mirror of
https://github.com/huggingface/transformers.git
synced 2025-10-22 02:08:58 +08:00
Compare commits
51 Commits
add-block-
...
clean-mode
Author | SHA1 | Date | |
---|---|---|---|
a304370d21 | |||
e155ae8510 | |||
cfa8c40779 | |||
81b2678251 | |||
6c34e8a543 | |||
eb727c50c8 | |||
b1351120d1 | |||
f06e39ed69 | |||
a4ec22ae4d | |||
54242e21cf | |||
f3341519e2 | |||
2d71cb33ac | |||
f1672862c1 | |||
ce6092585f | |||
6099f095a5 | |||
2dbf9a1757 | |||
675cd88e1a | |||
2ab361bd1d | |||
4853171a0a | |||
168db36cd8 | |||
531dc0c286 | |||
2de1fcd039 | |||
7d0ab1a129 | |||
39322ed145 | |||
8fcc791590 | |||
19ef67ad7b | |||
b7ae7d92a7 | |||
46b1b90b47 | |||
71838e4a8f | |||
4e35168f46 | |||
4affc579d8 | |||
949f149883 | |||
91fc267959 | |||
d0035f754f | |||
b76a44d2e2 | |||
5b95608bf1 | |||
b5c6501f7c | |||
081ebcc01c | |||
14289072e5 | |||
da51096bca | |||
8f45617781 | |||
818cef60ea | |||
afecb000aa | |||
3c791b6f39 | |||
5abbe87f57 | |||
fbad09c9c0 | |||
388ee4b923 | |||
d70e1c1aa5 | |||
a6cfc4b6c5 | |||
59a90ee202 | |||
cd26c0d99c |
@ -303,7 +303,7 @@ non_model_job = CircleCIJob(
|
||||
docker_image=[{"image": "huggingface/transformers-torch-light"}],
|
||||
# networkx==3.3 (after #36957) cause some issues
|
||||
# TODO: remove this once it works directly
|
||||
install_steps=["uv venv && uv pip install .[serving]"],
|
||||
install_steps=["uv venv && uv pip install ."],
|
||||
marker="not generate",
|
||||
parallelism=6,
|
||||
)
|
||||
|
4
.github/workflows/build_documentation.yml
vendored
4
.github/workflows/build_documentation.yml
vendored
@ -18,10 +18,6 @@ jobs:
|
||||
notebook_folder: transformers_doc
|
||||
languages: ar de en es fr hi it ko pt tr zh ja te
|
||||
custom_container: huggingface/transformers-doc-builder
|
||||
# Temporary pin to work around datasets exception in the docbuilder.Remove after docker images and main have
|
||||
# the right dependencies (which **should** be the case by 2025-07-20). See
|
||||
# https://github.com/huggingface/transformers/actions/runs/16365952006/job/46243081358?pr=38545
|
||||
pre_command: uv pip install datasets>=2.15.0
|
||||
secrets:
|
||||
token: ${{ secrets.HUGGINGFACE_PUSH }}
|
||||
hf_token: ${{ secrets.HF_DOC_BUILD_PUSH }}
|
||||
|
4
.github/workflows/build_pr_documentation.yml
vendored
4
.github/workflows/build_pr_documentation.yml
vendored
@ -15,7 +15,3 @@ jobs:
|
||||
pr_number: ${{ github.event.number }}
|
||||
package: transformers
|
||||
languages: en
|
||||
# Temporary pin to work around datasets exception in the docbuilder. Remove after docker images and main have
|
||||
# the right dependencies (which **should** be the case by 2025-07-20). See
|
||||
# https://github.com/huggingface/transformers/actions/runs/16365952006/job/46243081358?pr=38545
|
||||
pre_command: uv pip install datasets>=2.15.0
|
||||
|
2
.github/workflows/check_failed_tests.yml
vendored
2
.github/workflows/check_failed_tests.yml
vendored
@ -41,7 +41,7 @@ jobs:
|
||||
check_new_failures:
|
||||
name: " "
|
||||
runs-on:
|
||||
group: aws-g5-4xlarge-cache
|
||||
group: aws-g4dn-4xlarge-cache
|
||||
container:
|
||||
image: ${{ inputs.docker }}
|
||||
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
|
2
.github/workflows/doctest_job.yml
vendored
2
.github/workflows/doctest_job.yml
vendored
@ -28,7 +28,7 @@ jobs:
|
||||
matrix:
|
||||
split_keys: ${{ fromJson(inputs.split_keys) }}
|
||||
runs-on:
|
||||
group: aws-g5-4xlarge-cache
|
||||
group: aws-g4dn-4xlarge-cache
|
||||
container:
|
||||
image: huggingface/transformers-all-latest-gpu
|
||||
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
|
2
.github/workflows/doctests.yml
vendored
2
.github/workflows/doctests.yml
vendored
@ -15,7 +15,7 @@ jobs:
|
||||
setup:
|
||||
name: Setup
|
||||
runs-on:
|
||||
group: aws-g5-4xlarge-cache
|
||||
group: aws-g4dn-4xlarge-cache
|
||||
container:
|
||||
image: huggingface/transformers-all-latest-gpu
|
||||
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
|
157
.github/workflows/get-pr-info.yml
vendored
157
.github/workflows/get-pr-info.yml
vendored
@ -1,157 +0,0 @@
|
||||
name: Get PR commit SHA
|
||||
on:
|
||||
workflow_call:
|
||||
inputs:
|
||||
pr_number:
|
||||
required: true
|
||||
type: string
|
||||
outputs:
|
||||
PR_HEAD_REPO_FULL_NAME:
|
||||
description: "The full name of the repository from which the pull request is created"
|
||||
value: ${{ jobs.get-pr-info.outputs.PR_HEAD_REPO_FULL_NAME }}
|
||||
PR_BASE_REPO_FULL_NAME:
|
||||
description: "The full name of the repository to which the pull request is created"
|
||||
value: ${{ jobs.get-pr-info.outputs.PR_BASE_REPO_FULL_NAME }}
|
||||
PR_HEAD_REPO_OWNER:
|
||||
description: "The owner of the repository from which the pull request is created"
|
||||
value: ${{ jobs.get-pr-info.outputs.PR_HEAD_REPO_OWNER }}
|
||||
PR_BASE_REPO_OWNER:
|
||||
description: "The owner of the repository to which the pull request is created"
|
||||
value: ${{ jobs.get-pr-info.outputs.PR_BASE_REPO_OWNER }}
|
||||
PR_HEAD_REPO_NAME:
|
||||
description: "The name of the repository from which the pull request is created"
|
||||
value: ${{ jobs.get-pr-info.outputs.PR_HEAD_REPO_NAME }}
|
||||
PR_BASE_REPO_NAME:
|
||||
description: "The name of the repository to which the pull request is created"
|
||||
value: ${{ jobs.get-pr-info.outputs.PR_BASE_REPO_NAME }}
|
||||
PR_HEAD_REF:
|
||||
description: "The branch name of the pull request in the head repository"
|
||||
value: ${{ jobs.get-pr-info.outputs.PR_HEAD_REF }}
|
||||
PR_BASE_REF:
|
||||
description: "The branch name in the base repository (to merge into)"
|
||||
value: ${{ jobs.get-pr-info.outputs.PR_BASE_REF }}
|
||||
PR_HEAD_SHA:
|
||||
description: "The head sha of the pull request branch in the head repository"
|
||||
value: ${{ jobs.get-pr-info.outputs.PR_HEAD_SHA }}
|
||||
PR_BASE_SHA:
|
||||
description: "The head sha of the target branch in the base repository"
|
||||
value: ${{ jobs.get-pr-info.outputs.PR_BASE_SHA }}
|
||||
PR_MERGE_COMMIT_SHA:
|
||||
description: "The sha of the merge commit for the pull request (created by GitHub) in the base repository"
|
||||
value: ${{ jobs.get-pr-info.outputs.PR_MERGE_COMMIT_SHA }}
|
||||
PR_HEAD_COMMIT_DATE:
|
||||
description: "The date of the head sha of the pull request branch in the head repository"
|
||||
value: ${{ jobs.get-pr-info.outputs.PR_HEAD_COMMIT_DATE }}
|
||||
PR_MERGE_COMMIT_DATE:
|
||||
description: "The date of the merge commit for the pull request (created by GitHub) in the base repository"
|
||||
value: ${{ jobs.get-pr-info.outputs.PR_MERGE_COMMIT_DATE }}
|
||||
PR_HEAD_COMMIT_TIMESTAMP:
|
||||
description: "The timestamp of the head sha of the pull request branch in the head repository"
|
||||
value: ${{ jobs.get-pr-info.outputs.PR_HEAD_COMMIT_TIMESTAMP }}
|
||||
PR_MERGE_COMMIT_TIMESTAMP:
|
||||
description: "The timestamp of the merge commit for the pull request (created by GitHub) in the base repository"
|
||||
value: ${{ jobs.get-pr-info.outputs.PR_MERGE_COMMIT_TIMESTAMP }}
|
||||
PR:
|
||||
description: "The PR"
|
||||
value: ${{ jobs.get-pr-info.outputs.PR }}
|
||||
PR_FILES:
|
||||
description: "The files touched in the PR"
|
||||
value: ${{ jobs.get-pr-info.outputs.PR_FILES }}
|
||||
|
||||
|
||||
jobs:
|
||||
get-pr-info:
|
||||
runs-on: ubuntu-22.04
|
||||
name: Get PR commit SHA better
|
||||
outputs:
|
||||
PR_HEAD_REPO_FULL_NAME: ${{ steps.pr_info.outputs.head_repo_full_name }}
|
||||
PR_BASE_REPO_FULL_NAME: ${{ steps.pr_info.outputs.base_repo_full_name }}
|
||||
PR_HEAD_REPO_OWNER: ${{ steps.pr_info.outputs.head_repo_owner }}
|
||||
PR_BASE_REPO_OWNER: ${{ steps.pr_info.outputs.base_repo_owner }}
|
||||
PR_HEAD_REPO_NAME: ${{ steps.pr_info.outputs.head_repo_name }}
|
||||
PR_BASE_REPO_NAME: ${{ steps.pr_info.outputs.base_repo_name }}
|
||||
PR_HEAD_REF: ${{ steps.pr_info.outputs.head_ref }}
|
||||
PR_BASE_REF: ${{ steps.pr_info.outputs.base_ref }}
|
||||
PR_HEAD_SHA: ${{ steps.pr_info.outputs.head_sha }}
|
||||
PR_BASE_SHA: ${{ steps.pr_info.outputs.base_sha }}
|
||||
PR_MERGE_COMMIT_SHA: ${{ steps.pr_info.outputs.merge_commit_sha }}
|
||||
PR_HEAD_COMMIT_DATE: ${{ steps.pr_info.outputs.head_commit_date }}
|
||||
PR_MERGE_COMMIT_DATE: ${{ steps.pr_info.outputs.merge_commit_date }}
|
||||
PR_HEAD_COMMIT_TIMESTAMP: ${{ steps.get_timestamps.outputs.head_commit_timestamp }}
|
||||
PR_MERGE_COMMIT_TIMESTAMP: ${{ steps.get_timestamps.outputs.merge_commit_timestamp }}
|
||||
PR: ${{ steps.pr_info.outputs.pr }}
|
||||
PR_FILES: ${{ steps.pr_info.outputs.files }}
|
||||
if: ${{ inputs.pr_number != '' }}
|
||||
steps:
|
||||
- name: Extract PR details
|
||||
id: pr_info
|
||||
uses: actions/github-script@v6
|
||||
with:
|
||||
script: |
|
||||
const { data: pr } = await github.rest.pulls.get({
|
||||
owner: context.repo.owner,
|
||||
repo: context.repo.repo,
|
||||
pull_number: ${{ inputs.pr_number }}
|
||||
});
|
||||
|
||||
const { data: head_commit } = await github.rest.repos.getCommit({
|
||||
owner: pr.head.repo.owner.login,
|
||||
repo: pr.head.repo.name,
|
||||
ref: pr.head.ref
|
||||
});
|
||||
|
||||
const { data: merge_commit } = await github.rest.repos.getCommit({
|
||||
owner: pr.base.repo.owner.login,
|
||||
repo: pr.base.repo.name,
|
||||
ref: pr.merge_commit_sha,
|
||||
});
|
||||
|
||||
const { data: files } = await github.rest.pulls.listFiles({
|
||||
owner: context.repo.owner,
|
||||
repo: context.repo.repo,
|
||||
pull_number: ${{ inputs.pr_number }}
|
||||
});
|
||||
|
||||
core.setOutput('head_repo_full_name', pr.head.repo.full_name);
|
||||
core.setOutput('base_repo_full_name', pr.base.repo.full_name);
|
||||
core.setOutput('head_repo_owner', pr.head.repo.owner.login);
|
||||
core.setOutput('base_repo_owner', pr.base.repo.owner.login);
|
||||
core.setOutput('head_repo_name', pr.head.repo.name);
|
||||
core.setOutput('base_repo_name', pr.base.repo.name);
|
||||
core.setOutput('head_ref', pr.head.ref);
|
||||
core.setOutput('base_ref', pr.base.ref);
|
||||
core.setOutput('head_sha', pr.head.sha);
|
||||
core.setOutput('base_sha', pr.base.sha);
|
||||
core.setOutput('merge_commit_sha', pr.merge_commit_sha);
|
||||
core.setOutput('pr', pr);
|
||||
|
||||
core.setOutput('head_commit_date', head_commit.commit.committer.date);
|
||||
core.setOutput('merge_commit_date', merge_commit.commit.committer.date);
|
||||
|
||||
core.setOutput('files', files);
|
||||
|
||||
console.log('PR head commit:', {
|
||||
head_commit: head_commit,
|
||||
commit: head_commit.commit,
|
||||
date: head_commit.commit.committer.date
|
||||
});
|
||||
|
||||
console.log('PR merge commit:', {
|
||||
merge_commit: merge_commit,
|
||||
commit: merge_commit.commit,
|
||||
date: merge_commit.commit.committer.date
|
||||
});
|
||||
|
||||
- name: Convert dates to timestamps
|
||||
id: get_timestamps
|
||||
run: |
|
||||
head_commit_date=${{ steps.pr_info.outputs.head_commit_date }}
|
||||
merge_commit_date=${{ steps.pr_info.outputs.merge_commit_date }}
|
||||
echo $head_commit_date
|
||||
echo $merge_commit_date
|
||||
head_commit_timestamp=$(date -d "$head_commit_date" +%s)
|
||||
merge_commit_timestamp=$(date -d "$merge_commit_date" +%s)
|
||||
echo $head_commit_timestamp
|
||||
echo $merge_commit_timestamp
|
||||
echo "head_commit_timestamp=$head_commit_timestamp" >> $GITHUB_OUTPUT
|
||||
echo "merge_commit_timestamp=$merge_commit_timestamp" >> $GITHUB_OUTPUT
|
36
.github/workflows/get-pr-number.yml
vendored
36
.github/workflows/get-pr-number.yml
vendored
@ -1,36 +0,0 @@
|
||||
name: Get PR number
|
||||
on:
|
||||
workflow_call:
|
||||
outputs:
|
||||
PR_NUMBER:
|
||||
description: "The extracted PR number"
|
||||
value: ${{ jobs.get-pr-number.outputs.PR_NUMBER }}
|
||||
|
||||
jobs:
|
||||
get-pr-number:
|
||||
runs-on: ubuntu-22.04
|
||||
name: Get PR number
|
||||
outputs:
|
||||
PR_NUMBER: ${{ steps.set_pr_number.outputs.PR_NUMBER }}
|
||||
steps:
|
||||
- name: Get PR number
|
||||
shell: bash
|
||||
run: |
|
||||
if [[ "${{ github.event.issue.number }}" != "" && "${{ github.event.issue.pull_request }}" != "" ]]; then
|
||||
echo "PR_NUMBER=${{ github.event.issue.number }}" >> $GITHUB_ENV
|
||||
elif [[ "${{ github.event.pull_request.number }}" != "" ]]; then
|
||||
echo "PR_NUMBER=${{ github.event.pull_request.number }}" >> $GITHUB_ENV
|
||||
elif [[ "${{ github.event.pull_request }}" != "" ]]; then
|
||||
echo "PR_NUMBER=${{ github.event.number }}" >> $GITHUB_ENV
|
||||
else
|
||||
echo "PR_NUMBER=" >> $GITHUB_ENV
|
||||
fi
|
||||
|
||||
- name: Check PR number
|
||||
shell: bash
|
||||
run: |
|
||||
echo "${{ env.PR_NUMBER }}"
|
||||
|
||||
- name: Set PR number
|
||||
id: set_pr_number
|
||||
run: echo "PR_NUMBER=${{ env.PR_NUMBER }}" >> "$GITHUB_OUTPUT"
|
10
.github/workflows/model_jobs.yml
vendored
10
.github/workflows/model_jobs.yml
vendored
@ -12,8 +12,8 @@ on:
|
||||
slice_id:
|
||||
required: true
|
||||
type: number
|
||||
runner_map:
|
||||
required: false
|
||||
runner:
|
||||
required: true
|
||||
type: string
|
||||
docker:
|
||||
required: true
|
||||
@ -45,7 +45,7 @@ jobs:
|
||||
matrix:
|
||||
folders: ${{ fromJson(inputs.folder_slices)[inputs.slice_id] }}
|
||||
runs-on:
|
||||
group: ${{ fromJson(inputs.runner_map)[matrix.folders][inputs.machine_type] }}
|
||||
group: '${{ inputs.machine_type }}'
|
||||
container:
|
||||
image: ${{ inputs.docker }}
|
||||
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
@ -107,9 +107,9 @@ jobs:
|
||||
run: |
|
||||
echo "${{ inputs.machine_type }}"
|
||||
|
||||
if [ "${{ inputs.machine_type }}" = "aws-g5-4xlarge-cache" ]; then
|
||||
if [ "${{ inputs.machine_type }}" = "aws-g4dn-4xlarge-cache" ]; then
|
||||
machine_type=single-gpu
|
||||
elif [ "${{ inputs.machine_type }}" = "aws-g5-12xlarge-cache" ]; then
|
||||
elif [ "${{ inputs.machine_type }}" = "aws-g4dn-12xlarge-cache" ]; then
|
||||
machine_type=multi-gpu
|
||||
else
|
||||
machine_type=${{ inputs.machine_type }}
|
||||
|
128
.github/workflows/model_jobs_amd.yml
vendored
Normal file
128
.github/workflows/model_jobs_amd.yml
vendored
Normal file
@ -0,0 +1,128 @@
|
||||
name: model jobs
|
||||
|
||||
on:
|
||||
workflow_call:
|
||||
inputs:
|
||||
folder_slices:
|
||||
required: true
|
||||
type: string
|
||||
machine_type:
|
||||
required: true
|
||||
type: string
|
||||
slice_id:
|
||||
required: true
|
||||
type: number
|
||||
runner:
|
||||
required: true
|
||||
type: string
|
||||
docker:
|
||||
required: true
|
||||
type: string
|
||||
|
||||
env:
|
||||
HF_HOME: /mnt/cache
|
||||
TRANSFORMERS_IS_CI: yes
|
||||
OMP_NUM_THREADS: 8
|
||||
MKL_NUM_THREADS: 8
|
||||
RUN_SLOW: yes
|
||||
# For gated repositories, we still need to agree to share information on the Hub repo. page in order to get access.
|
||||
# This token is created under the bot `hf-transformers-bot`.
|
||||
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
|
||||
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
|
||||
TF_FORCE_GPU_ALLOW_GROWTH: true
|
||||
CUDA_VISIBLE_DEVICES: 0,1
|
||||
|
||||
jobs:
|
||||
run_models_gpu:
|
||||
name: " "
|
||||
strategy:
|
||||
max-parallel: 1 # For now, not to parallelize. Can change later if it works well.
|
||||
fail-fast: false
|
||||
matrix:
|
||||
folders: ${{ fromJson(inputs.folder_slices)[inputs.slice_id] }}
|
||||
runs-on: ['${{ inputs.machine_type }}', self-hosted, amd-gpu, '${{ inputs.runner }}']
|
||||
container:
|
||||
image: ${{ inputs.docker }}
|
||||
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
steps:
|
||||
- name: Echo input and matrix info
|
||||
shell: bash
|
||||
run: |
|
||||
echo "${{ inputs.folder_slices }}"
|
||||
echo "${{ matrix.folders }}"
|
||||
echo "${{ toJson(fromJson(inputs.folder_slices)[inputs.slice_id]) }}"
|
||||
|
||||
- name: Echo folder ${{ matrix.folders }}
|
||||
shell: bash
|
||||
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
|
||||
# set the artifact folder names (because the character `/` is not allowed).
|
||||
run: |
|
||||
echo "${{ matrix.folders }}"
|
||||
matrix_folders=${{ matrix.folders }}
|
||||
matrix_folders=${matrix_folders/'models/'/'models_'}
|
||||
echo "$matrix_folders"
|
||||
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
|
||||
|
||||
- name: Update clone
|
||||
working-directory: /transformers
|
||||
run: git fetch && git checkout ${{ github.sha }}
|
||||
|
||||
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
|
||||
working-directory: /transformers
|
||||
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
|
||||
|
||||
- name: Update / Install some packages (for Past CI)
|
||||
if: ${{ contains(inputs.docker, '-past-') }}
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
python3 -m pip install -U datasets
|
||||
|
||||
- name: Update / Install some packages (for Past CI)
|
||||
if: ${{ contains(inputs.docker, '-past-') && contains(inputs.docker, '-pytorch-') }}
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate
|
||||
|
||||
- name: ROCM-SMI
|
||||
run: |
|
||||
rocm-smi
|
||||
|
||||
- name: ROCM-INFO
|
||||
run: |
|
||||
rocminfo | grep "Agent" -A 14
|
||||
|
||||
- name: Show ROCR environment
|
||||
run: |
|
||||
echo "ROCR: $ROCR_VISIBLE_DEVICES"
|
||||
|
||||
- name: Environment
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
python3 utils/print_env.py
|
||||
|
||||
- name: Show installed libraries and their versions
|
||||
working-directory: /transformers
|
||||
run: pip freeze
|
||||
|
||||
- name: Run all tests on GPU
|
||||
working-directory: /transformers
|
||||
run: python3 -m pytest -rsfE -v --make-reports=${{ inputs.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports tests/${{ matrix.folders }} -m "not not_device_test"
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
run: cat /transformers/reports/${{ inputs.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports/failures_short.txt
|
||||
|
||||
- name: Run test
|
||||
shell: bash
|
||||
run: |
|
||||
mkdir -p /transformers/reports/${{ inputs.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports
|
||||
echo "hello" > /transformers/reports/${{ inputs.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports/hello.txt
|
||||
echo "${{ inputs.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports"
|
||||
|
||||
- name: "Test suite reports artifacts: ${{ inputs.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports"
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: ${{ inputs.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports
|
||||
path: /transformers/reports/${{ inputs.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports
|
121
.github/workflows/model_jobs_intel_gaudi.yml
vendored
121
.github/workflows/model_jobs_intel_gaudi.yml
vendored
@ -1,121 +0,0 @@
|
||||
name: model jobs
|
||||
|
||||
on:
|
||||
workflow_call:
|
||||
inputs:
|
||||
folder_slices:
|
||||
required: true
|
||||
type: string
|
||||
slice_id:
|
||||
required: true
|
||||
type: number
|
||||
runner:
|
||||
required: true
|
||||
type: string
|
||||
machine_type:
|
||||
required: true
|
||||
type: string
|
||||
report_name_prefix:
|
||||
required: false
|
||||
default: run_models_gpu
|
||||
type: string
|
||||
|
||||
env:
|
||||
RUN_SLOW: yes
|
||||
PT_HPU_LAZY_MODE: 0
|
||||
TRANSFORMERS_IS_CI: yes
|
||||
PT_ENABLE_INT64_SUPPORT: 1
|
||||
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
|
||||
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
|
||||
HF_HOME: /mnt/cache/.cache/huggingface
|
||||
|
||||
jobs:
|
||||
run_models_gpu:
|
||||
name: " "
|
||||
strategy:
|
||||
max-parallel: 8
|
||||
fail-fast: false
|
||||
matrix:
|
||||
folders: ${{ fromJson(inputs.folder_slices)[inputs.slice_id] }}
|
||||
runs-on:
|
||||
group: ${{ inputs.runner }}
|
||||
container:
|
||||
image: vault.habana.ai/gaudi-docker/1.21.1/ubuntu22.04/habanalabs/pytorch-installer-2.6.0:latest
|
||||
options: --runtime=habana
|
||||
-v /mnt/cache/.cache/huggingface:/mnt/cache/.cache/huggingface
|
||||
--env OMPI_MCA_btl_vader_single_copy_mechanism=none
|
||||
--env HABANA_VISIBLE_DEVICES
|
||||
--env HABANA_VISIBLE_MODULES
|
||||
--cap-add=sys_nice
|
||||
--shm-size=64G
|
||||
steps:
|
||||
- name: Echo input and matrix info
|
||||
shell: bash
|
||||
run: |
|
||||
echo "${{ inputs.folder_slices }}"
|
||||
echo "${{ matrix.folders }}"
|
||||
echo "${{ toJson(fromJson(inputs.folder_slices)[inputs.slice_id]) }}"
|
||||
|
||||
- name: Echo folder ${{ matrix.folders }}
|
||||
shell: bash
|
||||
run: |
|
||||
echo "${{ matrix.folders }}"
|
||||
matrix_folders=${{ matrix.folders }}
|
||||
matrix_folders=${matrix_folders/'models/'/'models_'}
|
||||
echo "$matrix_folders"
|
||||
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
|
||||
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
pip install -e .[testing,torch] "numpy<2.0.0" scipy scikit-learn
|
||||
|
||||
- name: HL-SMI
|
||||
run: |
|
||||
hl-smi
|
||||
echo "HABANA_VISIBLE_DEVICES=${HABANA_VISIBLE_DEVICES}"
|
||||
echo "HABANA_VISIBLE_MODULES=${HABANA_VISIBLE_MODULES}"
|
||||
|
||||
- name: Environment
|
||||
run: python3 utils/print_env.py
|
||||
|
||||
- name: Show installed libraries and their versions
|
||||
run: pip freeze
|
||||
|
||||
- name: Set `machine_type` for report and artifact names
|
||||
shell: bash
|
||||
run: |
|
||||
if [ "${{ inputs.machine_type }}" = "1gaudi" ]; then
|
||||
machine_type=single-gpu
|
||||
elif [ "${{ inputs.machine_type }}" = "2gaudi" ]; then
|
||||
machine_type=multi-gpu
|
||||
else
|
||||
machine_type=${{ inputs.machine_type }}
|
||||
fi
|
||||
echo "machine_type=$machine_type" >> $GITHUB_ENV
|
||||
|
||||
- name: Run all tests on Gaudi
|
||||
run: python3 -m pytest -v --make-reports=${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ matrix.folders }}_test_reports tests/${{ matrix.folders }}
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
run: cat reports/${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ matrix.folders }}_test_reports/failures_short.txt
|
||||
|
||||
- name: Run test
|
||||
shell: bash
|
||||
run: |
|
||||
mkdir -p reports/${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ matrix.folders }}_test_reports
|
||||
echo "hello" > reports/${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ matrix.folders }}_test_reports/hello.txt
|
||||
echo "${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ matrix.folders }}_test_reports"
|
||||
|
||||
- name: "Test suite reports artifacts: ${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ env.matrix_folders }}_test_reports"
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: ${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ env.matrix_folders }}_test_reports
|
||||
path: reports/${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ matrix.folders }}_test_reports
|
199
.github/workflows/pr_run_slow_ci.yml
vendored
199
.github/workflows/pr_run_slow_ci.yml
vendored
@ -1,199 +0,0 @@
|
||||
name: PR slow CI
|
||||
on:
|
||||
pull_request_target:
|
||||
types: [opened, synchronize, reopened]
|
||||
|
||||
jobs:
|
||||
get-pr-number:
|
||||
name: Get PR number
|
||||
uses: ./.github/workflows/get-pr-number.yml
|
||||
|
||||
get-pr-info:
|
||||
name: Get PR commit SHA
|
||||
needs: get-pr-number
|
||||
if: ${{ needs.get-pr-number.outputs.PR_NUMBER != ''}}
|
||||
uses: ./.github/workflows/get-pr-info.yml
|
||||
with:
|
||||
pr_number: ${{ needs.get-pr-number.outputs.PR_NUMBER }}
|
||||
|
||||
# We only need to verify the timestamp if the workflow is triggered by `issue_comment`.
|
||||
verity_pr_commit:
|
||||
name: Verity PR commit corresponds to a specific event by comparing timestamps
|
||||
if: ${{ github.event.comment.created_at != '' }}
|
||||
runs-on: ubuntu-22.04
|
||||
needs: get-pr-info
|
||||
env:
|
||||
COMMENT_DATE: ${{ github.event.comment.created_at }}
|
||||
PR_MERGE_COMMIT_DATE: ${{ needs.get-pr-info.outputs.PR_MERGE_COMMIT_DATE }}
|
||||
PR_MERGE_COMMIT_TIMESTAMP: ${{ needs.get-pr-info.outputs.PR_MERGE_COMMIT_TIMESTAMP }}
|
||||
steps:
|
||||
- run: |
|
||||
COMMENT_TIMESTAMP=$(date -d "${COMMENT_DATE}" +"%s")
|
||||
echo "COMMENT_DATE: $COMMENT_DATE"
|
||||
echo "PR_MERGE_COMMIT_DATE: $PR_MERGE_COMMIT_DATE"
|
||||
echo "COMMENT_TIMESTAMP: $COMMENT_TIMESTAMP"
|
||||
echo "PR_MERGE_COMMIT_TIMESTAMP: $PR_MERGE_COMMIT_TIMESTAMP"
|
||||
if [ $COMMENT_TIMESTAMP -le $PR_MERGE_COMMIT_TIMESTAMP ]; then
|
||||
echo "Last commit on the pull request is newer than the issue comment triggering this run! Abort!";
|
||||
exit -1;
|
||||
fi
|
||||
|
||||
get-jobs:
|
||||
name: Get test files to run
|
||||
runs-on: ubuntu-22.04
|
||||
needs: [get-pr-number, get-pr-info]
|
||||
outputs:
|
||||
jobs: ${{ steps.get_jobs.outputs.jobs_to_run }}
|
||||
steps:
|
||||
- name: Get repository content
|
||||
id: repo_content
|
||||
uses: actions/github-script@v6
|
||||
with:
|
||||
script: |
|
||||
const { data: tests_dir } = await github.rest.repos.getContent({
|
||||
owner: '${{ needs.get-pr-info.outputs.PR_HEAD_REPO_OWNER }}',
|
||||
repo: '${{ needs.get-pr-info.outputs.PR_HEAD_REPO_NAME }}',
|
||||
path: 'tests',
|
||||
ref: '${{ needs.get-pr-info.outputs.PR_HEAD_SHA }}',
|
||||
});
|
||||
|
||||
const { data: tests_models_dir } = await github.rest.repos.getContent({
|
||||
owner: '${{ needs.get-pr-info.outputs.PR_HEAD_REPO_OWNER }}',
|
||||
repo: '${{ needs.get-pr-info.outputs.PR_HEAD_REPO_NAME }}',
|
||||
path: 'tests/models',
|
||||
ref: '${{ needs.get-pr-info.outputs.PR_HEAD_SHA }}',
|
||||
});
|
||||
|
||||
const { data: tests_quantization_dir } = await github.rest.repos.getContent({
|
||||
owner: '${{ needs.get-pr-info.outputs.PR_HEAD_REPO_OWNER }}',
|
||||
repo: '${{ needs.get-pr-info.outputs.PR_HEAD_REPO_NAME }}',
|
||||
path: 'tests/quantization',
|
||||
ref: '${{ needs.get-pr-info.outputs.PR_HEAD_SHA }}',
|
||||
});
|
||||
|
||||
core.setOutput('tests_dir', tests_dir);
|
||||
core.setOutput('tests_models_dir', tests_models_dir);
|
||||
core.setOutput('tests_quantization_dir', tests_quantization_dir);
|
||||
|
||||
# This checkout to the main branch
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: "0"
|
||||
|
||||
- name: Write pr_files file
|
||||
run: |
|
||||
cat > pr_files.txt << 'EOF'
|
||||
${{ needs.get-pr-info.outputs.PR_FILES }}
|
||||
EOF
|
||||
|
||||
- name: Write tests_dir file
|
||||
run: |
|
||||
cat > tests_dir.txt << 'EOF'
|
||||
${{ steps.repo_content.outputs.tests_dir }}
|
||||
EOF
|
||||
|
||||
- name: Write tests_models_dir file
|
||||
run: |
|
||||
cat > tests_models_dir.txt << 'EOF'
|
||||
${{ steps.repo_content.outputs.tests_models_dir }}
|
||||
EOF
|
||||
|
||||
- name: Write tests_quantization_dir file
|
||||
run: |
|
||||
cat > tests_quantization_dir.txt << 'EOF'
|
||||
${{ steps.repo_content.outputs.tests_quantization_dir }}
|
||||
EOF
|
||||
|
||||
- name: Run script to get jobs to run
|
||||
id: get_jobs
|
||||
run: |
|
||||
python utils/get_pr_run_slow_jobs.py | tee output.txt
|
||||
echo "jobs_to_run: $(tail -n 1 output.txt)"
|
||||
echo "jobs_to_run=$(tail -n 1 output.txt)" >> $GITHUB_OUTPUT
|
||||
|
||||
send_comment:
|
||||
# Will delete the previous comment and send a new one if:
|
||||
# - either the content is changed
|
||||
# - or the previous comment is 30 minutes or more old
|
||||
name: Send a comment to suggest jobs to run
|
||||
if: ${{ needs.get-jobs.outputs.jobs != '' }}
|
||||
needs: [get-pr-number, get-jobs]
|
||||
permissions:
|
||||
pull-requests: write
|
||||
runs-on: ubuntu-22.04
|
||||
steps:
|
||||
- name: Check and update comment if needed
|
||||
uses: actions/github-script@v7
|
||||
env:
|
||||
BODY: "\n\nrun-slow: ${{ needs.get-jobs.outputs.jobs }}"
|
||||
with:
|
||||
script: |
|
||||
const prNumber = ${{ needs.get-pr-number.outputs.PR_NUMBER }};
|
||||
const commentPrefix = "**[For maintainers]** Suggested jobs to run (before merge)";
|
||||
const thirtyMinutesAgo = new Date(Date.now() - 30 * 60 * 1000); // 30 minutes ago
|
||||
const newBody = `${commentPrefix}${process.env.BODY}`;
|
||||
|
||||
// Get all comments on the PR
|
||||
const { data: comments } = await github.rest.issues.listComments({
|
||||
owner: context.repo.owner,
|
||||
repo: context.repo.repo,
|
||||
issue_number: prNumber
|
||||
});
|
||||
|
||||
// Find existing comments that start with our prefix
|
||||
const existingComments = comments.filter(comment =>
|
||||
comment.user.login === 'github-actions[bot]' &&
|
||||
comment.body.startsWith(commentPrefix)
|
||||
);
|
||||
|
||||
let shouldCreateNewComment = true;
|
||||
let commentsToDelete = [];
|
||||
|
||||
if (existingComments.length > 0) {
|
||||
// Get the most recent comment
|
||||
const mostRecentComment = existingComments
|
||||
.sort((a, b) => new Date(b.created_at) - new Date(a.created_at))[0];
|
||||
|
||||
const commentDate = new Date(mostRecentComment.created_at);
|
||||
const isOld = commentDate < thirtyMinutesAgo;
|
||||
const isDifferentContent = mostRecentComment.body !== newBody;
|
||||
|
||||
console.log(`Most recent comment created: ${mostRecentComment.created_at}`);
|
||||
console.log(`Is older than 30 minutes: ${isOld}`);
|
||||
console.log(`Has different content: ${isDifferentContent}`);
|
||||
|
||||
if (isOld || isDifferentContent) {
|
||||
// Delete all existing comments and create new one
|
||||
commentsToDelete = existingComments;
|
||||
console.log(`Will delete ${commentsToDelete.length} existing comment(s) and create new one`);
|
||||
} else {
|
||||
// Content is same and comment is recent, skip
|
||||
shouldCreateNewComment = false;
|
||||
console.log('Comment is recent and content unchanged, skipping update');
|
||||
}
|
||||
} else {
|
||||
console.log('No existing comments found, will create new one');
|
||||
}
|
||||
|
||||
// Delete old comments if needed
|
||||
for (const comment of commentsToDelete) {
|
||||
console.log(`Deleting comment #${comment.id} (created: ${comment.created_at})`);
|
||||
await github.rest.issues.deleteComment({
|
||||
owner: context.repo.owner,
|
||||
repo: context.repo.repo,
|
||||
comment_id: comment.id
|
||||
});
|
||||
}
|
||||
|
||||
// Create new comment if needed
|
||||
if (shouldCreateNewComment) {
|
||||
await github.rest.issues.createComment({
|
||||
owner: context.repo.owner,
|
||||
repo: context.repo.repo,
|
||||
issue_number: prNumber,
|
||||
body: newBody
|
||||
});
|
||||
console.log('✅ New comment created');
|
||||
} else {
|
||||
console.log('ℹ️ No comment update needed');
|
||||
}
|
14
.github/workflows/self-comment-ci.yml
vendored
14
.github/workflows/self-comment-ci.yml
vendored
@ -29,7 +29,7 @@ jobs:
|
||||
runs-on: ubuntu-22.04
|
||||
name: Get PR number
|
||||
# For security: only allow team members to run
|
||||
if: ${{ github.event.issue.state == 'open' && contains(fromJSON('["ydshieh", "ArthurZucker", "zucchini-nlp", "qubvel", "molbap", "gante", "LysandreJik", "Cyrilvallez", "Rocketknight1", "SunMarc", "muellerzr", "eustlb", "MekkCyber", "manueldeprada", "vasqu", "ivarflakstad", "stevhliu", "ebezzam"]'), github.actor) && (startsWith(github.event.comment.body, 'run-slow') || startsWith(github.event.comment.body, 'run slow') || startsWith(github.event.comment.body, 'run_slow')) }}
|
||||
if: ${{ github.event.issue.state == 'open' && contains(fromJSON('["ydshieh", "ArthurZucker", "zucchini-nlp", "qubvel", "molbap", "gante", "LysandreJik", "Cyrilvallez", "Rocketknight1", "SunMarc", "muellerzr", "eustlb", "MekkCyber", "manueldeprada", "vasqu"]'), github.actor) && (startsWith(github.event.comment.body, 'run-slow') || startsWith(github.event.comment.body, 'run slow') || startsWith(github.event.comment.body, 'run_slow')) }}
|
||||
outputs:
|
