Compare commits

...

11 Commits

Author SHA1 Message Date
e3665de463 Rest of the model refactors 2024-09-06 14:52:34 +02:00
3967eaa39e Misc fixes 2024-09-06 14:01:10 +02:00
f92d17c9e6 More efficient listdir 2024-09-06 14:01:10 +02:00
c07e817452 More specific type 2024-09-06 14:01:10 +02:00
818b572acc Raise if not in backend mapping 2024-09-06 14:01:10 +02:00
2a727f6604 Clearer .py management 2024-09-06 14:01:10 +02:00
226c8ec143 Add comment 2024-09-06 14:01:10 +02:00
1f528f9c7e Style 2024-09-06 14:01:10 +02:00
5a293ea34d Apply most comments from Amy and some comments from Lucain
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Lucain Pouget <lucainp@gmail.com>
2024-09-06 14:01:10 +02:00
af3b2251d1 Register -> Export. Export all in __all__. Sensible defaults according to filename. 2024-09-06 14:01:09 +02:00
5962d6f7cb Import structure & first three model refactors 2024-09-06 14:01:09 +02:00
1173 changed files with 7316 additions and 16140 deletions

View File

@ -116,7 +116,7 @@ jobs:
command: pip freeze | tee installed.txt
- store_artifacts:
path: ~/transformers/installed.txt
- run: python -c "from transformers import *" || (echo '🚨 import failed, this means you introduced unprotected imports! 🚨'; exit 1)
- run: python -c "from transformers import *" || (echo '🚨 import failed, this means you introduced unprotected imports! Have you added this object to the __all__ object of the module? 🚨'; exit 1)
- run: ruff check examples tests src utils
- run: ruff format tests src utils --check
- run: python utils/custom_init_isort.py --check_only

View File

@ -50,10 +50,9 @@ repo-consistency:
# this target runs checks on all files
quality:
@python -c "from transformers import *" || (echo '🚨 import failed, this means you introduced unprotected imports! 🚨'; exit 1)
@python -c "from transformers import *" || (echo '🚨 import failed, this means you introduced unprotected imports! Have you added this object to the __all__ object of the module? 🚨'; exit 1)
ruff check $(check_dirs) setup.py conftest.py
ruff format --check $(check_dirs) setup.py conftest.py
python utils/custom_init_isort.py --check_only
python utils/sort_auto_mappings.py --check_only
python utils/check_doc_toc.py
python utils/check_docstrings.py --check_all
@ -62,7 +61,6 @@ quality:
# Format source code automatically and check is there are any problems left that need manual fixing
extra_style_checks:
python utils/custom_init_isort.py
python utils/sort_auto_mappings.py
python utils/check_doc_toc.py --fix_and_overwrite

