ झाई, थॉमस किफ़, और नील हॉल्सबी द्वारा पोस्ट किया गया।
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (Google की ओर से) साथ में दिया गया पेपर [लंबे इनपुट सारांश के लिए ट्रांसफ़ॉर्मरों को बेहतर तरीके से एक्सटेंड करना](https://arxiv .org/abs/2208.04347) जेसन फांग, याओ झाओ, पीटर जे लियू द्वारा।
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (दीपमाइंड से) साथ में पेपर [पर्सीवर आईओ: संरचित इनपुट और आउटपुट के लिए एक सामान्य वास्तुकला] (https://arxiv.org/abs/2107.14795) एंड्रयू जेगल, सेबेस्टियन बोरग्यूड, जीन-बैप्टिस्ट अलायराक, कार्ल डोर्श, कैटलिन इओनेस्कु, डेविड द्वारा डिंग, स्कंद कोप्पुला, डैनियल ज़ोरान, एंड्रयू ब्रॉक, इवान शेलहैमर, ओलिवियर हेनाफ, मैथ्यू एम। बोट्विनिक, एंड्रयू ज़िसरमैन, ओरिओल विनियल्स, जोआओ कैरेरा द्वारा पोस्ट किया गया।
1. **[Persimmon](https://huggingface.co/docs/transformers/main/model_doc/persimmon)** (ADEPT से) Erich Elsen, Augustus Odena, Maxwell Nye, Sağnak Taşırlar, Tri Dao, Curtis Hawthorne, Deepak Moparthi, Arushi Somani. द्वाराअनुसंधान पत्र [blog post](https://www.adept.ai/blog/persimmon-8b) के साथ जारी किया गया
1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (VinAI Research से) कागज के साथ [PhoBERT: वियतनामी के लिए पूर्व-प्रशिक्षित भाषा मॉडल](https://www .aclweb.org/anthology/2020.findings-emnlp.92/) डैट क्वोक गुयेन और अन्ह तुआन गुयेन द्वारा पोस्ट किया गया।
1. **[Pix2Struct](https://huggingface.co/docs/transformers/model_doc/pix2struct)** (Google से) Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova. द्वाराअनुसंधान पत्र [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding](https://arxiv.org/abs/2210.03347) के साथ जारी किया गया
1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (UCLA NLP से) साथ वाला पेपर [प्रोग्राम अंडरस्टैंडिंग एंड जेनरेशन के लिए यूनिफाइड प्री-ट्रेनिंग](https://arxiv .org/abs/2103.06333) वसी उद्दीन अहमद, सैकत चक्रवर्ती, बैशाखी रे, काई-वेई चांग द्वारा।
1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (from Sea AI Labs) released with the paper [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) by Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng.
1. **[Pop2Piano](https://huggingface.co/docs/transformers/model_doc/pop2piano)** released with the paper [Pop2Piano : Pop Audio-based Piano Cover Generation](https://arxiv.org/abs/2211.00895) by Jongho Choi, Kyogu Lee.
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (माइक्रोसॉफ्ट रिसर्च से) साथ में पेपर [ProphetNet: प्रेडिक्टिंग फ्यूचर एन-ग्राम फॉर सीक्वेंस-टू-सीक्वेंस प्री-ट्रेनिंग ](https://arxiv.org/abs/2001.04063) यू यान, वीज़ेन क्यूई, येयुन गोंग, दयाहेंग लियू, नान डुआन, जिउशेंग चेन, रुओफ़ेई झांग और मिंग झोउ द्वारा पोस्ट किया गया।
1. **[PVT](https://huggingface.co/docs/transformers/model_doc/pvt)** (Nanjing University, The University of Hong Kong etc. से) Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao. द्वाराअनुसंधान पत्र [Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions](https://arxiv.org/pdf/2102.12122.pdf) के साथ जारी किया गया
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (NVIDIA से) साथ वाला पेपर [डीप लर्निंग इंफ़ेक्शन के लिए इंटीजर क्वांटिज़ेशन: प्रिंसिपल्स एंड एम्पिरिकल इवैल्यूएशन](https:// arxiv.org/abs/2004.09602) हाओ वू, पैट्रिक जुड, जिआओजी झांग, मिखाइल इसेव और पॉलियस माइकेविसियस द्वारा।
1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (फेसबुक से) साथ में कागज [रिट्रीवल-ऑगमेंटेड जेनरेशन फॉर नॉलेज-इंटेंसिव एनएलपी टास्क](https://arxiv .org/abs/2005.11401) पैट्रिक लुईस, एथन पेरेज़, अलेक्जेंड्रा पिक्टस, फैबियो पेट्रोनी, व्लादिमीर कारपुखिन, नमन गोयल, हेनरिक कुटलर, माइक लुईस, वेन-ताउ यिह, टिम रॉकटाशेल, सेबस्टियन रिडेल, डौवे कीला द्वारा।
1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (Google अनुसंधान से) केल्विन गु, केंटन ली, ज़ोरा तुंग, पानुपोंग पसुपत और मिंग-वेई चांग द्वारा साथ में दिया गया पेपर [REALM: रिट्रीवल-ऑगमेंटेड लैंग्वेज मॉडल प्री-ट्रेनिंग](https://arxiv.org/abs/2002.08909)।
1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (from Google Research) released with the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
1. **[RegNet](https://huggingface.co/docs/transformers/model_doc/regnet)** (META रिसर्च से) [डिज़ाइनिंग नेटवर्क डिज़ाइन स्पेस] (https://arxiv.org/) पेपर के साथ जारी किया गया एब्स/2003.13678) इलिजा राडोसावोविक, राज प्रतीक कोसाराजू, रॉस गिर्शिक, कैमिंग ही, पिओटर डॉलर द्वारा।
1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (गूगल रिसर्च से) साथ वाला पेपर [पूर्व-प्रशिक्षित भाषा मॉडल में एम्बेडिंग कपलिंग पर पुनर्विचार](https://arxiv .org/pdf/2010.12821.pdf) ह्युंग वोन चुंग, थिबॉल्ट फ़ेवरी, हेनरी त्साई, एम. जॉनसन, सेबेस्टियन रुडर द्वारा।
1. **[ResNet](https://huggingface.co/docs/transformers/model_doc/resnet)** (माइक्रोसॉफ्ट रिसर्च से) [डीप रेसिडुअल लर्निंग फॉर इमेज रिकग्निशन] (https://arxiv. org/abs/1512.03385) कैमिंग हे, जियांग्यु झांग, शाओकिंग रेन, जियान सन द्वारा।
1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (फेसबुक से), साथ में कागज [मजबूत रूप से अनुकूलित BERT प्रीट्रेनिंग दृष्टिकोण](https://arxiv.org/abs /1907.11692) यिनहान लियू, मायल ओट, नमन गोयल, जिंगफेई डू, मंदार जोशी, डैनकी चेन, ओमर लेवी, माइक लुईस, ल्यूक ज़ेटलमॉयर, वेसेलिन स्टोयानोव द्वारा।
1. **[RoBERTa-PreLayerNorm](https://huggingface.co/docs/transformers/model_doc/roberta-prelayernorm)** (from Facebook) released with the paper [fairseq: A Fast, Extensible Toolkit for Sequence Modeling](https://arxiv.org/abs/1904.01038) by Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli.
1. **[RoCBert](https://huggingface.co/docs/transformers/model_doc/roc_bert)** (from WeChatAI) released with the paper [RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining](https://aclanthology.org/2022.acl-long.65.pdf) by HuiSu, WeiweiShi, XiaoyuShen, XiaoZhou, TuoJi, JiaruiFang, JieZhou.
1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (झुईई टेक्नोलॉजी से), साथ में पेपर [रोफॉर्मर: रोटरी पोजिशन एंबेडिंग के साथ एन्हांस्ड ट्रांसफॉर्मर] (https://arxiv.org/pdf/2104.09864v1.pdf) जियानलिन सु और यू लू और शेंगफेंग पैन और बो वेन और युनफेंग लियू द्वारा प्रकाशित।
1. **[RWKV](https://huggingface.co/docs/transformers/model_doc/rwkv)** (Bo Peng से) Bo Peng. द्वाराअनुसंधान पत्र [this repo](https://github.com/BlinkDL/RWKV-LM) के साथ जारी किया गया
1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (from NVIDIA) released with the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo.
1. **[Segment Anything](https://huggingface.co/docs/transformers/model_doc/sam)** (Meta AI से) Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alex Berg, Wan-Yen Lo, Piotr Dollar, Ross Girshick. द्वाराअनुसंधान पत्र [Segment Anything](https://arxiv.org/pdf/2304.02643v1.pdf) के साथ जारी किया गया
1. **[SEW](https://huggingface.co/docs/transformers/model_doc/sew)** (ASAPP से) साथ देने वाला पेपर [भाषण पहचान के लिए अनसुपरवाइज्ड प्री-ट्रेनिंग में परफॉर्मेंस-एफिशिएंसी ट्रेड-ऑफ्स](https ://arxiv.org/abs/2109.06870) फेलिक्स वू, क्वांगयुन किम, जिंग पैन, क्यू हान, किलियन क्यू. वेनबर्गर, योव आर्टज़ी द्वारा।
1. **[SEW-D](https://huggingface.co/docs/transformers/model_doc/sew_d)** (ASAPP से) साथ में पेपर [भाषण पहचान के लिए अनसुपरवाइज्ड प्री-ट्रेनिंग में परफॉर्मेंस-एफिशिएंसी ट्रेड-ऑफ्स] (https://arxiv.org/abs/2109.06870) फेलिक्स वू, क्वांगयुन किम, जिंग पैन, क्यू हान, किलियन क्यू. वेनबर्गर, योआव आर्टज़ी द्वारा पोस्ट किया गया।
1. **[SpeechT5](https://huggingface.co/docs/transformers/model_doc/speecht5)** (from Microsoft Research) released with the paper [SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing](https://arxiv.org/abs/2110.07205) by Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li, Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, Furu Wei.
1. **[SpeechToTextTransformer](https://huggingface.co/docs/transformers/model_doc/speech_to_text)** (फेसबुक से), साथ में पेपर [फेयरसेक S2T: फास्ट स्पीच-टू-टेक्स्ट मॉडलिंग विद फेयरसेक](https: //arxiv.org/abs/2010.05171) चांगहान वांग, यूं तांग, जुताई मा, ऐनी वू, दिमित्रो ओखोनको, जुआन पिनो द्वारा पोस्ट किया गया。
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (फेसबुक से) साथ में पेपर [लार्ज-स्केल सेल्फ- एंड सेमी-सुपरवाइज्ड लर्निंग फॉर स्पीच ट्रांसलेशन](https://arxiv.org/abs/2104.06678) चांगहान वांग, ऐनी वू, जुआन पिनो, एलेक्सी बेवस्की, माइकल औली, एलेक्सिस द्वारा Conneau द्वारा पोस्ट किया गया।
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (तेल अवीव यूनिवर्सिटी से) साथ में पेपर [स्पैन सिलेक्शन को प्री-ट्रेनिंग करके कुछ-शॉट क्वेश्चन आंसरिंग](https:// arxiv.org/abs/2101.00438) ओरि राम, युवल कर्स्टन, जोनाथन बेरेंट, अमीर ग्लोबर्सन, ओमर लेवी द्वारा।
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (बर्कले से) कागज के साथ [SqueezeBERT: कुशल तंत्रिका नेटवर्क के बारे में NLP को कंप्यूटर विज़न क्या सिखा सकता है?](https: //arxiv.org/abs/2006.11316) फॉरेस्ट एन. इनडोला, अल्बर्ट ई. शॉ, रवि कृष्णा, और कर्ट डब्ल्यू. केटज़र द्वारा।
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (MBZUAI से) Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan. द्वाराअनुसंधान पत्र [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) के साथ जारी किया गया
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (माइक्रोसॉफ्ट से) साथ में कागज [स्वाइन ट्रांसफॉर्मर: शिफ्टेड विंडोज का उपयोग कर पदानुक्रमित विजन ट्रांसफॉर्मर](https://arxiv .org/abs/2103.14030) ज़ी लियू, युटोंग लिन, यू काओ, हान हू, यिक्सुआन वेई, झेंग झांग, स्टीफन लिन, बैनिंग गुओ द्वारा।
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (Microsoft से) साथ वाला पेपर [Swin Transformer V2: स्केलिंग अप कैपेसिटी एंड रेजोल्यूशन](https:// ज़ी लियू, हान हू, युटोंग लिन, ज़ुलिआंग याओ, ज़ेंडा ज़ी, यिक्सुआन वेई, जिया निंग, यू काओ, झेंग झांग, ली डोंग, फुरु वेई, बैनिंग गुओ द्वारा arxiv.org/abs/2111.09883।
1. **[Swin2SR](https://huggingface.co/docs/transformers/model_doc/swin2sr)** (from University of Würzburg) released with the paper [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345) by Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte.
1. **[SwitchTransformers](https://huggingface.co/docs/transformers/model_doc/switch_transformers)** (from Google) released with the paper [Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity](https://arxiv.org/abs/2101.03961) by William Fedus, Barret Zoph, Noam Shazeer.
1. **[T5](https://huggingface.co/docs/transformers/model_doc/t5)** (来自 Google AI)कॉलिन रैफेल और नोम शज़ीर और एडम रॉबर्ट्स और कैथरीन ली और शरण नारंग और माइकल मटेना द्वारा साथ में पेपर [एक एकीकृत टेक्स्ट-टू-टेक्स्ट ट्रांसफॉर्मर के साथ स्थानांतरण सीखने की सीमा की खोज] (https://arxiv.org/abs/1910.10683) और यांकी झोउ और वेई ली और पीटर जे लियू।
1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (Google AI से) साथ वाला पेपर [google-research/text-to-text-transfer- ट्रांसफॉर्मर](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) कॉलिन रैफेल और नोम शज़ीर और एडम रॉबर्ट्स और कैथरीन ली और शरण नारंग द्वारा और माइकल मटेना और यांकी झोउ और वेई ली और पीटर जे लियू।
1. **[Table Transformer](https://huggingface.co/docs/transformers/model_doc/table-transformer)** (माइक्रोसॉफ्ट रिसर्च से) साथ में पेपर [पबटेबल्स-1एम: टूवर्ड्स कॉम्प्रिहेंसिव टेबल एक्सट्रैक्शन फ्रॉम अनस्ट्रक्चर्ड डॉक्यूमेंट्स ](https://arxiv.org/abs/2110.00061) ब्रैंडन स्मॉक, रोहित पेसाला, रॉबिन अब्राहम द्वारा पोस्ट किया गया।
1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (Google AI से) साथ में कागज [TAPAS: पूर्व-प्रशिक्षण के माध्यम से कमजोर पर्यवेक्षण तालिका पार्सिंग](https:// arxiv.org/abs/2004.02349) जोनाथन हर्ज़िग, पावेल क्रिज़िस्तोफ़ नोवाक, थॉमस मुलर, फ्रांसेस्को पिकिन्नो और जूलियन मार्टिन ईसेन्च्लोस द्वारा।
1. **[TAPEX](https://huggingface.co/docs/transformers/model_doc/tapex)** (माइक्रोसॉफ्ट रिसर्च से) साथ में पेपर [TAPEX: टेबल प्री-ट्रेनिंग थ्रू लर्निंग अ न्यूरल SQL एक्ज़ीक्यूटर](https: //arxiv.org/abs/2107.07653) कियान लियू, बेई चेन, जियाकी गुओ, मोर्टेज़ा ज़ियादी, ज़ेकी लिन, वीज़ू चेन, जियान-गुआंग लू द्वारा पोस्ट किया गया।
1. **[Time Series Transformer](https://huggingface.co/docs/transformers/model_doc/time_series_transformer)** (from HuggingFace).
1. **[TimeSformer](https://huggingface.co/docs/transformers/model_doc/timesformer)** (from Facebook) released with the paper [Is Space-Time Attention All You Need for Video Understanding?](https://arxiv.org/abs/2102.05095) by Gedas Bertasius, Heng Wang, Lorenzo Torresani.
1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/model_doc/trajectory_transformers)** (from the University of California at Berkeley) released with the paper [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine
1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (Google/CMU की ओर से) कागज के साथ [संस्करण-एक्स: एक ब्लॉग मॉडल चौकस चौक मॉडल मॉडल] (https://arxivorg/abs/1901.02860) क्वोकोक वी. ले, रुस्लैन सलाखुतदी
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (from Microsoft) released with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
1. **[TVLT](https://huggingface.co/docs/transformers/model_doc/tvlt)** (from UNC Chapel Hill) released with the paper [TVLT: Textless Vision-Language Transformer](https://arxiv.org/abs/2209.14156) by Zineng Tang, Jaemin Cho, Yixin Nie, Mohit Bansal.
1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
1. **[UMT5](https://huggingface.co/docs/transformers/model_doc/umt5)** (Google Research से) Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, Noah Constant. द्वाराअनुसंधान पत्र [UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining](https://openreview.net/forum?id=kXwdL1cWOAi) के साथ जारी किया गया
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (माइक्रोसॉफ्ट रिसर्च से) साथ में दिया गया पेपर [UniSpeech: यूनिफाइड स्पीच रिप्रेजेंटेशन लर्निंग विद लेबलेड एंड अनलेबल्ड डेटा](https:/ /arxiv.org/abs/2101.07597) चेंगई वांग, यू वू, याओ कियान, केनिची कुमातानी, शुजी लियू, फुरु वेई, माइकल ज़ेंग, ज़ुएदोंग हुआंग द्वारा।
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (माइक्रोसॉफ्ट रिसर्च से) कागज के साथ [UNISPEECH-SAT: यूनिवर्सल स्पीच रिप्रेजेंटेशन लर्निंग विद स्पीकर अवेयर प्री-ट्रेनिंग ](https://arxiv.org/abs/2110.05752) सानयुआन चेन, यू वू, चेंग्यी वांग, झेंगयांग चेन, झूओ चेन, शुजी लियू, जियान वू, याओ कियान, फुरु वेई, जिन्यु ली, जियांगज़ान यू द्वारा पोस्ट किया गया।
1. **[UPerNet](https://huggingface.co/docs/transformers/model_doc/upernet)** (from Peking University) released with the paper [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221) by Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun.
1. **[VAN](https://huggingface.co/docs/transformers/model_doc/van)** (सिंघुआ यूनिवर्सिटी और ननकाई यूनिवर्सिटी से) साथ में पेपर [विजुअल अटेंशन नेटवर्क](https://arxiv.org/ pdf/2202.09741.pdf) मेंग-हाओ गुओ, चेंग-ज़े लू, झेंग-निंग लियू, मिंग-मिंग चेंग, शि-मिन हू द्वारा।
1. **[VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)** (मल्टीमीडिया कम्प्यूटिंग ग्रुप, नानजिंग यूनिवर्सिटी से) साथ में पेपर [वीडियोएमएई: मास्क्ड ऑटोएन्कोडर स्व-पर्यवेक्षित वीडियो प्री-ट्रेनिंग के लिए डेटा-कुशल सीखने वाले हैं] (https://arxiv.org/abs/2203.12602) ज़ान टोंग, यिबिंग सॉन्ग, जुए द्वारा वांग, लिमिन वांग द्वारा पोस्ट किया गया।
1. **[ViLT](https://huggingface.co/docs/transformers/model_doc/vilt)** (NAVER AI Lab/Kakao Enterprise/Kakao Brain से) साथ में कागज [ViLT: Vision-and-Language Transformer बिना कनवल्शन या रीजन सुपरविजन](https://arxiv.org/abs/2102.03334) वोनजे किम, बोक्यूंग सोन, इल्डू किम द्वारा पोस्ट किया गया।
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (गूगल एआई से) कागज के साथ [एक इमेज इज़ वर्थ 16x16 वर्ड्स: ट्रांसफॉर्मर्स फॉर इमेज रिकॉग्निशन एट स्केल](https://arxiv.org/abs/2010.11929) एलेक्सी डोसोवित्स्की, लुकास बेयर, अलेक्जेंडर कोलेसनिकोव, डिर्क वीसेनबोर्न, शियाओहुआ झाई, थॉमस अनटरथिनर, मुस्तफा देहघानी, मैथियास मिंडरर, जॉर्ज हेगोल्ड, सिल्वेन गेली, जैकब उस्ज़कोरेइट द्वारा हॉल्सबी द्वारा पोस्ट किया गया।
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (UCLA NLP से) साथ वाला पेपर [VisualBERT: A Simple and Performant Baseline for Vision and Language](https:/ /arxiv.org/pdf/1908.03557) लियुनियन हेरोल्ड ली, मार्क यात्स्कर, दा यिन, चो-जुई हसीह, काई-वेई चांग द्वारा।
1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VitDet](https://huggingface.co/docs/transformers/model_doc/vitdet)** (Meta AI से) Yanghao Li, Hanzi Mao, Ross Girshick, Kaiming He. द्वाराअनुसंधान पत्र [Exploring Plain Vision Transformer Backbones for Object Detection](https://arxiv.org/abs/2203.16527) के साथ जारी किया गया
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (मेटा एआई से) साथ में कागज [मास्कड ऑटोएन्कोडर स्केलेबल विजन लर्नर्स हैं](https://arxiv.org/ एब्स/2111.06377) कैमिंग हे, ज़िनेली चेन, सेनिंग ज़ी, यांगहो ली, पिओट्र डॉलर, रॉस गिर्शिक द्वारा।
1. **[ViTMatte](https://huggingface.co/docs/transformers/main/model_doc/vitmatte)** (HUST-VL से) Jingfeng Yao, Xinggang Wang, Shusheng Yang, Baoyuan Wang. द्वाराअनुसंधान पत्र [ViTMatte: Boosting Image Matting with Pretrained Plain Vision Transformers](https://arxiv.org/abs/2305.15272) के साथ जारी किया गया
1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (मेटा एआई से) साथ में कागज [लेबल-कुशल सीखने के लिए मास्क्ड स्याम देश के नेटवर्क](https://arxiv. org/abs/2204.07141) महमूद असरान, मथिल्डे कैरन, ईशान मिश्रा, पियोट्र बोजानोवस्की, फ्लोरियन बोर्डेस, पास्कल विंसेंट, आर्मंड जौलिन, माइकल रब्बत, निकोलस बल्लास द्वारा।
1. **[VITS](https://huggingface.co/docs/transformers/model_doc/vits)** (Kakao Enterprise से) Jaehyeon Kim, Jungil Kong, Juhee Son. द्वाराअनुसंधान पत्र [Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech](https://arxiv.org/abs/2106.06103) के साथ जारी किया गया
1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (from Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) by Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid.
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (फेसबुक एआई से) साथ में पेपर [wav2vec 2.0: ए फ्रेमवर्क फॉर सेल्फ-सुपरवाइज्ड लर्निंग ऑफ स्पीच रिप्रेजेंटेशन] (https://arxiv.org/abs/2006.11477) एलेक्सी बेवस्की, हेनरी झोउ, अब्देलरहमान मोहम्मद, माइकल औली द्वारा।
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (Facebook AI से) साथ वाला पेपर [FAIRSEQ S2T: FAIRSEQ के साथ फास्ट स्पीच-टू-टेक्स्ट मॉडलिंग ](https://arxiv.org/abs/2010.05171) चांगहान वांग, यूं तांग, जुताई मा, ऐनी वू, सरव्या पोपुरी, दिमित्रो ओखोनको, जुआन पिनो द्वारा पोस्ट किया गया।
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (Facebook AI से) साथ वाला पेपर [सरल और प्रभावी जीरो-शॉट क्रॉस-लिंगुअल फोनेम रिकॉग्निशन](https:/ /arxiv.org/abs/2109.11680) कियानटोंग जू, एलेक्सी बाएव्स्की, माइकल औली द्वारा।
1. **[WavLM](https://huggingface.co/docs/transformers/model_doc/wavlm)** (माइक्रोसॉफ्ट रिसर्च से) पेपर के साथ जारी किया गया [WavLM: फुल स्टैक के लिए बड़े पैमाने पर स्व-पर्यवेक्षित पूर्व-प्रशिक्षण स्पीच प्रोसेसिंग] (https://arxiv.org/abs/2110.13900) सानयुआन चेन, चेंगयी वांग, झेंगयांग चेन, यू वू, शुजी लियू, ज़ुओ चेन, जिन्यु ली, नाओयुकी कांडा, ताकुया योशियोका, ज़िओंग जिओ, जियान वू, लॉन्ग झोउ, शुओ रेन, यानमिन कियान, याओ कियान, जियान वू, माइकल ज़ेंग, फुरु वेई।
1. **[Whisper](https://huggingface.co/docs/transformers/model_doc/whisper)** (OpenAI से) साथ में कागज [बड़े पैमाने पर कमजोर पर्यवेक्षण के माध्यम से मजबूत भाषण पहचान](https://cdn. openai.com/papers/whisper.pdf) एलेक रैडफोर्ड, जोंग वूक किम, ताओ जू, ग्रेग ब्रॉकमैन, क्रिस्टीन मैकलीवे, इल्या सुत्स्केवर द्वारा।
1. **[X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)** (माइक्रोसॉफ्ट रिसर्च से) कागज के साथ [एक्सपैंडिंग लैंग्वेज-इमेज प्रीट्रेन्ड मॉडल फॉर जनरल वीडियो रिकग्निशन](https: //arxiv.org/abs/2208.02816) बोलिन नी, होउवेन पेंग, मिंगाओ चेन, सोंगयांग झांग, गाओफेंग मेंग, जियानलोंग फू, शिमिंग जियांग, हैबिन लिंग द्वारा।
1. **[X-MOD](https://huggingface.co/docs/transformers/model_doc/xmod)** (Meta AI से) Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James Cross, Sebastian Riedel, Mikel Artetxe. द्वाराअनुसंधान पत्र [Lifting the Curse of Multilinguality by Pre-training Modular Transformers](http://dx.doi.org/10.18653/v1/2022.naacl-main.255) के साथ जारी किया गया
1. **[XGLM](https://huggingface.co/docs/transformers/model_doc/xglm)** (From Facebook AI) released with the paper [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li.
1. **[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (फेसबुक से) साथ में पेपर [क्रॉस-लिंगुअल लैंग्वेज मॉडल प्रीट्रेनिंग] (https://arxiv.org/abs/1901.07291) गिलाउम लैम्पल और एलेक्सिस कोनो द्वारा।
1. **[XLM-ProphetNet](https://huggingface.co/docs/transformers/model_doc/xlm-prophetnet)** (माइक्रोसॉफ्ट रिसर्च से) साथ में कागज [ProphetNet: प्रेडिक्टिंग फ्यूचर एन-ग्राम फॉर सीक्वेंस-टू- सीक्वेंस प्री-ट्रेनिंग](https://arxiv.org/abs/2001.04063) यू यान, वीज़ेन क्यूई, येयुन गोंग, दयाहेंग लियू, नान डुआन, जिउशेंग चेन, रुओफ़ेई झांग और मिंग झोउ द्वारा।
1. **[XLM-RoBERTa](https://huggingface.co/docs/transformers/model_doc/xlm-roberta)** (फेसबुक एआई से), साथ में पेपर [अनसुपरवाइज्ड क्रॉस-लिंगुअल रिप्रेजेंटेशन लर्निंग एट स्केल] (https://arxiv.org/abs/1911.02116) एलेक्सिस कोन्यू*, कार्तिकेय खंडेलवाल*, नमन गोयल, विश्रव चौधरी, गिलाउम वेनज़ेक, फ्रांसिस्को गुज़मैन द्वारा , एडौर्ड ग्रेव, मायल ओट, ल्यूक ज़ेटलमॉयर और वेसेलिन स्टोयानोव द्वारा।
1. **[XLM-RoBERTa-XL](https://huggingface.co/docs/transformers/model_doc/xlm-roberta-xl)** (Facebook AI से) साथ में कागज [बहुभाषी नकाबपोश भाषा के लिए बड़े पैमाने पर ट्रांसफॉर्मर ] मॉडलिंग](https://arxiv.org/abs/2105.00572) नमन गोयल, जिंगफेई डू, मायल ओट, गिरि अनंतरामन, एलेक्सिस कोनो द्वारा पोस्ट किया गया।
1. **[XLM-V](https://huggingface.co/docs/transformers/model_doc/xlm-v)** (from Meta AI) released with the paper [XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models](https://arxiv.org/abs/2301.10472) by Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Naman Goyal, Marjan Ghazvininejad, Luke Zettlemoyer, Madian Khabsa.
1. **[XLNet](https://huggingface.co/docs/transformers/model_doc/xlnet)** (Google/CMU से) साथ वाला पेपर [XLNet: जनरलाइज्ड ऑटोरेग्रेसिव प्रीट्रेनिंग फॉर लैंग्वेज अंडरस्टैंडिंग](https://arxiv ज़ीलिन यांग*, ज़िहांग दाई*, यिमिंग यांग, जैम कार्बोनेल, रुस्लान सलाखुतदीनोव, क्वोक वी. ले ​​द्वारा .org/abs/1906.08237)।
1. **[XLS-R](https://huggingface.co/docs/transformers/model_doc/xls_r)** (Facebook AI से) साथ वाला पेपर [XLS-R: सेल्फ सुपरवाइज्ड क्रॉस-लिंगुअल स्पीच रिप्रेजेंटेशन लर्निंग एट स्केल](https://arxiv.org/abs/2111.09296) अरुण बाबू, चांगहान वांग, एंड्रोस तजंद्रा, कुशाल लखोटिया, कियानटोंग जू, नमन गोयल, कृतिका सिंह, पैट्रिक वॉन प्लैटन, याथार्थ सराफ, जुआन पिनो, एलेक्सी बेवस्की, एलेक्सिस कोन्यू, माइकल औली द्वारा पोस्ट किया गया।
1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (फेसबुक एआई से) साथ में पेपर [अनसुपरवाइज्ड क्रॉस-लिंगुअल रिप्रेजेंटेशन लर्निंग फॉर स्पीच रिकग्निशन] (https://arxiv.org/abs/2006.13979) एलेक्सिस कोन्यू, एलेक्सी बेवस्की, रोनन कोलोबर्ट, अब्देलरहमान मोहम्मद, माइकल औली द्वारा।
1. **[YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos)** (हुआझोंग यूनिवर्सिटी ऑफ साइंस एंड टेक्नोलॉजी से) साथ में पेपर [यू ओनली लुक एट वन सीक्वेंस: रीथिंकिंग ट्रांसफॉर्मर इन विज़न थ्रू ऑब्जेक्ट डिटेक्शन](https://arxiv.org/abs/2106.00666) युक्सिन फेंग, बेनचेंग लियाओ, जिंगगैंग वांग, जेमिन फेंग, जियांग क्यूई, रुई वू, जियानवेई नीयू, वेन्यू लियू द्वारा पोस्ट किया गया।
1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (विस्कॉन्सिन विश्वविद्यालय - मैडिसन से) साथ में पेपर [यू ओनली सैंपल (लगभग) ज़ानपेंग ज़ेंग, युनयांग ज़िओंग द्वारा , सत्य एन. रवि, शैलेश आचार्य, ग्लेन फंग, विकास सिंह द्वारा पोस्ट किया गया।
1. एक नए मॉडल में योगदान देना चाहते हैं? नए मॉडल जोड़ने में आपका मार्गदर्शन करने के लिए हमारे पास एक **विस्तृत मार्गदर्शिका और टेम्प्लेट** है। आप उन्हें [`टेम्पलेट्स`](./templates) निर्देशिका में पा सकते हैं। पीआर शुरू करने से पहले [योगदान दिशानिर्देश] (./CONTRIBUTING.md) देखना और अनुरक्षकों से संपर्क करना या प्रतिक्रिया प्राप्त करने के लिए एक नया मुद्दा खोलना याद रखें।
यह जांचने के लिए कि क्या किसी मॉडल में पहले से ही Flax, PyTorch या TensorFlow का कार्यान्वयन है, या यदि उसके पास Tokenizers लाइब्रेरी में संबंधित टोकन है, तो [यह तालिका](https://huggingface.co/docs/transformers/index#supported) देखें। -फ्रेमवर्क)।
इन कार्यान्वयनों का परीक्षण कई डेटासेट पर किया गया है (देखें केस स्क्रिप्ट का उपयोग करें) और वैनिला कार्यान्वयन के लिए तुलनात्मक रूप से प्रदर्शन करना चाहिए। आप उपयोग के मामले के दस्तावेज़ [इस अनुभाग](https://huggingface.co/docs/transformers/examples) में व्यवहार का विवरण पढ़ सकते हैं।
## अधिक समझें
|अध्याय | विवरण |
|-|-|
| [दस्तावेज़ीकरण](https://huggingface.co/transformers/) | पूरा एपीआई दस्तावेज़ीकरण और ट्यूटोरियल |
| [कार्य सारांश](https://huggingface.co/docs/transformers/task_summary) | ट्रांसफॉर्मर समर्थित कार्य |
| [प्रीप्रोसेसिंग ट्यूटोरियल](https://huggingface.co/docs/transformers/preprocessing) | मॉडल के लिए डेटा तैयार करने के लिए `टोकनाइज़र` का उपयोग करना |
| [प्रशिक्षण और फाइन-ट्यूनिंग](https://huggingface.co/docs/transformers/training) | PyTorch/TensorFlow के ट्रेनिंग लूप या `ट्रेनर` API में ट्रांसफॉर्मर द्वारा दिए गए मॉडल का उपयोग करें |
| [क्विक स्टार्ट: ट्वीकिंग एंड यूज़ केस स्क्रिप्ट्स](https://github.com/huggingface/transformers/tree/main/examples) | विभिन्न कार्यों के लिए केस स्क्रिप्ट का उपयोग करें |
| [मॉडल साझा करना और अपलोड करना](https://huggingface.co/docs/transformers/model_sharing) | समुदाय के साथ अपने फाइन टूनड मॉडल अपलोड और साझा करें |
| [माइग्रेशन](https://huggingface.co/docs/transformers/migration) | `पाइटोरच-ट्रांसफॉर्मर्स` या `पाइटोरच-प्रीट्रेनड-बर्ट` से ट्रांसफॉर्मर में माइग्रेट करना |
## उद्धरण
हमने आधिकारिक तौर पर इस लाइब्रेरी का [पेपर](https://www.aclweb.org/anthology/2020.emnlp-demos.6/) प्रकाशित किया है, अगर आप ट्रान्सफ़ॉर्मर्स लाइब्रेरी का उपयोग करते हैं, तो कृपया उद्धृत करें:
```bibtex
@inproceedings{wolf-etal-2020-transformers,
title = "Transformers: State-of-the-Art Natural Language Processing",
author = "Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and Rémi Louf and Morgan Funtowicz and Joe Davison and Sam Shleifer and Patrick von Platen and Clara Ma and Yacine Jernite and Julien Plu and Canwen Xu and Teven Le Scao and Sylvain Gugger and Mariama Drame and Quentin Lhoest and Alexander M. Rush",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = oct,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.emnlp-demos.6",
pages = "38--45"
}
```