||||
PR_NUMBER: ${{ steps.set_pr_number.outputs.PR_NUMBER }}
|
||||
steps:
|
||||
@ -185,7 +185,7 @@ jobs:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
folders: ${{ fromJson(needs.get-tests.outputs.models) }}
|
||||
machine_type: [aws-g5-4xlarge-cache, aws-g5-12xlarge-cache]
|
||||
machine_type: [aws-g4dn-4xlarge-cache, aws-g4dn-12xlarge-cache]
|
||||
runs-on:
|
||||
group: '${{ matrix.machine_type }}'
|
||||
container:
|
||||
@ -239,9 +239,9 @@ jobs:
|
||||
shell: bash
|
||||
run: |
|
||||
echo "${{ matrix.machine_type }}"
|
||||
if [ "${{ matrix.machine_type }}" = "aws-g5-4xlarge-cache" ]; then
|
||||
if [ "${{ matrix.machine_type }}" = "aws-g4dn-4xlarge-cache" ]; then
|
||||
machine_type=single-gpu
|
||||
elif [ "${{ matrix.machine_type }}" = "aws-g5-12xlarge-cache" ]; then
|
||||
elif [ "${{ matrix.machine_type }}" = "aws-g4dn-12xlarge-cache" ]; then
|
||||
machine_type=multi-gpu
|
||||
else
|
||||
machine_type=${{ matrix.machine_type }}
|
||||
@ -292,7 +292,7 @@ jobs:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
folders: ${{ fromJson(needs.get-tests.outputs.quantizations) }}
|
||||
machine_type: [aws-g5-4xlarge-cache, aws-g5-12xlarge-cache]
|
||||
machine_type: [aws-g4dn-4xlarge-cache, aws-g4dn-12xlarge-cache]
|
||||
runs-on:
|
||||
group: '${{ matrix.machine_type }}'
|
||||
container:
|
||||
@ -338,9 +338,9 @@ jobs:
|
||||
shell: bash
|
||||
run: |
|
||||
echo "${{ matrix.machine_type }}"
|
||||
if [ "${{ matrix.machine_type }}" = "aws-g5-4xlarge-cache" ]; then
|
||||
if [ "${{ matrix.machine_type }}" = "aws-g4dn-4xlarge-cache" ]; then
|
||||
machine_type=single-gpu
|
||||
elif [ "${{ matrix.machine_type }}" = "aws-g5-12xlarge-cache" ]; then
|
||||
elif [ "${{ matrix.machine_type }}" = "aws-g4dn-12xlarge-cache" ]; then
|
||||
machine_type=multi-gpu
|
||||
else
|
||||
machine_type=${{ matrix.machine_type }}
|
||||
|
26
.github/workflows/self-push.yml
vendored
26
.github/workflows/self-push.yml
vendored
@ -31,7 +31,7 @@ jobs:
|
||||
name: Setup
|
||||
strategy:
|
||||
matrix:
|
||||
machine_type: [aws-g5-4xlarge-cache, aws-g5-12xlarge-cache]
|
||||
machine_type: [aws-g4dn-2xlarge-cache, aws-g4dn-12xlarge-cache]
|
||||
runs-on:
|
||||
group: '${{ matrix.machine_type }}'
|
||||
container:
|
||||
@ -131,7 +131,7 @@ jobs:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
|
||||
machine_type: [aws-g5-4xlarge-cache]
|
||||
machine_type: [aws-g4dn-2xlarge-cache]
|
||||
runs-on:
|
||||
group: '${{ matrix.machine_type }}'
|
||||
container:
|
||||
@ -169,9 +169,9 @@ jobs:
|
||||
run: |
|
||||
echo "${{ matrix.machine_type }}"
|
||||
|
||||
if [ "${{ matrix.machine_type }}" = "aws-g5-4xlarge-cache" ]; then
|
||||
if [ "${{ matrix.machine_type }}" = "aws-g4dn-2xlarge-cache" ]; then
|
||||
machine_type=single-gpu
|
||||
elif [ "${{ matrix.machine_type }}" = "aws-g5-12xlarge-cache" ]; then
|
||||
elif [ "${{ matrix.machine_type }}" = "aws-g4dn-12xlarge-cache" ]; then
|
||||
machine_type=multi-gpu
|
||||
else
|
||||
machine_type=${{ matrix.machine_type }}
|
||||
@ -244,7 +244,7 @@ jobs:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
|
||||
machine_type: [aws-g5-12xlarge-cache]
|
||||
machine_type: [aws-g4dn-12xlarge-cache]
|
||||
runs-on:
|
||||
group: '${{ matrix.machine_type }}'
|
||||
container:
|
||||
@ -282,9 +282,9 @@ jobs:
|
||||
run: |
|
||||
echo "${{ matrix.machine_type }}"
|
||||
|
||||
if [ "${{ matrix.machine_type }}" = "aws-g5-4xlarge-cache" ]; then
|
||||
if [ "${{ matrix.machine_type }}" = "aws-g4dn-2xlarge-cache" ]; then
|
||||
machine_type=single-gpu
|
||||
elif [ "${{ matrix.machine_type }}" = "aws-g5-12xlarge-cache" ]; then
|
||||
elif [ "${{ matrix.machine_type }}" = "aws-g4dn-12xlarge-cache" ]; then
|
||||
machine_type=multi-gpu
|
||||
else
|
||||
machine_type=${{ matrix.machine_type }}
|
||||
@ -357,7 +357,7 @@ jobs:
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
machine_type: [aws-g5-4xlarge-cache]
|
||||
machine_type: [aws-g4dn-2xlarge-cache]
|
||||
runs-on:
|
||||
group: '${{ matrix.machine_type }}'
|
||||
container:
|
||||
@ -395,9 +395,9 @@ jobs:
|
||||
run: |
|
||||
echo "${{ matrix.machine_type }}"
|
||||
|
||||
if [ "${{ matrix.machine_type }}" = "aws-g5-4xlarge-cache" ]; then
|
||||
if [ "${{ matrix.machine_type }}" = "aws-g4dn-2xlarge-cache" ]; then
|
||||
machine_type=single-gpu
|
||||
elif [ "${{ matrix.machine_type }}" = "aws-g5-12xlarge-cache" ]; then
|
||||
elif [ "${{ matrix.machine_type }}" = "aws-g4dn-12xlarge-cache" ]; then
|
||||
machine_type=multi-gpu
|
||||
else
|
||||
machine_type=${{ matrix.machine_type }}
|
||||
@ -467,7 +467,7 @@ jobs:
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
machine_type: [aws-g5-12xlarge-cache]
|
||||
machine_type: [aws-g4dn-12xlarge-cache]
|
||||
runs-on:
|
||||
group: '${{ matrix.machine_type }}'
|
||||
container:
|
||||
@ -505,9 +505,9 @@ jobs:
|
||||
run: |
|
||||
echo "${{ matrix.machine_type }}"
|
||||
|
||||
if [ "${{ matrix.machine_type }}" = "aws-g5-4xlarge-cache" ]; then
|
||||
if [ "${{ matrix.machine_type }}" = "aws-g4dn-2xlarge-cache" ]; then
|
||||
machine_type=single-gpu
|
||||
elif [ "${{ matrix.machine_type }}" = "aws-g5-12xlarge-cache" ]; then
|
||||
elif [ "${{ matrix.machine_type }}" = "aws-g4dn-12xlarge-cache" ]; then
|
||||
machine_type=multi-gpu
|
||||
else
|
||||
machine_type=${{ matrix.machine_type }}
|
||||
|
@ -1,63 +0,0 @@
|
||||
name: Self-hosted runner scale set (AMD mi325 scheduled CI caller)
|
||||
|
||||
# Note: For every job in this workflow, the name of the runner scale set is finalized in the runner yaml i.e. huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled_arc_scale_set.yaml
|
||||
# For example, 1gpu scale set: amd-mi325-ci-1gpu
|
||||
# 2gpu scale set: amd-mi325-ci-2gpu
|
||||
|
||||
on:
|
||||
workflow_run:
|
||||
workflows: ["Self-hosted runner (AMD scheduled CI caller)"]
|
||||
branches: ["main"]
|
||||
types: [completed]
|
||||
push:
|
||||
branches:
|
||||
- run_amd_scheduled_ci_caller*
|
||||
|
||||
jobs:
|
||||
model-ci:
|
||||
name: Model CI
|
||||
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled_arc_scale_set.yaml@main
|
||||
with:
|
||||
job: run_models_gpu
|
||||
slack_report_channel: "#amd-hf-ci"
|
||||
runner_scale_set: amd-mi325-ci
|
||||
docker: huggingface/transformers-pytorch-amd-gpu
|
||||
ci_event: Scheduled CI (AMD) - mi325
|
||||
report_repo_id: optimum-amd/transformers_daily_ci
|
||||
secrets: inherit
|
||||
|
||||
torch-pipeline:
|
||||
name: Torch pipeline CI
|
||||
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled_arc_scale_set.yaml@main
|
||||
with:
|
||||
job: run_pipelines_torch_gpu
|
||||
slack_report_channel: "#amd-hf-ci"
|
||||
runner_scale_set: amd-mi325-ci
|
||||
docker: huggingface/transformers-pytorch-amd-gpu
|
||||
ci_event: Scheduled CI (AMD) - mi325
|
||||
report_repo_id: optimum-amd/transformers_daily_ci
|
||||
secrets: inherit
|
||||
|
||||
example-ci:
|
||||
name: Example CI
|
||||
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled_arc_scale_set.yaml@main
|
||||
with:
|
||||
job: run_examples_gpu
|
||||
slack_report_channel: "#amd-hf-ci"
|
||||
runner_scale_set: amd-mi325-ci
|
||||
docker: huggingface/transformers-pytorch-amd-gpu
|
||||
ci_event: Scheduled CI (AMD) - mi325
|
||||
report_repo_id: optimum-amd/transformers_daily_ci
|
||||
secrets: inherit
|
||||
|
||||
deepspeed-ci:
|
||||
name: DeepSpeed CI
|
||||
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled_arc_scale_set.yaml@main
|
||||
with:
|
||||
job: run_torch_cuda_extensions_gpu
|
||||
slack_report_channel: "#amd-hf-ci"
|
||||
runner_scale_set: amd-mi325-ci
|
||||
docker: huggingface/transformers-pytorch-deepspeed-amd-gpu
|
||||
ci_event: Scheduled CI (AMD) - mi325
|
||||
report_repo_id: optimum-amd/transformers_daily_ci
|
||||
secrets: inherit
|
8
.github/workflows/self-scheduled-caller.yml
vendored
8
.github/workflows/self-scheduled-caller.yml
vendored
@ -22,7 +22,7 @@ on:
|
||||
default: ""
|
||||
|
||||
|
||||
# Used for `push` to easily modify the target workflow runs to compare against
|
||||
# Used for `push` to easily modiffy the target workflow runs to compare against
|
||||
env:
|
||||
prev_workflow_run_id: ""
|
||||
other_workflow_run_id: ""
|
||||
@ -51,6 +51,7 @@ jobs:
|
||||
with:
|
||||
job: run_models_gpu
|
||||
slack_report_channel: "#transformers-ci-daily-models"
|
||||
runner: daily-ci
|
||||
docker: huggingface/transformers-all-latest-gpu
|
||||
ci_event: Daily CI
|
||||
report_repo_id: hf-internal-testing/transformers_daily_ci
|
||||
@ -62,6 +63,7 @@ jobs:
|
||||
with:
|
||||
job: run_pipelines_torch_gpu
|
||||
slack_report_channel: "#transformers-ci-daily-pipeline-torch"
|
||||
runner: daily-ci
|
||||
docker: huggingface/transformers-pytorch-gpu
|
||||
ci_event: Daily CI
|
||||
report_repo_id: hf-internal-testing/transformers_daily_ci
|
||||
@ -73,6 +75,7 @@ jobs:
|
||||
with:
|
||||
job: run_examples_gpu
|
||||
slack_report_channel: "#transformers-ci-daily-examples"
|
||||
runner: daily-ci
|
||||
docker: huggingface/transformers-all-latest-gpu
|
||||
ci_event: Daily CI
|
||||
report_repo_id: hf-internal-testing/transformers_daily_ci
|
||||
@ -84,6 +87,7 @@ jobs:
|
||||
with:
|
||||
job: run_trainer_and_fsdp_gpu
|
||||
slack_report_channel: "#transformers-ci-daily-training"
|
||||
runner: daily-ci
|
||||
docker: huggingface/transformers-all-latest-gpu
|
||||
ci_event: Daily CI
|
||||
report_repo_id: hf-internal-testing/transformers_daily_ci
|
||||
@ -95,6 +99,7 @@ jobs:
|
||||
with:
|
||||
job: run_torch_cuda_extensions_gpu
|
||||
slack_report_channel: "#transformers-ci-daily-training"
|
||||
runner: daily-ci
|
||||
docker: huggingface/transformers-pytorch-deepspeed-latest-gpu
|
||||
ci_event: Daily CI
|
||||
working-directory-prefix: /workspace
|
||||
@ -107,6 +112,7 @@ jobs:
|
||||
with:
|
||||
job: run_quantization_torch_gpu
|
||||
slack_report_channel: "#transformers-ci-daily-quantization"
|
||||
runner: daily-ci
|
||||
docker: huggingface/transformers-quantization-latest-gpu
|
||||
ci_event: Daily CI
|
||||
report_repo_id: hf-internal-testing/transformers_daily_ci
|
||||
|
342
.github/workflows/self-scheduled-intel-gaudi.yml
vendored
342
.github/workflows/self-scheduled-intel-gaudi.yml
vendored
@ -1,342 +0,0 @@
|
||||
name: Self-hosted runner (scheduled-intel-gaudi)
|
||||
|
||||
on:
|
||||
workflow_call:
|
||||
inputs:
|
||||
job:
|
||||
required: true
|
||||
type: string
|
||||
slack_report_channel:
|
||||
required: true
|
||||
type: string
|
||||
runner_scale_set:
|
||||
required: true
|
||||
type: string
|
||||
ci_event:
|
||||
required: true
|
||||
type: string
|
||||
report_repo_id:
|
||||
required: true
|
||||
type: string
|
||||
|
||||
env:
|
||||
NUM_SLICES: 2
|
||||
RUN_SLOW: yes
|
||||
PT_HPU_LAZY_MODE: 0
|
||||
TRANSFORMERS_IS_CI: yes
|
||||
PT_ENABLE_INT64_SUPPORT: 1
|
||||
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
|
||||
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
|
||||
HF_HOME: /mnt/cache/.cache/huggingface
|
||||
|
||||
jobs:
|
||||
setup:
|
||||
if: contains(fromJSON('["run_models_gpu", "run_trainer_and_fsdp_gpu"]'), inputs.job)
|
||||
name: Setup
|
||||
runs-on: ubuntu-latest
|
||||
outputs:
|
||||
slice_ids: ${{ steps.set-matrix.outputs.slice_ids }}
|
||||
folder_slices: ${{ steps.set-matrix.outputs.folder_slices }}
|
||||
quantization_matrix: ${{ steps.set-matrix.outputs.quantization_matrix }}
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: "3.10"
|
||||
|
||||
- id: set-matrix
|
||||
if: contains(fromJSON('["run_models_gpu", "run_trainer_and_fsdp_gpu"]'), inputs.job)
|
||||
name: Identify models to test
|
||||
working-directory: tests
|
||||
run: |
|
||||
if [ "${{ inputs.job }}" = "run_models_gpu" ]; then
|
||||
echo "folder_slices=$(python3 ../utils/split_model_tests.py --num_splits ${{ env.NUM_SLICES }})" >> $GITHUB_OUTPUT
|
||||
echo "slice_ids=$(python3 -c 'd = list(range(${{ env.NUM_SLICES }})); print(d)')" >> $GITHUB_OUTPUT
|
||||
elif [ "${{ inputs.job }}" = "run_trainer_and_fsdp_gpu" ]; then
|
||||
echo "folder_slices=[['trainer'], ['fsdp']]" >> $GITHUB_OUTPUT
|
||||
echo "slice_ids=[0, 1]" >> $GITHUB_OUTPUT
|
||||
fi
|
||||
|
||||
- id: set-matrix-quantization
|
||||
if: ${{ inputs.job == 'run_quantization_torch_gpu' }}
|
||||
name: Identify quantization method to test
|
||||
working-directory: tests
|
||||
run: |
|
||||
echo "quantization_matrix=$(python3 -c 'import os; tests = os.getcwd(); quantization_tests = os.listdir(os.path.join(tests, "quantization")); d = sorted(list(filter(os.path.isdir, [f"quantization/{x}" for x in quantization_tests]))) ; print(d)')" >> $GITHUB_OUTPUT
|
||||
|
||||
run_models_gpu:
|
||||
if: ${{ inputs.job == 'run_models_gpu' }}
|
||||
name: " "
|
||||
needs: setup
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
machine_type: [1gaudi, 2gaudi]
|
||||
slice_id: ${{ fromJSON(needs.setup.outputs.slice_ids) }}
|
||||
uses: ./.github/workflows/model_jobs_intel_gaudi.yml
|
||||
with:
|
||||
slice_id: ${{ matrix.slice_id }}
|
||||
machine_type: ${{ matrix.machine_type }}
|
||||
folder_slices: ${{ needs.setup.outputs.folder_slices }}
|
||||
runner: ${{ inputs.runner_scale_set }}-${{ matrix.machine_type }}
|
||||
secrets: inherit
|
||||
|
||||
run_trainer_and_fsdp_gpu:
|
||||
if: ${{ inputs.job == 'run_trainer_and_fsdp_gpu' }}
|
||||
name: " "
|
||||
needs: setup
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
machine_type: [1gaudi, 2gaudi]
|
||||
slice_id: ${{ fromJSON(needs.setup.outputs.slice_ids) }}
|
||||
uses: ./.github/workflows/model_jobs_intel_gaudi.yml
|
||||
with:
|
||||
slice_id: ${{ matrix.slice_id }}
|
||||
machine_type: ${{ matrix.machine_type }}
|
||||
folder_slices: ${{ needs.setup.outputs.folder_slices }}
|
||||
runner: ${{ inputs.runner_scale_set }}-${{ matrix.machine_type }}
|
||||
report_name_prefix: run_trainer_and_fsdp_gpu
|
||||
secrets: inherit
|
||||
|
||||
run_pipelines_torch_gpu:
|
||||
if: ${{ inputs.job == 'run_pipelines_torch_gpu' }}
|
||||
name: Pipelines
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
machine_type: [1gaudi, 2gaudi]
|
||||
runs-on:
|
||||
group: ${{ inputs.runner_scale_set }}-${{ matrix.machine_type }}
|
||||
container:
|
||||
image: vault.habana.ai/gaudi-docker/1.21.1/ubuntu22.04/habanalabs/pytorch-installer-2.6.0:latest
|
||||
options: --runtime=habana
|
||||
-v /mnt/cache/.cache/huggingface:/mnt/cache/.cache/huggingface
|
||||
--env OMPI_MCA_btl_vader_single_copy_mechanism=none
|
||||
--env HABANA_VISIBLE_DEVICES
|
||||
--env HABANA_VISIBLE_MODULES
|
||||
--cap-add=sys_nice
|
||||
--shm-size=64G
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
pip install -e .[testing,torch] "numpy<2.0.0" scipy scikit-learn librosa soundfile
|
||||
|
||||
- name: HL-SMI
|
||||
run: |
|
||||
hl-smi
|
||||
echo "HABANA_VISIBLE_DEVICES=${HABANA_VISIBLE_DEVICES}"
|
||||
echo "HABANA_VISIBLE_MODULES=${HABANA_VISIBLE_MODULES}"
|
||||
|
||||
- name: Environment
|
||||
run: python3 utils/print_env.py
|
||||
|
||||
- name: Show installed libraries and their versions
|
||||
run: pip freeze
|
||||
|
||||
- name: Set `machine_type` for report and artifact names
|
||||
shell: bash
|
||||
run: |
|
||||
if [ "${{ matrix.machine_type }}" = "1gaudi" ]; then
|
||||
machine_type=single-gpu
|
||||
elif [ "${{ matrix.machine_type }}" = "2gaudi" ]; then
|
||||
machine_type=multi-gpu
|
||||
else
|
||||
machine_type=${{ matrix.machine_type }}
|
||||
fi
|
||||
echo "machine_type=$machine_type" >> $GITHUB_ENV
|
||||
|
||||
- name: Run all pipeline tests on Intel Gaudi
|
||||
run: |
|
||||
python3 -m pytest -v --make-reports=${{ env.machine_type }}_run_pipelines_torch_gpu_test_reports tests/pipelines -m "not not_device_test"
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
run: |
|
||||
cat reports/${{ env.machine_type }}_run_pipelines_torch_gpu_test_reports/failures_short.txt
|
||||
|
||||
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_pipelines_torch_gpu_test_reports"
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: ${{ env.machine_type }}_run_pipelines_torch_gpu_test_reports
|
||||
path: reports/${{ env.machine_type }}_run_pipelines_torch_gpu_test_reports
|
||||
|
||||
run_examples_gpu:
|
||||
if: ${{ inputs.job == 'run_examples_gpu' }}
|
||||
name: Examples directory
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
machine_type: [1gaudi]
|
||||
runs-on:
|
||||
group: ${{ inputs.runner_scale_set }}-${{ matrix.machine_type }}
|
||||
container:
|
||||
image: vault.habana.ai/gaudi-docker/1.21.1/ubuntu22.04/habanalabs/pytorch-installer-2.6.0:latest
|
||||
options: --runtime=habana
|
||||
-v /mnt/cache/.cache/huggingface:/mnt/cache/.cache/huggingface
|
||||
--env OMPI_MCA_btl_vader_single_copy_mechanism=none
|
||||
--env HABANA_VISIBLE_DEVICES
|
||||
--env HABANA_VISIBLE_MODULES
|
||||
--cap-add=sys_nice
|
||||
--shm-size=64G
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
pip install -e .[testing,torch] "numpy<2.0.0" scipy scikit-learn librosa soundfile
|
||||
|
||||
- name: HL-SMI
|
||||
run: |
|
||||
hl-smi
|
||||
echo "HABANA_VISIBLE_DEVICES=${HABANA_VISIBLE_DEVICES}"
|
||||
echo "HABANA_VISIBLE_MODULES=${HABANA_VISIBLE_MODULES}"
|
||||
|
||||
- name: Environment
|
||||
run: |
|
||||
python3 utils/print_env.py
|
||||
|
||||
- name: Show installed libraries and their versions
|
||||
run: |
|
||||
pip freeze
|
||||
|
||||
- name: Set `machine_type` for report and artifact names
|
||||
shell: bash
|
||||
run: |
|
||||
if [ "${{ matrix.machine_type }}" = "1gaudi" ]; then
|
||||
machine_type=single-gpu
|
||||
elif [ "${{ matrix.machine_type }}" = "2gaudi" ]; then
|
||||
machine_type=multi-gpu
|
||||
else
|
||||
machine_type=${{ matrix.machine_type }}
|
||||
fi
|
||||
echo "machine_type=$machine_type" >> $GITHUB_ENV
|
||||
|
||||
- name: Run examples tests on Intel Gaudi
|
||||
run: |
|
||||
pip install -r examples/pytorch/_tests_requirements.txt
|
||||
python3 -m pytest -v --make-reports=${{ env.machine_type }}_run_examples_gpu_test_reports examples/pytorch -m "not not_device_test"
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
run: |
|
||||
cat reports/${{ env.machine_type }}_run_examples_gpu_test_reports/failures_short.txt
|
||||
|
||||
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_examples_gpu_test_reports"
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: ${{ env.machine_type }}_run_examples_gpu_test_reports
|
||||
path: reports/${{ env.machine_type }}_run_examples_gpu_test_reports
|
||||
|
||||
run_torch_cuda_extensions_gpu:
|
||||
if: ${{ inputs.job == 'run_torch_cuda_extensions_gpu' }}
|
||||
name: Intel Gaudi deepspeed tests
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
machine_type: [1gaudi, 2gaudi]
|
||||
runs-on:
|
||||
group: ${{ inputs.runner_scale_set }}-${{ matrix.machine_type }}
|
||||
container:
|
||||
image: vault.habana.ai/gaudi-docker/1.21.1/ubuntu22.04/habanalabs/pytorch-installer-2.6.0:latest
|
||||
options: --runtime=habana
|
||||
-v /mnt/cache/.cache/huggingface:/mnt/cache/.cache/huggingface
|
||||
--env OMPI_MCA_btl_vader_single_copy_mechanism=none
|
||||
--env HABANA_VISIBLE_DEVICES
|
||||
--env HABANA_VISIBLE_MODULES
|
||||
--cap-add=sys_nice
|
||||
--shm-size=64G
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
pip install -e .[testing,torch] "numpy<2.0.0" scipy scikit-learn librosa soundfile
|
||||
pip install git+https://github.com/HabanaAI/DeepSpeed.git@1.20.0
|
||||
|
||||
- name: HL-SMI
|
||||
run: |
|
||||
hl-smi
|
||||
echo "HABANA_VISIBLE_DEVICES=${HABANA_VISIBLE_DEVICES}"
|
||||
echo "HABANA_VISIBLE_MODULES=${HABANA_VISIBLE_MODULES}"
|
||||
|
||||
- name: Environment
|
||||
run: |
|
||||
python3 utils/print_env.py
|
||||
|
||||
- name: Show installed libraries and their versions
|
||||
run: |
|
||||
pip freeze
|
||||
|
||||
- name: Set `machine_type` for report and artifact names
|
||||
shell: bash
|
||||
run: |
|
||||
if [ "${{ matrix.machine_type }}" = "1gaudi" ]; then
|
||||
machine_type=single-gpu
|
||||
elif [ "${{ matrix.machine_type }}" = "2gaudi" ]; then
|
||||
machine_type=multi-gpu
|
||||
else
|
||||
machine_type=${{ matrix.machine_type }}
|
||||
fi
|
||||
echo "machine_type=$machine_type" >> $GITHUB_ENV
|
||||
|
||||
- name: Run all deepspeed tests on intel Gaudi
|
||||
run: |
|
||||
python3 -m pytest -v --make-reports=${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports tests/deepspeed -m "not not_device_test"
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
run: |
|
||||
cat reports/${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports/failures_short.txt
|
||||
|
||||
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports"
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: ${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports
|
||||
path: reports/${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports
|
||||
|
||||
send_results:
|
||||
name: Slack Report
|
||||
needs:
|
||||
[
|
||||
setup,
|
||||
run_models_gpu,
|
||||
run_examples_gpu,
|
||||
run_torch_cuda_extensions_gpu,
|
||||
run_pipelines_torch_gpu,
|
||||
run_trainer_and_fsdp_gpu,
|
||||
]
|
||||
if: ${{ always() }}
|
||||
uses: ./.github/workflows/slack-report.yml
|
||||
with:
|
||||
job: ${{ inputs.job }}
|
||||
setup_status: ${{ needs.setup.result }}
|
||||
slack_report_channel: ${{ inputs.slack_report_channel }}
|
||||
quantization_matrix: ${{ needs.setup.outputs.quantization_matrix }}
|
||||
folder_slices: ${{ needs.setup.outputs.folder_slices }}
|
||||
report_repo_id: ${{ inputs.report_repo_id }}
|
||||
ci_event: ${{ inputs.ci_event }}
|
||||
|
||||
secrets: inherit
|
@ -1,67 +0,0 @@
|
||||
name: Self-hosted runner (Intel Gaudi3 scheduled CI caller)
|
||||
|
||||
on:
|
||||
repository_dispatch:
|
||||
workflow_dispatch:
|
||||
schedule:
|
||||
- cron: "17 2 * * *"
|
||||
|
||||
jobs:
|
||||
model-ci:
|
||||
name: Model CI
|
||||
uses: ./.github/workflows/self-scheduled-intel-gaudi.yml
|
||||
with:
|
||||
job: run_models_gpu
|
||||
ci_event: Scheduled CI (Intel) - Gaudi3
|
||||
runner_scale_set: itac-bm-emr-gaudi3-dell
|
||||
slack_report_channel: "#transformers-ci-daily-intel-gaudi3"
|
||||
report_repo_id: optimum-intel/transformers_daily_ci_intel_gaudi3
|
||||
|
||||
secrets: inherit
|
||||
|
||||
pipeline-ci:
|
||||
name: Pipeline CI
|
||||
uses: ./.github/workflows/self-scheduled-intel-gaudi.yml
|
||||
with:
|
||||
job: run_pipelines_torch_gpu
|
||||
ci_event: Scheduled CI (Intel) - Gaudi3
|
||||
runner_scale_set: itac-bm-emr-gaudi3-dell
|
||||
slack_report_channel: "#transformers-ci-daily-intel-gaudi3"
|
||||
report_repo_id: optimum-intel/transformers_daily_ci_intel_gaudi3
|
||||
|
||||
secrets: inherit
|
||||
|
||||
example-ci:
|
||||
name: Example CI
|
||||
uses: ./.github/workflows/self-scheduled-intel-gaudi.yml
|
||||
with:
|
||||
job: run_examples_gpu
|
||||
ci_event: Scheduled CI (Intel) - Gaudi3
|
||||
runner_scale_set: itac-bm-emr-gaudi3-dell
|
||||
slack_report_channel: "#transformers-ci-daily-intel-gaudi3"
|
||||
report_repo_id: optimum-intel/transformers_daily_ci_intel_gaudi3
|
||||
|
||||
secrets: inherit
|
||||
|
||||
deepspeed-ci:
|
||||
name: DeepSpeed CI
|
||||
uses: ./.github/workflows/self-scheduled-intel-gaudi.yml
|
||||
with:
|
||||
job: run_torch_cuda_extensions_gpu
|
||||
ci_event: Scheduled CI (Intel) - Gaudi3
|
||||
runner_scale_set: itac-bm-emr-gaudi3-dell
|
||||
slack_report_channel: "#transformers-ci-daily-intel-gaudi3"
|
||||
report_repo_id: optimum-intel/transformers_daily_ci_intel_gaudi3
|
||||
|
||||
secrets: inherit
|
||||
|
||||
trainer-fsdp-ci:
|
||||
name: Trainer/FSDP CI
|
||||
uses: ./.github/workflows/self-scheduled-intel-gaudi.yml
|
||||
with:
|
||||
job: run_trainer_and_fsdp_gpu
|
||||
ci_event: Scheduled CI (Intel) - Gaudi3
|
||||
runner_scale_set: itac-bm-emr-gaudi3-dell
|
||||
slack_report_channel: "#transformers-ci-daily-intel-gaudi3"
|
||||
report_repo_id: optimum-intel/transformers_daily_ci_intel_gaudi3
|
||||
secrets: inherit
|
39
.github/workflows/self-scheduled.yml
vendored
39
.github/workflows/self-scheduled.yml
vendored
@ -15,6 +15,9 @@ on:
|
||||
slack_report_channel:
|
||||
required: true
|
||||
type: string
|
||||
runner:
|
||||
required: true
|
||||
type: string
|
||||
docker:
|
||||
required: true
|
||||
type: string
|
||||
@ -50,7 +53,7 @@ jobs:
|
||||
name: Setup
|
||||
strategy:
|
||||
matrix:
|
||||
machine_type: [aws-g5-4xlarge-cache, aws-g5-12xlarge-cache]
|
||||
machine_type: [aws-g4dn-4xlarge-cache, aws-g4dn-12xlarge-cache]
|
||||
runs-on:
|
||||
group: '${{ matrix.machine_type }}'
|
||||
container:
|
||||
@ -59,7 +62,6 @@ jobs:
|
||||
outputs:
|
||||
folder_slices: ${{ steps.set-matrix.outputs.folder_slices }}
|
||||
slice_ids: ${{ steps.set-matrix.outputs.slice_ids }}
|
||||
runner_map: ${{ steps.set-matrix.outputs.runner_map }}
|
||||
quantization_matrix: ${{ steps.set-matrix-quantization.outputs.quantization_matrix }}
|
||||
steps:
|
||||
- name: Update clone
|
||||
@ -86,7 +88,6 @@ jobs:
|
||||
if [ "${{ inputs.job }}" = "run_models_gpu" ]; then
|
||||
echo "folder_slices=$(python3 ../utils/split_model_tests.py --num_splits ${{ env.NUM_SLICES }})" >> $GITHUB_OUTPUT
|
||||
echo "slice_ids=$(python3 -c 'd = list(range(${{ env.NUM_SLICES }})); print(d)')" >> $GITHUB_OUTPUT
|
||||
echo "runner_map=$(python3 ../utils/get_runner_map.py)" >> $GITHUB_OUTPUT
|
||||
elif [ "${{ inputs.job }}" = "run_trainer_and_fsdp_gpu" ]; then
|
||||
echo "folder_slices=[['trainer'], ['fsdp']]" >> $GITHUB_OUTPUT
|
||||
echo "slice_ids=[0, 1]" >> $GITHUB_OUTPUT
|
||||
@ -110,14 +111,14 @@ jobs:
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
machine_type: [single-gpu, multi-gpu]
|
||||
machine_type: [aws-g4dn-4xlarge-cache, aws-g4dn-12xlarge-cache]
|
||||
slice_id: ${{ fromJSON(needs.setup.outputs.slice_ids) }}
|
||||
uses: ./.github/workflows/model_jobs.yml
|
||||
with:
|
||||
folder_slices: ${{ needs.setup.outputs.folder_slices }}
|
||||
machine_type: ${{ matrix.machine_type }}
|
||||
slice_id: ${{ matrix.slice_id }}
|
||||
runner_map: ${{ needs.setup.outputs.runner_map }}
|
||||
runner: ${{ inputs.runner }}
|
||||
docker: ${{ inputs.docker }}
|
||||
secrets: inherit
|
||||
|
||||
@ -128,14 +129,14 @@ jobs:
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
machine_type: [aws-g5-4xlarge-cache, aws-g5-12xlarge-cache]
|
||||
machine_type: [aws-g4dn-4xlarge-cache, aws-g4dn-12xlarge-cache]
|
||||
slice_id: [0, 1]
|
||||
uses: ./.github/workflows/model_jobs.yml
|
||||
with:
|
||||
folder_slices: ${{ needs.setup.outputs.folder_slices }}
|
||||
machine_type: ${{ matrix.machine_type }}
|
||||
slice_id: ${{ matrix.slice_id }}
|
||||
runner_map: ${{ needs.setup.outputs.runner_map }}
|
||||
runner: ${{ inputs.runner }}
|
||||
docker: ${{ inputs.docker }}
|
||||
report_name_prefix: run_trainer_and_fsdp_gpu
|
||||
secrets: inherit
|
||||
@ -146,7 +147,7 @@ jobs:
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
machine_type: [aws-g5-4xlarge-cache, aws-g5-12xlarge-cache]
|
||||
machine_type: [aws-g4dn-4xlarge-cache, aws-g4dn-12xlarge-cache]
|
||||
runs-on:
|
||||
group: '${{ matrix.machine_type }}'
|
||||
container:
|
||||
@ -180,9 +181,9 @@ jobs:
|
||||
run: |
|
||||
echo "${{ matrix.machine_type }}"
|
||||
|
||||
if [ "${{ matrix.machine_type }}" = "aws-g5-4xlarge-cache" ]; then
|
||||
if [ "${{ matrix.machine_type }}" = "aws-g4dn-4xlarge-cache" ]; then
|
||||
machine_type=single-gpu
|
||||
elif [ "${{ matrix.machine_type }}" = "aws-g5-12xlarge-cache" ]; then
|
||||
elif [ "${{ matrix.machine_type }}" = "aws-g4dn-12xlarge-cache" ]; then
|
||||
machine_type=multi-gpu
|
||||
else
|
||||
machine_type=${{ matrix.machine_type }}
|
||||
@ -214,7 +215,7 @@ jobs:
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
machine_type: [aws-g5-4xlarge-cache]
|
||||
machine_type: [aws-g4dn-4xlarge-cache]
|
||||
runs-on:
|
||||
group: '${{ matrix.machine_type }}'
|
||||
container:
|
||||
@ -248,9 +249,9 @@ jobs:
|
||||
run: |
|
||||
echo "${{ matrix.machine_type }}"
|
||||
|
||||
if [ "${{ matrix.machine_type }}" = "aws-g5-4xlarge-cache" ]; then
|
||||
if [ "${{ matrix.machine_type }}" = "aws-g4dn-4xlarge-cache" ]; then
|
||||
machine_type=single-gpu
|
||||
elif [ "${{ matrix.machine_type }}" = "aws-g5-12xlarge-cache" ]; then
|
||||
elif [ "${{ matrix.machine_type }}" = "aws-g4dn-12xlarge-cache" ]; then
|
||||
machine_type=multi-gpu
|
||||
else
|
||||
machine_type=${{ matrix.machine_type }}
|
||||
@ -283,7 +284,7 @@ jobs:
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
machine_type: [aws-g5-4xlarge-cache, aws-g5-12xlarge-cache]
|
||||
machine_type: [aws-g4dn-4xlarge-cache, aws-g4dn-12xlarge-cache]
|
||||
runs-on:
|
||||
group: '${{ matrix.machine_type }}'
|
||||
container:
|
||||
@ -345,9 +346,9 @@ jobs:
|
||||
run: |
|
||||
echo "${{ matrix.machine_type }}"
|
||||
|
||||
if [ "${{ matrix.machine_type }}" = "aws-g5-4xlarge-cache" ]; then
|
||||
if [ "${{ matrix.machine_type }}" = "aws-g4dn-4xlarge-cache" ]; then
|
||||
machine_type=single-gpu
|
||||
elif [ "${{ matrix.machine_type }}" = "aws-g5-12xlarge-cache" ]; then
|
||||
elif [ "${{ matrix.machine_type }}" = "aws-g4dn-12xlarge-cache" ]; then
|
||||
machine_type=multi-gpu
|
||||
else
|
||||
machine_type=${{ matrix.machine_type }}
|
||||
@ -382,7 +383,7 @@ jobs:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
folders: ${{ fromJson(needs.setup.outputs.quantization_matrix) }}
|
||||
machine_type: [aws-g5-4xlarge-cache, aws-g5-12xlarge-cache]
|
||||
machine_type: [aws-g4dn-4xlarge-cache, aws-g4dn-12xlarge-cache]
|
||||
runs-on:
|
||||
group: '${{ matrix.machine_type }}'
|
||||
container:
|
||||
@ -425,9 +426,9 @@ jobs:
|
||||
run: |
|
||||
echo "${{ matrix.machine_type }}"
|
||||
|
||||
if [ "${{ matrix.machine_type }}" = "aws-g5-4xlarge-cache" ]; then
|
||||
if [ "${{ matrix.machine_type }}" = "aws-g4dn-4xlarge-cache" ]; then
|
||||
machine_type=single-gpu
|
||||
elif [ "${{ matrix.machine_type }}" = "aws-g5-12xlarge-cache" ]; then
|
||||
elif [ "${{ matrix.machine_type }}" = "aws-g4dn-12xlarge-cache" ]; then
|
||||
machine_type=multi-gpu
|
||||
else
|
||||
machine_type=${{ matrix.machine_type }}
|
||||
|
3
.gitignore
vendored
3
.gitignore
vendored
@ -167,6 +167,3 @@ tags
|
||||
|
||||
# ruff
|
||||
.ruff_cache
|
||||
|
||||
# modular conversion
|
||||
*.modular_backup
|
||||
|
18
Makefile
18
Makefile
@ -8,19 +8,13 @@ check_dirs := examples tests src utils
|
||||
exclude_folders := ""
|
||||
|
||||
modified_only_fixup:
|
||||
@current_branch=$$(git branch --show-current); \
|
||||
if [ "$$current_branch" = "main" ]; then \
|
||||
echo "On main branch, running 'style' target instead..."; \
|
||||
$(MAKE) style; \
|
||||
$(eval modified_py_files := $(shell python utils/get_modified_files.py $(check_dirs)))
|
||||
@if test -n "$(modified_py_files)"; then \
|
||||
echo "Checking/fixing $(modified_py_files)"; \
|
||||
ruff check $(modified_py_files) --fix --exclude $(exclude_folders); \
|
||||
ruff format $(modified_py_files) --exclude $(exclude_folders);\
|
||||
else \
|
||||
modified_py_files=$$(python utils/get_modified_files.py $(check_dirs)); \
|
||||
if [ -n "$$modified_py_files" ]; then \
|
||||
echo "Checking/fixing files: $${modified_py_files}"; \
|
||||
ruff check $${modified_py_files} --fix --exclude $(exclude_folders); \
|
||||
ruff format $${modified_py_files} --exclude $(exclude_folders); \
|
||||
else \
|
||||
echo "No library .py files were modified"; \
|
||||
fi; \
|
||||
echo "No library .py files were modified"; \
|
||||
fi
|
||||
|
||||
# Update src/transformers/dependency_versions_table.py
|
||||
|
@ -44,7 +44,7 @@ limitations under the License.