View File

@ -1499,7 +1499,6 @@ else:
"BertForQuestionAnswering",
"BertForSequenceClassification",
"BertForTokenClassification",
"BertLayer",
"BertLMHeadModel",
"BertModel",
"BertPreTrainedModel",
@ -1523,7 +1522,6 @@ else:
"BigBirdForQuestionAnswering",
"BigBirdForSequenceClassification",
"BigBirdForTokenClassification",
"BigBirdLayer",
"BigBirdModel",
"BigBirdPreTrainedModel",
"load_tf_weights_in_big_bird",
@ -1642,7 +1640,6 @@ else:
"CanineForQuestionAnswering",
"CanineForSequenceClassification",
"CanineForTokenClassification",
"CanineLayer",
"CanineModel",
"CaninePreTrainedModel",
"load_tf_weights_in_canine",
@ -1729,7 +1726,6 @@ else:
"ConvBertForQuestionAnswering",
"ConvBertForSequenceClassification",
"ConvBertForTokenClassification",
"ConvBertLayer",
"ConvBertModel",
"ConvBertPreTrainedModel",
"load_tf_weights_in_convbert",
@ -1958,7 +1954,6 @@ else:
"QDQBertForQuestionAnswering",
"QDQBertForSequenceClassification",
"QDQBertForTokenClassification",
"QDQBertLayer",
"QDQBertLMHeadModel",
"QDQBertModel",
"QDQBertPreTrainedModel",
@ -2210,7 +2205,6 @@ else:
"FNetForQuestionAnswering",
"FNetForSequenceClassification",
"FNetForTokenClassification",
"FNetLayer",
"FNetModel",
"FNetPreTrainedModel",
]
@ -2311,7 +2305,6 @@ else:
"GPTNeoXForQuestionAnswering",
"GPTNeoXForSequenceClassification",
"GPTNeoXForTokenClassification",
"GPTNeoXLayer",
"GPTNeoXModel",
"GPTNeoXPreTrainedModel",
]
@ -2319,7 +2312,6 @@ else:
_import_structure["models.gpt_neox_japanese"].extend(
[
"GPTNeoXJapaneseForCausalLM",
"GPTNeoXJapaneseLayer",
"GPTNeoXJapaneseModel",
"GPTNeoXJapanesePreTrainedModel",
]
@ -2551,7 +2543,6 @@ else:
"LongformerForTokenClassification",
"LongformerModel",
"LongformerPreTrainedModel",
"LongformerSelfAttention",
]
)
_import_structure["models.longt5"].extend(
@ -2584,7 +2575,6 @@ else:
"LxmertModel",
"LxmertPreTrainedModel",
"LxmertVisualFeatureEncoder",
"LxmertXLayer",
]
)
_import_structure["models.m2m_100"].extend(
@ -2608,7 +2598,9 @@ else:
"Mamba2PreTrainedModel",
]
)
_import_structure["models.marian"].extend(["MarianForCausalLM", "MarianModel", "MarianMTModel"])
_import_structure["models.marian"].extend(
["MarianForCausalLM", "MarianModel", "MarianMTModel", "MarianPreTrainedModel"]
)
_import_structure["models.markuplm"].extend(
[
"MarkupLMForQuestionAnswering",
@ -2691,7 +2683,6 @@ else:
"MobileBertForQuestionAnswering",
"MobileBertForSequenceClassification",
"MobileBertForTokenClassification",
"MobileBertLayer",
"MobileBertModel",
"MobileBertPreTrainedModel",
"load_tf_weights_in_mobilebert",
@ -2737,7 +2728,6 @@ else:
"MPNetForQuestionAnswering",
"MPNetForSequenceClassification",
"MPNetForTokenClassification",
"MPNetLayer",
"MPNetModel",
"MPNetPreTrainedModel",
]
@ -2827,7 +2817,6 @@ else:
"NystromformerForQuestionAnswering",
"NystromformerForSequenceClassification",
"NystromformerForTokenClassification",
"NystromformerLayer",
"NystromformerModel",
"NystromformerPreTrainedModel",
]
@ -2941,7 +2930,6 @@ else:
"PerceiverForMultimodalAutoencoding",
"PerceiverForOpticalFlow",
"PerceiverForSequenceClassification",
"PerceiverLayer",
"PerceiverModel",
"PerceiverPreTrainedModel",
]
@ -3077,11 +3065,9 @@ else:
)
_import_structure["models.reformer"].extend(
[
"ReformerAttention",
"ReformerForMaskedLM",
"ReformerForQuestionAnswering",
"ReformerForSequenceClassification",
"ReformerLayer",
"ReformerModel",
"ReformerModelWithLMHead",
"ReformerPreTrainedModel",
@ -3102,7 +3088,6 @@ else:
"RemBertForQuestionAnswering",
"RemBertForSequenceClassification",
"RemBertForTokenClassification",
"RemBertLayer",
"RemBertModel",
"RemBertPreTrainedModel",
"load_tf_weights_in_rembert",
@ -3149,7 +3134,6 @@ else:
"RoCBertForQuestionAnswering",
"RoCBertForSequenceClassification",
"RoCBertForTokenClassification",
"RoCBertLayer",
"RoCBertModel",
"RoCBertPreTrainedModel",
"load_tf_weights_in_roc_bert",
@ -3163,7 +3147,6 @@ else:
"RoFormerForQuestionAnswering",
"RoFormerForSequenceClassification",
"RoFormerForTokenClassification",
"RoFormerLayer",
"RoFormerModel",
"RoFormerPreTrainedModel",
"load_tf_weights_in_roformer",
@ -3220,7 +3203,6 @@ else:
"SegformerDecodeHead",
"SegformerForImageClassification",
"SegformerForSemanticSegmentation",
"SegformerLayer",
"SegformerModel",
"SegformerPreTrainedModel",
]
@ -3279,7 +3261,6 @@ else:
[
"SplinterForPreTraining",
"SplinterForQuestionAnswering",
"SplinterLayer",
"SplinterModel",
"SplinterPreTrainedModel",
]
@ -3292,7 +3273,6 @@ else:
"SqueezeBertForSequenceClassification",
"SqueezeBertForTokenClassification",
"SqueezeBertModel",
"SqueezeBertModule",
"SqueezeBertPreTrainedModel",
]
)
@ -3491,7 +3471,6 @@ else:
"ViltForMaskedLM",
"ViltForQuestionAnswering",
"ViltForTokenClassification",
"ViltLayer",
"ViltModel",
"ViltPreTrainedModel",
]
@ -3511,7 +3490,6 @@ else:
"VisualBertForQuestionAnswering",
"VisualBertForRegionToPhraseAlignment",
"VisualBertForVisualReasoning",
"VisualBertLayer",
"VisualBertModel",
"VisualBertPreTrainedModel",
]
@ -3527,7 +3505,6 @@ else:
_import_structure["models.vit_mae"].extend(
[
"ViTMAEForPreTraining",
"ViTMAELayer",
"ViTMAEModel",
"ViTMAEPreTrainedModel",
]
@ -3707,7 +3684,6 @@ else:
"YosoForQuestionAnswering",
"YosoForSequenceClassification",
"YosoForTokenClassification",
"YosoLayer",
"YosoModel",
"YosoPreTrainedModel",
]
@ -3854,7 +3830,6 @@ else:
)
_import_structure["models.bert"].extend(
[
"TFBertEmbeddings",
"TFBertForMaskedLM",
"TFBertForMultipleChoice",
"TFBertForNextSentencePrediction",
@ -3920,7 +3895,6 @@ else:
"TFConvBertForQuestionAnswering",
"TFConvBertForSequenceClassification",
"TFConvBertForTokenClassification",
"TFConvBertLayer",
"TFConvBertModel",
"TFConvBertPreTrainedModel",
]
@ -4151,7 +4125,6 @@ else:
"TFLongformerForTokenClassification",
"TFLongformerModel",
"TFLongformerPreTrainedModel",
"TFLongformerSelfAttention",
]
)
_import_structure["models.lxmert"].extend(
@ -4252,7 +4225,6 @@ else:
"TFRemBertForQuestionAnswering",
"TFRemBertForSequenceClassification",
"TFRemBertForTokenClassification",
"TFRemBertLayer",
"TFRemBertModel",
"TFRemBertPreTrainedModel",
]
@ -4298,7 +4270,6 @@ else:
"TFRoFormerForQuestionAnswering",
"TFRoFormerForSequenceClassification",
"TFRoFormerForTokenClassification",
"TFRoFormerLayer",
"TFRoFormerModel",
"TFRoFormerPreTrainedModel",
]
@ -5827,7 +5798,8 @@ if TYPE_CHECKING:
from .models.llama import LlamaTokenizer
from .models.m2m_100 import M2M100Tokenizer
from .models.marian import MarianTokenizer
from .models.mbart import MBart50Tokenizer, MBartTokenizer
from .models.mbart import MBartTokenizer
from .models.mbart50 import MBart50Tokenizer
from .models.mluke import MLukeTokenizer
from .models.mt5 import MT5Tokenizer
from .models.nllb import NllbTokenizer
@ -6298,7 +6270,6 @@ if TYPE_CHECKING:
BertForQuestionAnswering,
BertForSequenceClassification,
BertForTokenClassification,
BertLayer,
BertLMHeadModel,
BertModel,
BertPreTrainedModel,
@ -6318,7 +6289,6 @@ if TYPE_CHECKING:
BigBirdForQuestionAnswering,
BigBirdForSequenceClassification,
BigBirdForTokenClassification,
BigBirdLayer,
BigBirdModel,
BigBirdPreTrainedModel,
load_tf_weights_in_big_bird,
@ -6413,7 +6383,6 @@ if TYPE_CHECKING:
CanineForQuestionAnswering,
CanineForSequenceClassification,
CanineForTokenClassification,
CanineLayer,
CanineModel,
CaninePreTrainedModel,
load_tf_weights_in_canine,
@ -6486,7 +6455,6 @@ if TYPE_CHECKING:
ConvBertForQuestionAnswering,
ConvBertForSequenceClassification,
ConvBertForTokenClassification,
ConvBertLayer,
ConvBertModel,
ConvBertPreTrainedModel,
load_tf_weights_in_convbert,
@ -6671,7 +6639,6 @@ if TYPE_CHECKING:
QDQBertForQuestionAnswering,
QDQBertForSequenceClassification,
QDQBertForTokenClassification,
QDQBertLayer,
QDQBertLMHeadModel,
QDQBertModel,
QDQBertPreTrainedModel,
@ -6870,7 +6837,6 @@ if TYPE_CHECKING:
FNetForQuestionAnswering,
FNetForSequenceClassification,
FNetForTokenClassification,
FNetLayer,
FNetModel,
FNetPreTrainedModel,
)
@ -6958,13 +6924,11 @@ if TYPE_CHECKING:
GPTNeoXForQuestionAnswering,
GPTNeoXForSequenceClassification,
GPTNeoXForTokenClassification,
GPTNeoXLayer,
GPTNeoXModel,
GPTNeoXPreTrainedModel,
)
from .models.gpt_neox_japanese import (
GPTNeoXJapaneseForCausalLM,
GPTNeoXJapaneseLayer,
GPTNeoXJapaneseModel,
GPTNeoXJapanesePreTrainedModel,
)
@ -7140,7 +7104,6 @@ if TYPE_CHECKING:
LongformerForTokenClassification,
LongformerModel,
LongformerPreTrainedModel,
LongformerSelfAttention,
)
from .models.longt5 import (
LongT5EncoderModel,
@ -7167,7 +7130,6 @@ if TYPE_CHECKING:
LxmertModel,
LxmertPreTrainedModel,
LxmertVisualFeatureEncoder,
LxmertXLayer,
)
from .models.m2m_100 import (
M2M100ForConditionalGeneration,
@ -7184,7 +7146,7 @@ if TYPE_CHECKING:
Mamba2Model,
Mamba2PreTrainedModel,
)
from .models.marian import MarianForCausalLM, MarianModel, MarianMTModel
from .models.marian import MarianForCausalLM, MarianModel, MarianMTModel, MarianPreTrainedModel
from .models.markuplm import (
MarkupLMForQuestionAnswering,
MarkupLMForSequenceClassification,
@ -7250,7 +7212,6 @@ if TYPE_CHECKING:
MobileBertForQuestionAnswering,
MobileBertForSequenceClassification,
MobileBertForTokenClassification,
MobileBertLayer,
MobileBertModel,
MobileBertPreTrainedModel,
load_tf_weights_in_mobilebert,
@ -7286,7 +7247,6 @@ if TYPE_CHECKING:
MPNetForQuestionAnswering,
MPNetForSequenceClassification,
MPNetForTokenClassification,
MPNetLayer,
MPNetModel,
MPNetPreTrainedModel,
)
@ -7358,7 +7318,6 @@ if TYPE_CHECKING:
NystromformerForQuestionAnswering,
NystromformerForSequenceClassification,
NystromformerForTokenClassification,
NystromformerLayer,
NystromformerModel,
NystromformerPreTrainedModel,
)
@ -7446,7 +7405,6 @@ if TYPE_CHECKING:
PerceiverForMultimodalAutoencoding,
PerceiverForOpticalFlow,
PerceiverForSequenceClassification,
PerceiverLayer,
PerceiverModel,
PerceiverPreTrainedModel,
)
@ -7548,11 +7506,9 @@ if TYPE_CHECKING:
RecurrentGemmaPreTrainedModel,
)
from .models.reformer import (
ReformerAttention,
ReformerForMaskedLM,
ReformerForQuestionAnswering,
ReformerForSequenceClassification,
ReformerLayer,
ReformerModel,
ReformerModelWithLMHead,
ReformerPreTrainedModel,
@ -7569,7 +7525,6 @@ if TYPE_CHECKING:
RemBertForQuestionAnswering,
RemBertForSequenceClassification,
RemBertForTokenClassification,
RemBertLayer,
RemBertModel,
RemBertPreTrainedModel,
load_tf_weights_in_rembert,
@ -7608,7 +7563,6 @@ if TYPE_CHECKING:
RoCBertForQuestionAnswering,
RoCBertForSequenceClassification,
RoCBertForTokenClassification,
RoCBertLayer,
RoCBertModel,
RoCBertPreTrainedModel,
load_tf_weights_in_roc_bert,
@ -7620,7 +7574,6 @@ if TYPE_CHECKING:
RoFormerForQuestionAnswering,
RoFormerForSequenceClassification,
RoFormerForTokenClassification,
RoFormerLayer,
RoFormerModel,
RoFormerPreTrainedModel,
load_tf_weights_in_roformer,
@ -7665,7 +7618,6 @@ if TYPE_CHECKING:
SegformerDecodeHead,
SegformerForImageClassification,
SegformerForSemanticSegmentation,
SegformerLayer,
SegformerModel,
SegformerPreTrainedModel,
)
@ -7710,7 +7662,6 @@ if TYPE_CHECKING:
from .models.splinter import (
SplinterForPreTraining,
SplinterForQuestionAnswering,
SplinterLayer,
SplinterModel,
SplinterPreTrainedModel,
)
@ -7721,7 +7672,6 @@ if TYPE_CHECKING:
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
SqueezeBertModel,
SqueezeBertModule,
SqueezeBertPreTrainedModel,
)
from .models.stablelm import (
@ -7870,7 +7820,6 @@ if TYPE_CHECKING:
ViltForMaskedLM,
ViltForQuestionAnswering,
ViltForTokenClassification,
ViltLayer,
ViltModel,
ViltPreTrainedModel,
)
@ -7886,7 +7835,6 @@ if TYPE_CHECKING:
VisualBertForQuestionAnswering,
VisualBertForRegionToPhraseAlignment,
VisualBertForVisualReasoning,
VisualBertLayer,
VisualBertModel,
VisualBertPreTrainedModel,
)
@ -7898,7 +7846,6 @@ if TYPE_CHECKING:
)
from .models.vit_mae import (
ViTMAEForPreTraining,
ViTMAELayer,
ViTMAEModel,
ViTMAEPreTrainedModel,
)
@ -8040,7 +7987,6 @@ if TYPE_CHECKING:
YosoForQuestionAnswering,
YosoForSequenceClassification,
YosoForTokenClassification,
YosoLayer,
YosoModel,
YosoPreTrainedModel,
)
@ -8174,7 +8120,6 @@ if TYPE_CHECKING:
TFBartPretrainedModel,
)
from .models.bert import (
TFBertEmbeddings,
TFBertForMaskedLM,
TFBertForMultipleChoice,
TFBertForNextSentencePrediction,
@ -8228,7 +8173,6 @@ if TYPE_CHECKING:
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertLayer,
TFConvBertModel,
TFConvBertPreTrainedModel,
)
@ -8413,7 +8357,6 @@ if TYPE_CHECKING:
TFLongformerForTokenClassification,
TFLongformerModel,
TFLongformerPreTrainedModel,
TFLongformerSelfAttention,
)
from .models.lxmert import (
TFLxmertForPreTraining,
@ -8503,7 +8446,6 @@ if TYPE_CHECKING:
TFRemBertForQuestionAnswering,
TFRemBertForSequenceClassification,
TFRemBertForTokenClassification,
TFRemBertLayer,
TFRemBertModel,
TFRemBertPreTrainedModel,
)
@ -8541,7 +8483,6 @@ if TYPE_CHECKING:
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerLayer,
TFRoFormerModel,
TFRoFormerPreTrainedModel,
)