View File

@ -1,561 +0,0 @@
<!---
Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
<!---
A useful guide for English-Traditional Japanese translation of Hugging Face documentation
- Use square quotes, e.g.,「引用」
Dictionary
API: API(翻訳しない)
add: 追加
checkpoint: チェックポイント
code: コード
community: コミュニティ
confidence: 信頼度
dataset: データセット
documentation: ドキュメント
example: 例
finetune: 微調整
Hugging Face: Hugging Face(翻訳しない)
implementation: 実装
inference: 推論
library: ライブラリ
module: モジュール
NLP/Natural Language Processing: NLPと表示される場合は翻訳されず、Natural Language Processingと表示される場合は翻訳される
online demos: オンラインデモ
pipeline: pipeline(翻訳しない)
pretrained/pretrain: 学習済み
Python data structures (e.g., list, set, dict): リスト、セット、ディクショナリと訳され、括弧内は原文英語
repository: repository(翻訳しない)
summary: 概要
token-: token-(翻訳しない)
Trainer: Trainer(翻訳しない)
transformer: transformer(翻訳しない)
tutorial: チュートリアル
user: ユーザ
-->
<p align="center">
<br>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers_logo_name.png" width="400"/>
<br>
<p>
<p align="center">
<a href="https://circleci.com/gh/huggingface/transformers">
<img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/main">
</a>
<a href="https://github.com/huggingface/transformers/blob/main/LICENSE">
<img alt="GitHub" src="https://img.shields.io/github/license/huggingface/transformers.svg?color=blue">
</a>
<a href="https://huggingface.co/docs/transformers/index">
<img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/docs/transformers/index.svg?down_color=red&down_message=offline&up_message=online">
</a>
<a href="https://github.com/huggingface/transformers/releases">
<img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/transformers.svg">
</a>
<a href="https://github.com/huggingface/transformers/blob/main/CODE_OF_CONDUCT.md">
<img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg">
</a>
<a href="https://zenodo.org/badge/latestdoi/155220641"><img src="https://zenodo.org/badge/155220641.svg" alt="DOI"></a>
</p>
<h4 align="center">
<p>
<a href="https://github.com/huggingface/transformers/">English</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hans.md">简体中文</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hant.md">繁體中文</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ko.md">한국어</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_es.md">Español</a> |
<b>日本語</b> |
<a href="https://github.com/huggingface/transformers/blob/main/README_hd.md">हिन्दी</a>
<p>
</h4>
<h3 align="center">
<p>JAX、PyTorch、TensorFlowのための最先端機械学習</p>
</h3>
<h3 align="center">
<a href="https://hf.co/course"><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/course_banner.png"></a>
</h3>
🤗Transformersは、テキスト、視覚、音声などの異なるモダリティに対してタスクを実行するために、事前に学習させた数千のモデルを提供します。
これらのモデルは次のような場合に適用できます:
* 📝 テキストは、テキストの分類、情報抽出、質問応答、要約、翻訳、テキスト生成などのタスクのために、100以上の言語に対応しています。
* 🖼️ 画像分類、物体検出、セグメンテーションなどのタスクのための画像。
* 🗣️ 音声は、音声認識や音声分類などのタスクに使用します。
トランスフォーマーモデルは、テーブル質問応答、光学文字認識、スキャン文書からの情報抽出、ビデオ分類、視覚的質問応答など、**複数のモダリティを組み合わせた**タスクも実行可能です。
🤗Transformersは、与えられたテキストに対してそれらの事前学習されたモデルを素早くダウンロードして使用し、あなた自身のデータセットでそれらを微調整し、私たちの[model hub](https://huggingface.co/models)でコミュニティと共有するためのAPIを提供します。同時に、アーキテクチャを定義する各Pythonモジュールは完全にスタンドアロンであり、迅速な研究実験を可能にするために変更することができます。
🤗Transformersは[Jax](https://jax.readthedocs.io/en/latest/)、[PyTorch](https://pytorch.org/)、[TensorFlow](https://www.tensorflow.org/)という3大ディープラーニングライブラリーに支えられ、それぞれのライブラリをシームレスに統合しています。片方でモデルを学習してから、もう片方で推論用にロードするのは簡単なことです。
## オンラインデモ
[model hub](https://huggingface.co/models)から、ほとんどのモデルのページで直接テストすることができます。また、パブリックモデル、プライベートモデルに対して、[プライベートモデルのホスティング、バージョニング、推論API](https://huggingface.co/pricing)を提供しています。
以下はその一例です:
自然言語処理にて:
- [BERTによるマスクドワード補完](https://huggingface.co/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France)
- [Electraによる名前実体認識](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city)
- [GPT-2によるテキスト生成](https://huggingface.co/gpt2?text=A+long+time+ago%2C+)
- [RoBERTaによる自然言語推論](https://huggingface.co/roberta-large-mnli?text=The+dog+was+lost.+Nobody+lost+any+animal)
- [BARTによる要約](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct)
- [DistilBERTによる質問応答](https://huggingface.co/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species)
- [T5による翻訳](https://huggingface.co/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin)
コンピュータビジョンにて:
- [ViTによる画像分類](https://huggingface.co/google/vit-base-patch16-224)
- [DETRによる物体検出](https://huggingface.co/facebook/detr-resnet-50)
- [SegFormerによるセマンティックセグメンテーション](https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512)
- [DETRによるパプティックセグメンテーション](https://huggingface.co/facebook/detr-resnet-50-panoptic)
オーディオにて:
- [Wav2Vec2による自動音声認識](https://huggingface.co/facebook/wav2vec2-base-960h)
- [Wav2Vec2によるキーワード検索](https://huggingface.co/superb/wav2vec2-base-superb-ks)
マルチモーダルなタスクにて:
- [ViLTによる視覚的質問応答](https://huggingface.co/dandelin/vilt-b32-finetuned-vqa)
Hugging Faceチームによって作られた **[トランスフォーマーを使った書き込み](https://transformer.huggingface.co)** は、このリポジトリのテキスト生成機能の公式デモである。
## Hugging Faceチームによるカスタム・サポートをご希望の場合
<a target="_blank" href="https://huggingface.co/support">
<img alt="HuggingFace Expert Acceleration Program" src="https://cdn-media.huggingface.co/marketing/transformers/new-support-improved.png" style="max-width: 600px; border: 1px solid #eee; border-radius: 4px; box-shadow: 0 1px 2px 0 rgba(0, 0, 0, 0.05);">
</a><br>
## クイックツアー
与えられた入力(テキスト、画像、音声、...)に対してすぐにモデルを使うために、我々は`pipeline`というAPIを提供しております。pipelineは、学習済みのモデルと、そのモデルの学習時に使用された前処理をグループ化したものです。以下は、肯定的なテキストと否定的なテキストを分類するためにpipelineを使用する方法です:
```python
>>> from transformers import pipeline
# Allocate a pipeline for sentiment-analysis
>>> classifier = pipeline('sentiment-analysis')
>>> classifier('We are very happy to introduce pipeline to the transformers repository.')
[{'label': 'POSITIVE', 'score': 0.9996980428695679}]
```
2行目のコードでは、pipelineで使用される事前学習済みモデルをダウンロードしてキャッシュし、3行目では与えられたテキストに対してそのモデルを評価します。ここでは、答えは99.97%の信頼度で「ポジティブ」です。
自然言語処理だけでなく、コンピュータビジョンや音声処理においても、多くのタスクにはあらかじめ訓練された`pipeline`が用意されている。例えば、画像から検出された物体を簡単に抽出することができる:
``` python
>>> import requests
>>> from PIL import Image
>>> from transformers import pipeline
# Download an image with cute cats
>>> url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample.png"
>>> image_data = requests.get(url, stream=True).raw
>>> image = Image.open(image_data)
# Allocate a pipeline for object detection
>>> object_detector = pipeline('object-detection')
>>> object_detector(image)
[{'score': 0.9982201457023621,
'label': 'remote',
'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
{'score': 0.9960021376609802,
'label': 'remote',
'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
{'score': 0.9954745173454285,
'label': 'couch',
'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
{'score': 0.9988006353378296,
'label': 'cat',
'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9986783862113953,
'label': 'cat',
'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}]
```
ここでは、画像から検出されたオブジェクトのリストが得られ、オブジェクトを囲むボックスと信頼度スコアが表示されます。左側が元画像、右側が予測結果を表示したものです:
<h3 align="center">
<a><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample.png" width="400"></a>
<a><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample_post_processed.png" width="400"></a>
</h3>
[このチュートリアル](https://huggingface.co/docs/transformers/task_summary)では、`pipeline`APIでサポートされているタスクについて詳しく説明しています。
`pipeline`に加えて、与えられたタスクに学習済みのモデルをダウンロードして使用するために必要なのは、3行のコードだけです。以下はPyTorchのバージョンです:
```python
>>> from transformers import AutoTokenizer, AutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = AutoModel.from_pretrained("bert-base-uncased")
>>> inputs = tokenizer("Hello world!", return_tensors="pt")
>>> outputs = model(**inputs)
```
And here is the equivalent code for TensorFlow:
```python
>>> from transformers import AutoTokenizer, TFAutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = TFAutoModel.from_pretrained("bert-base-uncased")
>>> inputs = tokenizer("Hello world!", return_tensors="tf")
>>> outputs = model(**inputs)
```
トークナイザは学習済みモデルが期待するすべての前処理を担当し、単一の文字列 (上記の例のように) またはリストに対して直接呼び出すことができます。これは下流のコードで使用できる辞書を出力します。また、単純に ** 引数展開演算子を使用してモデルに直接渡すこともできます。
モデル自体は通常の[Pytorch `nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) または [TensorFlow `tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) (バックエンドによって異なる)で、通常通り使用することが可能です。[このチュートリアル](https://huggingface.co/docs/transformers/training)では、このようなモデルを従来のPyTorchやTensorFlowの学習ループに統合する方法や、私たちの`Trainer`APIを使って新しいデータセットで素早く微調整を行う方法について説明します。
## なぜtransformersを使う必要があるのでしょうか
1. 使いやすい最新モデル:
- 自然言語理解・生成、コンピュータビジョン、オーディオの各タスクで高いパフォーマンスを発揮します。
- 教育者、実務者にとっての低い参入障壁。
- 学習するクラスは3つだけで、ユーザが直面する抽象化はほとんどありません。
- 学習済みモデルを利用するための統一されたAPI。
1. 低い計算コスト、少ないカーボンフットプリント:
- 研究者は、常に再トレーニングを行うのではなく、トレーニングされたモデルを共有することができます。
- 実務家は、計算時間や生産コストを削減することができます。
- すべてのモダリティにおいて、60,000以上の事前学習済みモデルを持つ数多くのアーキテクチャを提供します。
1. モデルのライフタイムのあらゆる部分で適切なフレームワークを選択可能:
- 3行のコードで最先端のモデルをトレーニング。
- TF2.0/PyTorch/JAXフレームワーク間で1つのモデルを自在に移動させる。
- 学習、評価、生産に適したフレームワークをシームレスに選択できます。
1. モデルやサンプルをニーズに合わせて簡単にカスタマイズ可能:
- 原著者が発表した結果を再現するために、各アーキテクチャの例を提供しています。
- モデル内部は可能な限り一貫して公開されています。
- モデルファイルはライブラリとは独立して利用することができ、迅速な実験が可能です。
## なぜtransformersを使ってはいけないのでしょうか
- このライブラリは、ニューラルネットのためのビルディングブロックのモジュール式ツールボックスではありません。モデルファイルのコードは、研究者が追加の抽象化/ファイルに飛び込むことなく、各モデルを素早く反復できるように、意図的に追加の抽象化でリファクタリングされていません。
- 学習APIはどのようなモデルでも動作するわけではなく、ライブラリが提供するモデルで動作するように最適化されています。一般的な機械学習のループには、別のライブラリ(おそらく[Accelerate](https://huggingface.co/docs/accelerate))を使用する必要があります。
- 私たちはできるだけ多くの使用例を紹介するよう努力していますが、[examples フォルダ](https://github.com/huggingface/transformers/tree/main/examples) にあるスクリプトはあくまで例です。あなたの特定の問題に対してすぐに動作するわけではなく、あなたのニーズに合わせるために数行のコードを変更する必要があることが予想されます。
## インストール
### pipにて
このリポジトリは、Python 3.8+, Flax 0.4.1+, PyTorch 1.10+, TensorFlow 2.6+ でテストされています。
🤗Transformersは[仮想環境](https://docs.python.org/3/library/venv.html)にインストールする必要があります。Pythonの仮想環境に慣れていない場合は、[ユーザーガイド](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/)を確認してください。
まず、使用するバージョンのPythonで仮想環境を作成し、アクティベートします。
その後、Flax, PyTorch, TensorFlowのうち少なくとも1つをインストールする必要があります。
[TensorFlowインストールページ](https://www.tensorflow.org/install/)、[PyTorchインストールページ](https://pytorch.org/get-started/locally/#start-locally)、[Flax](https://github.com/google/flax#quick-install)、[Jax](https://github.com/google/jax#installation)インストールページで、お使いのプラットフォーム別のインストールコマンドを参照してください。
これらのバックエンドのいずれかがインストールされている場合、🤗Transformersは以下のようにpipを使用してインストールすることができます:
```bash
pip install transformers
```
もしサンプルを試したい、またはコードの最先端が必要で、新しいリリースを待てない場合は、[ライブラリをソースからインストール](https://huggingface.co/docs/transformers/installation#installing-from-source)する必要があります。
### condaにて
Transformersバージョン4.0.0から、condaチャンネルを搭載しました: `huggingface`。
🤗Transformersは以下のようにcondaを使って設置することができます:
```shell script
conda install -c huggingface transformers
```
Flax、PyTorch、TensorFlowをcondaでインストールする方法は、それぞれのインストールページに従ってください。
> **_注意:_** Windowsでは、キャッシュの恩恵を受けるために、デベロッパーモードを有効にするよう促されることがあります。このような場合は、[このissue](https://github.com/huggingface/huggingface_hub/issues/1062)でお知らせください。
## モデルアーキテクチャ
🤗Transformersが提供する **[全モデルチェックポイント](https://huggingface.co/models)** は、[ユーザー](https://huggingface.co/users)や[組織](https://huggingface.co/organizations)によって直接アップロードされるhuggingface.co [model hub](https://huggingface.co)からシームレスに統合されています。
現在のチェックポイント数: ![](https://img.shields.io/endpoint?url=https://huggingface.co/api/shields/models&color=brightgreen)
🤗Transformersは現在、以下のアーキテクチャを提供していますそれぞれのハイレベルな要約は[こちら](https://huggingface.co/docs/transformers/model_summary)を参照してください):
1. **[ALBERT](https://huggingface.co/docs/transformers/model_doc/albert)** (Google Research and the Toyota Technological Institute at Chicago から) Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut から公開された研究論文: [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942)
1. **[ALIGN](https://huggingface.co/docs/transformers/model_doc/align)** (Google Research から) Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig. から公開された研究論文 [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918)
1. **[AltCLIP](https://huggingface.co/docs/transformers/model_doc/altclip)** (BAAI から) Chen, Zhongzhi and Liu, Guang and Zhang, Bo-Wen and Ye, Fulong and Yang, Qinghong and Wu, Ledell から公開された研究論文: [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679)
1. **[Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer)** (MIT から) Yuan Gong, Yu-An Chung, James Glass から公開された研究論文: [AST: Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778)
1. **[Autoformer](https://huggingface.co/docs/transformers/model_doc/autoformer)** (from Tsinghua University) released with the paper [Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://arxiv.org/abs/2106.13008) by Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long.
1. **[Bark](https://huggingface.co/docs/transformers/model_doc/bark)** (from Suno) released in the repository [suno-ai/bark](https://github.com/suno-ai/bark) by Suno AI team.
1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (Facebook から) Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer から公開された研究論文: [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461)
1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (École polytechnique から) Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis から公開された研究論文: [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321)
1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (VinAI Research から) Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen から公開された研究論文: [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701)
1. **[BEiT](https://huggingface.co/docs/transformers/model_doc/beit)** (Microsoft から) Hangbo Bao, Li Dong, Furu Wei から公開された研究論文: [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254)
1. **[BERT](https://huggingface.co/docs/transformers/model_doc/bert)** (Google から) Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova から公開された研究論文: [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805)
1. **[BERT For Sequence Generation](https://huggingface.co/docs/transformers/model_doc/bert-generation)** (Google から) Sascha Rothe, Shashi Narayan, Aliaksei Severyn から公開された研究論文: [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461)
1. **[BERTweet](https://huggingface.co/docs/transformers/model_doc/bertweet)** (VinAI Research から) Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen から公開された研究論文: [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/)
1. **[BigBird-Pegasus](https://huggingface.co/docs/transformers/model_doc/bigbird_pegasus)** (Google Research から) Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed から公開された研究論文: [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062)
1. **[BigBird-RoBERTa](https://huggingface.co/docs/transformers/model_doc/big_bird)** (Google Research から) Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed から公開された研究論文: [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062)
1. **[BioGpt](https://huggingface.co/docs/transformers/model_doc/biogpt)** (Microsoft Research AI4Science から) Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon and Tie-Yan Liu から公開された研究論文: [BioGPT: generative pre-trained transformer for biomedical text generation and mining](https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbac409/6713511?guestAccessKey=a66d9b5d-4f83-4017-bb52-405815c907b9)
1. **[BiT](https://huggingface.co/docs/transformers/model_doc/bit)** (Google AI から) Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil から公開された研究論文: [Big Transfer (BiT)](https://arxiv.org/abs/1912.11370)Houlsby.
1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (Facebook から) Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston から公開された研究論文: [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637)
1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (Facebook から) Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston から公開された研究論文: [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637)
1. **[BLIP](https://huggingface.co/docs/transformers/model_doc/blip)** (Salesforce から) Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi から公開された研究論文: [BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation](https://arxiv.org/abs/2201.12086)
1. **[BLIP-2](https://huggingface.co/docs/transformers/model_doc/blip-2)** (Salesforce から) Junnan Li, Dongxu Li, Silvio Savarese, Steven Hoi. から公開された研究論文 [BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models](https://arxiv.org/abs/2301.12597)
1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (BigScience workshop から) [BigScience Workshop](https://bigscience.huggingface.co/) から公開されました.
1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (Alexa から) Adrian de Wynter and Daniel J. Perry から公開された研究論文: [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499)
1. **[BridgeTower](https://huggingface.co/docs/transformers/model_doc/bridgetower)** (Harbin Institute of Technology/Microsoft Research Asia/Intel Labs から) released with the paper [BridgeTower: Building Bridges Between Encoders in Vision-Language Representation Learning](https://arxiv.org/abs/2206.08657) by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan.
1. **[BROS](https://huggingface.co/docs/transformers/model_doc/bros)** (NAVER CLOVA から) Teakgyu Hong, Donghyun Kim, Mingi Ji, Wonseok Hwang, Daehyun Nam, Sungrae Park. から公開された研究論文 [BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents](https://arxiv.org/abs/2108.04539)
1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (Google Research から) Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel から公開された研究論文: [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626)
1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (Inria/Facebook/Sorbonne から) Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot から公開された研究論文: [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894)
1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (Google Research から) Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting から公開された研究論文: [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874)
1. **[Chinese-CLIP](https://huggingface.co/docs/transformers/model_doc/chinese_clip)** (OFA-Sys から) An Yang, Junshu Pan, Junyang Lin, Rui Men, Yichang Zhang, Jingren Zhou, Chang Zhou から公開された研究論文: [Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese](https://arxiv.org/abs/2211.01335)
1. **[CLAP](https://huggingface.co/docs/transformers/model_doc/clap)** (LAION-AI から) Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, Shlomo Dubnov. から公開された研究論文 [Large-scale Contrastive Language-Audio Pretraining with Feature Fusion and Keyword-to-Caption Augmentation](https://arxiv.org/abs/2211.06687)
1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (OpenAI から) Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever から公開された研究論文: [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020)
1. **[CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)** (University of Göttingen から) Timo Lüddecke and Alexander Ecker から公開された研究論文: [Image Segmentation Using Text and Image Prompts](https://arxiv.org/abs/2112.10003)
1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (Salesforce から) Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong から公開された研究論文: [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474)
1. **[CodeLlama](https://huggingface.co/docs/transformers/model_doc/llama_code)** (MetaAI から) Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, Gabriel Synnaeve. から公開された研究論文 [Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/)
1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (Microsoft Research Asia から) Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang から公開された研究論文: [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152)
1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (YituTech から) Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan から公開された研究論文: [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496)
1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (Facebook AI から) Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie から公開された研究論文: [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545)
1. **[ConvNeXTV2](https://huggingface.co/docs/transformers/model_doc/convnextv2)** (from Facebook AI) released with the paper [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://arxiv.org/abs/2301.00808) by Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, Saining Xie.
1. **[CPM](https://huggingface.co/docs/transformers/model_doc/cpm)** (Tsinghua University から) Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun から公開された研究論文: [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413)
1. **[CPM-Ant](https://huggingface.co/docs/transformers/model_doc/cpmant)** (OpenBMB から) [OpenBMB](https://www.openbmb.org/) から公開されました.
1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (Salesforce から) Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher から公開された研究論文: [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858)
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (Microsoft から) Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang から公開された研究論文: [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808)
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (Facebook から) Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli から公開された研究論文: [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555)
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (Microsoft から) Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen から公開された研究論文: [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654)
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (Microsoft から) Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen から公開された研究論文: [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654)
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (Berkeley/Facebook/Google から) Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch から公開された研究論文: [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345)
1. **[Deformable DETR](https://huggingface.co/docs/transformers/model_doc/deformable_detr)** (SenseTime Research から) Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai から公開された研究論文: [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159)
1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (Facebook から) Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou から公開された研究論文: [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877)
1. **[DePlot](https://huggingface.co/docs/transformers/model_doc/deplot)** (Google AI から) Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, Yasemin Altun. から公開された研究論文 [DePlot: One-shot visual language reasoning by plot-to-table translation](https://arxiv.org/abs/2212.10505)
1. **[DETA](https://huggingface.co/docs/transformers/model_doc/deta)** (The University of Texas at Austin から) Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, Philipp Krähenbühl. から公開された研究論文 [NMS Strikes Back](https://arxiv.org/abs/2212.06137)
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (Facebook から) Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko から公開された研究論文: [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872)
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (Microsoft Research から) Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan から公開された研究論文: [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536)
1. **[DiNAT](https://huggingface.co/docs/transformers/model_doc/dinat)** (SHI Labs から) Ali Hassani and Humphrey Shi から公開された研究論文: [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001)
1. **[DINOv2](https://huggingface.co/docs/transformers/model_doc/dinov2)** (Meta AI から) Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, Piotr Bojanowski. から公開された研究論文 [DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193)
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (HuggingFace から), Victor Sanh, Lysandre Debut and Thomas Wolf. 同じ手法で GPT2, RoBERTa と Multilingual BERT の圧縮を行いました.圧縮されたモデルはそれぞれ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation)、[DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation)、[DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation) と名付けられました. 公開された研究論文: [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108)
1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (Microsoft Research から) Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei から公開された研究論文: [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378)
1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (NAVER から), Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park から公開された研究論文: [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664)
1. **[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (Facebook から) Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih から公開された研究論文: [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906)
1. **[DPT](https://huggingface.co/docs/transformers/master/model_doc/dpt)** (Intel Labs から) René Ranftl, Alexey Bochkovskiy, Vladlen Koltun から公開された研究論文: [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413)
1. **[EfficientFormer](https://huggingface.co/docs/transformers/model_doc/efficientformer)** (Snap Research から) Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren. から公開された研究論文 [EfficientFormer: Vision Transformers at MobileNetSpeed](https://arxiv.org/abs/2206.01191)
1. **[EfficientNet](https://huggingface.co/docs/transformers/model_doc/efficientnet)** (from Google Brain) released with the paper [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan, Quoc V. Le.
1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (Google Research/Stanford University から) Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning から公開された研究論文: [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555)
1. **[EnCodec](https://huggingface.co/docs/transformers/model_doc/encodec)** (Meta AI から) Alexandre Défossez, Jade Copet, Gabriel Synnaeve, Yossi Adi. から公開された研究論文 [High Fidelity Neural Audio Compression](https://arxiv.org/abs/2210.13438)
1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (Google Research から) Sascha Rothe, Shashi Narayan, Aliaksei Severyn から公開された研究論文: [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461)
1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)** (Baidu から) Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu から公開された研究論文: [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223)
1. **[ErnieM](https://huggingface.co/docs/transformers/model_doc/ernie_m)** (Baidu から) Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang. から公開された研究論文 [ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora](https://arxiv.org/abs/2012.15674)
1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (Meta AI から) はトランスフォーマープロテイン言語モデルです. **ESM-1b** は Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus から公開された研究論文: [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118). **ESM-1v** は Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives から公開された研究論文: [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648). **ESM-2** と **ESMFold** は Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives から公開された研究論文: [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902)
1. **[Falcon](https://huggingface.co/docs/transformers/model_doc/falcon)** (from Technology Innovation Institute) by Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme.
1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (Google AI から) Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V から公開されたレポジトリー [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) Le, and Jason Wei
1. **[FLAN-UL2](https://huggingface.co/docs/transformers/model_doc/flan-ul2)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-ul2-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (CNRS から) Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab から公開された研究論文: [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372)
1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (Facebook AI から) Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela から公開された研究論文: [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482)
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (Google Research から) James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon から公開された研究論文: [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824)
1. **[FocalNet](https://huggingface.co/docs/transformers/model_doc/focalnet)** (Microsoft Research から) Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao. から公開された研究論文 [Focal Modulation Networks](https://arxiv.org/abs/2203.11926)
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (CMU/Google Brain から) Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le から公開された研究論文: [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236)
1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (Microsoft Research から) Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang. から公開された研究論文 [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100)
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (KAIST から) Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim から公開された研究論文: [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436)
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (OpenAI から) Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever から公開された研究論文: [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/)
1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (EleutherAI から) Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy から公開されたレポジトリー : [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo)
1. **[GPT NeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox)** (EleutherAI から) Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach から公開された研究論文: [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745)
1. **[GPT NeoX Japanese](https://huggingface.co/docs/transformers/model_doc/gpt_neox_japanese)** (ABEJA から) Shinya Otani, Takayoshi Makabe, Anuj Arora, and Kyo Hattori からリリース.
1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (OpenAI から) Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever** から公開された研究論文: [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/)
1. **[GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj)** (EleutherAI から) Ben Wang and Aran Komatsuzaki から公開されたレポジトリー [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/)
1. **[GPT-Sw3](https://huggingface.co/docs/transformers/model_doc/gpt-sw3)** (AI-Sweden から) Ariel Ekgren, Amaru Cuba Gyllensten, Evangelia Gogoulou, Alice Heiman, Severine Verlinden, Joey Öhman, Fredrik Carlsson, Magnus Sahlgren から公開された研究論文: [Lessons Learned from GPT-SW3: Building the First Large-Scale Generative Language Model for Swedish](http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.376.pdf)
1. **[GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode)** (BigCode から) Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, Logesh Kumar Umapathi, Carolyn Jane Anderson, Yangtian Zi, Joel Lamy Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry Abulkhanov, Manuel Romero, Michael Lappert, Francesco De Toni, Bernardo García del Río, Qian Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab Mangrulkar, David Lansky, Huu Nguyen, Danish Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau, Yacine Jernite, Sean Hughes, Daniel Fried, Arjun Guha, Harm de Vries, Leandro von Werra. から公開された研究論文 [SantaCoder: don't reach for the stars!](https://arxiv.org/abs/2301.03988)
1. **[GPTSAN-japanese](https://huggingface.co/docs/transformers/model_doc/gptsan-japanese)** [tanreinama/GPTSAN](https://github.com/tanreinama/GPTSAN/blob/main/report/model.md) 坂本俊之(tanreinama)からリリースされました.
1. **[Graphormer](https://huggingface.co/docs/transformers/model_doc/graphormer)** (Microsoft から) Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu から公開された研究論文: [Do Transformers Really Perform Bad for Graph Representation?](https://arxiv.org/abs/2106.05234).
1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (UCSD, NVIDIA から) Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang から公開された研究論文: [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094)
1. **[HerBERT](https://huggingface.co/docs/transformers/model_doc/herbert)** (Allegro.pl, AGH University of Science and Technology から) Piotr Rybak, Robert Mroczkowski, Janusz Tracz, Ireneusz Gawlik. から公開された研究論文 [KLEJ: Comprehensive Benchmark for Polish Language Understanding](https://www.aclweb.org/anthology/2020.acl-main.111.pdf)
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (Facebook から) Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed から公開された研究論文: [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447)
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (Berkeley から) Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer から公開された研究論文: [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321)
1. **[IDEFICS](https://huggingface.co/docs/transformers/model_doc/idefics)** (from HuggingFace) released with the paper [OBELICS: An Open Web-Scale Filtered Dataset of Interleaved Image-Text Documents](https://huggingface.co/papers/2306.16527) by Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov, Thomas Wang, Siddharth Karamcheti, Alexander M. Rush, Douwe Kiela, Matthieu Cord, Victor Sanh.
1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (OpenAI から) Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever から公開された研究論文: [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/)
1. **[Informer](https://huggingface.co/docs/transformers/model_doc/informer)** (from Beihang University, UC Berkeley, Rutgers University, SEDD Company) released with the paper [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting](https://arxiv.org/abs/2012.07436) by Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
1. **[InstructBLIP](https://huggingface.co/docs/transformers/model_doc/instructblip)** (Salesforce から) Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, Steven Hoi. から公開された研究論文 [InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning](https://arxiv.org/abs/2305.06500)
1. **[Jukebox](https://huggingface.co/docs/transformers/model_doc/jukebox)** (OpenAI から) Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever から公開された研究論文: [Jukebox: A Generative Model for Music](https://arxiv.org/pdf/2005.00341.pdf)
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (Microsoft Research Asia から) Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou から公開された研究論文: [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318)
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (Microsoft Research Asia から) Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou から公開された研究論文: [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740)
1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (Microsoft Research Asia から) Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei から公開された研究論文: [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387)
1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutxlm)** (Microsoft Research Asia から) Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei から公開された研究論文: [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836)
1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (AllenAI から) Iz Beltagy, Matthew E. Peters, Arman Cohan から公開された研究論文: [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150)
1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (Meta AI から) Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze から公開された研究論文: [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136)
1. **[LiLT](https://huggingface.co/docs/transformers/model_doc/lilt)** (South China University of Technology から) Jiapeng Wang, Lianwen Jin, Kai Ding から公開された研究論文: [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669)
1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (The FAIR team of Meta AI から) Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample. から公開された研究論文 [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971)
1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (The FAIR team of Meta AI から) Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom.. から公開された研究論文 [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/XXX)
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (AllenAI から) Iz Beltagy, Matthew E. Peters, Arman Cohan から公開された研究論文: [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150)
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (Google AI から) Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang から公開された研究論文: [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916)
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (Studio Ousia から) Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto から公開された研究論文: [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057)
1. **[LXMERT](https://huggingface.co/docs/transformers/model_doc/lxmert)** (UNC Chapel Hill から) Hao Tan and Mohit Bansal から公開された研究論文: [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490)
1. **[M-CTC-T](https://huggingface.co/docs/transformers/model_doc/mctct)** (Facebook から) Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert から公開された研究論文: [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161)
1. **[M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100)** (Facebook から) Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin から公開された研究論文: [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125)
1. **[MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)** Jörg Tiedemann から. [OPUS](http://opus.nlpl.eu/) を使いながら学習された "Machine translation" (マシントランスレーション) モデル. [Marian Framework](https://marian-nmt.github.io/) はMicrosoft Translator Team が現在開発中です.
1. **[MarkupLM](https://huggingface.co/docs/transformers/model_doc/markuplm)** (Microsoft Research Asia から) Junlong Li, Yiheng Xu, Lei Cui, Furu Wei から公開された研究論文: [MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document Understanding](https://arxiv.org/abs/2110.08518)
1. **[Mask2Former](https://huggingface.co/docs/transformers/model_doc/mask2former)** (FAIR and UIUC から) Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Rohit Girdhar. から公開された研究論文 [Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527)
1. **[MaskFormer](https://huggingface.co/docs/transformers/model_doc/maskformer)** (Meta and UIUC から) Bowen Cheng, Alexander G. Schwing, Alexander Kirillov から公開された研究論文: [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278)
1. **[MatCha](https://huggingface.co/docs/transformers/model_doc/matcha)** (Google AI から) Fangyu Liu, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Yasemin Altun, Nigel Collier, Julian Martin Eisenschlos. から公開された研究論文 [MatCha: Enhancing Visual Language Pretraining with Math Reasoning and Chart Derendering](https://arxiv.org/abs/2212.09662)
1. **[mBART](https://huggingface.co/docs/transformers/model_doc/mbart)** (Facebook から) Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer から公開された研究論文: [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210)
1. **[mBART-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (Facebook から) Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan から公開された研究論文: [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401)
1. **[MEGA](https://huggingface.co/docs/transformers/model_doc/mega)** (Facebook から) Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and Luke Zettlemoyer. から公開された研究論文 [Mega: Moving Average Equipped Gated Attention](https://arxiv.org/abs/2209.10655)
1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (NVIDIA から) Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro から公開された研究論文: [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053)
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (NVIDIA から) Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro から公開された研究論文: [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053)
1. **[MGP-STR](https://huggingface.co/docs/transformers/model_doc/mgp-str)** (Alibaba Research から) Peng Wang, Cheng Da, and Cong Yao. から公開された研究論文 [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592)
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (Studio Ousia から) Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka から公開された研究論文: [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151)
1. **[MMS](https://huggingface.co/docs/transformers/model_doc/mms)** (Facebook から) Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky, Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi, Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning Hsu, Alexis Conneau, Michael Auli. から公開された研究論文 [Scaling Speech Technology to 1,000+ Languages](https://arxiv.org/abs/2305.13516)
1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (CMU/Google Brain から) Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou から公開された研究論文: [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984)
1. **[MobileNetV1](https://huggingface.co/docs/transformers/model_doc/mobilenet_v1)** (Google Inc. から) Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam から公開された研究論文: [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861)
1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (Google Inc. から) Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen から公開された研究論文: [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381)
1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (Apple から) Sachin Mehta and Mohammad Rastegari から公開された研究論文: [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178)
1. **[MobileViTV2](https://huggingface.co/docs/transformers/model_doc/mobilevitv2)** (Apple から) Sachin Mehta and Mohammad Rastegari. から公開された研究論文 [Separable Self-attention for Mobile Vision Transformers](https://arxiv.org/abs/2206.02680)
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (Microsoft Research から) Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu から公開された研究論文: [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297)
1. **[MPT](https://huggingface.co/docs/transformers/model_doc/mpt)** (MosaiML から) the MosaicML NLP Team. から公開された研究論文 [llm-foundry](https://github.com/mosaicml/llm-foundry/)
1. **[MRA](https://huggingface.co/docs/transformers/model_doc/mra)** (the University of Wisconsin - Madison から) Zhanpeng Zeng, Sourav Pal, Jeffery Kline, Glenn M Fung, Vikas Singh. から公開された研究論文 [Multi Resolution Analysis (MRA)](https://arxiv.org/abs/2207.10284)
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (Google AI から) Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel から公開された研究論文: [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934)
1. **[MusicGen](https://huggingface.co/docs/transformers/model_doc/musicgen)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (RUC AI Box から) Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen から公開された研究論文: [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131)
1. **[NAT](https://huggingface.co/docs/transformers/model_doc/nat)** (SHI Labs から) Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi から公開された研究論文: [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143)
1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (Huawei Noahs Ark Lab から) Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu から公開された研究論文: [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204)
1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (Meta から) the NLLB team から公開された研究論文: [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672)
1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (Meta から) the NLLB team. から公開された研究論文 [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672)
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (the University of Wisconsin - Madison から) Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh から公開された研究論文: [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902)
1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (SHI Labs から) Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi から公開された研究論文: [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220)
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released in [Open-Llama](https://github.com/s-JoL/Open-Llama).
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (Meta AI から) Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al から公開された研究論文: [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068)
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (Google AI から) Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby から公開された研究論文: [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230)
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (Google から) Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu から公開された研究論文: [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777)
1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (Google から) Jason Phang, Yao Zhao, and Peter J. Liu から公開された研究論文: [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347)
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (Deepmind から) Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira から公開された研究論文: [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795)
1. **[Persimmon](https://huggingface.co/docs/transformers/main/model_doc/persimmon)** (ADEPT から) Erich Elsen, Augustus Odena, Maxwell Nye, Sağnak Taşırlar, Tri Dao, Curtis Hawthorne, Deepak Moparthi, Arushi Somani. から公開された研究論文 [blog post](https://www.adept.ai/blog/persimmon-8b)
1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (VinAI Research から) Dat Quoc Nguyen and Anh Tuan Nguyen から公開された研究論文: [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/)
1. **[Pix2Struct](https://huggingface.co/docs/transformers/model_doc/pix2struct)** (Google から) Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova. から公開された研究論文 [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding](https://arxiv.org/abs/2210.03347)
1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (UCLA NLP から) Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang から公開された研究論文: [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333)
1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (Sea AI Labs から) Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng から公開された研究論文: [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418)
1. **[Pop2Piano](https://huggingface.co/docs/transformers/model_doc/pop2piano)** released with the paper [Pop2Piano : Pop Audio-based Piano Cover Generation](https://arxiv.org/abs/2211.00895) by Jongho Choi, Kyogu Lee.
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (Microsoft Research から) Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou から公開された研究論文: [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063)
1. **[PVT](https://huggingface.co/docs/transformers/model_doc/pvt)** (Nanjing University, The University of Hong Kong etc. から) Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao. から公開された研究論文 [Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions](https://arxiv.org/pdf/2102.12122.pdf)
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (NVIDIA から) Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius から公開された研究論文: [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602)
1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (Facebook から) Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela から公開された研究論文: [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401)
1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (Google Research から) Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang から公開された研究論文: [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909)
1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (Google Research から) Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya から公開された研究論文: [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451)
1. **[RegNet](https://huggingface.co/docs/transformers/model_doc/regnet)** (META Platforms から) Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár から公開された研究論文: [Designing Network Design Space](https://arxiv.org/abs/2003.13678)
1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (Google Research から) Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder から公開された研究論文: [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/abs/2010.12821)
1. **[ResNet](https://huggingface.co/docs/transformers/model_doc/resnet)** (Microsoft Research から) Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun から公開された研究論文: [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385)
1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (Facebook から), Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov から公開された研究論文: [RoBERTa: A Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692)
1. **[RoBERTa-PreLayerNorm](https://huggingface.co/docs/transformers/model_doc/roberta-prelayernorm)** (Facebook から) Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli から公開された研究論文: [fairseq: A Fast, Extensible Toolkit for Sequence Modeling](https://arxiv.org/abs/1904.01038)
1. **[RoCBert](https://huggingface.co/docs/transformers/model_doc/roc_bert)** (WeChatAI から) HuiSu, WeiweiShi, XiaoyuShen, XiaoZhou, TuoJi, JiaruiFang, JieZhou から公開された研究論文: [RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining](https://aclanthology.org/2022.acl-long.65.pdf)
1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (ZhuiyiTechnology から), Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu から公開された研究論文: [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/abs/2104.09864)
1. **[RWKV](https://huggingface.co/docs/transformers/model_doc/rwkv)** (Bo Peng から) Bo Peng. から公開された研究論文 [this repo](https://github.com/BlinkDL/RWKV-LM)
1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (NVIDIA から) Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo から公開された研究論文: [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203)
1. **[Segment Anything](https://huggingface.co/docs/transformers/model_doc/sam)** (Meta AI から) Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alex Berg, Wan-Yen Lo, Piotr Dollar, Ross Girshick. から公開された研究論文 [Segment Anything](https://arxiv.org/pdf/2304.02643v1.pdf)
1. **[SEW](https://huggingface.co/docs/transformers/model_doc/sew)** (ASAPP から) Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi から公開された研究論文: [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870)
1. **[SEW-D](https://huggingface.co/docs/transformers/model_doc/sew_d)** (ASAPP から) Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi から公開された研究論文: [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870)
1. **[SpeechT5](https://huggingface.co/docs/transformers/model_doc/speecht5)** (Microsoft Research から) Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li, Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, Furu Wei. から公開された研究論文 [SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing](https://arxiv.org/abs/2110.07205)
1. **[SpeechToTextTransformer](https://huggingface.co/docs/transformers/model_doc/speech_to_text)** (Facebook から), Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino から公開された研究論文: [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171)
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (Facebook から), Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau から公開された研究論文: [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678)
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (Tel Aviv University から), Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy から公開された研究論文: [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438)
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (Berkeley から) Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer から公開された研究論文: [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316)
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (MBZUAI から) Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan. から公開された研究論文 [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446)
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (Microsoft から) Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo から公開された研究論文: [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030)
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (Microsoft から) Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo から公開された研究論文: [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883)
1. **[Swin2SR](https://huggingface.co/docs/transformers/model_doc/swin2sr)** (University of Würzburg から) Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte から公開された研究論文: [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345)
1. **[SwitchTransformers](https://huggingface.co/docs/transformers/model_doc/switch_transformers)** (Google から) William Fedus, Barret Zoph, Noam Shazeer から公開された研究論文: [Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity](https://arxiv.org/abs/2101.03961)
1. **[T5](https://huggingface.co/docs/transformers/model_doc/t5)** (Google AI から) Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu から公開された研究論文: [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683)
1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (Google AI から) Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu から公開されたレポジトリー [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511)
1. **[Table Transformer](https://huggingface.co/docs/transformers/model_doc/table-transformer)** (Microsoft Research から) Brandon Smock, Rohith Pesala, Robin Abraham から公開された研究論文: [PubTables-1M: Towards Comprehensive Table Extraction From Unstructured Documents](https://arxiv.org/abs/2110.00061)
1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (Google AI から) Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos から公開された研究論文: [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349)
1. **[TAPEX](https://huggingface.co/docs/transformers/model_doc/tapex)** (Microsoft Research から) Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou から公開された研究論文: [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653)
1. **[Time Series Transformer](https://huggingface.co/docs/transformers/model_doc/time_series_transformer)** (HuggingFace から).
1. **[TimeSformer](https://huggingface.co/docs/transformers/model_doc/timesformer)** (Facebook から) Gedas Bertasius, Heng Wang, Lorenzo Torresani から公開された研究論文: [Is Space-Time Attention All You Need for Video Understanding?](https://arxiv.org/abs/2102.05095)
1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/model_doc/trajectory_transformers)** (the University of California at Berkeley から) Michael Janner, Qiyang Li, Sergey Levine から公開された研究論文: [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039)
1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (Google/CMU から) Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov から公開された研究論文: [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860)
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (Microsoft から), Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei から公開された研究論文: [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282)
1. **[TVLT](https://huggingface.co/docs/transformers/model_doc/tvlt)** (from UNC Chapel Hill から), Zineng Tang, Jaemin Cho, Yixin Nie, Mohit Bansal から公開された研究論文: [TVLT: Textless Vision-Language Transformer](https://arxiv.org/abs/2209.14156)
1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (Google Research から) Yi Tay, Mostafa Dehghani, Vinh Q から公開された研究論文: [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
1. **[UMT5](https://huggingface.co/docs/transformers/model_doc/umt5)** (Google Research から) Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, Noah Constant. から公開された研究論文 [UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining](https://openreview.net/forum?id=kXwdL1cWOAi)
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (Microsoft Research から) Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang から公開された研究論文: [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597)
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (Microsoft Research から) Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu から公開された研究論文: [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752)
1. **[UPerNet](https://huggingface.co/docs/transformers/model_doc/upernet)** (Peking University から) Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun. から公開された研究論文 [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221)
1. **[VAN](https://huggingface.co/docs/transformers/model_doc/van)** (Tsinghua University and Nankai University から) Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu から公開された研究論文: [Visual Attention Network](https://arxiv.org/abs/2202.09741)
1. **[VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)** (Multimedia Computing Group, Nanjing University から) Zhan Tong, Yibing Song, Jue Wang, Limin Wang から公開された研究論文: [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602)
1. **[ViLT](https://huggingface.co/docs/transformers/model_doc/vilt)** (NAVER AI Lab/Kakao Enterprise/Kakao Brain から) Wonjae Kim, Bokyung Son, Ildoo Kim から公開された研究論文: [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334)
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (Google AI から) Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby から公開された研究論文: [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929)
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (UCLA NLP から) Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang から公開された研究論文: [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557)
1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (Google AI から) Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby から公開された研究論文: [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929)
1. **[VitDet](https://huggingface.co/docs/transformers/model_doc/vitdet)** (Meta AI から) Yanghao Li, Hanzi Mao, Ross Girshick, Kaiming He. から公開された研究論文 [Exploring Plain Vision Transformer Backbones for Object Detection](https://arxiv.org/abs/2203.16527)
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (Meta AI から) Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick から公開された研究論文: [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377)
1. **[ViTMatte](https://huggingface.co/docs/transformers/main/model_doc/vitmatte)** (HUST-VL から) Jingfeng Yao, Xinggang Wang, Shusheng Yang, Baoyuan Wang. から公開された研究論文 [ViTMatte: Boosting Image Matting with Pretrained Plain Vision Transformers](https://arxiv.org/abs/2305.15272)
1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (Meta AI から) Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas から公開された研究論文: [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141)
1. **[VITS](https://huggingface.co/docs/transformers/model_doc/vits)** (Kakao Enterprise から) Jaehyeon Kim, Jungil Kong, Juhee Son. から公開された研究論文 [Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech](https://arxiv.org/abs/2106.06103)
1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (from Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) by Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid.
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (Facebook AI から) Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli から公開された研究論文: [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477)
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (Facebook AI から) Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino から公開された研究論文: [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171)
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (Facebook AI から) Qiantong Xu, Alexei Baevski, Michael Auli から公開された研究論文: [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680)
1. **[WavLM](https://huggingface.co/docs/transformers/model_doc/wavlm)** (Microsoft Research から) Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei から公開された研究論文: [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900)
1. **[Whisper](https://huggingface.co/docs/transformers/model_doc/whisper)** (OpenAI から) Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, Ilya Sutskever から公開された研究論文: [Robust Speech Recognition via Large-Scale Weak Supervision](https://cdn.openai.com/papers/whisper.pdf)
1. **[X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)** (Microsoft Research から) Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang, Gaofeng Meng, Jianlong Fu, Shiming Xiang, Haibin Ling から公開された研究論文: [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816)
1. **[X-MOD](https://huggingface.co/docs/transformers/model_doc/xmod)** (Meta AI から) Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James Cross, Sebastian Riedel, Mikel Artetxe. から公開された研究論文 [Lifting the Curse of Multilinguality by Pre-training Modular Transformers](http://dx.doi.org/10.18653/v1/2022.naacl-main.255)
1. **[XGLM](https://huggingface.co/docs/transformers/model_doc/xglm)** (From Facebook AI) Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li から公開された研究論文: [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668)
1. **[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (Facebook から) Guillaume Lample and Alexis Conneau から公開された研究論文: [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291)
1. **[XLM-ProphetNet](https://huggingface.co/docs/transformers/model_doc/xlm-prophetnet)** (Microsoft Research から) Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou から公開された研究論文: [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063)
1. **[XLM-RoBERTa](https://huggingface.co/docs/transformers/model_doc/xlm-roberta)** (Facebook AI から), Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov から公開された研究論文: [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116)
1. **[XLM-RoBERTa-XL](https://huggingface.co/docs/transformers/model_doc/xlm-roberta-xl)** (Facebook AI から), Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau から公開された研究論文: [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572)
1. **[XLM-V](https://huggingface.co/docs/transformers/model_doc/xlm-v)** (Meta AI から) Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Naman Goyal, Marjan Ghazvininejad, Luke Zettlemoyer, Madian Khabsa から公開された研究論文: [XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models](https://arxiv.org/abs/2301.10472)
1. **[XLNet](https://huggingface.co/docs/transformers/model_doc/xlnet)** (Google/CMU から) Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le から公開された研究論文: [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237)
1. **[XLS-R](https://huggingface.co/docs/transformers/model_doc/xls_r)** (Facebook AI から) Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli から公開された研究論文: [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296)
1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (Facebook AI から) Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli から公開された研究論文: [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979)
1. **[YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos)** (Huazhong University of Science & Technology から) Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu から公開された研究論文: [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666)
1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (the University of Wisconsin - Madison から) Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh から公開された研究論文: [You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling](https://arxiv.org/abs/2111.09714)
1. 新しいモデルを投稿したいですか?新しいモデルを追加するためのガイドとして、**詳細なガイドとテンプレート**が追加されました。これらはリポジトリの[`templates`](./templates)フォルダにあります。PRを始める前に、必ず[コントリビューションガイド](./CONTRIBUTING.md)を確認し、メンテナに連絡するか、フィードバックを収集するためにissueを開いてください。
各モデルがFlax、PyTorch、TensorFlowで実装されているか、🤗Tokenizersライブラリに支えられた関連トークナイザを持っているかは、[この表](https://huggingface.co/docs/transformers/index#supported-frameworks)を参照してください。
これらの実装はいくつかのデータセットでテストされており(サンプルスクリプトを参照)、オリジナルの実装の性能と一致するはずである。性能の詳細は[documentation](https://github.com/huggingface/transformers/tree/main/examples)のExamplesセクションで見ることができます。
## さらに詳しく
| セクション | 概要 |
|-|-|
| [ドキュメント](https://huggingface.co/docs/transformers/) | 完全なAPIドキュメントとチュートリアル |
| [タスク概要](https://huggingface.co/docs/transformers/task_summary) | 🤗Transformersがサポートするタスク |
| [前処理チュートリアル](https://huggingface.co/docs/transformers/preprocessing) | モデル用のデータを準備するために`Tokenizer`クラスを使用 |
| [トレーニングと微調整](https://huggingface.co/docs/transformers/training) | PyTorch/TensorFlowの学習ループと`Trainer`APIで🤗Transformersが提供するモデルを使用 |
| [クイックツアー: 微調整/使用方法スクリプト](https://github.com/huggingface/transformers/tree/main/examples) | 様々なタスクでモデルの微調整を行うためのスクリプト例 |
| [モデルの共有とアップロード](https://huggingface.co/docs/transformers/model_sharing) | 微調整したモデルをアップロードしてコミュニティで共有する |
| [マイグレーション](https://huggingface.co/docs/transformers/migration) | `pytorch-transformers`または`pytorch-pretrained-bert`から🤗Transformers に移行する |
## 引用
🤗 トランスフォーマーライブラリに引用できる[論文](https://www.aclweb.org/anthology/2020.emnlp-demos.6/)が出来ました:
```bibtex
@inproceedings{wolf-etal-2020-transformers,
title = "Transformers: State-of-the-Art Natural Language Processing",
author = "Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and Rémi Louf and Morgan Funtowicz and Joe Davison and Sam Shleifer and Patrick von Platen and Clara Ma and Yacine Jernite and Julien Plu and Canwen Xu and Teven Le Scao and Sylvain Gugger and Mariama Drame and Quentin Lhoest and Alexander M. Rush",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = oct,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.emnlp-demos.6",
pages = "38--45"
}
```