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_ja.md">日本語</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_hd.md">हिन्दी</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_ru.md">Русский</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_pt-br.md">Português</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_pt-br.md">Рortuguês</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_te.md">తెలుగు</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_fr.md">Français</a> |
|
||||
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_de.md">Deutsch</a> |
|
||||
|
@ -288,7 +288,7 @@ Keywords: Music understanding, Music generation
|
||||
|
||||
## [dalle-flow](https://github.com/jina-ai/dalle-flow)
|
||||
|
||||
DALL·E Flow is an interactive workflow for generating high-definition images from a text prompt. It leverages DALL·E-Mega, GLID-3 XL, and Stable Diffusion to generate image candidates, and then calls CLIP-as-service to rank the candidates w.r.t. the prompt.
|
||||
DALL·E Flow is an interactive workflow for generating high-definition images from a text prompt. Itt leverages DALL·E-Mega, GLID-3 XL, and Stable Diffusion to generate image candidates, and then calls CLIP-as-service to rank the candidates w.r.t. the prompt.
|
||||
The preferred candidate is fed to GLID-3 XL for diffusion, which often enriches the texture and background. Finally, the candidate is upscaled to 1024x1024 via SwinIR.
|
||||
|
||||
Keywords: High-definition image generation, Stable Diffusion, DALL-E Mega, GLID-3 XL, CLIP, SwinIR
|
||||
@ -526,7 +526,7 @@ Keywords: Model deployment, CLoud, Mobile, Edge
|
||||
|
||||
## [underthesea](https://github.com/undertheseanlp/underthesea)
|
||||
|
||||
[underthesea](https://github.com/undertheseanlp/underthesea) is a Vietnamese NLP toolkit. Underthesea is a suite of open source Python modules data sets and tutorials supporting research and development in Vietnamese Natural Language Processing. We provide extremely easy API to quickly apply pretrained NLP models to your Vietnamese text, such as word segmentation, part-of-speech tagging (PoS), named entity recognition (NER), text classification and dependency parsing.
|
||||
[underthesea](https://github.com/undertheseanlp/underthesea) is a Vietnamese NLP toolkit. Underthesea is a suite of open source Python modules data sets and tutorials supporting research and development in Vietnamese Natural Language Processing. We provides extremely easy API to quickly apply pretrained NLP models to your Vietnamese text, such as word segmentation, part-of-speech tagging (PoS), named entity recognition (NER), text classification and dependency parsing.
|
||||
|
||||
Keywords: Vietnamese, NLP
|
||||
|
||||
|
@ -28,7 +28,6 @@ from transformers.testing_utils import HfDoctestModule, HfDocTestParser
|
||||
|
||||
NOT_DEVICE_TESTS = {
|
||||
"test_tokenization",
|
||||
"test_tokenization_mistral_common",
|
||||
"test_processor",
|
||||
"test_processing",
|
||||
"test_beam_constraints",
|
||||
|
@ -2,10 +2,10 @@ FROM python:3.9-slim
|
||||
ENV PYTHONDONTWRITEBYTECODE=1
|
||||
ARG REF=main
|
||||
USER root
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git g++ cmake pkg-config openssh-client git ffmpeg
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git g++ cmake pkg-config openssh-client git
|
||||
ENV UV_PYTHON=/usr/local/bin/python
|
||||
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
|
||||
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' 'torchcodec' --index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-deps timm accelerate --extra-index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-cache-dir librosa "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[sklearn,sentencepiece,vision,testing]" seqeval albumentations jiwer
|
||||
RUN uv pip uninstall transformers
|
||||
|
@ -2,10 +2,10 @@ FROM python:3.9-slim
|
||||
ENV PYTHONDONTWRITEBYTECODE=1
|
||||
ARG REF=main
|
||||
USER root
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git pkg-config openssh-client git ffmpeg
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git pkg-config openssh-client git
|
||||
ENV UV_PYTHON=/usr/local/bin/python
|
||||
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
|
||||
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' 'torchcodec' --index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-deps timm accelerate --extra-index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-cache-dir librosa "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[sklearn,sentencepiece,vision,testing]"
|
||||
RUN uv pip uninstall transformers
|
||||
|
@ -2,10 +2,10 @@ FROM python:3.9-slim
|
||||
ENV PYTHONDONTWRITEBYTECODE=1
|
||||
ARG REF=main
|
||||
USER root
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git g++ cmake pkg-config openssh-client git git-lfs ffmpeg
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git g++ cmake pkg-config openssh-client git git-lfs
|
||||
ENV UV_PYTHON=/usr/local/bin/python
|
||||
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
|
||||
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' 'torchcodec' --index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-deps timm accelerate --extra-index-url https://download.pytorch.org/whl/cpu
|
||||
RUN uv pip install --no-cache-dir librosa "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[sklearn,sentencepiece,vision,testing,tiktoken,num2words,video]"
|
||||
RUN uv pip uninstall transformers
|
||||
|
@ -26,12 +26,10 @@ RUN git clone https://github.com/huggingface/transformers && cd transformers &&
|
||||
# 1. Put several commands in a single `RUN` to avoid image/layer exporting issue. Could be revised in the future.
|
||||
# 2. Regarding `torch` part, We might need to specify proper versions for `torchvision` and `torchaudio`.
|
||||
# Currently, let's not bother to specify their versions explicitly (so installed with their latest release versions).
|
||||
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev,onnxruntime] && [ ${#PYTORCH} -gt 0 -a "$PYTORCH" != "pre" ] && VERSION='torch=='$PYTORCH'.*' || VERSION='torch'; echo "export VERSION='$VERSION'" >> ~/.profile && echo torch=$VERSION && [ "$PYTORCH" != "pre" ] && python3 -m pip install --no-cache-dir -U $VERSION torchvision torchaudio torchcodec --extra-index-url https://download.pytorch.org/whl/$CUDA || python3 -m pip install --no-cache-dir -U --pre torch torchvision torchaudio torchcodec --extra-index-url https://download.pytorch.org/whl/nightly/$CUDA && python3 -m pip uninstall -y tensorflow tensorflow_text tensorflow_probability
|
||||
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev,onnxruntime] && [ ${#PYTORCH} -gt 0 -a "$PYTORCH" != "pre" ] && VERSION='torch=='$PYTORCH'.*' || VERSION='torch'; echo "export VERSION='$VERSION'" >> ~/.profile && echo torch=$VERSION && [ "$PYTORCH" != "pre" ] && python3 -m pip install --no-cache-dir -U $VERSION torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/$CUDA || python3 -m pip install --no-cache-dir -U --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/$CUDA && python3 -m pip uninstall -y tensorflow tensorflow_text tensorflow_probability
|
||||
|
||||
RUN python3 -m pip uninstall -y flax jax
|
||||
|
||||
RUN python3 -m pip install --no-cache-dir -U timm
|
||||
|
||||
RUN python3 -m pip install --no-cache-dir git+https://github.com/facebookresearch/detectron2.git pytesseract
|
||||
RUN python3 -m pip install -U "itsdangerous<2.1.0"
|
||||
|
||||
|
@ -1,4 +1,4 @@
|
||||
FROM rocm/pytorch:rocm6.4.1_ubuntu24.04_py3.12_pytorch_release_2.7.1
|
||||
FROM rocm/pytorch:rocm6.4_ubuntu22.04_py3.10_pytorch_release_2.6.0
|
||||
LABEL maintainer="Hugging Face"
|
||||
|
||||
ARG DEBIAN_FRONTEND=noninteractive
|
||||
@ -20,12 +20,8 @@ WORKDIR /
|
||||
ADD https://api.github.com/repos/huggingface/transformers/git/refs/heads/main version.json
|
||||
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
|
||||
|
||||
# On ROCm, torchcodec is required to decode audio files
|
||||
RUN python3 -m pip install --no-cache-dir torchcodec
|
||||
# Install transformers
|
||||
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev-torch,testing,video,audio]
|
||||
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev-torch,testing,video]
|
||||
|
||||
# Remove tensorflow and flax as they are no longer supported by transformers
|
||||
RUN python3 -m pip uninstall -y tensorflow flax
|
||||
|
||||
# When installing in editable mode, `transformers` is not recognized as a package.
|
||||
@ -36,4 +32,4 @@ RUN cd transformers && python3 setup.py develop
|
||||
RUN python3 -m pip uninstall py3nvml pynvml nvidia-ml-py apex -y
|
||||
|
||||
# `kernels` may causes many failing tests
|
||||
RUN python3 -m pip uninstall -y kernels
|
||||
RUN python3 -m pip uninstall -y kernels
|
@ -21,7 +21,7 @@ RUN python3 -m pip install --no-cache-dir './transformers[deepspeed-testing]' 'p
|
||||
# Install latest release PyTorch
|
||||
# (PyTorch must be installed before pre-compiling any DeepSpeed c++/cuda ops.)
|
||||
# (https://www.deepspeed.ai/tutorials/advanced-install/#pre-install-deepspeed-ops)
|
||||
RUN python3 -m pip uninstall -y torch torchvision torchaudio && python3 -m pip install --no-cache-dir -U torch==$PYTORCH torchvision torchaudio torchcodec --extra-index-url https://download.pytorch.org/whl/$CUDA
|
||||
RUN python3 -m pip uninstall -y torch torchvision torchaudio && python3 -m pip install --no-cache-dir -U torch==$PYTORCH torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/$CUDA
|
||||
|
||||
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate
|
||||
|
||||
|
@ -19,7 +19,7 @@ RUN python3 -m pip uninstall -y torch torchvision torchaudio
|
||||
# Install **nightly** release PyTorch (flag `--pre`)
|
||||
# (PyTorch must be installed before pre-compiling any DeepSpeed c++/cuda ops.)
|
||||
# (https://www.deepspeed.ai/tutorials/advanced-install/#pre-install-deepspeed-ops)
|
||||
RUN python3 -m pip install --no-cache-dir -U --pre torch torchvision torchaudio torchcodec --extra-index-url https://download.pytorch.org/whl/nightly/$CUDA
|
||||
RUN python3 -m pip install --no-cache-dir -U --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/$CUDA
|
||||
|
||||
# `datasets` requires pandas, pandas has some modules compiled with numpy=1.x causing errors
|
||||
RUN python3 -m pip install --no-cache-dir './transformers[deepspeed-testing]' 'pandas<2' 'numpy<2'
|
||||
|
@ -1,93 +0,0 @@
|
||||
FROM intel/deep-learning-essentials:2025.1.3-0-devel-ubuntu22.04 AS base
|
||||
LABEL maintainer="Hugging Face"
|
||||
|
||||
SHELL ["/bin/bash", "-c"]
|
||||
|
||||
ARG PYTHON_VER=3.11
|
||||
ENV TORCH_DEVICE_BACKEND_AUTOLOAD=0
|
||||
ENV DEBIAN_FRONTEND=noninteractive
|
||||
|
||||
RUN apt-get remove -y python3.10 && apt-get autoremove -y
|
||||
RUN apt-get update && \
|
||||
apt-get install -y software-properties-common && \
|
||||
add-apt-repository -y ppa:deadsnakes/ppa && \
|
||||
apt-get update && \
|
||||
apt-get install -y python$PYTHON_VER python$PYTHON_VER-dev python3-pip && \
|
||||
ln -sf /usr/bin/python$PYTHON_VER /usr/bin/python3 && \
|
||||
ln -sf /usr/bin/python3 /usr/bin/python && \
|
||||
apt-get clean && \
|
||||
rm -rf /var/lib/apt/lists/*
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get -y install \
|
||||
apt-utils \
|
||||
build-essential \
|
||||
ca-certificates \
|
||||
clinfo \
|
||||
curl \
|
||||
git \
|
||||
git-lfs \
|
||||
vim \
|
||||
numactl \
|
||||
gnupg2 \
|
||||
gpg-agent \
|
||||
zlib1g-dev \
|
||||
rsync \
|
||||
sudo \
|
||||
libnl-genl-3-200 \
|
||||
xpu-smi \
|
||||
unzip \
|
||||
ffmpeg \
|
||||
tesseract-ocr \
|
||||
espeak-ng \
|
||||
wget \
|
||||
ncurses-term && \
|
||||
apt-get clean && \
|
||||
rm -rf /var/lib/apt/lists/*
|
||||
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y \
|
||||
linux-headers-$(uname -r) \
|
||||
linux-modules-extra-$(uname -r) \
|
||||
flex bison \
|
||||
intel-fw-gpu intel-i915-dkms xpu-smi \
|
||||
intel-opencl-icd libze-intel-gpu1 libze1 \
|
||||
intel-media-va-driver-non-free libmfx-gen1 libvpl2 \
|
||||
libegl-mesa0 libegl1-mesa libegl1-mesa-dev libgbm1 libgl1-mesa-dev libgl1-mesa-dri \
|
||||
libglapi-mesa libglx-mesa0 libigdgmm12 libxatracker2 mesa-va-drivers \
|
||||
mesa-vdpau-drivers mesa-vulkan-drivers va-driver-all vainfo hwinfo clinfo intel-ocloc \
|
||||
libigc-dev intel-igc-cm libigdfcl-dev libigfxcmrt-dev libze-dev && \
|
||||
apt-get clean && \
|
||||
rm -rf /var/lib/apt/lists/*
|
||||
|
||||
RUN pip install --upgrade pip
|
||||
RUN pip install triton==3.3.0
|
||||
|
||||
RUN pip install torch==2.7.0 torchvision==0.22.0 torchaudio==2.7.0 --index-url https://download.pytorch.org/whl/xpu --no-cache-dir
|
||||
|
||||
RUN pip install evaluate torchdata pyctcdecode pytesseract decord galore-torch fire scipy scikit-learn sentencepiece sacremoses nltk rouge_score librosa soundfile g2p_en mpi4py requests_mock
|
||||
RUN pip install pretty_midi essentia resampy Levenshtein av sacrebleu phonemizer invisible_watermark schedulefree
|
||||
RUN pip install gguf hqq compressed_tensors gptqmodel mergekit autoawq deepspeed torchao onnx
|
||||
RUN pip install hf_transfer huggingface-hub hf-doc-builder datasets optimum-quanto timm transformers accelerate optimum peft
|
||||
|
||||
RUN pip install git+https://github.com/linkedin/Liger-Kernel.git --extra-index-url https://download.pytorch.org/whl/test/xpu
|
||||
|
||||
# install bitsandbytes
|
||||
RUN pip install git+https://github.com/bitsandbytes-foundation/bitsandbytes.git
|
||||
|
||||
ENV OCL_ICD_VENDORS=/etc/OpenCL/vendors
|
||||
ENV FI_PROVIDER_PATH=${I_MPI_ROOT}/lib/libfabric/prov:/usr/lib/x86_64-linux-gnu/libfabric
|
||||
ENV CCL_ROOT=/usr/local
|
||||
ENV CCL_ATL_TRANSPORT=ofi
|
||||
ENV I_MPI_ROOT=/usr/local
|
||||
ENV CLASSPATH=${I_MPI_ROOT}/lib/mpi.jar
|
||||
ENV PATH=${I_MPI_ROOT}/bin/libfabric:${PATH}
|
||||
ENV LD_LIBRARY_PATH=${I_MPI_ROOT}/lib/libfabric:${LD_LIBRARY_PATH}
|
||||
|
||||
RUN touch /entrypoint.sh
|
||||
RUN chmod +x /entrypoint.sh
|
||||
RUN echo "#!/bin/bash" >> /entrypoint.sh
|
||||
RUN echo "source /opt/intel/oneapi/setvars.sh --force && /bin/bash" >> /entrypoint.sh
|
||||
|
||||
ENTRYPOINT ["/entrypoint.sh"]
|
@ -26,7 +26,7 @@ RUN [ ${#PYTORCH} -gt 0 ] && VERSION='torch=='$PYTORCH'.*' || VERSION='torch';
|
||||
RUN echo torch=$VERSION
|
||||
# `torchvision` and `torchaudio` should be installed along with `torch`, especially for nightly build.
|
||||
# Currently, let's just use their latest releases (when `torch` is installed with a release version)
|
||||
RUN python3 -m pip install --no-cache-dir -U $VERSION torchvision torchaudio torchcodec --extra-index-url https://download.pytorch.org/whl/$CUDA
|
||||
RUN python3 -m pip install --no-cache-dir -U $VERSION torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/$CUDA
|
||||
|
||||
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate
|
||||
|
||||
@ -78,9 +78,6 @@ RUN git clone https://github.com/NetEase-FuXi/EETQ.git && cd EETQ/ && git submod
|
||||
# RUN python3 -m pip install --no-cache-dir flute-kernel==0.4.1
|
||||
# RUN python3 -m pip install --no-cache-dir git+https://github.com/Dao-AILab/fast-hadamard-transform.git
|
||||
|
||||
# Add fp-quant for quantization testing
|
||||
RUN python3 -m pip install --no-cache-dir "fp-quant>=0.1.6"
|
||||
|
||||
# Add compressed-tensors for quantization testing
|
||||
RUN python3 -m pip install --no-cache-dir compressed-tensors
|
||||
|
||||
@ -96,9 +93,6 @@ RUN python3 -m pip install --no-cache-dir -e ./transformers[dev-torch]
|
||||
# `kernels` may give different outputs (within 1e-5 range) even with the same model (weights) and the same inputs
|
||||
RUN python3 -m pip uninstall -y kernels
|
||||
|
||||
# Uninstall flash-attn installed by autoawq, it causes issues here : https://github.com/huggingface/transformers/actions/runs/15915442841/job/44892146131
|
||||
RUN python3 -m pip uninstall -y flash-attn
|
||||
|
||||
# When installing in editable mode, `transformers` is not recognized as a package.
|
||||
# this line must be added in order for python to be aware of transformers.
|
||||
RUN cd transformers && python3 setup.py develop
|
||||
|
@ -280,7 +280,7 @@ resnet50d.model.load_state_dict(pretrained_model.state_dict())
|
||||
الآن لإرسال النموذج إلى Hub، تأكد من تسجيل الدخول. إما تشغيل في المحطة الأوامر الطرفية الخاصة بك:
|
||||
|
||||
```bash
|
||||
hf auth login
|
||||
huggingface-cli login
|
||||
```
|
||||
|
||||
أو من دفتر ملاحظات:
|
||||
|
@ -41,7 +41,7 @@ picture-in-picture" allowfullscreen></iframe>
|
||||
قبل مشاركة نموذج على Hub، ستحتاج إلى بيانات اعتماد حساب Hugging Face الخاصة بك. إذا كنت تستخدم منصة الأوامر، فقم بتشغيل الأمر التالي في بيئة افتراضية حيث تم تثبيت 🤗 Transformers. سيقوم هذا الأمر بتخزين رمز الدخول الخاص بك في مجلد تخزين المؤقت لـ Hugging Face (`~/.cache/` بشكل افتراضي):
|
||||
|
||||
```bash
|
||||
hf auth login
|
||||
huggingface-cli login
|
||||
```
|
||||
|
||||
إذا كنت تستخدم دفتر ملاحظات مثل Jupyter أو Colaboratory، فتأكد من تثبيت مكتبة [`huggingface_hub`](https://huggingface.co/docs/hub/adding-a-library). تسمح لك هذه المكتبة بالتفاعل برمجيًا مع Hub.
|
||||
|
@ -324,7 +324,7 @@ python examples/pytorch/summarization/run_summarization.py
|
||||
يمكن لجميع النصوص البرمجية رفع نموذجك النهائي إلى [مركز النماذج](https://huggingface.co/models). تأكد من تسجيل الدخول إلى Hugging Face قبل البدء:
|
||||
|
||||
```bash
|
||||
hf auth login
|
||||
huggingface-cli login
|
||||
```
|
||||
|
||||
ثم أضف المعلمة `push_to_hub` إلى النص البرمجي . ستقوم هذه المعلمة بإنشاء مستودع باستخدام اسم مستخدم Hugging Face واسم المجلد المحدد في `output_dir`.
|
||||
|
@ -56,7 +56,7 @@ Dateien lassen sich auch in einem Repository leicht bearbeiten, und Sie können
|
||||
Bevor Sie ein Modell für den Hub freigeben, benötigen Sie Ihre Hugging Face-Anmeldedaten. Wenn Sie Zugang zu einem Terminal haben, führen Sie den folgenden Befehl in der virtuellen Umgebung aus, in der 🤗 Transformers installiert ist. Dadurch werden Ihre Zugangsdaten in Ihrem Hugging Face-Cache-Ordner (standardmäßig `~/.cache/`) gespeichert:
|
||||
|
||||
```bash
|
||||
hf auth login
|
||||
huggingface-cli login
|
||||
```
|
||||
|
||||
Wenn Sie ein Notebook wie Jupyter oder Colaboratory verwenden, stellen Sie sicher, dass Sie die [`huggingface_hub`](https://huggingface.co/docs/hub/adding-a-library) Bibliothek installiert haben. Diese Bibliothek ermöglicht Ihnen die programmatische Interaktion mit dem Hub.
|
||||
|
@ -324,7 +324,7 @@ python examples/pytorch/summarization/run_summarization.py
|
||||
Alle Skripte können Ihr endgültiges Modell in den [Model Hub](https://huggingface.co/models) hochladen. Stellen Sie sicher, dass Sie bei Hugging Face angemeldet sind, bevor Sie beginnen:
|
||||
|
||||
```bash
|
||||
hf auth login
|
||||
huggingface-cli login
|
||||
```
|
||||
|
||||
Dann fügen Sie dem Skript das Argument `push_to_hub` hinzu. Mit diesem Argument wird ein Repository mit Ihrem Hugging Face-Benutzernamen und dem in `output_dir` angegebenen Ordnernamen erstellt.
|
||||
|
@ -473,6 +473,13 @@ Hier ist zum Beispiel ein Test, der nur ausgeführt werden muss, wenn 2 oder meh
|
||||
def test_example_with_multi_gpu():
|
||||
```
|
||||
|
||||
Wenn ein Test `tensorflow` benötigt, verwenden Sie den Dekorator `require_tf`. Zum Beispiel:
|
||||
|
||||
```python no-style
|
||||
@require_tf
|
||||
def test_tf_thing_with_tensorflow():
|
||||
```
|
||||
|
||||
Diese Dekors können gestapelt werden. Wenn zum Beispiel ein Test langsam ist und mindestens eine GPU unter pytorch benötigt, können Sie
|
||||
wie Sie ihn einrichten können:
|
||||
|
||||
@ -1197,6 +1204,9 @@ if torch.cuda.is_available():
|
||||
import numpy as np
|
||||
|
||||
np.random.seed(seed)
|
||||
|
||||
# tf RNG
|
||||
tf.random.set_seed(seed)
|
||||
```
|
||||
|
||||
### Tests debuggen
|
||||
|
@ -17,12 +17,12 @@
|
||||
title: Customizing model components
|
||||
- local: model_sharing
|
||||
title: Sharing
|
||||
- local: modular_transformers
|
||||
title: Contributing a new model to Transformers
|
||||
- local: add_new_model
|
||||
title: Legacy model contribution
|
||||
title: Adding a new model to Transformers
|
||||
- local: modular_transformers
|
||||
title: Modular Transformers
|
||||
- local: auto_docstring
|
||||
title: Documenting a model
|
||||
title: Document your models
|
||||
- local: attention_interface
|
||||
title: Customizing attention function
|
||||
title: Models
|
||||
@ -72,6 +72,8 @@
|
||||
title: Caching
|
||||
- local: kv_cache
|
||||
title: KV cache strategies
|
||||
- local: serving
|
||||
title: Serving
|
||||
- local: llm_tutorial_optimization
|
||||
title: Getting the most out of LLMs
|
||||
- local: perplexity
|
||||
@ -95,18 +97,16 @@
|
||||
- local: perf_infer_gpu_one
|
||||
title: GPU
|
||||
- local: perf_infer_gpu_multi
|
||||
title: Distributed inference
|
||||
title: Distributed GPU inference
|
||||
- local: perf_infer_cpu
|
||||
title: CPU
|
||||
- local: tf_xla
|
||||
title: XLA
|
||||
title: Optimization
|
||||
- local: agents
|
||||
title: Agents
|
||||
- local: tools
|
||||
title: Tools
|
||||
- local: serving
|
||||
title: Serving
|
||||
- local: transformers_as_backend
|
||||
title: Inference server backends
|
||||
title: Inference
|
||||
- isExpanded: false
|
||||
sections:
|
||||
@ -141,6 +141,8 @@
|
||||
title: GPU
|
||||
- local: perf_train_cpu
|
||||
title: CPU
|
||||
- local: perf_train_tpu_tf
|
||||
title: TPU
|
||||
- local: perf_train_special
|
||||
title: Apple Silicon
|
||||
- local: perf_train_gaudi
|
||||
@ -179,8 +181,6 @@
|
||||
title: FBGEMM
|
||||
- local: quantization/finegrained_fp8
|
||||
title: Fine-grained FP8
|
||||
- local: quantization/fp_quant
|
||||
title: FP-Quant
|
||||
- local: gguf
|
||||
title: GGUF
|
||||
- local: quantization/gptq
|
||||
@ -363,8 +363,6 @@
|
||||
- sections:
|
||||
- local: model_doc/albert
|
||||
title: ALBERT
|
||||
- local: model_doc/arcee
|
||||
title: Arcee
|
||||
- local: model_doc/bamba
|
||||
title: Bamba
|
||||
- local: model_doc/bart
|
||||
@ -433,10 +431,6 @@
|
||||
title: DiffLlama
|
||||
- local: model_doc/distilbert
|
||||
title: DistilBERT
|
||||
- local: model_doc/doge
|
||||
title: Doge
|
||||
- local: model_doc/dots1
|
||||
title: dots1
|
||||
- local: model_doc/dpr
|
||||
title: DPR
|
||||
- local: model_doc/electra
|
||||
@ -445,16 +439,10 @@
|
||||
title: Encoder Decoder Models
|
||||
- local: model_doc/ernie
|
||||
title: ERNIE
|
||||
- local: model_doc/ernie4_5
|
||||
title: Ernie4_5
|
||||
- local: model_doc/ernie4_5_moe
|
||||
title: Ernie4_5_MoE
|
||||
- local: model_doc/ernie_m
|
||||
title: ErnieM
|
||||
- local: model_doc/esm
|
||||
title: ESM
|
||||
- local: model_doc/exaone4
|
||||
title: EXAONE-4.0
|
||||
- local: model_doc/falcon
|
||||
title: Falcon
|
||||
- local: model_doc/falcon3
|
||||
@ -485,8 +473,6 @@
|
||||
title: GLM
|
||||
- local: model_doc/glm4
|
||||
title: glm4
|
||||
- local: model_doc/glm4_moe
|
||||
title: glm4_moe
|
||||
- local: model_doc/openai-gpt
|
||||
title: GPT
|
||||
- local: model_doc/gpt_neo
|
||||
@ -529,8 +515,6 @@
|
||||
title: Jukebox
|
||||
- local: model_doc/led
|
||||
title: LED
|
||||
- local: model_doc/lfm2
|
||||
title: LFM2
|
||||
- local: model_doc/llama
|
||||
title: LLaMA
|
||||
- local: model_doc/llama2
|
||||
@ -575,8 +559,6 @@
|
||||
title: MobileBERT
|
||||
- local: model_doc/modernbert
|
||||
title: ModernBert
|
||||
- local: model_doc/modernbert-decoder
|
||||
title: ModernBERTDecoder
|
||||
- local: model_doc/mpnet
|
||||
title: MPNet
|
||||
- local: model_doc/mpt
|
||||
@ -671,8 +653,6 @@
|
||||
title: SwitchTransformers
|
||||
- local: model_doc/t5
|
||||
title: T5
|
||||
- local: model_doc/t5gemma
|
||||
title: T5Gemma
|
||||
- local: model_doc/t5v1.1
|
||||
title: T5v1.1
|
||||
- local: model_doc/tapex
|
||||
@ -699,8 +679,6 @@
|
||||
title: XLM-V
|
||||
- local: model_doc/xlnet
|
||||
title: XLNet
|
||||
- local: model_doc/xlstm
|
||||
title: xLSTM
|
||||
- local: model_doc/yoso
|
||||
title: YOSO
|
||||
- local: model_doc/zamba
|
||||
@ -709,8 +687,6 @@
|
||||
title: Zamba2
|
||||
title: Text models
|
||||
- sections:
|
||||
- local: model_doc/aimv2
|
||||
title: Aimv2
|
||||
- local: model_doc/beit
|
||||
title: BEiT
|
||||
- local: model_doc/bit
|
||||
@ -727,12 +703,6 @@
|
||||
title: D-FINE
|
||||
- local: model_doc/dab-detr
|
||||
title: DAB-DETR
|
||||
- local: model_doc/deepseek_v2
|
||||
title: DeepSeek-V2
|
||||
- local: model_doc/deepseek_vl
|
||||
title: DeepseekVL
|
||||
- local: model_doc/deepseek_vl_hybrid
|
||||
title: DeepseekVLHybrid
|
||||
- local: model_doc/deformable_detr
|
||||
title: Deformable DETR
|
||||
- local: model_doc/deit
|
||||
@ -759,12 +729,8 @@
|
||||
title: DPT
|
||||
- local: model_doc/efficientformer
|
||||
title: EfficientFormer
|
||||
- local: model_doc/efficientloftr
|
||||
title: EfficientLoFTR
|
||||
- local: model_doc/efficientnet
|
||||
title: EfficientNet
|
||||
- local: model_doc/eomt
|
||||
title: EoMT
|
||||
- local: model_doc/focalnet
|
||||
title: FocalNet
|
||||
- local: model_doc/glpn
|
||||
@ -867,8 +833,6 @@
|
||||
title: CSM
|
||||
- local: model_doc/dac
|
||||
title: dac
|
||||
- local: model_doc/dia
|
||||
title: Dia
|
||||
- local: model_doc/encodec
|
||||
title: EnCodec
|
||||
- local: model_doc/fastspeech2_conformer
|
||||
@ -877,8 +841,6 @@
|
||||
title: GraniteSpeech
|
||||
- local: model_doc/hubert
|
||||
title: Hubert
|
||||
- local: model_doc/kyutai_speech_to_text
|
||||
title: Kyutai Speech-To-Text
|
||||
- local: model_doc/mctct
|
||||
title: MCTCT
|
||||
- local: model_doc/mimi
|
||||
@ -983,18 +945,12 @@
|
||||
title: Donut
|
||||
- local: model_doc/emu3
|
||||
title: Emu3
|
||||
- local: model_doc/evolla
|
||||
title: Evolla
|
||||
- local: model_doc/flava
|
||||
title: FLAVA
|
||||
- local: model_doc/gemma3
|
||||
title: Gemma3
|
||||
- local: model_doc/gemma3n
|
||||
title: Gemma3n
|
||||
- local: model_doc/git
|
||||
title: GIT
|
||||
- local: model_doc/glm4v
|
||||
title: glm4v
|
||||
- local: model_doc/got_ocr2
|
||||
title: GOT-OCR2
|
||||
- local: model_doc/granitevision
|
||||
@ -1063,8 +1019,6 @@
|
||||
title: PaliGemma
|
||||
- local: model_doc/perceiver
|
||||
title: Perceiver
|
||||
- local: model_doc/perception_lm
|
||||
title: PerceptionLM
|
||||
- local: model_doc/phi4_multimodal
|
||||
title: Phi4 Multimodal
|
||||
- local: model_doc/pix2struct
|
||||
@ -1089,8 +1043,6 @@
|
||||
title: SigLIP
|
||||
- local: model_doc/siglip2
|
||||
title: SigLIP2
|
||||
- local: model_doc/smollm3
|
||||
title: SmolLM3
|
||||
- local: model_doc/smolvlm
|
||||
title: SmolVLM
|
||||
- local: model_doc/speech-encoder-decoder
|
||||
@ -1117,8 +1069,6 @@
|
||||
title: Vision Text Dual Encoder
|
||||
- local: model_doc/visual_bert
|
||||
title: VisualBERT
|
||||
- local: model_doc/voxtral
|
||||
title: Voxtral
|
||||
- local: model_doc/xclip
|
||||
title: X-CLIP
|
||||
title: Multimodal models
|
||||
@ -1176,3 +1126,4 @@
|
||||
title: Environment Variables
|
||||
title: Reference
|
||||
title: API
|
||||
|
||||
|
@ -13,7 +13,7 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# Legacy model contribution
|
||||
# Adding a new model to Transformers
|
||||
|
||||
> [!TIP]
|
||||
> Try adding new models with a more [modular](./modular_transformers) approach first. This makes it significantly easier to contribute a model to Transformers!
|
||||
|
@ -14,9 +14,5 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# Agents
|
||||
|
||||
(deprecated)
|
||||
|
||||
> [!WARNING]
|
||||
> Agents and tools were spun out into the standalone [smolagents](https://huggingface.co/docs/smolagents/index) library. They were removed from `transformers` in v4.52.
|
||||
|
@ -60,11 +60,11 @@ You will see it prints "I just entered the attention computation" as many times
|
||||
|
||||
## Dynamically switching attention function
|
||||
|
||||
You could dynamically change the model's attention function as well:
|
||||
You could dynamically change the model's attention function as well, by overriding the `config._attn_implementation` field:
|
||||
|
||||
```python
|
||||
# Back to use original sdpa implementation
|
||||
model.set_attn_implementation("sdpa")
|
||||
model.config._attn_implementation = "sdpa"
|
||||
|
||||
model(torch.ones(1, 5, dtype=int))
|
||||
```
|
||||
@ -72,34 +72,6 @@ model(torch.ones(1, 5, dtype=int))
|
||||
and it will stop printing the statements, as it now uses the `sdpa` attention.
|
||||
This allows to quickly change an attention function, without needing to reload the model!
|
||||
|
||||
## Different attention per backbone in multimodal models
|
||||
|
||||
For multimodal models different attention functions may work better for each backbone module. For example, some vision backbones perform better in fp32, but are incompatible with FlashAttention. To continue using FlashAttention while keeping the vision encoder in fp32, create a dict and map each config to an attention implementation as shown below.
|
||||
|
||||
```python
|
||||
from transformers import AutoModelForImageTextToText
|
||||
|
||||
model_id = "facebook/chameleon-7b"
|
||||
|
||||
attention_implementation_per_backbone = {"vision_config": "sdpa", "text_config": "flash_attention_2"}
|
||||
model = AutoModelForImageTextToText.from_pretrained(model_id, attn_implementation=attention_implementation_per_backbone)
|
||||
|
||||
# NOTE: keys in the attention implementation have to be the same as the sub-config names
|
||||
for key in attention_implementation_per_backbone:
|
||||
assert key in model.config.sub_configs, f"Invalid key in `attention_implementation`"
|
||||
|
||||
# You can omit certain backbones - the default attention function (SDPA) will be used
|
||||
# This is equivalent to the previous example
|
||||
model = AutoModelForImageTextToText.from_pretrained(model_id, attn_implementation={"text_config": "flash_attention_2"})
|
||||
|
||||
|
||||
# Set the same attention implementation for all backbones with single string, same as in non-multimodal models
|
||||
model = AutoModelForImageTextToText.from_pretrained(model_id, attn_implementation="eager")
|
||||
|
||||
# Alternatively use a dict with an empty key for global configuration
|
||||
model = AutoModelForImageTextToText.from_pretrained(model_id, attn_implementation={"": "eager"})
|
||||
```
|
||||
|
||||
## What about new args needed in my custom attention function?
|
||||
|
||||
But indeed, what if the new function requires a new arg to be properly used? It's no issue! Models supporting the
|
||||
|
@ -14,26 +14,43 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# Documenting a model
|
||||
# Utilizing the @auto_docstring Decorator
|
||||
|
||||
The `@auto_docstring` decorator in Transformers generates consistent docstrings for model classes and their methods. It reduces boilerplate by automatically including standard argument descriptions while also allowing overrides to add new or custom arguments. [Contributing a new model](./modular_transformers) is easier because you don't need to manually add the standard docstrings, and only focus on documenting new arguments.
|
||||
The `@auto_docstring` decorator in the Hugging Face Transformers library helps generate docstrings for model classes and their methods, which will be used to build the documentation for the library. It aims to improve consistency and reduce boilerplate by automatically including standard argument descriptions and allowing for targeted overrides and additions.
|
||||
|
||||
This guide describes how to use the `@auto_docstring` decorator and how it works.
|
||||
---
|
||||
|
||||
## @auto_docstring
|
||||
## 📜 How it Works
|
||||
|
||||
Start by importing the decorator in the modeling file (`modular_model.py` or `modeling_model.py`).
|
||||
The `@auto_docstring` decorator constructs docstrings by:
|
||||
|
||||
1. **Signature Inspection:** It inspects the signature (arguments, types, defaults) of the decorated class's `__init__` method or the decorated function.
|
||||
2. **Centralized Docstring Fetching:** It retrieves predefined docstrings for common arguments (e.g., `input_ids`, `attention_mask`) from internal library sources (like `ModelArgs` or `ImageProcessorArgs` in `utils/args_doc.py`).
|
||||
3. **Overriding or Adding Arguments Descriptions:**
|
||||
* **Direct Docstring Block:** It incorporates custom docstring content from an `r""" """` (or `""" """`) block below the method signature or within the `__init__` docstring. This is for documenting new arguments or overriding standard descriptions.
|
||||
* **Decorator Arguments (`custom_args`):** A `custom_args` docstring block can be passed to the decorator to provide docstrings for specific arguments directly in the decorator call. This can be used to define the docstring block for new arguments once if they are repeated in multiple places in the modeling file.
|
||||
4. **Adding Classes and Functions Introduction:**
|
||||
* **`custom_intro` argument:** Allows prepending a custom introductory paragraph to a class or function docstring.
|
||||
* **Automatic Introduction Generation:** For model classes with standard naming patterns (like `ModelForCausalLM`) or belonging to a pipeline, the decorator automatically generates an appropriate introductory paragraph using `ClassDocstring` in `utils/args_doc.py` as the source.
|
||||
5. **Templating:** The decorator uses a templating system, allowing predefined docstrings to include dynamic information deduced from the `auto_modules` of the library, such as `{{processor_class}}` or `{{config_class}}`.
|
||||
6. **Deducing Relevant Examples:** The decorator attempts to find appropriate usage examples based on the model's task or pipeline compatibility. It extracts checkpoint information from the model's configuration class to provide concrete examples with real model identifiers.
|
||||
7. **Adding Return Value Documentation:** For methods like `forward`, the decorator can automatically generate the "Returns" section based on the method's return type annotation. For example, for a method returning a `ModelOutput` subclass, it will extracts field descriptions from that class's docstring to create a comprehensive return value description. A custom `Returns` section can also be manually specified in the function docstring block.
|
||||
8. **Unrolling Kwargs Typed With Unpack Operator:** For specific methods (defined in `UNROLL_KWARGS_METHODS`) or classes (defined in `UNROLL_KWARGS_CLASSES`), the decorator processes `**kwargs` parameters that are typed with `Unpack[KwargsTypedDict]`. It extracts the documentation from the TypedDict and adds each parameter to the function's docstring. Currently, this functionality is only supported for `FastImageProcessorKwargs`.
|
||||
|
||||
|
||||
---
|
||||
|
||||
## 🚀 How to Use @auto_docstring
|
||||
|
||||
### 1. Importing the Decorator
|
||||
Import the decorator into your modeling file:
|
||||
|
||||
```python
|
||||
from ...utils import auto_docstring
|
||||
```
|
||||
|
||||
Select whether you'd like to apply `@auto_docstring` to a class or function below to see how to use it.
|
||||
|
||||
<hfoptions id="type">
|
||||
<hfoption id="classes">
|
||||
|
||||
Place `@auto_docstring` directly above the class definition. The decorator derives parameter descriptions from the `__init__` method's signature and docstring.
|
||||
### 2. Applying to Classes
|
||||
Place `@auto_docstring` directly above the class definition. It uses the `__init__` method's signature and its docstring for parameter descriptions.
|
||||
|
||||
```python
|
||||
from transformers.modeling_utils import PreTrainedModel
|
||||
@ -56,7 +73,9 @@ class MyAwesomeModel(PreTrainedModel):
|
||||
# ... other methods
|
||||
```
|
||||
|
||||
Arguments can also be passed directly to `@auto_docstring` for more control. Use the `custom_intro` parameter to describe the argument and the `custom_args` parameter to describe the arguments.
|
||||
#### Advanced Class Decoration:
|
||||
|
||||
Arguments can be passed directly to `@auto_docstring` for more control:
|
||||
|
||||
```python
|
||||
@auto_docstring(
|
||||
@ -64,9 +83,9 @@ Arguments can also be passed directly to `@auto_docstring` for more control. Use
|
||||
It builds upon the standard Transformer architecture with unique modifications.""",
|
||||
custom_args="""
|
||||
custom_parameter (`type`, *optional*, defaults to `default_value`):
|
||||
A concise description for custom_parameter if not defined or overriding the description in `auto_docstring.py`.
|
||||
A concise description for custom_parameter if not defined or overriding the description in `args_doc.py`.
|
||||
internal_helper_arg (`type`, *optional*, defaults to `default_value`):
|
||||
A concise description for internal_helper_arg if not defined or overriding the description in `auto_docstring.py`.
|
||||
A concise description for internal_helper_arg if not defined or overriding the description in `args_doc.py`.
|
||||
"""
|
||||
)
|
||||
class MySpecialModel(PreTrainedModel):
|
||||
@ -74,7 +93,7 @@ class MySpecialModel(PreTrainedModel):
|
||||
# ...
|
||||
```
|
||||
|
||||
You can also choose to only use `custom_intro` and define the custom arguments directly in the class.
|
||||
Or:
|
||||
|
||||
```python
|
||||
@auto_docstring(
|
||||
@ -85,44 +104,15 @@ class MySpecialModel(PreTrainedModel):
|
||||
def __init__(self, config: ConfigType, custom_parameter: "type" = "default_value", internal_helper_arg=None):
|
||||
r"""
|
||||
custom_parameter (`type`, *optional*, defaults to `default_value`):
|
||||
A concise description for custom_parameter if not defined or overriding the description in `auto_docstring.py`.
|
||||
A concise description for custom_parameter if not defined or overriding the description in `args_doc.py`.
|
||||
internal_helper_arg (`type`, *optional*, defaults to `default_value`):
|
||||
A concise description for internal_helper_arg if not defined or overriding the description in `auto_docstring.py`.
|
||||
A concise description for internal_helper_arg if not defined or overriding the description in `args_doc.py`.
|
||||
"""
|
||||
# ...
|
||||
```
|
||||
|
||||
You should also use the `@auto_docstring` decorator for classes that inherit from [`~utils.ModelOutput`].
|
||||
|
||||
```python
|
||||
@dataclass
|
||||
@auto_docstring(
|
||||
custom_intro="""
|
||||
Custom model outputs with additional fields.
|
||||
"""
|
||||
)
|
||||
class MyModelOutput(ImageClassifierOutput):
|
||||
r"""
|
||||
loss (`torch.FloatTensor`, *optional*):
|
||||
The loss of the model.
|
||||
custom_field (`torch.FloatTensor` of shape `(batch_size, hidden_size)`, *optional*):
|
||||
A custom output field specific to this model.
|
||||
"""
|
||||
|
||||
# Standard fields like hidden_states, logits, attentions etc. can be automatically documented if the description is the same as the standard arguments.
|
||||
# However, given that the loss docstring is often different per model, you should document it in the docstring above.
|
||||
loss: Optional[torch.FloatTensor] = None
|
||||
logits: Optional[torch.FloatTensor] = None
|
||||
hidden_states: Optional[tuple[torch.FloatTensor, ...]] = None
|
||||
attentions: Optional[tuple[torch.FloatTensor, ...]] = None
|
||||
# Custom fields need to be documented in the docstring above
|
||||
custom_field: Optional[torch.FloatTensor] = None
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="functions">
|
||||
|
||||
Place `@auto_docstring` directly above the method definition. The decorator derives parameter descriptions from the function signature.
|
||||
### 3. Applying to Functions (e.g., `forward` method)
|
||||
Apply the decorator above method definitions, such as the `forward` method.
|
||||
|
||||
```python
|
||||
@auto_docstring
|
||||
@ -141,10 +131,9 @@ Place `@auto_docstring` directly above the method definition. The decorator deri
|
||||
# ...
|
||||
```
|
||||
|
||||
Arguments can also be passed directly to `@auto_docstring` for more control. Use the `custom_intro` parameter to describe the argument and the `custom_args` parameter to describe the arguments.
|
||||
|
||||
The `Returns` and `Examples` parts of the docstring can also be manually specified.
|
||||
#### Advanced Function Decoration:
|
||||
|
||||
Arguments can be passed directly to `@auto_docstring` for more control. `Returns` and `Examples` sections can also be manually specified:
|
||||
|
||||
```python
|
||||
MODEL_COMMON_CUSTOM_ARGS = r"""
|
||||
@ -191,117 +180,100 @@ class MyModel(PreTrainedModel):
|
||||
# ...
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
---
|
||||
|
||||
## Documenting arguments
|
||||
### ✍️ Documenting Arguments: Approach & Priority
|
||||
|
||||
There are some rules for documenting different types of arguments and they're listed below.
|
||||
|
||||
- Standard arguments (`input_ids`, `attention_mask`, `pixel_values`, etc.) are defined and retrieved from `auto_docstring.py`. It is the single source of truth for standard arguments and should not be redefined locally if an argument's description and shape is the same as an argument in `auto_docstring.py`.
|
||||
|
||||
If a standard argument behaves differently in your model, then you can override it locally in a `r""" """` block. This local definition has a higher priority. For example, the `labels` argument is often customized per model and typically requires overriding.
|
||||
|
||||
|
||||
- New or custom arguments should be documented within an `r""" """` block after the signature if it is a function or in the `__init__` method's docstring if it is a class.
|
||||
|
||||
```py
|
||||
argument_name (`type`, *optional*, defaults to `X`):
|
||||
Description of the argument.
|
||||
Explain its purpose, expected shape/type if complex, and default behavior.
|
||||
This can span multiple lines.
|
||||
```
|
||||
1. **Standard Arguments (e.g., `input_ids`, `attention_mask`, `pixel_values`, `encoder_hidden_states` etc.):**
|
||||
* `@auto_docstring` retrieves descriptions from a central source. Do not redefine these locally if their description and shape are the same as in `args_doc.py`.
|
||||
|
||||
2. **New or Custom Arguments:**
|
||||
* **Primary Method:** Document these within an `r""" """` docstring block following the signature (for functions) or in the `__init__` method's docstring (for class parameters).
|
||||
* **Format:**
|
||||
```
|
||||
argument_name (`type`, *optional*, defaults to `X`):
|
||||
Description of the argument.
|
||||
Explain its purpose, expected shape/type if complex, and default behavior.
|
||||
This can span multiple lines.
|
||||
```
|
||||
* Include `type` in backticks.
|
||||
* Add *optional* if the argument is not required or has a default value.
|
||||
* Add "defaults to X" if it has a default value. You don't need to add "defaults to `None`" if the default value is `None`.
|
||||
* Add "*optional*" if the argument is not required (has a default value).
|
||||
* Add "defaults to `X`" if it has a default value (no need to specify "defaults to `None`" if the default value is `None`).
|
||||
|
||||
These arguments can also be passed to `@auto_docstring` as a `custom_args` argument. It is used to define the docstring block for new arguments once if they are repeated in multiple places in the modeling file.
|
||||
3. **Overriding Standard Arguments:**
|
||||
* If a standard argument behaves differently (e.g., different expected shape, model-specific behavior), provide its complete description in the local `r""" """` docstring. This local definition takes precedence.
|
||||
* The `labels` argument is often customized per model and typically requires a specific docstring.
|
||||
|
||||
```py
|
||||
class MyModel(PreTrainedModel):
|
||||
# ...
|
||||
@auto_docstring(
|
||||
custom_intro="""
|
||||
This is a custom introduction for the function.
|
||||
"""
|
||||
custom_args=r"""
|
||||
common_arg_1 (`torch.Tensor`, *optional*, defaults to `default_value`):
|
||||
Description of common_arg_1
|
||||
"""
|
||||
)
|
||||
```
|
||||
4. **Using Decorator Arguments for Overrides or New Arguments (`custom_args`):**
|
||||
* New or custom arguments docstrings can also be passed to `@auto_docstring` as a `custom_args` argument. This can be used to define the docstring block for new arguments once if they are repeated in multiple places in the modeling file.
|
||||
|
||||
## Checking the docstrings
|
||||
---
|
||||
|
||||
Transformers includes a utility script to validate the docstrings when you open a Pull Request which triggers CI (continuous integration) checks. The script checks for the following criteria.
|
||||
### Usage with [modular files](./modular_transformers)
|
||||
|
||||
* Ensures `@auto_docstring` is applied to relevant mode classes and public methods.
|
||||
* Ensures arguments are complete and consistent. It checks that documented arguments exist in the signature and verifies whether the types and default values in the docstring match the signature. Arguments that aren't known standard arguments or if they lack a local description are flagged.