View File

@ -11,165 +11,21 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
_import_structure = {
"configuration_albert": ["AlbertConfig", "AlbertOnnxConfig"],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["tokenization_albert"] = ["AlbertTokenizer"]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["tokenization_albert_fast"] = ["AlbertTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_albert"] = [
"AlbertForMaskedLM",
"AlbertForMultipleChoice",
"AlbertForPreTraining",
"AlbertForQuestionAnswering",
"AlbertForSequenceClassification",
"AlbertForTokenClassification",
"AlbertModel",
"AlbertPreTrainedModel",
"load_tf_weights_in_albert",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_tf_albert"] = [
"TFAlbertForMaskedLM",
"TFAlbertForMultipleChoice",
"TFAlbertForPreTraining",
"TFAlbertForQuestionAnswering",
"TFAlbertForSequenceClassification",
"TFAlbertForTokenClassification",
"TFAlbertMainLayer",
"TFAlbertModel",
"TFAlbertPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_flax_albert"] = [
"FlaxAlbertForMaskedLM",
"FlaxAlbertForMultipleChoice",
"FlaxAlbertForPreTraining",
"FlaxAlbertForQuestionAnswering",
"FlaxAlbertForSequenceClassification",
"FlaxAlbertForTokenClassification",
"FlaxAlbertModel",
"FlaxAlbertPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_albert import AlbertConfig, AlbertOnnxConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_albert import AlbertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_albert_fast import AlbertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_albert import (
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForPreTraining,
AlbertForQuestionAnswering,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertModel,
AlbertPreTrainedModel,
load_tf_weights_in_albert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_albert import (
TFAlbertForMaskedLM,
TFAlbertForMultipleChoice,
TFAlbertForPreTraining,
TFAlbertForQuestionAnswering,
TFAlbertForSequenceClassification,
TFAlbertForTokenClassification,
TFAlbertMainLayer,
TFAlbertModel,
TFAlbertPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_albert import (
FlaxAlbertForMaskedLM,
FlaxAlbertForMultipleChoice,
FlaxAlbertForPreTraining,
FlaxAlbertForQuestionAnswering,
FlaxAlbertForSequenceClassification,
FlaxAlbertForTokenClassification,
FlaxAlbertModel,
FlaxAlbertPreTrainedModel,
)
from .configuration_albert import *
from .modeling_albert import *
from .modeling_flax_albert import *
from .modeling_tf_albert import *
from .tokenization_albert import *
from .tokenization_albert_fast import *
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)

View File

@ -165,3 +165,6 @@ class AlbertOnnxConfig(OnnxConfig):
("token_type_ids", dynamic_axis),
]
)
__all__ = ["AlbertConfig", "AlbertOnnxConfig"]

View File

@ -1466,3 +1466,16 @@ class AlbertForMultipleChoice(AlbertPreTrainedModel):
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
__all__ = [
"load_tf_weights_in_albert",
"AlbertPreTrainedModel",
"AlbertModel",
"AlbertForPreTraining",
"AlbertForMaskedLM",
"AlbertForSequenceClassification",
"AlbertForTokenClassification",
"AlbertForQuestionAnswering",
"AlbertForMultipleChoice",
]

View File

@ -1119,3 +1119,14 @@ append_call_sample_docstring(
FlaxQuestionAnsweringModelOutput,
_CONFIG_FOR_DOC,
)
__all__ = [
"FlaxAlbertPreTrainedModel",
"FlaxAlbertModel",
"FlaxAlbertForPreTraining",
"FlaxAlbertForMaskedLM",
"FlaxAlbertForSequenceClassification",
"FlaxAlbertForMultipleChoice",
"FlaxAlbertForTokenClassification",
"FlaxAlbertForQuestionAnswering",
]

View File

@ -1558,3 +1558,16 @@ class TFAlbertForMultipleChoice(TFAlbertPreTrainedModel, TFMultipleChoiceLoss):
if getattr(self, "classifier", None) is not None:
with tf.name_scope(self.classifier.name):
self.classifier.build([None, None, self.config.hidden_size])
__all__ = [
"TFAlbertPreTrainedModel",
"TFAlbertModel",
"TFAlbertForPreTraining",
"TFAlbertForMaskedLM",
"TFAlbertForSequenceClassification",
"TFAlbertForTokenClassification",
"TFAlbertForQuestionAnswering",
"TFAlbertForMultipleChoice",
"TFAlbertMainLayer",
]

View File

@ -23,6 +23,7 @@ import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
from ...utils.import_utils import export
logger = logging.get_logger(__name__)
@ -32,6 +33,7 @@ VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"}
SPIECE_UNDERLINE = ""
@export(backends=("sentencepiece",))
class AlbertTokenizer(PreTrainedTokenizer):
"""
Construct an ALBERT tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece).
@ -343,3 +345,6 @@ class AlbertTokenizer(PreTrainedTokenizer):
fi.write(content_spiece_model)
return (out_vocab_file,)
__all__ = ["AlbertTokenizer"]

View File

@ -207,3 +207,6 @@ class AlbertTokenizerFast(PreTrainedTokenizerFast):
copyfile(self.vocab_file, out_vocab_file)
return (out_vocab_file,)
__all__ = ["AlbertTokenizerFast"]