View File

@ -1,475 +0,0 @@
<!---
Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
<p align="center">
<br>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers_logo_name.png" width="400"/>
<br>
<p>
<p align="center">
<a href="https://circleci.com/gh/huggingface/transformers">
<img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/main">
</a>
<a href="https://github.com/huggingface/transformers/blob/main/LICENSE">
<img alt="GitHub" src="https://img.shields.io/github/license/huggingface/transformers.svg?color=blue">
</a>
<a href="https://huggingface.co/docs/transformers/index">
<img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/docs/transformers/index.svg?down_color=red&down_message=offline&up_message=online">
</a>
<a href="https://github.com/huggingface/transformers/releases">
<img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/transformers.svg">
</a>
<a href="https://github.com/huggingface/transformers/blob/main/CODE_OF_CONDUCT.md">
<img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg">
</a>
<a href="https://zenodo.org/badge/latestdoi/155220641"><img src="https://zenodo.org/badge/155220641.svg" alt="DOI"></a>
</p>
<h4 align="center">
<p>
<a href="https://github.com/huggingface/transformers/">English</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hans.md">简体中文</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hant.md">繁體中文</a> |
<b>한국어</b> |
<a href="https://github.com/huggingface/transformers/blob/main/README_es.md">Español</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ja.md">日本語</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_hd.md">हिन्दी</a>
<p>
</h4>
<h3 align="center">
<p> Jax, Pytorch, TensorFlow를 위한 최첨단 자연어처리</p>
</h3>
<h3 align="center">
<a href="https://hf.co/course"><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/course_banner.png"></a>
</h3>
🤗 Transformers는 분류, 정보 추출, 질문 답변, 요약, 번역, 문장 생성 등을 100개 이상의 언어로 수행할 수 있는 수천개의 사전학습된 모델을 제공합니다. 우리의 목표는 모두가 최첨단의 NLP 기술을 쉽게 사용하는 것입니다.
🤗 Transformers는 이러한 사전학습 모델을 빠르게 다운로드해 특정 텍스트에 사용하고, 원하는 데이터로 fine-tuning해 커뮤니티나 우리의 [모델 허브](https://huggingface.co/models)에 공유할 수 있도록 API를 제공합니다. 또한, 모델 구조를 정의하는 각 파이썬 모듈은 완전히 독립적이여서 연구 실험을 위해 손쉽게 수정할 수 있습니다.
🤗 Transformers는 가장 유명한 3개의 딥러닝 라이브러리를 지원합니다. 이들은 서로 완벽히 연동됩니다 — [Jax](https://jax.readthedocs.io/en/latest/), [PyTorch](https://pytorch.org/), [TensorFlow](https://www.tensorflow.org/). 간단하게 이 라이브러리 중 하나로 모델을 학습하고, 또 다른 라이브러리로 추론을 위해 모델을 불러올 수 있습니다.
## 온라인 데모
대부분의 모델을 [모델 허브](https://huggingface.co/models) 페이지에서 바로 테스트해볼 수 있습니다. 공개 및 비공개 모델을 위한 [비공개 모델 호스팅, 버전 관리, 추론 API](https://huggingface.co/pricing)도 제공합니다.
예시:
- [BERT로 마스킹된 단어 완성하기](https://huggingface.co/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France)
- [Electra를 이용한 개체명 인식](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city)
- [GPT-2로 텍스트 생성하기](https://huggingface.co/gpt2?text=A+long+time+ago%2C+)
- [RoBERTa로 자연어 추론하기](https://huggingface.co/roberta-large-mnli?text=The+dog+was+lost.+Nobody+lost+any+animal)
- [BART를 이용한 요약](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct)
- [DistilBERT를 이용한 질문 답변](https://huggingface.co/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species)
- [T5로 번역하기](https://huggingface.co/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin)
**[Transformer와 글쓰기](https://transformer.huggingface.co)** 는 이 저장소의 텍스트 생성 능력에 관한 Hugging Face 팀의 공식 데모입니다.
## Hugging Face 팀의 커스텀 지원을 원한다면
<a target="_blank" href="https://huggingface.co/support">
<img alt="HuggingFace Expert Acceleration Program" src="https://huggingface.co/front/thumbnails/support.png" style="max-width: 600px; border: 1px solid #eee; border-radius: 4px; box-shadow: 0 1px 2px 0 rgba(0, 0, 0, 0.05);">
</a><br>
## 퀵 투어
원하는 텍스트에 바로 모델을 사용할 수 있도록, 우리는 `pipeline` API를 제공합니다. Pipeline은 사전학습 모델과 그 모델을 학습할 때 적용한 전처리 방식을 하나로 합칩니다. 다음은 긍정적인 텍스트와 부정적인 텍스트를 분류하기 위해 pipeline을 사용한 간단한 예시입니다:
```python
>>> from transformers import pipeline
# Allocate a pipeline for sentiment-analysis
>>> classifier = pipeline('sentiment-analysis')
>>> classifier('We are very happy to introduce pipeline to the transformers repository.')
[{'label': 'POSITIVE', 'score': 0.9996980428695679}]
```
코드의 두번째 줄은 pipeline이 사용하는 사전학습 모델을 다운로드하고 캐시로 저장합니다. 세번째 줄에선 그 모델이 주어진 텍스트를 평가합니다. 여기서 모델은 99.97%의 확률로 텍스트가 긍정적이라고 평가했습니다.
많은 NLP 과제들을 `pipeline`으로 바로 수행할 수 있습니다. 예를 들어, 질문과 문맥이 주어지면 손쉽게 답변을 추출할 수 있습니다:
``` python
>>> from transformers import pipeline
# Allocate a pipeline for question-answering
>>> question_answerer = pipeline('question-answering')
>>> question_answerer({
... 'question': 'What is the name of the repository ?',
... 'context': 'Pipeline has been included in the huggingface/transformers repository'
... })
{'score': 0.30970096588134766, 'start': 34, 'end': 58, 'answer': 'huggingface/transformers'}
```
답변뿐만 아니라, 여기에 사용된 사전학습 모델은 확신도와 토크나이즈된 문장 속 답변의 시작점, 끝점까지 반환합니다. [이 튜토리얼](https://huggingface.co/docs/transformers/task_summary)에서 `pipeline` API가 지원하는 다양한 과제를 확인할 수 있습니다.
코드 3줄로 원하는 과제에 맞게 사전학습 모델을 다운로드 받고 사용할 수 있습니다. 다음은 PyTorch 버전입니다:
```python
>>> from transformers import AutoTokenizer, AutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = AutoModel.from_pretrained("bert-base-uncased")
>>> inputs = tokenizer("Hello world!", return_tensors="pt")
>>> outputs = model(**inputs)
```
다음은 TensorFlow 버전입니다:
```python
>>> from transformers import AutoTokenizer, TFAutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = TFAutoModel.from_pretrained("bert-base-uncased")
>>> inputs = tokenizer("Hello world!", return_tensors="tf")
>>> outputs = model(**inputs)
```
토크나이저는 사전학습 모델의 모든 전처리를 책임집니다. 그리고 (위의 예시처럼) 1개의 스트링이나 리스트도 처리할 수 있습니다. 토크나이저는 딕셔너리를 반환하는데, 이는 다운스트림 코드에 사용하거나 언패킹 연산자 ** 를 이용해 모델에 바로 전달할 수도 있습니다.
모델 자체는 일반적으로 사용되는 [Pytorch `nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module)나 [TensorFlow `tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model)입니다. [이 튜토리얼](https://huggingface.co/transformers/training.html)은 이러한 모델을 표준적인 PyTorch나 TensorFlow 학습 과정에서 사용하는 방법, 또는 새로운 데이터로 fine-tune하기 위해 `Trainer` API를 사용하는 방법을 설명해줍니다.
## 왜 transformers를 사용해야 할까요?
1. 손쉽게 사용할 수 있는 최첨단 모델:
- NLU와 NLG 과제에서 뛰어난 성능을 보입니다.
- 교육자 실무자에게 진입 장벽이 낮습니다.
- 3개의 클래스만 배우면 바로 사용할 수 있습니다.
- 하나의 API로 모든 사전학습 모델을 사용할 수 있습니다.
1. 더 적은 계산 비용, 더 적은 탄소 발자국:
- 연구자들은 모델을 계속 다시 학습시키는 대신 학습된 모델을 공유할 수 있습니다.
- 실무자들은 학습에 필요한 시간과 비용을 절약할 수 있습니다.
- 수십개의 모델 구조, 2,000개 이상의 사전학습 모델, 100개 이상의 언어로 학습된 모델 등.
1. 모델의 각 생애주기에 적합한 프레임워크:
- 코드 3줄로 최첨단 모델을 학습하세요.
- 자유롭게 모델을 TF2.0나 PyTorch 프레임워크로 변환하세요.
- 학습, 평가, 공개 등 각 단계에 맞는 프레임워크를 원하는대로 선택하세요.
1. 필요한 대로 모델이나 예시를 커스터마이즈하세요:
- 우리는 저자가 공개한 결과를 재현하기 위해 각 모델 구조의 예시를 제공합니다.
- 모델 내부 구조는 가능한 일관적으로 공개되어 있습니다.
- 빠른 실험을 위해 모델 파일은 라이브러리와 독립적으로 사용될 수 있습니다.
## 왜 transformers를 사용하지 말아야 할까요?
- 이 라이브러리는 신경망 블록을 만들기 위한 모듈이 아닙니다. 연구자들이 여러 파일을 살펴보지 않고 바로 각 모델을 사용할 수 있도록, 모델 파일 코드의 추상화 수준을 적정하게 유지했습니다.
- 학습 API는 모든 모델에 적용할 수 있도록 만들어지진 않았지만, 라이브러리가 제공하는 모델들에 적용할 수 있도록 최적화되었습니다. 일반적인 머신 러닝을 위해선, 다른 라이브러리를 사용하세요.
- 가능한 많은 사용 예시를 보여드리고 싶어서, [예시 폴더](https://github.com/huggingface/transformers/tree/main/examples)의 스크립트를 준비했습니다. 이 스크립트들을 수정 없이 특정한 문제에 바로 적용하지 못할 수 있습니다. 필요에 맞게 일부 코드를 수정해야 할 수 있습니다.
## 설치
### pip로 설치하기
이 저장소는 Python 3.8+, Flax 0.4.1+, PyTorch 1.10+, TensorFlow 2.6+에서 테스트 되었습니다.
[가상 환경](https://docs.python.org/3/library/venv.html)에 🤗 Transformers를 설치하세요. Python 가상 환경에 익숙하지 않다면, [사용자 가이드](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/)를 확인하세요.
우선, 사용할 Python 버전으로 가상 환경을 만들고 실행하세요.
그 다음, Flax, PyTorch, TensorFlow 중 적어도 하나는 설치해야 합니다.
플랫폼에 맞는 설치 명령어를 확인하기 위해 [TensorFlow 설치 페이지](https://www.tensorflow.org/install/), [PyTorch 설치 페이지](https://pytorch.org/get-started/locally/#start-locally), [Flax 설치 페이지](https://github.com/google/flax#quick-install)를 확인하세요.
이들 중 적어도 하나가 설치되었다면, 🤗 Transformers는 다음과 같이 pip을 이용해 설치할 수 있습니다:
```bash
pip install transformers
```
예시들을 체험해보고 싶거나, 최최최첨단 코드를 원하거나, 새로운 버전이 나올 때까지 기다릴 수 없다면 [라이브러리를 소스에서 바로 설치](https://huggingface.co/docs/transformers/installation#installing-from-source)하셔야 합니다.
### conda로 설치하기
Transformers 버전 v4.0.0부터, conda 채널이 생겼습니다: `huggingface`.
🤗 Transformers는 다음과 같이 conda로 설치할 수 있습니다:
```shell script
conda install -c huggingface transformers
```
Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는 방법을 확인하세요.
## 모델 구조
**🤗 Transformers가 제공하는 [모든 모델 체크포인트](https://huggingface.co/models)** 는 huggingface.co [모델 허브](https://huggingface.co)에 완벽히 연동되어 있습니다. [개인](https://huggingface.co/users)과 [기관](https://huggingface.co/organizations)이 모델 허브에 직접 업로드할 수 있습니다.
현재 사용 가능한 모델 체크포인트의 개수: ![](https://img.shields.io/endpoint?url=https://huggingface.co/api/shields/models&color=brightgreen)
🤗 Transformers는 다음 모델들을 제공합니다 (각 모델의 요약은 [여기](https://huggingface.co/docs/transformers/model_summary)서 확인하세요):
1. **[ALBERT](https://huggingface.co/docs/transformers/model_doc/albert)** (from Google Research and the Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.
1. **[ALIGN](https://huggingface.co/docs/transformers/model_doc/align)** (Google Research 에서 제공)은 Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig.의 [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918)논문과 함께 발표했습니다.
1. **[AltCLIP](https://huggingface.co/docs/transformers/model_doc/altclip)** (from BAAI) released with the paper [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) by Chen, Zhongzhi and Liu, Guang and Zhang, Bo-Wen and Ye, Fulong and Yang, Qinghong and Wu, Ledell.
1. **[Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer)** (from MIT) released with the paper [AST: Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778) by Yuan Gong, Yu-An Chung, James Glass.
1. **[Autoformer](https://huggingface.co/docs/transformers/model_doc/autoformer)** (from Tsinghua University) released with the paper [Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://arxiv.org/abs/2106.13008) by Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long.
1. **[Bark](https://huggingface.co/docs/transformers/model_doc/bark)** (from Suno) released in the repository [suno-ai/bark](https://github.com/suno-ai/bark) by Suno AI team.
1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (from Facebook) released with the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/pdf/1910.13461.pdf) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer.
1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (from École polytechnique) released with the paper [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis.
1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (from VinAI Research) released with the paper [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen.
1. **[BEiT](https://huggingface.co/docs/transformers/model_doc/beit)** (from Microsoft) released with the paper [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) by Hangbo Bao, Li Dong, Furu Wei.
1. **[BERT](https://huggingface.co/docs/transformers/model_doc/bert)** (from Google) released with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova.
1. **[BERT For Sequence Generation](https://huggingface.co/docs/transformers/model_doc/bert-generation)** (from Google) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[BERTweet](https://huggingface.co/docs/transformers/model_doc/bertweet)** (from VinAI Research) released with the paper [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) by Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen.
1. **[BigBird-Pegasus](https://huggingface.co/docs/transformers/model_doc/bigbird_pegasus)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[BigBird-RoBERTa](https://huggingface.co/docs/transformers/model_doc/big_bird)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[BioGpt](https://huggingface.co/docs/transformers/model_doc/biogpt)** (from Microsoft Research AI4Science) released with the paper [BioGPT: generative pre-trained transformer for biomedical text generation and mining](https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbac409/6713511?guestAccessKey=a66d9b5d-4f83-4017-bb52-405815c907b9) by Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon and Tie-Yan Liu.
1. **[BiT](https://huggingface.co/docs/transformers/model_doc/bit)** (from Google AI) released with the paper [Big Transfer (BiT) by Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil Houlsby.
1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BLIP](https://huggingface.co/docs/transformers/model_doc/blip)** (from Salesforce) released with the paper [BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation](https://arxiv.org/abs/2201.12086) by Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi.
1. **[BLIP-2](https://huggingface.co/docs/transformers/model_doc/blip-2)** (Salesforce 에서 제공)은 Junnan Li, Dongxu Li, Silvio Savarese, Steven Hoi.의 [BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models](https://arxiv.org/abs/2301.12597)논문과 함께 발표했습니다.
1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (from BigScience workshop) released by the [BigScience Workshop](https://bigscience.huggingface.co/).
1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (Alexa 에서) Adrian de Wynter and Daniel J. Perry 의 [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) 논문과 함께 발표했습니다.
1. **[BridgeTower](https://huggingface.co/docs/transformers/model_doc/bridgetower)** (from Harbin Institute of Technology/Microsoft Research Asia/Intel Labs) released with the paper [BridgeTower: Building Bridges Between Encoders in Vision-Language Representation Learning](https://arxiv.org/abs/2206.08657) by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan.
1. **[BROS](https://huggingface.co/docs/transformers/model_doc/bros)** (NAVER CLOVA 에서 제공)은 Teakgyu Hong, Donghyun Kim, Mingi Ji, Wonseok Hwang, Daehyun Nam, Sungrae Park.의 [BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents](https://arxiv.org/abs/2108.04539)논문과 함께 발표했습니다.
1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (Google Research 에서) Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel 의 [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) 논문과 함께 발표했습니다.
1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (Inria/Facebook/Sorbonne 에서) Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot 의 [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) 논문과 함께 발표했습니다.
1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (Google Research 에서) Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting 의 [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) 논문과 함께 발표했습니다.
1. **[Chinese-CLIP](https://huggingface.co/docs/transformers/model_doc/chinese_clip)** (OFA-Sys 에서) An Yang, Junshu Pan, Junyang Lin, Rui Men, Yichang Zhang, Jingren Zhou, Chang Zhou 의 [Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese](https://arxiv.org/abs/2211.01335) 논문과 함께 발표했습니다.
1. **[CLAP](https://huggingface.co/docs/transformers/model_doc/clap)** (LAION-AI 에서 제공)은 Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, Shlomo Dubnov.의 [Large-scale Contrastive Language-Audio Pretraining with Feature Fusion and Keyword-to-Caption Augmentation](https://arxiv.org/abs/2211.06687)논문과 함께 발표했습니다.
1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (OpenAI 에서) Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever 의 [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) 논문과 함께 발표했습니다.
1. **[CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)** (University of Göttingen 에서) Timo Lüddecke and Alexander Ecker 의 [Image Segmentation Using Text and Image Prompts](https://arxiv.org/abs/2112.10003) 논문과 함께 발표했습니다.
1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (Salesforce 에서) Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong 의 [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) 논문과 함께 발표했습니다.
1. **[CodeLlama](https://huggingface.co/docs/transformers/model_doc/llama_code)** (MetaAI 에서 제공)은 Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, Gabriel Synnaeve.의 [Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/)논문과 함께 발표했습니다.
1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (Microsoft Research Asia 에서) Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang 의 [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) 논문과 함께 발표했습니다.
1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (YituTech 에서) Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan 의 [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) 논문과 함께 발표했습니다.
1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (Facebook AI 에서) Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie 의 [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) 논문과 함께 발표했습니다.
1. **[ConvNeXTV2](https://huggingface.co/docs/transformers/model_doc/convnextv2)** (from Facebook AI) released with the paper [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://arxiv.org/abs/2301.00808) by Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, Saining Xie.
1. **[CPM](https://huggingface.co/docs/transformers/model_doc/cpm)** (Tsinghua University 에서) Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun 의 [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) 논문과 함께 발표했습니다.
1. **[CPM-Ant](https://huggingface.co/docs/transformers/model_doc/cpmant)** (from OpenBMB) released by the [OpenBMB](https://www.openbmb.org/).
1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (Salesforce 에서) Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher 의 [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) 논문과 함께 발표했습니다.
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (Microsoft 에서) Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang 의 [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) 논문과 함께 발표했습니다.
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (Facebook 에서) Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli 의 [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) 논문과 함께 발표했습니다.
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (Microsoft 에서) Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen 의 [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) 논문과 함께 발표했습니다.
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (Microsoft 에서) Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen 의 [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) 논문과 함께 발표했습니다.
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (Berkeley/Facebook/Google 에서) Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch 의 [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) 논문과 함께 발표했습니다.
1. **[Deformable DETR](https://huggingface.co/docs/transformers/model_doc/deformable_detr)** (SenseTime Research 에서) Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai 의 [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159) 논문과 함께 발표했습니다.
1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (Facebook 에서) Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou 의 [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) 논문과 함께 발표했습니다.
1. **[DePlot](https://huggingface.co/docs/transformers/model_doc/deplot)** (Google AI 에서 제공)은 Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, Yasemin Altun.의 [DePlot: One-shot visual language reasoning by plot-to-table translation](https://arxiv.org/abs/2212.10505)논문과 함께 발표했습니다.
1. **[DETA](https://huggingface.co/docs/transformers/model_doc/deta)** (The University of Texas at Austin 에서 제공)은 Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, Philipp Krähenbühl.의 [NMS Strikes Back](https://arxiv.org/abs/2212.06137)논문과 함께 발표했습니다.
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (Facebook 에서) Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko 의 [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) 논문과 함께 발표했습니다.
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (Microsoft Research 에서) Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan 의 [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) 논문과 함께 발표했습니다.
1. **[DiNAT](https://huggingface.co/docs/transformers/model_doc/dinat)** (SHI Labs 에서) Ali Hassani and Humphrey Shi 의 [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) 논문과 함께 발표했습니다.
1. **[DINOv2](https://huggingface.co/docs/transformers/model_doc/dinov2)** (Meta AI 에서 제공)은 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, Piotr Bojanowski.의 [DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193)논문과 함께 발표했습니다.
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (HuggingFace 에서) Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German version of DistilBERT 의 [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) 논문과 함께 발표했습니다.
1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (Microsoft Research 에서) Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei 의 [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) 논문과 함께 발표했습니다.
1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (NAVER 에서) Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park 의 [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) 논문과 함께 발표했습니다.
1. **[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (Facebook 에서) Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih 의 [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) 논문과 함께 발표했습니다.
1. **[DPT](https://huggingface.co/docs/transformers/master/model_doc/dpt)** (Intel Labs 에서) René Ranftl, Alexey Bochkovskiy, Vladlen Koltun 의 [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) 논문과 함께 발표했습니다.
1. **[EfficientFormer](https://huggingface.co/docs/transformers/model_doc/efficientformer)** (from Snap Research) released with the paper [EfficientFormer: Vision Transformers at MobileNetSpeed](https://arxiv.org/abs/2206.01191) by Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren.
1. **[EfficientNet](https://huggingface.co/docs/transformers/model_doc/efficientnet)** (from Google Brain) released with the paper [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan, Quoc V. Le.
1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (Google Research/Stanford University 에서) Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning 의 [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) 논문과 함께 발표했습니다.
1. **[EnCodec](https://huggingface.co/docs/transformers/model_doc/encodec)** (Meta AI 에서 제공)은 Alexandre Défossez, Jade Copet, Gabriel Synnaeve, Yossi Adi.의 [High Fidelity Neural Audio Compression](https://arxiv.org/abs/2210.13438)논문과 함께 발표했습니다.
1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (Google Research 에서) Sascha Rothe, Shashi Narayan, Aliaksei Severyn 의 [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) 논문과 함께 발표했습니다.
1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)** (Baidu 에서) Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu 의 [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) 논문과 함께 발표했습니다.
1. **[ErnieM](https://huggingface.co/docs/transformers/model_doc/ernie_m)** (Baidu 에서 제공)은 Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang.의 [ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora](https://arxiv.org/abs/2012.15674)논문과 함께 발표했습니다.
1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (from Meta AI) are transformer protein language models. **ESM-1b** was released with the paper [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. **ESM-1v** was released with the paper [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648) by Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives. **ESM-2** was released with the paper [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902) by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives.
1. **[Falcon](https://huggingface.co/docs/transformers/model_doc/falcon)** (from Technology Innovation Institute) by Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme.
1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FLAN-UL2](https://huggingface.co/docs/transformers/model_doc/flan-ul2)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-ul2-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (from Facebook AI) released with the paper [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela.
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
1. **[FocalNet](https://huggingface.co/docs/transformers/model_doc/focalnet)** (from Microsoft Research) released with the paper [Focal Modulation Networks](https://arxiv.org/abs/2203.11926) by Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao.
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (from Microsoft Research) released with the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang.
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (from KAIST) released with the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim.
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (from EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy.
1. **[GPT NeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox)** (EleutherAI 에서) Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbac 의 [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) 논문과 함께 발표했습니다.
1. **[GPT NeoX Japanese](https://huggingface.co/docs/transformers/model_doc/gpt_neox_japanese)** (from ABEJA) released by Shinya Otani, Takayoshi Makabe, Anuj Arora, and Kyo Hattori.
1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (OpenAI 에서) Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever** 의 [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/) 논문과 함께 발표했습니다.
1. **[GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj)** (from EleutherAI) released in the repository [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) by Ben Wang and Aran Komatsuzaki.
1. **[GPT-Sw3](https://huggingface.co/docs/transformers/model_doc/gpt-sw3)** (AI-Sweden 에서) Ariel Ekgren, Amaru Cuba Gyllensten, Evangelia Gogoulou, Alice Heiman, Severine Verlinden, Joey Öhman, Fredrik Carlsson, Magnus Sahlgren. 의 [Lessons Learned from GPT-SW3: Building the First Large-Scale Generative Language Model for Swedish](http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.376.pdf) 논문과 함께 발표했습니다.
1. **[GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode)** (BigCode 에서 제공)은 Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, Logesh Kumar Umapathi, Carolyn Jane Anderson, Yangtian Zi, Joel Lamy Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry Abulkhanov, Manuel Romero, Michael Lappert, Francesco De Toni, Bernardo García del Río, Qian Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab Mangrulkar, David Lansky, Huu Nguyen, Danish Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau, Yacine Jernite, Sean Hughes, Daniel Fried, Arjun Guha, Harm de Vries, Leandro von Werra.의 [SantaCoder: don't reach for the stars!](https://arxiv.org/abs/2301.03988)논문과 함께 발표했습니다.
1. **[GPTSAN-japanese](https://huggingface.co/docs/transformers/model_doc/gptsan-japanese)** released in the repository [tanreinama/GPTSAN](https://github.com/tanreinama/GPTSAN/blob/main/report/model.md) by Toshiyuki Sakamoto(tanreinama).
1. **[Graphormer](https://huggingface.co/docs/transformers/model_doc/graphormer)** (from Microsoft) Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu 의 [Do Transformers Really Perform Bad for Graph Representation?](https://arxiv.org/abs/2106.05234) 논문과 함께 발표했습니다.
1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (UCSD, NVIDIA 에서) Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang 의 [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) 논문과 함께 발표했습니다.
1. **[HerBERT](https://huggingface.co/docs/transformers/model_doc/herbert)** (Allegro.pl, AGH University of Science and Technology 에서 제공)은 Piotr Rybak, Robert Mroczkowski, Janusz Tracz, Ireneusz Gawlik.의 [KLEJ: Comprehensive Benchmark for Polish Language Understanding](https://www.aclweb.org/anthology/2020.acl-main.111.pdf)논문과 함께 발표했습니다.
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (Facebook 에서) Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed 의 [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) 논문과 함께 발표했습니다.
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (Berkeley 에서) Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer 의 [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) 논문과 함께 발표했습니다.
1. **[IDEFICS](https://huggingface.co/docs/transformers/model_doc/idefics)** (from HuggingFace) released with the paper [OBELICS: An Open Web-Scale Filtered Dataset of Interleaved Image-Text Documents](https://huggingface.co/papers/2306.16527) by Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov, Thomas Wang, Siddharth Karamcheti, Alexander M. Rush, Douwe Kiela, Matthieu Cord, Victor Sanh.
1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (OpenAI 에서) Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever 의 [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) 논문과 함께 발표했습니다.
1. **[Informer](https://huggingface.co/docs/transformers/model_doc/informer)** (from Beihang University, UC Berkeley, Rutgers University, SEDD Company) released with the paper [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting](https://arxiv.org/abs/2012.07436) by Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
1. **[InstructBLIP](https://huggingface.co/docs/transformers/model_doc/instructblip)** (Salesforce 에서 제공)은 Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, Steven Hoi.의 [InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning](https://arxiv.org/abs/2305.06500)논문과 함께 발표했습니다.
1. **[Jukebox](https://huggingface.co/docs/transformers/model_doc/jukebox)** (OpenAI 에서) Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever 의 [Jukebox: A Generative Model for Music](https://arxiv.org/pdf/2005.00341.pdf) 논문과 함께 발표했습니다.
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (Microsoft Research Asia 에서) Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou 의 [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) 논문과 함께 발표했습니다.
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (Microsoft Research Asia 에서) Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou 의 [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) 논문과 함께 발표했습니다.
1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (Microsoft Research Asia 에서) Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei 의 [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) 논문과 함께 발표했습니다.
1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutxlm)** (Microsoft Research Asia 에서) Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei 의 [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) 논문과 함께 발표했습니다.
1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (AllenAI 에서) Iz Beltagy, Matthew E. Peters, Arman Cohan 의 [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) 논문과 함께 발표했습니다.
1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (Meta AI 에서) Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze 의 [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) 논문과 함께 발표했습니다.
1. **[LiLT](https://huggingface.co/docs/transformers/model_doc/lilt)** (South China University of Technology 에서) Jiapeng Wang, Lianwen Jin, Kai Ding 의 [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669) 논문과 함께 발표했습니다.
1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (The FAIR team of Meta AI 에서 제공)은 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample.의 [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971)논문과 함께 발표했습니다.
1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (The FAIR team of Meta AI 에서 제공)은 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom..의 [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/XXX)논문과 함께 발표했습니다.
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (AllenAI 에서) Iz Beltagy, Matthew E. Peters, Arman Cohan 의 [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) 논문과 함께 발표했습니다.
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (Google AI 에서) Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang 의 [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) 논문과 함께 발표했습니다.
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (Studio Ousia 에서) Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto 의 [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) 논문과 함께 발표했습니다.
1. **[LXMERT](https://huggingface.co/docs/transformers/model_doc/lxmert)** (UNC Chapel Hill 에서) Hao Tan and Mohit Bansal 의 [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) 논문과 함께 발표했습니다.
1. **[M-CTC-T](https://huggingface.co/docs/transformers/model_doc/mctct)** (Facebook 에서) Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert 의 [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) 논문과 함께 발표했습니다.
1. **[M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100)** (Facebook 에서) Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin 의 [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) 논문과 함께 발표했습니다.
1. **[MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)** Machine translation models trained using [OPUS](http://opus.nlpl.eu/) data by Jörg Tiedemann. The [Marian Framework](https://marian-nmt.github.io/) is being developed by the Microsoft Translator Team.
1. **[MarkupLM](https://huggingface.co/docs/transformers/model_doc/markuplm)** (Microsoft Research Asia 에서) Junlong Li, Yiheng Xu, Lei Cui, Furu Wei 의 [MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document Understanding](https://arxiv.org/abs/2110.08518) 논문과 함께 발표했습니다.
1. **[Mask2Former](https://huggingface.co/docs/transformers/model_doc/mask2former)** (FAIR and UIUC 에서 제공)은 Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Rohit Girdhar.의 [Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527)논문과 함께 발표했습니다.
1. **[MaskFormer](https://huggingface.co/docs/transformers/model_doc/maskformer)** (Meta and UIUC 에서) Bowen Cheng, Alexander G. Schwing, Alexander Kirillov 의 [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) 논문과 함께 발표했습니다.
1. **[MatCha](https://huggingface.co/docs/transformers/model_doc/matcha)** (Google AI 에서 제공)은 Fangyu Liu, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Yasemin Altun, Nigel Collier, Julian Martin Eisenschlos.의 [MatCha: Enhancing Visual Language Pretraining with Math Reasoning and Chart Derendering](https://arxiv.org/abs/2212.09662)논문과 함께 발표했습니다.
1. **[mBART](https://huggingface.co/docs/transformers/model_doc/mbart)** (Facebook 에서) Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer 의 [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) 논문과 함께 발표했습니다.
1. **[mBART-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (Facebook 에서) Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan 의 [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) 논문과 함께 발표했습니다.
1. **[MEGA](https://huggingface.co/docs/transformers/model_doc/mega)** (Facebook 에서 제공)은 Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and Luke Zettlemoyer.의 [Mega: Moving Average Equipped Gated Attention](https://arxiv.org/abs/2209.10655)논문과 함께 발표했습니다.
1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (NVIDIA 에서) Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro 의 [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) 논문과 함께 발표했습니다.
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (NVIDIA 에서) Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro 의 [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) 논문과 함께 발표했습니다.
1. **[MGP-STR](https://huggingface.co/docs/transformers/model_doc/mgp-str)** (Alibaba Research 에서 제공)은 Peng Wang, Cheng Da, and Cong Yao.의 [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592)논문과 함께 발표했습니다.
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (Studio Ousia 에서) Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka 의 [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) 논문과 함께 발표했습니다.
1. **[MMS](https://huggingface.co/docs/transformers/model_doc/mms)** (Facebook 에서 제공)은 Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky, Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi, Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning Hsu, Alexis Conneau, Michael Auli.의 [Scaling Speech Technology to 1,000+ Languages](https://arxiv.org/abs/2305.13516)논문과 함께 발표했습니다.
1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (CMU/Google Brain 에서) Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou 의 [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) 논문과 함께 발표했습니다.
1. **[MobileNetV1](https://huggingface.co/docs/transformers/model_doc/mobilenet_v1)** (Google Inc. 에서) Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam 의 [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) 논문과 함께 발표했습니다.
1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (Google Inc. 에서) Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen 의 [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) 논문과 함께 발표했습니다.
1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (Apple 에서) Sachin Mehta and Mohammad Rastegari 의 [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) 논문과 함께 발표했습니다.
1. **[MobileViTV2](https://huggingface.co/docs/transformers/model_doc/mobilevitv2)** (Apple 에서 제공)은 Sachin Mehta and Mohammad Rastegari.의 [Separable Self-attention for Mobile Vision Transformers](https://arxiv.org/abs/2206.02680)논문과 함께 발표했습니다.
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (Microsoft Research 에서) Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu 의 [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) 논문과 함께 발표했습니다.
1. **[MPT](https://huggingface.co/docs/transformers/model_doc/mpt)** (MosaiML 에서 제공)은 the MosaicML NLP Team.의 [llm-foundry](https://github.com/mosaicml/llm-foundry/)논문과 함께 발표했습니다.
1. **[MRA](https://huggingface.co/docs/transformers/model_doc/mra)** (the University of Wisconsin - Madison 에서 제공)은 Zhanpeng Zeng, Sourav Pal, Jeffery Kline, Glenn M Fung, Vikas Singh.의 [Multi Resolution Analysis (MRA)](https://arxiv.org/abs/2207.10284) 논문과 함께 발표했습니다.
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (Google AI 에서) Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel 의 [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) 논문과 함께 발표했습니다.
1. **[MusicGen](https://huggingface.co/docs/transformers/model_doc/musicgen)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (RUC AI Box 에서) Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen 의 [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) 논문과 함께 발표했습니다.
1. **[NAT](https://huggingface.co/docs/transformers/model_doc/nat)** (SHI Labs 에서) Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi 의 [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143) 논문과 함께 발표했습니다.
1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (Huawei Noahs Ark Lab 에서) Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu 의 [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) 논문과 함께 발표했습니다.
1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (Meta 에서) the NLLB team 의 [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) 논문과 함께 발표했습니다.
1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (Meta 에서 제공)은 the NLLB team.의 [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672)논문과 함께 발표했습니다.
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (the University of Wisconsin - Madison 에서) Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh 의 [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) 논문과 함께 발표했습니다.
1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (SHI Labs 에서) Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi 의 [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) 논문과 함께 발표했습니다.
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released in [Open-Llama](https://github.com/s-JoL/Open-Llama).
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (Meta AI 에서) Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al 의 [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) 논문과 함께 발표했습니다.
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (Google AI 에서) Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby 의 [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) 논문과 함께 발표했습니다.
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (Google 에서) Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu 의 [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) 논문과 함께 발표했습니다.
1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (Google 에서) Jason Phang, Yao Zhao, Peter J. Liu 의 [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) 논문과 함께 발표했습니다.
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (Deepmind 에서) Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira 의 [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) 논문과 함께 발표했습니다.
1. **[Persimmon](https://huggingface.co/docs/transformers/main/model_doc/persimmon)** (ADEPT 에서 제공)은 Erich Elsen, Augustus Odena, Maxwell Nye, Sağnak Taşırlar, Tri Dao, Curtis Hawthorne, Deepak Moparthi, Arushi Somani.의 [blog post](https://www.adept.ai/blog/persimmon-8b)논문과 함께 발표했습니다.
1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (VinAI Research 에서) Dat Quoc Nguyen and Anh Tuan Nguyen 의 [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) 논문과 함께 발표했습니다.
1. **[Pix2Struct](https://huggingface.co/docs/transformers/model_doc/pix2struct)** (Google 에서 제공)은 Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova.의 [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding](https://arxiv.org/abs/2210.03347)논문과 함께 발표했습니다.
1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (UCLA NLP 에서) Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang 의 [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) 논문과 함께 발표했습니다.
1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (Sea AI Labs 에서) Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng 의 [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) 논문과 함께 발표했습니다.
1. **[Pop2Piano](https://huggingface.co/docs/transformers/model_doc/pop2piano)** released with the paper [Pop2Piano : Pop Audio-based Piano Cover Generation](https://arxiv.org/abs/2211.00895) by Jongho Choi, Kyogu Lee.
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (Microsoft Research 에서) Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou 의 [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) 논문과 함께 발표했습니다.
1. **[PVT](https://huggingface.co/docs/transformers/model_doc/pvt)** (Nanjing University, The University of Hong Kong etc. 에서 제공)은 Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao.의 [Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions](https://arxiv.org/pdf/2102.12122.pdf)논문과 함께 발표했습니다.
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (NVIDIA 에서) Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius 의 [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) 논문과 함께 발표했습니다.
1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (Facebook 에서) Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela 의 [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) 논문과 함께 발표했습니다.
1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (Google Research 에서) Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang 의 [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) 논문과 함께 발표했습니다.
1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (Google Research 에서) Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya 의 [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) 논문과 함께 발표했습니다.
1. **[RegNet](https://huggingface.co/docs/transformers/model_doc/regnet)** (META Research 에서) Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár 의 [Designing Network Design Space](https://arxiv.org/abs/2003.13678) 논문과 함께 발표했습니다.
1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (Google Research 에서) Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder 의 [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/pdf/2010.12821.pdf) 논문과 함께 발표했습니다.
1. **[ResNet](https://huggingface.co/docs/transformers/model_doc/resnet)** (Microsoft Research 에서) Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun 의 [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) 논문과 함께 발표했습니다.
1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (Facebook 에서) Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov 의 a [Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) 논문과 함께 발표했습니다.
1. **[RoBERTa-PreLayerNorm](https://huggingface.co/docs/transformers/model_doc/roberta-prelayernorm)** (Facebook 에서) Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli 의 [fairseq: A Fast, Extensible Toolkit for Sequence Modeling](https://arxiv.org/abs/1904.01038) 논문과 함께 발표했습니다.
1. **[RoCBert](https://huggingface.co/docs/transformers/model_doc/roc_bert)** (WeChatAI 에서) HuiSu, WeiweiShi, XiaoyuShen, XiaoZhou, TuoJi, JiaruiFang, JieZhou 의 [RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining](https://aclanthology.org/2022.acl-long.65.pdf) 논문과 함께 발표했습니다.
1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (ZhuiyiTechnology 에서) Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu 의 a [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/pdf/2104.09864v1.pdf) 논문과 함께 발표했습니다.
1. **[RWKV](https://huggingface.co/docs/transformers/model_doc/rwkv)** (Bo Peng 에서 제공)은 Bo Peng.의 [this repo](https://github.com/BlinkDL/RWKV-LM)논문과 함께 발표했습니다.
1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (NVIDIA 에서) Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo 의 [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) 논문과 함께 발표했습니다.
1. **[Segment Anything](https://huggingface.co/docs/transformers/model_doc/sam)** (Meta AI 에서 제공)은 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alex Berg, Wan-Yen Lo, Piotr Dollar, Ross Girshick.의 [Segment Anything](https://arxiv.org/pdf/2304.02643v1.pdf)논문과 함께 발표했습니다.
1. **[SEW](https://huggingface.co/docs/transformers/model_doc/sew)** (ASAPP 에서) Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi 의 [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) 논문과 함께 발표했습니다.
1. **[SEW-D](https://huggingface.co/docs/transformers/model_doc/sew_d)** (ASAPP 에서) Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi 의 [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) 논문과 함께 발표했습니다.
1. **[SpeechT5](https://huggingface.co/docs/transformers/model_doc/speecht5)** (Microsoft Research 에서 제공)은 Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li, Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, Furu Wei.의 [SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing](https://arxiv.org/abs/2110.07205)논문과 함께 발표했습니다.
1. **[SpeechToTextTransformer](https://huggingface.co/docs/transformers/model_doc/speech_to_text)** (Facebook 에서) Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino 의 [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) 논문과 함께 발표했습니다.
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (Facebook 에서) Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau 의 [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) 논문과 함께 발표했습니다.
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (Tel Aviv University 에서) Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy 의 [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) 논문과 함께 발표했습니다.
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (Berkeley 에서) Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer 의 [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) 논문과 함께 발표했습니다.
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (MBZUAI 에서 제공)은 Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan.의 [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446)논문과 함께 발표했습니다.
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (Microsoft 에서) Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo 의 [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) 논문과 함께 발표했습니다.
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (Microsoft 에서) Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo 의 [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) 논문과 함께 발표했습니다.
1. **[Swin2SR](https://huggingface.co/docs/transformers/model_doc/swin2sr)** (University of Würzburg 에서) Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte 의 [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345) 논문과 함께 발표했습니다.
1. **[SwitchTransformers](https://huggingface.co/docs/transformers/model_doc/switch_transformers)** (Google 에서) William Fedus, Barret Zoph, Noam Shazeer. 의 [Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity](https://arxiv.org/abs/2101.03961) 논문과 함께 발표했습니다.
1. **[T5](https://huggingface.co/docs/transformers/model_doc/t5)** (Google AI 에서) Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu 의 [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) 논문과 함께 발표했습니다.
1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (from Google AI) released in the repository [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[Table Transformer](https://huggingface.co/docs/transformers/model_doc/table-transformer)** (Microsoft Research 에서) Brandon Smock, Rohith Pesala, Robin Abraham 의 [PubTables-1M: Towards Comprehensive Table Extraction From Unstructured Documents](https://arxiv.org/abs/2110.00061) 논문과 함께 발표했습니다.
1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (Google AI 에서) Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos 의 [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) 논문과 함께 발표했습니다.
1. **[TAPEX](https://huggingface.co/docs/transformers/model_doc/tapex)** (Microsoft Research 에서) Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou 의 [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) 논문과 함께 발표했습니다.
1. **[Time Series Transformer](https://huggingface.co/docs/transformers/model_doc/time_series_transformer)** (from HuggingFace).
1. **[TimeSformer](https://huggingface.co/docs/transformers/model_doc/timesformer)** (Facebook 에서) Gedas Bertasius, Heng Wang, Lorenzo Torresani 의 [Is Space-Time Attention All You Need for Video Understanding?](https://arxiv.org/abs/2102.05095) 논문과 함께 발표했습니다.
1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/model_doc/trajectory_transformers)** (the University of California at Berkeley 에서) Michael Janner, Qiyang Li, Sergey Levin 의 [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) 논문과 함께 발표했습니다.
1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (Google/CMU 에서) Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov 의 [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) 논문과 함께 발표했습니다.
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (Microsoft 에서) Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei 의 [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) 논문과 함께 발표했습니다.
1. **[TVLT](https://huggingface.co/docs/transformers/model_doc/tvlt)** (from UNC Chapel Hill 에서) Zineng Tang, Jaemin Cho, Yixin Nie, Mohit Bansal 의 [TVLT: Textless Vision-Language Transformer](https://arxiv.org/abs/2209.14156) 논문과 함께 발표했습니다.
1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (Google Research 에서) Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzle 의 [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) 논문과 함께 발표했습니다.
1. **[UMT5](https://huggingface.co/docs/transformers/model_doc/umt5)** (Google Research 에서 제공)은 Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, Noah Constant.의 [UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining](https://openreview.net/forum?id=kXwdL1cWOAi)논문과 함께 발표했습니다.
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (Microsoft Research 에서) Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang 의 [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) 논문과 함께 발표했습니다.
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (Microsoft Research 에서) Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu 의 [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) 논문과 함께 발표했습니다.
1. **[UPerNet](https://huggingface.co/docs/transformers/model_doc/upernet)** (Peking University 에서 제공)은 Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun.의 [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221)논문과 함께 발표했습니다.
1. **[VAN](https://huggingface.co/docs/transformers/model_doc/van)** (Tsinghua University and Nankai University 에서) Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu 의 [Visual Attention Network](https://arxiv.org/pdf/2202.09741.pdf) 논문과 함께 발표했습니다.
1. **[VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)** (Multimedia Computing Group, Nanjing University 에서) Zhan Tong, Yibing Song, Jue Wang, Limin Wang 의 [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602) 논문과 함께 발표했습니다.
1. **[ViLT](https://huggingface.co/docs/transformers/model_doc/vilt)** (NAVER AI Lab/Kakao Enterprise/Kakao Brain 에서) Wonjae Kim, Bokyung Son, Ildoo Kim 의 [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) 논문과 함께 발표했습니다.
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (Google AI 에서) Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby 의 [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) 논문과 함께 발표했습니다.
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (UCLA NLP 에서) Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang 의 [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) 논문과 함께 발표했습니다.
1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (Google AI 에서) Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby 의 [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) 논문과 함께 발표했습니다.
1. **[VitDet](https://huggingface.co/docs/transformers/model_doc/vitdet)** (Meta AI 에서 제공)은 Yanghao Li, Hanzi Mao, Ross Girshick, Kaiming He.의 [Exploring Plain Vision Transformer Backbones for Object Detection](https://arxiv.org/abs/2203.16527)논문과 함께 발표했습니다.
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (Meta AI 에서) Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick 의 [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) 논문과 함께 발표했습니다.
1. **[ViTMatte](https://huggingface.co/docs/transformers/main/model_doc/vitmatte)** (HUST-VL 에서 제공)은 Jingfeng Yao, Xinggang Wang, Shusheng Yang, Baoyuan Wang.의 [ViTMatte: Boosting Image Matting with Pretrained Plain Vision Transformers](https://arxiv.org/abs/2305.15272)논문과 함께 발표했습니다.
1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (Meta AI 에서) Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas 의 [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) 논문과 함께 발표했습니다.
1. **[VITS](https://huggingface.co/docs/transformers/model_doc/vits)** (Kakao Enterprise 에서 제공)은 Jaehyeon Kim, Jungil Kong, Juhee Son.의 [Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech](https://arxiv.org/abs/2106.06103)논문과 함께 발표했습니다.
1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (from Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) by Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid.
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (Facebook AI 에서) Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli 의 [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) 논문과 함께 발표했습니다.
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (Facebook AI 에서) Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino 의 [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) 논문과 함께 발표했습니다.
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (Facebook AI 에서) Qiantong Xu, Alexei Baevski, Michael Auli 의 [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) 논문과 함께 발표했습니다.
1. **[WavLM](https://huggingface.co/docs/transformers/model_doc/wavlm)** (Microsoft Research 에서) Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei 의 [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) 논문과 함께 발표했습니다.
1. **[Whisper](https://huggingface.co/docs/transformers/model_doc/whisper)** (OpenAI 에서) Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, Ilya Sutskever 의 [Robust Speech Recognition via Large-Scale Weak Supervision](https://cdn.openai.com/papers/whisper.pdf) 논문과 함께 발표했습니다.
1. **[X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)** (Microsoft Research 에서) Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang, Gaofeng Meng, Jianlong Fu, Shiming Xiang, Haibin Ling 의 [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816) 논문과 함께 발표했습니다.
1. **[X-MOD](https://huggingface.co/docs/transformers/model_doc/xmod)** (Meta AI 에서 제공)은 Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James Cross, Sebastian Riedel, Mikel Artetxe.의 [Lifting the Curse of Multilinguality by Pre-training Modular Transformers](http://dx.doi.org/10.18653/v1/2022.naacl-main.255)논문과 함께 발표했습니다.
1. **[XGLM](https://huggingface.co/docs/transformers/model_doc/xglm)** (Facebook AI 에서 제공) Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li 의 [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) 논문과 함께 발표했습니다.
1. **[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (Facebook 에서) Guillaume Lample and Alexis Conneau 의 [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) 논문과 함께 발표했습니다.
1. **[XLM-ProphetNet](https://huggingface.co/docs/transformers/model_doc/xlm-prophetnet)** (Microsoft Research 에서) Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou 의 [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) 논문과 함께 발표했습니다.
1. **[XLM-RoBERTa](https://huggingface.co/docs/transformers/model_doc/xlm-roberta)** (Facebook AI 에서) Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov 의 [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) 논문과 함께 발표했습니다.
1. **[XLM-RoBERTa-XL](https://huggingface.co/docs/transformers/model_doc/xlm-roberta-xl)** (Facebook AI 에서) Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau 의 [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) 논문과 함께 발표했습니다.
1. **[XLM-V](https://huggingface.co/docs/transformers/model_doc/xlm-v)** (Meta AI 에서) Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Naman Goyal, Marjan Ghazvininejad, Luke Zettlemoyer, Madian Khabsa 의 [XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models](https://arxiv.org/abs/2301.10472) 논문과 함께 발표했습니다.
1. **[XLNet](https://huggingface.co/docs/transformers/model_doc/xlnet)** (Google/CMU 에서) Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le 의 [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) 논문과 함께 발표했습니다.
1. **[XLS-R](https://huggingface.co/docs/transformers/model_doc/xls_r)** (Facebook AI 에서) Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli 의 [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) 논문과 함께 발표했습니다.
1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (Facebook AI 에서) Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli 의 [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) 논문과 함께 발표했습니다.
1. **[YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos)** (Huazhong University of Science & Technology 에서) Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu 의 [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) 논문과 함께 발표했습니다.
1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (the University of Wisconsin - Madison 에서) Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh 의 [You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling](https://arxiv.org/abs/2111.09714) 논문과 함께 발표했습니다.
1. 새로운 모델을 올리고 싶나요? 우리가 **상세한 가이드와 템플릿** 으로 새로운 모델을 올리도록 도와드릴게요. 가이드와 템플릿은 이 저장소의 [`templates`](./templates) 폴더에서 확인하실 수 있습니다. [컨트리뷰션 가이드라인](./CONTRIBUTING.md)을 꼭 확인해주시고, PR을 올리기 전에 메인테이너에게 연락하거나 이슈를 오픈해 피드백을 받으시길 바랍니다.
각 모델이 Flax, PyTorch, TensorFlow으로 구현되었는지 또는 🤗 Tokenizers 라이브러리가 지원하는 토크나이저를 사용하는지 확인하려면, [이 표](https://huggingface.co/docs/transformers/index#supported-frameworks)를 확인하세요.
이 구현은 여러 데이터로 검증되었고 (예시 스크립트를 참고하세요) 오리지널 구현의 성능과 같아야 합니다. [도큐먼트](https://huggingface.co/docs/transformers/examples)의 Examples 섹션에서 성능에 대한 자세한 설명을 확인할 수 있습니다.
## 더 알아보기
| 섹션 | 설명 |
|-|-|
| [도큐먼트](https://huggingface.co/transformers/) | 전체 API 도큐먼트와 튜토리얼 |
| [과제 요약](https://huggingface.co/docs/transformers/task_summary) | 🤗 Transformers가 지원하는 과제들 |
| [전처리 튜토리얼](https://huggingface.co/docs/transformers/preprocessing) | `Tokenizer` 클래스를 이용해 모델을 위한 데이터 준비하기 |
| [학습과 fine-tuning](https://huggingface.co/docs/transformers/training) | 🤗 Transformers가 제공하는 모델 PyTorch/TensorFlow 학습 과정과 `Trainer` API에서 사용하기 |
| [퀵 투어: Fine-tuning/사용 스크립트](https://github.com/huggingface/transformers/tree/main/examples) | 다양한 과제에서 모델 fine-tuning하는 예시 스크립트 |
| [모델 공유 및 업로드](https://huggingface.co/docs/transformers/model_sharing) | 커뮤니티에 fine-tune된 모델을 업로드 및 공유하기 |
| [마이그레이션](https://huggingface.co/docs/transformers/migration) | `pytorch-transformers`나 `pytorch-pretrained-bert`에서 🤗 Transformers로 이동하기|
## 인용
🤗 Transformers 라이브러리를 인용하고 싶다면, 이 [논문](https://www.aclweb.org/anthology/2020.emnlp-demos.6/)을 인용해 주세요:
```bibtex
@inproceedings{wolf-etal-2020-transformers,
title = "Transformers: State-of-the-Art Natural Language Processing",
author = "Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and Rémi Louf and Morgan Funtowicz and Joe Davison and Sam Shleifer and Patrick von Platen and Clara Ma and Yacine Jernite and Julien Plu and Canwen Xu and Teven Le Scao and Sylvain Gugger and Mariama Drame and Quentin Lhoest and Alexander M. Rush",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = oct,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.emnlp-demos.6",
pages = "38--45"
}
```