|
||||
* Reminds you to complete placeholders like `<fill_type>` and `<fill_docstring>`.
|
||||
* Ensures docstrings are formatted according to the expected docstring style.
|
||||
When working with modular files, follow these guidelines for applying the `@auto_docstring` decorator:
|
||||
|
||||
You can run this check locally - before committing - by running the following command.
|
||||
- **For standalone models in modular files:**
|
||||
Apply the `@auto_docstring` decorator just as you would in regular modeling files.
|
||||
|
||||
- **For models inheriting from other library models:**
|
||||
- When inheriting from a parent model, decorators (including `@auto_docstring`) are automatically carried over to the generated modeling file without needing to add them in your modular file.
|
||||
- If you need to modify the `@auto_docstring` behavior, apply the customized decorator in your modular file, making sure to *include all other decorators* that were present on the original function/class.
|
||||
|
||||
> **Warning**: When overriding any decorator in a modular file, you must include ALL decorators that were applied to that function/class in the parent model. If you only override some decorators, the others won't be included in the generated modeling file.
|
||||
|
||||
|
||||
**Note**: The `check_auto_docstrings` tool doesn't check modular files directly, but it will check (and modify when using `--fix_and_overwrite`) the generated modeling files. If issues are found in the generated files, you'll need to update your modular files accordingly.
|
||||
|
||||
---
|
||||
|
||||
## ✅ Checking Your Docstrings with `check_auto_docstrings`
|
||||
|
||||
The library includes a utility script to validate docstrings. This check is typically run during Continuous Integration (CI).
|
||||
|
||||
#### What it Checks:
|
||||
|
||||
* **Decorator Presence:** Ensures `@auto_docstring` is applied to relevant model classes and public methods. (TODO)
|
||||
* **Argument Completeness & Consistency:**
|
||||
* Flags arguments in the signature that are not known standard arguments and lack a local description.
|
||||
* Ensures documented arguments exist in the signature. (TODO)
|
||||
* Verifies that types and default values in the docstring match the signature. (TODO)
|
||||
* **Placeholder Detection:** Reminds you to complete placeholders like `<fill_type>` or `<fill_docstring>`.
|
||||
* **Formatting:** Adherence to the expected docstring style.
|
||||
|
||||
#### Running the Check Locally:
|
||||
|
||||
Run this check locally before committing. The common command is:
|
||||
|
||||
```bash
|
||||
make fix-copies
|
||||
```
|
||||
|
||||
`make fix-copies` runs several other checks as well. If you don't need those checks, run the command below to only perform docstring and auto-docstring checks.
|
||||
Alternatively, to only perform docstrings and auto-docstring checks, you can use:
|
||||
|
||||
```bash
|
||||
python utils/check_docstrings.py # to only check files included in the diff without fixing them
|
||||
# python utils/check_docstrings.py --fix_and_overwrite # to fix and overwrite the files in the diff
|
||||
# python utils/check_docstrings.py --fix_and_overwrite --check_all # to fix and overwrite all files
|
||||
# Or: python utils/check_docstrings.py --fix_and_overwrite # to fix and overwrite the files in the diff
|
||||
# Or: python utils/check_docstrings.py --fix_and_overwrite --check_all # to fix and overwrite all files
|
||||
```
|
||||
|
||||
## modular_model.py files
|
||||
#### Workflow with the Checker:
|
||||
|
||||
When working with modular files (`modular_model.py`), follow the guidelines below for applying `@auto_docstring`.
|
||||
1. Add `@auto_docstring(...)` to the class or method.
|
||||
2. For new, custom, or overridden arguments, add descriptions in an `r""" """` block.
|
||||
3. Run `make fix-copies` (or the `check_docstrings.py` utility).
|
||||
* For unrecognized arguments lacking documentation, the utility will create placeholder entries.
|
||||
4. Manually edit these placeholders with accurate types and descriptions.
|
||||
5. Re-run the check to ensure all issues are resolved.
|
||||
|
||||
- For standalone models in modular files, apply `@auto_docstring` like you would in a `modeling_model.py` file.
|
||||
- For models that inherit from other library models, `@auto_docstring` is automatically carried over to the generated modeling file. You don't need to add `@auto_docstring` in your modular file.
|
||||
---
|
||||
|
||||
If you need to modify the `@auto_docstring` behavior, apply the customized decorator in your modular file. Make sure to **include all other decorators** that are present in the original function or class.
|
||||
## 🔑 Key Takeaways & Best Practices
|
||||
|
||||
> [!WARNING]
|
||||
> When overriding any decorator in a modular file, you must include **all** decorators that were applied to that function or class in the parent model. If you only override some decorators, the others won't be included in the generated modeling file.
|
||||
|
||||
## How it works
|
||||
|
||||
The `@auto_docstring` decorator automatically generates docstrings by:
|
||||
|
||||
1. Inspecting the signature (arguments, types, defaults) of the decorated class' `__init__` method or the decorated function.
|
||||
2. Retrieving the predefined docstrings for common arguments (`input_ids`, `attention_mask`, etc.) from internal library sources like [`ModelArgs`], [`ImageProcessorArgs`], and the `auto_docstring.py` file.
|
||||
3. Adding argument descriptions in one of two ways as shown below.
|
||||
|
||||
| method | description | usage |
|
||||
|---|---|---|
|
||||
| `r""" """` | add custom docstring content directly to a method signature or within the `__init__` docstring | document new arguments or override standard descriptions |
|
||||
| `custom_args` | add custom docstrings for specific arguments directly in `@auto_docstring` | define docstring for new arguments once if they're repeated in multiple places in the modeling file |
|
||||
|
||||
4. Adding class and function descriptions. For model classes with standard naming patterns, like `ModelForCausalLM`, or if it belongs to a pipeline, `@auto_docstring` automatically generates the appropriate descriptions with `ClassDocstring` from `auto_docstring.py`.
|
||||
|
||||
`@auto_docstring` also accepts the `custom_intro` argument to describe a class or function.
|
||||
|
||||
5. Using a templating system to allow predefined docstrings to include dynamic information from Transformers' [auto_modules](https://github.com/huggingface/transformers/tree/main/src/transformers/models/auto) such as `{{processor_class}}` and `{{config_class}}`.
|
||||
|
||||
6. Finding appropriate usage examples based on the model's task or pipeline compatibility. It extracts checkpoint information form the model's configuration class to provide concrete examples with real model identifiers.
|
||||
|
||||
7. Adding return values to the docstring. For methods like `forward`, the decorator automatically generates the `Returns` field in the docstring based on the method's return type annotation.
|
||||
|
||||
For example, if a method returns a [`~transformers.utils.ModelOutput`] subclass, `@auto_docstring` extracts the field descriptions from the class' docstring to create a comprehensive return value description. You can also manually specifiy a custom `Returns` field in a functions docstring.
|
||||
|
||||
8. Unrolling kwargs typed with the unpack operator. For specific methods (defined in `UNROLL_KWARGS_METHODS`) or classes (defined in `UNROLL_KWARGS_CLASSES`), the decorator processes `**kwargs` parameters that are typed with `Unpack[KwargsTypedDict]`. It extracts the documentations from the `TypedDict` and adds each parameter to the function's docstring.
|
||||
|
||||
Currently only supported for [`FastImageProcessorKwargs`].
|
||||
|
||||
## Best practices
|
||||
|
||||
Follow the best practices below to help maintain consistent and informative documentation for Transformers!
|
||||
|
||||
* Use `@auto_docstring` for new PyTorch model classes ([`PreTrainedModel`] subclasses) and their primary methods like `forward` or `get_text_features`.
|
||||
* For classes, `@auto_docstring` retrieves parameter descriptions from the `__init__` method's docstring.
|
||||
* Rely on standard docstrings and do not redefine common arguments unless their behavior is different in your model.
|
||||
* Use `@auto_docstring` for new PyTorch model classes (`PreTrainedModel` subclasses) and their primary for methods (e.g., `forward`, `get_text_features` etc.).
|
||||
* For classes, the `__init__` method's docstring is the main source for parameter descriptions when using `@auto_docstring` on the class.
|
||||
* Rely on standard docstrings; do not redefine common arguments unless their behavior is different in your specific model.
|
||||
* Document new or custom arguments clearly.
|
||||
* Run `check_docstrings` locally and iteratively.
|
||||
|
||||
By following these guidelines, you help maintain consistent and informative documentation for the Hugging Face Transformers library 🤗.
|
||||
|
@ -82,18 +82,24 @@ When you use Transformers' [`Cache`] class, the self-attention module performs s
|
||||
|
||||
## Cache storage implementation
|
||||
|
||||
Caches are structured as a list of layers, where each layer contains a key and value cache. The key and value caches are tensors with the shape `[batch_size, num_heads, seq_len, head_dim]`.
|
||||
The actual storage of key-value pairs varies between cache implementations. As an example, consider the [`DynamicCache`].
|
||||
|
||||
Layers can be of different types (e.g. `DynamicLayer`, `StaticLayer`, `SlidingWindowLayer`), which mostly changes how sequence length is handled and how the cache is updated.
|
||||
|
||||
The simplest is a `DynamicLayer` that grows as more tokens are processed. The sequence length dimension (`seq_len`) increases with each new token:
|
||||
In [`DynamicCache`], the key-value pairs are stored as two lists of tensors. Each tensor in the lists have the shape `[batch_size, num_heads, seq_len, head_dim]`.
|
||||
- `key_cache`: A list of tensors, one for each layer.
|
||||
- `value_cache`: A list of tensors, one for each layer.
|
||||
|
||||
When new tokens are processed:
|
||||
|
||||
1. For each layer, the new key and value states are concatenated with the existing cache.
|
||||
```py
|
||||
cache.layers[idx].keys = torch.cat([cache.layers[idx].keys, key_states], dim=-2)
|
||||
cache.layers[idx].values = torch.cat([cache.layers[idx].values, value_states], dim=-2)
|
||||
self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=-2)
|
||||
self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=-2)
|
||||
```
|
||||
|
||||
Other layer types like `StaticLayer` and `SlidingWindowLayer` have a fixed sequence length that is set when the cache is created. This makes them compatible with `torch.compile`. In the case of `SlidingWindowLayer`, existing tokens are shifted out of the cache when a new token is added.
|
||||
2. The cache grows dynamically as more tokens are processed. The sequence length dimension (`seq_len`) increases with each new token.
|
||||
|
||||
3. The cache maintains a count of seen tokens through `self._seen_tokens`. This is updated when the first layer processes a new token.
|
||||
|
||||
The example below demonstrates how to create a generation loop with [`DynamicCache`]. As discussed, the attention mask is a concatenation of past and current token values and `1` is added to the cache position for the next token.
|
||||
|
||||
@ -128,34 +134,6 @@ for _ in range(max_new_tokens):
|
||||
print(tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0])
|
||||
"[INST] Hello, what's your name. [/INST] Hello! My name is LLaMA,"
|
||||
```
|
||||
|
||||
## Cache position
|
||||
|
||||
The cache position tracks where to insert new tokens in the attention cache. It represents the *absolute* position of each token in the context, independent of padding or batch structure. Suppose you already cached `N` tokens and are now processing `K` new tokens. The cache position for the new tokens will range from `N` to `N + K - 1`. In other words, you're processing tokens at positions - `[N, N + 1, N + 2, ..., N + K - 1]`.
|
||||
|
||||
Cache position is used internally for two purposes:
|
||||
|
||||
1. Selecting new tokens to process in the input sequence and ensuring only tokens that haven’t been cached yet are passed to the model's `forward`.
|
||||
2. Storing key/value pairs at the correct positions in the cache. This is especially important for fixed-size caches, like [`StaticCache`], that pre-allocates a specific cache length.
|
||||
|
||||
The generation loop usually takes care of the cache position, but if you're writing a custom generation method, it is important that cache positions are accurate since they are used to write and read key/value states into fixed slots.
|
||||
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, DynamicCache
|
||||
|
||||
model_id = "meta-llama/Llama-2-7b-chat-hf"
|
||||
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="cuda:0")
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
||||
|
||||
messages = [{"role": "user", "content": "You are a helpful assistant."}]
|
||||
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt", return_dict=True).to("cuda:0")
|
||||
generated_ids = model.generate(**inputs, use_cache=True, max_new_tokens=10)
|
||||
|
||||
```
|
||||
|
||||
|
||||
## Legacy cache format
|
||||
|
||||
Before the [`Cache`] class, the cache used to be stored as a tuple of tuples of tensors. This format is dynamic because it grows as text is generated, similar to [`DynamicCache`].
|
||||
@ -165,7 +143,7 @@ The legacy format is essentially the same data structure but organized different
|
||||
- The tensors have the same shape `[batch_size, num_heads, seq_len, head_dim]`.
|
||||
- The format is less flexible and doesn't support features like quantization or offloading.
|
||||
|
||||
If your project depends on this legacy format, we recommend to convert to [`DynamicCache`] with [`~DynamicCache.from_legacy_cache`]. Note that legacy cache format is deprecated and not used anymore in `Transformers`. You can convert back to tuple format with [`DynamicCache.to_legacy_cache`] functions, which is helpful if you have custom logic for manipulating a cache in a specific format.
|
||||
If your project depends on this legacy format, you can convert between [`DynamicCache`] and a tuple of tuples as shown below with the [`~DynamicCache.from_legacy_cache`] and [`DynamicCache.to_legacy_cache`] functions. This is helpful if you have custom logic for manipulating a cache in a specific format.
|
||||
|
||||
```py
|
||||
import torch
|
||||
@ -181,4 +159,4 @@ generation_outputs = model.generate(**inputs, return_dict_in_generate=True, retu
|
||||
|
||||
cache = DynamicCache.from_legacy_cache(generation_outputs.past_key_values)
|
||||
legacy_format_cache = cache.to_legacy_cache()
|
||||
```
|
||||
```
|
@ -56,7 +56,7 @@ Create a [`ImageTextToTextPipeline`] and pass the chat to it. For large models,
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
|
||||
pipeline = pipeline("image-text-to-text", model="llava-hf/llava-onevision-qwen2-0.5b-ov-hf", device_map="auto", torch_dtype=torch.float16)
|
||||
pipeline = pipeline("image-text-to-text", model="llava-hf/llava-onevision-qwen2-0.5b-ov-hf", device="cuda", torch_dtype=torch.float16)
|
||||
pipeline(text=messages, max_new_tokens=50, return_full_text=False)
|
||||
[{'input_text': [{'role': 'system',
|
||||
'content': [{'type': 'text',
|
||||
@ -175,7 +175,7 @@ processed_chat = processor.apply_chat_template(
|
||||
add_generation_prompt=True,
|
||||
tokenize=True,
|
||||
return_dict=True,
|
||||
video_fps=16,
|
||||
video_fps=32,
|
||||
video_load_backend="decord",
|
||||
)
|
||||
print(processed_chat.keys())
|
||||
|
@ -25,7 +25,7 @@ Check model leaderboards like [OpenLLM](https://hf.co/spaces/HuggingFaceH4/open_
|
||||
|
||||
This guide shows you how to quickly start chatting with Transformers from the command line, how build and format a conversation, and how to chat using the [`TextGenerationPipeline`].
|
||||
|
||||
## chat CLI
|
||||
## transformers CLI
|
||||
|
||||
After you've [installed Transformers](./installation.md), chat with a model directly from the command line as shown below. It launches an interactive session with a model, with a few base commands listed at the start of the session.
|
||||
|
||||
@ -49,8 +49,7 @@ For a full list of options, run the command below.
|
||||
transformers chat -h
|
||||
```
|
||||
|
||||
The chat is implemented on top of the [AutoClass](./model_doc/auto), using tooling from [text generation](./llm_tutorial) and [chat](./chat_templating). It uses the `transformers serve` CLI under the hood ([docs](./serving.md#serve-cli)).
|
||||
|
||||
The chat is implemented on top of the [AutoClass](./model_doc/auto), using tooling from [text generation](./llm_tutorial) and [chat](./chat_templating).
|
||||
|
||||
## TextGenerationPipeline
|
||||
|
||||
|
@ -271,7 +271,7 @@ The model is ready to be pushed to the Hub now. Log in to your Hugging Face acco
|
||||
<hfoption id="huggingface-CLI">
|
||||
|
||||
```bash
|
||||
hf auth login
|
||||
huggingface-cli login
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
|
@ -26,7 +26,6 @@ Pass the audio signal, typically stored in `array`, to the feature extractor and
|
||||
from transformers import AutoFeatureExtractor
|
||||
|
||||
feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base")
|
||||
dataset = load_dataset("PolyAI/minds14", name="en-US", split="train")
|
||||
processed_sample = feature_extractor(dataset[0]["audio"]["array"], sampling_rate=16000)
|
||||
processed_sample
|
||||
{'input_values': [array([ 9.4472744e-05, 3.0777880e-03, -2.8888427e-03, ...,
|
||||
|
@ -468,17 +468,9 @@ def generate(model, input_ids, generation_config=None, left_padding=None, **kwar
|
||||
Follow the recommended practices below to ensure your custom decoding method works as expected.
|
||||
- Feel free to reuse the logic for validation and input preparation in the original [`~GenerationMixin.generate`].
|
||||
- Pin the `transformers` version in the requirements if you use any private method/attribute in `model`.
|
||||
- You can add other files in the `custom_generate` folder, and use relative imports.
|
||||
- Consider adding model validation, input validation, or even a separate test file to help users sanity-check your code in their environment.
|
||||
|
||||
Your custom `generate` method can relative import code from the `custom_generate` folder. For example, if you have a `utils.py` file, you can import it like this:
|
||||
|
||||
```py
|
||||
from .utils import some_function
|
||||
```
|
||||
|
||||
Only relative imports from the same-level `custom_generate` folder are supported. Parent/sibling folder imports are not valid. The `custom_generate` argument also works locally with any directory that contains a `custom_generate` structure. This is the recommended workflow for developing your custom decoding method.
|
||||
|
||||
|
||||
#### requirements.txt
|
||||
|
||||
You can optionally specify additional Python requirements in a `requirements.txt` file inside the `custom_generate` folder. These are checked at runtime and an exception will be thrown if they're missing, nudging users to update their environment accordingly.
|
||||
|
@ -356,93 +356,66 @@ A [`Constraint`] can be used to force the generation to include specific tokens
|
||||
|
||||
## Caches
|
||||
|
||||
[[autodoc]] CacheLayerMixin
|
||||
- update
|
||||
- get_seq_length
|
||||
- get_mask_sizes
|
||||
- get_max_cache_shape
|
||||
- reset
|
||||
- reorder_cache
|
||||
|
||||
[[autodoc]] DynamicLayer
|
||||
- update
|
||||
- crop
|
||||
- batch_repeat_interleave
|
||||
- batch_select_indices
|
||||
|
||||
[[autodoc]] StaticLayer
|
||||
- update
|
||||
|
||||
[[autodoc]] SlidingWindowLayer
|
||||
- update
|
||||
|
||||
[[autodoc]] CacheProcessor
|
||||
- pre_update
|
||||
- post_update
|
||||
|
||||
[[autodoc]] OffloadedCacheProcessor
|
||||
- pre_update
|
||||
|
||||
[[autodoc]] QuantizedCacheProcessor
|
||||
- post_update
|
||||
|
||||
[[autodoc]] QuantoQuantizedCacheProcessor
|
||||
- post_update
|
||||
|
||||
[[autodoc]] HQQQuantizedCacheProcessor
|
||||
- post_update
|
||||
|
||||
[[autodoc]] Cache
|
||||
- update
|
||||
- get_seq_length
|
||||
- get_mask_sizes
|
||||
- get_max_cache_shape
|
||||
- reset
|
||||
- reorder_cache
|
||||
- crop
|
||||
- batch_repeat_interleave
|
||||
- batch_select_indices
|
||||
|
||||
[[autodoc]] CacheConfig
|
||||
- update
|
||||
|
||||
[[autodoc]] QuantizedCacheConfig
|
||||
- validate
|
||||
|
||||
[[autodoc]] DynamicCache
|
||||
- update
|
||||
- get_seq_length
|
||||
- reorder_cache
|
||||
- to_legacy_cache
|
||||
- from_legacy_cache
|
||||
|
||||
[[autodoc]] QuantizedCache
|
||||
- update
|
||||
- get_seq_length
|
||||
|
||||
[[autodoc]] QuantoQuantizedCache
|
||||
|
||||
[[autodoc]] QuantoQuantizedCacheProcessor
|
||||
|
||||
[[autodoc]] HQQQuantizedCache
|
||||
|
||||
[[autodoc]] HQQQuantizedCacheProcessor
|
||||
|
||||
[[autodoc]] OffloadedCache
|
||||
- update
|
||||
- prefetch_layer
|
||||
- evict_previous_layer
|
||||
|
||||
[[autodoc]] StaticCache
|
||||
- update
|
||||
- get_seq_length
|
||||
- reset
|
||||
|
||||
[[autodoc]] OffloadedStaticCache
|
||||
- update
|
||||
- get_seq_length
|
||||
- reset
|
||||
|
||||
[[autodoc]] HybridCache
|
||||
|
||||
[[autodoc]] HybridChunkedCache
|
||||
- update
|
||||
- get_seq_length
|
||||
- reset
|
||||
|
||||
[[autodoc]] SlidingWindowCache
|
||||
- update
|
||||
- reset
|
||||
|
||||
[[autodoc]] EncoderDecoderCache
|
||||
- get_seq_length
|
||||
- to_legacy_cache
|
||||
- from_legacy_cache
|
||||
- reset
|
||||
- reorder_cache
|
||||
|
||||
[[autodoc]] MambaCache
|
||||
- update_conv_state
|
||||
- update_ssm_state
|
||||
- reset
|
||||
|
||||
[[autodoc]] CacheConfig
|
||||
|
||||
[[autodoc]] QuantizedCacheConfig
|
||||
|
||||
|
||||
## Watermark Utils
|
||||
|
||||
[[autodoc]] WatermarkingConfig
|
||||
|
@ -247,114 +247,3 @@ first and last layer will be shown. This is useful when some layers (typically c
|
||||
layers.
|
||||
|
||||
[[autodoc]] model_addition_debugger_context
|
||||
|
||||
## Analyzer of skipped tests
|
||||
|
||||
### Scan skipped tests - for model adders and maintainers
|
||||
|
||||
This small util is a power user tool intended for model adders and maintainers. It lists all test methods
|
||||
existing in `test_modeling_common.py`, inherited by all model tester classes, and scans the repository to measure
|
||||
how many tests are being skipped and for which models.
|
||||
|
||||
### Rationale
|
||||
|
||||
When porting models to transformers, tests fail as they should, and sometimes `test_modeling_common` feels irreconcilable with the peculiarities of our brand new model. But how can we be sure we're not breaking everything by adding a seemingly innocent skip?
|
||||
|
||||
This utility:
|
||||
- scans all test_modeling_common methods
|
||||
- looks for times where a method is skipped
|
||||
- returns a summary json you can load as a DataFrame/inspect
|
||||
|
||||
**For instance test_inputs_embeds is skipped in a whooping 39% proportion at the time of writing this util.**
|
||||
|
||||

|
||||
|
||||
|
||||
### Usage
|
||||
|
||||
You can run the skipped test analyzer in two ways:
|
||||
|
||||
#### Full scan (default)
|
||||
|
||||
From the root of `transformers` repo, scans all common test methods and outputs the results to a JSON file (default: `all_tests_scan_result.json`).
|
||||
|
||||
```bash
|
||||
python utils/scan_skipped_tests.py --output_dir path/to/output
|
||||
```
|
||||
|
||||
- `--output_dir` (optional): Directory where the JSON results will be saved. Defaults to the current directory.
|
||||
|
||||
**Example output:**
|
||||
|
||||
```
|
||||
🔬 Parsing 331 model test files once each...
|
||||
📝 Aggregating 224 tests...
|
||||
(224/224) test_update_candidate_strategy_with_matches_1es_3d_is_nonecodet_schedule_fa_kwargs
|
||||
✅ Scan complete.
|
||||
|
||||
📄 JSON saved to /home/pablo/git/transformers/all_tests_scan_result.json
|
||||
|
||||
```
|
||||
|
||||
And it will generate `all_tests_scan_result.json` file that you can inspect. The JSON is indexed by method name, and each entry follows this schema, indicating the origin as well (from `common`or `GenerationMixin`.)
|
||||
|
||||
```json
|
||||
{
|
||||
"<method_name>": {
|
||||
"origin": "<test suite>"
|
||||
"models_ran": ["<model_name>", ...],
|
||||
"models_skipped": ["<model_name>", ...],
|
||||
"skipped_proportion": <float>,
|
||||
"reasons_skipped": ["<model_name>: <reason>",
|
||||
...
|
||||
]
|
||||
},
|
||||
...
|
||||
}
|
||||
```
|
||||
|
||||
Which you can visualise as above with e.g. `pandas`
|
||||
|
||||
```python
|
||||
df = pd.read_json('all_tests_scan_result.json').T
|
||||
df.sort_values(by=['skipped_proportion'], ascending=False)
|
||||
|
||||
```
|
||||
|
||||
### Scan a single test method
|
||||
|
||||
You can focus on a specific test method using `--test_method_name`:
|
||||
|
||||
```bash
|
||||
$ python utils/scan_skipped_tests.py --test_method_name test_inputs_embeds --output_dir path/to/output
|
||||
```
|
||||
|
||||
- `--test_method_name`: Name of the test method to scan (e.g., `test_inputs_embeds`).
|
||||
- `--output_dir` (optional): Directory where the JSON result will be saved.
|
||||
|
||||
**Example output:**
|
||||
|
||||
```bash
|
||||
$ python utils/scan_skipped_tests.py --test_method_name test_inputs_embeds
|
||||
|
||||
🔬 Parsing 331 model test files once each...
|
||||
|
||||
== test_inputs_embeds ==
|
||||
|
||||
Ran : 199/323
|
||||
Skipped : 124/323 (38.4%)
|
||||
- aimv2: Aimv2 does not use inputs_embeds
|
||||
- align: Inputs_embeds is tested in individual model tests
|
||||
- altclip: Inputs_embeds is tested in individual model tests
|
||||
- audio_spectrogram_transformer: AST does not use inputs_embeds
|
||||
- beit: BEiT does not use inputs_embeds
|
||||
- bit: Bit does not use inputs_embeds
|
||||
- blip: Blip does not use inputs_embeds
|
||||
- blip_2: Inputs_embeds is tested in individual model tests
|
||||
- bridgetower:
|
||||
- canine: CANINE does not have a get_input_embeddings() method.
|
||||
- ...
|
||||
|
||||
📄 JSON saved to /home/pablo/git/transformers/scan_test_inputs_embeds.json
|
||||
|
||||
```
|
@ -44,7 +44,7 @@ import torch
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf")
|
||||
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf", torch_dtype=torch.float16, device_map="auto")
|
||||
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf", torch_dtype=torch.float16).to("cuda:0")
|
||||
inputs = tokenizer("I like rock music because", return_tensors="pt").to(model.device)
|
||||
|
||||
model.generate(**inputs, do_sample=False, max_new_tokens=20, use_cache=False)
|
||||
@ -59,7 +59,7 @@ import torch
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, DynamicCache
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf")
|
||||
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf", torch_dtype=torch.float16, device_map="auto")
|
||||
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf", torch_dtype=torch.float16).to("cuda:0")
|
||||
inputs = tokenizer("I like rock music because", return_tensors="pt").to(model.device)
|
||||
|
||||
past_key_values = DynamicCache()
|
||||
@ -134,7 +134,7 @@ The [`QuantizedCache`] reduces memory requirements by quantizing the KV values t
|
||||
> [!WARNING]
|
||||
> Quantizing the cache can harm latency if the context length is short and there is enough GPU memory available for generation without enabling cache quantization. Try to find a balance between memory efficiency and latency.
|
||||
|
||||
Enable [`QuantizedCache`] by configuring `cache_implementation="quantized"` in [`GenerationConfig`], and the quantization backend, as well as any additional quantization related parameters should also be passed either as a dict. You should use the default values for these additional parameters unless you're running out-of-memory. In that case, consider decreasing the residual length.
|
||||
Enable [`QuantizedCache`] by configuring `cache_implementation="quantized"` in [`GenerationConfig`], and indicate the quantization backend in [`QuantizedCacheConfig`]. Any additional quantization related parameters should also be passed either as a dict or an instance of [`QuantizedCacheConfig`]. You should use the default values for these additional parameters unless you're running out-of-memory. In that case, consider decreasing the residual length.
|
||||
|
||||
<hfoptions id="quantized-cache">
|
||||
<hfoption id="HQQQuantizedCache">
|
||||
@ -142,14 +142,13 @@ Enable [`QuantizedCache`] by configuring `cache_implementation="quantized"` in [
|
||||
For [`HQQQuantizedCache`], we recommend setting the `axis-key` and `axis-value` parameters to `1`.
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, HQQQuantizedCache
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, HQQQuantizedCache, QuantizedCacheConfig
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf")
|
||||
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf", torch_dtype=torch.float16, device_map="auto")
|
||||
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf", torch_dtype=torch.float16).to("cuda:0")
|
||||
inputs = tokenizer("I like rock music because", return_tensors="pt").to(model.device)
|
||||
|
||||
out = model.generate(**inputs, do_sample=False, max_new_tokens=20, cache_implementation="quantized", cache_config={"backend": "HQQ"})
|
||||
out = model.generate(**inputs, do_sample=False, max_new_tokens=20, cache_implementation="quantized", cache_config={"axis-key": 1, "axis-value": 1, "backend": "hqq"})
|
||||
print(tokenizer.batch_decode(out, skip_special_tokens=True)[0])
|
||||
I like rock music because it's loud and energetic. It's a great way to express myself and rel
|
||||
```
|
||||
@ -160,14 +159,13 @@ I like rock music because it's loud and energetic. It's a great way to express m
|
||||
For [`QuantoQuantizedCache`], we recommend setting the `axis-key` and `axis-value` parameters to `0`.
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, QuantoQuantizedCache
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, QuantoQuantizedCache, QuantizedCacheConfig
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf")
|
||||
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf", torch_dtype=torch.float16, device_map="auto")
|
||||
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf", torch_dtype=torch.float16).to("cuda:0")
|
||||
inputs = tokenizer("I like rock music because", return_tensors="pt").to(model.device)
|
||||
|
||||
out = model.generate(**inputs, do_sample=False, max_new_tokens=20, cache_implementation="quantized", cache_config={"nbits": 4, "backend": "quanto"})
|
||||
out = model.generate(**inputs, do_sample=False, max_new_tokens=20, cache_implementation="quantized", cache_config={"nbits": 4, "axis-key": 0, "axis-value": 0, "backend": "quanto"})
|
||||
print(tokenizer.batch_decode(out, skip_special_tokens=True)[0])
|
||||
I like rock music because it's loud and energetic. It's a great way to express myself and rel
|
||||
```
|
||||
@ -209,14 +207,14 @@ import torch
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf")
|
||||
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf", torch_dtype=torch.float16, device_map={"": 0})
|
||||
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf", torch_dtype=torch.float16, device_map="auto")
|
||||
inputs = tokenizer("Hello, my name is", return_tensors="pt").to(model.device)
|
||||
|
||||
out = model.generate(**inputs, do_sample=False, max_new_tokens=20, cache_implementation="offloaded_static")
|
||||
tokenizer.batch_decode(out, skip_special_tokens=True)[0]
|
||||
"Hello, my name is [Your Name], and I am a [Your Profession] with [Number of Years] of"
|
||||
```
|
||||
Cache offloading requires a CUDA GPU or Intel XPU.
|
||||
Cache offloading requires a CUDA GPU.
|
||||
|
||||
### Sliding window cache
|
||||
|
||||
@ -229,7 +227,7 @@ import torch
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")
|
||||
model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1", torch_dtype=torch.float16, device_map="auto")
|
||||
model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1", torch_dtype=torch.float16).to("cuda:0")
|
||||
inputs = tokenizer("Yesterday I was on a rock concert and.", return_tensors="pt").to(model.device)
|
||||
|
||||
out = model.generate(**inputs, do_sample=False, max_new_tokens=30, cache_implementation="sliding_window")
|
||||
@ -275,6 +273,7 @@ from transformers.cache_utils import (
|
||||
StaticCache,
|
||||
SlidingWindowCache,
|
||||
QuantoQuantizedCache,
|
||||
QuantizedCacheConfig,
|
||||
)
|
||||
|
||||
model_id = "meta-llama/Llama-2-7b-chat-hf"
|
||||
@ -307,15 +306,15 @@ import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer, DynamicCache, StaticCache
|
||||
|
||||
model_id = "meta-llama/Llama-2-7b-chat-hf"
|
||||
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map={"": 0})
|
||||
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="cuda")
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
||||
|
||||
# Init StaticCache with big enough max-length (1024 tokens for the below example)
|
||||
# You can also init a DynamicCache, if that suits you better
|
||||
prompt_cache = StaticCache(config=model.config, max_batch_size=1, max_cache_len=1024, device=model.device.type, dtype=torch.bfloat16)
|
||||
prompt_cache = StaticCache(config=model.config, max_batch_size=1, max_cache_len=1024, device="cuda", dtype=torch.bfloat16)
|
||||
|
||||
INITIAL_PROMPT = "You are a helpful assistant. "
|
||||
inputs_initial_prompt = tokenizer(INITIAL_PROMPT, return_tensors="pt").to(model.device.type)
|
||||
inputs_initial_prompt = tokenizer(INITIAL_PROMPT, return_tensors="pt").to("cuda")
|
||||
# This is the common prompt cached, we need to run forward without grad to be able to copy
|
||||
with torch.no_grad():
|
||||
prompt_cache = model(**inputs_initial_prompt, past_key_values = prompt_cache).past_key_values
|
||||
@ -323,7 +322,7 @@ with torch.no_grad():
|
||||
prompts = ["Help me to write a blogpost about travelling.", "What is the capital of France?"]
|
||||
responses = []
|
||||
for prompt in prompts:
|
||||
new_inputs = tokenizer(INITIAL_PROMPT + prompt, return_tensors="pt").to(model.device.type)
|
||||
new_inputs = tokenizer(INITIAL_PROMPT + prompt, return_tensors="pt").to("cuda")
|
||||
past_key_values = copy.deepcopy(prompt_cache)
|
||||
outputs = model.generate(**new_inputs, past_key_values=past_key_values,max_new_tokens=20)
|
||||
response = tokenizer.batch_decode(outputs)[0]
|
||||
|
@ -341,7 +341,7 @@ A known issue with transformer models is that the self-attention mechanism grows
|
||||
|
||||
FlashAttention and [FlashAttention-2](./perf_infer_gpu_one#flashattention-2) break up the attention computation into smaller chunks and reduces the number of intermediate read/write operations to the GPU memory to speed up inference. FlashAttention-2 improves on the original FlashAttention algorithm by also parallelizing over sequence length dimension and better partitioning work on the hardware to reduce synchronization and communication overhead.
|
||||
|
||||
To use FlashAttention-2, set [attn_implementation](https://hf.co/docs/transformers/main/en/main_classes/text_generation#transformers.PreTrainedModel.from_pretrained.attn_implementation) to `"flash_attention_2"` in [`~PreTrainedModel.from_pretrained`] or set with `model.set_attention_implementation("flash_attention_2")` to dynamically update the [attention interface](./attention_interface) after the model is loaded.
|
||||
To use FlashAttention-2, set [attn_implementation](https://hf.co/docs/transformers/main/en/main_classes/text_generation#transformers.PreTrainedModel.from_pretrained.attn_implementation) to `"flash_attention_2"` in [`~PreTrainedModel.from_pretrained`].
|
||||
|
||||
```py
|
||||
from transformers import AutoModelForCausalLM, BitsAndBytesConfig
|
||||
@ -353,14 +353,6 @@ model = AutoModelForCausalLM.from_pretrained(
|
||||
torch_dtype=torch.bfloat16,
|
||||
attn_implementation="flash_attention_2",
|
||||
)
|
||||
|
||||
# Change the model's attention dynamically after loading
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
"google/gemma-2b",
|
||||
quantization_config=quant_config,
|
||||
torch_dtype=torch.bfloat16
|
||||
)
|
||||
model.set_attention_implementation("flash_attention_2")
|
||||
```
|
||||
|
||||
### PyTorch scaled dot product attention
|
||||
@ -368,7 +360,7 @@ model.set_attention_implementation("flash_attention_2")
|
||||
Scaled dot product attention (SDPA) is automatically enabled in PyTorch 2.0 and it supports FlashAttention, xFormers, and PyTorch's C++ implementation. SDPA chooses the most performant attention algorithm if you're using a CUDA backend. For other backends, SDPA defaults to the PyTorch C++ implementation.
|
||||
|
||||
> [!TIP]
|
||||
> SDPA automatically supports FlashAttention-2 as long as you have the latest PyTorch version installed.
|
||||
> SDPA automaticallysupports FlashAttention-2 as long as you have the latest PyTorch version installed.
|
||||
|
||||
Use the [torch.nn.attention.sdpa_kernel](https://pytorch.org/docs/stable/generated/torch.nn.attention.sdpa_kernel.html) context manager to explicitly enable or disable any of the four attention algorithms. For example, use `SDPBackend.FLASH_ATTENTION` to enable FlashAttention.
|
||||
|
||||
|
@ -33,7 +33,6 @@ By default, `TrainingArguments.report_to` is set to `"all"`, so a [`Trainer`] wi
|
||||
it's the second one).
|
||||
- [`~integrations.TensorBoardCallback`] if tensorboard is accessible (either through PyTorch >= 1.4
|
||||
or tensorboardX).
|
||||
- [`~integrations.TrackioCallback`] if [trackio](https://github.com/gradio-app/trackio) is installed.
|
||||
- [`~integrations.WandbCallback`] if [wandb](https://www.wandb.com/) is installed.
|
||||
- [`~integrations.CometCallback`] if [comet_ml](https://www.comet.com/site/) is installed.
|
||||
- [`~integrations.MLflowCallback`] if [mlflow](https://www.mlflow.org/) is installed.
|
||||
@ -73,9 +72,6 @@ Here is the list of the available [`TrainerCallback`] in the library:
|
||||
|
||||
[[autodoc]] integrations.TensorBoardCallback
|
||||
|
||||
[[autodoc]] integrations.TrackioCallback
|
||||
- setup
|
||||
|
||||
[[autodoc]] integrations.WandbCallback
|
||||
- setup
|
||||
|
||||
|
@ -93,10 +93,6 @@ Learn how to quantize models in the [Quantization](../quantization) guide.
|
||||
|
||||
[[autodoc]] QuarkConfig
|
||||
|
||||
## FPQuantConfig
|
||||
|
||||
[[autodoc]] FPQuantConfig
|
||||
|
||||
## AutoRoundConfig
|
||||
|
||||
[[autodoc]] AutoRoundConfig
|
||||
|
@ -1,104 +0,0 @@
|
||||
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# AIMv2
|
||||
|
||||
## Overview
|
||||
|
||||
The AIMv2 model was proposed in [Multimodal Autoregressive Pre-training of Large Vision Encoders](https://arxiv.org/abs/2411.14402) by Enrico Fini, Mustafa Shukor, Xiujun Li, Philipp Dufter, Michal Klein, David Haldimann, Sai Aitharaju, Victor Guilherme Turrisi da Costa, Louis Béthune, Zhe Gan, Alexander T Toshev, Marcin Eichner, Moin Nabi, Yinfei Yang, Joshua M. Susskind, Alaaeldin El-Nouby.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
|
||||
*We introduce a novel method for pre-training of large-scale vision encoders. Building on recent advancements in autoregressive pre-training of vision models, we extend this framework to a multimodal setting, i.e., images and text. In this paper, we present AIMV2, a family of generalist vision encoders characterized by a straightforward pre-training process, scalability, and remarkable performance across a range of downstream tasks. This is achieved by pairing the vision encoder with a multimodal decoder that autoregressively generates raw image patches and text tokens. Our encoders excel not only in multimodal evaluations but also in vision benchmarks such as localization, grounding, and classification. Notably, our AIMV2-3B encoder achieves 89.5% accuracy on ImageNet-1k with a frozen trunk. Furthermore, AIMV2 consistently outperforms state-of-the-art contrastive models (e.g., CLIP, SigLIP) in multimodal image understanding across diverse settings.*
|
||||
|
||||
|
||||
This model was contributed by [Yaswanth Gali](https://huggingface.co/yaswanthgali).
|
||||
The original code can be found [here](https://github.com/apple/ml-aim).
|
||||
|
||||
## Usage Example
|
||||
|
||||
Here is an example of Image Feature Extraction using specific checkpoints on resized images and native resolution images:
|
||||
|
||||
```python
|
||||
import requests
|
||||
from PIL import Image
|
||||
from transformers import AutoImageProcessor, AutoModel
|
||||
|
||||
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
||||
image = Image.open(requests.get(url, stream=True).raw)
|
||||
|
||||
processor = AutoImageProcessor.from_pretrained("apple/aimv2-large-patch14-native")
|
||||
model = AutoModel.from_pretrained("apple/aimv2-large-patch14-native")
|
||||
|
||||
inputs = processor(images=image, return_tensors="pt")
|
||||
outputs = model(**inputs)
|
||||
```
|
||||
|
||||
Here is an example of a checkpoint performing zero-shot classification:
|
||||
|
||||
```python
|
||||
import requests
|
||||
from PIL import Image
|
||||
from transformers import AutoProcessor, AutoModel
|
||||
|
||||
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
||||
image = Image.open(requests.get(url, stream=True).raw)
|
||||
text = ["Picture of a dog.", "Picture of a cat.", "Picture of a horse."]
|
||||
|
||||
processor = AutoProcessor.from_pretrained("apple/aimv2-large-patch14-224-lit")
|
||||
model = AutoModel.from_pretrained("apple/aimv2-large-patch14-224-lit")
|
||||
|
||||
inputs = processor(
|
||||
images=image,
|
||||
text=text,
|
||||
add_special_tokens=True,
|
||||
truncation=True,
|
||||
padding=True,
|
||||
return_tensors="pt",
|
||||
)
|
||||
outputs = model(**inputs)
|
||||
probs = outputs.logits_per_image.softmax(dim=-1)
|
||||
```
|
||||
|
||||
## Aimv2Config
|
||||
|
||||
[[autodoc]] Aimv2Config
|
||||
|
||||
## Aimv2TextConfig
|
||||
|
||||
[[autodoc]] Aimv2TextConfig
|
||||
|
||||
## Aimv2VisionConfig
|
||||
|
||||
[[autodoc]] Aimv2VisionConfig
|
||||
|
||||
## Aimv2Model
|
||||
|
||||
[[autodoc]] Aimv2Model
|
||||
- forward
|
||||
|
||||
## Aimv2VisionModel
|
||||
|
||||
[[autodoc]] Aimv2VisionModel
|
||||
- forward
|
||||
|
||||
## Aimv2TextModel
|
||||
|
||||
[[autodoc]] Aimv2TextModel
|
||||
- forward
|
||||
|
||||
</pt>
|
||||
<tf>
|
@ -1,104 +0,0 @@
|
||||
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
# Arcee
|
||||
|
||||
Arcee is a decoder-only transformer model based on the Llama architecture with a key modification: it uses ReLU² (ReLU-squared) activation in the MLP blocks instead of SiLU, following recent research showing improved training efficiency with squared activations. This architecture is designed for efficient training and inference while maintaining the proven stability of the Llama design.
|
||||
|
||||
The Arcee model is architecturally similar to Llama but uses `x * relu(x)` in MLP layers for improved gradient flow and is optimized for efficiency in both training and inference scenarios.
|
||||
|
||||
> [!TIP]
|
||||
> The Arcee model supports extended context with RoPE scaling and all standard transformers features including Flash Attention 2, SDPA, gradient checkpointing, and quantization support.
|
||||
|
||||
The example below demonstrates how to generate text with Arcee using [`Pipeline`] or the [`AutoModel`].
|
||||
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
|
||||
pipeline = pipeline(
|
||||
task="text-generation",
|
||||
model="arcee-ai/AFM-4.5B",
|
||||
torch_dtype=torch.float16,
|
||||
device=0
|
||||
)
|
||||
|
||||
output = pipeline("The key innovation in Arcee is")
|
||||
print(output[0]["generated_text"])
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoTokenizer, ArceeForCausalLM
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("arcee-ai/AFM-4.5B")
|
||||
model = ArceeForCausalLM.from_pretrained(
|
||||
"arcee-ai/AFM-4.5B",
|
||||
torch_dtype=torch.float16,
|
||||
device_map="auto"
|
||||
)
|
||||
|
||||
inputs = tokenizer("The key innovation in Arcee is", return_tensors="pt")
|
||||
with torch.no_grad():
|
||||
outputs = model.generate(**inputs, max_new_tokens=50)
|
||||
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
## ArceeConfig
|
||||
|
||||
[[autodoc]] ArceeConfig
|
||||
|
||||
## ArceeModel
|
||||
|
||||
[[autodoc]] ArceeModel
|
||||
- forward
|
||||
|
||||
## ArceeForCausalLM
|
||||
|
||||
[[autodoc]] ArceeForCausalLM
|
||||
- forward
|
||||
|
||||
## ArceeForSequenceClassification
|
||||
|
||||
[[autodoc]] ArceeForSequenceClassification
|
||||
- forward
|
||||
|
||||
## ArceeForQuestionAnswering
|
||||
|
||||
[[autodoc]] ArceeForQuestionAnswering
|
||||
- forward
|
||||
|
||||
## ArceeForTokenClassification
|
||||
|
||||
[[autodoc]] ArceeForTokenClassification
|
||||
- forward
|
@ -258,10 +258,6 @@ The following auto classes are available for the following computer vision tasks
|
||||
|
||||
[[autodoc]] AutoModelForKeypointDetection
|
||||
|
||||
### AutoModelForKeypointMatching
|
||||
|
||||
[[autodoc]] AutoModelForKeypointMatching
|
||||
|
||||
### AutoModelForMaskedImageModeling
|
||||
|
||||
[[autodoc]] AutoModelForMaskedImageModeling
|
||||
@ -354,10 +350,6 @@ The following auto classes are available for the following audio tasks.
|
||||
|
||||
[[autodoc]] AutoModelForTextToWaveform
|
||||
|
||||
### AutoModelForAudioTokenization
|
||||
|
||||
[[autodoc]] AutoModelForAudioTokenization
|
||||
|
||||
## Multimodal
|
||||
|
||||
The following auto classes are available for the following multimodal tasks.
|
||||
|
@ -14,127 +14,84 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
# Bamba
|
||||
|
||||
[Bamba](https://huggingface.co/blog/bamba) is a 9B parameter decoder-only language model built on the [Mamba-2](./mamba2) architecture. It is pretrained in two stages - it starts by training on 2T tokens from the [Dolma v1.7](https://huggingface.co/datasets/allenai/dolma) dataset and then trained on an additional 200B tokens from [FineWeb](https://huggingface.co/datasets/HuggingFaceFW/fineweb) and [Cosmopedia](https://huggingface.co/datasets/HuggingFaceTB/cosmopedia).