View File

@ -13,57 +13,16 @@
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
_import_structure = {
"configuration_align": [
"AlignConfig",
"AlignTextConfig",
"AlignVisionConfig",
],
"processing_align": ["AlignProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_align"] = [
"AlignModel",
"AlignPreTrainedModel",
"AlignTextModel",
"AlignVisionModel",
]
if TYPE_CHECKING:
from .configuration_align import (
AlignConfig,
AlignTextConfig,
AlignVisionConfig,
)
from .processing_align import AlignProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_align import (
AlignModel,
AlignPreTrainedModel,
AlignTextModel,
AlignVisionModel,
)
from .configuration_align import *
from .modeling_align import *
from .processing_align import *
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)

View File

@ -378,3 +378,6 @@ class AlignConfig(PretrainedConfig):
"""
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
__all__ = ["AlignTextConfig", "AlignVisionConfig", "AlignConfig"]

View File

@ -1636,3 +1636,6 @@ class AlignModel(AlignPreTrainedModel):
text_model_output=text_outputs,
vision_model_output=vision_outputs,
)
__all__ = ["AlignPreTrainedModel", "AlignTextModel", "AlignVisionModel", "AlignModel"]

View File

@ -162,3 +162,6 @@ class AlignProcessor(ProcessorMixin):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
__all__ = ["AlignProcessor"]

View File

@ -13,55 +13,16 @@
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
_import_structure = {
"configuration_altclip": [
"AltCLIPConfig",
"AltCLIPTextConfig",
"AltCLIPVisionConfig",
],
"processing_altclip": ["AltCLIPProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_altclip"] = [
"AltCLIPPreTrainedModel",
"AltCLIPModel",
"AltCLIPTextModel",
"AltCLIPVisionModel",
]
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_altclip import (
AltCLIPConfig,
AltCLIPTextConfig,
AltCLIPVisionConfig,
)
from .processing_altclip import AltCLIPProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_altclip import (
AltCLIPModel,
AltCLIPPreTrainedModel,
AltCLIPTextModel,
AltCLIPVisionModel,
)
from .configuration_altclip import *
from .modeling_altclip import *
from .processing_altclip import *
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)

View File

@ -398,3 +398,6 @@ class AltCLIPConfig(PretrainedConfig):
"""
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
__all__ = ["AltCLIPTextConfig", "AltCLIPVisionConfig", "AltCLIPConfig"]

View File

@ -1694,3 +1694,6 @@ def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_l
mask = input_ids.ne(padding_idx).int()
incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask
return incremental_indices.long() + padding_idx
__all__ = ["AltCLIPPreTrainedModel", "AltCLIPVisionModel", "AltCLIPTextModel", "AltCLIPModel"]

View File

@ -130,3 +130,6 @@ class AltCLIPProcessor(ProcessorMixin):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
__all__ = ["AltCLIPProcessor"]

View File

@ -13,47 +13,16 @@
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_import_structure = {
"configuration_audio_spectrogram_transformer": ["ASTConfig"],
"feature_extraction_audio_spectrogram_transformer": ["ASTFeatureExtractor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_audio_spectrogram_transformer"] = [
"ASTForAudioClassification",
"ASTModel",
"ASTPreTrainedModel",
]
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_audio_spectrogram_transformer import (
ASTConfig,
)
from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_audio_spectrogram_transformer import (
ASTForAudioClassification,
ASTModel,
ASTPreTrainedModel,
)
from .configuration_audio_spectrogram_transformer import *
from .feature_extraction_audio_spectrogram_transformer import *
from .modeling_audio_spectrogram_transformer import *
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)

View File

@ -126,3 +126,6 @@ class ASTConfig(PretrainedConfig):
# generative parameters deprecation cycle, overwriting this function prevents this from happening.
def _get_non_default_generation_parameters(self) -> Dict[str, Any]:
return {}
__all__ = ["ASTConfig"]

View File

@ -234,3 +234,6 @@ class ASTFeatureExtractor(SequenceFeatureExtractor):
padded_inputs = padded_inputs.convert_to_tensors(return_tensors)
return padded_inputs
__all__ = ["ASTFeatureExtractor"]

View File

@ -654,3 +654,6 @@ class ASTForAudioClassification(ASTPreTrainedModel):
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
__all__ = ["ASTPreTrainedModel", "ASTModel", "ASTForAudioClassification"]

View File

@ -13,45 +13,15 @@
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_import_structure = {
"configuration_autoformer": ["AutoformerConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_autoformer"] = [
"AutoformerForPrediction",
"AutoformerModel",
"AutoformerPreTrainedModel",
]
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_autoformer import (
AutoformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_autoformer import (
AutoformerForPrediction,
AutoformerModel,
AutoformerPreTrainedModel,
)
from .configuration_autoformer import *
from .modeling_autoformer import *
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)

View File

@ -240,3 +240,6 @@ class AutoformerConfig(PretrainedConfig):
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
)
__all__ = ["AutoformerConfig"]

View File

@ -2150,3 +2150,6 @@ class AutoformerForPrediction(AutoformerPreTrainedModel):
(-1, num_parallel_samples, self.config.prediction_length) + self.target_shape,
)
)
__all__ = ["AutoformerPreTrainedModel", "AutoformerModel", "AutoformerForPrediction"]

View File

@ -13,63 +13,16 @@
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
_import_structure = {
"configuration_bark": [
"BarkCoarseConfig",
"BarkConfig",
"BarkFineConfig",
"BarkSemanticConfig",
],
"processing_bark": ["BarkProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_bark"] = [
"BarkFineModel",
"BarkSemanticModel",
"BarkCoarseModel",
"BarkModel",
"BarkPreTrainedModel",
"BarkCausalModel",
]
if TYPE_CHECKING:
from .configuration_bark import (
BarkCoarseConfig,
BarkConfig,
BarkFineConfig,
BarkSemanticConfig,
)
from .processing_bark import BarkProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bark import (
BarkCausalModel,
BarkCoarseModel,
BarkFineModel,
BarkModel,
BarkPreTrainedModel,
BarkSemanticModel,
)
from .configuration_bark import *
from .modeling_bark import *
from .processing_bark import *
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)

View File

@ -323,3 +323,6 @@ class BarkConfig(PretrainedConfig):
codec_config=codec_config.to_dict(),
**kwargs,
)
__all__ = ["BarkSemanticConfig", "BarkCoarseConfig", "BarkFineConfig", "BarkConfig"]

View File

@ -546,6 +546,8 @@ BARK_CAUSAL_MODEL_INPUTS_DOCSTRING = r"""
# GPT2-like autoregressive model
class BarkCausalModel(BarkPreTrainedModel):
config_class = BarkSubModelConfig
@ -1811,3 +1813,13 @@ class BarkModel(BarkPreTrainedModel):
config.coarse_acoustics_config._attn_implementation = config._attn_implementation
config.fine_acoustics_config._attn_implementation = config._attn_implementation
return config
__all__ = [
"BarkPreTrainedModel",
"BarkCausalModel",
"BarkFineModel",
"BarkCoarseModel",
"BarkSemanticModel",
"BarkModel",
]

View File

@ -285,3 +285,6 @@ class BarkProcessor(ProcessorMixin):
encoded_text["history_prompt"] = voice_preset
return encoded_text
__all__ = ["BarkProcessor"]

View File

@ -13,134 +13,19 @@
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
_import_structure = {
"configuration_bart": ["BartConfig", "BartOnnxConfig"],
"tokenization_bart": ["BartTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["tokenization_bart_fast"] = ["BartTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_bart"] = [
"BartForCausalLM",
"BartForConditionalGeneration",
"BartForQuestionAnswering",
"BartForSequenceClassification",
"BartModel",
"BartPreTrainedModel",
"BartPretrainedModel",
"PretrainedBartModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_tf_bart"] = [
"TFBartForConditionalGeneration",
"TFBartForSequenceClassification",
"TFBartModel",
"TFBartPretrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_flax_bart"] = [
"FlaxBartDecoderPreTrainedModel",
"FlaxBartForCausalLM",
"FlaxBartForConditionalGeneration",
"FlaxBartForQuestionAnswering",
"FlaxBartForSequenceClassification",
"FlaxBartModel",
"FlaxBartPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_bart import BartConfig, BartOnnxConfig
from .tokenization_bart import BartTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bart_fast import BartTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bart import (
BartForCausalLM,
BartForConditionalGeneration,
BartForQuestionAnswering,
BartForSequenceClassification,
BartModel,
BartPreTrainedModel,
BartPretrainedModel,
PretrainedBartModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_bart import (
TFBartForConditionalGeneration,
TFBartForSequenceClassification,
TFBartModel,
TFBartPretrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_bart import (
FlaxBartDecoderPreTrainedModel,
FlaxBartForCausalLM,
FlaxBartForConditionalGeneration,
FlaxBartForQuestionAnswering,
FlaxBartForSequenceClassification,
FlaxBartModel,
FlaxBartPreTrainedModel,
)
from .configuration_bart import *
from .modeling_bart import *
from .modeling_flax_bart import *
from .modeling_tf_bart import *
from .tokenization_bart import *
from .tokenization_bart_fast import *
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)