View File

@ -1,500 +0,0 @@
<!---
Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
<!---
A useful guide for English-Chinese translation of Hugging Face documentation
- Add space around English words and numbers when they appear between Chinese characters. E.g., 共 100 多种语言; 使用 transformers 库。
- Use square quotes, e.g.,「引用」
Dictionary
Hugging Face: 抱抱脸
token: 词符(并用括号标注原英文)
tokenize: 词符化(并用括号标注原英文)
tokenizer: 词符化器(并用括号标注原英文)
transformer: transformer不翻译
pipeline: 流水线
API: API (不翻译)
inference: 推理
Trainer: 训练器。当作为类名出现时不翻译。
pretrained/pretrain: 预训练
finetune: 微调
community: 社区
example: 当特指仓库中 example 目录时翻译为「用例」
Python data structures (e.g., list, set, dict): 翻译为列表,集合,词典,并用括号标注原英文
NLP/Natural Language Processing: 以 NLP 出现时不翻译,以 Natural Language Processing 出现时翻译为自然语言处理
checkpoint: 检查点
-->
<p align="center">
<br>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers_logo_name.png" width="400"/>
<br>
<p>
<p align="center">
<a href="https://circleci.com/gh/huggingface/transformers">
<img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/main">
</a>
<a href="https://github.com/huggingface/transformers/blob/main/LICENSE">
<img alt="GitHub" src="https://img.shields.io/github/license/huggingface/transformers.svg?color=blue">
</a>
<a href="https://huggingface.co/docs/transformers/index">
<img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/docs/transformers/index.svg?down_color=red&down_message=offline&up_message=online">
</a>
<a href="https://github.com/huggingface/transformers/releases">
<img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/transformers.svg">
</a>
<a href="https://github.com/huggingface/transformers/blob/main/CODE_OF_CONDUCT.md">
<img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg">
</a>
<a href="https://zenodo.org/badge/latestdoi/155220641"><img src="https://zenodo.org/badge/155220641.svg" alt="DOI"></a>
</p>
<h4 align="center">
<p>
<a href="https://github.com/huggingface/transformers/">English</a> |
<b>简体中文</b> |
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hant.md">繁體中文</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ko.md">한국어</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_es.md">Español</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ja.md">日本語</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_hd.md">हिन्दी</a>
<p>
</h4>
<h3 align="center">
<p>为 Jax、PyTorch 和 TensorFlow 打造的先进的自然语言处理</p>
</h3>
<h3 align="center">
<a href="https://hf.co/course"><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/course_banner.png"></a>
</h3>
🤗 Transformers 提供了数以千计的预训练模型,支持 100 多种语言的文本分类、信息抽取、问答、摘要、翻译、文本生成。它的宗旨是让最先进的 NLP 技术人人易用。
🤗 Transformers 提供了便于快速下载和使用的API让你可以把预训练模型用在给定文本、在你的数据集上微调然后通过 [model hub](https://huggingface.co/models) 与社区共享。同时,每个定义的 Python 模块均完全独立,方便修改和快速研究实验。
🤗 Transformers 支持三个最热门的深度学习库: [Jax](https://jax.readthedocs.io/en/latest/), [PyTorch](https://pytorch.org/) 以及 [TensorFlow](https://www.tensorflow.org/) — 并与之无缝整合。你可以直接使用一个框架训练你的模型然后用另一个加载和推理。
## 在线演示
你可以直接在模型页面上测试大多数 [model hub](https://huggingface.co/models) 上的模型。 我们也提供了 [私有模型托管、模型版本管理以及推理API](https://huggingface.co/pricing)。
这里是一些例子:
- [用 BERT 做掩码填词](https://huggingface.co/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France)
- [用 Electra 做命名实体识别](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city)
- [用 GPT-2 做文本生成](https://huggingface.co/gpt2?text=A+long+time+ago%2C+)
- [用 RoBERTa 做自然语言推理](https://huggingface.co/roberta-large-mnli?text=The+dog+was+lost.+Nobody+lost+any+animal)
- [用 BART 做文本摘要](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct)
- [用 DistilBERT 做问答](https://huggingface.co/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species)
- [用 T5 做翻译](https://huggingface.co/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin)
**[Write With Transformer](https://transformer.huggingface.co)**,由抱抱脸团队打造,是一个文本生成的官方 demo。
## 如果你在寻找由抱抱脸团队提供的定制化支持服务
<a target="_blank" href="https://huggingface.co/support">
<img alt="HuggingFace Expert Acceleration Program" src="https://huggingface.co/front/thumbnails/support.png" style="max-width: 600px; border: 1px solid #eee; border-radius: 4px; box-shadow: 0 1px 2px 0 rgba(0, 0, 0, 0.05);">
</a><br>
## 快速上手
我们为快速使用模型提供了 `pipeline` 流水线API。流水线聚合了预训练模型和对应的文本预处理。下面是一个快速使用流水线去判断正负面情绪的例子
```python
>>> from transformers import pipeline
# 使用情绪分析流水线
>>> classifier = pipeline('sentiment-analysis')
>>> classifier('We are very happy to introduce pipeline to the transformers repository.')
[{'label': 'POSITIVE', 'score': 0.9996980428695679}]
```
第二行代码下载并缓存了流水线使用的预训练模型,而第三行代码则在给定的文本上进行了评估。这里的答案“正面” (positive) 具有 99 的置信度。
许多的 NLP 任务都有开箱即用的预训练流水线。比如说,我们可以轻松的从给定文本中抽取问题答案:
``` python
>>> from transformers import pipeline
# 使用问答流水线
>>> question_answerer = pipeline('question-answering')
>>> question_answerer({
... 'question': 'What is the name of the repository ?',
... 'context': 'Pipeline has been included in the huggingface/transformers repository'
... })
{'score': 0.30970096588134766, 'start': 34, 'end': 58, 'answer': 'huggingface/transformers'}
```
除了给出答案,预训练模型还给出了对应的置信度分数、答案在词符化 (tokenized) 后的文本中开始和结束的位置。你可以从[这个教程](https://huggingface.co/docs/transformers/task_summary)了解更多流水线API支持的任务。
要在你的任务上下载和使用任意预训练模型也很简单,只需三行代码。这里是 PyTorch 版的示例:
```python
>>> from transformers import AutoTokenizer, AutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = AutoModel.from_pretrained("bert-base-uncased")
>>> inputs = tokenizer("Hello world!", return_tensors="pt")
>>> outputs = model(**inputs)
```
这里是等效的 TensorFlow 代码:
```python
>>> from transformers import AutoTokenizer, TFAutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = TFAutoModel.from_pretrained("bert-base-uncased")
>>> inputs = tokenizer("Hello world!", return_tensors="tf")
>>> outputs = model(**inputs)
```
词符化器 (tokenizer) 为所有的预训练模型提供了预处理,并可以直接对单个字符串进行调用(比如上面的例子)或对列表 (list) 调用。它会输出一个你可以在下游代码里使用或直接通过 `**` 解包表达式传给模型的词典 (dict)。
模型本身是一个常规的 [Pytorch `nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) 或 [TensorFlow `tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model)(取决于你的后端),可以常规方式使用。 [这个教程](https://huggingface.co/transformers/training.html)解释了如何将这样的模型整合到经典的 PyTorch 或 TensorFlow 训练循环中,或是如何使用我们的 `Trainer` 训练器API 来在一个新的数据集上快速微调。
## 为什么要用 transformers
1. 便于使用的先进模型:
- NLU 和 NLG 上表现优越
- 对教学和实践友好且低门槛
- 高级抽象,只需了解三个类
- 对所有模型统一的API
1. 更低计算开销,更少的碳排放:
- 研究人员可以分享已训练的模型而非每次从头开始训练
- 工程师可以减少计算用时和生产环境开销
- 数十种模型架构、两千多个预训练模型、100多种语言支持
1. 对于模型生命周期的每一个部分都面面俱到:
- 训练先进的模型,只需 3 行代码
- 模型在不同深度学习框架间任意转移,随你心意
- 为训练、评估和生产选择最适合的框架,衔接无缝
1. 为你的需求轻松定制专属模型和用例:
- 我们为每种模型架构提供了多个用例来复现原论文结果
- 模型内部结构保持透明一致
- 模型文件可单独使用,方便魔改和快速实验
## 什么情况下我不该用 transformers
- 本库并不是模块化的神经网络工具箱。模型文件中的代码特意呈若璞玉,未经额外抽象封装,以便研究人员快速迭代魔改而不致溺于抽象和文件跳转之中。
- `Trainer` API 并非兼容任何模型,只为本库之模型优化。若是在寻找适用于通用机器学习的训练循环实现,请另觅他库。
- 尽管我们已尽力而为,[examples 目录](https://github.com/huggingface/transformers/tree/main/examples)中的脚本也仅为用例而已。对于你的特定问题,它们并不一定开箱即用,可能需要改几行代码以适之。
## 安装
### 使用 pip
这个仓库已在 Python 3.8+、Flax 0.4.1+、PyTorch 1.10+ 和 TensorFlow 2.6+ 下经过测试。
你可以在[虚拟环境](https://docs.python.org/3/library/venv.html)中安装 🤗 Transformers。如果你还不熟悉 Python 的虚拟环境,请阅此[用户说明](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/)。
首先,用你打算使用的版本的 Python 创建一个虚拟环境并激活。
然后,你需要安装 Flax、PyTorch 或 TensorFlow 其中之一。关于在你使用的平台上安装这些框架,请参阅 [TensorFlow 安装页](https://www.tensorflow.org/install/), [PyTorch 安装页](https://pytorch.org/get-started/locally/#start-locally) 或 [Flax 安装页](https://github.com/google/flax#quick-install)。
当这些后端之一安装成功后, 🤗 Transformers 可依此安装:
```bash
pip install transformers
```
如果你想要试试用例或者想在正式发布前使用最新的开发中代码,你得[从源代码安装](https://huggingface.co/docs/transformers/installation#installing-from-source)。
### 使用 conda
自 Transformers 4.0.0 版始,我们有了一个 conda 频道: `huggingface`。
🤗 Transformers 可以通过 conda 依此安装:
```shell script
conda install -c huggingface transformers
```
要通过 conda 安装 Flax、PyTorch 或 TensorFlow 其中之一,请参阅它们各自安装页的说明。
## 模型架构
🤗 Transformers 支持的[**所有的模型检查点**](https://huggingface.co/models)由[用户](https://huggingface.co/users)和[组织](https://huggingface.co/organizations)上传,均与 huggingface.co [model hub](https://huggingface.co) 无缝整合。
目前的检查点数量: ![](https://img.shields.io/endpoint?url=https://huggingface.co/api/shields/models&color=brightgreen)
🤗 Transformers 目前支持如下的架构(模型概述请阅[这里](https://huggingface.co/docs/transformers/model_summary)
1. **[ALBERT](https://huggingface.co/docs/transformers/model_doc/albert)** (来自 Google Research and the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。
1. **[ALIGN](https://huggingface.co/docs/transformers/model_doc/align)** (来自 Google Research) 伴随论文 [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918) 由 Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig 发布。
1. **[AltCLIP](https://huggingface.co/docs/transformers/model_doc/altclip)** (来自 BAAI) 伴随论文 [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) 由 Chen, Zhongzhi and Liu, Guang and Zhang, Bo-Wen and Ye, Fulong and Yang, Qinghong and Wu, Ledell 发布。
1. **[Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer)** (来自 MIT) 伴随论文 [AST: Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778) 由 Yuan Gong, Yu-An Chung, James Glass 发布。
1. **[Autoformer](https://huggingface.co/docs/transformers/model_doc/autoformer)** (from Tsinghua University) released with the paper [Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://arxiv.org/abs/2106.13008) by Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long.
1. **[Bark](https://huggingface.co/docs/transformers/model_doc/bark)** (from Suno) released in the repository [suno-ai/bark](https://github.com/suno-ai/bark) by Suno AI team.
1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (来自 Facebook) 伴随论文 [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/pdf/1910.13461.pdf) 由 Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer 发布。
1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (来自 École polytechnique) 伴随论文 [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) 由 Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis 发布。
1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (来自 VinAI Research) 伴随论文 [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) 由 Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen 发布。
1. **[BEiT](https://huggingface.co/docs/transformers/model_doc/beit)** (来自 Microsoft) 伴随论文 [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) 由 Hangbo Bao, Li Dong, Furu Wei 发布。
1. **[BERT](https://huggingface.co/docs/transformers/model_doc/bert)** (来自 Google) 伴随论文 [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) 由 Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova 发布。
1. **[BERT For Sequence Generation](https://huggingface.co/docs/transformers/model_doc/bert-generation)** (来自 Google) 伴随论文 [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) 由 Sascha Rothe, Shashi Narayan, Aliaksei Severyn 发布。
1. **[BERTweet](https://huggingface.co/docs/transformers/model_doc/bertweet)** (来自 VinAI Research) 伴随论文 [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) 由 Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen 发布。
1. **[BigBird-Pegasus](https://huggingface.co/docs/transformers/model_doc/bigbird_pegasus)** (来自 Google Research) 伴随论文 [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) 由 Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed 发布。
1. **[BigBird-RoBERTa](https://huggingface.co/docs/transformers/model_doc/big_bird)** (来自 Google Research) 伴随论文 [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) 由 Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed 发布。
1. **[BioGpt](https://huggingface.co/docs/transformers/model_doc/biogpt)** (来自 Microsoft Research AI4Science) 伴随论文 [BioGPT: generative pre-trained transformer for biomedical text generation and mining](https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbac409/6713511?guestAccessKey=a66d9b5d-4f83-4017-bb52-405815c907b9) 由 Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon and Tie-Yan Liu 发布。
1. **[BiT](https://huggingface.co/docs/transformers/model_doc/bit)** (来自 Google AI) 伴随论文 [Big Transfer (BiT) 由 Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil Houlsby 发布。
1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (来自 Facebook) 伴随论文 [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) 由 Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston 发布。
1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (来自 Facebook) 伴随论文 [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) 由 Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston 发布。
1. **[BLIP](https://huggingface.co/docs/transformers/model_doc/blip)** (来自 Salesforce) 伴随论文 [BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation](https://arxiv.org/abs/2201.12086) 由 Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi 发布。
1. **[BLIP-2](https://huggingface.co/docs/transformers/model_doc/blip-2)** (来自 Salesforce) 伴随论文 [BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models](https://arxiv.org/abs/2301.12597) 由 Junnan Li, Dongxu Li, Silvio Savarese, Steven Hoi 发布。
1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (from BigScience workshop) released by the [BigScience Workshop](https://bigscience.huggingface.co/).
1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (来自 Alexa) 伴随论文 [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) 由 Adrian de Wynter and Daniel J. Perry 发布。
1. **[BridgeTower](https://huggingface.co/docs/transformers/model_doc/bridgetower)** (from Harbin Institute of Technology/Microsoft Research Asia/Intel Labs) released with the paper [BridgeTower: Building Bridges Between Encoders in Vision-Language Representation Learning](https://arxiv.org/abs/2206.08657) by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan.
1. **[BROS](https://huggingface.co/docs/transformers/model_doc/bros)** (来自 NAVER CLOVA) 伴随论文 [BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents](https://arxiv.org/abs/2108.04539) 由 Teakgyu Hong, Donghyun Kim, Mingi Ji, Wonseok Hwang, Daehyun Nam, Sungrae Park 发布。
1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (来自 Google Research) 伴随论文 [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) 由 Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel 发布。
1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (来自 Inria/Facebook/Sorbonne) 伴随论文 [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) 由 Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot 发布。
1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (来自 Google Research) 伴随论文 [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) 由 Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting 发布。
1. **[Chinese-CLIP](https://huggingface.co/docs/transformers/model_doc/chinese_clip)** (来自 OFA-Sys) 伴随论文 [Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese](https://arxiv.org/abs/2211.01335) 由 An Yang, Junshu Pan, Junyang Lin, Rui Men, Yichang Zhang, Jingren Zhou, Chang Zhou 发布。
1. **[CLAP](https://huggingface.co/docs/transformers/model_doc/clap)** (来自 LAION-AI) 伴随论文 [Large-scale Contrastive Language-Audio Pretraining with Feature Fusion and Keyword-to-Caption Augmentation](https://arxiv.org/abs/2211.06687) 由 Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, Shlomo Dubnov 发布。
1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (来自 OpenAI) 伴随论文 [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) 由 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever 发布。
1. **[CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)** (来自 University of Göttingen) 伴随论文 [Image Segmentation Using Text and Image Prompts](https://arxiv.org/abs/2112.10003) 由 Timo Lüddecke and Alexander Ecker 发布。
1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (来自 Salesforce) 伴随论文 [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) 由 Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong 发布。
1. **[CodeLlama](https://huggingface.co/docs/transformers/model_doc/llama_code)** (来自 MetaAI) 伴随论文 [Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/) 由 Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, Gabriel Synnaeve 发布。
1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (来自 Microsoft Research Asia) 伴随论文 [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) 由 Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang 发布。
1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (来自 YituTech) 伴随论文 [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) 由 Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan 发布。
1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (来自 Facebook AI) 伴随论文 [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) 由 Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie 发布。
1. **[ConvNeXTV2](https://huggingface.co/docs/transformers/model_doc/convnextv2)** (from Facebook AI) released with the paper [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://arxiv.org/abs/2301.00808) by Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, Saining Xie.
1. **[CPM](https://huggingface.co/docs/transformers/model_doc/cpm)** (来自 Tsinghua University) 伴随论文 [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) 由 Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun 发布。
1. **[CPM-Ant](https://huggingface.co/docs/transformers/model_doc/cpmant)** (from OpenBMB) released by the [OpenBMB](https://www.openbmb.org/).
1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (来自 Salesforce) 伴随论文 [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) 由 Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher 发布。
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (来自 Microsoft) 伴随论文 [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) 由 Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang 发布。
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (来自 Facebook) 伴随论文 [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) 由 Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli 发布。
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (来自 Microsoft) 伴随论文 [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) 由 Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen 发布。
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (来自 Microsoft) 伴随论文 [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) 由 Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen 发布。
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (来自 Berkeley/Facebook/Google) 伴随论文 [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) 由 Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch 发布。
1. **[Deformable DETR](https://huggingface.co/docs/transformers/model_doc/deformable_detr)** (来自 SenseTime Research) 伴随论文 [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159) 由 Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai 发布。
1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (来自 Facebook) 伴随论文 [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) 由 Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou 发布。
1. **[DePlot](https://huggingface.co/docs/transformers/model_doc/deplot)** (来自 Google AI) 伴随论文 [DePlot: One-shot visual language reasoning by plot-to-table translation](https://arxiv.org/abs/2212.10505) 由 Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, Yasemin Altun 发布。
1. **[DETA](https://huggingface.co/docs/transformers/model_doc/deta)** (来自 The University of Texas at Austin) 伴随论文 [NMS Strikes Back](https://arxiv.org/abs/2212.06137) 由 Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, Philipp Krähenbühl 发布。
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (来自 Facebook) 伴随论文 [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) 由 Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko 发布。
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (来自 Microsoft Research) 伴随论文 [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) 由 Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan 发布。
1. **[DiNAT](https://huggingface.co/docs/transformers/model_doc/dinat)** (来自 SHI Labs) 伴随论文 [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) 由 Ali Hassani and Humphrey Shi 发布。
1. **[DINOv2](https://huggingface.co/docs/transformers/model_doc/dinov2)** (来自 Meta AI) 伴随论文 [DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193) 由 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, Piotr Bojanowski 发布。
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (来自 HuggingFace), 伴随论文 [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 同样的方法也应用于压缩 GPT-2 到 [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa 到 [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation), Multilingual BERT 到 [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) 和德语版 DistilBERT。
1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (来自 Microsoft Research) 伴随论文 [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) 由 Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei 发布。
1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (来自 NAVER) 伴随论文 [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) 由 Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park 发布。
1. **[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (来自 Facebook) 伴随论文 [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) 由 Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih 发布。
1. **[DPT](https://huggingface.co/docs/transformers/master/model_doc/dpt)** (来自 Intel Labs) 伴随论文 [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) 由 René Ranftl, Alexey Bochkovskiy, Vladlen Koltun 发布。
1. **[EfficientFormer](https://huggingface.co/docs/transformers/model_doc/efficientformer)** (来自 Snap Research) 伴随论文 [EfficientFormer: Vision Transformers at MobileNetSpeed](https://arxiv.org/abs/2206.01191) 由 Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren 发布。
1. **[EfficientNet](https://huggingface.co/docs/transformers/model_doc/efficientnet)** (from Google Brain) released with the paper [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan, Quoc V. Le.
1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (来自 Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning 发布。
1. **[EnCodec](https://huggingface.co/docs/transformers/model_doc/encodec)** (来自 Meta AI) 伴随论文 [High Fidelity Neural Audio Compression](https://arxiv.org/abs/2210.13438) 由 Alexandre Défossez, Jade Copet, Gabriel Synnaeve, Yossi Adi 发布。
1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (来自 Google Research) 伴随论文 [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) 由 Sascha Rothe, Shashi Narayan, Aliaksei Severyn 发布。
1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)** (来自 Baidu) 伴随论文 [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) by Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu 发布。
1. **[ErnieM](https://huggingface.co/docs/transformers/model_doc/ernie_m)** (来自 Baidu) 伴随论文 [ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora](https://arxiv.org/abs/2012.15674) 由 Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang 发布。
1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (from Meta AI) are transformer protein language models. **ESM-1b** was released with the paper [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. **ESM-1v** was released with the paper [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648) by Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives. **ESM-2** was released with the paper [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902) by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives.
1. **[Falcon](https://huggingface.co/docs/transformers/model_doc/falcon)** (from Technology Innovation Institute) by Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme.
1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FLAN-UL2](https://huggingface.co/docs/transformers/model_doc/flan-ul2)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-ul2-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (来自 CNRS) 伴随论文 [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) 由 Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab 发布。
1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (来自 Facebook AI) 伴随论文 [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) 由 Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela 发布。
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (来自 Google Research) 伴随论文 [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) 由 James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon 发布。
1. **[FocalNet](https://huggingface.co/docs/transformers/model_doc/focalnet)** (来自 Microsoft Research) 伴随论文 [Focal Modulation Networks](https://arxiv.org/abs/2203.11926) 由 Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao 发布。
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (来自 CMU/Google Brain) 伴随论文 [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) 由 Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le 发布。
1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (来自 Microsoft Research) 伴随论文 [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) 由 Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang 发布。
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (来自 KAIST) 伴随论文 [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) 由 Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim 发布。
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (来自 OpenAI) 伴随论文 [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) 由 Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever 发布。
1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (来自 EleutherAI) 随仓库 [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) 发布。作者为 Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy 发布。
1. **[GPT NeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox)** (from EleutherAI) released with the paper [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) by Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach
1. **[GPT NeoX Japanese](https://huggingface.co/docs/transformers/model_doc/gpt_neox_japanese)** (来自 ABEJA) 由 Shinya Otani, Takayoshi Makabe, Anuj Arora, Kyo Hattori。
1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (来自 OpenAI) 伴随论文 [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/) 由 Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever** 发布。
1. **[GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj)** (来自 EleutherAI) 伴随论文 [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) 由 Ben Wang and Aran Komatsuzaki 发布。
1. **[GPT-Sw3](https://huggingface.co/docs/transformers/model_doc/gpt-sw3)** (from AI-Sweden) released with the paper [Lessons Learned from GPT-SW3: Building the First Large-Scale Generative Language Model for Swedish](http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.376.pdf) by Ariel Ekgren, Amaru Cuba Gyllensten, Evangelia Gogoulou, Alice Heiman, Severine Verlinden, Joey Öhman, Fredrik Carlsson, Magnus Sahlgren.
1. **[GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode)** (来自 BigCode) 伴随论文 [SantaCoder: don't reach for the stars!](https://arxiv.org/abs/2301.03988) 由 Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, Logesh Kumar Umapathi, Carolyn Jane Anderson, Yangtian Zi, Joel Lamy Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry Abulkhanov, Manuel Romero, Michael Lappert, Francesco De Toni, Bernardo García del Río, Qian Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab Mangrulkar, David Lansky, Huu Nguyen, Danish Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau, Yacine Jernite, Sean Hughes, Daniel Fried, Arjun Guha, Harm de Vries, Leandro von Werra 发布。
1. **[GPTSAN-japanese](https://huggingface.co/docs/transformers/model_doc/gptsan-japanese)** released in the repository [tanreinama/GPTSAN](https://github.com/tanreinama/GPTSAN/blob/main/report/model.md) by 坂本俊之(tanreinama).
1. **[Graphormer](https://huggingface.co/docs/transformers/model_doc/graphormer)** (from Microsoft) released with the paper [Do Transformers Really Perform Bad for Graph Representation?](https://arxiv.org/abs/2106.05234) by Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu.
1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (来自 UCSD, NVIDIA) 伴随论文 [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) 由 Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang 发布。
1. **[HerBERT](https://huggingface.co/docs/transformers/model_doc/herbert)** (来自 Allegro.pl, AGH University of Science and Technology) 伴随论文 [KLEJ: Comprehensive Benchmark for Polish Language Understanding](https://www.aclweb.org/anthology/2020.acl-main.111.pdf) 由 Piotr Rybak, Robert Mroczkowski, Janusz Tracz, Ireneusz Gawlik 发布。
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (来自 Facebook) 伴随论文 [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) 由 Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed 发布。
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (来自 Berkeley) 伴随论文 [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) 由 Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer 发布。
1. **[IDEFICS](https://huggingface.co/docs/transformers/model_doc/idefics)** (from HuggingFace) released with the paper [OBELICS: An Open Web-Scale Filtered Dataset of Interleaved Image-Text Documents](https://huggingface.co/papers/2306.16527) by Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov, Thomas Wang, Siddharth Karamcheti, Alexander M. Rush, Douwe Kiela, Matthieu Cord, Victor Sanh.
1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (来自 OpenAI) 伴随论文 [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) 由 Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever 发布。
1. **[Informer](https://huggingface.co/docs/transformers/model_doc/informer)** (from Beihang University, UC Berkeley, Rutgers University, SEDD Company) released with the paper [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting](https://arxiv.org/abs/2012.07436) by Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
1. **[InstructBLIP](https://huggingface.co/docs/transformers/model_doc/instructblip)** (来自 Salesforce) 伴随论文 [InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning](https://arxiv.org/abs/2305.06500) 由 Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, Steven Hoi 发布。
1. **[Jukebox](https://huggingface.co/docs/transformers/model_doc/jukebox)** (from OpenAI) released with the paper [Jukebox: A Generative Model for Music](https://arxiv.org/pdf/2005.00341.pdf) by Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever.
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (来自 Microsoft Research Asia) 伴随论文 [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) 由 Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou 发布。
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (来自 Microsoft Research Asia) 伴随论文 [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) 由 Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou 发布。
1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (来自 Microsoft Research Asia) 伴随论文 [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) 由 Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei 发布。
1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutxlm)** (来自 Microsoft Research Asia) 伴随论文 [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) 由 Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei 发布。
1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (来自 AllenAI) 伴随论文 [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) 由 Iz Beltagy, Matthew E. Peters, Arman Cohan 发布。
1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (来自 Meta AI) 伴随论文 [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) 由 Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze 发布。
1. **[LiLT](https://huggingface.co/docs/transformers/model_doc/lilt)** (来自 South China University of Technology) 伴随论文 [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669) 由 Jiapeng Wang, Lianwen Jin, Kai Ding 发布。
1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (来自 The FAIR team of Meta AI) 伴随论文 [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971) 由 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample 发布。
1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (来自 The FAIR team of Meta AI) 伴随论文 [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/XXX) 由 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom. 发布。
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (来自 AllenAI) 伴随论文 [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) 由 Iz Beltagy, Matthew E. Peters, Arman Cohan 发布。
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (来自 Google AI) released 伴随论文 [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) 由 Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang 发布。
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (来自 Studio Ousia) 伴随论文 [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) 由 Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto 发布。
1. **[LXMERT](https://huggingface.co/docs/transformers/model_doc/lxmert)** (来自 UNC Chapel Hill) 伴随论文 [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) 由 Hao Tan and Mohit Bansal 发布。
1. **[M-CTC-T](https://huggingface.co/docs/transformers/model_doc/mctct)** (来自 Facebook) 伴随论文 [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) 由 Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert 发布。
1. **[M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100)** (来自 Facebook) 伴随论文 [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) 由 Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin 发布。
1. **[MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)** 用 [OPUS](http://opus.nlpl.eu/) 数据训练的机器翻译模型由 Jörg Tiedemann 发布。[Marian Framework](https://marian-nmt.github.io/) 由微软翻译团队开发。
1. **[MarkupLM](https://huggingface.co/docs/transformers/model_doc/markuplm)** (来自 Microsoft Research Asia) 伴随论文 [MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document Understanding](https://arxiv.org/abs/2110.08518) 由 Junlong Li, Yiheng Xu, Lei Cui, Furu Wei 发布。
1. **[Mask2Former](https://huggingface.co/docs/transformers/model_doc/mask2former)** (来自 FAIR and UIUC) 伴随论文 [Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527) 由 Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Rohit Girdhar 发布。
1. **[MaskFormer](https://huggingface.co/docs/transformers/model_doc/maskformer)** (from Meta and UIUC) released with the paper [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) by Bowen Cheng, Alexander G. Schwing, Alexander Kirillov
1. **[MatCha](https://huggingface.co/docs/transformers/model_doc/matcha)** (来自 Google AI) 伴随论文 [MatCha: Enhancing Visual Language Pretraining with Math Reasoning and Chart Derendering](https://arxiv.org/abs/2212.09662) 由 Fangyu Liu, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Yasemin Altun, Nigel Collier, Julian Martin Eisenschlos 发布。
1. **[mBART](https://huggingface.co/docs/transformers/model_doc/mbart)** (来自 Facebook) 伴随论文 [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) 由 Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer 发布。
1. **[mBART-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (来自 Facebook) 伴随论文 [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) 由 Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan 发布。
1. **[MEGA](https://huggingface.co/docs/transformers/model_doc/mega)** (来自 Facebook) 伴随论文 [Mega: Moving Average Equipped Gated Attention](https://arxiv.org/abs/2209.10655) 由 Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and Luke Zettlemoyer 发布。
1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (来自 NVIDIA) 伴随论文 [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) 由 Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro 发布。
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (来自 NVIDIA) 伴随论文 [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) 由 Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro 发布。
1. **[MGP-STR](https://huggingface.co/docs/transformers/model_doc/mgp-str)** (来自 Alibaba Research) 伴随论文 [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592) 由 Peng Wang, Cheng Da, and Cong Yao 发布。
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (来自 Studio Ousia) 伴随论文 [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) 由 Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka 发布。
1. **[MMS](https://huggingface.co/docs/transformers/model_doc/mms)** (来自 Facebook) 伴随论文 [Scaling Speech Technology to 1,000+ Languages](https://arxiv.org/abs/2305.13516) 由 Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky, Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi, Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning Hsu, Alexis Conneau, Michael Auli 发布。
1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (来自 CMU/Google Brain) 伴随论文 [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) 由 Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou 发布。
1. **[MobileNetV1](https://huggingface.co/docs/transformers/model_doc/mobilenet_v1)** (来自 Google Inc.) 伴随论文 [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) 由 Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam 发布。
1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (来自 Google Inc.) 伴随论文 [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) 由 Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen 发布。
1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (来自 Apple) 伴随论文 [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) 由 Sachin Mehta and Mohammad Rastegari 发布。
1. **[MobileViTV2](https://huggingface.co/docs/transformers/model_doc/mobilevitv2)** (来自 Apple) 伴随论文 [Separable Self-attention for Mobile Vision Transformers](https://arxiv.org/abs/2206.02680) 由 Sachin Mehta and Mohammad Rastegari 发布。
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (来自 Microsoft Research) 伴随论文 [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) 由 Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu 发布。
1. **[MPT](https://huggingface.co/docs/transformers/model_doc/mpt)** (来自 MosaiML) 伴随论文 [llm-foundry](https://github.com/mosaicml/llm-foundry/) 由 the MosaicML NLP Team 发布。
1. **[MRA](https://huggingface.co/docs/transformers/model_doc/mra)** (来自 the University of Wisconsin - Madison) 伴随论文 [Multi Resolution Analysis (MRA)](https://arxiv.org/abs/2207.10284) 由 Zhanpeng Zeng, Sourav Pal, Jeffery Kline, Glenn M Fung, Vikas Singh 发布。
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (来自 Google AI) 伴随论文 [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) 由 Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel 发布。
1. **[MusicGen](https://huggingface.co/docs/transformers/model_doc/musicgen)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (来自 中国人民大学 AI Box) 伴随论文 [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) 由 Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen 发布。
1. **[NAT](https://huggingface.co/docs/transformers/model_doc/nat)** (来自 SHI Labs) 伴随论文 [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143) 由 Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi 发布。
1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (来自华为诺亚方舟实验室) 伴随论文 [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) 由 Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu 发布。
1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (来自 Meta) 伴随论文 [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) 由 the NLLB team 发布。
1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (来自 Meta) 伴随论文 [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) 由 the NLLB team 发布。
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (来自 the University of Wisconsin - Madison) 伴随论文 [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) 由 Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh 发布。
1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (来自 SHI Labs) 伴随论文 [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) 由 Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi 发布。
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (来自 [s-JoL](https://huggingface.co/s-JoL)) 由 [Open-Llama](https://github.com/s-JoL/Open-Llama) 发布.
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (来自 Meta AI) 伴随论文 [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) 由 Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al 发布。
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (来自 Google AI) 伴随论文 [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) 由 Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby 发布。
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (来自 Google) 伴随论文 [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) 由 Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu 发布。
1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (来自 Google) 伴随论文 [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) 由 Jason Phang, Yao Zhao, Peter J. Liu 发布。
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (来自 Deepmind) 伴随论文 [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) 由 Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira 发布。
1. **[Persimmon](https://huggingface.co/docs/transformers/main/model_doc/persimmon)** (来自 ADEPT) 伴随论文 [blog post](https://www.adept.ai/blog/persimmon-8b) 由 Erich Elsen, Augustus Odena, Maxwell Nye, Sağnak Taşırlar, Tri Dao, Curtis Hawthorne, Deepak Moparthi, Arushi Somani 发布。
1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (来自 VinAI Research) 伴随论文 [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) 由 Dat Quoc Nguyen and Anh Tuan Nguyen 发布。
1. **[Pix2Struct](https://huggingface.co/docs/transformers/model_doc/pix2struct)** (来自 Google) 伴随论文 [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding](https://arxiv.org/abs/2210.03347) 由 Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova 发布。
1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (来自 UCLA NLP) 伴随论文 [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) 由 Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang 发布。
1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (来自 Sea AI Labs) 伴随论文 [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) 由 Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng 发布。
1. **[Pop2Piano](https://huggingface.co/docs/transformers/model_doc/pop2piano)** released with the paper [Pop2Piano : Pop Audio-based Piano Cover Generation](https://arxiv.org/abs/2211.00895) by Jongho Choi, Kyogu Lee.
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (来自 Microsoft Research) 伴随论文 [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) 由 Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou 发布。
1. **[PVT](https://huggingface.co/docs/transformers/model_doc/pvt)** (来自 Nanjing University, The University of Hong Kong etc.) 伴随论文 [Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions](https://arxiv.org/pdf/2102.12122.pdf) 由 Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao 发布。
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (来自 NVIDIA) 伴随论文 [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) 由 Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius 发布。
1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (来自 Facebook) 伴随论文 [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) 由 Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela 发布。
1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (来自 Google Research) 伴随论文 [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) 由 Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang 发布。
1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (来自 Google Research) 伴随论文 [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) 由 Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya 发布。
1. **[RegNet](https://huggingface.co/docs/transformers/model_doc/regnet)** (from META Research) released with the paper [Designing Network Design Space](https://arxiv.org/abs/2003.13678) by Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár.
1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (来自 Google Research) 伴随论文 [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/pdf/2010.12821.pdf) 由 Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder 发布。
1. **[ResNet](https://huggingface.co/docs/transformers/model_doc/resnet)** (from Microsoft Research) released with the paper [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) by Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun.
1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (来自 Facebook), 伴随论文 [Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) 由 Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov 发布。
1. **[RoBERTa-PreLayerNorm](https://huggingface.co/docs/transformers/model_doc/roberta-prelayernorm)** (来自 Facebook) 伴随论文 [fairseq: A Fast, Extensible Toolkit for Sequence Modeling](https://arxiv.org/abs/1904.01038) 由 Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli 发布。
1. **[RoCBert](https://huggingface.co/docs/transformers/model_doc/roc_bert)** (来自 WeChatAI), 伴随论文 [RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining](https://aclanthology.org/2022.acl-long.65.pdf) 由 HuiSu, WeiweiShi, XiaoyuShen, XiaoZhou, TuoJi, JiaruiFang, JieZhou 发布。
1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (来自 ZhuiyiTechnology), 伴随论文 [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/pdf/2104.09864v1.pdf) 由 Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu 发布。
1. **[RWKV](https://huggingface.co/docs/transformers/model_doc/rwkv)** (来自 Bo Peng) 伴随论文 [this repo](https://github.com/BlinkDL/RWKV-LM) 由 Bo Peng 发布。
1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (来自 NVIDIA) 伴随论文 [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) 由 Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo 发布。
1. **[Segment Anything](https://huggingface.co/docs/transformers/model_doc/sam)** (来自 Meta AI) 伴随论文 [Segment Anything](https://arxiv.org/pdf/2304.02643v1.pdf) 由 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alex Berg, Wan-Yen Lo, Piotr Dollar, Ross Girshick 发布。
1. **[SEW](https://huggingface.co/docs/transformers/model_doc/sew)** (来自 ASAPP) 伴随论文 [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) 由 Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi 发布。
1. **[SEW-D](https://huggingface.co/docs/transformers/model_doc/sew_d)** (来自 ASAPP) 伴随论文 [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) 由 Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi 发布。
1. **[SpeechT5](https://huggingface.co/docs/transformers/model_doc/speecht5)** (来自 Microsoft Research) 伴随论文 [SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing](https://arxiv.org/abs/2110.07205) 由 Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li, Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, Furu Wei 发布。
1. **[SpeechToTextTransformer](https://huggingface.co/docs/transformers/model_doc/speech_to_text)** (来自 Facebook), 伴随论文 [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) 由 Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino 发布。
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (来自 Facebook) 伴随论文 [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) 由 Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau 发布。
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (来自 Tel Aviv University) 伴随论文 [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) 由 Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy 发布。
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (来自 Berkeley) 伴随论文 [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) 由 Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer 发布。
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (来自 MBZUAI) 伴随论文 [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) 由 Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan 发布。
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (来自 Microsoft) 伴随论文 [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) 由 Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo 发布。
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (来自 Microsoft) 伴随论文 [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) 由 Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo 发布。
1. **[Swin2SR](https://huggingface.co/docs/transformers/model_doc/swin2sr)** (来自 University of Würzburg) 伴随论文 [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345) 由 Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte 发布。
1. **[SwitchTransformers](https://huggingface.co/docs/transformers/model_doc/switch_transformers)** (from Google) released with the paper [Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity](https://arxiv.org/abs/2101.03961) by William Fedus, Barret Zoph, Noam Shazeer.
1. **[T5](https://huggingface.co/docs/transformers/model_doc/t5)** (来自 Google AI) 伴随论文 [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) 由 Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu 发布。
1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (来自 Google AI) 伴随论文 [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) 由 Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu 发布。
1. **[Table Transformer](https://huggingface.co/docs/transformers/model_doc/table-transformer)** (来自 Microsoft Research) 伴随论文 [PubTables-1M: Towards Comprehensive Table Extraction From Unstructured Documents](https://arxiv.org/abs/2110.00061) 由 Brandon Smock, Rohith Pesala, Robin Abraham 发布。
1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (来自 Google AI) 伴随论文 [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) 由 Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos 发布。
1. **[TAPEX](https://huggingface.co/docs/transformers/model_doc/tapex)** (来自 Microsoft Research) 伴随论文 [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) 由 Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou 发布。
1. **[Time Series Transformer](https://huggingface.co/docs/transformers/model_doc/time_series_transformer)** (from HuggingFace).
1. **[TimeSformer](https://huggingface.co/docs/transformers/model_doc/timesformer)** (from Facebook) released with the paper [Is Space-Time Attention All You Need for Video Understanding?](https://arxiv.org/abs/2102.05095) by Gedas Bertasius, Heng Wang, Lorenzo Torresani.
1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/model_doc/trajectory_transformers)** (from the University of California at Berkeley) released with the paper [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine
1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (来自 Google/CMU) 伴随论文 [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) 由 Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov 发布。
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (来自 Microsoft) 伴随论文 [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) 由 Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei 发布。
1. **[TVLT](https://huggingface.co/docs/transformers/model_doc/tvlt)** (来自 UNC Chapel Hill) 伴随论文 [TVLT: Textless Vision-Language Transformer](https://arxiv.org/abs/2209.14156) 由 Zineng Tang, Jaemin Cho, Yixin Nie, Mohit Bansal 发布。
1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
1. **[UMT5](https://huggingface.co/docs/transformers/model_doc/umt5)** (来自 Google Research) 伴随论文 [UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining](https://openreview.net/forum?id=kXwdL1cWOAi) 由 Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, Noah Constant 发布。
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (来自 Microsoft Research) 伴随论文 [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) 由 Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang 发布。
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (来自 Microsoft Research) 伴随论文 [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) 由 Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu 发布。
1. **[UPerNet](https://huggingface.co/docs/transformers/model_doc/upernet)** (来自 Peking University) 伴随论文 [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221) 由 Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun 发布。
1. **[VAN](https://huggingface.co/docs/transformers/model_doc/van)** (来自 Tsinghua University and Nankai University) 伴随论文 [Visual Attention Network](https://arxiv.org/pdf/2202.09741.pdf) 由 Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu 发布。
1. **[VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)** (来自 Multimedia Computing Group, Nanjing University) 伴随论文 [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602) 由 Zhan Tong, Yibing Song, Jue Wang, Limin Wang 发布。
1. **[ViLT](https://huggingface.co/docs/transformers/model_doc/vilt)** (来自 NAVER AI Lab/Kakao Enterprise/Kakao Brain) 伴随论文 [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) 由 Wonjae Kim, Bokyung Son, Ildoo Kim 发布。
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (来自 Google AI) 伴随论文 [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) 由 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby 发布。
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (来自 UCLA NLP) 伴随论文 [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) 由 Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang 发布。
1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (来自 Google AI) 伴随论文 [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) 由 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby 发布。
1. **[VitDet](https://huggingface.co/docs/transformers/model_doc/vitdet)** (来自 Meta AI) 伴随论文 [Exploring Plain Vision Transformer Backbones for Object Detection](https://arxiv.org/abs/2203.16527) 由 Yanghao Li, Hanzi Mao, Ross Girshick, Kaiming He 发布。
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (来自 Meta AI) 伴随论文 [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) 由 Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick 发布。
1. **[ViTMatte](https://huggingface.co/docs/transformers/main/model_doc/vitmatte)** (来自 HUST-VL) 伴随论文 [ViTMatte: Boosting Image Matting with Pretrained Plain Vision Transformers](https://arxiv.org/abs/2305.15272) 由 Jingfeng Yao, Xinggang Wang, Shusheng Yang, Baoyuan Wang 发布。
1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (来自 Meta AI) 伴随论文 [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas 发布.
1. **[VITS](https://huggingface.co/docs/transformers/model_doc/vits)** (来自 Kakao Enterprise) 伴随论文 [Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech](https://arxiv.org/abs/2106.06103) 由 Jaehyeon Kim, Jungil Kong, Juhee Son 发布。
1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (来自 Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) 由 Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid.
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (来自 Facebook AI) 伴随论文 [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) 由 Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli 发布。
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (来自 Facebook AI) 伴随论文 [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) 由 Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino 发布。
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (来自 Facebook AI) 伴随论文 [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) 由 Qiantong Xu, Alexei Baevski, Michael Auli 发布。
1. **[WavLM](https://huggingface.co/docs/transformers/model_doc/wavlm)** (from Microsoft Research) released with the paper [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei.
1. **[Whisper](https://huggingface.co/docs/transformers/model_doc/whisper)** (来自 OpenAI) 伴随论文 [Robust Speech Recognition via Large-Scale Weak Supervision](https://cdn.openai.com/papers/whisper.pdf) 由 Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, Ilya Sutskever 发布。
1. **[X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)** (来自 Microsoft Research) 伴随论文 [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816) 由 Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang, Gaofeng Meng, Jianlong Fu, Shiming Xiang, Haibin Ling 发布。
1. **[X-MOD](https://huggingface.co/docs/transformers/model_doc/xmod)** (来自 Meta AI) 伴随论文 [Lifting the Curse of Multilinguality by Pre-training Modular Transformers](http://dx.doi.org/10.18653/v1/2022.naacl-main.255) 由 Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James Cross, Sebastian Riedel, Mikel Artetxe 发布。
1. **[XGLM](https://huggingface.co/docs/transformers/model_doc/xglm)** (From Facebook AI) released with the paper [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li.
1. **[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (来自 Facebook) 伴随论文 [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) 由 Guillaume Lample and Alexis Conneau 发布。
1. **[XLM-ProphetNet](https://huggingface.co/docs/transformers/model_doc/xlm-prophetnet)** (来自 Microsoft Research) 伴随论文 [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) 由 Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou 发布。
1. **[XLM-RoBERTa](https://huggingface.co/docs/transformers/model_doc/xlm-roberta)** (来自 Facebook AI), 伴随论文 [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) 由 Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov 发布。
1. **[XLM-RoBERTa-XL](https://huggingface.co/docs/transformers/model_doc/xlm-roberta-xl)** (来自 Facebook AI) 伴随论文 [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) 由 Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau 发布。
1. **[XLM-V](https://huggingface.co/docs/transformers/model_doc/xlm-v)** (来自 Meta AI) 伴随论文 [XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models](https://arxiv.org/abs/2301.10472) 由 Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Naman Goyal, Marjan Ghazvininejad, Luke Zettlemoyer, Madian Khabsa 发布。
1. **[XLNet](https://huggingface.co/docs/transformers/model_doc/xlnet)** (来自 Google/CMU) 伴随论文 [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) 由 Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le 发布。
1. **[XLS-R](https://huggingface.co/docs/transformers/model_doc/xls_r)** (来自 Facebook AI) 伴随论文 [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) 由 Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli 发布。
1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (来自 Facebook AI) 伴随论文 [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) 由 Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli 发布。
1. **[YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos)** (来自 Huazhong University of Science & Technology) 伴随论文 [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) 由 Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu 发布。
1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (来自 the University of Wisconsin - Madison) 伴随论文 [You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling](https://arxiv.org/abs/2111.09714) 由 Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh 发布。
1. 想要贡献新的模型?我们这里有一份**详细指引和模板**来引导你添加新的模型。你可以在 [`templates`](./templates) 目录中找到他们。记得查看 [贡献指南](./CONTRIBUTING.md) 并在开始写 PR 前联系维护人员或开一个新的 issue 来获得反馈。
要检查某个模型是否已有 Flax、PyTorch 或 TensorFlow 的实现,或其是否在 🤗 Tokenizers 库中有对应词符化器tokenizer敬请参阅[此表](https://huggingface.co/docs/transformers/index#supported-frameworks)。
这些实现均已于多个数据集测试(请参看用例脚本)并应于原版实现表现相当。你可以在用例文档的[此节](https://huggingface.co/docs/transformers/examples)中了解表现的细节。
## 了解更多
| 章节 | 描述 |
|-|-|
| [文档](https://huggingface.co/docs/transformers/) | 完整的 API 文档和教程 |
| [任务总结](https://huggingface.co/docs/transformers/task_summary) | 🤗 Transformers 支持的任务 |
| [预处理教程](https://huggingface.co/docs/transformers/preprocessing) | 使用 `Tokenizer` 来为模型准备数据 |
| [训练和微调](https://huggingface.co/docs/transformers/training) | 在 PyTorch/TensorFlow 的训练循环或 `Trainer` API 中使用 🤗 Transformers 提供的模型 |
| [快速上手:微调和用例脚本](https://github.com/huggingface/transformers/tree/main/examples) | 为各种任务提供的用例脚本 |
| [模型分享和上传](https://huggingface.co/docs/transformers/model_sharing) | 和社区上传和分享你微调的模型 |
| [迁移](https://huggingface.co/docs/transformers/migration) | 从 `pytorch-transformers` 或 `pytorch-pretrained-bert` 迁移到 🤗 Transformers |
## 引用
我们已将此库的[论文](https://www.aclweb.org/anthology/2020.emnlp-demos.6/)正式发表,如果你使用了 🤗 Transformers 库,请引用:
```bibtex
@inproceedings{wolf-etal-2020-transformers,
title = "Transformers: State-of-the-Art Natural Language Processing",
author = "Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and Rémi Louf and Morgan Funtowicz and Joe Davison and Sam Shleifer and Patrick von Platen and Clara Ma and Yacine Jernite and Julien Plu and Canwen Xu and Teven Le Scao and Sylvain Gugger and Mariama Drame and Quentin Lhoest and Alexander M. Rush",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = oct,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.emnlp-demos.6",
pages = "38--45"
}
```