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
|
||||
You can find all the original Bamba checkpoints under the [Bamba](https://huggingface.co/collections/ibm-ai-platform/bamba-674f1388b9bbc98b413c7bab) collection.
|
||||
## Overview
|
||||
|
||||
> [!TIP]
|
||||
> This model was contributed by [ani300](https://github.com/ani300) and [fabianlim](https://github.com/fabianlim).
|
||||
>
|
||||
> Click on the Bamba models in the right sidebar for more examples of how to apply Bamba to different text generation tasks.
|
||||
Bamba-9B is a decoder-only language model based on the [Mamba-2](https://github.com/state-spaces/mamba) architecture and is designed to handle a wide range of text generation tasks. It is trained from scratch using a two-stage training approach. In the first stage, the model is trained on 2 trillion tokens from the Dolma v1.7 dataset. In the second stage, it undergoes additional training on 200 billion tokens, leveraging a carefully curated blend of high-quality data to further refine its performance and enhance output quality.
|
||||
|
||||
The example below demonstrates how to generate text with [`Pipeline`], [`AutoModel`], and from the command line.
|
||||
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
|
||||
pipeline = pipeline(
|
||||
task="text-generation",
|
||||
model="ibm-ai-platform/Bamba-9B-v2",
|
||||
torch_dtype=torch.bfloat16,
|
||||
device=0
|
||||
)
|
||||
pipeline("Plants create energy through a process known as")
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("ibm-ai-platform/Bamba-9B-v2")
|
||||
model = AutoModelForCausalLM.from_pretrained("ibm-ai-platform/Bamba-9B-v2", torch_dtype=torch.bfloat16, device_map="auto", attn_implementation="sdpa")
|
||||
input_ids = tokenizer("Plants create energy through a process known as", return_tensors="pt").to("cuda")
|
||||
|
||||
output = model.generate(**input_ids)
|
||||
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
|
||||
<hfoption id="transformers CLI">
|
||||
```bash
|
||||
echo "Plants create energy through a process known as" | transformers-cli run --task text-generation --model ibm-ai-platform/Bamba-9B-v2 --device 0
|
||||
```
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
|
||||
|
||||
The example below uses [torchao](../quantization/torchao) to only quantize the weights to int4.
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig
|
||||
|
||||
quantization_config = TorchAoConfig("int4_weight_only", group_size=128)
|
||||
tokenizer = AutoTokenizer.from_pretrained("ibm-ai-platform/Bamba-9B-v2")
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
"ibm-ai-platform/Bamba-9B-v2",
|
||||
quantization_config=quantization_config,
|
||||
device_map="auto",
|
||||
attn_implementation="sdpa"
|
||||
)
|
||||
|
||||
inputs = tokenizer("Plants create energy through a process known as", return_tensors="pt").to("cuda")
|
||||
output = model.generate(**inputs)
|
||||
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
||||
```
|
||||
|
||||
## Notes
|
||||
|
||||
- Bamba supports padding-free training which concatenates distinct training examples while still processing inputs as separate batches. It can significantly accelerate inference by [~2x](https://github.com/huggingface/transformers/pull/35861#issue-2807873129) (depending on model and data distribution) and reduce memory-usage if there are examples of varying lengths by avoiding unnecessary compute and memory overhead from padding tokens.
|
||||
|
||||
Padding-free training requires the `flash-attn`, `mamba-ssm`, and `causal-conv1d` packages and the following arguments must be passed to the model in addition to `input_ids` and `labels`.
|
||||
|
||||
- `position_ids: torch.LongTensor`: the position index of each token in each sequence.
|
||||
- `seq_idx: torch.IntTensor`: the index of each sequence in the batch.
|
||||
- Each of the [`FlashAttentionKwargs`]
|
||||
- `cu_seq_lens_q: torch.LongTensor`: the cumulative sequence lengths of all queries.
|
||||
- `cu_seq_lens_k: torch.LongTensor`: the cumulative sequence lengths of all keys.
|
||||
- `max_length_q: int`: the longest query length in the batch.
|
||||
- `max_length_k: int`: the longest key length in the batch.
|
||||
|
||||
The `attention_mask` inputs should not be provided. The [`DataCollatorWithFlattening`] programmatically generates the set of additional arguments above using `return_seq_idx=True` and `return_flash_attn_kwargs=True`. See the [Improving Hugging Face Training Efficiency Through Packing with Flash Attention](https://huggingface.co/blog/packing-with-FA2) blog post for additional information.
|
||||
|
||||
```python
|
||||
from transformers import DataCollatorWithFlattening
|
||||
|
||||
# Example of using padding-free training
|
||||
data_collator = DataCollatorWithFlattening(
|
||||
tokenizer=tokenizer,
|
||||
return_seq_idx=True,
|
||||
return_flash_attn_kwargs=True
|
||||
)
|
||||
```
|
||||
Checkout all Bamba-9B model checkpoints [here](https://github.com/foundation-model-stack/bamba).
|
||||
|
||||
## BambaConfig
|
||||
|
||||
| Model | Params | # Layers | Hidden Dim. | Attention Heads | GQA | KV Heads | Context Length | Tied Embeddings |
|
||||
|-------------------|--------------|----------|-------------|-----------------|-----|----------|----------------|------------------|
|
||||
| Bamba | 9B (9.78B) | 32 | 4096 | 32 | Yes | 8 | 4096 | True |
|
||||
|
||||
[[autodoc]] BambaConfig
|
||||
|
||||
<!---
|
||||
## Usage Tips
|
||||
|
||||
Tips:
|
||||
|
||||
- The architecture is based on Mamba-2 models.
|
||||
|
||||
## BambaModel
|
||||
|
||||
[[autodoc]] BambaModel
|
||||
- forward
|
||||
-->
|
||||
|
||||
## BambaForCausalLM
|
||||
|
||||
```python
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained("ibm-fms/Bamba-9B")
|
||||
tokenizer = AutoTokenizer.from_pretrained("ibm-fms/Bamba-9B")
|
||||
|
||||
message = ["Mamba is a snake with following properties "]
|
||||
inputs = tokenizer(message, return_tensors='pt', return_token_type_ids=False)
|
||||
response = model.generate(**inputs, max_new_tokens=64)
|
||||
print(tokenizer.batch_decode(response, skip_special_tokens=True)[0])
|
||||
```
|
||||
|
||||
|
||||
## Padding-Free Training
|
||||
|
||||
Bamba supports padding-free training in which distinct training examples can be concatenated
|
||||
together while nevertheless processing the inputs as though they belonged to separate batches. When
|
||||
the examples are of varying lengths, padding-free training can provide significant speed ups and
|
||||
memory savings compared to batching the examples together and using padding, as the unnecessary
|
||||
compute and memory due to padding is avoided entirely. The performance gains depend on factors such
|
||||
as the model and the data distribution, but throughput gains up to [~2x are commonly
|
||||
seen](https://github.com/huggingface/transformers/pull/35861#issue-2807873129).
|
||||
|
||||
Using padding-free training with Bamba requires the `flash-attn`, `mamba-ssm`, and `causal-conv1d`
|
||||
packages, and the following arguments must be passed to the model in addition to `input_ids` and
|
||||
`labels`:
|
||||
* `position_ids: torch.LongTensor`: the position index of each token in each sequence.
|
||||
* `seq_idx: torch.IntTensor`: the index of each sequence in the batch.
|
||||
* Each of the [`FlashAttentionKwargs`]
|
||||
* `cu_seq_lens_q: torch.LongTensor`: The cumulative sequence lengths of all queries.
|
||||
* `cu_seq_lens_k: torch.LongTensor`: The cumulative sequence lengths of all keys.
|
||||
* `max_length_q: int`: the longest query length in the batch.
|
||||
* `max_length_k: int`: the longest key length in the batch.
|
||||
|
||||
The `attention_mask` inputs should not be provided. The [`DataCollatorWithFlattening`] can be used
|
||||
to programmatically generate the above set of additional arguments using `return_seq_idx=True` and
|
||||
`return_flash_attn_kwargs=True`. See [this blog post](https://huggingface.co/blog/packing-with-FA2)
|
||||
for additional information.
|
||||
|
||||
|
||||
[[autodoc]] BambaForCausalLM
|
||||
- forward
|
||||
|
||||
This HF implementation is contributed by [ani300](https://github.com/ani300) and [fabianlim](https://github.com/fabianlim).
|
||||
|
@ -14,123 +14,59 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
# BigBirdPegasus
|
||||
|
||||
[BigBirdPegasus](https://huggingface.co/papers/2007.14062) is an encoder-decoder (sequence-to-sequence) transformer model for long-input summarization. It extends the [BigBird](./big_bird) architecture with an additional pretraining objective borrowed from [Pegasus](./pegasus) called gap sequence generation (GSG). Whole sentences are masked and the model has to fill in the gaps in the document. BigBirdPegasus's ability to keep track of long contexts makes it effective at summarizing lengthy inputs, surpassing the performance of base Pegasus models.
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
|
||||
You can find all the original BigBirdPegasus checkpoints under the [Google](https://huggingface.co/google/models?search=bigbird-pegasus) organization.
|
||||
## Overview
|
||||
|
||||
> [!TIP]
|
||||
> This model was contributed by [vasudevgupta](https://huggingface.co/vasudevgupta).
|
||||
>
|
||||
> Click on the BigBirdPegasus models in the right sidebar for more examples of how to apply BigBirdPegasus to different language tasks.
|
||||
The BigBird model was proposed in [Big Bird: Transformers for Longer Sequences](https://huggingface.co/papers/2007.14062) by
|
||||
Zaheer, Manzil and Guruganesh, Guru and Dubey, Kumar Avinava and Ainslie, Joshua and Alberti, Chris and Ontanon,
|
||||
Santiago and Pham, Philip and Ravula, Anirudh and Wang, Qifan and Yang, Li and others. BigBird, is a sparse-attention
|
||||
based transformer which extends Transformer based models, such as BERT to much longer sequences. In addition to sparse
|
||||
attention, BigBird also applies global attention as well as random attention to the input sequence. Theoretically, it
|
||||
has been shown that applying sparse, global, and random attention approximates full attention, while being
|
||||
computationally much more efficient for longer sequences. As a consequence of the capability to handle longer context,
|
||||
BigBird has shown improved performance on various long document NLP tasks, such as question answering and
|
||||
summarization, compared to BERT or RoBERTa.
|
||||
|
||||
The example below demonstrates how to summarize text with [`Pipeline`], [`AutoModel`], and from the command line.
|
||||
The abstract from the paper is the following:
|
||||
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
*Transformers-based models, such as BERT, have been one of the most successful deep learning models for NLP.
|
||||
Unfortunately, one of their core limitations is the quadratic dependency (mainly in terms of memory) on the sequence
|
||||
length due to their full attention mechanism. To remedy this, we propose, BigBird, a sparse attention mechanism that
|
||||
reduces this quadratic dependency to linear. We show that BigBird is a universal approximator of sequence functions and
|
||||
is Turing complete, thereby preserving these properties of the quadratic, full attention model. Along the way, our
|
||||
theoretical analysis reveals some of the benefits of having O(1) global tokens (such as CLS), that attend to the entire
|
||||
sequence as part of the sparse attention mechanism. The proposed sparse attention can handle sequences of length up to
|
||||
8x of what was previously possible using similar hardware. As a consequence of the capability to handle longer context,
|
||||
BigBird drastically improves performance on various NLP tasks such as question answering and summarization. We also
|
||||
propose novel applications to genomics data.*
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
The original code can be found [here](https://github.com/google-research/bigbird).
|
||||
|
||||
pipeline = pipeline(
|
||||
task="summarization",
|
||||
model="google/bigbird-pegasus-large-arxiv",
|
||||
torch_dtype=torch.float32,
|
||||
device=0
|
||||
)
|
||||
pipeline("""Plants are among the most remarkable and essential life forms on Earth, possessing a unique ability to produce their own food through a process known as photosynthesis. This complex biochemical process is fundamental not only to plant life but to virtually all life on the planet.
|
||||
Through photosynthesis, plants capture energy from sunlight using a green pigment called chlorophyll, which is located in specialized cell structures called chloroplasts. In the presence of light, plants absorb carbon dioxide from the atmosphere through small pores in their leaves called stomata, and take in water from the soil through their root systems.
|
||||
These ingredients are then transformed into glucose, a type of sugar that serves as a source of chemical energy, and oxygen, which is released as a byproduct into the atmosphere. The glucose produced during photosynthesis is not just used immediately; plants also store it as starch or convert it into other organic compounds like cellulose, which is essential for building their cellular structure.
|
||||
This energy reserve allows them to grow, develop leaves, produce flowers, bear fruit, and carry out various physiological processes throughout their lifecycle.""")
|
||||
```
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
## Usage tips
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
"google/bigbird-pegasus-large-arxiv"
|
||||
)
|
||||
model = AutoModelForSeq2SeqLM.from_pretrained(
|
||||
"google/bigbird-pegasus-large-arxiv",
|
||||
torch_dtype=torch.bfloat16,
|
||||
device_map="auto",
|
||||
)
|
||||
|
||||
input_text = """Plants are among the most remarkable and essential life forms on Earth, possessing a unique ability to produce their own food through a process known as photosynthesis. This complex biochemical process is fundamental not only to plant life but to virtually all life on the planet.
|
||||
Through photosynthesis, plants capture energy from sunlight using a green pigment called chlorophyll, which is located in specialized cell structures called chloroplasts. In the presence of light, plants absorb carbon dioxide from the atmosphere through small pores in their leaves called stomata, and take in water from the soil through their root systems.
|
||||
These ingredients are then transformed into glucose, a type of sugar that serves as a source of chemical energy, and oxygen, which is released as a byproduct into the atmosphere. The glucose produced during photosynthesis is not just used immediately; plants also store it as starch or convert it into other organic compounds like cellulose, which is essential for building their cellular structure.
|
||||
This energy reserve allows them to grow, develop leaves, produce flowers, bear fruit, and carry out various physiological processes throughout their lifecycle."""
|
||||
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
||||
|
||||
output = model.generate(**input_ids, cache_implementation="static")
|
||||
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
||||
```
|
||||
</hfoption>
|
||||
<hfoption id="transformers-cli">
|
||||
|
||||
```bash
|
||||
echo -e "Plants are among the most remarkable and essential life forms on Earth, possessing a unique ability to produce their own food through a process known as photosynthesis. This complex biochemical process is fundamental not only to plant life but to virtually all life on the planet. Through photosynthesis, plants capture energy from sunlight using a green pigment called chlorophyll, which is located in specialized cell structures called chloroplasts." | transformers-cli run --task summarization --model google/bigbird-pegasus-large-arxiv --device 0
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
|
||||
|
||||
The example below uses [bitsandbytes](../quantization/bitsandbytes) to only quantize the weights to int4.
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import BitsAndBytesConfig, AutoModelForSeq2SeqLM, AutoTokenizer
|
||||
|
||||
quantization_config = BitsAndBytesConfig(
|
||||
load_in_4bit=True,
|
||||
bnb_4bit_compute_dtype=torch.bfloat16,
|
||||
bnb_4bit_quant_type="nf4"
|
||||
)
|
||||
model = AutoModelForSeq2SeqLM.from_pretrained(
|
||||
"google/bigbird-pegasus-large-arxiv",
|
||||
torch_dtype=torch.bfloat16,
|
||||
device_map="auto",
|
||||
quantization_config=quantization_config
|
||||
)
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
"google/bigbird-pegasus-large-arxiv"
|
||||
)
|
||||
|
||||
input_text = """Plants are among the most remarkable and essential life forms on Earth, possessing a unique ability to produce their own food through a process known as photosynthesis. This complex biochemical process is fundamental not only to plant life but to virtually all life on the planet.
|
||||
Through photosynthesis, plants capture energy from sunlight using a green pigment called chlorophyll, which is located in specialized cell structures called chloroplasts. In the presence of light, plants absorb carbon dioxide from the atmosphere through small pores in their leaves called stomata, and take in water from the soil through their root systems.
|
||||
These ingredients are then transformed into glucose, a type of sugar that serves as a source of chemical energy, and oxygen, which is released as a byproduct into the atmosphere. The glucose produced during photosynthesis is not just used immediately; plants also store it as starch or convert it into other organic compounds like cellulose, which is essential for building their cellular structure.
|
||||
This energy reserve allows them to grow, develop leaves, produce flowers, bear fruit, and carry out various physiological processes throughout their lifecycle."""
|
||||
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
||||
|
||||
output = model.generate(**input_ids, cache_implementation="static")
|
||||
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
||||
```
|
||||
|
||||
## Notes
|
||||
|
||||
- BigBirdPegasus also uses the [`PegasusTokenizer`].
|
||||
- Inputs should be padded on the right because BigBird uses absolute position embeddings.
|
||||
- BigBirdPegasus supports `original_full` and `block_sparse` attention. If the input sequence length is less than 1024, it is recommended to use `original_full` since sparse patterns don't offer much benefit for smaller inputs.
|
||||
- The current implementation uses window size of 3 blocks and 2 global blocks, only supports the ITC-implementation, and doesn't support `num_random_blocks=0`.
|
||||
- The sequence length must be divisible by the block size.
|
||||
- For an in-detail explanation on how BigBird's attention works, see [this blog post](https://huggingface.co/blog/big-bird).
|
||||
- BigBird comes with 2 implementations: **original_full** & **block_sparse**. For the sequence length < 1024, using
|
||||
**original_full** is advised as there is no benefit in using **block_sparse** attention.
|
||||
- The code currently uses window size of 3 blocks and 2 global blocks.
|
||||
- Sequence length must be divisible by block size.
|
||||
- Current implementation supports only **ITC**.
|
||||
- Current implementation doesn't support **num_random_blocks = 0**.
|
||||
- BigBirdPegasus uses the [PegasusTokenizer](https://github.com/huggingface/transformers/blob/main/src/transformers/models/pegasus/tokenization_pegasus.py).
|
||||
- BigBird is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than
|
||||
the left.
|
||||
|
||||
## Resources
|
||||
|
||||
Read the [Understanding BigBird's Block Sparse Attention](https://huggingface.co/blog/big-bird) blog post for more details about how BigBird's attention works.
|
||||
- [Text classification task guide](../tasks/sequence_classification)
|
||||
- [Question answering task guide](../tasks/question_answering)
|
||||
- [Causal language modeling task guide](../tasks/language_modeling)
|
||||
- [Translation task guide](../tasks/translation)
|
||||
- [Summarization task guide](../tasks/summarization)
|
||||
|
||||
## BigBirdPegasusConfig
|
||||
|
||||
|
@ -14,76 +14,35 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
# BLIP
|
||||
|
||||
[BLIP](https://huggingface.co/papers/2201.12086) (Bootstrapped Language-Image Pretraining) is a vision-language pretraining (VLP) framework designed for *both* understanding and generation tasks. Most existing pretrained models are only good at one or the other. It uses a captioner to generate captions and a filter to remove the noisy captions. This increases training data quality and more effectively uses the messy web data.
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
|
||||
You can find all the original BLIP checkpoints under the [BLIP](https://huggingface.co/collections/Salesforce/blip-models-65242f40f1491fbf6a9e9472) collection.
|
||||
The BLIP model was proposed in [BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation](https://huggingface.co/papers/2201.12086) by Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi.
|
||||
|
||||
> [!TIP]
|
||||
> This model was contributed by [ybelkada](https://huggingface.co/ybelkada).
|
||||
>
|
||||
> Click on the BLIP models in the right sidebar for more examples of how to apply BLIP to different vision language tasks.
|
||||
BLIP is a model that is able to perform various multi-modal tasks including:
|
||||
- Visual Question Answering
|
||||
- Image-Text retrieval (Image-text matching)
|
||||
- Image Captioning
|
||||
|
||||
The example below demonstrates how to visual question answering with [`Pipeline`] or the [`AutoModel`] class.
|
||||
The abstract from the paper is the following:
|
||||
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
*Vision-Language Pre-training (VLP) has advanced the performance for many vision-language tasks.
|
||||
However, most existing pre-trained models only excel in either understanding-based tasks or generation-based tasks. Furthermore, performance improvement has been largely achieved by scaling up the dataset with noisy image-text pairs collected from the web, which is a suboptimal source of supervision. In this paper, we propose BLIP, a new VLP framework which transfers flexibly to both vision-language understanding and generation tasks. BLIP effectively utilizes the noisy web data by bootstrapping the captions, where a captioner generates synthetic captions and a filter removes the noisy ones. We achieve state-of-the-art results on a wide range of vision-language tasks, such as image-text retrieval (+2.7% in average recall@1), image captioning (+2.8% in CIDEr), and VQA (+1.6% in VQA score). BLIP also demonstrates strong generalization ability when directly transferred to videolanguage tasks in a zero-shot manner. Code, models, and datasets are released.*
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import pipeline
|
||||

|
||||
|
||||
pipeline = pipeline(
|
||||
task="visual-question-answering",
|
||||
model="Salesforce/blip-vqa-base",
|
||||
torch_dtype=torch.float16,
|
||||
device=0
|
||||
)
|
||||
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
|
||||
pipeline(question="What is the weather in this image?", image=url)
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
```python
|
||||
import requests
|
||||
import torch
|
||||
from PIL import Image
|
||||
from transformers import AutoProcessor, AutoModelForVisualQuestionAnswering
|
||||
|
||||
processor = AutoProcessor.from_pretrained("Salesforce/blip-vqa-base")
|
||||
model = AutoModelForVisualQuestionAnswering.from_pretrained(
|
||||
"Salesforce/blip-vqa-base",
|
||||
torch_dtype=torch.float16,
|
||||
device_map="auto"
|
||||
)
|
||||
|
||||
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
|
||||
image = Image.open(requests.get(url, stream=True).raw)
|
||||
|
||||
question = "What is the weather in this image?"
|
||||
inputs = processor(images=image, text=question, return_tensors="pt").to("cuda", torch.float16)
|
||||
|
||||
output = model.generate(**inputs)
|
||||
processor.batch_decode(output, skip_special_tokens=True)[0]
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
This model was contributed by [ybelkada](https://huggingface.co/ybelkada).
|
||||
The original code can be found [here](https://github.com/salesforce/BLIP).
|
||||
|
||||
## Resources
|
||||
|
||||
Refer to this [notebook](https://github.com/huggingface/notebooks/blob/main/examples/image_captioning_blip.ipynb) to learn how to fine-tune BLIP for image captioning on a custom dataset.
|
||||
- [Jupyter notebook](https://github.com/huggingface/notebooks/blob/main/examples/image_captioning_blip.ipynb) on how to fine-tune BLIP for image captioning on a custom dataset
|
||||
|
||||
## BlipConfig
|
||||
|
||||
|
@ -14,105 +14,49 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
# CamemBERT
|
||||
|
||||
[CamemBERT](https://huggingface.co/papers/1911.03894) is a language model based on [RoBERTa](./roberta), but trained specifically on French text from the OSCAR dataset, making it more effective for French language tasks.
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
|
||||
What sets CamemBERT apart is that it learned from a huge, high quality collection of French data, as opposed to mixing lots of languages. This helps it really understand French better than many multilingual models.
|
||||
## Overview
|
||||
|
||||
Common applications of CamemBERT include masked language modeling (Fill-mask prediction), text classification (sentiment analysis), token classification (entity recognition) and sentence pair classification (entailment tasks).
|
||||
The CamemBERT model was proposed in [CamemBERT: a Tasty French Language Model](https://huggingface.co/papers/1911.03894) by
|
||||
[Louis Martin](https://huggingface.co/louismartin), [Benjamin Muller](https://huggingface.co/benjamin-mlr), [Pedro Javier Ortiz Suárez](https://huggingface.co/pjox), Yoann Dupont, Laurent Romary, Éric Villemonte de la
|
||||
Clergerie, [Djamé Seddah](https://huggingface.co/Djame), and [Benoît Sagot](https://huggingface.co/sagot). It is based on Facebook's RoBERTa model released in 2019. It is a model
|
||||
trained on 138GB of French text.
|
||||
|
||||
You can find all the original CamemBERT checkpoints under the [ALMAnaCH](https://huggingface.co/almanach/models?search=camembert) organization.
|
||||
The abstract from the paper is the following:
|
||||
|
||||
> [!TIP]
|
||||
> This model was contributed by the [ALMAnaCH (Inria)](https://huggingface.co/almanach) team.
|
||||
>
|
||||
> Click on the CamemBERT models in the right sidebar for more examples of how to apply CamemBERT to different NLP tasks.
|
||||
*Pretrained language models are now ubiquitous in Natural Language Processing. Despite their success, most available
|
||||
models have either been trained on English data or on the concatenation of data in multiple languages. This makes
|
||||
practical use of such models --in all languages except English-- very limited. Aiming to address this issue for French,
|
||||
we release CamemBERT, a French version of the Bi-directional Encoders for Transformers (BERT). We measure the
|
||||
performance of CamemBERT compared to multilingual models in multiple downstream tasks, namely part-of-speech tagging,
|
||||
dependency parsing, named-entity recognition, and natural language inference. CamemBERT improves the state of the art
|
||||
for most of the tasks considered. We release the pretrained model for CamemBERT hoping to foster research and
|
||||
downstream applications for French NLP.*
|
||||
|
||||
The examples below demonstrate how to predict the `<mask>` token with [`Pipeline`], [`AutoModel`], and from the command line.
|
||||
This model was contributed by [the ALMAnaCH team (Inria)](https://huggingface.co/almanach). The original code can be found [here](https://camembert-model.fr/).
|
||||
|
||||
<hfoptions id="usage">
|
||||
<Tip>
|
||||
|
||||
<hfoption id="Pipeline">
|
||||
This implementation is the same as RoBERTa. Refer to the [documentation of RoBERTa](roberta) for usage examples as well
|
||||
as the information relative to the inputs and outputs.
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
</Tip>
|
||||
|
||||
pipeline = pipeline("fill-mask", model="camembert-base", torch_dtype=torch.float16, device=0)
|
||||
pipeline("Le camembert est un délicieux fromage <mask>.")
|
||||
```
|
||||
</hfoption>
|
||||
## Resources
|
||||
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import AutoTokenizer, AutoModelForMaskedLM
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("camembert-base")
|
||||
model = AutoModelForMaskedLM.from_pretrained("camembert-base", torch_dtype="auto", device_map="auto", attn_implementation="sdpa")
|
||||
inputs = tokenizer("Le camembert est un délicieux fromage <mask>.", return_tensors="pt").to("cuda")
|
||||
|
||||
with torch.no_grad():
|
||||
outputs = model(**inputs)
|
||||
predictions = outputs.logits
|
||||
|
||||
masked_index = torch.where(inputs['input_ids'] == tokenizer.mask_token_id)[1]
|
||||
predicted_token_id = predictions[0, masked_index].argmax(dim=-1)
|
||||
predicted_token = tokenizer.decode(predicted_token_id)
|
||||
|
||||
print(f"The predicted token is: {predicted_token}")
|
||||
```
|
||||
</hfoption>
|
||||
|
||||
<hfoption id="transformers CLI">
|
||||
|
||||
```bash
|
||||
echo -e "Le camembert est un délicieux fromage <mask>." | transformers run --task fill-mask --model camembert-base --device 0
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
|
||||
</hfoptions>
|
||||
|
||||
|
||||
Quantization reduces the memory burden of large models by representing weights in lower precision. Refer to the [Quantization](../quantization/overview) overview for available options.
|
||||
|
||||
The example below uses [bitsandbytes](../quantization/bitsandbytes) quantization to quantize the weights to 8-bits.
|
||||
|
||||
```python
|
||||
from transformers import AutoTokenizer, AutoModelForMaskedLM, BitsAndBytesConfig
|
||||
import torch
|
||||
|
||||
quant_config = BitsAndBytesConfig(load_in_8bit=True)
|
||||
model = AutoModelForMaskedLM.from_pretrained(
|
||||
"almanach/camembert-large",
|
||||
quantization_config=quant_config,
|
||||
device_map="auto"
|
||||
)
|
||||
tokenizer = AutoTokenizer.from_pretrained("almanach/camembert-large")
|
||||
|
||||
inputs = tokenizer("Le camembert est un délicieux fromage <mask>.", return_tensors="pt").to("cuda")
|
||||
|
||||
with torch.no_grad():
|
||||
outputs = model(**inputs)
|
||||
predictions = outputs.logits
|
||||
|
||||
masked_index = torch.where(inputs["input_ids"] == tokenizer.mask_token_id)[1]
|
||||
predicted_token_id = predictions[0, masked_index].argmax(dim=-1)
|
||||
predicted_token = tokenizer.decode(predicted_token_id)
|
||||
|
||||
print(f"The predicted token is: {predicted_token}")
|
||||
```
|
||||
- [Text classification task guide](../tasks/sequence_classification)
|
||||
- [Token classification task guide](../tasks/token_classification)
|
||||
- [Question answering task guide](../tasks/question_answering)
|
||||
- [Causal language modeling task guide](../tasks/language_modeling)
|
||||
- [Masked language modeling task guide](../tasks/masked_language_modeling)
|
||||
- [Multiple choice task guide](../tasks/multiple_choice)
|
||||
|
||||
## CamembertConfig
|
||||
|
||||
@ -193,4 +137,5 @@ print(f"The predicted token is: {predicted_token}")
|
||||
[[autodoc]] TFCamembertForQuestionAnswering
|
||||
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
</frameworkcontent>
|
||||
|
||||
|
@ -191,11 +191,6 @@ model = ChameleonForConditionalGeneration.from_pretrained(
|
||||
[[autodoc]] ChameleonImageProcessor
|
||||
- preprocess
|
||||
|
||||
## ChameleonImageProcessorFast
|
||||
|
||||
[[autodoc]] ChameleonImageProcessorFast
|
||||
- preprocess
|
||||
|
||||
## ChameleonVQVAE
|
||||
|
||||
[[autodoc]] ChameleonVQVAE
|
||||
|
@ -3,7 +3,6 @@
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="Tensor parallelism" src="https://img.shields.io/badge/Tensor%20parallelism-06b6d4?style=flat&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
|
@ -4,7 +4,6 @@
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="Tensor parallelism" src="https://img.shields.io/badge/Tensor%20parallelism-06b6d4?style=flat&logoColor=white">
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
|
@ -14,111 +14,66 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white" >
|
||||
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
|
||||
# DeBERTa-v2
|
||||
|
||||
[DeBERTa-v2](https://huggingface.co/papers/2006.03654) improves on the original [DeBERTa](./deberta) architecture by using a SentencePiece-based tokenizer and a new vocabulary size of 128K. It also adds an additional convolutional layer within the first transformer layer to better learn local dependencies of input tokens. Finally, the position projection and content projection matrices are shared in the attention layer to reduce the number of parameters.
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
|
||||
</div>
|
||||
|
||||
You can find all the original [DeBERTa-v2] checkpoints under the [Microsoft](https://huggingface.co/microsoft?search_models=deberta-v2) organization.
|
||||
## Overview
|
||||
|
||||
The DeBERTa model was proposed in [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://huggingface.co/papers/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen It is based on Google's
|
||||
BERT model released in 2018 and Facebook's RoBERTa model released in 2019.
|
||||
|
||||
It builds on RoBERTa with disentangled attention and enhanced mask decoder training with half of the data used in
|
||||
RoBERTa.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
|
||||
*Recent progress in pre-trained neural language models has significantly improved the performance of many natural
|
||||
language processing (NLP) tasks. In this paper we propose a new model architecture DeBERTa (Decoding-enhanced BERT with
|
||||
disentangled attention) that improves the BERT and RoBERTa models using two novel techniques. The first is the
|
||||
disentangled attention mechanism, where each word is represented using two vectors that encode its content and
|
||||
position, respectively, and the attention weights among words are computed using disentangled matrices on their
|
||||
contents and relative positions. Second, an enhanced mask decoder is used to replace the output softmax layer to
|
||||
predict the masked tokens for model pretraining. We show that these two techniques significantly improve the efficiency
|
||||
of model pretraining and performance of downstream tasks. Compared to RoBERTa-Large, a DeBERTa model trained on half of
|
||||
the training data performs consistently better on a wide range of NLP tasks, achieving improvements on MNLI by +0.9%
|
||||
(90.2% vs. 91.1%), on SQuAD v2.0 by +2.3% (88.4% vs. 90.7%) and RACE by +3.6% (83.2% vs. 86.8%). The DeBERTa code and
|
||||
pre-trained models will be made publicly available at https://github.com/microsoft/DeBERTa.*
|
||||
|
||||
|
||||
> [!TIP]
|
||||
> This model was contributed by [Pengcheng He](https://huggingface.co/DeBERTa).
|
||||
>
|
||||
> Click on the DeBERTa-v2 models in the right sidebar for more examples of how to apply DeBERTa-v2 to different language tasks.
|
||||
The following information is visible directly on the [original implementation
|
||||
repository](https://github.com/microsoft/DeBERTa). DeBERTa v2 is the second version of the DeBERTa model. It includes
|
||||
the 1.5B model used for the SuperGLUE single-model submission and achieving 89.9, versus human baseline 89.8. You can
|
||||
find more details about this submission in the authors'
|
||||
[blog](https://www.microsoft.com/en-us/research/blog/microsoft-deberta-surpasses-human-performance-on-the-superglue-benchmark/)
|
||||
|
||||
The example below demonstrates how to classify text with [`Pipeline`] or the [`AutoModel`] class.
|
||||
New in v2:
|
||||
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
- **Vocabulary** In v2 the tokenizer is changed to use a new vocabulary of size 128K built from the training data.
|
||||
Instead of a GPT2-based tokenizer, the tokenizer is now
|
||||
[sentencepiece-based](https://github.com/google/sentencepiece) tokenizer.
|
||||
- **nGiE(nGram Induced Input Encoding)** The DeBERTa-v2 model uses an additional convolution layer aside with the first
|
||||
transformer layer to better learn the local dependency of input tokens.
|
||||
- **Sharing position projection matrix with content projection matrix in attention layer** Based on previous
|
||||
experiments, this can save parameters without affecting the performance.
|
||||
- **Apply bucket to encode relative positions** The DeBERTa-v2 model uses log bucket to encode relative positions
|
||||
similar to T5.
|
||||
- **900M model & 1.5B model** Two additional model sizes are available: 900M and 1.5B, which significantly improves the
|
||||
performance of downstream tasks.
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
This model was contributed by [DeBERTa](https://huggingface.co/DeBERTa). This model TF 2.0 implementation was
|
||||
contributed by [kamalkraj](https://huggingface.co/kamalkraj). The original code can be found [here](https://github.com/microsoft/DeBERTa).
|
||||
|
||||
pipeline = pipeline(
|
||||
task="text-classification",
|
||||
model="microsoft/deberta-v2-xlarge-mnli",
|
||||
device=0,
|
||||
torch_dtype=torch.float16
|
||||
)
|
||||
result = pipeline("DeBERTa-v2 is great at understanding context!")
|
||||
print(result)
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
"microsoft/deberta-v2-xlarge-mnli"
|
||||
)
|
||||
model = AutoModelForSequenceClassification.from_pretrained(
|
||||
"microsoft/deberta-v2-xlarge-mnli",
|
||||
torch_dtype=torch.float16,
|
||||
device_map="auto"
|
||||
)
|
||||
|
||||
inputs = tokenizer("DeBERTa-v2 is great at understanding context!", return_tensors="pt").to("cuda")
|
||||
outputs = model(**inputs)
|
||||
|
||||
logits = outputs.logits
|
||||
predicted_class_id = logits.argmax().item()
|
||||
predicted_label = model.config.id2label[predicted_class_id]
|
||||
print(f"Predicted label: {predicted_label}")
|
||||
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
|
||||
<hfoption id="transformers CLI">
|
||||
|
||||
```bash
|
||||
echo -e "DeBERTa-v2 is great at understanding context!" | transformers-cli run --task fill-mask --model microsoft/deberta-v2-xlarge-mnli --device 0
|
||||
```
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
|
||||
|
||||
The example below uses [bitsandbytes quantization](../quantization/bitsandbytes) to only quantize the weights to 4-bit.
|
||||
|
||||
```py
|
||||
from transformers import AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig
|
||||
|
||||
model_id = "microsoft/deberta-v2-xlarge-mnli"
|
||||
quantization_config = BitsAndBytesConfig(
|
||||
load_in_4bit=True,
|
||||
bnb_4bit_quant_type="nf4",
|
||||
bnb_4bit_compute_dtype="float16",
|
||||
bnb_4bit_use_double_quant=True,
|
||||
)
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
||||
model = AutoModelForSequenceClassification.from_pretrained(
|
||||
model_id,
|
||||
quantization_config=quantization_config,
|
||||
torch_dtype="float16"
|
||||
)
|
||||
|
||||
inputs = tokenizer("DeBERTa-v2 is great at understanding context!", return_tensors="pt").to("cuda")
|
||||
outputs = model(**inputs)
|
||||
logits = outputs.logits
|
||||
predicted_class_id = logits.argmax().item()
|
||||
predicted_label = model.config.id2label[predicted_class_id]
|
||||
print(f"Predicted label: {predicted_label}")
|
||||
|
||||
```
|
||||
## Resources
|
||||
|
||||
- [Text classification task guide](../tasks/sequence_classification)
|
||||
- [Token classification task guide](../tasks/token_classification)
|
||||
- [Question answering task guide](../tasks/question_answering)
|
||||
- [Masked language modeling task guide](../tasks/masked_language_modeling)
|
||||
- [Multiple choice task guide](../tasks/multiple_choice)
|
||||
|
||||
## DebertaV2Config
|
||||
|
||||
|
@ -1,49 +0,0 @@
|
||||
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# DeepSeek-V2
|
||||
|
||||
## Overview
|
||||
|
||||
The DeepSeek-V2 model was proposed in [DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model](https://arxiv.org/abs/2405.04434) by DeepSeek-AI Team.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
We present DeepSeek-V2, a strong Mixture-of-Experts (MoE) language model characterized by economical training and efficient inference. It comprises 236B total parameters, of which 21B are activated for each token, and supports a context length of 128K tokens. DeepSeek-V2 adopts innovative architectures including Multi-head Latent Attention (MLA) and DeepSeekMoE. MLA guarantees efficient inference through significantly compressing the Key-Value (KV) cache into a latent vector, while DeepSeekMoE enables training strong models at an economical cost through sparse computation. Compared with DeepSeek 67B, DeepSeek-V2 achieves significantly stronger performance, and meanwhile saves 42.5% of training costs, reduces the KV cache by 93.3%, and boosts the maximum generation throughput to 5.76 times. We pretrain DeepSeek-V2 on a high-quality and multi-source corpus consisting of 8.1T tokens, and further perform Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL) to fully unlock its potential. Evaluation results show that, even with only 21B activated parameters, DeepSeek-V2 and its chat versions still achieve top-tier performance among open-source models.
|
||||
|
||||
This model was contributed by [VladOS95-cyber](https://github.com/VladOS95-cyber).
|
||||
The original code can be found [here](https://huggingface.co/deepseek-ai/DeepSeek-V2).
|
||||
|
||||
### Usage tips
|
||||
The model uses Multi-head Latent Attention (MLA) and DeepSeekMoE architectures for efficient inference and cost-effective training. It employs an auxiliary-loss-free strategy for load balancing and multi-token prediction training objective. The model can be used for various language tasks after being pre-trained on 14.8 trillion tokens and going through Supervised Fine-Tuning and Reinforcement Learning stages.
|
||||
|
||||
## DeepseekV2Config
|
||||
|
||||
[[autodoc]] DeepseekV2Config
|
||||
|
||||
## DeepseekV2Model
|
||||
|
||||
[[autodoc]] DeepseekV2Model
|
||||
- forward
|
||||
|
||||
## DeepseekV2ForCausalLM
|
||||
|
||||
[[autodoc]] DeepseekV2ForCausalLM
|
||||
- forward
|
||||
|
||||
## DeepseekV2ForSequenceClassification
|
||||
|
||||
[[autodoc]] DeepseekV2ForSequenceClassification
|
||||
- forward
|
@ -1,220 +0,0 @@
|
||||
<!--Copyright 2025 Deepseek AI and The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
# DeepseekVL
|
||||
|
||||
[Deepseek-VL](https://arxiv.org/abs/2403.05525) was introduced by the DeepSeek AI team. It is a vision-language model (VLM) designed to process both text and images for generating contextually relevant responses. The model leverages [LLaMA](./llama) as its text encoder, while [SigLip](./siglip) is used for encoding images.
|
||||
|
||||
You can find all the original Deepseek-VL checkpoints under the [DeepSeek-community](https://huggingface.co/deepseek-community) organization.
|
||||
|
||||
> [!TIP]
|
||||
> Click on the Deepseek-VL models in the right sidebar for more examples of how to apply Deepseek-VL to different vision and language tasks.
|
||||
|
||||
The example below demonstrates how to generate text based on an image with [`Pipeline`] or the [`AutoModel`] class.
|
||||
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
|
||||
pipe = pipeline(
|
||||
task="image-text-to-text",
|
||||
model="deepseek-community/deepseek-vl-1.3b-chat",
|
||||
device=0,
|
||||
torch_dtype=torch.float16
|
||||
)
|
||||
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "image",
|
||||
"url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg",
|
||||
},
|
||||
{ "type": "text", "text": "Describe this image."},
|
||||
]
|
||||
}
|
||||
]
|
||||
|
||||
pipe(text=messages, max_new_tokens=20, return_full_text=False)
|
||||
```
|
||||
</hfoption>
|
||||
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import DeepseekVLForConditionalGeneration, AutoProcessor
|
||||
|
||||
model = DeepseekVLForConditionalGeneration.from_pretrained(
|
||||
"deepseek-community/deepseek-vl-1.3b-chat",
|
||||
torch_dtype=torch.float16,
|
||||
device_map="auto",
|
||||
attn_implementation="sdpa"
|
||||
)
|
||||
|
||||
processor = AutoProcessor.from_pretrained("deepseek-community/deepseek-vl-1.3b-chat")
|
||||
|
||||
messages = [
|
||||
{
|
||||
"role":"user",
|
||||
"content":[
|
||||
{
|
||||
"type":"image",
|
||||
"url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
|
||||
},
|
||||
{
|
||||
"type":"text",
|
||||
"text":"Describe this image."