View File

@ -18,10 +18,10 @@ import warnings
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeq2SeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import TensorType, is_torch_available, logging
@ -400,3 +400,6 @@ class BartOnnxConfig(OnnxSeq2SeqConfigWithPast):
flattened_output = super(OnnxSeq2SeqConfigWithPast, self)._flatten_past_key_values_(
flattened_output, name, idx, t
)
__all__ = ["BartConfig", "BartOnnxConfig"]

View File

@ -2222,3 +2222,16 @@ class BartForCausalLM(BartPreTrainedModel):
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
)
return reordered_past
__all__ = [
"BartPreTrainedModel",
"PretrainedBartModel",
"BartPretrainedModel",
"BartDecoder",
"BartModel",
"BartForConditionalGeneration",
"BartForSequenceClassification",
"BartForQuestionAnswering",
"BartForCausalLM",
]

View File

@ -1993,3 +1993,13 @@ append_call_sample_docstring(
FlaxCausalLMOutputWithCrossAttentions,
_CONFIG_FOR_DOC,
)
__all__ = [
"FlaxBartPreTrainedModel",
"FlaxBartModel",
"FlaxBartForConditionalGeneration",
"FlaxBartForSequenceClassification",
"FlaxBartForQuestionAnswering",
"FlaxBartDecoderPreTrainedModel",
"FlaxBartForCausalLM",
]

View File

@ -1709,3 +1709,12 @@ class TFBartForSequenceClassification(TFBartPretrainedModel, TFSequenceClassific
if getattr(self, "classification_head", None) is not None:
with tf.name_scope(self.classification_head.name):
self.classification_head.build(None)
__all__ = [
"TFBartPretrainedModel",
"TFBartModel",
"TFBartForConditionalGeneration",
"TFBartForSequenceClassification",
"TFBartMainLayer",
]

View File

@ -388,3 +388,6 @@ class BartTokenizer(PreTrainedTokenizer):
if (is_split_into_words or add_prefix_space) and (len(text) > 0 and not text[0].isspace()):
text = " " + text
return (text, kwargs)
__all__ = ["BartTokenizer"]

View File

@ -274,3 +274,6 @@ class BartTokenizerFast(PreTrainedTokenizerFast):
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
__all__ = ["BartTokenizerFast"]

View File

@ -11,49 +11,17 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available
_import_structure = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["tokenization_barthez"] = ["BarthezTokenizer"]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["tokenization_barthez_fast"] = ["BarthezTokenizerFast"]
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_barthez import BarthezTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_barthez_fast import BarthezTokenizerFast
from .tokenization_barthez import *
from .tokenization_barthez_fast import *
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)

View File

@ -22,6 +22,7 @@ import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
from ...utils.import_utils import export
logger = logging.get_logger(__name__)
@ -34,6 +35,7 @@ SPIECE_UNDERLINE = "▁"
# TODO this class is useless. This is the most standard sentencpiece model. Let's find which one is closest and nuke this.
@export(backends=("sentencepiece",))
class BarthezTokenizer(PreTrainedTokenizer):
"""
Adapted from [`CamembertTokenizer`] and [`BartTokenizer`]. Construct a BARThez tokenizer. Based on
@ -284,3 +286,6 @@ class BarthezTokenizer(PreTrainedTokenizer):
fi.write(content_spiece_model)
return (out_vocab_file,)
__all__ = ["BarthezTokenizer"]

View File

@ -192,3 +192,6 @@ class BarthezTokenizerFast(PreTrainedTokenizerFast):
copyfile(self.vocab_file, out_vocab_file)
return (out_vocab_file,)
__all__ = ["BarthezTokenizerFast"]

View File

@ -11,32 +11,16 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
_import_structure = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["tokenization_bartpho"] = ["BartphoTokenizer"]
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bartpho import BartphoTokenizer
from .tokenization_bartpho import *
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)

View File

@ -22,6 +22,7 @@ import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
from ...utils.import_utils import export
logger = logging.get_logger(__name__)
@ -31,6 +32,7 @@ SPIECE_UNDERLINE = "▁"
VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model", "monolingual_vocab_file": "dict.txt"}
@export(backends=("sentencepiece",))
class BartphoTokenizer(PreTrainedTokenizer):
"""
Adapted from [`XLMRobertaTokenizer`]. Based on [SentencePiece](https://github.com/google/sentencepiece).
@ -311,3 +313,6 @@ class BartphoTokenizer(PreTrainedTokenizer):
fp.write(f"{str(token)} \n")
return out_vocab_file, out_monolingual_vocab_file
__all__ = ["BartphoTokenizer"]

View File

@ -11,100 +11,20 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_torch_available,
is_vision_available,
)
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
_import_structure = {"configuration_beit": ["BeitConfig", "BeitOnnxConfig"]}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["feature_extraction_beit"] = ["BeitFeatureExtractor"]
_import_structure["image_processing_beit"] = ["BeitImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_beit"] = [
"BeitForImageClassification",
"BeitForMaskedImageModeling",
"BeitForSemanticSegmentation",
"BeitModel",
"BeitPreTrainedModel",
"BeitBackbone",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_flax_beit"] = [
"FlaxBeitForImageClassification",
"FlaxBeitForMaskedImageModeling",
"FlaxBeitModel",
"FlaxBeitPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_beit import BeitConfig, BeitOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_beit import BeitFeatureExtractor
from .image_processing_beit import BeitImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_beit import (
BeitBackbone,
BeitForImageClassification,
BeitForMaskedImageModeling,
BeitForSemanticSegmentation,
BeitModel,
BeitPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_beit import (
FlaxBeitForImageClassification,
FlaxBeitForMaskedImageModeling,
FlaxBeitModel,
FlaxBeitPreTrainedModel,
)
from .configuration_beit import *
from .feature_extraction_beit import *
from .image_processing_beit import *
from .modeling_beit import *
from .modeling_flax_beit import *
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)

View File

@ -224,3 +224,6 @@ class BeitOnnxConfig(OnnxConfig):
@property
def atol_for_validation(self) -> float:
return 1e-4
__all__ = ["BeitConfig", "BeitOnnxConfig"]

View File

@ -17,12 +17,14 @@
import warnings
from ...utils import logging
from ...utils.import_utils import export
from .image_processing_beit import BeitImageProcessor
logger = logging.get_logger(__name__)
@export(backends=("vision",))
class BeitFeatureExtractor(BeitImageProcessor):
def __init__(self, *args, **kwargs) -> None:
warnings.warn(
@ -31,3 +33,6 @@ class BeitFeatureExtractor(BeitImageProcessor):
FutureWarning,
)
super().__init__(*args, **kwargs)
__all__ = ["BeitFeatureExtractor"]

View File

@ -42,6 +42,7 @@ from ...utils import (
logging,
)
from ...utils.deprecation import deprecate_kwarg
from ...utils.import_utils import export
if is_vision_available():
@ -54,6 +55,7 @@ if is_torch_available():
logger = logging.get_logger(__name__)
@export(backends=("vision",))
class BeitImageProcessor(BaseImageProcessor):
r"""
Constructs a BEiT image processor.
@ -510,3 +512,6 @@ class BeitImageProcessor(BaseImageProcessor):
semantic_segmentation = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])]
return semantic_segmentation
__all__ = ["BeitImageProcessor"]

View File

@ -1576,3 +1576,13 @@ class BeitBackbone(BeitPreTrainedModel, BackboneMixin):
hidden_states=outputs.hidden_states if output_hidden_states else None,
attentions=outputs.attentions,
)
__all__ = [
"BeitPreTrainedModel",
"BeitModel",
"BeitForMaskedImageModeling",
"BeitForImageClassification",
"BeitForSemanticSegmentation",
"BeitBackbone",
]