View File

@ -1,512 +0,0 @@
<!---
Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
<!---
A useful guide for English-Traditional Chinese translation of Hugging Face documentation
- Add space around English words and numbers when they appear between Chinese characters. E.g., 共 100 多種語言; 使用 transformers 函式庫。
- Use square quotes, e.g.,「引用」
- Some of terms in the file can be found at National Academy for Educational Research (https://terms.naer.edu.tw/), an official website providing bilingual translations between English and Traditional Chinese.
Dictionary
API: API (不翻譯)
add: 加入
checkpoint: 檢查點
code: 程式碼
community: 社群
confidence: 信賴度
dataset: 資料集
documentation: 文件
example: 基本翻譯為「範例」,或依語意翻為「例子」
finetune: 微調
Hugging Face: Hugging Face不翻譯
implementation: 實作
inference: 推論
library: 函式庫
module: 模組
NLP/Natural Language Processing: 以 NLP 出現時不翻譯,以 Natural Language Processing 出現時翻譯為自然語言處理
online demos: 線上Demo
pipeline: pipeline不翻譯
pretrained/pretrain: 預訓練
Python data structures (e.g., list, set, dict): 翻譯為串列,集合,字典,並用括號標註原英文
repository: repository不翻譯
summary: 概覽
token-: token-(不翻譯)
Trainer: Trainer不翻譯
transformer: transformer不翻譯
tutorial: 教學
user: 使用者
-->
<p align="center">
<br>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers_logo_name.png" width="400"/>
<br>
<p>
<p align="center">
<a href="https://circleci.com/gh/huggingface/transformers">
<img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/main">
</a>
<a href="https://github.com/huggingface/transformers/blob/main/LICENSE">
<img alt="GitHub" src="https://img.shields.io/github/license/huggingface/transformers.svg?color=blue">
</a>
<a href="https://huggingface.co/docs/transformers/index">
<img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/docs/transformers/index.svg?down_color=red&down_message=offline&up_message=online">
</a>
<a href="https://github.com/huggingface/transformers/releases">
<img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/transformers.svg">
</a>
<a href="https://github.com/huggingface/transformers/blob/main/CODE_OF_CONDUCT.md">
<img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg">
</a>
<a href="https://zenodo.org/badge/latestdoi/155220641"><img src="https://zenodo.org/badge/155220641.svg" alt="DOI"></a>
</p>
<h4 align="center">
<p>
<a href="https://github.com/huggingface/transformers/">English</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hans.md">简体中文</a> |
<b>繁體中文</b> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ko.md">한국어</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_es.md">Español</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ja.md">日本語</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_hd.md">हिन्दी</a>
<p>
</h4>
<h3 align="center">
<p>為 Jax、PyTorch 以及 TensorFlow 打造的先進自然語言處理函式庫</p>
</h3>
<h3 align="center">
<a href="https://hf.co/course"><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/course_banner.png"></a>
</h3>
🤗 Transformers 提供了數以千計的預訓練模型,支援 100 多種語言的文本分類、資訊擷取、問答、摘要、翻譯、文本生成。它的宗旨是讓最先進的 NLP 技術人人易用。
🤗 Transformers 提供了便於快速下載和使用的API讓你可以將預訓練模型用在給定文本、在你的資料集上微調然後經由 [model hub](https://huggingface.co/models) 與社群共享。同時,每個定義的 Python 模組架構均完全獨立,方便修改和快速研究實驗。
🤗 Transformers 支援三個最熱門的深度學習函式庫: [Jax](https://jax.readthedocs.io/en/latest/), [PyTorch](https://pytorch.org/) 以及 [TensorFlow](https://www.tensorflow.org/) — 並與之完美整合。你可以直接使用其中一個框架訓練你的模型,然後用另一個載入和推論。
## 線上Demo
你可以直接在 [model hub](https://huggingface.co/models) 上測試大多數的模型。我們也提供了 [私有模型託管、模型版本管理以及推論API](https://huggingface.co/pricing)。
這裡是一些範例:
- [用 BERT 做遮蓋填詞](https://huggingface.co/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France)
- [用 Electra 做專有名詞辨識](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city)
- [用 GPT-2 做文本生成](https://huggingface.co/gpt2?text=A+long+time+ago%2C+)
- [用 RoBERTa 做自然語言推論](https://huggingface.co/roberta-large-mnli?text=The+dog+was+lost.+Nobody+lost+any+animal)
- [用 BART 做文本摘要](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct)
- [用 DistilBERT 做問答](https://huggingface.co/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species)
- [用 T5 做翻譯](https://huggingface.co/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin)
**[Write With Transformer](https://transformer.huggingface.co)**,由 Hugging Face 團隊所打造,是一個文本生成的官方 demo。
## 如果你在尋找由 Hugging Face 團隊所提供的客製化支援服務
<a target="_blank" href="https://huggingface.co/support">
<img alt="HuggingFace Expert Acceleration Program" src="https://huggingface.co/front/thumbnails/support.png" style="max-width: 600px; border: 1px solid #eee; border-radius: 4px; box-shadow: 0 1px 2px 0 rgba(0, 0, 0, 0.05);">
</a><br>
## 快速上手
我們為快速使用模型提供了 `pipeline` API。 Pipeline 包含了預訓練模型和對應的文本預處理。下面是一個快速使用 pipeline 去判斷正負面情緒的例子:
```python
>>> from transformers import pipeline
# 使用情緒分析 pipeline
>>> classifier = pipeline('sentiment-analysis')
>>> classifier('We are very happy to introduce pipeline to the transformers repository.')
[{'label': 'POSITIVE', 'score': 0.9996980428695679}]
```
第二行程式碼下載並快取 pipeline 使用的預訓練模型,而第三行程式碼則在給定的文本上進行了評估。這裡的答案“正面” (positive) 具有 99.97% 的信賴度。
許多的 NLP 任務都有隨選即用的預訓練 `pipeline`。例如,我們可以輕鬆地從給定文本中擷取問題答案:
``` python
>>> from transformers import pipeline
# 使用問答 pipeline
>>> question_answerer = pipeline('question-answering')
>>> question_answerer({
... 'question': 'What is the name of the repository ?',
... 'context': 'Pipeline has been included in the huggingface/transformers repository'
... })
{'score': 0.30970096588134766, 'start': 34, 'end': 58, 'answer': 'huggingface/transformers'}
```
除了提供問題解答,預訓練模型還提供了對應的信賴度分數以及解答在 tokenized 後的文本中開始和結束的位置。你可以從[這個教學](https://huggingface.co/docs/transformers/task_summary)了解更多 `pipeline` API支援的任務。
要在你的任務中下載和使用任何預訓練模型很簡單,只需三行程式碼。這裡是 PyTorch 版的範例:
```python
>>> from transformers import AutoTokenizer, AutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = AutoModel.from_pretrained("bert-base-uncased")
>>> inputs = tokenizer("Hello world!", return_tensors="pt")
>>> outputs = model(**inputs)
```
這裡是對應的 TensorFlow 程式碼:
```python
>>> from transformers import AutoTokenizer, TFAutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = TFAutoModel.from_pretrained("bert-base-uncased")
>>> inputs = tokenizer("Hello world!", return_tensors="tf")
>>> outputs = model(**inputs)
```
Tokenizer 為所有的預訓練模型提供了預處理,並可以直接轉換單一字串(比如上面的例子)或串列 (list)。它會輸出一個的字典 (dict) 讓你可以在下游程式碼裡使用或直接藉由 `**` 運算式傳給模型。
模型本身是一個常規的 [Pytorch `nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) 或 [TensorFlow `tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model)(取決於你的後端),可依常規方式使用。 [這個教學](https://huggingface.co/transformers/training.html)解釋了如何將這樣的模型整合到一般的 PyTorch 或 TensorFlow 訓練迴圈中,或是如何使用我們的 `Trainer` API 在一個新的資料集上快速進行微調。
## 為什麼要用 transformers
1. 便於使用的先進模型:
- NLU 和 NLG 上性能卓越
- 對教學和實作友好且低門檻
- 高度抽象,使用者只須學習 3 個類別
- 對所有模型使用的制式化API
1. 更低的運算成本,更少的碳排放:
- 研究人員可以分享已訓練的模型而非每次從頭開始訓練
- 工程師可以減少計算時間以及生產成本
- 數十種模型架構、兩千多個預訓練模型、100多種語言支援
1. 對於模型生命週期的每一個部分都面面俱到:
- 訓練先進的模型,只需 3 行程式碼
- 模型可以在不同深度學習框架之間任意轉換
- 為訓練、評估和生產選擇最適合的框架,並完美銜接
1. 為你的需求輕鬆客製化專屬模型和範例:
- 我們為每種模型架構提供了多個範例來重現原論文結果
- 一致的模型內部架構
- 模型檔案可單獨使用,便於修改和快速實驗
## 什麼情況下我不該用 transformers
- 本函式庫並不是模組化的神經網絡工具箱。模型文件中的程式碼並未做額外的抽象封裝,以便研究人員快速地翻閱及修改程式碼,而不會深陷複雜的類別包裝之中。
- `Trainer` API 並非相容任何模型,它只為本函式庫中的模型最佳化。對於一般的機器學習用途,請使用其他函式庫。
- 儘管我們已盡力而為,[examples 目錄](https://github.com/huggingface/transformers/tree/main/examples)中的腳本也僅為範例而已。對於特定問題,它們並不一定隨選即用,可能需要修改幾行程式碼以符合需求。
## 安裝
### 使用 pip
這個 Repository 已在 Python 3.8+、Flax 0.4.1+、PyTorch 1.10+ 和 TensorFlow 2.6+ 下經過測試。
你可以在[虛擬環境](https://docs.python.org/3/library/venv.html)中安裝 🤗 Transformers。如果你還不熟悉 Python 的虛擬環境,請閱此[使用者指引](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/)。
首先,用你打算使用的版本的 Python 創建一個虛擬環境並進入。
然後,你需要安裝 Flax、PyTorch 或 TensorFlow 其中之一。對於該如何在你使用的平台上安裝這些框架,請參閱 [TensorFlow 安裝頁面](https://www.tensorflow.org/install/), [PyTorch 安裝頁面](https://pytorch.org/get-started/locally/#start-locally) 或 [Flax 安裝頁面](https://github.com/google/flax#quick-install)。
當其中一個後端安裝成功後,🤗 Transformers 可依此安裝:
```bash
pip install transformers
```
如果你想要試試範例或者想在正式發布前使用最新開發中的程式碼,你必須[從原始碼安裝](https://huggingface.co/docs/transformers/installation#installing-from-source)。
### 使用 conda
自 Transformers 4.0.0 版始,我們有了一個 conda channel `huggingface`。
🤗 Transformers 可以藉由 conda 依此安裝:
```shell script
conda install -c huggingface transformers
```
要藉由 conda 安裝 Flax、PyTorch 或 TensorFlow 其中之一,請參閱它們各自安裝頁面的說明。
## 模型架構
**🤗 Transformers 支援的[所有的模型檢查點](https://huggingface.co/models)**,由[使用者](https://huggingface.co/users)和[組織](https://huggingface.co/organizations)上傳,均與 huggingface.co [model hub](https://huggingface.co) 完美結合。
目前的檢查點數量: ![](https://img.shields.io/endpoint?url=https://huggingface.co/api/shields/models&color=brightgreen)
🤗 Transformers 目前支援以下的架構(模型概覽請參閱[這裡](https://huggingface.co/docs/transformers/model_summary)
1. **[ALBERT](https://huggingface.co/docs/transformers/model_doc/albert)** (from Google Research and the Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.
1. **[ALIGN](https://huggingface.co/docs/transformers/model_doc/align)** (from Google Research) released with the paper [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918) by Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig.
1. **[AltCLIP](https://huggingface.co/docs/transformers/model_doc/altclip)** (from BAAI) released with the paper [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) by Chen, Zhongzhi and Liu, Guang and Zhang, Bo-Wen and Ye, Fulong and Yang, Qinghong and Wu, Ledell.
1. **[Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer)** (from MIT) released with the paper [AST: Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778) by Yuan Gong, Yu-An Chung, James Glass.
1. **[Autoformer](https://huggingface.co/docs/transformers/model_doc/autoformer)** (from Tsinghua University) released with the paper [Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://arxiv.org/abs/2106.13008) by Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long.
1. **[Bark](https://huggingface.co/docs/transformers/model_doc/bark)** (from Suno) released in the repository [suno-ai/bark](https://github.com/suno-ai/bark) by Suno AI team.
1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (from Facebook) released with the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/pdf/1910.13461.pdf) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer.
1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (from École polytechnique) released with the paper [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis.
1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (from VinAI Research) released with the paper [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen.
1. **[BEiT](https://huggingface.co/docs/transformers/model_doc/beit)** (from Microsoft) released with the paper [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) by Hangbo Bao, Li Dong, Furu Wei.
1. **[BERT](https://huggingface.co/docs/transformers/model_doc/bert)** (from Google) released with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova.
1. **[BERT For Sequence Generation](https://huggingface.co/docs/transformers/model_doc/bert-generation)** (from Google) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[BERTweet](https://huggingface.co/docs/transformers/model_doc/bertweet)** (from VinAI Research) released with the paper [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) by Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen.
1. **[BigBird-Pegasus](https://huggingface.co/docs/transformers/model_doc/bigbird_pegasus)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[BigBird-RoBERTa](https://huggingface.co/docs/transformers/model_doc/big_bird)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[BioGpt](https://huggingface.co/docs/transformers/model_doc/biogpt)** (from Microsoft Research AI4Science) released with the paper [BioGPT: generative pre-trained transformer for biomedical text generation and mining](https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbac409/6713511?guestAccessKey=a66d9b5d-4f83-4017-bb52-405815c907b9) by Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon and Tie-Yan Liu.
1. **[BiT](https://huggingface.co/docs/transformers/model_doc/bit)** (from Google AI) released with the paper [Big Transfer (BiT) by Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil Houlsby.
1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BLIP](https://huggingface.co/docs/transformers/model_doc/blip)** (from Salesforce) released with the paper [BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation](https://arxiv.org/abs/2201.12086) by Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi.
1. **[BLIP-2](https://huggingface.co/docs/transformers/model_doc/blip-2)** (from Salesforce) released with the paper [BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models](https://arxiv.org/abs/2301.12597) by Junnan Li, Dongxu Li, Silvio Savarese, Steven Hoi.
1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (from BigScience workshop) released by the [BigScience Workshop](https://bigscience.huggingface.co/).
1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (from Alexa) released with the paper [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) by Adrian de Wynter and Daniel J. Perry.
1. **[BridgeTower](https://huggingface.co/docs/transformers/model_doc/bridgetower)** (from Harbin Institute of Technology/Microsoft Research Asia/Intel Labs) released with the paper [BridgeTower: Building Bridges Between Encoders in Vision-Language Representation Learning](https://arxiv.org/abs/2206.08657) by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan.
1. **[BROS](https://huggingface.co/docs/transformers/model_doc/bros)** (from NAVER CLOVA) released with the paper [BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents](https://arxiv.org/abs/2108.04539) by Teakgyu Hong, Donghyun Kim, Mingi Ji, Wonseok Hwang, Daehyun Nam, Sungrae Park.
1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (from Google Research) released with the paper [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel.
1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (from Inria/Facebook/Sorbonne) released with the paper [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (from Google Research) released with the paper [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting.
1. **[Chinese-CLIP](https://huggingface.co/docs/transformers/model_doc/chinese_clip)** (from OFA-Sys) released with the paper [Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese](https://arxiv.org/abs/2211.01335) by An Yang, Junshu Pan, Junyang Lin, Rui Men, Yichang Zhang, Jingren Zhou, Chang Zhou.
1. **[CLAP](https://huggingface.co/docs/transformers/model_doc/clap)** (from LAION-AI) released with the paper [Large-scale Contrastive Language-Audio Pretraining with Feature Fusion and Keyword-to-Caption Augmentation](https://arxiv.org/abs/2211.06687) by Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, Shlomo Dubnov.
1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (from OpenAI) released with the paper [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever.
1. **[CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)** (from University of Göttingen) released with the paper [Image Segmentation Using Text and Image Prompts](https://arxiv.org/abs/2112.10003) by Timo Lüddecke and Alexander Ecker.
1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (from Salesforce) released with the paper [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong.
1. **[CodeLlama](https://huggingface.co/docs/transformers/model_doc/llama_code)** (from MetaAI) released with the paper [Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/) by Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, Gabriel Synnaeve.
1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (from Microsoft Research Asia) released with the paper [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) by Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang.
1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (from YituTech) released with the paper [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan.
1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (from Facebook AI) released with the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie.
1. **[ConvNeXTV2](https://huggingface.co/docs/transformers/model_doc/convnextv2)** (from Facebook AI) released with the paper [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://arxiv.org/abs/2301.00808) by Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, Saining Xie.
1. **[CPM](https://huggingface.co/docs/transformers/model_doc/cpm)** (from Tsinghua University) released with the paper [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) by Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun.
1. **[CPM-Ant](https://huggingface.co/docs/transformers/model_doc/cpmant)** (from OpenBMB) released by the [OpenBMB](https://www.openbmb.org/).
1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (from Microsoft) released with the paper [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang.
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (from Facebook) released with the paper [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli.
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (from Berkeley/Facebook/Google) released with the paper [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch.
1. **[Deformable DETR](https://huggingface.co/docs/transformers/model_doc/deformable_detr)** (from SenseTime Research) released with the paper [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159) by Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai.
1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (from Facebook) released with the paper [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou.
1. **[DePlot](https://huggingface.co/docs/transformers/model_doc/deplot)** (from Google AI) released with the paper [DePlot: One-shot visual language reasoning by plot-to-table translation](https://arxiv.org/abs/2212.10505) by Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, Yasemin Altun.
1. **[DETA](https://huggingface.co/docs/transformers/model_doc/deta)** (from The University of Texas at Austin) released with the paper [NMS Strikes Back](https://arxiv.org/abs/2212.06137) by Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, Philipp Krähenbühl.
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (from Facebook) released with the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (from Microsoft Research) released with the paper [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
1. **[DiNAT](https://huggingface.co/docs/transformers/model_doc/dinat)** (from SHI Labs) released with the paper [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) by Ali Hassani and Humphrey Shi.
1. **[DINOv2](https://huggingface.co/docs/transformers/model_doc/dinov2)** (from Meta AI) released with the paper [DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193) by Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, Piotr Bojanowski.
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German version of DistilBERT.
1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (from Microsoft Research) released with the paper [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) by Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei.
1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (from NAVER) released with the paper [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) by Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park.
1. **[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (from Facebook) released with the paper [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) by Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
1. **[DPT](https://huggingface.co/docs/transformers/master/model_doc/dpt)** (from Intel Labs) released with the paper [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) by René Ranftl, Alexey Bochkovskiy, Vladlen Koltun.
1. **[EfficientFormer](https://huggingface.co/docs/transformers/model_doc/efficientformer)** (from Snap Research) released with the paper [EfficientFormer: Vision Transformers at MobileNetSpeed](https://arxiv.org/abs/2206.01191) by Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren.
1. **[EfficientNet](https://huggingface.co/docs/transformers/model_doc/efficientnet)** (from Google Brain) released with the paper [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan, Quoc V. Le.
1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
1. **[EnCodec](https://huggingface.co/docs/transformers/model_doc/encodec)** (from Meta AI) released with the paper [High Fidelity Neural Audio Compression](https://arxiv.org/abs/2210.13438) by Alexandre Défossez, Jade Copet, Gabriel Synnaeve, Yossi Adi.
1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (from Google Research) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)** (from Baidu) released with the paper [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) by Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu.
1. **[ErnieM](https://huggingface.co/docs/transformers/model_doc/ernie_m)** (from Baidu) released with the paper [ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora](https://arxiv.org/abs/2012.15674) by Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang.
1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (from Meta AI) are transformer protein language models. **ESM-1b** was released with the paper [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. **ESM-1v** was released with the paper [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648) by Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives. **ESM-2** was released with the paper [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902) by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives.
1. **[Falcon](https://huggingface.co/docs/transformers/model_doc/falcon)** (from Technology Innovation Institute) by Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme.
1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FLAN-UL2](https://huggingface.co/docs/transformers/model_doc/flan-ul2)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-ul2-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (from Facebook AI) released with the paper [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela.
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
1. **[FocalNet](https://huggingface.co/docs/transformers/model_doc/focalnet)** (from Microsoft Research) released with the paper [Focal Modulation Networks](https://arxiv.org/abs/2203.11926) by Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao.
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (from Microsoft Research) released with the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang.
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (from KAIST) released with the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim.
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (from EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy.
1. **[GPT NeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox)** (from EleutherAI) released with the paper [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) by Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach
1. **[GPT NeoX Japanese](https://huggingface.co/docs/transformers/model_doc/gpt_neox_japanese)** (from ABEJA) released by Shinya Otani, Takayoshi Makabe, Anuj Arora, and Kyo Hattori.
1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (from OpenAI) released with the paper [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/) by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**.
1. **[GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj)** (from EleutherAI) released with the paper [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) by Ben Wang and Aran Komatsuzaki.
1. **[GPT-Sw3](https://huggingface.co/docs/transformers/model_doc/gpt-sw3)** (from AI-Sweden) released with the paper [Lessons Learned from GPT-SW3: Building the First Large-Scale Generative Language Model for Swedish](http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.376.pdf) by Ariel Ekgren, Amaru Cuba Gyllensten, Evangelia Gogoulou, Alice Heiman, Severine Verlinden, Joey Öhman, Fredrik Carlsson, Magnus Sahlgren.
1. **[GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode)** (from BigCode) released with the paper [SantaCoder: don't reach for the stars!](https://arxiv.org/abs/2301.03988) by Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, Logesh Kumar Umapathi, Carolyn Jane Anderson, Yangtian Zi, Joel Lamy Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry Abulkhanov, Manuel Romero, Michael Lappert, Francesco De Toni, Bernardo García del Río, Qian Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab Mangrulkar, David Lansky, Huu Nguyen, Danish Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau, Yacine Jernite, Sean Hughes, Daniel Fried, Arjun Guha, Harm de Vries, Leandro von Werra.
1. **[GPTSAN-japanese](https://huggingface.co/docs/transformers/model_doc/gptsan-japanese)** released in the repository [tanreinama/GPTSAN](https://github.com/tanreinama/GPTSAN/blob/main/report/model.md) by 坂本俊之(tanreinama).
1. **[Graphormer](https://huggingface.co/docs/transformers/model_doc/graphormer)** (from Microsoft) released with the paper [Do Transformers Really Perform Bad for Graph Representation?](https://arxiv.org/abs/2106.05234) by Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu.
1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (from UCSD, NVIDIA) released with the paper [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) by Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang.
1. **[HerBERT](https://huggingface.co/docs/transformers/model_doc/herbert)** (from Allegro.pl, AGH University of Science and Technology) released with the paper [KLEJ: Comprehensive Benchmark for Polish Language Understanding](https://www.aclweb.org/anthology/2020.acl-main.111.pdf) by Piotr Rybak, Robert Mroczkowski, Janusz Tracz, Ireneusz Gawlik.
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (from Facebook) released with the paper [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed.
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (from Berkeley) released with the paper [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer.
1. **[IDEFICS](https://huggingface.co/docs/transformers/model_doc/idefics)** (from HuggingFace) released with the paper [OBELICS: An Open Web-Scale Filtered Dataset of Interleaved Image-Text Documents](https://huggingface.co/papers/2306.16527) by Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov, Thomas Wang, Siddharth Karamcheti, Alexander M. Rush, Douwe Kiela, Matthieu Cord, Victor Sanh.
1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (from OpenAI) released with the paper [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever.
1. **[Informer](https://huggingface.co/docs/transformers/model_doc/informer)** (from Beihang University, UC Berkeley, Rutgers University, SEDD Company) released with the paper [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting](https://arxiv.org/abs/2012.07436) by Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
1. **[InstructBLIP](https://huggingface.co/docs/transformers/model_doc/instructblip)** (from Salesforce) released with the paper [InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning](https://arxiv.org/abs/2305.06500) by Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, Steven Hoi.
1. **[Jukebox](https://huggingface.co/docs/transformers/model_doc/jukebox)** (from OpenAI) released with the paper [Jukebox: A Generative Model for Music](https://arxiv.org/pdf/2005.00341.pdf) by Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever.
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou.
1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (from Microsoft Research Asia) released with the paper [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) by Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei.
1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutxlm)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (from Meta AI) released with the paper [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) by Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze.
1. **[LiLT](https://huggingface.co/docs/transformers/model_doc/lilt)** (from South China University of Technology) released with the paper [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669) by Jiapeng Wang, Lianwen Jin, Kai Ding.
1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (from The FAIR team of Meta AI) released with the paper [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971) by Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample.
1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (from The FAIR team of Meta AI) released with the paper [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/XXX) by Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom..
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (from Google AI) released with the paper [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang.
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (from Studio Ousia) released with the paper [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.
1. **[LXMERT](https://huggingface.co/docs/transformers/model_doc/lxmert)** (from UNC Chapel Hill) released with the paper [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal.
1. **[M-CTC-T](https://huggingface.co/docs/transformers/model_doc/mctct)** (from Facebook) released with the paper [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) by Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert.
1. **[M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100)** (from Facebook) released with the paper [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) by Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin.
1. **[MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)** Machine translation models trained using [OPUS](http://opus.nlpl.eu/) data by Jörg Tiedemann. The [Marian Framework](https://marian-nmt.github.io/) is being developed by the Microsoft Translator Team.
1. **[MarkupLM](https://huggingface.co/docs/transformers/model_doc/markuplm)** (from Microsoft Research Asia) released with the paper [MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document Understanding](https://arxiv.org/abs/2110.08518) by Junlong Li, Yiheng Xu, Lei Cui, Furu Wei.
1. **[Mask2Former](https://huggingface.co/docs/transformers/model_doc/mask2former)** (from FAIR and UIUC) released with the paper [Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527) by Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Rohit Girdhar.
1. **[MaskFormer](https://huggingface.co/docs/transformers/model_doc/maskformer)** (from Meta and UIUC) released with the paper [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) by Bowen Cheng, Alexander G. Schwing, Alexander Kirillov
1. **[MatCha](https://huggingface.co/docs/transformers/model_doc/matcha)** (from Google AI) released with the paper [MatCha: Enhancing Visual Language Pretraining with Math Reasoning and Chart Derendering](https://arxiv.org/abs/2212.09662) by Fangyu Liu, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Yasemin Altun, Nigel Collier, Julian Martin Eisenschlos.
1. **[mBART](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
1. **[mBART-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan.
1. **[MEGA](https://huggingface.co/docs/transformers/model_doc/mega)** (from Facebook) released with the paper [Mega: Moving Average Equipped Gated Attention](https://arxiv.org/abs/2209.10655) by Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and Luke Zettlemoyer.
1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[MGP-STR](https://huggingface.co/docs/transformers/model_doc/mgp-str)** (from Alibaba Research) released with the paper [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592) by Peng Wang, Cheng Da, and Cong Yao.
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (from Studio Ousia) released with the paper [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka.
1. **[MMS](https://huggingface.co/docs/transformers/model_doc/mms)** (from Facebook) released with the paper [Scaling Speech Technology to 1,000+ Languages](https://arxiv.org/abs/2305.13516) by Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky, Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi, Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning Hsu, Alexis Conneau, Michael Auli.
1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (from CMU/Google Brain) released with the paper [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou.
1. **[MobileNetV1](https://huggingface.co/docs/transformers/model_doc/mobilenet_v1)** (from Google Inc.) released with the paper [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) by Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam.
1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (from Google Inc.) released with the paper [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) by Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen.
1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (from Apple) released with the paper [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari.
1. **[MobileViTV2](https://huggingface.co/docs/transformers/model_doc/mobilevitv2)** (from Apple) released with the paper [Separable Self-attention for Mobile Vision Transformers](https://arxiv.org/abs/2206.02680) by Sachin Mehta and Mohammad Rastegari.
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
1. **[MPT](https://huggingface.co/docs/transformers/model_doc/mpt)** (from MosaiML) released with the paper [llm-foundry](https://github.com/mosaicml/llm-foundry/) by the MosaicML NLP Team.
1. **[MRA](https://huggingface.co/docs/transformers/model_doc/mra)** (from the University of Wisconsin - Madison) released with the paper [Multi Resolution Analysis (MRA)](https://arxiv.org/abs/2207.10284) by Zhanpeng Zeng, Sourav Pal, Jeffery Kline, Glenn M Fung, Vikas Singh.
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
1. **[MusicGen](https://huggingface.co/docs/transformers/model_doc/musicgen)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (from RUC AI Box) released with the paper [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen.
1. **[NAT](https://huggingface.co/docs/transformers/model_doc/nat)** (from SHI Labs) released with the paper [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143) by Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi.
1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (from Huawei Noahs Ark Lab) released with the paper [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) by Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu.
1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (from the University of Wisconsin - Madison) released with the paper [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh.
1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (from SHI Labs) released with the paper [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) by Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi.
1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released in [Open-Llama](https://github.com/s-JoL/Open-Llama).
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al.
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (from Google AI) released with the paper [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby.
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (from Google) released with the paper [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) by Jason Phang, Yao Zhao, Peter J. Liu.
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (from Deepmind) released with the paper [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) by Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira.
1. **[Persimmon](https://huggingface.co/docs/transformers/main/model_doc/persimmon)** (from ADEPT) released with the paper [blog post](https://www.adept.ai/blog/persimmon-8b) by Erich Elsen, Augustus Odena, Maxwell Nye, Sağnak Taşırlar, Tri Dao, Curtis Hawthorne, Deepak Moparthi, Arushi Somani.
1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen.
1. **[Pix2Struct](https://huggingface.co/docs/transformers/model_doc/pix2struct)** (from Google) released with the paper [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding](https://arxiv.org/abs/2210.03347) by Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova.
1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (from UCLA NLP) released with the paper [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) by Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang.
1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (from Sea AI Labs) released with the paper [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) by Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng.
1. **[Pop2Piano](https://huggingface.co/docs/transformers/model_doc/pop2piano)** released with the paper [Pop2Piano : Pop Audio-based Piano Cover Generation](https://arxiv.org/abs/2211.00895) by Jongho Choi, Kyogu Lee.
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[PVT](https://huggingface.co/docs/transformers/model_doc/pvt)** (from Nanjing University, The University of Hong Kong etc.) released with the paper [Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions](https://arxiv.org/pdf/2102.12122.pdf) by Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao.
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (from NVIDIA) released with the paper [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) by Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius.
1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (from Facebook) released with the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) by Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela.
1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (from Google Research) released with the paper [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) by Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang.
1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (from Google Research) released with the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
1. **[RegNet](https://huggingface.co/docs/transformers/model_doc/regnet)** (from META Research) released with the paper [Designing Network Design Space](https://arxiv.org/abs/2003.13678) by Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár.
1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (from Google Research) released with the paper [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/pdf/2010.12821.pdf) by Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder.
1. **[ResNet](https://huggingface.co/docs/transformers/model_doc/resnet)** (from Microsoft Research) released with the paper [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) by Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun.
1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (from Facebook), released together with the paper a [Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
1. **[RoBERTa-PreLayerNorm](https://huggingface.co/docs/transformers/model_doc/roberta-prelayernorm)** (from Facebook) released with the paper [fairseq: A Fast, Extensible Toolkit for Sequence Modeling](https://arxiv.org/abs/1904.01038) by Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli.
1. **[RoCBert](https://huggingface.co/docs/transformers/model_doc/roc_bert)** (from WeChatAI) released with the paper [RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining](https://aclanthology.org/2022.acl-long.65.pdf) by HuiSu, WeiweiShi, XiaoyuShen, XiaoZhou, TuoJi, JiaruiFang, JieZhou.
1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (from ZhuiyiTechnology), released together with the paper a [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/pdf/2104.09864v1.pdf) by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu.
1. **[RWKV](https://huggingface.co/docs/transformers/model_doc/rwkv)** (from Bo Peng) released with the paper [this repo](https://github.com/BlinkDL/RWKV-LM) by Bo Peng.
1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (from NVIDIA) released with the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo.
1. **[Segment Anything](https://huggingface.co/docs/transformers/model_doc/sam)** (from Meta AI) released with the paper [Segment Anything](https://arxiv.org/pdf/2304.02643v1.pdf) by Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alex Berg, Wan-Yen Lo, Piotr Dollar, Ross Girshick.
1. **[SEW](https://huggingface.co/docs/transformers/model_doc/sew)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SEW-D](https://huggingface.co/docs/transformers/model_doc/sew_d)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SpeechT5](https://huggingface.co/docs/transformers/model_doc/speecht5)** (from Microsoft Research) released with the paper [SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing](https://arxiv.org/abs/2110.07205) by Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li, Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, Furu Wei.
1. **[SpeechToTextTransformer](https://huggingface.co/docs/transformers/model_doc/speech_to_text)** (from Facebook), released together with the paper [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino.
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (from Facebook) released with the paper [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau.
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (from Tel Aviv University) released with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy.
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (from MBZUAI) released with the paper [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) by Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan.
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (from Microsoft) released with the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (from Microsoft) released with the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo.
1. **[Swin2SR](https://huggingface.co/docs/transformers/model_doc/swin2sr)** (from University of Würzburg) released with the paper [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345) by Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte.
1. **[SwitchTransformers](https://huggingface.co/docs/transformers/model_doc/switch_transformers)** (from Google) released with the paper [Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity](https://arxiv.org/abs/2101.03961) by William Fedus, Barret Zoph, Noam Shazeer.
1. **[T5](https://huggingface.co/docs/transformers/model_doc/t5)** (from Google AI) released with the paper [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (from Google AI) released with the paper [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[Table Transformer](https://huggingface.co/docs/transformers/model_doc/table-transformer)** (from Microsoft Research) released with the paper [PubTables-1M: Towards Comprehensive Table Extraction From Unstructured Documents](https://arxiv.org/abs/2110.00061) by Brandon Smock, Rohith Pesala, Robin Abraham.
1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (from Google AI) released with the paper [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos.
1. **[TAPEX](https://huggingface.co/docs/transformers/model_doc/tapex)** (from Microsoft Research) released with the paper [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou.
1. **[Time Series Transformer](https://huggingface.co/docs/transformers/model_doc/time_series_transformer)** (from HuggingFace).
1. **[TimeSformer](https://huggingface.co/docs/transformers/model_doc/timesformer)** (from Facebook) released with the paper [Is Space-Time Attention All You Need for Video Understanding?](https://arxiv.org/abs/2102.05095) by Gedas Bertasius, Heng Wang, Lorenzo Torresani.
1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/model_doc/trajectory_transformers)** (from the University of California at Berkeley) released with the paper [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine
1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (from Microsoft) released with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
1. **[TVLT](https://huggingface.co/docs/transformers/model_doc/tvlt)** (from UNC Chapel Hill) released with the paper [TVLT: Textless Vision-Language Transformer](https://arxiv.org/abs/2209.14156) by Zineng Tang, Jaemin Cho, Yixin Nie, Mohit Bansal.
1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
1. **[UMT5](https://huggingface.co/docs/transformers/model_doc/umt5)** (from Google Research) released with the paper [UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining](https://openreview.net/forum?id=kXwdL1cWOAi) by Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, Noah Constant.
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (from Microsoft Research) released with the paper [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (from Microsoft Research) released with the paper [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu.
1. **[UPerNet](https://huggingface.co/docs/transformers/model_doc/upernet)** (from Peking University) released with the paper [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221) by Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun.
1. **[VAN](https://huggingface.co/docs/transformers/model_doc/van)** (from Tsinghua University and Nankai University) released with the paper [Visual Attention Network](https://arxiv.org/pdf/2202.09741.pdf) by Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu.
1. **[VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)** (from Multimedia Computing Group, Nanjing University) released with the paper [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602) by Zhan Tong, Yibing Song, Jue Wang, Limin Wang.
1. **[ViLT](https://huggingface.co/docs/transformers/model_doc/vilt)** (from NAVER AI Lab/Kakao Enterprise/Kakao Brain) released with the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Wonjae Kim, Bokyung Son, Ildoo Kim.
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VitDet](https://huggingface.co/docs/transformers/model_doc/vitdet)** (from Meta AI) released with the paper [Exploring Plain Vision Transformer Backbones for Object Detection](https://arxiv.org/abs/2203.16527) by Yanghao Li, Hanzi Mao, Ross Girshick, Kaiming He.
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (from Meta AI) released with the paper [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick.
1. **[ViTMatte](https://huggingface.co/docs/transformers/main/model_doc/vitmatte)** (from HUST-VL) released with the paper [ViTMatte: Boosting Image Matting with Pretrained Plain Vision Transformers](https://arxiv.org/abs/2305.15272) by Jingfeng Yao, Xinggang Wang, Shusheng Yang, Baoyuan Wang.
1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (from Meta AI) released with the paper [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas.
1. **[VITS](https://huggingface.co/docs/transformers/model_doc/vits)** (from Kakao Enterprise) released with the paper [Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech](https://arxiv.org/abs/2106.06103) by Jaehyeon Kim, Jungil Kong, Juhee Son.
1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (from Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) by Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid.
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (from Facebook AI) released with the paper [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (from Facebook AI) released with the paper [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino.
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (from Facebook AI) released with the paper [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) by Qiantong Xu, Alexei Baevski, Michael Auli.
1. **[WavLM](https://huggingface.co/docs/transformers/model_doc/wavlm)** (from Microsoft Research) released with the paper [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei.
1. **[Whisper](https://huggingface.co/docs/transformers/model_doc/whisper)** (from OpenAI) released with the paper [Robust Speech Recognition via Large-Scale Weak Supervision](https://cdn.openai.com/papers/whisper.pdf) by Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, Ilya Sutskever.
1. **[X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)** (from Microsoft Research) released with the paper [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816) by Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang, Gaofeng Meng, Jianlong Fu, Shiming Xiang, Haibin Ling.
1. **[X-MOD](https://huggingface.co/docs/transformers/model_doc/xmod)** (from Meta AI) released with the paper [Lifting the Curse of Multilinguality by Pre-training Modular Transformers](http://dx.doi.org/10.18653/v1/2022.naacl-main.255) by Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James Cross, Sebastian Riedel, Mikel Artetxe.
1. **[XGLM](https://huggingface.co/docs/transformers/model_doc/xglm)** (From Facebook AI) released with the paper [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li.
1. **[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (from Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau.
1. **[XLM-ProphetNet](https://huggingface.co/docs/transformers/model_doc/xlm-prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[XLM-RoBERTa](https://huggingface.co/docs/transformers/model_doc/xlm-roberta)** (from Facebook AI), released together with the paper [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov.
1. **[XLM-RoBERTa-XL](https://huggingface.co/docs/transformers/model_doc/xlm-roberta-xl)** (from Facebook AI) released with the paper [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) by Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau.
1. **[XLM-V](https://huggingface.co/docs/transformers/model_doc/xlm-v)** (from Meta AI) released with the paper [XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models](https://arxiv.org/abs/2301.10472) by Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Naman Goyal, Marjan Ghazvininejad, Luke Zettlemoyer, Madian Khabsa.
1. **[XLNet](https://huggingface.co/docs/transformers/model_doc/xlnet)** (from Google/CMU) released with the paper [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
1. **[XLS-R](https://huggingface.co/docs/transformers/model_doc/xls_r)** (from Facebook AI) released with the paper [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) by Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli.
1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (from Facebook AI) released with the paper [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) by Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli.
1. **[YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos)** (from Huazhong University of Science & Technology) released with the paper [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) by Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu.
1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (from the University of Wisconsin - Madison) released with the paper [You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling](https://arxiv.org/abs/2111.09714) by Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh.
1. 想要貢獻新的模型?我們這裡有一份**詳細指引和模板**來引導你加入新的模型。你可以在 [`templates`](./templates) 目錄中找到它們。記得查看[貢獻指引](./CONTRIBUTING.md)並在開始寫 PR 前聯繫維護人員或開一個新的 issue 來獲得 feedbacks。
要檢查某個模型是否已有 Flax、PyTorch 或 TensorFlow 的實作,或其是否在🤗 Tokenizers 函式庫中有對應的 tokenizer敬請參閱[此表](https://huggingface.co/docs/transformers/index#supported-frameworks)。
這些實作均已於多個資料集測試(請參閱範例腳本)並應與原版實作表現相當。你可以在範例文件的[此節](https://huggingface.co/docs/transformers/examples)中了解實作的細節。
## 了解更多
| 章節 | 描述 |
|-|-|
| [文件](https://huggingface.co/transformers/) | 完整的 API 文件和教學 |
| [任務概覽](https://huggingface.co/docs/transformers/task_summary) | 🤗 Transformers 支援的任務 |
| [預處理教學](https://huggingface.co/docs/transformers/preprocessing) | 使用 `Tokenizer` 來為模型準備資料 |
| [訓練和微調](https://huggingface.co/docs/transformers/training) | 使用 PyTorch/TensorFlow 的內建的訓練方式或於 `Trainer` API 中使用 🤗 Transformers 提供的模型 |
| [快速上手:微調和範例腳本](https://github.com/huggingface/transformers/tree/main/examples) | 為各種任務提供的範例腳本 |
| [模型分享和上傳](https://huggingface.co/docs/transformers/model_sharing) | 上傳並與社群分享你微調的模型 |
| [遷移](https://huggingface.co/docs/transformers/migration) | 從 `pytorch-transformers` 或 `pytorch-pretrained-bert` 遷移到 🤗 Transformers |
## 引用
我們已將此函式庫的[論文](https://www.aclweb.org/anthology/2020.emnlp-demos.6/)正式發表。如果你使用了 🤗 Transformers 函式庫,可以引用:
```bibtex
@inproceedings{wolf-etal-2020-transformers,
title = "Transformers: State-of-the-Art Natural Language Processing",
author = "Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and Rémi Louf and Morgan Funtowicz and Joe Davison and Sam Shleifer and Patrick von Platen and Clara Ma and Yacine Jernite and Julien Plu and Canwen Xu and Teven Le Scao and Sylvain Gugger and Mariama Drame and Quentin Lhoest and Alexander M. Rush",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = oct,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.emnlp-demos.6",
pages = "38--45"
}
```

40
SECURITY.md Normal file
View File

@ -0,0 +1,40 @@
# Security Policy
## Hugging Face Hub, remote artefacts, and remote code
Transformers is open-source software that is tightly coupled to the Hugging Face Hub. While you have the ability to use it
offline with pre-downloaded model weights, it provides a very simple way to download, use, and manage models locally.
When downloading artefacts that have been uploaded by others on any platform, you expose yourself to risks. Please
read below for the security recommendations in order to keep your runtime and local environment safe.
### Remote artefacts
Models uploaded on the Hugging Face Hub come in different formats. We heavily recommend uploading and downloading
models in the [`safetensors`](https://github.com/huggingface/safetensors) format (which is the default prioritized
by the transformers library), as developed specifically to prevent arbitrary code execution on your system.
To avoid loading models from unsafe formats(e.g. [pickle](https://docs.python.org/3/library/pickle.html), you should use the `use_safetensors` parameter. If doing so, in the event that no .safetensors file is present, transformers will error when loading the model.
### Remote code
#### Modeling
Transformers supports many model architectures, but is also the bridge between your Python runtime and models that
are stored in model repositories on the Hugging Face Hub.
These models require the `trust_remote_code=True` parameter to be set when using them; please **always** verify
the content of the modeling files when using this argument. We recommend setting a revision in order to ensure you
protect yourself from updates on the repository.
#### Tools
Through the `Agent` framework, remote tools can be downloaded to be used by the Agent. You're to specify these tools
yourself, but please keep in mind that their code will be run on your machine if the Agent chooses to run them.
Please inspect the code of the tools before passing them to the Agent to protect your runtime and local setup.
## Reporting a Vulnerability
🤗 Please feel free to submit vulnerability reports to our private bug bounty program at https://hackerone.com/hugging_face. You'll need to request access to the program by emailing security@huggingface.co.
Note that you'll need to be invited to our program, so send us a quick email at security@huggingface.co if you've found a vulnerability.