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
]
|
||||
|
||||
inputs = processor.apply_chat_template(
|
||||
messages,
|
||||
add_generation_prompt=True,
|
||||
tokenize=True,
|
||||
return_dict=True,
|
||||
return_tensors="pt"
|
||||
).to(model.device, dtype=model.dtype)
|
||||
|
||||
generated_ids = model.generate(**inputs, max_new_tokens=128)
|
||||
generated_ids_trimmed = [
|
||||
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
||||
]
|
||||
output_text = processor.batch_decode(
|
||||
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
||||
)
|
||||
|
||||
print(output_text)
|
||||
```
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
|
||||
|
||||
The example below uses [torchao](../quantization/torchao) to only quantize the weights to int4.
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import TorchAoConfig, DeepseekVLForConditionalGeneration, AutoProcessor
|
||||
|
||||
quantization_config = TorchAoConfig(
|
||||
"int4_weight_only",
|
||||
group_size=128
|
||||
)
|
||||
|
||||
model = DeepseekVLForConditionalGeneration.from_pretrained(
|
||||
"deepseek-community/deepseek-vl-1.3b-chat",
|
||||
torch_dtype=torch.bfloat16,
|
||||
device_map="auto",
|
||||
quantization_config=quantization_config
|
||||
)
|
||||
```
|
||||
### Notes
|
||||
|
||||
- Do inference with multiple images in a single conversation.
|
||||
```py
|
||||
import torch
|
||||
from transformers import DeepseekVLForConditionalGeneration, AutoProcessor
|
||||
|
||||
model = DeepseekVLForConditionalGeneration.from_pretrained(
|
||||
"deepseek-community/deepseek-vl-1.3b-chat",
|
||||
torch_dtype=torch.float16,
|
||||
device_map="auto",
|
||||
attn_implementation="sdpa"
|
||||
)
|
||||
|
||||
processor = AutoProcessor.from_pretrained("deepseek-community/deepseek-vl-1.3b-chat")
|
||||
|
||||
messages = [
|
||||
[
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "text", "text": "What’s the difference between"},
|
||||
{"type": "image", "url": "http://images.cocodataset.org/val2017/000000039769.jpg"},
|
||||
{"type": "text", "text": " and "},
|
||||
{"type": "image", "url": "https://www.ilankelman.org/stopsigns/australia.jpg"}
|
||||
]
|
||||
}
|
||||
],
|
||||
[
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "image", "url": "https://huggingface.co/microsoft/kosmos-2-patch14-224/resolve/main/snowman.jpg"},
|
||||
{"type": "text", "text": "What do you see in this image?"}
|
||||
]
|
||||
}
|
||||
]
|
||||
]
|
||||
|
||||
inputs = processor.apply_chat_template(
|
||||
messages,
|
||||
add_generation_prompt=True,
|
||||
padding=True,
|
||||
truncation=True,
|
||||
tokenize=True,
|
||||
return_dict=True,
|
||||
return_tensors="pt"
|
||||
).to(model.device, dtype=model.dtype)
|
||||
|
||||
generated_ids = model.generate(**inputs, max_new_tokens=128)
|
||||
generated_ids_trimmed = [
|
||||
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
||||
]
|
||||
output_text = processor.batch_decode(
|
||||
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
||||
)
|
||||
|
||||
print(output_text)
|
||||
```
|
||||
|
||||
## DeepseekVLConfig
|
||||
|
||||
[[autodoc]] DeepseekVLConfig
|
||||
|
||||
## DeepseekVLProcessor
|
||||
|
||||
[[autodoc]] DeepseekVLProcessor
|
||||
|
||||
## DeepseekVLImageProcessor
|
||||
|
||||
[[autodoc]] DeepseekVLImageProcessor
|
||||
|
||||
## DeepseekVLModel
|
||||
|
||||
[[autodoc]] DeepseekVLModel
|
||||
- forward
|
||||
|
||||
## DeepseekVLForConditionalGeneration
|
||||
|
||||
[[autodoc]] DeepseekVLForConditionalGeneration
|
||||
- forward
|
@ -1,219 +0,0 @@
|
||||
<!--Copyright 2025 Deepseek AI and The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
# DeepseekVLHybrid
|
||||
|
||||
[Deepseek-VL-Hybrid](https://arxiv.org/abs/2403.05525) was introduced by the DeepSeek AI team. It is a vision-language model (VLM) designed to process both text and images for generating contextually relevant responses. The model leverages [LLaMA](./llama) as its text encoder, while [SigLip](./siglip) is used for encoding low-resolution images and [SAM (Segment Anything Model)](./sam) is incorporated to handle high-resolution image encoding, enhancing the model’s ability to process fine-grained visual details. Deepseek-VL-Hybrid is a variant of Deepseek-VL that uses [SAM (Segment Anything Model)](./sam) to handle high-resolution image encoding.
|
||||
|
||||
You can find all the original Deepseek-VL-Hybrid checkpoints under the [DeepSeek-community](https://huggingface.co/deepseek-community) organization.
|
||||
|
||||
> [!TIP]
|
||||
> Click on the Deepseek-VL-Hybrid models in the right sidebar for more examples of how to apply Deepseek-VL-Hybrid to different vision and language tasks.
|
||||
|
||||
The example below demonstrates how to generate text based on an image with [`Pipeline`] or the [`AutoModel`] class.
|
||||
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
|
||||
pipe = pipeline(
|
||||
task="image-text-to-text",
|
||||
model="deepseek-community/deepseek-vl-7b-chat",
|
||||
device=0,
|
||||
torch_dtype=torch.float16
|
||||
)
|
||||
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "image",
|
||||
"url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg",
|
||||
},
|
||||
{ "type": "text", "text": "Describe this image."},
|
||||
]
|
||||
}
|
||||
]
|
||||
|
||||
pipe(text=messages, max_new_tokens=20, return_full_text=False)
|
||||
```
|
||||
</hfoption>
|
||||
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import DeepseekVLHybridForConditionalGeneration, AutoProcessor
|
||||
|
||||
model = DeepseekVLHybridForConditionalGeneration.from_pretrained(
|
||||
"deepseek-community/deepseek-vl-7b-chat",
|
||||
torch_dtype=torch.float16,
|
||||
device_map="auto",
|
||||
attn_implementation="sdpa"
|
||||
)
|
||||
|
||||
processor = AutoProcessor.from_pretrained("deepseek-community/deepseek-vl-7b-chat")
|
||||
|
||||
messages = [
|
||||
{
|
||||
"role":"user",
|
||||
"content":[
|
||||
{
|
||||
"type":"image",
|
||||
"url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
|
||||
},
|
||||
{
|
||||
"type":"text",
|
||||
"text":"Describe this image."
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
]
|
||||
|
||||
inputs = processor.apply_chat_template(
|
||||
messages,
|
||||
add_generation_prompt=True,
|
||||
tokenize=True,
|
||||
return_dict=True,
|
||||
return_tensors="pt"
|
||||
).to(model.device, dtype=model.dtype)
|
||||
|
||||
generated_ids = model.generate(**inputs, max_new_tokens=128)
|
||||
generated_ids_trimmed = [
|
||||
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
||||
]
|
||||
output_text = processor.batch_decode(
|
||||
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
||||
)
|
||||
|
||||
print(output_text)
|
||||
```
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
|
||||
|
||||
The example below uses [torchao](../quantization/torchao) to only quantize the weights to int4.
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import TorchAoConfig, DeepseekVLHybridForConditionalGeneration, AutoProcessor
|
||||
|
||||
quantization_config = TorchAoConfig(
|
||||
"int4_weight_only",
|
||||
group_size=128
|
||||
)
|
||||
|
||||
model = DeepseekVLHybridForConditionalGeneration.from_pretrained(
|
||||
"deepseek-community/deepseek-vl-7b-chat",
|
||||
torch_dtype=torch.bfloat16,
|
||||
device_map="auto",
|
||||
quantization_config=quantization_config
|
||||
)
|
||||
```
|
||||
### Notes
|
||||
|
||||
- Do inference with multiple images in a single conversation.
|
||||
```py
|
||||
import torch
|
||||
from transformers import DeepseekVLHybridForConditionalGeneration, AutoProcessor
|
||||
|
||||
model = DeepseekVLHybridForConditionalGeneration.from_pretrained(
|
||||
"deepseek-community/deepseek-vl-7b-chat",
|
||||
torch_dtype=torch.float16,
|
||||
device_map="auto",
|
||||
attn_implementation="sdpa"
|
||||
)
|
||||
|
||||
processor = AutoProcessor.from_pretrained("deepseek-community/deepseek-vl-7b-chat")
|
||||
|
||||
messages = [
|
||||
[
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "text", "text": "What’s the difference between"},
|
||||
{"type": "image", "url": "http://images.cocodataset.org/val2017/000000039769.jpg"},
|
||||
{"type": "text", "text": " and "},
|
||||
{"type": "image", "url": "https://www.ilankelman.org/stopsigns/australia.jpg"}
|
||||
]
|
||||
}
|
||||
],
|
||||
[
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "image", "url": "https://huggingface.co/microsoft/kosmos-2-patch14-224/resolve/main/snowman.jpg"},
|
||||
{"type": "text", "text": "What do you see in this image?"}
|
||||
]
|
||||
}
|
||||
]
|
||||
]
|
||||
|
||||
inputs = processor.apply_chat_template(
|
||||
messages,
|
||||
add_generation_prompt=True,
|
||||
padding=True,
|
||||
truncation=True,
|
||||
tokenize=True,
|
||||
return_dict=True,
|
||||
return_tensors="pt"
|
||||
).to(model.device, dtype=model.dtype)
|
||||
|
||||
generated_ids = model.generate(**inputs, max_new_tokens=128)
|
||||
generated_ids_trimmed = [
|
||||
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
||||
]
|
||||
output_text = processor.batch_decode(
|
||||
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
||||
)
|
||||
|
||||
print(output_text)
|
||||
```
|
||||
|
||||
## DeepseekVLHybridConfig
|
||||
|
||||
[[autodoc]] DeepseekVLHybridConfig
|
||||
|
||||
## DeepseekVLHybridProcessor
|
||||
|
||||
[[autodoc]] DeepseekVLHybridProcessor
|
||||
|
||||
## DeepseekVLHybridImageProcessor
|
||||
|
||||
[[autodoc]] DeepseekVLHybridImageProcessor
|
||||
|
||||
## DeepseekVLHybridModel
|
||||
|
||||
[[autodoc]] DeepseekVLHybridModel
|
||||
- forward
|
||||
|
||||
## DeepseekVLHybridForConditionalGeneration
|
||||
|
||||
[[autodoc]] DeepseekVLHybridForConditionalGeneration
|
||||
- forward
|
@ -1,162 +0,0 @@
|
||||
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# Dia
|
||||
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
|
||||
Dia is an opensource text-to-speech (TTS) model (1.6B parameters) developed by [Nari Labs](https://huggingface.co/nari-labs).
|
||||
It can generate highly realistic dialogue from transcript including nonverbal communications such as laughter and coughing.
|
||||
Furthermore, emotion and tone control is also possible via audio conditioning (voice cloning).
|
||||
|
||||
**Model Architecture:**
|
||||
Dia is an encoder-decoder transformer based on the original transformer architecture. However, some more modern features such as
|
||||
rotational positional embeddings (RoPE) are also included. For its text portion (encoder), a byte tokenizer is utilized while
|
||||
for the audio portion (decoder), a pretrained codec model [DAC](./dac.md) is used - DAC encodes speech into discrete codebook
|
||||
tokens and decodes them back into audio.
|
||||
|
||||
## Usage Tips
|
||||
|
||||
### Generation with Text
|
||||
|
||||
```python
|
||||
from transformers import AutoProcessor, DiaForConditionalGeneration
|
||||
|
||||
torch_device = "cuda"
|
||||
model_checkpoint = "nari-labs/Dia-1.6B-0626"
|
||||
|
||||
text = ["[S1] Dia is an open weights text to dialogue model."]
|
||||
processor = AutoProcessor.from_pretrained(model_checkpoint)
|
||||
inputs = processor(text=text, padding=True, return_tensors="pt").to(torch_device)
|
||||
|
||||
model = DiaForConditionalGeneration.from_pretrained(model_checkpoint).to(torch_device)
|
||||
outputs = model.generate(**inputs, max_new_tokens=256) # corresponds to around ~2s
|
||||
|
||||
# save audio to a file
|
||||
outputs = processor.batch_decode(outputs)
|
||||
processor.save_audio(outputs, "example.wav")
|
||||
|
||||
```
|
||||
|
||||
### Generation with Text and Audio (Voice Cloning)
|
||||
|
||||
```python
|
||||
from datasets import load_dataset, Audio
|
||||
from transformers import AutoProcessor, DiaForConditionalGeneration
|
||||
|
||||
torch_device = "cuda"
|
||||
model_checkpoint = "nari-labs/Dia-1.6B-0626"
|
||||
|
||||
ds = load_dataset("hf-internal-testing/dailytalk-dummy", split="train")
|
||||
ds = ds.cast_column("audio", Audio(sampling_rate=44100))
|
||||
audio = ds[-1]["audio"]["array"]
|
||||
# text is a transcript of the audio + additional text you want as new audio
|
||||
text = ["[S1] I know. It's going to save me a lot of money, I hope. [S2] I sure hope so for you."]
|
||||
|
||||
processor = AutoProcessor.from_pretrained(model_checkpoint)
|
||||
inputs = processor(text=text, audio=audio, padding=True, return_tensors="pt").to(torch_device)
|
||||
prompt_len = processor.get_audio_prompt_len(inputs["decoder_attention_mask"])
|
||||
|
||||
model = DiaForConditionalGeneration.from_pretrained(model_checkpoint).to(torch_device)
|
||||
outputs = model.generate(**inputs, max_new_tokens=256) # corresponds to around ~2s
|
||||
|
||||
# retrieve actually generated audio and save to a file
|
||||
outputs = processor.batch_decode(outputs, audio_prompt_len=prompt_len)
|
||||
processor.save_audio(outputs, "example_with_audio.wav")
|
||||
```
|
||||
|
||||
### Training
|
||||
|
||||
```python
|
||||
from datasets import load_dataset, Audio
|
||||
from transformers import AutoProcessor, DiaForConditionalGeneration
|
||||
|
||||
torch_device = "cuda"
|
||||
model_checkpoint = "nari-labs/Dia-1.6B-0626"
|
||||
|
||||
ds = load_dataset("hf-internal-testing/dailytalk-dummy", split="train")
|
||||
ds = ds.cast_column("audio", Audio(sampling_rate=44100))
|
||||
audio = ds[-1]["audio"]["array"]
|
||||
# text is a transcript of the audio
|
||||
text = ["[S1] I know. It's going to save me a lot of money, I hope."]
|
||||
|
||||
processor = AutoProcessor.from_pretrained(model_checkpoint)
|
||||
inputs = processor(
|
||||
text=text,
|
||||
audio=audio,
|
||||
generation=False,
|
||||
output_labels=True,
|
||||
padding=True,
|
||||
return_tensors="pt"
|
||||
).to(torch_device)
|
||||
|
||||
model = DiaForConditionalGeneration.from_pretrained(model_checkpoint).to(torch_device)
|
||||
out = model(**inputs)
|
||||
out.loss.backward()
|
||||
```
|
||||
|
||||
|
||||
This model was contributed by [Jaeyong Sung](https://huggingface.co/buttercrab), [Arthur Zucker](https://huggingface.co/ArthurZ),
|
||||
and [Anton Vlasjuk](https://huggingface.co/AntonV). The original code can be found [here](https://github.com/nari-labs/dia/).
|
||||
|
||||
|
||||
## DiaConfig
|
||||
|
||||
[[autodoc]] DiaConfig
|
||||
|
||||
## DiaDecoderConfig
|
||||
|
||||
[[autodoc]] DiaDecoderConfig
|
||||
|
||||
## DiaEncoderConfig
|
||||
|
||||
[[autodoc]] DiaEncoderConfig
|
||||
|
||||
## DiaTokenizer
|
||||
|
||||
[[autodoc]] DiaTokenizer
|
||||
- __call__
|
||||
|
||||
## DiaFeatureExtractor
|
||||
|
||||
[[autodoc]] DiaFeatureExtractor
|
||||
- __call__
|
||||
|
||||
## DiaProcessor
|
||||
|
||||
[[autodoc]] DiaProcessor
|
||||
- __call__
|
||||
- batch_decode
|
||||
- decode
|
||||
|
||||
## DiaModel
|
||||
|
||||
[[autodoc]] DiaModel
|
||||
- forward
|
||||
|
||||
## DiaForConditionalGeneration
|
||||
|
||||
[[autodoc]] DiaForConditionalGeneration
|
||||
- forward
|
||||
- generate
|
@ -1,103 +0,0 @@
|
||||
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# Doge
|
||||
|
||||
|
||||
## Overview
|
||||
|
||||
Doge is a series of small language models based on the [Doge](https://github.com/SmallDoges/small-doge) architecture, aiming to combine the advantages of state-space and self-attention algorithms, calculate dynamic masks from cached value states using the zero-order hold method, and solve the problem of existing mainstream language models getting lost in context. It uses the `wsd_scheduler` scheduler to pre-train on the `smollm-corpus`, and can continue training on new datasets or add sparse activation feedforward networks from stable stage checkpoints.
|
||||
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/refs%2Fpr%2F426/transformers/model_doc/doge_architecture.png" alt="drawing" width="600"/>
|
||||
|
||||
As shown in the figure below, the sequence transformation part of the Doge architecture uses `Dynamic Mask Attention`, which can be understood as using self-attention related to value states during training, and using state-space without past state decay during inference, to solve the problem of existing Transformers or SSMs getting lost in long text. The state transformation part of Doge uses `Cross Domain Mixture of Experts`, which consists of dense linear layers and sparse embedding layers, and can additionally increase sparse parameters to continue training from dense weight checkpoints without retraining the entire model, thereby reducing the cost of continuous iteration of the model. In addition, Doge also uses `RMSNorm` and `Residual` with learnable parameters to adapt the gradient range of deep models.
|
||||
|
||||
Checkout all Doge model checkpoints [here](https://huggingface.co/collections/SmallDoge/doge-slm-679cc991f027c4a3abbded4a).
|
||||
|
||||
|
||||
## Usage
|
||||
|
||||
<details>
|
||||
<summary>Using Doge-Base for text generation</summary>
|
||||
|
||||
```python
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("SmallDoge/Doge-20M")
|
||||
model = AutoModelForCausalLM.from_pretrained("SmallDoge/Doge-20M")
|
||||
inputs = tokenizer("Hey how are you doing?", return_tensors="pt")
|
||||
|
||||
outputs = model.generate(**inputs, max_new_tokens=100)
|
||||
print(tokenizer.batch_decode(outputs))
|
||||
```
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>Using Doge-Instruct for question answering</summary>
|
||||
|
||||
```python
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig, TextStreamer
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("SmallDoge/Doge-20M-Instruct")
|
||||
model = AutoModelForCausalLM.from_pretrained("SmallDoge/Doge-20M-Instruct")
|
||||
|
||||
generation_config = GenerationConfig(
|
||||
max_new_tokens=100,
|
||||
use_cache=True,
|
||||
do_sample=True,
|
||||
temperature=0.8,
|
||||
top_p=0.9,
|
||||
repetition_penalty=1.0
|
||||
)
|
||||
steamer = TextStreamer(tokenizer=tokenizer, skip_prompt=True)
|
||||
|
||||
prompt = "Hi, how are you doing today?"
|
||||
conversation = [
|
||||
{"role": "user", "content": prompt}
|
||||
]
|
||||
inputs = tokenizer.apply_chat_template(
|
||||
conversation=conversation,
|
||||
tokenize=True,
|
||||
return_tensors="pt",
|
||||
)
|
||||
|
||||
outputs = model.generate(
|
||||
inputs,
|
||||
tokenizer=tokenizer,
|
||||
generation_config=generation_config,
|
||||
streamer=steamer
|
||||
)
|
||||
```
|
||||
</details>
|
||||
|
||||
## DogeConfig
|
||||
|
||||
[[autodoc]] DogeConfig
|
||||
|
||||
## DogeModel
|
||||
|
||||
[[autodoc]] DogeModel
|
||||
- forward
|
||||
|
||||
## DogeForCausalLM
|
||||
|
||||
[[autodoc]] DogeForCausalLM
|
||||
- forward
|
||||
|
||||
## DogeForSequenceClassification
|
||||
|
||||
[[autodoc]] DogeForSequenceClassification
|
||||
- forward
|
@ -1,40 +0,0 @@
|
||||
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# dots.llm1
|
||||
|
||||
## Overview
|
||||
|
||||
The `dots.llm1` model was proposed in [dots.llm1 technical report](https://www.arxiv.org/pdf/2506.05767) by rednote-hilab team.
|
||||
|
||||
The abstract from the report is the following:
|
||||
|
||||
*Mixture of Experts (MoE) models have emerged as a promising paradigm for scaling language models efficiently by activating only a subset of parameters for each input token. In this report, we present dots.llm1, a large-scale MoE model that activates 14B parameters out of a total of 142B parameters, delivering performance on par with state-of-the-art models while reducing training and inference costs. Leveraging our meticulously crafted and efficient data processing pipeline, dots.llm1 achieves performance comparable to Qwen2.5-72B after pretraining on high-quality corpus and post-training to fully unlock its capabilities. Notably, no synthetic data is used during pretraining. To foster further research, we open-source intermediate training checkpoints spanning the entire training process, providing valuable insights into the learning dynamics of large language models.*
|
||||
|
||||
|
||||
## Dots1Config
|
||||
|
||||
[[autodoc]] Dots1Config
|
||||
|
||||
## Dots1Model
|
||||
|
||||
[[autodoc]] Dots1Model
|
||||
- forward
|
||||
|
||||
## Dots1ForCausalLM
|
||||
|
||||
[[autodoc]] Dots1ForCausalLM
|
||||
- forward
|
@ -78,13 +78,7 @@ If you're interested in submitting a resource to be included here, please feel f
|
||||
|
||||
[[autodoc]] DPTImageProcessor
|
||||
- preprocess
|
||||
|
||||
## DPTImageProcessorFast
|
||||
|
||||
[[autodoc]] DPTImageProcessorFast
|
||||
- preprocess
|
||||
- post_process_semantic_segmentation
|
||||
- post_process_depth_estimation
|
||||
|
||||
## DPTModel
|
||||
|
||||
|
@ -1,114 +0,0 @@
|
||||
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the MIT License; you may not use this file except in compliance with
|
||||
the License.
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
|
||||
-->
|
||||
|
||||
# EfficientLoFTR
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
|
||||
The EfficientLoFTR model was proposed in [Efficient LoFTR: Semi-Dense Local Feature Matching with Sparse-Like Speed](https://arxiv.org/abs/2403.04765) by Yifan Wang, Xingyi He, Sida Peng, Dongli Tan and Xiaowei Zhou.
|
||||
|
||||
This model consists of matching two images together by finding pixel correspondences. It can be used to estimate the pose between them.
|
||||
This model is useful for tasks such as image matching, homography estimation, etc.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
|
||||
*We present a novel method for efficiently producing semidense matches across images. Previous detector-free matcher
|
||||
LoFTR has shown remarkable matching capability in handling large-viewpoint change and texture-poor scenarios but suffers
|
||||
from low efficiency. We revisit its design choices and derive multiple improvements for both efficiency and accuracy.
|
||||
One key observation is that performing the transformer over the entire feature map is redundant due to shared local
|
||||
information, therefore we propose an aggregated attention mechanism with adaptive token selection for efficiency.
|
||||
Furthermore, we find spatial variance exists in LoFTR’s fine correlation module, which is adverse to matching accuracy.
|
||||
A novel two-stage correlation layer is proposed to achieve accurate subpixel correspondences for accuracy improvement.
|
||||
Our efficiency optimized model is ∼ 2.5× faster than LoFTR which can even surpass state-of-the-art efficient sparse
|
||||
matching pipeline SuperPoint + LightGlue. Moreover, extensive experiments show that our method can achieve higher
|
||||
accuracy compared with competitive semi-dense matchers, with considerable efficiency benefits. This opens up exciting
|
||||
prospects for large-scale or latency-sensitive applications such as image retrieval and 3D reconstruction.
|
||||
Project page: [https://zju3dv.github.io/efficientloftr/](https://zju3dv.github.io/efficientloftr/).*
|
||||
|
||||
## How to use
|
||||
|
||||
Here is a quick example of using the model.
|
||||
```python
|
||||
import torch
|
||||
|
||||
from transformers import AutoImageProcessor, AutoModelForKeypointMatching
|
||||
from transformers.image_utils import load_image
|
||||
|
||||
|
||||
image1 = load_image("https://raw.githubusercontent.com/magicleap/SuperGluePretrainedNetwork/refs/heads/master/assets/phototourism_sample_images/united_states_capitol_98169888_3347710852.jpg")
|
||||
image2 = load_image("https://raw.githubusercontent.com/magicleap/SuperGluePretrainedNetwork/refs/heads/master/assets/phototourism_sample_images/united_states_capitol_26757027_6717084061.jpg")
|
||||
|
||||
images = [image1, image2]
|
||||
|
||||
processor = AutoImageProcessor.from_pretrained("stevenbucaille/efficientloftr")
|
||||
model = AutoModelForKeypointMatching.from_pretrained("stevenbucaille/efficientloftr")
|
||||
|
||||
inputs = processor(images, return_tensors="pt")
|
||||
with torch.no_grad():
|
||||
outputs = model(**inputs)
|
||||
```
|
||||
|
||||
You can use the `post_process_keypoint_matching` method from the `ImageProcessor` to get the keypoints and matches in a more readable format:
|
||||
|
||||
```python
|
||||
image_sizes = [[(image.height, image.width) for image in images]]
|
||||
outputs = processor.post_process_keypoint_matching(outputs, image_sizes, threshold=0.2)
|
||||
for i, output in enumerate(outputs):
|
||||
print("For the image pair", i)
|
||||
for keypoint0, keypoint1, matching_score in zip(
|
||||
output["keypoints0"], output["keypoints1"], output["matching_scores"]
|
||||
):
|
||||
print(
|
||||
f"Keypoint at coordinate {keypoint0.numpy()} in the first image matches with keypoint at coordinate {keypoint1.numpy()} in the second image with a score of {matching_score}."
|
||||
)
|
||||
```
|
||||
|
||||
From the post processed outputs, you can visualize the matches between the two images using the following code:
|
||||
```python
|
||||
images_with_matching = processor.visualize_keypoint_matching(images, outputs)
|
||||
```
|
||||
|
||||

|
||||
|
||||
This model was contributed by [stevenbucaille](https://huggingface.co/stevenbucaille).
|
||||
The original code can be found [here](https://github.com/zju3dv/EfficientLoFTR).
|
||||
|
||||
## EfficientLoFTRConfig
|
||||
|
||||
[[autodoc]] EfficientLoFTRConfig
|
||||
|
||||
## EfficientLoFTRImageProcessor
|
||||
|
||||
[[autodoc]] EfficientLoFTRImageProcessor
|
||||
|
||||
- preprocess
|
||||
- post_process_keypoint_matching
|
||||
- visualize_keypoint_matching
|
||||
|
||||
## EfficientLoFTRModel
|
||||
|
||||
[[autodoc]] EfficientLoFTRModel
|
||||
|
||||
- forward
|
||||
|
||||
## EfficientLoFTRForKeypointMatching
|
||||
|
||||
[[autodoc]] EfficientLoFTRForKeypointMatching
|
||||
|
||||
- forward
|
@ -47,8 +47,7 @@ Here is a quick example of how to encode and decode an audio using this model:
|
||||
>>> inputs = processor(raw_audio=audio_sample, sampling_rate=processor.sampling_rate, return_tensors="pt")
|
||||
|
||||
>>> encoder_outputs = model.encode(inputs["input_values"], inputs["padding_mask"])
|
||||
>>> # `encoder_outputs.audio_codes` contains discrete codes
|
||||
>>> audio_values = model.decode(**encoder_outputs, padding_mask=inputs["padding_mask"])[0]
|
||||
>>> audio_values = model.decode(encoder_outputs.audio_codes, encoder_outputs.audio_scales, inputs["padding_mask"])[0]
|
||||
>>> # or the equivalent with a forward pass
|
||||
>>> audio_values = model(inputs["input_values"], inputs["padding_mask"]).audio_values
|
||||
```
|
||||
|
@ -14,88 +14,115 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
|
||||
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
|
||||
">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
# Encoder Decoder Models
|
||||
|
||||
[`EncoderDecoderModel`](https://huggingface.co/papers/1706.03762) initializes a sequence-to-sequence model with any pretrained autoencoder and pretrained autoregressive model. It is effective for sequence generation tasks as demonstrated in [Text Summarization with Pretrained Encoders](https://huggingface.co/papers/1908.08345) which uses [`BertModel`] as the encoder and decoder.
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
|
||||
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
|
||||
">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
|
||||
> [!TIP]
|
||||
> This model was contributed by [thomwolf](https://huggingface.co/thomwolf) and the TensorFlow/Flax version by [ydshieh](https://huggingface.co/ydshieh).
|
||||
>
|
||||
> Click on the Encoder Decoder models in the right sidebar for more examples of how to apply Encoder Decoder to different language tasks.
|
||||
## Overview
|
||||
|
||||
The example below demonstrates how to generate text with [`Pipeline`], [`AutoModel`], and from the command line.
|
||||
The [`EncoderDecoderModel`] can be used to initialize a sequence-to-sequence model with any
|
||||
pretrained autoencoding model as the encoder and any pretrained autoregressive model as the decoder.
|
||||
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
The effectiveness of initializing sequence-to-sequence models with pretrained checkpoints for sequence generation tasks
|
||||
was shown in [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://huggingface.co/papers/1907.12461) by
|
||||
Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
|
||||
|
||||
After such an [`EncoderDecoderModel`] has been trained/fine-tuned, it can be saved/loaded just like
|
||||
any other models (see the examples for more information).
|
||||
|
||||
An application of this architecture could be to leverage two pretrained [`BertModel`] as the encoder
|
||||
and decoder for a summarization model as was shown in: [Text Summarization with Pretrained Encoders](https://huggingface.co/papers/1908.08345) by Yang Liu and Mirella Lapata.
|
||||
|
||||
## Randomly initializing `EncoderDecoderModel` from model configurations.
|
||||
|
||||
[`EncoderDecoderModel`] can be randomly initialized from an encoder and a decoder config. In the following example, we show how to do this using the default [`BertModel`] configuration for the encoder and the default [`BertForCausalLM`] configuration for the decoder.
|
||||
|
||||
```python
|
||||
from transformers import pipeline
|
||||
>>> from transformers import BertConfig, EncoderDecoderConfig, EncoderDecoderModel
|
||||
|
||||
summarizer = pipeline(
|
||||
"summarization",
|
||||
model="patrickvonplaten/bert2bert-cnn_dailymail-fp16",
|
||||
device=0
|
||||
)
|
||||
>>> config_encoder = BertConfig()
|
||||
>>> config_decoder = BertConfig()
|
||||
|
||||
text = "Plants create energy through a process known as photosynthesis. This involves capturing sunlight and converting carbon dioxide and water into glucose and oxygen."
|
||||
print(summarizer(text))
|
||||
>>> config = EncoderDecoderConfig.from_encoder_decoder_configs(config_encoder, config_decoder)
|
||||
>>> model = EncoderDecoderModel(config=config)
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
## Initialising `EncoderDecoderModel` from a pretrained encoder and a pretrained decoder.
|
||||
|
||||
[`EncoderDecoderModel`] can be initialized from a pretrained encoder checkpoint and a pretrained decoder checkpoint. Note that any pretrained auto-encoding model, *e.g.* BERT, can serve as the encoder and both pretrained auto-encoding models, *e.g.* BERT, pretrained causal language models, *e.g.* GPT2, as well as the pretrained decoder part of sequence-to-sequence models, *e.g.* decoder of BART, can be used as the decoder.
|
||||
Depending on which architecture you choose as the decoder, the cross-attention layers might be randomly initialized.
|
||||
Initializing [`EncoderDecoderModel`] from a pretrained encoder and decoder checkpoint requires the model to be fine-tuned on a downstream task, as has been shown in [the *Warm-starting-encoder-decoder blog post*](https://huggingface.co/blog/warm-starting-encoder-decoder).
|
||||
To do so, the `EncoderDecoderModel` class provides a [`EncoderDecoderModel.from_encoder_decoder_pretrained`] method.
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
>>> from transformers import EncoderDecoderModel, BertTokenizer
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("patrickvonplaten/bert2bert-cnn_dailymail-fp16")
|
||||
model = AutoModelForCausalLM.from_pretrained("patrickvonplaten/bert2bert-cnn_dailymail-fp16", torch_dtype=torch.bfloat16, device_map="auto",attn_implementation="sdpa")
|
||||
|
||||
text = "Plants create energy through a process known as photosynthesis. This involves capturing sunlight and converting carbon dioxide and water into glucose and oxygen."
|
||||
|
||||
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(model.device)
|
||||
|
||||
summary = model.generate(**inputs, max_length=60, num_beams=4, early_stopping=True)
|
||||
print(tokenizer.decode(summary[0], skip_special_tokens=True))
|
||||
>>> tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-uncased")
|
||||
>>> model = EncoderDecoderModel.from_encoder_decoder_pretrained("google-bert/bert-base-uncased", "google-bert/bert-base-uncased")
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="transformers CLI">
|
||||
## Loading an existing `EncoderDecoderModel` checkpoint and perform inference.
|
||||
|
||||
```bash
|
||||
echo -e "Plants create energy through a process known as photosynthesis. This involves capturing sunlight and converting carbon dioxide and water into glucose and oxygen." | transformers-cli run --task summarization --model "patrickvonplaten/bert2bert-cnn_dailymail-fp16" --device 0
|
||||
```
|
||||
To load fine-tuned checkpoints of the `EncoderDecoderModel` class, [`EncoderDecoderModel`] provides the `from_pretrained(...)` method just like any other model architecture in Transformers.
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
## Notes
|
||||
|
||||
- [`EncoderDecoderModel`] can be initialized using any pretrained encoder and decoder. But depending on the decoder architecture, the cross-attention layers may be randomly initialized.
|
||||
|
||||
These models require downstream fine-tuning, as discussed in this [blog post](https://huggingface.co/blog/warm-starting-encoder-decoder). Use [`~EncoderDecoderModel.from_encoder_decoder_pretrained`] to combine encoder and decoder checkpoints.
|
||||
To perform inference, one uses the [`generate`] method, which allows to autoregressively generate text. This method supports various forms of decoding, such as greedy, beam search and multinomial sampling.
|
||||
|
||||
```python
|
||||
from transformers import EncoderDecoderModel, BertTokenizer
|
||||
>>> from transformers import AutoTokenizer, EncoderDecoderModel
|
||||
|
||||
tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-uncased")
|
||||
model = EncoderDecoderModel.from_encoder_decoder_pretrained(
|
||||
"google-bert/bert-base-uncased",
|
||||
"google-bert/bert-base-uncased"
|
||||
)
|
||||
>>> # load a fine-tuned seq2seq model and corresponding tokenizer
|
||||
>>> model = EncoderDecoderModel.from_pretrained("patrickvonplaten/bert2bert_cnn_daily_mail")
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("patrickvonplaten/bert2bert_cnn_daily_mail")
|
||||
|
||||
>>> # let's perform inference on a long piece of text
|
||||
>>> ARTICLE_TO_SUMMARIZE = (
|
||||
... "PG&E stated it scheduled the blackouts in response to forecasts for high winds "
|
||||
... "amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were "
|
||||
... "scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow."
|
||||
... )
|
||||
>>> input_ids = tokenizer(ARTICLE_TO_SUMMARIZE, return_tensors="pt").input_ids
|
||||
|
||||
>>> # autoregressively generate summary (uses greedy decoding by default)
|
||||
>>> generated_ids = model.generate(input_ids)
|
||||
>>> generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
||||
>>> print(generated_text)
|
||||
nearly 800 thousand customers were affected by the shutoffs. the aim is to reduce the risk of wildfires. nearly 800, 000 customers were expected to be affected by high winds amid dry conditions. pg & e said it scheduled the blackouts to last through at least midday tomorrow.
|
||||
```
|
||||
|
||||
- Encoder Decoder models can be fine-tuned like BART, T5 or any other encoder-decoder model. Only 2 inputs are required to compute a loss, `input_ids` and `labels`. Refer to this [notebook](https://colab.research.google.com/drive/1WIk2bxglElfZewOHboPFNj8H44_VAyKE?usp=sharing#scrollTo=ZwQIEhKOrJpl) for a more detailed training example.
|
||||
## Loading a PyTorch checkpoint into `TFEncoderDecoderModel`.
|
||||
|
||||
[`TFEncoderDecoderModel.from_pretrained`] currently doesn't support initializing the model from a
|
||||
pytorch checkpoint. Passing `from_pt=True` to this method will throw an exception. If there are only pytorch
|
||||
checkpoints for a particular encoder-decoder model, a workaround is:
|
||||
|
||||
```python
|
||||
>>> # a workaround to load from pytorch checkpoint
|
||||
>>> from transformers import EncoderDecoderModel, TFEncoderDecoderModel
|
||||
|
||||
>>> _model = EncoderDecoderModel.from_pretrained("patrickvonplaten/bert2bert-cnn_dailymail-fp16")
|
||||
|
||||
>>> _model.encoder.save_pretrained("./encoder")
|
||||
>>> _model.decoder.save_pretrained("./decoder")
|
||||
|
||||
>>> model = TFEncoderDecoderModel.from_encoder_decoder_pretrained(
|
||||
... "./encoder", "./decoder", encoder_from_pt=True, decoder_from_pt=True
|
||||
... )
|
||||
>>> # This is only for copying some specific attributes of this particular model.
|
||||
>>> model.config = _model.config
|
||||
```
|
||||
|
||||
## Training
|
||||
|
||||
Once the model is created, it can be fine-tuned similar to BART, T5 or any other encoder-decoder model.
|
||||
As you can see, only 2 inputs are required for the model in order to compute a loss: `input_ids` (which are the
|
||||
`input_ids` of the encoded input sequence) and `labels` (which are the `input_ids` of the encoded
|
||||
target sequence).
|
||||
|
||||
```python
|
||||
>>> from transformers import BertTokenizer, EncoderDecoderModel
|
||||
@ -120,42 +147,11 @@ model = EncoderDecoderModel.from_encoder_decoder_pretrained(
|
||||
>>> loss = model(input_ids=input_ids, labels=labels).loss
|
||||
```
|
||||
|
||||
- [`EncoderDecoderModel`] can be randomly initialized from an encoder and a decoder config as shown below.
|
||||
Detailed [colab](https://colab.research.google.com/drive/1WIk2bxglElfZewOHboPFNj8H44_VAyKE?usp=sharing#scrollTo=ZwQIEhKOrJpl) for training.
|
||||
|
||||
```python
|
||||
>>> from transformers import BertConfig, EncoderDecoderConfig, EncoderDecoderModel
|
||||
This model was contributed by [thomwolf](https://github.com/thomwolf). This model's TensorFlow and Flax versions
|
||||
were contributed by [ydshieh](https://github.com/ydshieh).
|
||||
|
||||
>>> config_encoder = BertConfig()
|
||||
>>> config_decoder = BertConfig()
|
||||
|
||||
>>> config = EncoderDecoderConfig.from_encoder_decoder_configs(config_encoder, config_decoder)
|
||||
>>> model = EncoderDecoderModel(config=config)
|
||||
```
|
||||
|
||||
- The Encoder Decoder Model can also be used for translation as shown below.
|
||||
|
||||
```python
|
||||
from transformers import AutoTokenizer, EncoderDecoderModel
|
||||
|
||||
# Load a pre-trained translation model
|
||||
model_name = "google/bert2bert_L-24_wmt_en_de"
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name, pad_token="<pad>", eos_token="</s>", bos_token="<s>")
|
||||
model = EncoderDecoderModel.from_pretrained(model_name)
|
||||
|
||||
# Input sentence to translate
|
||||
input_text = "Plants create energy through a process known as"
|
||||
|
||||
# Encode the input text
|
||||
inputs = tokenizer(input_text, return_tensors="pt", add_special_tokens=False).input_ids
|
||||
|
||||
# Generate the translated output
|
||||
outputs = model.generate(inputs)[0]
|
||||
|
||||
# Decode the output tokens to get the translated sentence
|
||||
translated_text = tokenizer.decode(outputs, skip_special_tokens=True)
|
||||
|
||||
print("Translated text:", translated_text)
|
||||
```
|
||||
|
||||
## EncoderDecoderConfig
|
||||
|
||||
|
@ -1,210 +0,0 @@
|
||||
<!--Copyright 2025 Mobile Perception Systems Lab at TU/e and The HuggingFace Inc. team. All rights reserved.