View File

@ -946,3 +946,10 @@ overwrite_call_docstring(FlaxBeitForImageClassification, FLAX_BEIT_CLASSIF_DOCST
append_replace_return_docstrings(
FlaxBeitForImageClassification, output_type=FlaxSequenceClassifierOutput, config_class=BeitConfig
)
__all__ = [
"FlaxBeitPreTrainedModel",
"FlaxBeitModel",
"FlaxBeitForMaskedImageModeling",
"FlaxBeitForImageClassification",
]

View File

@ -11,183 +11,22 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tensorflow_text_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
_import_structure = {
"configuration_bert": ["BertConfig", "BertOnnxConfig"],
"tokenization_bert": ["BasicTokenizer", "BertTokenizer", "WordpieceTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["tokenization_bert_fast"] = ["BertTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_bert"] = [
"BertForMaskedLM",
"BertForMultipleChoice",
"BertForNextSentencePrediction",
"BertForPreTraining",
"BertForQuestionAnswering",
"BertForSequenceClassification",
"BertForTokenClassification",
"BertLayer",
"BertLMHeadModel",
"BertModel",
"BertPreTrainedModel",
"load_tf_weights_in_bert",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_tf_bert"] = [
"TFBertEmbeddings",
"TFBertForMaskedLM",
"TFBertForMultipleChoice",
"TFBertForNextSentencePrediction",
"TFBertForPreTraining",
"TFBertForQuestionAnswering",
"TFBertForSequenceClassification",
"TFBertForTokenClassification",
"TFBertLMHeadModel",
"TFBertMainLayer",
"TFBertModel",
"TFBertPreTrainedModel",
]
try:
if not is_tensorflow_text_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["tokenization_bert_tf"] = ["TFBertTokenizer"]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_flax_bert"] = [
"FlaxBertForCausalLM",
"FlaxBertForMaskedLM",
"FlaxBertForMultipleChoice",
"FlaxBertForNextSentencePrediction",
"FlaxBertForPreTraining",
"FlaxBertForQuestionAnswering",
"FlaxBertForSequenceClassification",
"FlaxBertForTokenClassification",
"FlaxBertModel",
"FlaxBertPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_bert import BertConfig, BertOnnxConfig
from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bert_fast import BertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bert import (
BertForMaskedLM,
BertForMultipleChoice,
BertForNextSentencePrediction,
BertForPreTraining,
BertForQuestionAnswering,
BertForSequenceClassification,
BertForTokenClassification,
BertLayer,
BertLMHeadModel,
BertModel,
BertPreTrainedModel,
load_tf_weights_in_bert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_bert import (
TFBertEmbeddings,
TFBertForMaskedLM,
TFBertForMultipleChoice,
TFBertForNextSentencePrediction,
TFBertForPreTraining,
TFBertForQuestionAnswering,
TFBertForSequenceClassification,
TFBertForTokenClassification,
TFBertLMHeadModel,
TFBertMainLayer,
TFBertModel,
TFBertPreTrainedModel,
)
try:
if not is_tensorflow_text_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bert_tf import TFBertTokenizer
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_bert import (
FlaxBertForCausalLM,
FlaxBertForMaskedLM,
FlaxBertForMultipleChoice,
FlaxBertForNextSentencePrediction,
FlaxBertForPreTraining,
FlaxBertForQuestionAnswering,
FlaxBertForSequenceClassification,
FlaxBertForTokenClassification,
FlaxBertModel,
FlaxBertPreTrainedModel,
)
from .configuration_bert import *
from .modeling_bert import *
from .modeling_flax_bert import *
from .modeling_tf_bert import *
from .tokenization_bert import *
from .tokenization_bert_fast import *
from .tokenization_bert_tf import *
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)

View File

@ -149,3 +149,6 @@ class BertOnnxConfig(OnnxConfig):
("token_type_ids", dynamic_axis),
]
)
__all__ = ["BertConfig", "BertOnnxConfig"]

View File

@ -2021,3 +2021,18 @@ class BertForQuestionAnswering(BertPreTrainedModel):
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
__all__ = [
"load_tf_weights_in_bert",
"BertPreTrainedModel",
"BertModel",
"BertForPreTraining",
"BertLMHeadModel",
"BertForMaskedLM",
"BertForNextSentencePrediction",
"BertForSequenceClassification",
"BertForMultipleChoice",
"BertForTokenClassification",
"BertForQuestionAnswering",
]

View File

@ -1711,3 +1711,16 @@ append_call_sample_docstring(
FlaxCausalLMOutputWithCrossAttentions,
_CONFIG_FOR_DOC,
)
__all__ = [
"FlaxBertPreTrainedModel",
"FlaxBertModel",
"FlaxBertForPreTraining",
"FlaxBertForMaskedLM",
"FlaxBertForNextSentencePrediction",
"FlaxBertForSequenceClassification",
"FlaxBertForMultipleChoice",
"FlaxBertForTokenClassification",
"FlaxBertForQuestionAnswering",
"FlaxBertForCausalLM",
]

View File

@ -2108,3 +2108,18 @@ class TFBertForQuestionAnswering(TFBertPreTrainedModel, TFQuestionAnsweringLoss)
if getattr(self, "qa_outputs", None) is not None:
with tf.name_scope(self.qa_outputs.name):
self.qa_outputs.build([None, None, self.config.hidden_size])
__all__ = [
"TFBertPreTrainedModel",
"TFBertModel",
"TFBertForPreTraining",
"TFBertForMaskedLM",
"TFBertLMHeadModel",
"TFBertForNextSentencePrediction",
"TFBertForSequenceClassification",
"TFBertForMultipleChoice",
"TFBertForTokenClassification",
"TFBertForQuestionAnswering",
"TFBertMainLayer",
]

View File

@ -497,3 +497,6 @@ class WordpieceTokenizer:
else:
output_tokens.extend(sub_tokens)
return output_tokens
__all__ = ["BertTokenizer", "BasicTokenizer", "WordpieceTokenizer"]

View File

@ -170,3 +170,6 @@ class BertTokenizerFast(PreTrainedTokenizerFast):
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
files = self._tokenizer.model.save(save_directory, name=filename_prefix)
return tuple(files)
__all__ = ["BertTokenizerFast"]

View File

@ -6,9 +6,11 @@ from tensorflow_text import BertTokenizer as BertTokenizerLayer
from tensorflow_text import FastBertTokenizer, ShrinkLongestTrimmer, case_fold_utf8, combine_segments, pad_model_inputs
from ...modeling_tf_utils import keras
from ...utils.import_utils import export
from .tokenization_bert import BertTokenizer
@export(backends=("tf",))
class TFBertTokenizer(keras.layers.Layer):
"""
This is an in-graph tokenizer for BERT. It should be initialized similarly to other tokenizers, using the
@ -252,3 +254,6 @@ class TFBertTokenizer(keras.layers.Layer):
"sep_token_id": self.sep_token_id,
"pad_token_id": self.pad_token_id,
}
__all__ = ["TFBertTokenizer"]

View File

@ -11,61 +11,18 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available
_import_structure = {"configuration_bert_generation": ["BertGenerationConfig"]}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["tokenization_bert_generation"] = ["BertGenerationTokenizer"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_bert_generation"] = [
"BertGenerationDecoder",
"BertGenerationEncoder",
"BertGenerationPreTrainedModel",
"load_tf_weights_in_bert_generation",
]
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_bert_generation import BertGenerationConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bert_generation import BertGenerationTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bert_generation import (
BertGenerationDecoder,
BertGenerationEncoder,
BertGenerationPreTrainedModel,
load_tf_weights_in_bert_generation,
)
from .configuration_bert_generation import *
from .modeling_bert_generation import *
from .tokenization_bert_generation import *
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)

View File

@ -122,3 +122,6 @@ class BertGenerationConfig(PretrainedConfig):
self.layer_norm_eps = layer_norm_eps
self.position_embedding_type = position_embedding_type
self.use_cache = use_cache
__all__ = ["BertGenerationConfig"]

View File

@ -1018,3 +1018,11 @@ class BertGenerationDecoder(BertGenerationPreTrainedModel):
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
)
return reordered_past
__all__ = [
"load_tf_weights_in_bert_generation",
"BertGenerationPreTrainedModel",
"BertGenerationEncoder",
"BertGenerationDecoder",
]