View File

@ -21,7 +21,7 @@ This repository contains examples and best practices for building recommendation
Keywords: Recommender systems, AzureML
## [lama-cleaner](https://github.com/Sanster/lama-cleaner)
## [IOPaint](https://github.com/Sanster/IOPaint)
Image inpainting tool powered by Stable Diffusion. Remove any unwanted object, defect, people from your pictures or erase and replace anything on your pictures.
@ -105,9 +105,9 @@ An open-source Implementation of Imagen, Google's closed-source Text-to-Image Ne
Keywords: Imagen, Text-to-image
## [adapter-transformers](https://github.com/adapter-hub/adapter-transformers)
## [adapters](https://github.com/adapter-hub/adapters)
[adapter-transformers](https://github.com/adapter-hub/adapter-transformers) is an extension of HuggingFace's Transformers library, integrating adapters into state-of-the-art language models by incorporating AdapterHub, a central repository for pre-trained adapter modules. It is a drop-in replacement for transformers, which is regularly updated to stay up-to-date with the developments of transformers.
[adapters](https://github.com/adapter-hub/adapters) is an extension of HuggingFace's Transformers library, integrating adapters into state-of-the-art language models by incorporating AdapterHub, a central repository for pre-trained adapter modules. It is a drop-in replacement for transformers, which is regularly updated to stay up-to-date with the developments of transformers.
Keywords: Adapters, LoRA, Parameter-efficient fine-tuning, Hub
@ -596,14 +596,14 @@ Keywords: Data-Centric AI, Data Quality, Noisy Labels, Outlier Detection, Active
## [BentoML](https://github.com/bentoml/BentoML)
[BentoML](https://github.com/bentoml) is the unified framework for for building, shipping, and scaling production-ready AI applications incorporating traditional ML, pre-trained AI models, Generative and Large Language Models.
[BentoML](https://github.com/bentoml) is the unified framework for building, shipping, and scaling production-ready AI applications incorporating traditional ML, pre-trained AI models, Generative and Large Language Models.
All Hugging Face models and pipelines can be seamlessly integrated into BentoML applications, enabling the running of models on the most suitable hardware and independent scaling based on usage.
Keywords: BentoML, Framework, Deployment, AI Applications
## [LLaMA-Efficient-Tuning](https://github.com/hiyouga/LLaMA-Efficient-Tuning)
## [LLaMA Factory](https://github.com/hiyouga/LLaMA-Factory)
[LLaMA-Efficient-Tuning](https://github.com/hiyouga/LLaMA-Efficient-Tuning) offers a user-friendly fine-tuning framework that incorporates PEFT. The repository includes training(fine-tuning) and inference examples for LLaMA-2, BLOOM, Falcon, Baichuan, Qwen, and other LLMs. A ChatGLM version is also available in [ChatGLM-Efficient-Tuning](https://github.com/hiyouga/ChatGLM-Efficient-Tuning).
[LLaMA Factory](https://github.com/hiyouga/LLaMA-Factory) offers a user-friendly fine-tuning framework that incorporates PEFT. The repository includes training(fine-tuning) and inference examples for LLaMA-2, BLOOM, Falcon, Baichuan, Qwen, and other LLMs. A ChatGLM version is also available in [ChatGLM-Efficient-Tuning](https://github.com/hiyouga/ChatGLM-Efficient-Tuning).
Keywords: PEFT, fine-tuning, LLaMA-2, ChatGLM, Qwen

326
benchmark/benchmark.py Normal file
View File

@ -0,0 +1,326 @@
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Run benchmark using the `optimum-benchmark` library with some customization in `transformers`.
Assume we are under `transformers` root directory: (make sure the commits are valid commits)
```bash
python benchmark/benchmark.py --config-dir benchmark/config --config-name generation --commit=9b9c7f03da625b13643e99205c691fe046461724 --metrics=decode.latency.mean,per_token.latency.mean,per_token.throughput.value backend.model=google/gemma-2b benchmark.input_shapes.sequence_length=5,7 benchmark.input_shapes.batch_size=1,2 --multirun
```
"""
import argparse
import glob
import json
import os.path
import re
import tempfile
from contextlib import contextmanager
from pathlib import Path
from git import Repo
from huggingface_hub import HfApi
from optimum_benchmark import Benchmark
from optimum_benchmark_wrapper import main
PATH_TO_REPO = Path(__file__).parent.parent.resolve()
@contextmanager
def checkout_commit(repo: Repo, commit_id: str):
"""
Context manager that checks out a given commit when entered, but gets back to the reference it was at on exit.
Args:
repo (`git.Repo`): A git repository (for instance the Transformers repo).
commit_id (`str`): The commit reference to checkout inside the context manager.
"""
current_head = repo.head.commit if repo.head.is_detached else repo.head.ref
try:
repo.git.checkout(commit_id)
yield
finally:
repo.git.checkout(current_head)
def summarize(run_dir, metrics, expand_metrics=False):
"""Produce a summary for each optimum-benchmark launched job's output directory found in `run_dir`.
Each summary's format is as follows (for `expand_metrics=False`):
```
{
"model": "google/gemma-2b",
"commit": "3cd6ed22e4d49219f300f5055e71e3929aba20d7",
"config": "benchmark.input_shapes.batch_size=1,benchmark.input_shapes.sequence_length=5",
"metrics": {
"decode.latency.mean": 1.624666809082031,
"per_token.latency.mean": 0.012843788806628804,
"per_token.throughput.value": 77.85864553330948
}
}
```
"""
reports = glob.glob(os.path.join(run_dir, "**/benchmark_report.json"), recursive=True)
report_dirs = [str(Path(report).parent) for report in reports]
summaries = []
for report_dir in report_dirs:
commit = re.search(r"/commit=([^/]+)", report_dir).groups()[0]
if not os.path.isfile(os.path.join(report_dir, "benchmark.json")):
continue
benchmark = Benchmark.from_json(os.path.join(report_dir, "benchmark.json"))
report = benchmark.report
model = benchmark.config.backend["model"]
# Ths looks like `benchmark.input_shapes.batch_size=1,benchmark.input_shapes.sequence_length=5`.
# (we rely on the usage of hydra's `${hydra.job.override_dirname}`.)
benchmark_name = re.sub(f"backend.model={model},*", "", report_dir)
benchmark_name = str(Path(benchmark_name).parts[-1])
if benchmark_name.startswith("commit="):
benchmark_name = benchmark.config.name
metrics_values = {}
# post-processing of report: show a few selected/important metric
for metric in metrics:
keys = metric.split(".")
value = report
current = metrics_values
for key in keys:
# Avoid KeyError when a user's specified metric has typo.
# TODO: Give warnings.
if key not in value:
continue
value = value[key]
if expand_metrics:
if isinstance(value, dict):
if key not in current:
current[key] = {}
current = current[key]
else:
current[key] = value
if not expand_metrics:
metrics_values[metric] = value
# show some config information
print(f"model: {model}")
print(f"commit: {commit}")
print(f"config: {benchmark_name}")
if len(metrics_values) > 0:
print("metrics:")
if expand_metrics:
print(metrics_values)
else:
for metric, value in metrics_values.items():
print(f" - {metric}: {value}")
print("-" * 80)
summary = {
"model": model,
"commit": commit,
"config": benchmark_name,
"metrics": metrics_values,
}
summaries.append(summary)
with open(os.path.join(report_dir, "summary.json"), "w") as fp:
json.dump(summary, fp, indent=4)
return summaries
def combine_summaries(summaries):
"""Combine a list of summary obtained from the function `summarize`.
The combined summary's format is as follows:
```
"google/gemma-2b": {
"benchmark.input_shapes.batch_size=1,benchmark.input_shapes.sequence_length=5": {
"3cd6ed22e4d49219f300f5055e71e3929aba20d7": {
"metrics": {"decode.latency.mean": 1.624666809082031}
},
"c97ee28b117c0abe8e08891f402065e4df6d72aa": {
"metrics": {"decode.latency.mean": 1.6278163452148438}
}
},
"benchmark.input_shapes.batch_size=2,benchmark.input_shapes.sequence_length=5": {
"3cd6ed22e4d49219f300f5055e71e3929aba20d7": {
"metrics": {"decode.latency.mean": 1.6947791748046876}
},
"c97ee28b117c0abe8e08891f402065e4df6d72aa": {
"metrics": {
"decode.latency.mean": 1.6980519409179688}
}
}
}
```
"""
combined = {}
for summary in summaries:
model = summary["model"]
config = summary["config"]
commit = summary["commit"]
if model not in combined:
combined[model] = {}
if config not in combined[model]:
combined[model][config] = {}
if commit not in combined[model][config]:
combined[model][config][commit] = {"metrics": summary["metrics"]}
with open(os.path.join(exp_run_dir, "summary.json"), "w") as fp:
json.dump(combined, fp, indent=4)
print(json.dumps(combined, indent=4))
return combined
if __name__ == "__main__":
def list_str(values):
return values.split(",")
parser = argparse.ArgumentParser()
parser.add_argument("--config-dir", type=str, required=True, help="The path to the config directory.")
parser.add_argument("--config-name", type=str, required=True, help="The config name.")
# arguments specific to this wrapper for our own customization
parser.add_argument("--ensure_empty", type=bool, default=True, help="If to create a temporary directory.")
parser.add_argument(
"--commit",
type=list_str,
default="",
help="Comma-separated list of branch names and/or commit sha values on which the benchmark will run. If `diff` is specified, it will run on both the current head and the `main` branch.",
)
parser.add_argument("--metrics", type=str, help="The metrics to be included in the summary.")
parser.add_argument("--repo_id", type=str, default=None, help="The repository to which the file will be uploaded.")
parser.add_argument("--path_in_repo", type=str, default=None, help="Relative filepath in the repo.")
parser.add_argument("--token", type=str, default=None, help="A valid user access token (string).")
args, optimum_benchmark_args = parser.parse_known_args()
repo = Repo(PATH_TO_REPO)
metrics = [
"prefill.latency.mean",
"prefill.throughput.value",
"decode.latency.mean",
"decode.throughput.value",
"per_token.latency.mean",
"per_token.throughput.value",
]
if args.metrics is not None:
metrics = args.metrics.split(",")
# Get `backend.model` in a hacky way: We want to control the experiment flow manually.
models = [""]
for idx, arg in enumerate(optimum_benchmark_args):
if arg.startswith("backend.model="):
models = arg[len("backend.model=") :]
models = models.split(",")
break
optimum_benchmark_args = [arg for arg in optimum_benchmark_args if not arg.startswith("backend.model=")]
# Get the commit(s)
current_head = str(repo.head.commit) if repo.head.is_detached else str(repo.head.ref)
commits = [x for x in args.commit if x != ""]
if len(commits) == 0:
commits = [current_head]
elif len(commits) == 1 and commits[0] == "diff":
# compare to `main`
commits = ["main", current_head]
# Get the specified run directory
run_dir_arg_idx, run_dir = -1, None
sweep_dir_arg_idx, sweep_dir = -1, None
for idx, arg in enumerate(optimum_benchmark_args):
if arg.startswith("hydra.run.dir="):
run_dir = arg[len("hydra.run.dir=") :]
run_dir_arg_idx = idx
elif arg.startswith("hydra.sweep.dir="):
sweep_dir = arg[len("hydra.sweep.dir=") :]
sweep_dir_arg_idx = idx
exp_run_dir, arg_dix, arg_name = (
(sweep_dir, sweep_dir_arg_idx, "hydra.sweep.dir")
if "--multirun" in optimum_benchmark_args
else (run_dir, run_dir_arg_idx, "hydra.run.dir")
)
# TODO: not hardcoded
if exp_run_dir is None and args.ensure_empty:
exp_run_dir = "_benchmark"
if args.ensure_empty:
os.makedirs(exp_run_dir, exist_ok=True)
exp_run_dir = tempfile.mkdtemp(dir=exp_run_dir)
run_summaries = []
for commit in commits:
with checkout_commit(repo, commit):
commit = str(repo.head.commit)
commit_run_dir = exp_run_dir
if exp_run_dir is not None:
commit_run_dir = os.path.join(exp_run_dir, rf"commit\={commit}")
print(f"Run benchmark on commit: {commit}")
for model in models:
model_arg = [f"backend.model={model}"] if model != "" else []
dir_args = []
if commit_run_dir is not None:
if arg_dix > -1:
optimum_benchmark_args[arg_dix] = f"{arg_name}={commit_run_dir}"
else:
dir_args = [
f"hydra.sweep.dir={commit_run_dir}",
f"hydra.run.dir={commit_run_dir}/" + "${hydra.job.override_dirname}",
]
main(args.config_dir, args.config_name, model_arg + dir_args + optimum_benchmark_args)
if commit_run_dir is not None:
# Need to remove the `\` character
summaries = summarize(commit_run_dir.replace("\\", ""), metrics)
run_summaries.extend(summaries)
# aggregate the information across the commits
if exp_run_dir is not None:
with open(os.path.join(exp_run_dir, "summaries.json"), "w") as fp:
json.dump(run_summaries, fp, indent=4)
combined_summary = combine_summaries(run_summaries)
if args.repo_id is not None and args.path_in_repo is not None:
# Upload to Hub
api = HfApi()
api.upload_folder(
folder_path=exp_run_dir,
path_in_repo=args.path_in_repo,
repo_id=args.repo_id,
repo_type="dataset",
token=args.token,
)

View File

@ -0,0 +1,57 @@
defaults:
- benchmark # inheriting benchmark schema
- scenario: inference
- launcher: process
- backend: pytorch
- _self_ # for hydra 1.1 compatibility
name: pytorch_generate
launcher:
start_method: spawn
device_isolation: true
device_isolation_action: warn
backend:
device: cuda
device_ids: 0
no_weights: true
model: meta-llama/Llama-2-7b-hf
cache_implementation: static
torch_compile: true
torch_dtype: float16
torch_compile_config:
backend: inductor
mode: reduce-overhead
fullgraph: true
scenario:
input_shapes:
batch_size: 1
sequence_length: 7
generate_kwargs:
max_new_tokens: 128
min_new_tokens: 128
do_sample: false
memory: true
latency: true
iterations: 2
duration: 0
# hydra/cli specific settings
hydra:
run:
# where to store run results
dir: runs/${name}
job:
# change working directory to the run directory
chdir: true
env_set:
# set environment variable OVERRIDE_BENCHMARKS to 1
# to not skip benchmarks that have been run before
OVERRIDE_BENCHMARKS: 1
LOG_LEVEL: WARN
sweep:
dir: multirun
subdir: ${hydra.job.override_dirname}

View File

@ -0,0 +1,16 @@
import argparse
import subprocess
def main(config_dir, config_name, args):
subprocess.run(["optimum-benchmark", "--config-dir", f"{config_dir}", "--config-name", f"{config_name}"] + ["hydra/job_logging=disabled", "hydra/hydra_logging=disabled"] + args)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--config-dir", type=str, required=True, help="The path to the config directory.")
parser.add_argument("--config-name", type=str, required=True, help="The config name.")
args, unknown = parser.parse_known_args()
main(args.config_dir, args.config_name, unknown)

View File

@ -21,12 +21,61 @@ import warnings
from os.path import abspath, dirname, join
import _pytest
import pytest
from transformers.testing_utils import HfDoctestModule, HfDocTestParser
NOT_DEVICE_TESTS = {
"test_tokenization",
"test_processor",
"test_processing",
"test_beam_constraints",
"test_configuration_utils",
"test_data_collator",
"test_trainer_callback",
"test_trainer_utils",
"test_feature_extraction",
"test_image_processing",
"test_image_processor",
"test_image_transforms",
"test_optimization",
"test_retrieval",
"test_config",
"test_from_pretrained_no_checkpoint",
"test_keep_in_fp32_modules",
"test_gradient_checkpointing_backward_compatibility",
"test_gradient_checkpointing_enable_disable",
"test_save_load_fast_init_from_base",
"test_fast_init_context_manager",
"test_fast_init_tied_embeddings",
"test_save_load_fast_init_to_base",
"test_torch_save_load",
"test_initialization",
"test_forward_signature",
"test_model_get_set_embeddings",
"test_model_main_input_name",
"test_correct_missing_keys",
"test_tie_model_weights",
"test_can_use_safetensors",
"test_load_save_without_tied_weights",
"test_tied_weights_keys",
"test_model_weights_reload_no_missing_tied_weights",
"test_pt_tf_model_equivalence",
"test_mismatched_shapes_have_properly_initialized_weights",
"test_matched_shapes_have_loaded_weights_when_some_mismatched_shapes_exist",
"test_model_is_small",
"test_tf_from_pt_safetensors",
"test_flax_from_pt_safetensors",
"ModelTest::test_pipeline_", # None of the pipeline tests from PipelineTesterMixin (of which XxxModelTest inherits from) are running on device
"ModelTester::test_pipeline_",
"/repo_utils/",
"/utils/",
"/agents/",
}
# allow having multiple repository checkouts and not needing to remember to rerun
# 'pip install -e .[dev]' when switching between checkouts and running tests.
# `pip install -e '.[dev]'` when switching between checkouts and running tests.
git_repo_path = abspath(join(dirname(__file__), "src"))
sys.path.insert(1, git_repo_path)
@ -45,7 +94,14 @@ def pytest_configure(config):
config.addinivalue_line("markers", "is_pipeline_test: mark test to run only when pipelines are tested")
config.addinivalue_line("markers", "is_staging_test: mark test to run only in the staging environment")
config.addinivalue_line("markers", "accelerate_tests: mark test that require accelerate")
config.addinivalue_line("markers", "tool_tests: mark the tool tests that are run on their specific schedule")
config.addinivalue_line("markers", "agent_tests: mark the agent tests that are run on their specific schedule")
config.addinivalue_line("markers", "not_device_test: mark the tests always running on cpu")
def pytest_collection_modifyitems(items):
for item in items:
if any(test_name in item.nodeid for test_name in NOT_DEVICE_TESTS):
item.add_marker(pytest.mark.not_device_test)
def pytest_addoption(parser):

View File

@ -0,0 +1,15 @@
FROM python:3.10-slim
ENV PYTHONDONTWRITEBYTECODE=1
USER root
ARG REF=main
RUN apt-get update && apt-get install -y time git pkg-config make git-lfs
ENV UV_PYTHON=/usr/local/bin/python
RUN pip install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools GitPython
RUN uv pip install --no-cache-dir --upgrade 'torch' --index-url https://download.pytorch.org/whl/cpu
# tensorflow pin matching setup.py
RUN uv pip install --no-cache-dir "tensorflow-cpu<2.16" "tf-keras<2.16"
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[flax,quality,torch-speech,vision,testing]"
RUN git lfs install
RUN pip uninstall -y transformers
RUN apt-get clean && rm -rf /var/lib/apt/lists/* && apt-get autoremove && apt-get autoclean

View File

@ -0,0 +1,26 @@
FROM python:3.10-slim
ENV PYTHONDONTWRITEBYTECODE=1
USER root
RUN apt-get update && apt-get install -y libsndfile1-dev espeak-ng time git cmake wget xz-utils build-essential g++5 libprotobuf-dev protobuf-compiler
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
RUN wget https://github.com/ku-nlp/jumanpp/releases/download/v2.0.0-rc3/jumanpp-2.0.0-rc3.tar.xz
RUN tar xvf jumanpp-2.0.0-rc3.tar.xz
RUN mkdir jumanpp-2.0.0-rc3/bld
WORKDIR ./jumanpp-2.0.0-rc3/bld
RUN wget -LO catch.hpp https://github.com/catchorg/Catch2/releases/download/v2.13.8/catch.hpp
RUN mv catch.hpp ../libs/
RUN cmake .. -DCMAKE_INSTALL_PREFIX=/usr/local
RUN make install -j 10
RUN uv pip install --no-cache --upgrade 'torch' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir --no-deps accelerate --extra-index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir "transformers[ja,testing,sentencepiece,jieba,spacy,ftfy,rjieba]" unidic unidic-lite
# spacy is not used so not tested. Causes to failures. TODO fix later
RUN python3 -m unidic download
RUN pip uninstall -y transformers
RUN apt-get clean && rm -rf /var/lib/apt/lists/*
RUN apt remove -y g++ cmake xz-utils libprotobuf-dev protobuf-compiler

View File

@ -0,0 +1,12 @@
FROM python:3.10-slim
ENV PYTHONDONTWRITEBYTECODE=1
USER root
RUN apt-get update && apt-get install -y libsndfile1-dev espeak-ng time git
RUN apt-get install -y g++ cmake
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv venv
RUN uv pip install --no-cache-dir -U pip setuptools albumentations seqeval
RUN pip install --upgrade --no-cache-dir "transformers[tf-cpu,sklearn,testing,sentencepiece,tf-speech,vision]"
RUN uv pip install --no-cache-dir "protobuf==3.20.3"
RUN pip uninstall -y transformers
RUN apt-get clean && rm -rf /var/lib/apt/lists/*

View File

@ -0,0 +1,11 @@
FROM python:3.10-slim
ENV PYTHONDONTWRITEBYTECODE=1
USER root
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git g++ cmake pkg-config openssh-client git
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
RUN pip install --no-cache-dir 'torch' 'torchvision' 'torchaudio' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-deps timm accelerate --extra-index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir librosa "transformers[sklearn,sentencepiece,vision,testing]" seqeval albumentations jiwer
RUN pip uninstall -y transformers
RUN apt-get clean && rm -rf /var/lib/apt/lists/*

View File

@ -0,0 +1,17 @@
FROM python:3.10-slim
ENV PYTHONDONTWRITEBYTECODE=1
ARG REF=main
USER root
RUN apt-get update && apt-get install -y libsndfile1-dev espeak-ng time git libgl1-mesa-glx libgl1 g++ tesseract-ocr
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
RUN pip install --no-cache-dir 'torch' 'torchvision' 'torchaudio' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir --no-deps timm accelerate
RUN pip install -U --upgrade-strategy eager --no-cache-dir pytesseract python-Levenshtein opencv-python nltk
# RUN uv pip install --no-cache-dir natten==0.15.1+torch210cpu -f https://shi-labs.com/natten/wheels
RUN pip install --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[testing, vision]" 'scikit-learn' 'torch-stft' 'nose' 'dataset'
# RUN git clone https://github.com/facebookresearch/detectron2.git
# RUN python3 -m pip install --no-cache-dir -e detectron2
RUN pip install 'git+https://github.com/facebookresearch/detectron2.git@92ae9f0b92aba5867824b4f12aa06a22a60a45d3'
RUN pip uninstall -y transformers
RUN apt-get clean && rm -rf /var/lib/apt/lists/*

View File

@ -0,0 +1,10 @@
FROM python:3.10-slim
ENV PYTHONDONTWRITEBYTECODE=1
ARG REF=main
USER root
RUN apt-get update && apt-get install -y libsndfile1-dev espeak-ng time git g++ cmake
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
RUN pip install --no-cache-dir "scipy<1.13" "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[flax,testing,sentencepiece,flax-speech,vision]"
RUN pip uninstall -y transformers
RUN apt-get clean && rm -rf /var/lib/apt/lists/* && apt-get autoremove && apt-get autoclean

View File

@ -0,0 +1,10 @@
FROM python:3.10-slim
ENV PYTHONDONTWRITEBYTECODE=1
ARG REF=main
USER root
RUN apt-get update && apt-get install -y libsndfile1-dev espeak-ng time git cmake g++
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
RUN pip install --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[sklearn,tf-cpu,testing,sentencepiece,tf-speech,vision]"
RUN uv pip install --no-cache-dir "protobuf==3.20.3" tensorflow_probability
RUN apt-get clean && rm -rf /var/lib/apt/lists/*

View File

@ -0,0 +1,11 @@
FROM python:3.10-slim
ENV PYTHONDONTWRITEBYTECODE=1
ARG REF=main
USER root
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git pkg-config openssh-client git
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
RUN pip install --no-cache-dir 'torch' 'torchvision' 'torchaudio' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-deps timm accelerate --extra-index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir librosa "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[sklearn,sentencepiece,vision,testing]"
RUN pip uninstall -y transformers

View File

@ -0,0 +1,9 @@
FROM python:3.10-slim
ENV PYTHONDONTWRITEBYTECODE=1
ARG REF=main
USER root
RUN apt-get update && apt-get install -y time git
ENV UV_PYTHON=/usr/local/bin/python
RUN pip install uv && uv venv
RUN uv pip install --no-cache-dir -U pip setuptools GitPython "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[ruff]" urllib3
RUN apt-get install -y jq curl && apt-get clean && rm -rf /var/lib/apt/lists/*

View File

@ -0,0 +1,12 @@
FROM python:3.10-slim
ENV PYTHONDONTWRITEBYTECODE=1
ARG REF=main
USER root
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git g++ pkg-config openssh-client git
RUN apt-get install -y cmake
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
RUN pip install --upgrade --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[tf-cpu,sklearn,testing,sentencepiece,tf-speech,vision]"
RUN uv pip install --no-cache-dir "protobuf==3.20.3"
RUN pip uninstall -y transformers
RUN apt-get clean && rm -rf /var/lib/apt/lists/* && apt-get autoremove && apt-get autoclean

View File

@ -0,0 +1,16 @@
FROM python:3.10-slim
ENV PYTHONDONTWRITEBYTECODE=1
ARG REF=main
USER root
RUN apt-get update && apt-get install -y libsndfile1-dev espeak-ng time git g++ cmake pkg-config openssh-client git
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
RUN uv pip install --no-deps accelerate
RUN pip install --no-cache-dir 'torch' 'torchvision' 'torchaudio' --index-url https://download.pytorch.org/whl/cpu
RUN pip install --no-cache-dir "scipy<1.13" "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[flax,audio,sklearn,sentencepiece,vision,testing]"
# RUN pip install --no-cache-dir "scipy<1.13" "transformers[flax,testing,sentencepiece,flax-speech,vision]"
RUN pip uninstall -y transformers
RUN apt-get clean && rm -rf /var/lib/apt/lists/* && apt-get autoremove && apt-get autoclean

View File

@ -0,0 +1,11 @@
FROM python:3.10-slim
ENV PYTHONDONTWRITEBYTECODE=1
ARG REF=main
USER root
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git g++ cmake pkg-config openssh-client git git-lfs
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
RUN pip install --no-cache-dir 'torch' 'torchvision' 'torchaudio' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-deps timm accelerate --extra-index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir librosa "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[sklearn,sentencepiece,vision,testing]"
RUN pip uninstall -y transformers

View File

@ -0,0 +1,19 @@
FROM python:3.10-slim
ENV PYTHONDONTWRITEBYTECODE=1
ARG REF=main
RUN echo ${REF}
USER root
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git g++ cmake pkg-config openssh-client git git-lfs
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
RUN uv pip install --no-cache-dir --no-deps accelerate --extra-index-url https://download.pytorch.org/whl/cpu
RUN pip install --no-cache-dir 'torch' 'torchvision' 'torchaudio' --index-url https://download.pytorch.org/whl/cpu
RUN git lfs install
RUN uv pip install --no-cache-dir pypi-kenlm
RUN pip install --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[tf-cpu,sklearn,sentencepiece,vision,testing]"
RUN uv pip install --no-cache-dir "protobuf==3.20.3" librosa
RUN pip uninstall -y transformers
RUN apt-get clean && rm -rf /var/lib/apt/lists/* && apt-get autoremove && apt-get autoclean

View File

@ -1,4 +1,4 @@
FROM nvidia/cuda:11.8.0-cudnn8-devel-ubuntu20.04
FROM nvidia/cuda:12.1.0-cudnn8-devel-ubuntu20.04
LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive
@ -9,11 +9,11 @@ SHELL ["sh", "-lc"]
# The following `ARG` are mainly used to specify the versions explicitly & directly in this docker file, and not meant
# to be used as arguments for docker build (so far).
ARG PYTORCH='2.0.1'
ARG PYTORCH='2.4.0'
# (not always a valid torch version)
ARG INTEL_TORCH_EXT='1.11.0'
ARG INTEL_TORCH_EXT='2.3.0'
# Example: `cu102`, `cu113`, etc.
ARG CUDA='cu118'
ARG CUDA='cu121'
RUN apt update
RUN apt install -y git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-pip ffmpeg git-lfs
@ -23,21 +23,14 @@ RUN python3 -m pip install --no-cache-dir --upgrade pip
ARG REF=main
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
# TODO: Handle these in a python utility script
RUN [ ${#PYTORCH} -gt 0 -a "$PYTORCH" != "pre" ] && VERSION='torch=='$PYTORCH'.*' || VERSION='torch'; echo "export VERSION='$VERSION'" >> ~/.profile
RUN echo torch=$VERSION
# `torchvision` and `torchaudio` should be installed along with `torch`, especially for nightly build.
# Currently, let's just use their latest releases (when `torch` is installed with a release version)
# TODO: We might need to specify proper versions that work with a specific torch version (especially for past CI).
RUN [ "$PYTORCH" != "pre" ] && python3 -m pip install --no-cache-dir -U $VERSION torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/$CUDA || python3 -m pip install --no-cache-dir -U --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/$CUDA
RUN python3 -m pip install --no-cache-dir -U tensorflow==2.13 protobuf==3.20.3 tensorflow_text tensorflow_probability
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev,onnxruntime]
# 1. Put several commands in a single `RUN` to avoid image/layer exporting issue. Could be revised in the future.
# 2. Regarding `torch` part, We might need to specify proper versions for `torchvision` and `torchaudio`.
# Currently, let's not bother to specify their versions explicitly (so installed with their latest release versions).
RUN python3 -m pip install --no-cache-dir -U tensorflow==2.13 protobuf==3.20.3 tensorflow_text tensorflow_probability && python3 -m pip install --no-cache-dir -e ./transformers[dev,onnxruntime] && [ ${#PYTORCH} -gt 0 -a "$PYTORCH" != "pre" ] && VERSION='torch=='$PYTORCH'.*' || VERSION='torch'; echo "export VERSION='$VERSION'" >> ~/.profile && echo torch=$VERSION && [ "$PYTORCH" != "pre" ] && python3 -m pip install --no-cache-dir -U $VERSION torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/$CUDA || python3 -m pip install --no-cache-dir -U --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/$CUDA
RUN python3 -m pip uninstall -y flax jax
RUN python3 -m pip install --no-cache-dir intel_extension_for_pytorch==$INTEL_TORCH_EXT+cpu -f https://developer.intel.com/ipex-whl-stable-cpu
RUN python3 -m pip install --no-cache-dir intel_extension_for_pytorch==$INTEL_TORCH_EXT -f https://developer.intel.com/ipex-whl-stable-cpu
RUN python3 -m pip install --no-cache-dir git+https://github.com/facebookresearch/detectron2.git pytesseract
RUN python3 -m pip install -U "itsdangerous<2.1.0"
@ -46,23 +39,31 @@ RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/acc
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/peft@main#egg=peft
# Add bitsandbytes for mixed int8 testing
RUN python3 -m pip install --no-cache-dir bitsandbytes
# Add auto-gptq for gtpq quantization testing
RUN python3 -m pip install --no-cache-dir auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/
# Add einops for additional model testing
RUN python3 -m pip install --no-cache-dir einops
# For bettertransformer + gptq
# For bettertransformer
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/optimum@main#egg=optimum
# For video model testing
RUN python3 -m pip install --no-cache-dir decord av==9.2.0
# Some slow tests require bnb
RUN python3 -m pip install --no-cache-dir bitsandbytes
# Some tests require quanto
RUN python3 -m pip install --no-cache-dir quanto
# `quanto` will install `ninja` which leads to many `CUDA error: an illegal memory access ...` in some model tests
# (`deformable_detr`, `rwkv`, `mra`)
RUN python3 -m pip uninstall -y ninja
# For `dinat` model
RUN python3 -m pip install --no-cache-dir natten -f https://shi-labs.com/natten/wheels/$CUDA/
# The `XXX` part in `torchXXX` needs to match `PYTORCH` (to some extent)
RUN python3 -m pip install --no-cache-dir natten==0.15.1+torch220$CUDA -f https://shi-labs.com/natten/wheels
# For `nougat` tokenizer
RUN python3 -m pip install --no-cache-dir python-Levenshtein
# For `FastSpeech2ConformerTokenizer` tokenizer
RUN python3 -m pip install --no-cache-dir g2p-en
# When installing in editable mode, `transformers` is not recognized as a package.
# this line must be added in order for python to be aware of transformers.

View File

@ -1,26 +0,0 @@
FROM ubuntu:18.04
LABEL maintainer="Hugging Face"
LABEL repository="transformers"
RUN apt update && \
apt install -y bash \
build-essential \
git \
curl \
ca-certificates \
python3 \
python3-pip && \
rm -rf /var/lib/apt/lists
RUN python3 -m pip install --no-cache-dir --upgrade pip && \
python3 -m pip install --no-cache-dir \
jupyter \
tensorflow-cpu \
torch
WORKDIR /workspace
COPY . transformers/
RUN cd transformers/ && \
python3 -m pip install --no-cache-dir .
CMD ["/bin/bash"]

View File

@ -1,4 +1,4 @@
FROM python:3.8
FROM python:3.10
LABEL maintainer="Hugging Face"
RUN apt update
@ -11,7 +11,6 @@ RUN apt-get -y update && apt-get install -y libsndfile1-dev && apt install -y te
RUN python3 -m pip install --no-cache-dir ./transformers[deepspeed]
RUN python3 -m pip install --no-cache-dir torchvision git+https://github.com/facebookresearch/detectron2.git pytesseract
RUN python3 -m pip install --no-cache-dir pytorch-quantization --extra-index-url https://pypi.ngc.nvidia.com
RUN python3 -m pip install -U "itsdangerous<2.1.0"
# Test if the image could successfully build the doc. before publishing the image

View File

@ -1,27 +1,27 @@
FROM rocm/pytorch:rocm5.6_ubuntu20.04_py3.8_pytorch_2.0.1
FROM rocm/dev-ubuntu-22.04:6.0.2
# rocm/pytorch has no version with 2.1.0
LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive
RUN apt update && \
apt install -y --no-install-recommends git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-pip ffmpeg && \
apt install -y --no-install-recommends git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-dev python3-pip python3-dev ffmpeg && \
apt clean && \
rm -rf /var/lib/apt/lists/*
RUN python3 -m pip install --no-cache-dir --upgrade pip setuptools ninja git+https://github.com/facebookresearch/detectron2.git pytesseract "itsdangerous<2.1.0"
RUN python3 -m pip install --no-cache-dir --upgrade pip numpy
# If set to nothing, will install the latest version
ARG PYTORCH='2.0.1'
ARG TORCH_VISION='0.15.2'
ARG TORCH_AUDIO='2.0.2'
ARG ROCM='5.6'
RUN python3 -m pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm6.0
RUN git clone --depth 1 --branch v$TORCH_AUDIO https://github.com/pytorch/audio.git
RUN cd audio && USE_ROCM=1 USE_CUDA=0 python setup.py install
RUN python3 -m pip install --no-cache-dir --upgrade importlib-metadata setuptools ninja git+https://github.com/facebookresearch/detectron2.git pytesseract "itsdangerous<2.1.0"
ARG REF=main
WORKDIR /
# Invalidate docker cache from here if new commit is available.
ADD https://api.github.com/repos/huggingface/transformers/git/refs/heads/main version.json
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev-torch,testing,video]
RUN python3 -m pip uninstall -y tensorflow flax
@ -29,3 +29,6 @@ RUN python3 -m pip uninstall -y tensorflow flax
# When installing in editable mode, `transformers` is not recognized as a package.
# this line must be added in order for python to be aware of transformers.
RUN cd transformers && python3 setup.py develop
# Remove nvml as it is not compatible with ROCm. apex is not tested on NVIDIA either.
RUN python3 -m pip uninstall py3nvml pynvml apex -y

View File

@ -1,25 +0,0 @@
FROM ubuntu:18.04
LABEL maintainer="Hugging Face"
LABEL repository="transformers"
RUN apt update && \
apt install -y bash \
build-essential \
git \
curl \
ca-certificates \
python3 \
python3-pip && \
rm -rf /var/lib/apt/lists
RUN python3 -m pip install --no-cache-dir --upgrade pip && \
python3 -m pip install --no-cache-dir \
jupyter \
torch
WORKDIR /workspace
COPY . transformers/
RUN cd transformers/ && \
python3 -m pip install --no-cache-dir .
CMD ["/bin/bash"]

View File

@ -0,0 +1,48 @@
FROM rocm/dev-ubuntu-22.04:5.6
LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive
ARG PYTORCH='2.1.1'
ARG TORCH_VISION='0.16.1'
ARG TORCH_AUDIO='2.1.1'
ARG ROCM='5.6'
RUN apt update && \
apt install -y --no-install-recommends \
libaio-dev \
git \
# These are required to build deepspeed.
python3-dev \
python-is-python3 \
rocrand-dev \
rocthrust-dev \
hipsparse-dev \
hipblas-dev \
rocblas-dev && \
apt clean && \
rm -rf /var/lib/apt/lists/*
RUN python3 -m pip install --no-cache-dir --upgrade pip ninja "pydantic<2"
RUN python3 -m pip uninstall -y apex torch torchvision torchaudio
RUN python3 -m pip install torch==$PYTORCH torchvision==$TORCH_VISION torchaudio==$TORCH_AUDIO --index-url https://download.pytorch.org/whl/rocm$ROCM --no-cache-dir
# Pre-build DeepSpeed, so it's be ready for testing (to avoid timeout)
RUN DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 python3 -m pip install deepspeed --global-option="build_ext" --global-option="-j8" --no-cache-dir -v --disable-pip-version-check 2>&1
ARG REF=main
WORKDIR /
# Invalidate docker cache from here if new commit is available.
ADD https://api.github.com/repos/huggingface/transformers/git/refs/heads/main version.json
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
RUN python3 -m pip install --no-cache-dir ./transformers[accelerate,testing,sentencepiece,sklearn]
# When installing in editable mode, `transformers` is not recognized as a package.
# this line must be added in order for python to be aware of transformers.
RUN cd transformers && python3 setup.py develop
RUN python3 -c "from deepspeed.launcher.runner import main"
# Remove nvml as it is not compatible with ROCm
RUN python3 -m pip uninstall py3nvml pynvml -y

View File

@ -1,12 +1,12 @@
# https://docs.nvidia.com/deeplearning/frameworks/pytorch-release-notes/rel-22-12.html#rel-22-12
FROM nvcr.io/nvidia/pytorch:22.12-py3
# https://docs.nvidia.com/deeplearning/frameworks/pytorch-release-notes/rel-23-11.html#rel-23-11
FROM nvcr.io/nvidia/pytorch:23.04-py3
LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive
ARG PYTORCH='2.0.1'
ARG PYTORCH='2.2.0'
# Example: `cu102`, `cu113`, etc.
ARG CUDA='cu118'
ARG CUDA='cu121'
RUN apt -y update
RUN apt install -y libaio-dev
@ -15,14 +15,12 @@ RUN python3 -m pip install --no-cache-dir --upgrade pip
ARG REF=main
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
RUN python3 -m pip uninstall -y torch torchvision torchaudio
RUN python3 -m pip install --no-cache-dir ./transformers[deepspeed-testing]
# Install latest release PyTorch
# (PyTorch must be installed before pre-compiling any DeepSpeed c++/cuda ops.)
# (https://www.deepspeed.ai/tutorials/advanced-install/#pre-install-deepspeed-ops)
RUN python3 -m pip install --no-cache-dir -U torch==$PYTORCH torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/$CUDA
RUN python3 -m pip install --no-cache-dir ./transformers[deepspeed-testing]
RUN python3 -m pip uninstall -y torch torchvision torchaudio && python3 -m pip install --no-cache-dir -U torch==$PYTORCH torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/$CUDA
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate
@ -34,16 +32,17 @@ RUN python3 -m pip uninstall -y torch-tensorrt
# recompile apex
RUN python3 -m pip uninstall -y apex
RUN git clone https://github.com/NVIDIA/apex
# RUN git clone https://github.com/NVIDIA/apex
# `MAX_JOBS=1` disables parallel building to avoid cpu memory OOM when building image on GitHub Action (standard) runners
RUN cd apex && git checkout 82ee367f3da74b4cd62a1fb47aa9806f0f47b58b && MAX_JOBS=1 python3 -m pip install --global-option="--cpp_ext" --global-option="--cuda_ext" --no-cache -v --disable-pip-version-check .
# TODO: check if there is alternative way to install latest apex
# RUN cd apex && MAX_JOBS=1 python3 -m pip install --global-option="--cpp_ext" --global-option="--cuda_ext" --no-cache -v --disable-pip-version-check .
# Pre-build **latest** DeepSpeed, so it would be ready for testing (otherwise, the 1st deepspeed test will timeout)
RUN python3 -m pip uninstall -y deepspeed
# This has to be run (again) inside the GPU VMs running the tests.
# The installation works here, but some tests fail, if we don't pre-build deepspeed again in the VMs running the tests.
# TODO: Find out why test fail.
RUN DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 DS_BUILD_UTILS=1 python3 -m pip install deepspeed --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check 2>&1
RUN DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 python3 -m pip install "deepspeed<=0.14.0" --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check 2>&1
# When installing in editable mode, `transformers` is not recognized as a package.
# this line must be added in order for python to be aware of transformers.