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
-->
|
||||
|
||||
# EoMT
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
|
||||
The Encoder-only Mask Transformer (EoMT) model was introduced in the CVPR 2025 Highlight Paper [Your ViT is Secretly an Image Segmentation Model](https://www.tue-mps.org/eomt) by Tommie Kerssies, Niccolò Cavagnero, Alexander Hermans, Narges Norouzi, Giuseppe Averta, Bastian Leibe, Gijs Dubbelman, and Daan de Geus.
|
||||
EoMT reveals Vision Transformers can perform image segmentation efficiently without task-specific components.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
|
||||
*Vision Transformers (ViTs) have shown remarkable performance and scalability across various computer vision tasks. To apply single-scale ViTs to image segmentation, existing methods adopt a convolutional adapter to generate multi-scale features, a pixel decoder to fuse these features, and a Transformer decoder that uses the fused features to make predictions. In this paper, we show that the inductive biases introduced by these task-specific components can instead be learned by the ViT itself, given sufficiently large models and extensive pre-training. Based on these findings, we introduce the Encoder-only Mask Transformer (EoMT), which repurposes the plain ViT architecture to conduct image segmentation. With large-scale models and pre-training, EoMT obtains a segmentation accuracy similar to state-of-the-art models that use task-specific components. At the same time, EoMT is significantly faster than these methods due to its architectural simplicity, e.g., up to 4x faster with ViT-L. Across a range of model sizes, EoMT demonstrates an optimal balance between segmentation accuracy and prediction speed, suggesting that compute resources are better spent on scaling the ViT itself rather than adding architectural complexity.*
|
||||
|
||||
This model was contributed by [Yaswanth Gali](https://huggingface.co/yaswanthgali).
|
||||
The original code can be found [here](https://github.com/tue-mps/eomt).
|
||||
|
||||
## Architecture Info
|
||||
|
||||
The `EoMT` model uses a DINOv2-pretrained Vision Transformer with **register tokens** as its backbone. EoMT simplifies the segmentation pipeline by relying solely on the encoder, eliminating the need for task-specific decoders commonly used in prior approaches.
|
||||
|
||||
Architecturally, EoMT introduces a small set of **learned queries** and a lightweight **mask prediction module**. These queries are injected into the final encoder blocks, enabling **joint attention** between image patches and object queries. During training, **masked attention** is applied to constrain each query to focus on its corresponding region—effectively mimicking cross-attention. This constraint is gradually phased out via a **mask annealing strategy**, allowing for **efficient, decoder-free inference** without compromising segmentation performance.
|
||||
|
||||
<div style="text-align: center;">
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/eomt_architecture.png"
|
||||
alt="drawing" width="500"/>
|
||||
</div>
|
||||
|
||||
|
||||
The model supports semantic, instance, and panoptic segmentation using a unified architecture and task-specific post-processing.
|
||||
|
||||
## Usage Examples
|
||||
|
||||
Use the Hugging Face implementation of EoMT for inference with pre-trained models.
|
||||
|
||||
### Semantic Segmentation
|
||||
|
||||
The EoMT model performs semantic segmentation using sliding-window inference. The input image is resized such that the shorter side matches the target input size, then it is split into overlapping crops. Each crop is then passed through the model. After inference, the predicted logits from each crop are stitched back together and rescaled to the original image size to get the final segmentation mask.
|
||||
|
||||
> **Note:**
|
||||
> If you want to use a custom target size for **semantic segmentation**, specify it in the following format:
|
||||
> `{"shortest_edge": 512}`
|
||||
> Notice that `longest_edge` is not provided here — this is intentional. For semantic segmentation, images are typically **scaled so that the shortest edge is greater than or equal to the target size** hence longest_edge is not necessary.
|
||||
|
||||
```python
|
||||
import matplotlib.pyplot as plt
|
||||
import requests
|
||||
import torch
|
||||
from PIL import Image
|
||||
|
||||
from transformers import EomtForUniversalSegmentation, AutoImageProcessor
|
||||
|
||||
|
||||
model_id = "tue-mps/ade20k_semantic_eomt_large_512"
|
||||
processor = AutoImageProcessor.from_pretrained(model_id)
|
||||
model = EomtForUniversalSegmentation.from_pretrained(model_id)
|
||||
|
||||
image = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw)
|
||||
|
||||
inputs = processor(
|
||||
images=image,
|
||||
return_tensors="pt",
|
||||
)
|
||||
|
||||
with torch.inference_mode():
|
||||
outputs = model(**inputs)
|
||||
|
||||
# Prepare the original image size in the format (height, width)
|
||||
target_sizes = [(image.height, image.width)]
|
||||
|
||||
# Post-process the model outputs to get final segmentation prediction
|
||||
preds = processor.post_process_semantic_segmentation(
|
||||
outputs,
|
||||
target_sizes=target_sizes,
|
||||
)
|
||||
|
||||
# Visualize the segmentation mask
|
||||
plt.imshow(preds[0])
|
||||
plt.axis("off")
|
||||
plt.title("Semantic Segmentation")
|
||||
plt.show()
|
||||
```
|
||||
|
||||
### Instance Segmentation
|
||||
|
||||
The EoMT model performs instance segmentation using padded inference. The input image is resized so that the longer side matches the target input size, and the shorter side is zero-padded to form a square. The resulting mask and class logits are combined through post-processing (adapted from Mask2Former) to produce a unified instance segmentation map, along with segment metadata like segment id, class labels and confidence scores.
|
||||
|
||||
> **Note:**
|
||||
> To use a custom target size, specify the size as a dictionary in the following format:
|
||||
> `{"shortest_edge": 512, "longest_edge": 512}`
|
||||
> For both instance and panoptic segmentation, input images will be **scaled and padded** to this target size.
|
||||
|
||||
```python
|
||||
import matplotlib.pyplot as plt
|
||||
import requests
|
||||
import torch
|
||||
from PIL import Image
|
||||
|
||||
from transformers import EomtForUniversalSegmentation, AutoImageProcessor
|
||||
|
||||
|
||||
model_id = "tue-mps/coco_instance_eomt_large_640"
|
||||
processor = AutoImageProcessor.from_pretrained(model_id)
|
||||
model = EomtForUniversalSegmentation.from_pretrained(model_id)
|
||||
|
||||
image = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw)
|
||||
|
||||
inputs = processor(
|
||||
images=image,
|
||||
return_tensors="pt",
|
||||
)
|
||||
|
||||
with torch.inference_mode():
|
||||
outputs = model(**inputs)
|
||||
|
||||
# Prepare the original image size in the format (height, width)
|
||||
target_sizes = [(image.height, image.width)]
|
||||
|
||||
# Post-process the model outputs to get final segmentation prediction
|
||||
preds = processor.post_process_instance_segmentation(
|
||||
outputs,
|
||||
target_sizes=target_sizes,
|
||||
)
|
||||
|
||||
# Visualize the segmentation mask
|
||||
plt.imshow(preds[0]["segmentation"])
|
||||
plt.axis("off")
|
||||
plt.title("Instance Segmentation")
|
||||
plt.show()
|
||||
```
|
||||
|
||||
### Panoptic Segmentation
|
||||
|
||||
The EoMT model performs panoptic segmentation using the same padded inference strategy as in instance segmentation. After padding and normalization, the model predicts both thing (instances) and stuff (amorphous regions) classes. The resulting mask and class logits are combined through post-processing (adapted from Mask2Former) to produce a unified panoptic segmentation map, along with segment metadata like segment id, class labels and confidence scores.
|
||||
|
||||
```python
|
||||
import matplotlib.pyplot as plt
|
||||
import requests
|
||||
import torch
|
||||
from PIL import Image
|
||||
|
||||
from transformers import EomtForUniversalSegmentation, AutoImageProcessor
|
||||
|
||||
|
||||
model_id = "tue-mps/coco_panoptic_eomt_large_640"
|
||||
processor = AutoImageProcessor.from_pretrained(model_id)
|
||||
model = EomtForUniversalSegmentation.from_pretrained(model_id)
|
||||
|
||||
image = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw)
|
||||
|
||||
inputs = processor(
|
||||
images=image,
|
||||
return_tensors="pt",
|
||||
)
|
||||
|
||||
with torch.inference_mode():
|
||||
outputs = model(**inputs)
|
||||
|
||||
# Prepare the original image size in the format (height, width)
|
||||
target_sizes = [(image.height, image.width)]
|
||||
|
||||
# Post-process the model outputs to get final segmentation prediction
|
||||
preds = processor.post_process_panoptic_segmentation(
|
||||
outputs,
|
||||
target_sizes=target_sizes,
|
||||
)
|
||||
|
||||
# Visualize the panoptic segmentation mask
|
||||
plt.imshow(preds[0]["segmentation"])
|
||||
plt.axis("off")
|
||||
plt.title("Panoptic Segmentation")
|
||||
plt.show()
|
||||
```
|
||||
|
||||
## EomtImageProcessor
|
||||
|
||||
[[autodoc]] EomtImageProcessor
|
||||
- preprocess
|
||||
- post_process_semantic_segmentation
|
||||
- post_process_instance_segmentation
|
||||
- post_process_panoptic_segmentation
|
||||
|
||||
## EomtImageProcessorFast
|
||||
|
||||
[[autodoc]] EomtImageProcessorFast
|
||||
- preprocess
|
||||
- post_process_semantic_segmentation
|
||||
- post_process_instance_segmentation
|
||||
- post_process_panoptic_segmentation
|
||||
|
||||
## EomtConfig
|
||||
|
||||
[[autodoc]] EomtConfig
|
||||
|
||||
## EomtForUniversalSegmentation
|
||||
|
||||
[[autodoc]] EomtForUniversalSegmentation
|
||||
- forward
|
@ -14,83 +14,29 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white" >
|
||||
</div>
|
||||
</div>
|
||||
|
||||
# ERNIE
|
||||
|
||||
[ERNIE1.0](https://arxiv.org/abs/1904.09223), [ERNIE2.0](https://ojs.aaai.org/index.php/AAAI/article/view/6428),
|
||||
[ERNIE3.0](https://arxiv.org/abs/2107.02137), [ERNIE-Gram](https://arxiv.org/abs/2010.12148), [ERNIE-health](https://arxiv.org/abs/2110.07244) are a series of powerful models proposed by baidu, especially in Chinese tasks.
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
|
||||
ERNIE (Enhanced Representation through kNowledge IntEgration) is designed to learn language representation enhanced by knowledge masking strategies, which includes entity-level masking and phrase-level masking.
|
||||
## Overview
|
||||
ERNIE is a series of powerful models proposed by baidu, especially in Chinese tasks,
|
||||
including [ERNIE1.0](https://huggingface.co/papers/1904.09223), [ERNIE2.0](https://ojs.aaai.org/index.php/AAAI/article/view/6428),
|
||||
[ERNIE3.0](https://huggingface.co/papers/2107.02137), [ERNIE-Gram](https://huggingface.co/papers/2010.12148), [ERNIE-health](https://huggingface.co/papers/2110.07244), etc.
|
||||
|
||||
Other ERNIE models released by baidu can be found at [Ernie 4.5](./ernie4_5.md), and [Ernie 4.5 MoE](./ernie4_5_moe.md).
|
||||
These models are contributed by [nghuyong](https://huggingface.co/nghuyong) and the official code can be found in [PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP) (in PaddlePaddle).
|
||||
|
||||
> [!TIP]
|
||||
> This model was contributed by [nghuyong](https://huggingface.co/nghuyong), and the official code can be found in [PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP) (in PaddlePaddle).
|
||||
>
|
||||
> Click on the ERNIE models in the right sidebar for more examples of how to apply ERNIE to different language tasks.
|
||||
### Usage example
|
||||
Take `ernie-1.0-base-zh` as an example:
|
||||
|
||||
The example below demonstrates how to predict the `[MASK]` token with [`Pipeline`], [`AutoModel`], and from the command line.
|
||||
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
```py
|
||||
from transformers import pipeline
|
||||
|
||||
pipeline = pipeline(
|
||||
task="fill-mask",
|
||||
model="nghuyong/ernie-3.0-xbase-zh"
|
||||
)
|
||||
|
||||
pipeline("巴黎是[MASK]国的首都。")
|
||||
```Python
|
||||
from transformers import AutoTokenizer, AutoModel
|
||||
tokenizer = AutoTokenizer.from_pretrained("nghuyong/ernie-1.0-base-zh")
|
||||
model = AutoModel.from_pretrained("nghuyong/ernie-1.0-base-zh")
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
"nghuyong/ernie-3.0-xbase-zh",
|
||||
)
|
||||
model = AutoModelForMaskedLM.from_pretrained(
|
||||
"nghuyong/ernie-3.0-xbase-zh",
|
||||
torch_dtype=torch.float16,
|
||||
device_map="auto"
|
||||
)
|
||||
inputs = tokenizer("巴黎是[MASK]国的首都。", return_tensors="pt").to("cuda")
|
||||
|
||||
with torch.no_grad():
|
||||
outputs = model(**inputs)
|
||||
predictions = outputs.logits
|
||||
|
||||
masked_index = torch.where(inputs['input_ids'] == tokenizer.mask_token_id)[1]
|
||||
predicted_token_id = predictions[0, masked_index].argmax(dim=-1)
|
||||
predicted_token = tokenizer.decode(predicted_token_id)
|
||||
|
||||
print(f"The predicted token is: {predicted_token}")
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="transformers CLI">
|
||||
|
||||
```bash
|
||||
echo -e "巴黎是[MASK]国的首都。" | transformers run --task fill-mask --model nghuyong/ernie-3.0-xbase-zh --device 0
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
## Notes
|
||||
|
||||
Model variants are available in different sizes and languages.
|
||||
### Model checkpoints
|
||||
|
||||
| Model Name | Language | Description |
|
||||
|:-------------------:|:--------:|:-------------------------------:|
|
||||
@ -105,11 +51,18 @@ Model variants are available in different sizes and languages.
|
||||
| ernie-health-zh | Chinese | Layer:12, Heads:12, Hidden:768 |
|
||||
| ernie-gram-zh | Chinese | Layer:12, Heads:12, Hidden:768 |
|
||||
|
||||
## Resources
|
||||
|
||||
You can find all the supported models from huggingface's model hub: [huggingface.co/nghuyong](https://huggingface.co/nghuyong), and model details from paddle's official
|
||||
repo: [PaddleNLP](https://paddlenlp.readthedocs.io/zh/latest/model_zoo/transformers/ERNIE/contents.html)
|
||||
and [ERNIE's legacy branch](https://github.com/PaddlePaddle/ERNIE/tree/legacy/develop).
|
||||
and [ERNIE](https://github.com/PaddlePaddle/ERNIE/blob/repro).
|
||||
|
||||
## Resources
|
||||
|
||||
- [Text classification task guide](../tasks/sequence_classification)
|
||||
- [Token classification task guide](../tasks/token_classification)
|
||||
- [Question answering task guide](../tasks/question_answering)
|
||||
- [Causal language modeling task guide](../tasks/language_modeling)
|
||||
- [Masked language modeling task guide](../tasks/masked_language_modeling)
|
||||
- [Multiple choice task guide](../tasks/multiple_choice)
|
||||
|
||||
## ErnieConfig
|
||||
|
||||
@ -163,4 +116,4 @@ and [ERNIE's legacy branch](https://github.com/PaddlePaddle/ERNIE/tree/legacy/de
|
||||
## ErnieForQuestionAnswering
|
||||
|
||||
[[autodoc]] ErnieForQuestionAnswering
|
||||
- forward
|
||||
- forward
|
@ -1,99 +0,0 @@
|
||||
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="Tensor parallelism" src="https://img.shields.io/badge/Tensor%20parallelism-06b6d4?style=flat&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
# Ernie 4.5
|
||||
|
||||
## Overview
|
||||
|
||||
The Ernie 4.5 model was released in the [Ernie 4.5 Model Family](https://ernie.baidu.com/blog/posts/ernie4.5/) release by baidu.
|
||||
This family of models contains multiple different architectures and model sizes. This model in specific targets the base text
|
||||
model without mixture of experts (moe) with 0.3B parameters in total. It uses the standard [Llama](./llama.md) at its core.
|
||||
|
||||
Other models from the family can be found at [Ernie 4.5 Moe](./ernie4_5_moe.md).
|
||||
|
||||
<div class="flex justify-center">
|
||||
<img src="https://ernie.baidu.com/blog/posts/ernie4.5/overview.png"/>
|
||||
</div>
|
||||
|
||||
|
||||
## Usage Tips
|
||||
|
||||
### Generate text
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
model_name = "baidu/ERNIE-4.5-0.3B-PT"
|
||||
|
||||
# load the tokenizer and the model
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
model_name,
|
||||
device_map="auto",
|
||||
torch_dtype=torch.bfloat16,
|
||||
)
|
||||
|
||||
# prepare the model input
|
||||
inputs = tokenizer("Hey, are you conscious? Can you talk to me?", return_tensors="pt")
|
||||
prompt = "Hey, are you conscious? Can you talk to me?"
|
||||
messages = [
|
||||
{"role": "user", "content": prompt}
|
||||
]
|
||||
text = tokenizer.apply_chat_template(
|
||||
messages,
|
||||
tokenize=False,
|
||||
add_generation_prompt=True
|
||||
)
|
||||
model_inputs = tokenizer([text], add_special_tokens=False, return_tensors="pt").to(model.device)
|
||||
|
||||
# conduct text completion
|
||||
generated_ids = model.generate(
|
||||
**model_inputs,
|
||||
max_new_tokens=32,
|
||||
)
|
||||
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
|
||||
|
||||
# decode the generated ids
|
||||
generate_text = tokenizer.decode(output_ids, skip_special_tokens=True)
|
||||
```
|
||||
|
||||
This model was contributed by [Anton Vlasjuk](https://huggingface.co/AntonV).
|
||||
The original code can be found [here](https://github.com/PaddlePaddle/ERNIE).
|
||||
|
||||
|
||||
## Ernie4_5Config
|
||||
|
||||
[[autodoc]] Ernie4_5Config
|
||||
|
||||
## Ernie4_5Model
|
||||
|
||||
[[autodoc]] Ernie4_5Model
|
||||
- forward
|
||||
|
||||
## Ernie4_5ForCausalLM
|
||||
|
||||
[[autodoc]] Ernie4_5ForCausalLM
|
||||
- forward
|
@ -1,183 +0,0 @@
|
||||
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="Tensor parallelism" src="https://img.shields.io/badge/Tensor%20parallelism-06b6d4?style=flat&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
# Ernie 4.5 Moe
|
||||
|
||||
## Overview
|
||||
|
||||
The Ernie 4.5 Moe model was released in the [Ernie 4.5 Model Family](https://ernie.baidu.com/blog/posts/ernie4.5/) release by baidu.
|
||||
This family of models contains multiple different architectures and model sizes. This model in specific targets the base text
|
||||
model with mixture of experts (moe) - one with 21B total, 3B active parameters and another one with 300B total, 47B active parameters.
|
||||
It uses the standard [Llama](./llama.md) at its core combined with a specialized MoE based on [Mixtral](./mixtral.md) with additional shared
|
||||
experts.
|
||||
|
||||
Other models from the family can be found at [Ernie 4.5](./ernie4_5.md).
|
||||
|
||||
<div class="flex justify-center">
|
||||
<img src="https://ernie.baidu.com/blog/posts/ernie4.5/overview.png"/>
|
||||
</div>
|
||||
|
||||
|
||||
## Usage Tips
|
||||
|
||||
### Generate text
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
model_name = "baidu/ERNIE-4.5-21B-A3B-PT"
|
||||
|
||||
# load the tokenizer and the model
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
model_name,
|
||||
device_map="auto",
|
||||
torch_dtype=torch.bfloat16,
|
||||
)
|
||||
|
||||
# prepare the model input
|
||||
inputs = tokenizer("Hey, are you conscious? Can you talk to me?", return_tensors="pt")
|
||||
prompt = "Hey, are you conscious? Can you talk to me?"
|
||||
messages = [
|
||||
{"role": "user", "content": prompt}
|
||||
]
|
||||
text = tokenizer.apply_chat_template(
|
||||
messages,
|
||||
tokenize=False,
|
||||
add_generation_prompt=True
|
||||
)
|
||||
model_inputs = tokenizer([text], add_special_tokens=False, return_tensors="pt").to(model.device)
|
||||
|
||||
# conduct text completion
|
||||
generated_ids = model.generate(
|
||||
**model_inputs,
|
||||
max_new_tokens=32,
|
||||
)
|
||||
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
|
||||
|
||||
# decode the generated ids
|
||||
generate_text = tokenizer.decode(output_ids, skip_special_tokens=True)
|
||||
```
|
||||
|
||||
### Distributed Generation with Tensor Parallelism
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
model_name = "baidu/ERNIE-4.5-21B-A3B-PT"
|
||||
|
||||
# load the tokenizer and the model
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
model_name,
|
||||
device_map="auto",
|
||||
torch_dtype=torch.bfloat16,
|
||||
tp_plan="auto",
|
||||
)
|
||||
|
||||
# prepare the model input
|
||||
inputs = tokenizer("Hey, are you conscious? Can you talk to me?", return_tensors="pt")
|
||||
prompt = "Hey, are you conscious? Can you talk to me?"
|
||||
messages = [
|
||||
{"role": "user", "content": prompt}
|
||||
]
|
||||
text = tokenizer.apply_chat_template(
|
||||
messages,
|
||||
tokenize=False,
|
||||
add_generation_prompt=True
|
||||
)
|
||||
model_inputs = tokenizer([text], add_special_tokens=False, return_tensors="pt").to(model.device)
|
||||
|
||||
# conduct text completion
|
||||
generated_ids = model.generate(
|
||||
**model_inputs,
|
||||
max_new_tokens=32,
|
||||
)
|
||||
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
|
||||
|
||||
# decode the generated ids
|
||||
generate_text = tokenizer.decode(output_ids, skip_special_tokens=True)
|
||||
```
|
||||
|
||||
### Quantization with Bitsandbytes
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import BitsAndBytesConfig, AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
model_name = "baidu/ERNIE-4.5-21B-A3B-PT"
|
||||
|
||||
# load the tokenizer and the model
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
model_name,
|
||||
device_map="auto",
|
||||
quantization_config=BitsAndBytesConfig(load_in_4bit=True),
|
||||
)
|
||||
|
||||
# prepare the model input
|
||||
inputs = tokenizer("Hey, are you conscious? Can you talk to me?", return_tensors="pt")
|
||||
prompt = "Hey, are you conscious? Can you talk to me?"
|
||||
messages = [
|
||||
{"role": "user", "content": prompt}
|
||||
]
|
||||
text = tokenizer.apply_chat_template(
|
||||
messages,
|
||||
tokenize=False,
|
||||
add_generation_prompt=True
|
||||
)
|
||||
model_inputs = tokenizer([text], add_special_tokens=False, return_tensors="pt").to(model.device)
|
||||
|
||||
# conduct text completion
|
||||
generated_ids = model.generate(
|
||||
**model_inputs,
|
||||
max_new_tokens=32,
|
||||
)
|
||||
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
|
||||
|
||||
# decode the generated ids
|
||||
generate_text = tokenizer.decode(output_ids, skip_special_tokens=True)
|
||||
```
|
||||
|
||||
This model was contributed by [Anton Vlasjuk](https://huggingface.co/AntonV).
|
||||
The original code can be found [here](https://github.com/PaddlePaddle/ERNIE).
|
||||
|
||||
|
||||
## Ernie4_5_MoeConfig
|
||||
|
||||
[[autodoc]] Ernie4_5_MoeConfig
|
||||
|
||||
## Ernie4_5_MoeModel
|
||||
|
||||
[[autodoc]] Ernie4_5_MoeModel
|
||||
- forward
|
||||
|
||||
## Ernie4_5_MoeForCausalLM
|
||||
|
||||
[[autodoc]] Ernie4_5_MoeForCausalLM
|
||||
- forward
|
||||
- generate
|
@ -1,95 +0,0 @@
|
||||
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# Evolla
|
||||
|
||||
## Overview
|
||||
|
||||
The Evolla model was proposed in [Decoding the Molecular Language of Proteins with Evolla](https://doi.org/10.1101/2025.01.05.630192) by [Zhou et al.](https://doi.org/10.1101/2025.01.05.630192).
|
||||
|
||||
Evolla is an advanced 80-billion-parameter protein-language generative model designed to decode the molecular language of proteins. It integrates information from protein sequences, structures, and user queries to generate precise and contextually nuanced insights into protein function. Trained on an unprecedented AI-generated dataset of 546 million protein question-answer pairs and 150 billion word tokens, Evolla significantly advances research in proteomics and functional genomics, providing expert-level insights and shedding light on the molecular logic encoded in proteins.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
|
||||
*Proteins, nature’s intricate molecular machines, are the products of billions of years of evolution and play fundamental roles in sustaining life. Yet, deciphering their molecular language - that is, understanding how protein sequences and structures encode and determine biological functions - remains a corner-stone challenge in modern biology. Here, we introduce Evolla, an 80 billion frontier protein-language generative model designed to decode the molecular language of proteins. By integrating information from protein sequences, structures, and user queries, Evolla generates precise and contextually nuanced insights into protein function. A key innovation of Evolla lies in its training on an unprecedented AI-generated dataset: 546 million protein question-answer pairs and 150 billion word tokens, designed to reflect the immense complexity and functional diversity of proteins. Post-pretraining, Evolla integrates Direct Preference Optimization (DPO) to refine the model based on preference signals and Retrieval-Augmented Generation (RAG) for external knowledge incorporation, improving response quality and relevance. To evaluate its performance, we propose a novel framework, Instructional Response Space (IRS), demonstrating that Evolla delivers expert-level insights, advancing research in proteomics and functional genomics while shedding light on the molecular logic encoded in proteins. The online demo is available at http://www.chat-protein.com/.*
|
||||
|
||||
Examples:
|
||||
|
||||
```python
|
||||
processor = EvollaProcessor.from_pretrained("westlake-repl/Evolla-10B-DPO-hf")
|
||||
model = EvollaForProteinText2Text.from_pretrained("westlake-repl/Evolla-10B-DPO-hf")
|
||||
# aa_seq should have same length as foldseek
|
||||
protein_inputs = [
|
||||
{
|
||||
|
||||
"aa_seq": "MATGGRRG...",
|
||||
"foldseek": "###lqpfd...", # hashtag means the low-confidence foldseek tokens
|
||||
},
|
||||
{
|
||||
"aa_seq": "MLPGLALL...",
|
||||
"foldseek": "dfwwkwad...",
|
||||
}
|
||||
]
|
||||
message_list = [
|
||||
[
|
||||
{
|
||||
"role": "system",
|
||||
"content": "You are an AI expert that can answer any questions about protein.",
|
||||
},
|
||||
{"role": "user", "content": "What is the function of this protein?"},
|
||||
],
|
||||
[
|
||||
{
|
||||
"role": "system",
|
||||
"content": "You are an AI expert that can answer any questions about protein.",
|
||||
},
|
||||
{"role": "user", "content": "What is the function of this protein?"},
|
||||
]
|
||||
]
|
||||
input_dict = processor(
|
||||
protein_informations, messages_list, return_tensors="pt", text_max_length=512, protein_max_length=1024
|
||||
)
|
||||
with torch.no_grad():
|
||||
generated_ids = hf_model.generate(**input_dict)
|
||||
generated_texts = processor.batch_decode(
|
||||
generated_ids, skip_special_tokens=True
|
||||
)
|
||||
```
|
||||
|
||||
Tips:
|
||||
|
||||
- This model was contributed by [Xibin Bayes Zhou](https://huggingface.co/XibinBayesZhou).
|
||||
- The original code can be found [here](https://github.com/westlake-repl/Evolla).
|
||||
|
||||
|
||||
## EvollaConfig
|
||||
|
||||
[[autodoc]] EvollaConfig
|
||||
|
||||
## EvollaModel
|
||||
|
||||
[[autodoc]] EvollaModel
|
||||
- forward
|
||||
|
||||
## EvollaForProteinText2Text
|
||||
|
||||
[[autodoc]] EvollaForProteinText2Text
|
||||
- forward
|
||||
|
||||
## EvollaProcessor
|
||||
|
||||
[[autodoc]] EvollaProcessor
|
||||
- __call__
|
@ -1,208 +0,0 @@
|
||||
<!--Copyright 2025 The LG AI Research and The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# EXAONE 4
|
||||
|
||||
## Overview
|
||||
|
||||
**[EXAONE 4.0](https://github.com/LG-AI-EXAONE/EXAONE-4.0)** model is the language model, which integrates a **Non-reasoning mode** and **Reasoning mode** to achieve both the excellent usability of [EXAONE 3.5](https://github.com/LG-AI-EXAONE/EXAONE-3.5) and the advanced reasoning abilities of [EXAONE Deep](https://github.com/LG-AI-EXAONE/EXAONE-Deep). To pave the way for the agentic AI era, EXAONE 4.0 incorporates essential features such as agentic tool use, and its multilingual capabilities are extended
|
||||
to support Spanish in addition to English and Korean.
|
||||
|
||||
The EXAONE 4.0 model series consists of two sizes: a mid-size **32B** model optimized for high performance, and a small-size **1.2B** model designed for on-device applications.
|
||||
|
||||
In the EXAONE 4.0 architecture, we apply new architectural changes compared to previous EXAONE models as below:
|
||||
|
||||
1. **Hybrid Attention**: For the 32B model, we adopt hybrid attention scheme, which combines *Local attention (sliding window attention)* with *Global attention (full attention)* in a 3:1 ratio. We do not use RoPE (Rotary Positional Embedding) for global attention for better global context understanding.
|
||||
2. **QK-Reorder-Norm**: We reorder the LayerNorm position from the traditional Pre-LN scheme by applying LayerNorm directly to the attention and MLP outputs, and we add RMS normalization right after the Q and K projection. It helps yield better performance on downstream tasks despite consuming more computation.
|
||||
|
||||
For more details, please refer to our [technical report](https://arxiv.org/abs/2507.11407), [HuggingFace paper](https://huggingface.co/papers/2507.11407), [blog](https://www.lgresearch.ai/blog/view?seq=576), and [GitHub](https://github.com/LG-AI-EXAONE/EXAONE-4.0).
|
||||
|
||||
All model weights including quantized versions are available at [Huggingface Collections](https://huggingface.co/collections/LGAI-EXAONE/exaone-40-686b2e0069800c835ed48375).
|
||||
|
||||
|
||||
## Model Details
|
||||
|
||||
### Model Specifications
|
||||
|
||||
| Model Configuration | 32B | 1.2B |
|
||||
|:-------------------|:-----:|:------:|
|
||||
| d_model | 5,120 | 2,048 |
|
||||
| Number of layers | 64 | 30 |
|
||||
| Normalization | QK-Reorder-LN | QK-Reorder-LN |
|
||||
| Non-linearity | SwiGLU | SwiGLU |
|
||||
| Feedforward dimension | 27,392 | 4,096 |
|
||||
| Attention type | Hybrid (3:1 Local-Global) | Global |
|
||||
| Head type | GQA | GQA |
|
||||
| Number of heads | 40 | 32 |
|
||||
| Number of KV heads | 8 | 8 |
|
||||
| Head size | 128 | 64 |
|
||||
| Max sequence length | 131,072 | 65,536 |
|
||||
| RoPE theta | 1,000,000 | 1,000,000 |
|
||||
| Tokenizer | BBPE | BBPE |
|
||||
| Vocab size | 102,400 | 102,400 |
|
||||
| Tied word embedding | False | True |
|
||||
| Knowledge cut-off | Nov. 2024 | Nov. 2024 |
|
||||
|
||||
|
||||
## Usage tips
|
||||
|
||||
### Non-reasoning mode
|
||||
|
||||
For general use, you can use the EXAONE 4.0 models with the following example:
|
||||
|
||||
```python
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
model_name = "LGAI-EXAONE/EXAONE-4.0-32B"
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
model_name,
|
||||
torch_dtype="bfloat16",
|
||||
device_map="auto"
|
||||
)
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
|
||||
# choose your prompt
|
||||
prompt = "Explain how wonderful you are"
|
||||
prompt = "Explica lo increíble que eres"
|
||||
prompt = "너가 얼마나 대단한지 설명해 봐"
|
||||
|
||||
messages = [
|
||||
{"role": "user", "content": prompt}
|
||||
]
|
||||
input_ids = tokenizer.apply_chat_template(
|
||||
messages,
|
||||
tokenize=True,
|
||||
add_generation_prompt=True,
|
||||
return_tensors="pt"
|
||||
)
|
||||
|
||||
output = model.generate(
|
||||
input_ids.to(model.device),
|
||||
max_new_tokens=128,
|
||||
do_sample=False,
|
||||
)
|
||||
print(tokenizer.decode(output[0]))
|
||||
```
|
||||
|
||||
### Reasoning mode
|
||||
|
||||
The EXAONE 4.0 models have reasoning capabilities for handling complex problems. You can activate reasoning mode by using the `enable_thinking=True` argument with the tokenizer, which opens a reasoning block that starts with `<think>` tag without closing it.
|
||||
|
||||
```python
|
||||
messages = [
|
||||
{"role": "user", "content": "Which one is bigger, 3.12 vs 3.9?"}
|
||||
]
|
||||
input_ids = tokenizer.apply_chat_template(
|
||||
messages,
|
||||
tokenize=True,
|
||||
add_generation_prompt=True,
|
||||
return_tensors="pt",
|
||||
enable_thinking=True,
|
||||
)
|
||||
|
||||
output = model.generate(
|
||||
input_ids.to(model.device),
|
||||
max_new_tokens=128,
|
||||
do_sample=True,
|
||||
temperature=0.6,
|
||||
top_p=0.95
|
||||
)
|
||||
print(tokenizer.decode(output[0]))
|
||||
```
|
||||
|
||||
> [!IMPORTANT]
|
||||
> The model generation with reasoning mode can be affected sensitively by sampling parameters, so please refer to the [Usage Guideline](https://github.com/LG-AI-EXAONE/EXAONE-4.0#usage-guideline) on official GitHub page for better quality.
|
||||
|
||||
### Agentic tool use
|
||||
|
||||
The EXAONE 4.0 models can be used as agents with their tool calling capabilities. You can provide tool schemas to the model for effective tool calling.
|
||||
|
||||
```python
|
||||
import random
|
||||
|
||||
def roll_dice(max_num: int):
|
||||
return random.randint(1, max_num)
|
||||
|
||||
tools = [
|
||||
{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "roll_dice",
|
||||
"description": "Roll a dice with the number 1 to N. User can select the number N.",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"required": ["max_num"],
|
||||
"properties": {
|
||||
"max_num": {
|
||||
"type": "int",
|
||||
"description": "Max number of the dice"
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
]
|
||||
|
||||
messages = [
|
||||
{"role": "user", "content": "Roll D6 dice twice!"}
|
||||
]
|
||||
input_ids = tokenizer.apply_chat_template(
|
||||
messages,
|
||||
tokenize=True,
|
||||
add_generation_prompt=True,
|
||||
return_tensors="pt",
|
||||
tools=tools,
|
||||
)
|
||||
|
||||
output = model.generate(
|
||||
input_ids.to(model.device),
|
||||
max_new_tokens=1024,
|
||||
do_sample=True,
|
||||
temperature=0.6,
|
||||
top_p=0.95,
|
||||
)
|
||||
print(tokenizer.decode(output[0]))
|
||||
```
|
||||
|
||||
## Exaone4Config
|
||||
|
||||
[[autodoc]] Exaone4Config
|
||||
|
||||
## Exaone4Model
|
||||
|
||||
[[autodoc]] Exaone4Model
|
||||
- forward
|
||||
|
||||
## Exaone4ForCausalLM
|
||||
|
||||
[[autodoc]] Exaone4ForCausalLM
|
||||
- forward
|
||||
|
||||
## Exaone4ForSequenceClassification
|
||||
|
||||
[[autodoc]] Exaone4ForSequenceClassification
|
||||
- forward
|
||||
|
||||
## Exaone4ForTokenClassification
|
||||
|
||||
[[autodoc]] Exaone4ForTokenClassification
|
||||
- forward
|
||||
|
||||
## Exaone4ForQuestionAnswering
|
||||
|
||||
[[autodoc]] Exaone4ForQuestionAnswering
|
||||
- forward
|
@ -110,13 +110,6 @@ outputs = model.generate(**inputs, max_new_tokens=100)
|
||||
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
||||
```
|
||||
|
||||
## FalconMambaCache
|
||||
|
||||
[[autodoc]] FalconMambaCache
|
||||
- update_conv_state
|
||||
- update_ssm_state
|
||||
- reset
|
||||
|
||||
## FalconMambaConfig
|
||||
|
||||
[[autodoc]] FalconMambaConfig
|
||||
|
@ -23,7 +23,6 @@ rendered properly in your Markdown viewer.
|
||||
">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="Tensor parallelism" src="https://img.shields.io/badge/Tensor%20parallelism-06b6d4?style=flat&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
|
@ -22,7 +22,6 @@ rendered properly in your Markdown viewer.
|
||||
">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="Tensor parallelism" src="https://img.shields.io/badge/Tensor%20parallelism-06b6d4?style=flat&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
|
@ -267,8 +267,3 @@ visualizer("<img>What is shown in this image?")
|
||||
|
||||
[[autodoc]] Gemma3ForConditionalGeneration
|
||||
- forward
|
||||
|
||||
## Gemma3ForSequenceClassification
|
||||
|
||||
[[autodoc]] Gemma3ForSequenceClassification
|
||||
- forward
|
||||
|
@ -1,205 +0,0 @@
|
||||
|
||||
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
# Gemma3n
|
||||
|
||||
## Overview
|
||||
|
||||
Gemma3n is a multimodal model with pretrained and instruction-tuned variants, available in E4B and E2B sizes. While
|
||||
large portions of the language model architecture are shared with prior Gemma releases, there are many new additions in
|
||||
this model, including [Alternating Updates][altup] (AltUp), [Learned Augmented Residual Layer][laurel] (LAuReL),
|
||||
[MatFormer][matformer], Per-Layer Embeddings (PLE), [Activation Sparsity with Statistical Top-k][spark-transformer], and KV cache sharing. The language model uses
|
||||
a similar attention pattern to [Gemma 3](./gemma3.md) with alternating 4 local sliding window self-attention layers for
|
||||
every global self-attention layer with a maximum context length of 32k tokens. Gemma 3n introduces
|
||||
[MobileNet v5][mobilenetv5] as the vision encoder, using a default resolution of 768x768 pixels, and adds a newly
|
||||
trained audio encoder based on the [Universal Speech Model][usm] (USM) architecture.
|
||||
|
||||
The instruction-tuned variant was post-trained with knowledge distillation and reinforcement learning.
|
||||
|
||||
You can find all the original Gemma 3n checkpoints under the [Gemma 3n][gemma3n-collection] release.
|
||||
|
||||
> [!TIP]
|
||||
> Click on the Gemma 3n models in the right sidebar for more examples of how to apply Gemma to different vision, audio,
|
||||
> and language tasks.
|
||||
|
||||
The example below demonstrates how to generate text based on an image with [`Pipeline`] or the [`AutoModel`] class.
|
||||
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
|
||||
pipeline = pipeline(
|
||||
task="image-text-to-text",
|
||||
model="google/gemma-3n-e4b",
|
||||
device=0,
|
||||
torch_dtype=torch.bfloat16
|
||||
)
|
||||
pipeline(
|
||||
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg",
|
||||
text="<start_of_image> What is shown in this image?"
|
||||
)
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoProcessor, Gemma3nForConditionalGeneration
|
||||
|
||||
model = Gemma3nForConditionalGeneration.from_pretrained(
|
||||
"google/gemma-3n-e4b-it",
|
||||
torch_dtype=torch.bfloat16,
|
||||
device_map="auto",
|
||||
attn_implementation="sdpa"
|
||||
)
|
||||
processor = AutoProcessor.from_pretrained(
|
||||
"google/gemma-3n-e4b-it",
|
||||
padding_side="left"
|
||||
)
|
||||
|
||||
messages = [
|
||||
{
|
||||
"role": "system",
|
||||
"content": [
|
||||
{"type": "text", "text": "You are a helpful assistant."}
|
||||
]
|
||||
},
|
||||
{
|
||||
"role": "user", "content": [
|
||||
{"type": "image", "url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"},
|
||||
{"type": "text", "text": "What is shown in this image?"},
|
||||
]
|
||||
},
|
||||
]
|
||||
inputs = processor.apply_chat_template(
|
||||
messages,
|
||||
tokenize=True,
|
||||
return_dict=True,
|
||||
return_tensors="pt",
|
||||
add_generation_prompt=True,
|
||||
).to("cuda")
|
||||
|
||||
output = model.generate(**inputs, max_new_tokens=50, cache_implementation="static")
|
||||
print(processor.decode(output[0], skip_special_tokens=True))
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="transformers CLI">
|
||||
|
||||
```bash
|
||||
echo -e "Plants create energy through a process known as" | transformers run --task text-generation --model google/gemma-3n-e2b --device 0
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
## Notes
|
||||
|
||||
- Use [`Gemma3nForConditionalGeneration`] for image-audio-and-text, image-and-text, image-and-audio, audio-and-text,
|
||||
image-only and audio-only inputs.
|
||||
- Gemma 3n supports multiple images per input, but make sure the images are correctly batched before passing them to
|
||||
the processor. Each batch should be a list of one or more images.
|
||||
|
||||
```py
|
||||
url_cow = "https://media.istockphoto.com/id/1192867753/photo/cow-in-berchida-beach-siniscola.jpg?s=612x612&w=0&k=20&c=v0hjjniwsMNfJSuKWZuIn8pssmD5h5bSN1peBd1CmH4="
|
||||
url_cat = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
|
||||
|
||||
messages =[
|
||||
{
|
||||
"role": "system",
|
||||
"content": [
|
||||
{"type": "text", "text": "You are a helpful assistant."}
|
||||
]
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "image", "url": url_cow},
|
||||
{"type": "image", "url": url_cat},
|
||||
{"type": "text", "text": "Which image is cuter?"},
|
||||
]
|
||||
},
|
||||
]
|
||||
```
|
||||
- Text passed to the processor should have a `<image_soft_token>` token wherever an image should be inserted.
|
||||
- Gemma 3n accept at most one target audio clip per input, though multiple audio clips can be provided in few-shot
|
||||
prompts, for example.
|
||||
- Text passed to the processor should have a `<audio_soft_token>` token wherever an audio clip should be inserted.
|
||||
- The processor has its own [`~ProcessorMixin.apply_chat_template`] method to convert chat messages to model inputs.
|
||||
|
||||
## Gemma3nAudioFeatureExtractor
|
||||
|
||||
[[autodoc]] Gemma3nAudioFeatureExtractor
|
||||
|
||||
## Gemma3nProcessor
|
||||
|
||||
[[autodoc]] Gemma3nProcessor
|
||||
|
||||
## Gemma3nTextConfig
|
||||
|
||||
[[autodoc]] Gemma3nTextConfig
|
||||
|
||||
## Gemma3nVisionConfig
|
||||
|
||||
[[autodoc]] Gemma3nVisionConfig
|
||||
|
||||
## Gemma3nAudioConfig
|
||||
|
||||
[[autodoc]] Gemma3nAudioConfig
|
||||
|
||||
## Gemma3nConfig
|
||||
|
||||
[[autodoc]] Gemma3nConfig
|
||||
|
||||
## Gemma3nTextModel
|
||||
|
||||
[[autodoc]] Gemma3nTextModel
|
||||
- forward
|
||||
|
||||
## Gemma3nModel
|
||||
|
||||
[[autodoc]] Gemma3nModel
|
||||
- forward
|
||||
|
||||
## Gemma3nForCausalLM
|
||||
|
||||
[[autodoc]] Gemma3nForCausalLM
|
||||
- forward
|
||||
|
||||
## Gemma3nForConditionalGeneration
|
||||
|
||||
[[autodoc]] Gemma3nForConditionalGeneration
|
||||
- forward
|
||||
|
||||
[altup]: https://proceedings.neurips.cc/paper_files/paper/2023/hash/f2059277ac6ce66e7e5543001afa8bb5-Abstract-Conference.html
|
||||
[attention-mask-viz]: https://github.com/huggingface/transformers/blob/beb9b5b02246b9b7ee81ddf938f93f44cfeaad19/src/transformers/utils/attention_visualizer.py#L139
|
||||
[gemma3n-collection]: https://huggingface.co/collections/google/gemma-3n
|
||||
[laurel]: https://arxiv.org/abs/2411.07501
|
||||
[matformer]: https://arxiv.org/abs/2310.07707
|
||||
[spark-transformer]: https://arxiv.org/abs/2506.06644
|
||||
[usm]: https://arxiv.org/abs/2303.01037
|
@ -20,7 +20,6 @@ rendered properly in your Markdown viewer.