View File

@ -22,6 +22,7 @@ import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
from ...utils.import_utils import export
logger = logging.get_logger(__name__)
@ -29,6 +30,7 @@ logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"}
@export(backends=("sentencepiece",))
class BertGenerationTokenizer(PreTrainedTokenizer):
"""
Construct a BertGeneration tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece).
@ -170,3 +172,6 @@ class BertGenerationTokenizer(PreTrainedTokenizer):
fi.write(content_spiece_model)
return (out_vocab_file,)
__all__ = ["BertGenerationTokenizer"]

View File

@ -11,19 +11,16 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
_import_structure = {"tokenization_bert_japanese": ["BertJapaneseTokenizer", "CharacterTokenizer", "MecabTokenizer"]}
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .tokenization_bert_japanese import BertJapaneseTokenizer, CharacterTokenizer, MecabTokenizer
from .tokenization_bert_japanese import *
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)

View File

@ -977,3 +977,6 @@ class SentencepieceTokenizer:
new_pieces.append(piece)
return new_pieces
__all__ = ["BertJapaneseTokenizer", "CharacterTokenizer", "MecabTokenizer"]

View File

@ -11,19 +11,16 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
_import_structure = {"tokenization_bertweet": ["BertweetTokenizer"]}
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .tokenization_bertweet import BertweetTokenizer
from .tokenization_bertweet import *
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)

View File

@ -764,3 +764,5 @@ def casual_tokenize(text, preserve_case=True, reduce_len=False, strip_handles=Fa
###############################################################################
__all__ = ["BertweetTokenizer"]

View File

@ -13,133 +13,18 @@
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
_import_structure = {
"configuration_big_bird": ["BigBirdConfig", "BigBirdOnnxConfig"],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["tokenization_big_bird"] = ["BigBirdTokenizer"]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["tokenization_big_bird_fast"] = ["BigBirdTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_big_bird"] = [
"BigBirdForCausalLM",
"BigBirdForMaskedLM",
"BigBirdForMultipleChoice",
"BigBirdForPreTraining",
"BigBirdForQuestionAnswering",
"BigBirdForSequenceClassification",
"BigBirdForTokenClassification",
"BigBirdLayer",
"BigBirdModel",
"BigBirdPreTrainedModel",
"load_tf_weights_in_big_bird",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_flax_big_bird"] = [
"FlaxBigBirdForCausalLM",
"FlaxBigBirdForMaskedLM",
"FlaxBigBirdForMultipleChoice",
"FlaxBigBirdForPreTraining",
"FlaxBigBirdForQuestionAnswering",
"FlaxBigBirdForSequenceClassification",
"FlaxBigBirdForTokenClassification",
"FlaxBigBirdModel",
"FlaxBigBirdPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_big_bird import BigBirdConfig, BigBirdOnnxConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_big_bird import BigBirdTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_big_bird_fast import BigBirdTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_big_bird import (
BigBirdForCausalLM,
BigBirdForMaskedLM,
BigBirdForMultipleChoice,
BigBirdForPreTraining,
BigBirdForQuestionAnswering,
BigBirdForSequenceClassification,
BigBirdForTokenClassification,
BigBirdLayer,
BigBirdModel,
BigBirdPreTrainedModel,
load_tf_weights_in_big_bird,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_big_bird import (
FlaxBigBirdForCausalLM,
FlaxBigBirdForMaskedLM,
FlaxBigBirdForMultipleChoice,
FlaxBigBirdForPreTraining,
FlaxBigBirdForQuestionAnswering,
FlaxBigBirdForSequenceClassification,
FlaxBigBirdForTokenClassification,
FlaxBigBirdModel,
FlaxBigBirdPreTrainedModel,
)
from .configuration_big_bird import *
from .modeling_big_bird import *
from .modeling_flax_big_bird import *
from .tokenization_big_bird import *
from .tokenization_big_bird_fast import *
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)

View File

@ -171,3 +171,6 @@ class BigBirdOnnxConfig(OnnxConfig):
("attention_mask", dynamic_axis),
]
)
__all__ = ["BigBirdConfig", "BigBirdOnnxConfig"]

View File

@ -3147,3 +3147,17 @@ class BigBirdForQuestionAnswering(BigBirdPreTrainedModel):
mask.unsqueeze_(0) # -> (1, maxlen)
mask = torch.where(mask < q_lengths, 1, 0)
return mask
__all__ = [
"load_tf_weights_in_big_bird",
"BigBirdPreTrainedModel",
"BigBirdModel",
"BigBirdForPreTraining",
"BigBirdForMaskedLM",
"BigBirdForCausalLM",
"BigBirdForSequenceClassification",
"BigBirdForMultipleChoice",
"BigBirdForTokenClassification",
"BigBirdForQuestionAnswering",
]

View File

@ -2633,3 +2633,15 @@ append_call_sample_docstring(
FlaxCausalLMOutputWithCrossAttentions,
_CONFIG_FOR_DOC,
)
__all__ = [
"FlaxBigBirdPreTrainedModel",
"FlaxBigBirdModel",
"FlaxBigBirdForPreTraining",
"FlaxBigBirdForMaskedLM",
"FlaxBigBirdForSequenceClassification",
"FlaxBigBirdForMultipleChoice",
"FlaxBigBirdForTokenClassification",
"FlaxBigBirdForQuestionAnswering",
"FlaxBigBirdForCausalLM",
]

View File

@ -23,6 +23,7 @@ import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
from ...utils.import_utils import export
logger = logging.get_logger(__name__)
@ -30,6 +31,7 @@ logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"}
@export(backends=("sentencepiece",))
class BigBirdTokenizer(PreTrainedTokenizer):
"""
Construct a BigBird tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece).
@ -319,3 +321,6 @@ class BigBirdTokenizer(PreTrainedTokenizer):
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
__all__ = ["BigBirdTokenizer"]

View File

@ -227,3 +227,6 @@ class BigBirdTokenizerFast(PreTrainedTokenizerFast):
copyfile(self.vocab_file, out_vocab_file)
return (out_vocab_file,)
__all__ = ["BigBirdTokenizerFast"]

View File

@ -13,55 +13,15 @@
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_import_structure = {
"configuration_bigbird_pegasus": [
"BigBirdPegasusConfig",
"BigBirdPegasusOnnxConfig",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_bigbird_pegasus"] = [
"BigBirdPegasusForCausalLM",
"BigBirdPegasusForConditionalGeneration",
"BigBirdPegasusForQuestionAnswering",
"BigBirdPegasusForSequenceClassification",
"BigBirdPegasusModel",
"BigBirdPegasusPreTrainedModel",
]
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_bigbird_pegasus import (
BigBirdPegasusConfig,
BigBirdPegasusOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bigbird_pegasus import (
BigBirdPegasusForCausalLM,
BigBirdPegasusForConditionalGeneration,
BigBirdPegasusForQuestionAnswering,
BigBirdPegasusForSequenceClassification,
BigBirdPegasusModel,
BigBirdPegasusPreTrainedModel,
)
from .configuration_bigbird_pegasus import *
from .modeling_bigbird_pegasus import *
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)

View File

@ -17,10 +17,10 @@
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeq2SeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import TensorType, is_torch_available, logging
@ -407,3 +407,6 @@ class BigBirdPegasusOnnxConfig(OnnxSeq2SeqConfigWithPast):
flattened_output = super(OnnxSeq2SeqConfigWithPast, self)._flatten_past_key_values_(
flattened_output, name, idx, t
)
__all__ = ["BigBirdPegasusConfig", "BigBirdPegasusOnnxConfig"]

View File

@ -3083,3 +3083,13 @@ class BigBirdPegasusForCausalLM(BigBirdPegasusPreTrainedModel):
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
)
return reordered_past
__all__ = [
"BigBirdPegasusPreTrainedModel",
"BigBirdPegasusModel",
"BigBirdPegasusForConditionalGeneration",
"BigBirdPegasusForSequenceClassification",
"BigBirdPegasusForQuestionAnswering",
"BigBirdPegasusForCausalLM",
]

View File

@ -13,49 +13,16 @@
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
_import_structure = {
"configuration_biogpt": ["BioGptConfig"],
"tokenization_biogpt": ["BioGptTokenizer"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_biogpt"] = [
"BioGptForCausalLM",
"BioGptForTokenClassification",
"BioGptForSequenceClassification",
"BioGptModel",
"BioGptPreTrainedModel",
]
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_biogpt import BioGptConfig
from .tokenization_biogpt import BioGptTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_biogpt import (
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptPreTrainedModel,
)
from .configuration_biogpt import *
from .modeling_biogpt import *
from .tokenization_biogpt import *
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)