View File

@ -1,11 +1,11 @@
# https://docs.nvidia.com/deeplearning/frameworks/pytorch-release-notes/rel-22-12.html#rel-22-12
FROM nvcr.io/nvidia/pytorch:22.12-py3
# https://docs.nvidia.com/deeplearning/frameworks/pytorch-release-notes/rel-23-11.html#rel-23-11
FROM nvcr.io/nvidia/pytorch:23.11-py3
LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive
# Example: `cu102`, `cu113`, etc.
ARG CUDA='cu118'
ARG CUDA='cu121'
RUN apt -y update
RUN apt install -y libaio-dev

View File

@ -1,4 +1,4 @@
FROM nvidia/cuda:11.8.0-cudnn8-devel-ubuntu20.04
FROM nvidia/cuda:12.1.0-cudnn8-devel-ubuntu20.04
LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive
@ -9,19 +9,20 @@ RUN python3 -m pip install --no-cache-dir --upgrade pip
ARG REF=main
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev-torch,testing,video]
# If set to nothing, will install the latest version
ARG PYTORCH='2.0.1'
ARG PYTORCH='2.4.0'
ARG TORCH_VISION=''
ARG TORCH_AUDIO=''
# Example: `cu102`, `cu113`, etc.
ARG CUDA='cu118'
ARG CUDA='cu121'
RUN [ ${#PYTORCH} -gt 0 ] && VERSION='torch=='$PYTORCH'.*' || VERSION='torch'; python3 -m pip install --no-cache-dir -U $VERSION --extra-index-url https://download.pytorch.org/whl/$CUDA
RUN [ ${#TORCH_VISION} -gt 0 ] && VERSION='torchvision=='TORCH_VISION'.*' || VERSION='torchvision'; python3 -m pip install --no-cache-dir -U $VERSION --extra-index-url https://download.pytorch.org/whl/$CUDA
RUN [ ${#TORCH_AUDIO} -gt 0 ] && VERSION='torchaudio=='TORCH_AUDIO'.*' || VERSION='torchaudio'; python3 -m pip install --no-cache-dir -U $VERSION --extra-index-url https://download.pytorch.org/whl/$CUDA
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev-torch,testing,video]
RUN python3 -m pip uninstall -y tensorflow flax
RUN python3 -m pip install --no-cache-dir git+https://github.com/facebookresearch/detectron2.git pytesseract

View File

@ -0,0 +1,66 @@
FROM nvidia/cuda:11.8.0-cudnn8-devel-ubuntu20.04
LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive
# Use login shell to read variables from `~/.profile` (to pass dynamic created variables between RUN commands)
SHELL ["sh", "-lc"]
# The following `ARG` are mainly used to specify the versions explicitly & directly in this docker file, and not meant
# to be used as arguments for docker build (so far).
ARG PYTORCH='2.2.1'
# Example: `cu102`, `cu113`, etc.
ARG CUDA='cu118'
RUN apt update
RUN apt install -y git libsndfile1-dev tesseract-ocr espeak-ng python python3-pip ffmpeg
RUN python3 -m pip install --no-cache-dir --upgrade pip
ARG REF=main
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
RUN [ ${#PYTORCH} -gt 0 ] && VERSION='torch=='$PYTORCH'.*' || VERSION='torch'; echo "export VERSION='$VERSION'" >> ~/.profile
RUN echo torch=$VERSION
# `torchvision` and `torchaudio` should be installed along with `torch`, especially for nightly build.
# Currently, let's just use their latest releases (when `torch` is installed with a release version)
RUN python3 -m pip install --no-cache-dir -U $VERSION torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/$CUDA
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev-torch]
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate
# needed in bnb and awq
RUN python3 -m pip install --no-cache-dir einops
# Add bitsandbytes for mixed int8 testing
RUN python3 -m pip install --no-cache-dir bitsandbytes
# Add auto-gptq for gtpq quantization testing
RUN python3 -m pip install --no-cache-dir auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/
# Add optimum for gptq quantization testing
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/optimum@main#egg=optimum
# Add aqlm for quantization testing
RUN python3 -m pip install --no-cache-dir aqlm[gpu]==1.0.2
# Add hqq for quantization testing
RUN python3 -m pip install --no-cache-dir hqq
# For GGUF tests
RUN python3 -m pip install --no-cache-dir gguf
# Add autoawq for quantization testing
# >=v0.2.3 needed for compatibility with torch 2.2.1
RUN python3 -m pip install --no-cache-dir https://github.com/casper-hansen/AutoAWQ/releases/download/v0.2.3/autoawq-0.2.3+cu118-cp38-cp38-linux_x86_64.whl
# Add quanto for quantization testing
RUN python3 -m pip install --no-cache-dir quanto
# Add eetq for quantization testing
RUN python3 -m pip install git+https://github.com/NetEase-FuXi/EETQ.git
# When installing in editable mode, `transformers` is not recognized as a package.
# this line must be added in order for python to be aware of transformers.
RUN cd transformers && python3 setup.py develop

View File

@ -1,25 +0,0 @@
FROM ubuntu:18.04
LABEL maintainer="Hugging Face"
LABEL repository="transformers"
RUN apt update && \
apt install -y bash \
build-essential \
git \
curl \
ca-certificates \
python3 \
python3-pip && \
rm -rf /var/lib/apt/lists
RUN python3 -m pip install --no-cache-dir --upgrade pip && \
python3 -m pip install --no-cache-dir \
mkl \
tensorflow-cpu
WORKDIR /workspace
COPY . transformers/
RUN cd transformers/ && \
python3 -m pip install --no-cache-dir .
CMD ["/bin/bash"]

View File

@ -1,4 +1,4 @@
FROM nvidia/cuda:11.8.0-cudnn8-devel-ubuntu20.04
FROM nvidia/cuda:12.1.0-cudnn8-devel-ubuntu20.04
LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive

View File

@ -202,7 +202,7 @@ provide its path. For instance: \[\`utils.ModelOutput\`\]. This will be converte
`utils.ModelOutput` in the description. To get rid of the path and only keep the name of the object you are
linking to in the description, add a ~: \[\`~utils.ModelOutput\`\] will generate a link with `ModelOutput` in the description.
The same works for methods so you can either use \[\`XXXClass.method\`\] or \[~\`XXXClass.method\`\].
The same works for methods so you can either use \[\`XXXClass.method\`\] or \[\`~XXXClass.method\`\].
#### Defining arguments in a method
@ -250,7 +250,7 @@ then its documentation should look like this:
Note that we always omit the "defaults to \`None\`" when None is the default for any argument. Also note that even
if the first line describing your argument type and its default gets long, you can't break it on several lines. You can
however write as many lines as you want in the indented description (see the example above with `input_ids`).
however, write as many lines as you want in the indented description (see the example above with `input_ids`).
#### Writing a multi-line code block

View File

@ -1,7 +1,7 @@
# docstyle-ignore
INSTALL_CONTENT = """
# Transformers installation
! pip install transformers datasets evaluate
! pip install transformers datasets evaluate accelerate
# To install from source instead of the last release, comment the command above and uncomment the following one.
# ! pip install git+https://github.com/huggingface/transformers.git
"""
@ -10,5 +10,5 @@ notebook_first_cells = [{"type": "code", "content": INSTALL_CONTENT}]
black_avoid_patterns = {
"{processor_class}": "FakeProcessorClass",
"{model_class}": "FakeModelClass",
"{object_class}": "FakeObjectClass",
"{object_class}": "FakeObjectClass",
}

View File

@ -1,7 +1,7 @@
# docstyle-ignore
INSTALL_CONTENT = """
# Transformers installation
! pip install transformers datasets
! pip install transformers datasets evaluate accelerate
# To install from source instead of the last release, comment the command above and uncomment the following one.
# ! pip install git+https://github.com/huggingface/transformers.git
"""

View File

@ -15,8 +15,28 @@
title: Vorverarbeiten
- local: training
title: Optimierung eines vortrainierten Modells
- local: run_scripts
title: Trainieren mit einem Skript
- local: accelerate
title: Verteiltes Training mit 🤗 Accelerate
- local: peft
title: Laden und Trainieren von Adaptern mit 🤗 PEFT
- local: model_sharing
title: Ein Modell teilen
- local: transformers_agents
title: Agents
- local: llm_tutorial
title: Generation with LLMs
title: Tutorials
- sections:
- local: contributing
title: Wie kann man zu 🤗 Transformers beitragen?
- local: add_new_model
title: Wie fügt man ein Modell zu 🤗 Transformers hinzu?
- local: add_new_pipeline
title: Wie fügt man eine Pipeline zu 🤗 Transformers hinzu?
- local: testing
title: Testen
- local: pr_checks
title: Überprüfung einer Pull Request
title: Contribute

View File

@ -0,0 +1,891 @@
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Wie kann ich ein Modell zu 🤗 Transformers hinzufügen?
Die 🤗 Transformers-Bibliothek ist dank der Beiträge der Community oft in der Lage, neue Modelle anzubieten. Aber das kann ein anspruchsvolles Projekt sein und erfordert eine eingehende Kenntnis der 🤗 Transformers-Bibliothek und des zu implementierenden Modells. Bei Hugging Face versuchen wir, mehr Mitgliedern der Community die Möglichkeit zu geben, aktiv Modelle hinzuzufügen, und wir haben diese Anleitung zusammengestellt, die Sie durch den Prozess des Hinzufügens eines PyTorch-Modells führt (stellen Sie sicher, dass Sie [PyTorch installiert haben](https://pytorch.org/get-started/locally/)).
Auf dem Weg dorthin, werden Sie:
- Einblicke in bewährte Open-Source-Verfahren erhalten
- die Konstruktionsprinzipien hinter einer der beliebtesten Deep-Learning-Bibliotheken verstehen
- lernen Sie, wie Sie große Modelle effizient testen können
- lernen Sie, wie Sie Python-Hilfsprogramme wie `black`, `ruff` und `make fix-copies` integrieren, um sauberen und lesbaren Code zu gewährleisten
Ein Mitglied des Hugging Face-Teams wird Ihnen dabei zur Seite stehen, damit Sie nicht alleine sind. 🤗 ❤️
Um loszulegen, öffnen Sie eine [New model addition](https://github.com/huggingface/transformers/issues/new?assignees=&labels=New+model&template=new-model-addition.yml) Ausgabe für das Modell, das Sie in 🤗 Transformers sehen möchten. Wenn Sie nicht besonders wählerisch sind, wenn es darum geht, ein bestimmtes Modell beizusteuern, können Sie nach dem [New model label](https://github.com/huggingface/transformers/labels/New%20model) filtern, um zu sehen, ob es noch unbeanspruchte Modellanfragen gibt, und daran arbeiten.
Sobald Sie eine neue Modellanfrage eröffnet haben, sollten Sie sich zunächst mit 🤗 Transformers vertraut machen, falls Sie das noch nicht sind!
## Allgemeiner Überblick über 🤗 Transformers
Zunächst sollten Sie sich einen allgemeinen Überblick über 🤗 Transformers verschaffen. 🤗 Transformers ist eine sehr meinungsfreudige Bibliothek, es ist also möglich, dass
Es besteht also die Möglichkeit, dass Sie mit einigen der Philosophien oder Designentscheidungen der Bibliothek nicht einverstanden sind. Aus unserer Erfahrung heraus haben wir jedoch
dass die grundlegenden Designentscheidungen und Philosophien der Bibliothek entscheidend sind, um 🤗 Transformers effizient zu skalieren.
Transformatoren zu skalieren und gleichzeitig die Wartungskosten auf einem vernünftigen Niveau zu halten.
Ein guter erster Ansatzpunkt, um die Bibliothek besser zu verstehen, ist die Lektüre der [Dokumentation unserer Philosophie](Philosophie). Als Ergebnis unserer Arbeitsweise gibt es einige Entscheidungen, die wir versuchen, auf alle Modelle anzuwenden:
- Komposition wird im Allgemeinen gegenüber Abstraktion bevorzugt
- Die Duplizierung von Code ist nicht immer schlecht, wenn sie die Lesbarkeit oder Zugänglichkeit eines Modells stark verbessert
- Modelldateien sind so in sich geschlossen wie möglich, so dass Sie, wenn Sie den Code eines bestimmten Modells lesen, idealerweise nur
in die entsprechende Datei `modeling_....py` schauen müssen.
Unserer Meinung nach ist der Code der Bibliothek nicht nur ein Mittel, um ein Produkt bereitzustellen, *z.B.* die Möglichkeit, BERT für
Inferenz zu verwenden, sondern auch als das Produkt selbst, das wir verbessern wollen. Wenn Sie also ein Modell hinzufügen, ist der Benutzer nicht nur die
Person, die Ihr Modell verwenden wird, sondern auch jeder, der Ihren Code liest, zu verstehen versucht und ihn möglicherweise verbessert.
Lassen Sie uns daher ein wenig tiefer in das allgemeine Design der Bibliothek einsteigen.
### Überblick über die Modelle
Um ein Modell erfolgreich hinzuzufügen, ist es wichtig, die Interaktion zwischen Ihrem Modell und seiner Konfiguration zu verstehen,
[`PreTrainedModel`] und [`PretrainedConfig`]. Als Beispiel werden wir
das Modell, das zu 🤗 Transformers hinzugefügt werden soll, `BrandNewBert` nennen.
Schauen wir uns das mal an:
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers_overview.png"/>
Wie Sie sehen, machen wir in 🤗 Transformers von der Vererbung Gebrauch, aber wir beschränken die Abstraktionsebene auf ein absolutes Minimum.
Minimum. Es gibt nie mehr als zwei Abstraktionsebenen für ein Modell in der Bibliothek. `BrandNewBertModel`
erbt von `BrandNewBertPreTrainedModel`, das wiederum von [`PreTrainedModel`] erbt und
das war's. In der Regel wollen wir sicherstellen, dass ein neues Modell nur von
[`PreTrainedModel`] abhängt. Die wichtigen Funktionalitäten, die jedem neuen Modell automatisch zur Verfügung gestellt werden, sind
Modell automatisch bereitgestellt werden, sind [`~PreTrainedModel.from_pretrained`] und
[`~PreTrainedModel.save_pretrained`], die für die Serialisierung und Deserialisierung verwendet werden. Alle
anderen wichtigen Funktionalitäten, wie `BrandNewBertModel.forward` sollten vollständig in der neuen
Skript `modeling_brand_new_bert.py` definiert werden. Als nächstes wollen wir sicherstellen, dass ein Modell mit einer bestimmten Kopfebene, wie z.B.
`BrandNewBertForMaskedLM` nicht von `BrandNewBertModel` erbt, sondern `BrandNewBertModel` verwendet
als Komponente, die im Forward Pass aufgerufen werden kann, um die Abstraktionsebene niedrig zu halten. Jedes neue Modell erfordert eine
Konfigurationsklasse, genannt `BrandNewBertConfig`. Diese Konfiguration wird immer als ein Attribut in
[PreTrainedModel] gespeichert und kann daher über das Attribut `config` für alle Klassen aufgerufen werden
die von `BrandNewBertPreTrainedModel` erben:
```python
model = BrandNewBertModel.from_pretrained("brandy/brand_new_bert")
model.config # model has access to its config
```
Ähnlich wie das Modell erbt die Konfiguration grundlegende Serialisierungs- und Deserialisierungsfunktionalitäten von
[`PretrainedConfig`]. Beachten Sie, dass die Konfiguration und das Modell immer in zwei verschiedene Formate serialisiert werden
unterschiedliche Formate serialisiert werden - das Modell in eine *pytorch_model.bin* Datei und die Konfiguration in eine *config.json* Datei. Aufruf von
[`~PreTrainedModel.save_pretrained`] wird automatisch
[`~PretrainedConfig.save_pretrained`] auf, so dass sowohl das Modell als auch die Konfiguration gespeichert werden.
### Code-Stil
Wenn Sie Ihr neues Modell kodieren, sollten Sie daran denken, dass Transformers eine Bibliothek mit vielen Meinungen ist und dass wir selbst ein paar Macken haben
wie der Code geschrieben werden sollte :-)
1. Der Vorwärtsdurchlauf Ihres Modells sollte vollständig in die Modellierungsdatei geschrieben werden und dabei völlig unabhängig von anderen
Modellen in der Bibliothek. Wenn Sie einen Block aus einem anderen Modell wiederverwenden möchten, kopieren Sie den Code und fügen ihn mit einem
`# Kopiert von` ein (siehe [hier](https://github.com/huggingface/transformers/blob/v4.17.0/src/transformers/models/roberta/modeling_roberta.py#L160)
für ein gutes Beispiel und [hier](pr_checks#check-copies) für weitere Dokumentation zu Copied from).
2. Der Code sollte vollständig verständlich sein, auch für einen Nicht-Muttersprachler. Das heißt, Sie sollten
beschreibende Variablennamen wählen und Abkürzungen vermeiden. Ein Beispiel: `activation` ist `act` vorzuziehen.
Von Variablennamen mit nur einem Buchstaben wird dringend abgeraten, es sei denn, es handelt sich um einen Index in einer for-Schleife.
3. Generell ziehen wir längeren expliziten Code einem kurzen magischen Code vor.
4. Vermeiden Sie die Unterklassifizierung von `nn.Sequential` in PyTorch, sondern unterklassifizieren Sie `nn.Module` und schreiben Sie den Vorwärtspass, so dass jeder
so dass jeder, der Ihren Code verwendet, ihn schnell debuggen kann, indem er Druckanweisungen oder Haltepunkte hinzufügt.
5. Ihre Funktionssignatur sollte mit einer Typ-Annotation versehen sein. Im Übrigen sind gute Variablennamen viel lesbarer und verständlicher
verständlicher als Typ-Anmerkungen.
### Übersicht der Tokenizer
Noch nicht ganz fertig :-( Dieser Abschnitt wird bald hinzugefügt!
## Schritt-für-Schritt-Rezept zum Hinzufügen eines Modells zu 🤗 Transformers
Jeder hat andere Vorlieben, was die Portierung eines Modells angeht. Daher kann es sehr hilfreich sein, wenn Sie sich Zusammenfassungen ansehen
wie andere Mitwirkende Modelle auf Hugging Face portiert haben. Hier ist eine Liste von Blogbeiträgen aus der Community, wie man ein Modell portiert:
1. [Portierung eines GPT2-Modells](https://medium.com/huggingface/from-tensorflow-to-pytorch-265f40ef2a28) von [Thomas](https://huggingface.co/thomwolf)
2. [Portierung des WMT19 MT-Modells](https://huggingface.co/blog/porting-fsmt) von [Stas](https://huggingface.co/stas)
Aus Erfahrung können wir Ihnen sagen, dass die wichtigsten Dinge, die Sie beim Hinzufügen eines Modells beachten müssen, sind:
- Erfinden Sie das Rad nicht neu! Die meisten Teile des Codes, den Sie für das neue 🤗 Transformers-Modell hinzufügen werden, existieren bereits
irgendwo in 🤗 Transformers. Nehmen Sie sich etwas Zeit, um ähnliche, bereits vorhandene Modelle und Tokenizer zu finden, die Sie kopieren können
von. [grep](https://www.gnu.org/software/grep/) und [rg](https://github.com/BurntSushi/ripgrep) sind Ihre
Freunde. Beachten Sie, dass es sehr gut möglich ist, dass der Tokenizer Ihres Modells auf einer Modellimplementierung basiert und
und der Modellierungscode Ihres Modells auf einer anderen. *Z.B.* Der Modellierungscode von FSMT basiert auf BART, während der Tokenizer-Code von FSMT
auf XLM basiert.
- Es handelt sich eher um eine technische als um eine wissenschaftliche Herausforderung. Sie sollten mehr Zeit auf die Schaffung einer
eine effiziente Debugging-Umgebung zu schaffen, als zu versuchen, alle theoretischen Aspekte des Modells in dem Papier zu verstehen.
- Bitten Sie um Hilfe, wenn Sie nicht weiterkommen! Modelle sind der Kernbestandteil von 🤗 Transformers, so dass wir bei Hugging Face mehr als
mehr als glücklich, Ihnen bei jedem Schritt zu helfen, um Ihr Modell hinzuzufügen. Zögern Sie nicht zu fragen, wenn Sie merken, dass Sie nicht weiterkommen.
Fortschritte machen.
Im Folgenden versuchen wir, Ihnen ein allgemeines Rezept an die Hand zu geben, das uns bei der Portierung eines Modells auf 🤗 Transformers am nützlichsten erschien.
Die folgende Liste ist eine Zusammenfassung all dessen, was getan werden muss, um ein Modell hinzuzufügen und kann von Ihnen als To-Do verwendet werden
Liste verwenden:
☐ (Optional) Verstehen der theoretischen Aspekte des Modells<br>
☐ Vorbereiten der 🤗 Transformers-Entwicklungsumgebung<br>
☐ Debugging-Umgebung des ursprünglichen Repositorys eingerichtet<br>
☐ Skript erstellt, das den Durchlauf `forward()` unter Verwendung des ursprünglichen Repositorys und des Checkpoints erfolgreich durchführt<br>
☐ Erfolgreich das Modellskelett zu 🤗 Transformers hinzugefügt<br>
☐ Erfolgreiche Umwandlung des ursprünglichen Prüfpunkts in den 🤗 Transformers-Prüfpunkt<br>
☐ Erfolgreich den Durchlauf `forward()` in 🤗 Transformers ausgeführt, der eine identische Ausgabe wie der ursprüngliche Prüfpunkt liefert<br>
☐ Modell-Tests in 🤗 Transformers abgeschlossen<br>
☐ Erfolgreich Tokenizer in 🤗 Transformers hinzugefügt<br>
☐ End-to-End-Integrationstests ausgeführt<br>
☐ Docs fertiggestellt<br>
☐ Modellgewichte in den Hub hochgeladen<br>
☐ Die Pull-Anfrage eingereicht<br>
☐ (Optional) Hinzufügen eines Demo-Notizbuchs
Für den Anfang empfehlen wir in der Regel, mit einem guten theoretischen Verständnis von `BrandNewBert` zu beginnen. Wie auch immer,
wenn Sie es vorziehen, die theoretischen Aspekte des Modells *on-the-job* zu verstehen, dann ist es völlig in Ordnung, direkt in die
in die Code-Basis von `BrandNewBert` einzutauchen. Diese Option könnte für Sie besser geeignet sein, wenn Ihre technischen Fähigkeiten besser sind als
als Ihre theoretischen Fähigkeiten, wenn Sie Schwierigkeiten haben, die Arbeit von `BrandNewBert` zu verstehen, oder wenn Sie einfach Spaß am Programmieren
mehr Spaß am Programmieren haben als am Lesen wissenschaftlicher Abhandlungen.
### 1. (Optional) Theoretische Aspekte von BrandNewBert
Sie sollten sich etwas Zeit nehmen, um die Abhandlung von *BrandNewBert* zu lesen, falls eine solche Beschreibung existiert. Möglicherweise gibt es große
Abschnitte des Papiers, die schwer zu verstehen sind. Wenn das der Fall ist, ist das in Ordnung - machen Sie sich keine Sorgen! Das Ziel ist
ist es nicht, ein tiefes theoretisches Verständnis des Papiers zu erlangen, sondern die notwendigen Informationen zu extrahieren, um
das Modell effektiv in 🤗 Transformers zu implementieren. Das heißt, Sie müssen nicht zu viel Zeit auf die
theoretischen Aspekten verbringen, sondern sich lieber auf die praktischen Aspekte konzentrieren, nämlich:
- Welche Art von Modell ist *brand_new_bert*? BERT-ähnliches Modell nur für den Encoder? GPT2-ähnliches reines Decoder-Modell? BART-ähnliches
Encoder-Decoder-Modell? Sehen Sie sich die [model_summary](model_summary) an, wenn Sie mit den Unterschieden zwischen diesen Modellen nicht vertraut sind.
- Was sind die Anwendungen von *brand_new_bert*? Textklassifizierung? Texterzeugung? Seq2Seq-Aufgaben, *z.B.,*
Zusammenfassungen?
- Was ist die neue Eigenschaft des Modells, die es von BERT/GPT-2/BART unterscheidet?
- Welches der bereits existierenden [🤗 Transformers-Modelle](https://huggingface.co/transformers/#contents) ist am ähnlichsten
ähnlich wie *brand_new_bert*?
- Welche Art von Tokenizer wird verwendet? Ein Satzteil-Tokenisierer? Ein Wortstück-Tokenisierer? Ist es derselbe Tokenisierer, der für
für BERT oder BART?
Nachdem Sie das Gefühl haben, einen guten Überblick über die Architektur des Modells erhalten zu haben, können Sie dem
Hugging Face Team schreiben und Ihre Fragen stellen. Dazu können Fragen zur Architektur des Modells gehören,
seiner Aufmerksamkeitsebene usw. Wir werden Ihnen gerne weiterhelfen.
### 2. Bereiten Sie als nächstes Ihre Umgebung vor
1. Forken Sie das [Repository](https://github.com/huggingface/transformers), indem Sie auf der Seite des Repositorys auf die Schaltfläche 'Fork' klicken.
Seite des Repositorys klicken. Dadurch wird eine Kopie des Codes unter Ihrem GitHub-Benutzerkonto erstellt.
2. Klonen Sie Ihren `transformers` Fork auf Ihre lokale Festplatte und fügen Sie das Basis-Repository als Remote hinzu:
```bash
git clone https://github.com/[your Github handle]/transformers.git
cd transformers
git remote add upstream https://github.com/huggingface/transformers.git
```
3. Richten Sie eine Entwicklungsumgebung ein, indem Sie z.B. den folgenden Befehl ausführen:
```bash
python -m venv .env
source .env/bin/activate
pip install -e ".[dev]"
```
Abhängig von Ihrem Betriebssystem und da die Anzahl der optionalen Abhängigkeiten von Transformers wächst, kann es sein, dass Sie bei diesem Befehl einen
Fehler mit diesem Befehl. Stellen Sie in diesem Fall sicher, dass Sie das Deep Learning Framework, mit dem Sie arbeiten, installieren
(PyTorch, TensorFlow und/oder Flax) und führen Sie es aus:
```bash
pip install -e ".[quality]"
```
was für die meisten Anwendungsfälle ausreichend sein sollte. Sie können dann zum übergeordneten Verzeichnis zurückkehren
```bash
cd ..
```
4. Wir empfehlen, die PyTorch-Version von *brand_new_bert* zu Transformers hinzuzufügen. Um PyTorch zu installieren, folgen Sie bitte den
Anweisungen auf https://pytorch.org/get-started/locally/.
**Anmerkung:** Sie müssen CUDA nicht installiert haben. Es reicht aus, das neue Modell auf der CPU zum Laufen zu bringen.
5. Um *brand_new_bert* zu portieren, benötigen Sie außerdem Zugriff auf das Original-Repository:
```bash
git clone https://github.com/org_that_created_brand_new_bert_org/brand_new_bert.git
cd brand_new_bert
pip install -e .
```
Jetzt haben Sie eine Entwicklungsumgebung eingerichtet, um *brand_new_bert* auf 🤗 Transformers zu portieren.
### 3.-4. Führen Sie einen Pre-Training-Checkpoint mit dem Original-Repository durch
Zunächst werden Sie mit dem ursprünglichen *brand_new_bert* Repository arbeiten. Oft ist die ursprüngliche Implementierung sehr
"forschungslastig". Das bedeutet, dass es an Dokumentation mangeln kann und der Code schwer zu verstehen sein kann. Aber das sollte
genau Ihre Motivation sein, *brand_new_bert* neu zu implementieren. Eines unserer Hauptziele bei Hugging Face ist es, *die Menschen dazu zu bringen
auf den Schultern von Giganten zu stehen*, was sich hier sehr gut darin ausdrückt, dass wir ein funktionierendes Modell nehmen und es umschreiben, um es so
es so **zugänglich, benutzerfreundlich und schön** wie möglich zu machen. Dies ist die wichtigste Motivation für die Neuimplementierung von
Modelle in 🤗 Transformers umzuwandeln - der Versuch, komplexe neue NLP-Technologie für **jeden** zugänglich zu machen.
Sie sollten damit beginnen, indem Sie in das Original-Repository eintauchen.
Die erfolgreiche Ausführung des offiziellen Pre-Trainingsmodells im Original-Repository ist oft **der schwierigste** Schritt.
Unserer Erfahrung nach ist es sehr wichtig, dass Sie einige Zeit damit verbringen, sich mit der ursprünglichen Code-Basis vertraut zu machen. Sie müssen
das Folgende herausfinden:
- Wo finden Sie die vortrainierten Gewichte?
- Wie lädt man die vorab trainierten Gewichte in das entsprechende Modell?
- Wie kann der Tokenizer unabhängig vom Modell ausgeführt werden?
- Verfolgen Sie einen Forward Pass, damit Sie wissen, welche Klassen und Funktionen für einen einfachen Forward Pass erforderlich sind. Normalerweise,
müssen Sie nur diese Funktionen reimplementieren.
- Sie müssen in der Lage sein, die wichtigen Komponenten des Modells zu finden: Wo befindet sich die Klasse des Modells? Gibt es Unterklassen des Modells,
*z.B.* EncoderModel, DecoderModel? Wo befindet sich die Selbstaufmerksamkeitsschicht? Gibt es mehrere verschiedene Aufmerksamkeitsebenen,
*z.B.* *Selbstaufmerksamkeit*, *Kreuzaufmerksamkeit*...?
- Wie können Sie das Modell in der ursprünglichen Umgebung des Repo debuggen? Müssen Sie *print* Anweisungen hinzufügen, können Sie
mit einem interaktiven Debugger wie *ipdb* arbeiten oder sollten Sie eine effiziente IDE zum Debuggen des Modells verwenden, wie z.B. PyCharm?
Es ist sehr wichtig, dass Sie, bevor Sie mit der Portierung beginnen, den Code im Original-Repository **effizient** debuggen können
Repository können! Denken Sie auch daran, dass Sie mit einer Open-Source-Bibliothek arbeiten, also zögern Sie nicht, ein Problem oder
oder sogar eine Pull-Anfrage im Original-Repository zu stellen. Die Betreuer dieses Repositorys sind wahrscheinlich sehr froh darüber
dass jemand in ihren Code schaut!
An diesem Punkt liegt es wirklich an Ihnen, welche Debugging-Umgebung und Strategie Sie zum Debuggen des ursprünglichen
Modell zu debuggen. Wir raten dringend davon ab, eine kostspielige GPU-Umgebung einzurichten, sondern arbeiten Sie einfach auf einer CPU, sowohl wenn Sie mit dem
in das ursprüngliche Repository einzutauchen und auch, wenn Sie beginnen, die 🤗 Transformers-Implementierung des Modells zu schreiben. Nur
ganz am Ende, wenn das Modell bereits erfolgreich auf 🤗 Transformers portiert wurde, sollte man überprüfen, ob das
Modell auch auf der GPU wie erwartet funktioniert.
Im Allgemeinen gibt es zwei mögliche Debugging-Umgebungen für die Ausführung des Originalmodells
- [Jupyter notebooks](https://jupyter.org/) / [google colab](https://colab.research.google.com/notebooks/intro.ipynb)
- Lokale Python-Skripte.
Jupyter-Notebooks haben den Vorteil, dass sie eine zellenweise Ausführung ermöglichen, was hilfreich sein kann, um logische Komponenten besser voneinander zu trennen und
logische Komponenten voneinander zu trennen und schnellere Debugging-Zyklen zu haben, da Zwischenergebnisse gespeichert werden können. Außerdem,
Außerdem lassen sich Notebooks oft leichter mit anderen Mitwirkenden teilen, was sehr hilfreich sein kann, wenn Sie das Hugging Face Team um Hilfe bitten möchten.
Face Team um Hilfe bitten. Wenn Sie mit Jupyter-Notizbüchern vertraut sind, empfehlen wir Ihnen dringend, mit ihnen zu arbeiten.
Der offensichtliche Nachteil von Jupyter-Notizbüchern ist, dass Sie, wenn Sie nicht daran gewöhnt sind, mit ihnen zu arbeiten, einige Zeit damit verbringen müssen
einige Zeit damit verbringen müssen, sich an die neue Programmierumgebung zu gewöhnen, und dass Sie möglicherweise Ihre bekannten Debugging-Tools nicht mehr verwenden können
wie z.B. `ipdb` nicht mehr verwenden können.
Für jede Codebasis ist es immer ein guter erster Schritt, einen **kleinen** vortrainierten Checkpoint zu laden und in der Lage zu sein, einen
einzelnen Vorwärtsdurchlauf mit einem Dummy-Integer-Vektor von Eingabe-IDs als Eingabe zu reproduzieren. Ein solches Skript könnte wie folgt aussehen (in
Pseudocode):
```python
model = BrandNewBertModel.load_pretrained_checkpoint("/path/to/checkpoint/")
input_ids = [0, 4, 5, 2, 3, 7, 9] # vector of input ids
original_output = model.predict(input_ids)
```
Was die Debugging-Strategie anbelangt, so können Sie im Allgemeinen aus mehreren Strategien wählen:
- Zerlegen Sie das ursprüngliche Modell in viele kleine testbare Komponenten und führen Sie für jede dieser Komponenten einen Vorwärtsdurchlauf zur
Überprüfung
- Zerlegen Sie das ursprüngliche Modell nur in den ursprünglichen *Tokenizer* und das ursprüngliche *Modell*, führen Sie einen Vorwärtsdurchlauf für diese Komponenten durch
und verwenden Sie dazwischenliegende Druckanweisungen oder Haltepunkte zur Überprüfung.
Auch hier bleibt es Ihnen überlassen, welche Strategie Sie wählen. Oft ist die eine oder die andere Strategie vorteilhaft, je nach der ursprünglichen Codebasis
Basis.
Wenn die ursprüngliche Codebasis es Ihnen erlaubt, das Modell in kleinere Teilkomponenten zu zerlegen, *z.B.* wenn die ursprüngliche
Code-Basis problemlos im Eager-Modus ausgeführt werden kann, lohnt es sich in der Regel, dies zu tun. Es gibt einige wichtige Vorteile
am Anfang den schwierigeren Weg zu gehen:
- Wenn Sie später das ursprüngliche Modell mit der Hugging Face-Implementierung vergleichen, können Sie automatisch überprüfen, ob
für jede Komponente einzeln überprüfen, ob die entsprechende Komponente der 🤗 Transformers-Implementierung übereinstimmt, anstatt sich auf
anstatt sich auf den visuellen Vergleich über Druckanweisungen zu verlassen
- können Sie das große Problem der Portierung eines Modells in kleinere Probleme der Portierung einzelner Komponenten zerlegen
einzelnen Komponenten zu zerlegen und so Ihre Arbeit besser zu strukturieren
- Die Aufteilung des Modells in logisch sinnvolle Komponenten hilft Ihnen, einen besseren Überblick über das Design des Modells zu bekommen
und somit das Modell besser zu verstehen
- In einem späteren Stadium helfen Ihnen diese komponentenweisen Tests dabei, sicherzustellen, dass keine Regressionen auftreten, während Sie fortfahren
Ihren Code ändern
[Lysandre's](https://gist.github.com/LysandreJik/db4c948f6b4483960de5cbac598ad4ed) Integrationstests für ELECTRA
gibt ein schönes Beispiel dafür, wie dies geschehen kann.
Wenn die ursprüngliche Codebasis jedoch sehr komplex ist oder nur die Ausführung von Zwischenkomponenten in einem kompilierten Modus erlaubt,
könnte es zu zeitaufwändig oder sogar unmöglich sein, das Modell in kleinere testbare Teilkomponenten zu zerlegen. Ein gutes
Beispiel ist die [T5's MeshTensorFlow](https://github.com/tensorflow/mesh/tree/master/mesh_tensorflow) Bibliothek, die sehr komplex ist
sehr komplex ist und keine einfache Möglichkeit bietet, das Modell in seine Unterkomponenten zu zerlegen. Bei solchen Bibliotheken ist man
oft auf die Überprüfung von Druckanweisungen angewiesen.
Unabhängig davon, welche Strategie Sie wählen, ist die empfohlene Vorgehensweise oft die gleiche, nämlich dass Sie mit der Fehlersuche in den
die Anfangsebenen zuerst und die Endebenen zuletzt debuggen.
Es wird empfohlen, dass Sie die Ausgaben der folgenden Ebenen abrufen, entweder durch Druckanweisungen oder Unterkomponentenfunktionen
Schichten in der folgenden Reihenfolge abrufen:
1. Rufen Sie die Eingabe-IDs ab, die an das Modell übergeben wurden
2. Rufen Sie die Worteinbettungen ab
3. Rufen Sie die Eingabe der ersten Transformer-Schicht ab
4. Rufen Sie die Ausgabe der ersten Transformer-Schicht ab
5. Rufen Sie die Ausgabe der folgenden n - 1 Transformer-Schichten ab
6. Rufen Sie die Ausgabe des gesamten BrandNewBert Modells ab
Die Eingabe-IDs sollten dabei aus einem Array von Ganzzahlen bestehen, *z.B.* `input_ids = [0, 4, 4, 3, 2, 4, 1, 7, 19]`
Die Ausgaben der folgenden Schichten bestehen oft aus mehrdimensionalen Float-Arrays und können wie folgt aussehen:
```
[[
[-0.1465, -0.6501, 0.1993, ..., 0.1451, 0.3430, 0.6024],
[-0.4417, -0.5920, 0.3450, ..., -0.3062, 0.6182, 0.7132],
[-0.5009, -0.7122, 0.4548, ..., -0.3662, 0.6091, 0.7648],
...,
[-0.5613, -0.6332, 0.4324, ..., -0.3792, 0.7372, 0.9288],
[-0.5416, -0.6345, 0.4180, ..., -0.3564, 0.6992, 0.9191],
[-0.5334, -0.6403, 0.4271, ..., -0.3339, 0.6533, 0.8694]]],
```
Wir erwarten, dass jedes zu 🤗 Transformers hinzugefügte Modell eine Reihe von Integrationstests besteht, was bedeutet, dass das ursprüngliche
Modell und die neu implementierte Version in 🤗 Transformers exakt dieselbe Ausgabe liefern müssen, und zwar mit einer Genauigkeit von 0,001!
Da es normal ist, dass das exakt gleiche Modell, das in verschiedenen Bibliotheken geschrieben wurde, je nach Bibliotheksrahmen eine leicht unterschiedliche Ausgabe liefern kann
eine leicht unterschiedliche Ausgabe liefern kann, akzeptieren wir eine Fehlertoleranz von 1e-3 (0,001). Es reicht nicht aus, wenn das Modell
fast das gleiche Ergebnis liefert, sie müssen fast identisch sein. Daher werden Sie sicherlich die Zwischenergebnisse
Zwischenergebnisse der 🤗 Transformers-Version mehrfach mit den Zwischenergebnissen der ursprünglichen Implementierung von
*brand_new_bert* vergleichen. In diesem Fall ist eine **effiziente** Debugging-Umgebung des ursprünglichen Repositorys absolut
wichtig ist. Hier sind einige Ratschläge, um Ihre Debugging-Umgebung so effizient wie möglich zu gestalten.
- Finden Sie den besten Weg, um Zwischenergebnisse zu debuggen. Ist das ursprüngliche Repository in PyTorch geschrieben? Dann sollten Sie
dann sollten Sie sich wahrscheinlich die Zeit nehmen, ein längeres Skript zu schreiben, das das ursprüngliche Modell in kleinere Unterkomponenten zerlegt, um
Zwischenwerte abzurufen. Ist das ursprüngliche Repository in Tensorflow 1 geschrieben? Dann müssen Sie sich möglicherweise auf die
TensorFlow Druckoperationen wie [tf.print](https://www.tensorflow.org/api_docs/python/tf/print) verlassen, um die
Zwischenwerte auszugeben. Ist das ursprüngliche Repository in Jax geschrieben? Dann stellen Sie sicher, dass das Modell **nicht jitted** ist, wenn
wenn Sie den Vorwärtsdurchlauf ausführen, *z.B.* schauen Sie sich [dieser Link](https://github.com/google/jax/issues/196) an.
- Verwenden Sie den kleinsten vortrainierten Prüfpunkt, den Sie finden können. Je kleiner der Prüfpunkt ist, desto schneller wird Ihr Debugging-Zyklus
wird. Es ist nicht effizient, wenn Ihr vorab trainiertes Modell so groß ist, dass Ihr Vorwärtsdurchlauf mehr als 10 Sekunden dauert.
Falls nur sehr große Checkpoints verfügbar sind, kann es sinnvoller sein, ein Dummy-Modell in der neuen
Umgebung mit zufällig initialisierten Gewichten zu erstellen und diese Gewichte zum Vergleich mit der 🤗 Transformers-Version
Ihres Modells
- Vergewissern Sie sich, dass Sie den einfachsten Weg wählen, um einen Forward Pass im ursprünglichen Repository aufzurufen. Idealerweise sollten Sie
die Funktion im originalen Repository finden, die **nur** einen einzigen Vorwärtspass aufruft, *d.h.* die oft aufgerufen wird
Vorhersagen", "Auswerten", "Vorwärts" oder "Aufruf" genannt wird. Sie wollen keine Funktion debuggen, die `forward` aufruft
mehrfach aufruft, *z.B.* um Text zu erzeugen, wie `autoregressive_sample`, `generate`.
- Versuchen Sie, die Tokenisierung vom *Forward*-Pass des Modells zu trennen. Wenn das Original-Repository Beispiele zeigt, bei denen
Sie eine Zeichenkette eingeben müssen, dann versuchen Sie herauszufinden, an welcher Stelle im Vorwärtsaufruf die Zeichenketteneingabe in Eingabe-IDs geändert wird
geändert wird und beginnen Sie an dieser Stelle. Das könnte bedeuten, dass Sie möglicherweise selbst ein kleines Skript schreiben oder den
Originalcode so ändern müssen, dass Sie die ids direkt eingeben können, anstatt eine Zeichenkette einzugeben.
- Vergewissern Sie sich, dass sich das Modell in Ihrem Debugging-Setup **nicht** im Trainingsmodus befindet, der oft dazu führt, dass das Modell
Dies führt häufig zu zufälligen Ergebnissen, da das Modell mehrere Dropout-Schichten enthält. Stellen Sie sicher, dass der Vorwärtsdurchlauf in Ihrer Debugging
Umgebung **deterministisch** ist, damit die Dropout-Schichten nicht verwendet werden. Oder verwenden Sie *transformers.utils.set_seed*.
wenn sich die alte und die neue Implementierung im selben Framework befinden.
Im folgenden Abschnitt finden Sie genauere Details/Tipps, wie Sie dies für *brand_new_bert* tun können.
### 5.-14. Portierung von BrandNewBert auf 🤗 Transformatoren
Als nächstes können Sie endlich damit beginnen, neuen Code zu 🤗 Transformers hinzuzufügen. Gehen Sie in den Klon Ihres 🤗 Transformers Forks:
```bash
cd transformers
```
In dem speziellen Fall, dass Sie ein Modell hinzufügen, dessen Architektur genau mit der Modellarchitektur eines
Modells übereinstimmt, müssen Sie nur ein Konvertierungsskript hinzufügen, wie in [diesem Abschnitt](#write-a-conversion-script) beschrieben.
In diesem Fall können Sie einfach die gesamte Modellarchitektur des bereits vorhandenen Modells wiederverwenden.
Andernfalls beginnen wir mit der Erstellung eines neuen Modells. Wir empfehlen die Verwendung des folgenden Skripts, um ein Modell hinzuzufügen
ein bestehendes Modell:
```bash
transformers-cli add-new-model-like
```
Sie werden mit einem Fragebogen aufgefordert, die grundlegenden Informationen Ihres Modells einzugeben.
**Eröffnen Sie einen Pull Request auf dem Haupt-Repositorium huggingface/transformers**
Bevor Sie mit der Anpassung des automatisch generierten Codes beginnen, ist es nun an der Zeit, einen "Work in progress (WIP)" Pull
Anfrage, *z.B.* "[WIP] Add *brand_new_bert*", in 🤗 Transformers zu öffnen, damit Sie und das Hugging Face Team
Seite an Seite an der Integration des Modells in 🤗 Transformers arbeiten können.
Sie sollten Folgendes tun:
1. Erstellen Sie eine Verzweigung mit einem beschreibenden Namen von Ihrer Hauptverzweigung
```bash
git checkout -b add_brand_new_bert
```
2. Bestätigen Sie den automatisch generierten Code:
```bash
git add .
git commit
```
3. Abrufen und zurücksetzen auf die aktuelle Haupt
```bash
git fetch upstream
git rebase upstream/main
```
4. Übertragen Sie die Änderungen auf Ihr Konto mit:
```bash
git push -u origin a-descriptive-name-for-my-changes
```
5. Wenn Sie zufrieden sind, gehen Sie auf die Webseite Ihrer Abspaltung auf GitHub. Klicken Sie auf "Pull request". Stellen Sie sicher, dass Sie das
GitHub-Handle einiger Mitglieder des Hugging Face-Teams als Reviewer hinzuzufügen, damit das Hugging Face-Team über zukünftige Änderungen informiert wird.
zukünftige Änderungen benachrichtigt wird.
6. Ändern Sie den PR in einen Entwurf, indem Sie auf der rechten Seite der GitHub-Pull-Request-Webseite auf "In Entwurf umwandeln" klicken.
Vergessen Sie im Folgenden nicht, wenn Sie Fortschritte gemacht haben, Ihre Arbeit zu committen und in Ihr Konto zu pushen, damit sie in der Pull-Anfrage erscheint.
damit sie in der Pull-Anfrage angezeigt wird. Außerdem sollten Sie darauf achten, dass Sie Ihre Arbeit von Zeit zu Zeit mit dem aktuellen main
von Zeit zu Zeit zu aktualisieren, indem Sie dies tun:
```bash
git fetch upstream
git merge upstream/main
```
Generell sollten Sie alle Fragen, die Sie in Bezug auf das Modell oder Ihre Implementierung haben, in Ihrem PR stellen und
in der PR diskutiert/gelöst werden. Auf diese Weise wird das Hugging Face Team immer benachrichtigt, wenn Sie neuen Code einreichen oder
wenn Sie eine Frage haben. Es ist oft sehr hilfreich, das Hugging Face-Team auf Ihren hinzugefügten Code hinzuweisen, damit das Hugging Face-Team Ihr Problem oder Ihre Frage besser verstehen kann.
Face-Team Ihr Problem oder Ihre Frage besser verstehen kann.
Gehen Sie dazu auf die Registerkarte "Geänderte Dateien", auf der Sie alle Ihre Änderungen sehen, gehen Sie zu einer Zeile, zu der Sie eine Frage stellen möchten
eine Frage stellen möchten, und klicken Sie auf das "+"-Symbol, um einen Kommentar hinzuzufügen. Wenn eine Frage oder ein Problem gelöst wurde,
können Sie auf die Schaltfläche "Lösen" des erstellten Kommentars klicken.
Auf dieselbe Weise wird das Hugging Face-Team Kommentare öffnen, wenn es Ihren Code überprüft. Wir empfehlen, die meisten Fragen
auf GitHub in Ihrem PR zu stellen. Für einige sehr allgemeine Fragen, die für die Öffentlichkeit nicht sehr nützlich sind, können Sie das
Hugging Face Team per Slack oder E-Mail zu stellen.
**5. Passen Sie den Code der generierten Modelle für brand_new_bert** an.
Zunächst werden wir uns nur auf das Modell selbst konzentrieren und uns nicht um den Tokenizer kümmern. Den gesamten relevanten Code sollten Sie
finden Sie in den generierten Dateien `src/transformers/models/brand_new_bert/modeling_brand_new_bert.py` und
`src/transformers/models/brand_new_bert/configuration_brand_new_bert.py`.
Jetzt können Sie endlich mit dem Programmieren beginnen :). Der generierte Code in
`src/transformers/models/brand_new_bert/modeling_brand_new_bert.py` wird entweder die gleiche Architektur wie BERT haben, wenn
wenn es sich um ein reines Encoder-Modell handelt oder BART, wenn es sich um ein Encoder-Decoder-Modell handelt. An diesem Punkt sollten Sie sich daran erinnern, was
was Sie am Anfang über die theoretischen Aspekte des Modells gelernt haben: *Wie unterscheidet sich das Modell von BERT oder
BART?*". Implementieren Sie diese Änderungen, was oft bedeutet, dass Sie die *Selbstaufmerksamkeitsschicht*, die Reihenfolge der Normalisierungsschicht usw. ändern müssen.
Schicht usw... Auch hier ist es oft nützlich, sich die ähnliche Architektur bereits bestehender Modelle in Transformers anzusehen, um ein besseres Gefühl dafür zu bekommen
ein besseres Gefühl dafür zu bekommen, wie Ihr Modell implementiert werden sollte.
**Beachten Sie**, dass Sie an diesem Punkt nicht sehr sicher sein müssen, dass Ihr Code völlig korrekt oder sauber ist. Vielmehr ist es
Sie sollten vielmehr eine erste *unbereinigte*, kopierte Version des ursprünglichen Codes in
src/transformers/models/brand_new_bert/modeling_brand_new_bert.py" hinzuzufügen, bis Sie das Gefühl haben, dass der gesamte notwendige Code
hinzugefügt wurde. Unserer Erfahrung nach ist es viel effizienter, schnell eine erste Version des erforderlichen Codes hinzuzufügen und
den Code iterativ mit dem Konvertierungsskript zu verbessern/korrigieren, wie im nächsten Abschnitt beschrieben. Das einzige, was
zu diesem Zeitpunkt funktionieren muss, ist, dass Sie die 🤗 Transformers-Implementierung von *brand_new_bert* instanziieren können, *d.h.* der
folgende Befehl sollte funktionieren:
```python
from transformers import BrandNewBertModel, BrandNewBertConfig
model = BrandNewBertModel(BrandNewBertConfig())
```
Der obige Befehl erstellt ein Modell gemäß den Standardparametern, die in `BrandNewBertConfig()` definiert sind, mit
zufälligen Gewichten und stellt damit sicher, dass die `init()` Methoden aller Komponenten funktionieren.
Beachten Sie, dass alle zufälligen Initialisierungen in der Methode `_init_weights` Ihres `BrandnewBertPreTrainedModel` stattfinden sollten.
Klasse erfolgen sollte. Sie sollte alle Blattmodule in Abhängigkeit von den Variablen der Konfiguration initialisieren. Hier ist ein Beispiel mit der
BERT `_init_weights` Methode:
```py
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
```
Sie können weitere benutzerdefinierte Schemata verwenden, wenn Sie eine spezielle Initialisierung für einige Module benötigen. Zum Beispiel in
`Wav2Vec2ForPreTraining` müssen die letzten beiden linearen Schichten die Initialisierung des regulären PyTorch `nn.Linear` haben.
aber alle anderen sollten eine Initialisierung wie oben verwenden. Dies ist wie folgt kodiert:
```py
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, Wav2Vec2ForPreTraining):
module.project_hid.reset_parameters()
module.project_q.reset_parameters()
module.project_hid._is_hf_initialized = True
module.project_q._is_hf_initialized = True
elif isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
```
Das Flag `_is_hf_initialized` wird intern verwendet, um sicherzustellen, dass wir ein Submodul nur einmal initialisieren. Wenn Sie es auf
`True` für `module.project_q` und `module.project_hid` setzen, stellen wir sicher, dass die benutzerdefinierte Initialisierung, die wir vorgenommen haben, später nicht überschrieben wird,
die Funktion `_init_weights` nicht auf sie angewendet wird.
**6. Schreiben Sie ein Konvertierungsskript**
Als nächstes sollten Sie ein Konvertierungsskript schreiben, mit dem Sie den Checkpoint, den Sie zum Debuggen von *brand_new_bert* im
im ursprünglichen Repository in einen Prüfpunkt konvertieren, der mit Ihrer gerade erstellten 🤗 Transformers-Implementierung von
*brand_new_bert*. Es ist nicht ratsam, das Konvertierungsskript von Grund auf neu zu schreiben, sondern die bereits
bestehenden Konvertierungsskripten in 🤗 Transformers nach einem Skript zu suchen, das für die Konvertierung eines ähnlichen Modells verwendet wurde, das im
demselben Framework wie *brand_new_bert* geschrieben wurde. Normalerweise reicht es aus, ein bereits vorhandenes Konvertierungsskript zu kopieren und
es für Ihren Anwendungsfall leicht anzupassen. Zögern Sie nicht, das Hugging Face Team zu bitten, Sie auf ein ähnliches, bereits vorhandenes
Konvertierungsskript für Ihr Modell zu finden.
- Wenn Sie ein Modell von TensorFlow nach PyTorch portieren, ist ein guter Ausgangspunkt das Konvertierungsskript von BERT [hier](https://github.com/huggingface/transformers/blob/7acfa95afb8194f8f9c1f4d2c6028224dbed35a2/src/transformers/models/bert/modeling_bert.py#L91)
- Wenn Sie ein Modell von PyTorch nach PyTorch portieren, ist ein guter Ausgangspunkt das Konvertierungsskript von BART [hier](https://github.com/huggingface/transformers/blob/main/src/transformers/models/bart/convert_bart_original_pytorch_checkpoint_to_pytorch.py)
Im Folgenden werden wir kurz erklären, wie PyTorch-Modelle Ebenengewichte speichern und Ebenennamen definieren. In PyTorch wird der
Name einer Ebene durch den Namen des Klassenattributs definiert, das Sie der Ebene geben. Lassen Sie uns ein Dummy-Modell in
PyTorch, das wir `SimpleModel` nennen, wie folgt:
```python
from torch import nn
class SimpleModel(nn.Module):
def __init__(self):
super().__init__()
self.dense = nn.Linear(10, 10)
self.intermediate = nn.Linear(10, 10)
self.layer_norm = nn.LayerNorm(10)
```
Jetzt können wir eine Instanz dieser Modelldefinition erstellen, die alle Gewichte ausfüllt: `dense`, `intermediate`,
`layer_norm` mit zufälligen Gewichten. Wir können das Modell ausdrucken, um seine Architektur zu sehen
```python
model = SimpleModel()
print(model)
```
Dies gibt folgendes aus:
```
SimpleModel(
(dense): Linear(in_features=10, out_features=10, bias=True)
(intermediate): Linear(in_features=10, out_features=10, bias=True)
(layer_norm): LayerNorm((10,), eps=1e-05, elementwise_affine=True)
)
```
Wir können sehen, dass die Ebenennamen durch den Namen des Klassenattributs in PyTorch definiert sind. Sie können die Gewichtswerte
Werte einer bestimmten Ebene anzeigen lassen:
```python
print(model.dense.weight.data)
```
um zu sehen, dass die Gewichte zufällig initialisiert wurden
```
tensor([[-0.0818, 0.2207, -0.0749, -0.0030, 0.0045, -0.1569, -0.1598, 0.0212,
-0.2077, 0.2157],
[ 0.1044, 0.0201, 0.0990, 0.2482, 0.3116, 0.2509, 0.2866, -0.2190,
0.2166, -0.0212],
[-0.2000, 0.1107, -0.1999, -0.3119, 0.1559, 0.0993, 0.1776, -0.1950,
-0.1023, -0.0447],
[-0.0888, -0.1092, 0.2281, 0.0336, 0.1817, -0.0115, 0.2096, 0.1415,
-0.1876, -0.2467],
[ 0.2208, -0.2352, -0.1426, -0.2636, -0.2889, -0.2061, -0.2849, -0.0465,
0.2577, 0.0402],
[ 0.1502, 0.2465, 0.2566, 0.0693, 0.2352, -0.0530, 0.1859, -0.0604,
0.2132, 0.1680],
[ 0.1733, -0.2407, -0.1721, 0.1484, 0.0358, -0.0633, -0.0721, -0.0090,
0.2707, -0.2509],
[-0.1173, 0.1561, 0.2945, 0.0595, -0.1996, 0.2988, -0.0802, 0.0407,
0.1829, -0.1568],
[-0.1164, -0.2228, -0.0403, 0.0428, 0.1339, 0.0047, 0.1967, 0.2923,
0.0333, -0.0536],
[-0.1492, -0.1616, 0.1057, 0.1950, -0.2807, -0.2710, -0.1586, 0.0739,
0.2220, 0.2358]]).
```
Im Konvertierungsskript sollten Sie diese zufällig initialisierten Gewichte mit den genauen Gewichten der
entsprechenden Ebene im Kontrollpunkt. *Z.B.*
```python
# retrieve matching layer weights, e.g. by
# recursive algorithm
layer_name = "dense"
pretrained_weight = array_of_dense_layer
model_pointer = getattr(model, "dense")
model_pointer.weight.data = torch.from_numpy(pretrained_weight)
```
Dabei müssen Sie sicherstellen, dass jedes zufällig initialisierte Gewicht Ihres PyTorch-Modells und sein entsprechendes
Checkpoint-Gewicht in **Form und Name** genau übereinstimmen. Zu diesem Zweck ist es **notwendig**, assert
Anweisungen für die Form hinzuzufügen und die Namen der Checkpoint-Gewichte auszugeben. Sie sollten z.B. Anweisungen hinzufügen wie:
```python
assert (
model_pointer.weight.shape == pretrained_weight.shape
), f"Pointer shape of random weight {model_pointer.shape} and array shape of checkpoint weight {pretrained_weight.shape} mismatched"
```
Außerdem sollten Sie die Namen der beiden Gewichte ausdrucken, um sicherzustellen, dass sie übereinstimmen, *z.B.*.
```python
logger.info(f"Initialize PyTorch weight {layer_name} from {pretrained_weight.name}")
```
Wenn entweder die Form oder der Name nicht übereinstimmt, haben Sie wahrscheinlich das falsche Kontrollpunktgewicht einer zufällig
Ebene der 🤗 Transformers-Implementierung zugewiesen.
Eine falsche Form ist höchstwahrscheinlich auf eine falsche Einstellung der Konfigurationsparameter in `BrandNewBertConfig()` zurückzuführen, die
nicht genau mit denen übereinstimmen, die für den zu konvertierenden Prüfpunkt verwendet wurden. Es könnte aber auch sein, dass
die PyTorch-Implementierung eines Layers erfordert, dass das Gewicht vorher transponiert wird.
Schließlich sollten Sie auch überprüfen, ob **alle** erforderlichen Gewichte initialisiert sind und alle Checkpoint-Gewichte ausgeben, die
die nicht zur Initialisierung verwendet wurden, um sicherzustellen, dass das Modell korrekt konvertiert wurde. Es ist völlig normal, dass die
Konvertierungsversuche entweder mit einer falschen Shape-Anweisung oder einer falschen Namenszuweisung fehlschlagen. Das liegt höchstwahrscheinlich daran, dass entweder
Sie haben falsche Parameter in `BrandNewBertConfig()` verwendet, haben eine falsche Architektur in der 🤗 Transformers
Implementierung, Sie haben einen Fehler in den `init()` Funktionen einer der Komponenten der 🤗 Transformers
Implementierung oder Sie müssen eine der Kontrollpunktgewichte transponieren.
Dieser Schritt sollte mit dem vorherigen Schritt wiederholt werden, bis alle Gewichte des Kontrollpunkts korrekt in das
Transformers-Modell geladen sind. Nachdem Sie den Prüfpunkt korrekt in die 🤗 Transformers-Implementierung geladen haben, können Sie das Modell
das Modell unter einem Ordner Ihrer Wahl `/path/to/converted/checkpoint/folder` speichern, der dann sowohl ein
Datei `pytorch_model.bin` und eine Datei `config.json` enthalten sollte:
```python
model.save_pretrained("/path/to/converted/checkpoint/folder")
```
**7. Implementieren Sie den Vorwärtspass**
Nachdem es Ihnen gelungen ist, die trainierten Gewichte korrekt in die 🤗 Transformers-Implementierung zu laden, sollten Sie nun dafür sorgen
sicherstellen, dass der Forward Pass korrekt implementiert ist. In [Machen Sie sich mit dem ursprünglichen Repository vertraut](#3-4-führen-sie-einen-pre-training-checkpoint-mit-dem-original-repository-durch) haben Sie bereits ein Skript erstellt, das einen Forward Pass
Durchlauf des Modells unter Verwendung des Original-Repositorys durchführt. Jetzt sollten Sie ein analoges Skript schreiben, das die 🤗 Transformers
Implementierung anstelle der Originalimplementierung verwenden. Es sollte wie folgt aussehen:
```python
model = BrandNewBertModel.from_pretrained("/path/to/converted/checkpoint/folder")
input_ids = [0, 4, 4, 3, 2, 4, 1, 7, 19]
output = model(input_ids).last_hidden_states
```
Es ist sehr wahrscheinlich, dass die 🤗 Transformers-Implementierung und die ursprüngliche Modell-Implementierung nicht genau die gleiche Ausgabe liefern.
beim ersten Mal nicht die gleiche Ausgabe liefern oder dass der Vorwärtsdurchlauf einen Fehler auslöst. Seien Sie nicht enttäuscht - das ist zu erwarten! Erstens,
sollten Sie sicherstellen, dass der Vorwärtsdurchlauf keine Fehler auslöst. Es passiert oft, dass die falschen Dimensionen verwendet werden
verwendet werden, was zu einem *Dimensionality mismatch* Fehler führt oder dass der falsche Datentyp verwendet wird, *z.B.* `torch.long`
anstelle von `torch.float32`. Zögern Sie nicht, das Hugging Face Team um Hilfe zu bitten, wenn Sie bestimmte Fehler nicht lösen können.
bestimmte Fehler nicht lösen können.
Um sicherzustellen, dass die Implementierung von 🤗 Transformers korrekt funktioniert, müssen Sie sicherstellen, dass die Ausgaben
einer Genauigkeit von `1e-3` entsprechen. Zunächst sollten Sie sicherstellen, dass die Ausgabeformen identisch sind, *d.h.*.
Die Ausgabeform *outputs.shape* sollte für das Skript der 🤗 Transformers-Implementierung und die ursprüngliche
Implementierung ergeben. Als nächstes sollten Sie sicherstellen, dass auch die Ausgabewerte identisch sind. Dies ist einer der schwierigsten
Teile des Hinzufügens eines neuen Modells. Häufige Fehler, warum die Ausgaben nicht identisch sind, sind:
- Einige Ebenen wurden nicht hinzugefügt, *d.h.* eine *Aktivierungsebene* wurde nicht hinzugefügt, oder die Restverbindung wurde vergessen
- Die Worteinbettungsmatrix wurde nicht gebunden
- Es werden die falschen Positionseinbettungen verwendet, da die ursprüngliche Implementierung einen Offset verwendet
- Dropout wird während des Vorwärtsdurchlaufs angewendet. Um dies zu beheben, stellen Sie sicher, dass *model.training auf False* steht und dass keine Dropout
Schicht während des Vorwärtsdurchlaufs fälschlicherweise aktiviert wird, *d.h.* übergeben Sie *self.training* an [PyTorch's functional dropout](https://pytorch.org/docs/stable/nn.functional.html?highlight=dropout#torch.nn.functional.dropout)
Der beste Weg, das Problem zu beheben, besteht normalerweise darin, sich den Vorwärtsdurchlauf der ursprünglichen Implementierung und die 🤗
Transformers-Implementierung nebeneinander zu sehen und zu prüfen, ob es Unterschiede gibt. Idealerweise sollten Sie die
Zwischenergebnisse beider Implementierungen des Vorwärtsdurchlaufs debuggen/ausdrucken, um die genaue Position im Netzwerk zu finden, an der die 🤗
Transformers-Implementierung eine andere Ausgabe zeigt als die ursprüngliche Implementierung. Stellen Sie zunächst sicher, dass die
hartcodierten `input_ids` in beiden Skripten identisch sind. Überprüfen Sie dann, ob die Ausgaben der ersten Transformation von
der `input_ids` (normalerweise die Worteinbettungen) identisch sind. Und dann arbeiten Sie sich bis zur allerletzten Schicht des
Netzwerks. Irgendwann werden Sie einen Unterschied zwischen den beiden Implementierungen feststellen, der Sie auf den Fehler
in der Implementierung von 🤗 Transformers hinweist. Unserer Erfahrung nach ist ein einfacher und effizienter Weg, viele Druckanweisungen hinzuzufügen
sowohl in der Original-Implementierung als auch in der 🤗 Transformers-Implementierung an den gleichen Stellen im Netzwerk
hinzuzufügen und nacheinander Druckanweisungen zu entfernen, die dieselben Werte für Zwischenpräsentationen anzeigen.
Wenn Sie sicher sind, dass beide Implementierungen die gleiche Ausgabe liefern, überprüfen Sie die Ausgaben mit
`torch.allclose(original_output, output, atol=1e-3)` überprüfen, haben Sie den schwierigsten Teil hinter sich! Herzlichen Glückwunsch - die
Arbeit, die noch zu erledigen ist, sollte ein Kinderspiel sein 😊.
**8. Hinzufügen aller notwendigen Modelltests**
An diesem Punkt haben Sie erfolgreich ein neues Modell hinzugefügt. Es ist jedoch sehr gut möglich, dass das Modell noch nicht
noch nicht vollständig mit dem erforderlichen Design übereinstimmt. Um sicherzustellen, dass die Implementierung vollständig kompatibel mit 🤗 Transformers ist, sollten alle
gemeinsamen Tests bestehen. Der Cookiecutter sollte automatisch eine Testdatei für Ihr Modell hinzugefügt haben, wahrscheinlich unter
demselben `tests/models/brand_new_bert/test_modeling_brand_new_bert.py`. Führen Sie diese Testdatei aus, um zu überprüfen, ob alle gängigen
Tests bestehen:
```bash
pytest tests/models/brand_new_bert/test_modeling_brand_new_bert.py
```
Nachdem Sie alle allgemeinen Tests festgelegt haben, müssen Sie nun sicherstellen, dass all die schöne Arbeit, die Sie geleistet haben, gut getestet ist, damit
- a) die Community Ihre Arbeit leicht nachvollziehen kann, indem sie sich spezifische Tests von *brand_new_bert* ansieht
- b) zukünftige Änderungen an Ihrem Modell keine wichtigen Funktionen des Modells zerstören.
Als erstes sollten Sie Integrationstests hinzufügen. Diese Integrationstests tun im Wesentlichen dasselbe wie die Debugging-Skripte
die Sie zuvor zur Implementierung des Modells in 🤗 Transformers verwendet haben. Eine Vorlage für diese Modelltests wurde bereits von dem
Cookiecutter hinzugefügt, die `BrandNewBertModelIntegrationTests` heißt und nur noch von Ihnen ausgefüllt werden muss. Um sicherzustellen, dass diese
Tests erfolgreich sind, führen Sie
```bash
RUN_SLOW=1 pytest -sv tests/models/brand_new_bert/test_modeling_brand_new_bert.py::BrandNewBertModelIntegrationTests
```
<Tip>
Falls Sie Windows verwenden, sollten Sie `RUN_SLOW=1` durch `SET RUN_SLOW=1` ersetzen.
</Tip>
Zweitens sollten alle Funktionen, die speziell für *brand_new_bert* sind, zusätzlich in einem separaten Test getestet werden unter
`BrandNewBertModelTester`/`BrandNewBertModelTest`. Dieser Teil wird oft vergessen, ist aber in zweierlei Hinsicht äußerst nützlich
Weise:
- Er hilft dabei, das Wissen, das Sie während der Modellerweiterung erworben haben, an die Community weiterzugeben, indem er zeigt, wie die
speziellen Funktionen von *brand_new_bert* funktionieren sollten.
- Künftige Mitwirkende können Änderungen am Modell schnell testen, indem sie diese speziellen Tests ausführen.
**9. Implementieren Sie den Tokenizer**
Als nächstes sollten wir den Tokenizer von *brand_new_bert* hinzufügen. Normalerweise ist der Tokenizer äquivalent oder sehr ähnlich zu einem
bereits vorhandenen Tokenizer von 🤗 Transformers.
Es ist sehr wichtig, die ursprüngliche Tokenizer-Datei zu finden/extrahieren und es zu schaffen, diese Datei in die 🤗
Transformers Implementierung des Tokenizers zu laden.
Um sicherzustellen, dass der Tokenizer korrekt funktioniert, empfiehlt es sich, zunächst ein Skript im ursprünglichen Repository zu erstellen
zu erstellen, das eine Zeichenkette eingibt und die `input_ids` zurückgibt. Es könnte etwa so aussehen (in Pseudocode):
```python
input_str = "This is a long example input string containing special characters .$?-, numbers 2872 234 12 and words."
model = BrandNewBertModel.load_pretrained_checkpoint("/path/to/checkpoint/")
input_ids = model.tokenize(input_str)
```
Möglicherweise müssen Sie noch einmal einen Blick in das ursprüngliche Repository werfen, um die richtige Tokenizer-Funktion zu finden, oder Sie müssen
Sie müssen vielleicht sogar Änderungen an Ihrem Klon des Original-Repositorys vornehmen, um nur die `input_ids` auszugeben. Nach dem Schreiben
ein funktionierendes Tokenisierungsskript geschrieben, das das ursprüngliche Repository verwendet, sollten Sie ein analoges Skript für 🤗 Transformers
erstellt werden. Es sollte ähnlich wie dieses aussehen:
```python
from transformers import BrandNewBertTokenizer
input_str = "This is a long example input string containing special characters .$?-, numbers 2872 234 12 and words."
tokenizer = BrandNewBertTokenizer.from_pretrained("/path/to/tokenizer/folder/")
input_ids = tokenizer(input_str).input_ids
```
Wenn beide `input_ids` die gleichen Werte ergeben, sollte als letzter Schritt auch eine Tokenizer-Testdatei hinzugefügt werden.
Analog zu den Modellierungstestdateien von *brand_new_bert* sollten auch die Tokenisierungs-Testdateien von *brand_new_bert*
eine Reihe von fest kodierten Integrationstests enthalten.
**10. Führen Sie End-to-End-Integrationstests aus**
Nachdem Sie den Tokenizer hinzugefügt haben, sollten Sie auch ein paar End-to-End-Integrationstests, die sowohl das Modell als auch den
Tokenizer zu `tests/models/brand_new_bert/test_modeling_brand_new_bert.py` in 🤗 Transformers.
Ein solcher Test sollte bei einem aussagekräftigen
Text-zu-Text-Beispiel zeigen, dass die Implementierung von 🤗 Transformers wie erwartet funktioniert. Ein aussagekräftiges Text-zu-Text-Beispiel kann
z.B. *ein Quell-zu-Ziel-Übersetzungspaar, ein Artikel-zu-Zusammenfassung-Paar, ein Frage-zu-Antwort-Paar, usw... Wenn keiner der
der portierten Prüfpunkte in einer nachgelagerten Aufgabe feinabgestimmt wurde, genügt es, sich einfach auf die Modelltests zu verlassen. In einem
letzten Schritt, um sicherzustellen, dass das Modell voll funktionsfähig ist, sollten Sie alle Tests auch auf der GPU durchführen. Es kann
Es kann vorkommen, dass Sie vergessen haben, einige `.to(self.device)` Anweisungen zu internen Tensoren des Modells hinzuzufügen, was in einem solchen
Test zu einem Fehler führen würde. Falls Sie keinen Zugang zu einem Grafikprozessor haben, kann das Hugging Face Team diese Tests für Sie durchführen.
Tests für Sie übernehmen.
**11. Docstring hinzufügen**
Nun sind alle notwendigen Funktionen für *brand_new_bert* hinzugefügt - Sie sind fast fertig! Das Einzige, was Sie noch hinzufügen müssen, ist
ein schöner Docstring und eine Doku-Seite. Der Cookiecutter sollte eine Vorlagendatei namens
`docs/source/model_doc/brand_new_bert.md` hinzugefügt haben, die Sie ausfüllen sollten. Die Benutzer Ihres Modells werden in der Regel zuerst einen Blick auf
diese Seite ansehen, bevor sie Ihr Modell verwenden. Daher muss die Dokumentation verständlich und prägnant sein. Es ist sehr nützlich für
die Gemeinschaft, einige *Tipps* hinzuzufügen, um zu zeigen, wie das Modell verwendet werden sollte. Zögern Sie nicht, das Hugging Face-Team anzupingen
bezüglich der Docstrings.
Stellen Sie als nächstes sicher, dass der zu `src/transformers/models/brand_new_bert/modeling_brand_new_bert.py` hinzugefügte docstring
korrekt ist und alle erforderlichen Eingaben und Ausgaben enthält. Wir haben eine ausführliche Anleitung zum Schreiben von Dokumentationen und unserem Docstring-Format [hier](writing-documentation). Es ist immer gut, sich daran zu erinnern, dass die Dokumentation
mindestens so sorgfältig behandelt werden sollte wie der Code in 🤗 Transformers, denn die Dokumentation ist in der Regel der erste Kontaktpunkt der
Berührungspunkt der Community mit dem Modell ist.
**Code refactor**
Großartig, jetzt haben Sie den gesamten erforderlichen Code für *brand_new_bert* hinzugefügt. An diesem Punkt sollten Sie einige mögliche
falschen Codestil korrigieren, indem Sie ausführen:
```bash
make style
```
und überprüfen Sie, ob Ihr Kodierungsstil die Qualitätsprüfung besteht:
```bash
make quality
```
Es gibt noch ein paar andere sehr strenge Designtests in 🤗 Transformers, die möglicherweise noch fehlschlagen, was sich in den
den Tests Ihres Pull Requests. Dies liegt oft an fehlenden Informationen im Docstring oder an einer falschen
Benennung. Das Hugging Face Team wird Ihnen sicherlich helfen, wenn Sie hier nicht weiterkommen.
Und schließlich ist es immer eine gute Idee, den eigenen Code zu refaktorisieren, nachdem man sichergestellt hat, dass er korrekt funktioniert. Wenn alle
Tests bestanden haben, ist es nun an der Zeit, den hinzugefügten Code noch einmal durchzugehen und einige Überarbeitungen vorzunehmen.
Sie haben nun den Codierungsteil abgeschlossen, herzlichen Glückwunsch! 🎉 Sie sind großartig! 😎
**12. Laden Sie die Modelle in den Model Hub hoch**
In diesem letzten Teil sollten Sie alle Checkpoints konvertieren und in den Modell-Hub hochladen und eine Modellkarte für jeden
hochgeladenen Modell-Kontrollpunkt. Sie können sich mit den Hub-Funktionen vertraut machen, indem Sie unsere [Model sharing and uploading Page](model_sharing) lesen. Hier sollten Sie mit dem Hugging Face-Team zusammenarbeiten, um einen passenden Namen für jeden
Checkpoint festzulegen und die erforderlichen Zugriffsrechte zu erhalten, um das Modell unter der Organisation des Autors *brand_new_bert* hochladen zu können.
*brand_new_bert*. Die Methode `push_to_hub`, die in allen Modellen in `transformers` vorhanden ist, ist ein schneller und effizienter Weg, Ihren Checkpoint in den Hub zu pushen. Ein kleines Snippet ist unten eingefügt:
```python
brand_new_bert.push_to_hub("brand_new_bert")
# Uncomment the following line to push to an organization.
# brand_new_bert.push_to_hub("<organization>/brand_new_bert")
```
Es lohnt sich, etwas Zeit darauf zu verwenden, für jeden Kontrollpunkt passende Musterkarten zu erstellen. Die Modellkarten sollten die
spezifischen Merkmale dieses bestimmten Prüfpunkts hervorheben, * z.B.* auf welchem Datensatz wurde der Prüfpunkt
vortrainiert/abgestimmt? Für welche nachgelagerte Aufgabe sollte das Modell verwendet werden? Und fügen Sie auch etwas Code bei, wie Sie
wie das Modell korrekt verwendet wird.
**13. (Optional) Notizbuch hinzufügen**
Es ist sehr hilfreich, ein Notizbuch hinzuzufügen, in dem im Detail gezeigt wird, wie *brand_new_bert* für Schlussfolgerungen verwendet werden kann und/oder
bei einer nachgelagerten Aufgabe feinabgestimmt wird. Dies ist nicht zwingend erforderlich, um Ihren PR zusammenzuführen, aber sehr nützlich für die Gemeinschaft.
**14. Reichen Sie Ihren fertigen PR ein**
Sie sind jetzt mit der Programmierung fertig und können zum letzten Schritt übergehen, nämlich der Zusammenführung Ihres PR mit main. Normalerweise hat das
Hugging Face Team Ihnen an diesem Punkt bereits geholfen haben, aber es lohnt sich, sich etwas Zeit zu nehmen, um Ihrem fertigen
PR eine schöne Beschreibung zu geben und eventuell Kommentare zu Ihrem Code hinzuzufügen, wenn Sie Ihren Gutachter auf bestimmte Designentscheidungen hinweisen wollen.
Gutachter hinweisen wollen.
### Teilen Sie Ihre Arbeit!!
Jetzt ist es an der Zeit, von der Community Anerkennung für Ihre Arbeit zu bekommen! Die Fertigstellung einer Modellergänzung ist ein wichtiger
Beitrag zu Transformers und der gesamten NLP-Gemeinschaft. Ihr Code und die portierten vortrainierten Modelle werden sicherlich
von Hunderten und vielleicht sogar Tausenden von Entwicklern und Forschern genutzt werden. Sie sollten stolz auf Ihre Arbeit sein und Ihre
Ihre Leistung mit der Gemeinschaft teilen.
**Sie haben ein weiteres Modell erstellt, das für jeden in der Community super einfach zugänglich ist! 🤯**