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="Tensor parallelism" src="https://img.shields.io/badge/Tensor%20parallelism-06b6d4?style=flat&logoColor=white">
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
|
@ -18,37 +18,7 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
## Overview
|
||||
|
||||
The GLM family welcomes new members [GLM-4-0414](https://arxiv.org/pdf/2406.12793) series models.
|
||||
|
||||
The **GLM-4-32B-0414** series models, featuring 32 billion parameters. Its performance is comparable to OpenAI’s GPT
|
||||
series and DeepSeek’s V3/R1 series. It also supports very user-friendly local deployment features. GLM-4-32B-Base-0414
|
||||
was pre-trained on 15T of high-quality data, including substantial reasoning-type synthetic data. This lays the
|
||||
foundation for subsequent reinforcement learning extensions. In the post-training stage, we employed human preference
|
||||
alignment for dialogue scenarios. Additionally, using techniques like rejection sampling and reinforcement learning, we
|
||||
enhanced the model’s performance in instruction following, engineering code, and function calling, thus strengthening
|
||||
the atomic capabilities required for agent tasks. GLM-4-32B-0414 achieves good results in engineering code, Artifact
|
||||
generation, function calling, search-based Q&A, and report generation. In particular, on several benchmarks, such as
|
||||
code generation or specific Q&A tasks, GLM-4-32B-Base-0414 achieves comparable performance with those larger models like
|
||||
GPT-4o and DeepSeek-V3-0324 (671B).
|
||||
|
||||
**GLM-Z1-32B-0414** is a reasoning model with deep thinking capabilities. This was developed based on GLM-4-32B-0414
|
||||
through cold start, extended reinforcement learning, and further training on tasks including mathematics, code, and
|
||||
logic. Compared to the base model, GLM-Z1-32B-0414 significantly improves mathematical abilities and the capability to
|
||||
solve complex tasks. During training, we also introduced general reinforcement learning based on pairwise ranking
|
||||
feedback, which enhances the model's general capabilities.
|
||||
|
||||
**GLM-Z1-Rumination-32B-0414** is a deep reasoning model with rumination capabilities (against OpenAI's Deep Research).
|
||||
Unlike typical deep thinking models, the rumination model is capable of deeper and longer thinking to solve more
|
||||
open-ended and complex problems (e.g., writing a comparative analysis of AI development in two cities and their future
|
||||
development plans). Z1-Rumination is trained through scaling end-to-end reinforcement learning with responses graded by
|
||||
the ground truth answers or rubrics and can make use of search tools during its deep thinking process to handle complex
|
||||
tasks. The model shows significant improvements in research-style writing and complex tasks.
|
||||
|
||||
Finally, **GLM-Z1-9B-0414** is a surprise. We employed all the aforementioned techniques to train a small model (9B).
|
||||
GLM-Z1-9B-0414 exhibits excellent capabilities in mathematical reasoning and general tasks. Its overall performance is
|
||||
top-ranked among all open-source models of the same size. Especially in resource-constrained scenarios, this model
|
||||
achieves an excellent balance between efficiency and effectiveness, providing a powerful option for users seeking
|
||||
lightweight deployment.
|
||||
To be released with the official model launch.
|
||||
|
||||
## Glm4Config
|
||||
|
||||
|
@ -1,35 +0,0 @@
|
||||
<!--Copyright 2025 The ZhipuAI Inc. and The HuggingFace Inc. team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# Glm4Moe
|
||||
|
||||
## Overview
|
||||
|
||||
This will update After model release.
|
||||
|
||||
## Glm4MoeConfig
|
||||
|
||||
[[autodoc]] Glm4MoeConfig
|
||||
|
||||
## Glm4MoeModel
|
||||
|
||||
[[autodoc]] Glm4MoeModel
|
||||
- forward
|
||||
|
||||
## Glm4MoeForCausalLM
|
||||
|
||||
[[autodoc]] Glm4MoeForCausalLM
|
||||
- forward
|
@ -1,203 +0,0 @@
|
||||
<!--Copyright 2025 The ZhipuAI Inc. and The HuggingFace Inc. team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white"> </div>
|
||||
</div>
|
||||
|
||||
# GLM-4.1V
|
||||
|
||||
## Overview
|
||||
|
||||
**GLM-4.1V-9B-Thinking** is a bilingual vision-language model optimized for reasoning, built on GLM-4-9B. It introduces
|
||||
a "thinking paradigm" with reinforcement learning, achieving state-of-the-art results among 10B-class models and
|
||||
rivaling 72B-scale models. It supports 64k context, 4K resolution, and arbitrary aspect ratios, with an open-source base
|
||||
model for further research. You can check our paper [here](https://huggingface.co/papers/2507.01006). and below is a abstract.
|
||||
|
||||
*We present GLM-4.1V-Thinking, a vision-language model (VLM) designed to advance general-purpose multimodal understanding
|
||||
and reasoning. In this report, we share our key findings in the development of the reasoning-centric training framework.
|
||||
We first develop a capable vision foundation model with significant potential through large-scale pre-training, which
|
||||
arguably sets the upper bound for the final performance. We then propose Reinforcement Learning with Curriculum
|
||||
Sampling (RLCS) to unlock the full potential of the model, leading to comprehensive capability enhancement across a
|
||||
diverse range of tasks, including STEM problem solving, video understanding, content recognition, coding, grounding,
|
||||
GUI-based agents, and long document understanding. We open-source GLM-4.1V-9B-Thinking, which achieves state-of-the-art
|
||||
performance among models of comparable size. In a comprehensive evaluation across 28 public benchmarks, our model
|
||||
outperforms Qwen2.5-VL-7B on nearly all tasks and achieves comparable or even superior performance on 18 benchmarks
|
||||
relative to the significantly larger Qwen2.5-VL-72B. Notably, GLM-4.1V-9B-Thinking also demonstrates competitive or
|
||||
superior performance compared to closed-source models such as GPT-4o on challenging tasks including long document
|
||||
understanding and STEM reasoning, further underscoring its strong capabilities. Code, models and more information
|
||||
are released at https://github.com/THUDM/GLM-4.1V-Thinking.*
|
||||
|
||||
## Usage
|
||||
|
||||
The example below demonstrates how to generate text based on an image with [`Pipeline`] or the [`AutoModel`] class.
|
||||
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
pipe = pipeline(
|
||||
task="image-text-to-text",
|
||||
model="THUDM/GLM-4.1V-9B-Thinking",
|
||||
device=0,
|
||||
torch_dtype=torch.bfloat16
|
||||
)
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "image",
|
||||
"url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg",
|
||||
},
|
||||
{ "type": "text", "text": "Describe this image."},
|
||||
]
|
||||
}
|
||||
]
|
||||
pipe(text=messages,max_new_tokens=20, return_full_text=False)
|
||||
```
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import Glm4vForConditionalGeneration, AutoProcessor
|
||||
|
||||
model = Glm4vForConditionalGeneration.from_pretrained(
|
||||
"THUDM/GLM-4.1V-9B-Thinking",
|
||||
torch_dtype=torch.bfloat16,
|
||||
device_map="auto",
|
||||
attn_implementation="sdpa"
|
||||
)
|
||||
processor = AutoProcessor.from_pretrained("THUDM/GLM-4.1V-9B-Thinking")
|
||||
messages = [
|
||||
{
|
||||
"role":"user",
|
||||
"content":[
|
||||
{
|
||||
"type":"image",
|
||||
"url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
|
||||
},
|
||||
{
|
||||
"type":"text",
|
||||
"text":"Describe this image."
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
]
|
||||
|
||||
inputs = processor.apply_chat_template(
|
||||
messages,
|
||||
add_generation_prompt=True,
|
||||
tokenize=True,
|
||||
return_dict=True,
|
||||
return_tensors="pt"
|
||||
).to("cuda")
|
||||
|
||||
generated_ids = model.generate(**inputs, max_new_tokens=128)
|
||||
generated_ids_trimmed = [
|
||||
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
||||
]
|
||||
output_text = processor.batch_decode(
|
||||
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
||||
)
|
||||
print(output_text)
|
||||
```
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
Using GLM-4.1V with video input is similar to using it with image input.
|
||||
The model can process video data and generate text based on the content of the video.
|
||||
|
||||
```python
|
||||
from transformers import AutoProcessor, Glm4vForConditionalGeneration
|
||||
import torch
|
||||
|
||||
processor = AutoProcessor.from_pretrained("THUDM/GLM-4.1V-9B-Thinking")
|
||||
model = Glm4vForConditionalGeneration.from_pretrained(
|
||||
pretrained_model_name_or_path="THUDM/GLM-4.1V-9B-Thinking",
|
||||
torch_dtype=torch.bfloat16,
|
||||
device_map="cuda:0"
|
||||
)
|
||||
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "video",
|
||||
"url": "https://test-videos.co.uk/vids/bigbuckbunny/mp4/h264/720/Big_Buck_Bunny_720_10s_10MB.mp4",
|
||||
},
|
||||
{
|
||||
"type": "text",
|
||||
"text": "discribe this video",
|
||||
},
|
||||
],
|
||||
}
|
||||
]
|
||||
inputs = processor.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_dict=True, return_tensors="pt", padding=True).to("cuda:0")
|
||||
generated_ids = model.generate(**inputs, max_new_tokens=1024, do_sample=True, temperature=1.0)
|
||||
output_text = processor.decode(generated_ids[0][inputs["input_ids"].shape[1] :], skip_special_tokens=True)
|
||||
print(output_text)
|
||||
```
|
||||
|
||||
## Glm4vConfig
|
||||
|
||||
[[autodoc]] Glm4vConfig
|
||||
|
||||
## Glm4vTextConfig
|
||||
|
||||
[[autodoc]] Glm4vTextConfig
|
||||
|
||||
## Glm4vImageProcessor
|
||||
|
||||
[[autodoc]] Glm4vImageProcessor
|
||||
- preprocess
|
||||
|
||||
## Glm4vVideoProcessor
|
||||
|
||||
[[autodoc]] Glm4vVideoProcessor
|
||||
- preprocess
|
||||
|
||||
## Glm4vImageProcessorFast
|
||||
|
||||
[[autodoc]] Glm4vImageProcessorFast
|
||||
- preprocess
|
||||
|
||||
## Glm4vProcessor
|
||||
|
||||
[[autodoc]] Glm4vProcessor
|
||||
|
||||
## Glm4vTextModel
|
||||
|
||||
[[autodoc]] Glm4vTextModel
|
||||
- forward
|
||||
|
||||
## Glm4vModel
|
||||
|
||||
[[autodoc]] Glm4vModel
|
||||
- forward
|
||||
|
||||
## Glm4vForConditionalGeneration
|
||||
|
||||
[[autodoc]] Glm4vForConditionalGeneration
|
||||
- forward
|
@ -57,7 +57,7 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2", torch_dtype=torch.float16, device_map="auto", attn_implementation="sdpa")
|
||||
tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
|
||||
|
||||
input_ids = tokenizer("Hello, I'm a language model", return_tensors="pt").to("cuda")
|
||||
input_ids = tokenzier("Hello, I'm a language model". return_tensors="pt").to("cuda")
|
||||
|
||||
output = model.generate(**input_ids, cache_implementation="static")
|
||||
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
||||
|
@ -19,7 +19,6 @@ rendered properly in your Markdown viewer.
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="Tensor parallelism" src="https://img.shields.io/badge/Tensor%20parallelism-06b6d4?style=flat&logoColor=white">
|
||||
</div>
|
||||
|
||||
# Granite
|
||||
|
@ -48,32 +48,6 @@ for i in output:
|
||||
|
||||
This HF implementation is contributed by [Sukriti Sharma](https://huggingface.co/SukritiSharma) and [Alexander Brooks](https://huggingface.co/abrooks9944).
|
||||
|
||||
## Notes
|
||||
|
||||
- `GraniteMoeHybridForCausalLM` supports padding-free training which concatenates distinct training examples while still processing inputs as separate batches. It can significantly accelerate inference by [~2x](https://github.com/huggingface/transformers/pull/35861#issue-2807873129) (depending on model and data distribution) and reduce memory-usage if there are examples of varying lengths by avoiding unnecessary compute and memory overhead from padding tokens.
|
||||
|
||||
Padding-free training requires the `flash-attn`, `mamba-ssm`, and `causal-conv1d` packages and the following arguments must be passed to the model in addition to `input_ids` and `labels`.
|
||||
|
||||
- `position_ids: torch.LongTensor`: the position index of each token in each sequence.
|
||||
- `seq_idx: torch.IntTensor`: the index of each sequence in the batch.
|
||||
- Each of the [`FlashAttentionKwargs`]
|
||||
- `cu_seq_lens_q: torch.LongTensor`: the cumulative sequence lengths of all queries.
|
||||
- `cu_seq_lens_k: torch.LongTensor`: the cumulative sequence lengths of all keys.
|
||||
- `max_length_q: int`: the longest query length in the batch.
|
||||
- `max_length_k: int`: the longest key length in the batch.
|
||||
|
||||
The `attention_mask` inputs should not be provided. The [`DataCollatorWithFlattening`] programmatically generates the set of additional arguments above using `return_seq_idx=True` and `return_flash_attn_kwargs=True`. See the [Improving Hugging Face Training Efficiency Through Packing with Flash Attention](https://huggingface.co/blog/packing-with-FA2) blog post for additional information.
|
||||
|
||||
```python
|
||||
from transformers import DataCollatorWithFlattening
|
||||
|
||||
# Example of using padding-free training
|
||||
data_collator = DataCollatorWithFlattening(
|
||||
tokenizer=tokenizer,
|
||||
return_seq_idx=True,
|
||||
return_flash_attn_kwargs=True
|
||||
)
|
||||
```
|
||||
|
||||
## GraniteMoeHybridConfig
|
||||
|
||||
@ -87,4 +61,4 @@ This HF implementation is contributed by [Sukriti Sharma](https://huggingface.co
|
||||
## GraniteMoeHybridForCausalLM
|
||||
|
||||
[[autodoc]] GraniteMoeHybridForCausalLM
|
||||
- forward
|
||||
- forward
|
@ -162,7 +162,7 @@ To load and run a model using Flash Attention-2, simply change the code snippet
|
||||
```diff
|
||||
model = Idefics2ForConditionalGeneration.from_pretrained(
|
||||
"HuggingFaceM4/idefics2-8b",
|
||||
+ torch_dtype=torch.float16,
|
||||
+ torch_dtype=torch.float16,
|
||||
+ attn_implementation="flash_attention_2",
|
||||
).to(device)
|
||||
```
|
||||
@ -184,7 +184,7 @@ Quantizing a model is as simple as passing a `quantization_config` to the model.
|
||||
+ )
|
||||
model = Idefics2ForConditionalGeneration.from_pretrained(
|
||||
"HuggingFaceM4/idefics2-8b",
|
||||
+ torch_dtype=torch.float16,
|
||||
+ torch_dtype=torch.float16,
|
||||
+ quantization_config=quantization_config,
|
||||
).to(device)
|
||||
```
|
||||
@ -218,10 +218,7 @@ A list of official Hugging Face and community (indicated by 🌎) resources to h
|
||||
[[autodoc]] Idefics2ImageProcessor
|
||||
- preprocess
|
||||
|
||||
## Idefics2ImageProcessorFast
|
||||
[[autodoc]] Idefics2ImageProcessorFast
|
||||
- preprocess
|
||||
|
||||
## Idefics2Processor
|
||||
[[autodoc]] Idefics2Processor
|
||||
- __call__
|
||||
- __call__
|
@ -80,9 +80,6 @@ This model was contributed by [amyeroberts](https://huggingface.co/amyeroberts)
|
||||
[[autodoc]] Idefics3ImageProcessor
|
||||
- preprocess
|
||||
|
||||
## Idefics3ImageProcessorFast
|
||||
[[autodoc]] Idefics3ImageProcessorFast
|
||||
- preprocess
|
||||
|
||||
## Idefics3Processor
|
||||
[[autodoc]] Idefics3Processor
|
||||
|
@ -1,4 +1,4 @@
|
||||
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
@ -14,107 +14,53 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
# I-JEPA
|
||||
|
||||
[I-JEPA](https://huggingface.co/papers/2301.08243) is a self-supervised learning method that learns semantic image representations by predicting parts of an image from other parts of the image. It compares the abstract representations of the image (rather than pixel level comparisons), which avoids the typical pitfalls of data augmentation bias and pixel-level details that don't capture semantic meaning.
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
|
||||
You can find the original I-JEPA checkpoints under the [AI at Meta](https://huggingface.co/facebook/models?search=ijepa) organization.
|
||||
> [!TIP]
|
||||
> This model was contributed by [jmtzt](https://huggingface.co/jmtzt).
|
||||
## Overview
|
||||
|
||||
The I-JEPA model was proposed in [Image-based Joint-Embedding Predictive Architecture](https://huggingface.co/papers/2301.08243) by Mahmoud Assran, Quentin Duval, Ishan Misra, Piotr Bojanowski, Pascal Vincent, Michael Rabbat, Yann LeCun, Nicolas Ballas.
|
||||
I-JEPA is a self-supervised learning method that predicts the representations of one part of an image based on other parts of the same image. This approach focuses on learning semantic features without relying on pre-defined invariances from hand-crafted data transformations, which can bias specific tasks, or on filling in pixel-level details, which often leads to less meaningful representations.
|
||||
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/ijepa_architecture.jpg">
|
||||
The abstract from the paper is the following:
|
||||
|
||||
This paper demonstrates an approach for learning highly semantic image representations without relying on hand-crafted data-augmentations. We introduce the Image- based Joint-Embedding Predictive Architecture (I-JEPA), a non-generative approach for self-supervised learning from images. The idea behind I-JEPA is simple: from a single context block, predict the representations of various target blocks in the same image. A core design choice to guide I-JEPA towards producing semantic representations is the masking strategy; specifically, it is crucial to (a) sample tar- get blocks with sufficiently large scale (semantic), and to (b) use a sufficiently informative (spatially distributed) context block. Empirically, when combined with Vision Transform- ers, we find I-JEPA to be highly scalable. For instance, we train a ViT-Huge/14 on ImageNet using 16 A100 GPUs in under 72 hours to achieve strong downstream performance across a wide range of tasks, from linear classification to object counting and depth prediction.
|
||||
|
||||
> Click on the I-JEPA models in the right sidebar for more examples of how to apply I-JEPA to different image representation and classification tasks.
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/ijepa_architecture.jpg"
|
||||
alt="drawing" width="600"/>
|
||||
|
||||
The example below demonstrates how to extract image features with [`Pipeline`] or the [`AutoModel`] class.
|
||||
<small> I-JEPA architecture. Taken from the <a href="https://huggingface.co/papers/2301.08243">original paper.</a> </small>
|
||||
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
This model was contributed by [jmtzt](https://huggingface.co/jmtzt).
|
||||
The original code can be found [here](https://github.com/facebookresearch/ijepa).
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
feature_extractor = pipeline(
|
||||
task="image-feature-extraction",
|
||||
model="facebook/ijepa_vith14_1k",
|
||||
device=0,
|
||||
torch_dtype=torch.bfloat16
|
||||
)
|
||||
features = feature_extractor("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg", return_tensors=True)
|
||||
## How to use
|
||||
|
||||
print(f"Feature shape: {features.shape}")
|
||||
Here is how to use this model for image feature extraction:
|
||||
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
```py
|
||||
```python
|
||||
import requests
|
||||
import torch
|
||||
from PIL import Image
|
||||
from torch.nn.functional import cosine_similarity
|
||||
from transformers import AutoModel, AutoProcessor
|
||||
|
||||
url_1 = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
||||
url_2 = "http://images.cocodataset.org/val2017/000000219578.jpg"
|
||||
image_1 = Image.open(requests.get(url_1, stream=True).raw)
|
||||
image_2 = Image.open(requests.get(url_2, stream=True).raw)
|
||||
|
||||
processor = AutoProcessor.from_pretrained("facebook/ijepa_vith14_1k")
|
||||
model = AutoModel.from_pretrained("facebook/ijepa_vith14_1k", torch_dtype="auto", attn_implementation="sdpa")
|
||||
|
||||
|
||||
def infer(image):
|
||||
inputs = processor(image, return_tensors="pt")
|
||||
outputs = model(**inputs)
|
||||
return outputs.last_hidden_state.mean(dim=1)
|
||||
|
||||
|
||||
embed_1 = infer(image_1)
|
||||
embed_2 = infer(image_2)
|
||||
|
||||
similarity = cosine_similarity(embed_1, embed_2)
|
||||
print(similarity)
|
||||
```
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
|
||||
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
|
||||
The example below uses [bitsandbytes](../quantization/bitsandbytes) to only quantize the weights to 4-bits.
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import BitsAndBytesConfig, AutoModel, AutoProcessor
|
||||
from datasets import load_dataset
|
||||
|
||||
quantization_config = BitsAndBytesConfig(
|
||||
load_in_4bit=True,
|
||||
bnb_4bit_quant_type="nf4",
|
||||
bnb_4bit_compute_dtype=torch.bfloat16,
|
||||
bnb_4bit_use_double_quant=True,
|
||||
)
|
||||
from transformers import AutoModel, AutoProcessor
|
||||
|
||||
url_1 = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
||||
url_2 = "http://images.cocodataset.org/val2017/000000219578.jpg"
|
||||
image_1 = Image.open(requests.get(url_1, stream=True).raw)
|
||||
image_2 = Image.open(requests.get(url_2, stream=True).raw)
|
||||
|
||||
processor = AutoProcessor.from_pretrained("facebook/ijepa_vitg16_22k")
|
||||
model = AutoModel.from_pretrained("facebook/ijepa_vitg16_22k", quantization_config=quantization_config, torch_dtype="auto", attn_implementation="sdpa")
|
||||
|
||||
model_id = "facebook/ijepa_vith14_1k"
|
||||
processor = AutoProcessor.from_pretrained(model_id)
|
||||
model = AutoModel.from_pretrained(model_id)
|
||||
|
||||
@torch.no_grad()
|
||||
def infer(image):
|
||||
inputs = processor(image, return_tensors="pt")
|
||||
outputs = model(**inputs)
|
||||
@ -128,6 +74,15 @@ similarity = cosine_similarity(embed_1, embed_2)
|
||||
print(similarity)
|
||||
```
|
||||
|
||||
## Resources
|
||||
|
||||
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with I-JEPA.
|
||||
|
||||
<PipelineTag pipeline="image-classification"/>
|
||||
|
||||
- [`IJepaForImageClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb).
|
||||
- See also: [Image classification task guide](../tasks/image_classification)
|
||||
|
||||
## IJepaConfig
|
||||
|
||||
[[autodoc]] IJepaConfig
|
||||
@ -140,5 +95,4 @@ print(similarity)
|
||||
## IJepaForImageClassification
|
||||
|
||||
[[autodoc]] IJepaForImageClassification
|
||||
- forward
|
||||
|
||||
- forward
|
@ -1,122 +0,0 @@
|
||||
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# Kyutai Speech-To-Text
|
||||
## Overview
|
||||
|
||||
Kyutai STT is a speech-to-text model architecture based on the [Mimi codec](https://huggingface.co/docs/transformers/en/model_doc/mimi), which encodes audio into discrete tokens in a streaming fashion, and a [Moshi-like](https://huggingface.co/docs/transformers/en/model_doc/moshi) autoregressive decoder. Kyutai’s lab has released two model checkpoints:
|
||||
- [kyutai/stt-1b-en_fr](https://huggingface.co/kyutai/stt-1b-en_fr): a 1B-parameter model capable of transcribing both English and French
|
||||
- [kyutai/stt-2.6b-en](https://huggingface.co/kyutai/stt-2.6b-en): a 2.6B-parameter model focused solely on English, optimized for maximum transcription accuracy
|
||||
|
||||
<div class="flex justify-center">
|
||||
<img src="https://huggingface.co/datasets/eustlb/documentation-images/resolve/main/kyutai_stt.png"/>
|
||||
</div>
|
||||
|
||||
## Usage Tips
|
||||
|
||||
### Inference
|
||||
|
||||
```python
|
||||
import torch
|
||||
from datasets import load_dataset, Audio
|
||||
from transformers import KyutaiSpeechToTextProcessor, KyutaiSpeechToTextForConditionalGeneration
|
||||
|
||||
# 1. load the model and the processor
|
||||
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
model_id = "kyutai/stt-2.6b-en-trfs"
|
||||
|
||||
processor = KyutaiSpeechToTextProcessor.from_pretrained(model_id)
|
||||
model = KyutaiSpeechToTextForConditionalGeneration.from_pretrained(model_id, device_map=torch_device, torch_dtype="auto")
|
||||
|
||||
# 2. load audio samples
|
||||
ds = load_dataset(
|
||||
"hf-internal-testing/librispeech_asr_dummy", "clean", split="validation"
|
||||
)
|
||||
ds = ds.cast_column("audio", Audio(sampling_rate=24000))
|
||||
|
||||
# 3. prepare the model inputs
|
||||
inputs = processor(
|
||||
ds[0]["audio"]["array"],
|
||||
)
|
||||
inputs.to(torch_device)
|
||||
|
||||
# 4. infer the model
|
||||
output_tokens = model.generate(**inputs)
|
||||
|
||||
# 5. decode the generated tokens
|
||||
print(processor.batch_decode(output_tokens, skip_special_tokens=True))
|
||||
```
|
||||
|
||||
### Batched Inference
|
||||
|
||||
```python
|
||||
import torch
|
||||
from datasets import load_dataset, Audio
|
||||
from transformers import KyutaiSpeechToTextProcessor, KyutaiSpeechToTextForConditionalGeneration
|
||||
|
||||
# 1. load the model and the processor
|
||||
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
model_id = "kyutai/stt-2.6b-en-trfs"
|
||||
|
||||
processor = KyutaiSpeechToTextProcessor.from_pretrained(model_id)
|
||||
model = KyutaiSpeechToTextForConditionalGeneration.from_pretrained(model_id, device_map=torch_device, torch_dtype="auto")
|
||||
|
||||
# 2. load audio samples
|
||||
ds = load_dataset(
|
||||
"hf-internal-testing/librispeech_asr_dummy", "clean", split="validation"
|
||||
)
|
||||
ds = ds.cast_column("audio", Audio(sampling_rate=24000))
|
||||
|
||||
# 3. prepare the model inputs
|
||||
audio_arrays = [ds[i]["audio"]["array"] for i in range(4)]
|
||||
inputs = processor(audio_arrays, return_tensors="pt", padding=True)
|
||||
inputs = inputs.to(torch_device)
|
||||
|
||||
# 4. infer the model
|
||||
output_tokens = model.generate(**inputs)
|
||||
|
||||
# 5. decode the generated tokens
|
||||
decoded_outputs = processor.batch_decode(output_tokens, skip_special_tokens=True)
|
||||
for output in decoded_outputs:
|
||||
print(output)
|
||||
```
|
||||
|
||||
This model was contributed by [Eustache Le Bihan](https://huggingface.co/eustlb).
|
||||
The original code can be found [here](https://github.com/kyutai-labs/moshi).
|
||||
|
||||
|
||||
## KyutaiSpeechToTextConfig
|
||||
|
||||
[[autodoc]] KyutaiSpeechToTextConfig
|
||||
|
||||
## KyutaiSpeechToTextProcessor
|
||||
|
||||
[[autodoc]] KyutaiSpeechToTextProcessor
|
||||
- __call__
|
||||
|
||||
## KyutaiSpeechToTextFeatureExtractor
|
||||
|
||||
[[autodoc]] KyutaiSpeechToTextFeatureExtractor
|
||||
|
||||
## KyutaiSpeechToTextForConditionalGeneration
|
||||
|
||||
[[autodoc]] KyutaiSpeechToTextForConditionalGeneration
|
||||
- forward
|
||||
- generate
|
||||
|
||||
## KyutaiSpeechToTextModel
|
||||
|
||||
[[autodoc]] KyutaiSpeechToTextModel
|
@ -14,135 +14,62 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
# LED
|
||||
|
||||
[Longformer-Encoder-Decoder (LED)](https://huggingface.co/papers/2004.05150) is an encoder-decoder transformer model for sequence-to-sequence tasks like summarization. It extends [Longformer](.longformer), an encoder-only model designed to handle long inputs, by adding a decoder layer. The decoder uses full self-attention on the encoded tokens and previously decoded locations. Because of Longformer's linear self-attention mechanism, LED is more efficient than standard encoder-decoder models when processing long sequences.
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
|
||||
</div>
|
||||
|
||||
You can find all the original [LED] checkpoints under the [Ai2](https://huggingface.co/allenai/models?search=led) organization.
|
||||
## Overview
|
||||
|
||||
> [!TIP]
|
||||
> This model was contributed by [patrickvonplaten](https://huggingface.co/patrickvonplaten).
|
||||
>
|
||||
> Click on the LED models in the right sidebar for more examples of how to apply LED to different language tasks.
|
||||
The LED model was proposed in [Longformer: The Long-Document Transformer](https://huggingface.co/papers/2004.05150) by Iz
|
||||
Beltagy, Matthew E. Peters, Arman Cohan.
|
||||
|
||||
The example below demonstrates how to summarize text with [`Pipeline`], [`AutoModel`], and from the command line.
|
||||
The abstract from the paper is the following:
|
||||
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
*Transformer-based models are unable to process long sequences due to their self-attention operation, which scales
|
||||
quadratically with the sequence length. To address this limitation, we introduce the Longformer with an attention
|
||||
mechanism that scales linearly with sequence length, making it easy to process documents of thousands of tokens or
|
||||
longer. Longformer's attention mechanism is a drop-in replacement for the standard self-attention and combines a local
|
||||
windowed attention with a task motivated global attention. Following prior work on long-sequence transformers, we
|
||||
evaluate Longformer on character-level language modeling and achieve state-of-the-art results on text8 and enwik8. In
|
||||
contrast to most prior work, we also pretrain Longformer and finetune it on a variety of downstream tasks. Our
|
||||
pretrained Longformer consistently outperforms RoBERTa on long document tasks and sets new state-of-the-art results on
|
||||
WikiHop and TriviaQA. We finally introduce the Longformer-Encoder-Decoder (LED), a Longformer variant for supporting
|
||||
long document generative sequence-to-sequence tasks, and demonstrate its effectiveness on the arXiv summarization
|
||||
dataset.*
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
## Usage tips
|
||||
|
||||
pipeline = pipeline(
|
||||
task="summarization",
|
||||
model="allenai/led-base-16384",
|
||||
torch_dtype=torch.float16,
|
||||
device=0
|
||||
)
|
||||
pipeline("""Plants are among the most remarkable and essential life forms on Earth, possessing a unique ability to produce their own food through a process known as photosynthesis. This complex biochemical process is fundamental not only to plant life but to virtually all life on the planet.
|
||||
Through photosynthesis, plants capture energy from sunlight using a green pigment called chlorophyll, which is located in specialized cell structures called chloroplasts. In the presence of light, plants absorb carbon dioxide from the atmosphere through small pores in their leaves called stomata, and take in water from the soil through their root systems.
|
||||
These ingredients are then transformed into glucose, a type of sugar that serves as a source of chemical energy, and oxygen, which is released as a byproduct into the atmosphere. The glucose produced during photosynthesis is not just used immediately; plants also store it as starch or convert it into other organic compounds like cellulose, which is essential for building their cellular structure.
|
||||
This energy reserve allows them to grow, develop leaves, produce flowers, bear fruit, and carry out various physiological processes throughout their lifecycle.""")
|
||||
```
|
||||
- [`LEDForConditionalGeneration`] is an extension of
|
||||
[`BartForConditionalGeneration`] exchanging the traditional *self-attention* layer with
|
||||
*Longformer*'s *chunked self-attention* layer. [`LEDTokenizer`] is an alias of
|
||||
[`BartTokenizer`].
|
||||
- LED works very well on long-range *sequence-to-sequence* tasks where the `input_ids` largely exceed a length of
|
||||
1024 tokens.
|
||||
- LED pads the `input_ids` to be a multiple of `config.attention_window` if required. Therefore a small speed-up is
|
||||
gained, when [`LEDTokenizer`] is used with the `pad_to_multiple_of` argument.
|
||||
- LED makes use of *global attention* by means of the `global_attention_mask` (see
|
||||
[`LongformerModel`]). For summarization, it is advised to put *global attention* only on the first
|
||||
`<s>` token. For question answering, it is advised to put *global attention* on all tokens of the question.
|
||||
- To fine-tune LED on all 16384, *gradient checkpointing* can be enabled in case training leads to out-of-memory (OOM)
|
||||
errors. This can be done by executing `model.gradient_checkpointing_enable()`.
|
||||
Moreover, the `use_cache=False`
|
||||
flag can be used to disable the caching mechanism to save memory.
|
||||
- LED is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than
|
||||
the left.
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
"allenai/led-base-16384"
|
||||
)
|
||||
model = AutoModelForSeq2SeqLM.from_pretrained(
|
||||
"allenai/led-base-16384",
|
||||
torch_dtype=torch.float16,
|
||||
device_map="auto"
|
||||
)
|
||||
|
||||
input_text = """Plants are among the most remarkable and essential life forms on Earth, possessing a unique ability to produce their own food through a process known as photosynthesis. This complex biochemical process is fundamental not only to plant life but to virtually all life on the planet.
|
||||
Through photosynthesis, plants capture energy from sunlight using a green pigment called chlorophyll, which is located in specialized cell structures called chloroplasts. In the presence of light, plants absorb carbon dioxide from the atmosphere through small pores in their leaves called stomata, and take in water from the soil through their root systems.
|
||||
These ingredients are then transformed into glucose, a type of sugar that serves as a source of chemical energy, and oxygen, which is released as a byproduct into the atmosphere. The glucose produced during photosynthesis is not just used immediately; plants also store it as starch or convert it into other organic compounds like cellulose, which is essential for building their cellular structure.
|
||||
This energy reserve allows them to grow, develop leaves, produce flowers, bear fruit, and carry out various physiological processes throughout their lifecycle."""
|
||||
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
||||
|
||||
# Place global attention on the first token
|
||||
global_attention_mask = torch.zeros_like(input_ids.input_ids).to("cuda")
|
||||
global_attention_mask[:, 0] = 1
|
||||
|
||||
output = model.generate(**input_ids, global_attention_mask=global_attention_mask, cache_implementation="static")
|
||||
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="transformers-cli">
|
||||
|
||||
```bash
|
||||
!echo -e "Plants are among the most remarkable and essential life forms on Earth, possessing a unique ability to produce their own food through a process known as photosynthesis. This complex biochemical process is fundamental not only to plant life but to virtually all life on the planet. Through photosynthesis, plants capture energy from sunlight using a green pigment called chlorophyll, which is located in specialized cell structures called chloroplasts." | transformers-cli run --task summarization --model allenai/led-base-16384 --device 0
|
||||
```
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
|
||||
|
||||
The example below uses [bitsandbytes](../quantization/bitsandbytes) to only quantize the weights to int4.
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import BitsAndBytesConfig, AutoModelForSeq2SeqLM, AutoTokenizer
|
||||
|
||||
quantization_config = BitsAndBytesConfig(
|
||||
load_in_4bit=True,
|
||||
bnb_4bit_compute_dtype=torch.bfloat16,
|
||||
bnb_4bit_quant_type="nf4"
|
||||
)
|
||||
model = AutoModelForSeq2SeqLM.from_pretrained(
|
||||
"allenai/led-large-16384",
|
||||
torch_dtype=torch.bfloat16,
|
||||
device_map="auto",
|
||||
quantization_config=quantization_config
|
||||
)
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
"allenai/led-large-16384"
|
||||
)
|
||||
|
||||
input_text = """Plants are among the most remarkable and essential life forms on Earth, possessing a unique ability to produce their own food through a process known as photosynthesis. This complex biochemical process is fundamental not only to plant life but to virtually all life on the planet.
|
||||
Through photosynthesis, plants capture energy from sunlight using a green pigment called chlorophyll, which is located in specialized cell structures called chloroplasts. In the presence of light, plants absorb carbon dioxide from the atmosphere through small pores in their leaves called stomata, and take in water from the soil through their root systems.
|
||||
These ingredients are then transformed into glucose, a type of sugar that serves as a source of chemical energy, and oxygen, which is released as a byproduct into the atmosphere. The glucose produced during photosynthesis is not just used immediately; plants also store it as starch or convert it into other organic compounds like cellulose, which is essential for building their cellular structure.
|
||||
This energy reserve allows them to grow, develop leaves, produce flowers, bear fruit, and carry out various physiological processes throughout their lifecycle."""
|
||||
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
||||
|
||||
# Place global attention on the first token
|
||||
global_attention_mask = torch.zeros_like(input_ids.input_ids).to("cuda")
|
||||
global_attention_mask[:, 0] = 1
|
||||
|
||||
output = model.generate(**input_ids, global_attention_mask=global_attention_mask, cache_implementation="static")
|
||||
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
||||
```
|
||||
|
||||
## Notes
|
||||
|
||||
- [`LEDForConditionalGeneration`] is an extension of [`BartForConditionalGeneration`] exchanging the traditional self-attention layer with Longformer's chunked self-attention layer. [`LEDTokenizer`] is an alias of [`BartTokenizer`].
|
||||
- LED pads the `input_ids` to be a multiple of `config.attention_window` if required. A small speedup is gained when [`LEDTokenizer`] is used with the `pad_to_multiple_of` argument.
|
||||
- LED works best on long-range sequence-to-sequence tasks where the `input_ids` are significantly longer than 1024 tokens.
|
||||
- LED uses global attention by means of the `global_attention_mask` (see [`LongformerModel`]). For summarization, it is advised to put global attention only on the first `<s>` token. For question answering, it is advised to put global attention on all tokens of the question.
|
||||
- To fine-tune LED on all 16384 parameters, gradient checkpointing can be enabled in case training leads to out-of-memory (OOM) errors. Enable gradient checkpointing by adding `model.gradient_checkpointing_enable()` and setting `use_cache=False` to disable the caching mechanism to save memory.
|
||||
- Inputs should be padded on the right because LED uses absolute position embeddings.
|
||||
This model was contributed by [patrickvonplaten](https://huggingface.co/patrickvonplaten).
|
||||
|
||||
## Resources
|
||||
|
||||
- Read the [LED on Arxiv notebook](https://colab.research.google.com/drive/12INTTR6n64TzS4RrXZxMSXfrOd9Xzamo?usp=sharing) to see how LED can achieve state-of-the-art performance on Arxiv article summarization.
|
||||
- Read the [Fine-tune LED notebook](https://colab.research.google.com/drive/12LjJazBl7Gam0XBPy_y0CTOJZeZ34c2v?usp=sharing) to learn how to fine-tune LED on PubMed articles.
|
||||
- [A notebook showing how to evaluate LED](https://colab.research.google.com/drive/12INTTR6n64TzS4RrXZxMSXfrOd9Xzamo?usp=sharing).
|
||||
- [A notebook showing how to fine-tune LED](https://colab.research.google.com/drive/12LjJazBl7Gam0XBPy_y0CTOJZeZ34c2v?usp=sharing).
|
||||
- [Text classification task guide](../tasks/sequence_classification)
|
||||
- [Question answering task guide](../tasks/question_answering)
|
||||
- [Translation task guide](../tasks/translation)
|
||||
- [Summarization task guide](../tasks/summarization)
|
||||
|
||||
## LEDConfig
|
||||
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user