View File

@ -0,0 +1,254 @@
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Wie erstellt man eine benutzerdefinierte Pipeline?
In dieser Anleitung sehen wir uns an, wie Sie eine benutzerdefinierte Pipeline erstellen und sie auf dem [Hub](https://hf.co/models) freigeben oder sie der
🤗 Transformers-Bibliothek hinzufügen.
Zuallererst müssen Sie entscheiden, welche Roheingaben die Pipeline verarbeiten kann. Es kann sich um Strings, rohe Bytes,
Dictionaries oder was auch immer die wahrscheinlichste gewünschte Eingabe ist. Versuchen Sie, diese Eingaben so rein wie möglich in Python zu halten
denn das macht die Kompatibilität einfacher (auch mit anderen Sprachen über JSON). Dies werden die Eingaben der
Pipeline (`Vorverarbeitung`).
Definieren Sie dann die `Outputs`. Dieselbe Richtlinie wie für die Eingänge. Je einfacher, desto besser. Dies werden die Ausgaben der
Methode `Postprocess`.
Beginnen Sie damit, die Basisklasse `Pipeline` mit den 4 Methoden zu erben, die für die Implementierung von `preprocess` benötigt werden,
Weiterleiten", "Nachbearbeitung" und "Parameter säubern".
```python
from transformers import Pipeline
class MyPipeline(Pipeline):
def _sanitize_parameters(self, **kwargs):
preprocess_kwargs = {}
if "maybe_arg" in kwargs:
preprocess_kwargs["maybe_arg"] = kwargs["maybe_arg"]
return preprocess_kwargs, {}, {}
def preprocess(self, inputs, maybe_arg=2):
model_input = Tensor(inputs["input_ids"])
return {"model_input": model_input}
def _forward(self, model_inputs):
# model_inputs == {"model_input": model_input}
outputs = self.model(**model_inputs)
# Maybe {"logits": Tensor(...)}
return outputs
def postprocess(self, model_outputs):
best_class = model_outputs["logits"].softmax(-1)
return best_class
```
Die Struktur dieser Aufteilung soll eine relativ nahtlose Unterstützung für CPU/GPU ermöglichen und gleichzeitig die Durchführung von
Vor-/Nachbearbeitung auf der CPU in verschiedenen Threads
Preprocess" nimmt die ursprünglich definierten Eingaben und wandelt sie in etwas um, das in das Modell eingespeist werden kann. Es kann
mehr Informationen enthalten und ist normalerweise ein `Dict`.
`_forward` ist das Implementierungsdetail und ist nicht dafür gedacht, direkt aufgerufen zu werden. Weiterleiten" ist die bevorzugte
aufgerufene Methode, da sie Sicherheitsvorkehrungen enthält, die sicherstellen, dass alles auf dem erwarteten Gerät funktioniert. Wenn etwas
mit einem realen Modell verknüpft ist, gehört es in die Methode `_forward`, alles andere gehört in die Methoden preprocess/postprocess.
Die Methode `Postprocess` nimmt die Ausgabe von `_forward` und verwandelt sie in die endgültige Ausgabe, die zuvor festgelegt wurde.
zuvor entschieden wurde.
Die Methode `_sanitize_parameters` ermöglicht es dem Benutzer, beliebige Parameter zu übergeben, wann immer er möchte, sei es bei der Initialisierung
Zeit `pipeline(...., maybe_arg=4)` oder zur Aufrufzeit `pipe = pipeline(...); output = pipe(...., maybe_arg=4)`.
Die Rückgabe von `_sanitize_parameters` sind die 3 Dicts von kwargs, die direkt an `preprocess` übergeben werden,
`_forward` und `postprocess` übergeben werden. Füllen Sie nichts aus, wenn der Aufrufer keinen zusätzlichen Parameter angegeben hat. Das
erlaubt es, die Standardargumente in der Funktionsdefinition beizubehalten, was immer "natürlicher" ist.
Ein klassisches Beispiel wäre das Argument `top_k` in der Nachbearbeitung bei Klassifizierungsaufgaben.
```python
>>> pipe = pipeline("my-new-task")
>>> pipe("This is a test")
[{"label": "1-star", "score": 0.8}, {"label": "2-star", "score": 0.1}, {"label": "3-star", "score": 0.05}
{"label": "4-star", "score": 0.025}, {"label": "5-star", "score": 0.025}]
>>> pipe("This is a test", top_k=2)
[{"label": "1-star", "score": 0.8}, {"label": "2-star", "score": 0.1}]
```
In order to achieve that, we'll update our `postprocess` method with a default parameter to `5`. and edit
`_sanitize_parameters` to allow this new parameter.
```python
def postprocess(self, model_outputs, top_k=5):
best_class = model_outputs["logits"].softmax(-1)
# Add logic to handle top_k
return best_class
def _sanitize_parameters(self, **kwargs):
preprocess_kwargs = {}
if "maybe_arg" in kwargs:
preprocess_kwargs["maybe_arg"] = kwargs["maybe_arg"]
postprocess_kwargs = {}
if "top_k" in kwargs:
postprocess_kwargs["top_k"] = kwargs["top_k"]
return preprocess_kwargs, {}, postprocess_kwargs
```
Versuchen Sie, die Eingaben/Ausgaben sehr einfach und idealerweise JSON-serialisierbar zu halten, da dies die Verwendung der Pipeline sehr einfach macht
ohne dass die Benutzer neue Arten von Objekten verstehen müssen. Es ist auch relativ üblich, viele verschiedene Arten von Argumenten zu unterstützen
von Argumenten zu unterstützen (Audiodateien, die Dateinamen, URLs oder reine Bytes sein können).
## Hinzufügen zur Liste der unterstützten Aufgaben
Um Ihre `neue Aufgabe` in die Liste der unterstützten Aufgaben aufzunehmen, müssen Sie sie zur `PIPELINE_REGISTRY` hinzufügen:
```python
from transformers.pipelines import PIPELINE_REGISTRY
PIPELINE_REGISTRY.register_pipeline(
"new-task",
pipeline_class=MyPipeline,
pt_model=AutoModelForSequenceClassification,
)
```
Wenn Sie möchten, können Sie ein Standardmodell angeben. In diesem Fall sollte es mit einer bestimmten Revision (die der Name einer Verzweigung oder ein Commit-Hash sein kann, hier haben wir `"abcdef"` genommen) sowie mit dem Typ versehen sein:
```python
PIPELINE_REGISTRY.register_pipeline(
"new-task",
pipeline_class=MyPipeline,
pt_model=AutoModelForSequenceClassification,
default={"pt": ("user/awesome_model", "abcdef")},
type="text", # current support type: text, audio, image, multimodal
)
```
## Teilen Sie Ihre Pipeline auf dem Hub
Um Ihre benutzerdefinierte Pipeline auf dem Hub freizugeben, müssen Sie lediglich den benutzerdefinierten Code Ihrer `Pipeline`-Unterklasse in einer
Python-Datei speichern. Nehmen wir zum Beispiel an, Sie möchten eine benutzerdefinierte Pipeline für die Klassifizierung von Satzpaaren wie folgt verwenden:
```py
import numpy as np
from transformers import Pipeline
def softmax(outputs):
maxes = np.max(outputs, axis=-1, keepdims=True)
shifted_exp = np.exp(outputs - maxes)
return shifted_exp / shifted_exp.sum(axis=-1, keepdims=True)
class PairClassificationPipeline(Pipeline):
def _sanitize_parameters(self, **kwargs):
preprocess_kwargs = {}
if "second_text" in kwargs:
preprocess_kwargs["second_text"] = kwargs["second_text"]
return preprocess_kwargs, {}, {}
def preprocess(self, text, second_text=None):
return self.tokenizer(text, text_pair=second_text, return_tensors=self.framework)
def _forward(self, model_inputs):
return self.model(**model_inputs)
def postprocess(self, model_outputs):
logits = model_outputs.logits[0].numpy()
probabilities = softmax(logits)
best_class = np.argmax(probabilities)
label = self.model.config.id2label[best_class]
score = probabilities[best_class].item()
logits = logits.tolist()
return {"label": label, "score": score, "logits": logits}
```
Die Implementierung ist Framework-unabhängig und funktioniert für PyTorch- und TensorFlow-Modelle. Wenn wir dies in einer Datei
einer Datei namens `pair_classification.py` gespeichert haben, können wir sie importieren und wie folgt registrieren:
```py
from pair_classification import PairClassificationPipeline
from transformers.pipelines import PIPELINE_REGISTRY
from transformers import AutoModelForSequenceClassification, TFAutoModelForSequenceClassification
PIPELINE_REGISTRY.register_pipeline(
"pair-classification",
pipeline_class=PairClassificationPipeline,
pt_model=AutoModelForSequenceClassification,
tf_model=TFAutoModelForSequenceClassification,
)
```
Sobald dies geschehen ist, können wir es mit einem vortrainierten Modell verwenden. Zum Beispiel wurde `sgugger/finetuned-bert-mrpc` auf den
auf den MRPC-Datensatz abgestimmt, der Satzpaare als Paraphrasen oder nicht klassifiziert.
```py
from transformers import pipeline
classifier = pipeline("pair-classification", model="sgugger/finetuned-bert-mrpc")
```
Dann können wir sie auf dem Hub mit der Methode `push_to_hub` freigeben:
```py
classifier.push_to_hub("test-dynamic-pipeline")
```
Dadurch wird die Datei, in der Sie `PairClassificationPipeline` definiert haben, in den Ordner `"test-dynamic-pipeline"` kopiert,
und speichert das Modell und den Tokenizer der Pipeline, bevor Sie alles in das Repository verschieben
`{Ihr_Benutzername}/test-dynamic-pipeline`. Danach kann jeder die Pipeline verwenden, solange er die Option
`trust_remote_code=True` angeben:
```py
from transformers import pipeline
classifier = pipeline(model="{your_username}/test-dynamic-pipeline", trust_remote_code=True)
```
## Hinzufügen der Pipeline zu 🤗 Transformers
Wenn Sie Ihre Pipeline zu 🤗 Transformers beitragen möchten, müssen Sie ein neues Modul im Untermodul `pipelines` hinzufügen
mit dem Code Ihrer Pipeline hinzufügen. Fügen Sie es dann der Liste der in `pipelines/__init__.py` definierten Aufgaben hinzu.
Dann müssen Sie noch Tests hinzufügen. Erstellen Sie eine neue Datei `tests/test_pipelines_MY_PIPELINE.py` mit Beispielen für die anderen Tests.
Die Funktion `run_pipeline_test` ist sehr allgemein gehalten und läuft auf kleinen Zufallsmodellen auf jeder möglichen
Architektur, wie durch `model_mapping` und `tf_model_mapping` definiert.
Dies ist sehr wichtig, um die zukünftige Kompatibilität zu testen, d.h. wenn jemand ein neues Modell für
`XXXForQuestionAnswering` hinzufügt, wird der Pipeline-Test versuchen, mit diesem Modell zu arbeiten. Da die Modelle zufällig sind, ist es
ist es unmöglich, die tatsächlichen Werte zu überprüfen. Deshalb gibt es eine Hilfsfunktion `ANY`, die einfach versucht, die
Ausgabe der Pipeline TYPE.
Außerdem *müssen* Sie 2 (idealerweise 4) Tests implementieren.
- `test_small_model_pt` : Definieren Sie 1 kleines Modell für diese Pipeline (es spielt keine Rolle, ob die Ergebnisse keinen Sinn ergeben)
und testen Sie die Ausgaben der Pipeline. Die Ergebnisse sollten die gleichen sein wie bei `test_small_model_tf`.
- `test_small_model_tf` : Definieren Sie 1 kleines Modell für diese Pipeline (es spielt keine Rolle, ob die Ergebnisse keinen Sinn ergeben)
und testen Sie die Ausgaben der Pipeline. Die Ergebnisse sollten die gleichen sein wie bei `test_small_model_pt`.
- `test_large_model_pt` (`optional`): Testet die Pipeline an einer echten Pipeline, bei der die Ergebnisse
Sinn machen. Diese Tests sind langsam und sollten als solche gekennzeichnet werden. Hier geht es darum, die Pipeline zu präsentieren und sicherzustellen
sicherzustellen, dass es in zukünftigen Versionen keine Abweichungen gibt.
- `test_large_model_tf` (`optional`): Testet die Pipeline an einer echten Pipeline, bei der die Ergebnisse
Sinn machen. Diese Tests sind langsam und sollten als solche gekennzeichnet werden. Hier geht es darum, die Pipeline zu präsentieren und sicherzustellen
sicherzustellen, dass es in zukünftigen Versionen keine Abweichungen gibt.

View File

@ -20,7 +20,7 @@ Bei so vielen verschiedenen Transformator-Architekturen kann es eine Herausforde
<Tip>
Denken Sie daran, dass sich die Architektur auf das Skelett des Modells bezieht und die Checkpoints die Gewichte für eine bestimmte Architektur sind. Zum Beispiel ist [BERT](https://huggingface.co/bert-base-uncased) eine Architektur, während `bert-base-uncased` ein Checkpoint ist. Modell ist ein allgemeiner Begriff, der entweder Architektur oder Prüfpunkt bedeuten kann.
Denken Sie daran, dass sich die Architektur auf das Skelett des Modells bezieht und die Checkpoints die Gewichte für eine bestimmte Architektur sind. Zum Beispiel ist [BERT](https://huggingface.co/google-bert/bert-base-uncased) eine Architektur, während `google-bert/bert-base-uncased` ein Checkpoint ist. Modell ist ein allgemeiner Begriff, der entweder Architektur oder Prüfpunkt bedeuten kann.
</Tip>
@ -40,7 +40,7 @@ Laden Sie einen Tokenizer mit [`AutoTokenizer.from_pretrained`]:
```py
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
```
Dann tokenisieren Sie Ihre Eingabe wie unten gezeigt:
@ -88,7 +88,7 @@ Mit den `AutoModelFor`-Klassen können Sie schließlich ein vortrainiertes Model
```py
>>> from transformers import AutoModelForSequenceClassification
>>> model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased")
>>> model = AutoModelForSequenceClassification.from_pretrained("distilbert/distilbert-base-uncased")
```
Sie können denselben Prüfpunkt problemlos wiederverwenden, um eine Architektur für eine andere Aufgabe zu laden:
@ -96,7 +96,7 @@ Sie können denselben Prüfpunkt problemlos wiederverwenden, um eine Architektur
```py
>>> from transformers import AutoModelForTokenClassification
>>> model = AutoModelForTokenClassification.from_pretrained("distilbert-base-uncased")
>>> model = AutoModelForTokenClassification.from_pretrained("distilbert/distilbert-base-uncased")
```
<Tip warning={true}>
@ -115,7 +115,7 @@ Mit den Klassen `TFAutoModelFor` schließlich können Sie ein vortrainiertes Mod
```py
>>> from transformers import TFAutoModelForSequenceClassification
>>> model = TFAutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased")
>>> model = TFAutoModelForSequenceClassification.from_pretrained("distilbert/distilbert-base-uncased")
```
Sie können denselben Prüfpunkt problemlos wiederverwenden, um eine Architektur für eine andere Aufgabe zu laden:
@ -123,7 +123,7 @@ Sie können denselben Prüfpunkt problemlos wiederverwenden, um eine Architektur
```py
>>> from transformers import TFAutoModelForTokenClassification
>>> model = TFAutoModelForTokenClassification.from_pretrained("distilbert-base-uncased")
>>> model = TFAutoModelForTokenClassification.from_pretrained("distilbert/distilbert-base-uncased")
```
Im Allgemeinen empfehlen wir, die Klasse "AutoTokenizer" und die Klasse "TFAutoModelFor" zu verwenden, um vortrainierte Instanzen von Modellen zu laden. Dadurch wird sichergestellt, dass Sie jedes Mal die richtige Architektur laden. Im nächsten [Tutorial] (Vorverarbeitung) erfahren Sie, wie Sie Ihren neu geladenen Tokenizer, Feature Extractor und Prozessor verwenden, um einen Datensatz für die Feinabstimmung vorzuverarbeiten.

Some files were not shown because too many files have changed in this diff Show More