View File

@ -129,3 +129,6 @@ class BioGptConfig(PretrainedConfig):
self.layerdrop = layerdrop
self.activation_dropout = activation_dropout
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
__all__ = ["BioGptConfig"]

View File

@ -934,3 +934,12 @@ class BioGptForSequenceClassification(BioGptPreTrainedModel):
def set_input_embeddings(self, value):
self.biogpt.embed_tokens = value
__all__ = [
"BioGptPreTrainedModel",
"BioGptModel",
"BioGptForCausalLM",
"BioGptForTokenClassification",
"BioGptForSequenceClassification",
]

View File

@ -356,3 +356,6 @@ class BioGptTokenizer(PreTrainedTokenizer):
)
self.sm = sacremoses
__all__ = ["BioGptTokenizer"]

View File

@ -13,59 +13,16 @@
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
_import_structure = {"configuration_bit": ["BitConfig", "BitOnnxConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_bit"] = [
"BitForImageClassification",
"BitModel",
"BitPreTrainedModel",
"BitBackbone",
]
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["image_processing_bit"] = ["BitImageProcessor"]
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_bit import BitConfig, BitOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bit import (
BitBackbone,
BitForImageClassification,
BitModel,
BitPreTrainedModel,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_bit import BitImageProcessor
from .configuration_bit import *
from .image_processing_bit import *
from .modeling_bit import *
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)

View File

@ -131,3 +131,6 @@ class BitConfig(BackboneConfigMixin, PretrainedConfig):
self._out_features, self._out_indices = get_aligned_output_features_output_indices(
out_features=out_features, out_indices=out_indices, stage_names=self.stage_names
)
__all__ = ["BitConfig"]

View File

@ -39,6 +39,7 @@ from ...image_utils import (
validate_preprocess_arguments,
)
from ...utils import TensorType, filter_out_non_signature_kwargs, is_vision_available, logging
from ...utils.import_utils import export
logger = logging.get_logger(__name__)
@ -48,6 +49,7 @@ if is_vision_available():
import PIL
@export(backends=("vision",))
class BitImageProcessor(BaseImageProcessor):
r"""
Constructs a BiT image processor.
@ -319,3 +321,6 @@ class BitImageProcessor(BaseImageProcessor):
data = {"pixel_values": images}
return BatchFeature(data=data, tensor_type=return_tensors)
__all__ = ["BitImageProcessor"]

View File

@ -901,3 +901,6 @@ class BitBackbone(BitPreTrainedModel, BackboneMixin):
hidden_states=outputs.hidden_states if output_hidden_states else None,
attentions=None,
)
__all__ = ["BitPreTrainedModel", "BitModel", "BitForImageClassification", "BitBackbone"]

View File

@ -11,128 +11,21 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_import_structure = {
"configuration_blenderbot": [
"BlenderbotConfig",
"BlenderbotOnnxConfig",
],
"tokenization_blenderbot": ["BlenderbotTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["tokenization_blenderbot_fast"] = ["BlenderbotTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_blenderbot"] = [
"BlenderbotForCausalLM",
"BlenderbotForConditionalGeneration",
"BlenderbotModel",
"BlenderbotPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_tf_blenderbot"] = [
"TFBlenderbotForConditionalGeneration",
"TFBlenderbotModel",
"TFBlenderbotPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_flax_blenderbot"] = [
"FlaxBlenderbotForConditionalGeneration",
"FlaxBlenderbotModel",
"FlaxBlenderbotPreTrainedModel",
]
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_blenderbot import (
BlenderbotConfig,
BlenderbotOnnxConfig,
)
from .tokenization_blenderbot import BlenderbotTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_blenderbot_fast import BlenderbotTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blenderbot import (
BlenderbotForCausalLM,
BlenderbotForConditionalGeneration,
BlenderbotModel,
BlenderbotPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blenderbot import (
TFBlenderbotForConditionalGeneration,
TFBlenderbotModel,
TFBlenderbotPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_blenderbot import (
FlaxBlenderbotForConditionalGeneration,
FlaxBlenderbotModel,
FlaxBlenderbotPreTrainedModel,
)
from .configuration_blenderbot import *
from .modeling_blenderbot import *
from .modeling_flax_blenderbot import *
from .modeling_tf_blenderbot import *
from .tokenization_blenderbot import *
from .tokenization_blenderbot_fast import *
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)

View File

@ -17,11 +17,11 @@
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer
from ...configuration_utils import PretrainedConfig
from ...file_utils import TensorType, is_torch_available
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeq2SeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
@ -390,3 +390,6 @@ class BlenderbotOnnxConfig(OnnxSeq2SeqConfigWithPast):
inputs_or_outputs[f"{name}.{i}.decoder.value"] = {0: "batch", 2: decoder_sequence}
inputs_or_outputs[f"{name}.{i}.encoder.key"] = {0: "batch", 2: encoder_sequence}
inputs_or_outputs[f"{name}.{i}.encoder.value"] = {0: "batch", 2: encoder_sequence}
__all__ = ["BlenderbotConfig", "BlenderbotOnnxConfig"]

View File

@ -1609,3 +1609,11 @@ class BlenderbotForCausalLM(BlenderbotPreTrainedModel):
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
)
return reordered_past
__all__ = [
"BlenderbotPreTrainedModel",
"BlenderbotModel",
"BlenderbotForConditionalGeneration",
"BlenderbotForCausalLM",
]

View File

@ -1503,3 +1503,5 @@ overwrite_call_docstring(
append_replace_return_docstrings(
FlaxBlenderbotForConditionalGeneration, output_type=FlaxSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC
)
__all__ = ["FlaxBlenderbotPreTrainedModel", "FlaxBlenderbotModel", "FlaxBlenderbotForConditionalGeneration"]

View File

@ -1553,3 +1553,11 @@ class TFBlenderbotForConditionalGeneration(TFBlenderbotPreTrainedModel, TFCausal
if getattr(self, "bias_layer", None) is not None:
with tf.name_scope(self.bias_layer.name):
self.bias_layer.build(None)
__all__ = [
"TFBlenderbotPreTrainedModel",
"TFBlenderbotModel",
"TFBlenderbotForConditionalGeneration",
"TFBlenderbotMainLayer",
]

View File

@ -405,3 +405,6 @@ class BlenderbotTokenizer(PreTrainedTokenizer):
`List[int]`: list of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
return token_ids_0 + [self.eos_token_id]
__all__ = ["BlenderbotTokenizer"]

View File

@ -287,3 +287,6 @@ class BlenderbotTokenizerFast(PreTrainedTokenizerFast):
`List[int]`: list of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
return token_ids_0 + [self.eos_token_id]
__all__ = ["BlenderbotTokenizerFast"]

View File

@ -13,122 +13,19 @@
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
_import_structure = {
"configuration_blenderbot_small": [
"BlenderbotSmallConfig",
"BlenderbotSmallOnnxConfig",
],
"tokenization_blenderbot_small": ["BlenderbotSmallTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["tokenization_blenderbot_small_fast"] = ["BlenderbotSmallTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_blenderbot_small"] = [
"BlenderbotSmallForCausalLM",
"BlenderbotSmallForConditionalGeneration",
"BlenderbotSmallModel",
"BlenderbotSmallPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_tf_blenderbot_small"] = [
"TFBlenderbotSmallForConditionalGeneration",
"TFBlenderbotSmallModel",
"TFBlenderbotSmallPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_flax_blenderbot_small"] = [
"FlaxBlenderbotSmallForConditionalGeneration",
"FlaxBlenderbotSmallModel",
"FlaxBlenderbotSmallPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_blenderbot_small import (
BlenderbotSmallConfig,
BlenderbotSmallOnnxConfig,
)
from .tokenization_blenderbot_small import BlenderbotSmallTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blenderbot_small import (
BlenderbotSmallForCausalLM,
BlenderbotSmallForConditionalGeneration,
BlenderbotSmallModel,
BlenderbotSmallPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blenderbot_small import (
TFBlenderbotSmallForConditionalGeneration,
TFBlenderbotSmallModel,
TFBlenderbotSmallPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_blenderbot_small import (
FlaxBlenderbotSmallForConditionalGeneration,
FlaxBlenderbotSmallModel,
FlaxBlenderbotSmallPreTrainedModel,
)
from .configuration_blenderbot_small import *
from .modeling_blenderbot_small import *
from .modeling_flax_blenderbot_small import *
from .modeling_tf_blenderbot_small import *
from .tokenization_blenderbot_small import *
from .tokenization_blenderbot_small_fast import *
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)

View File

@ -17,11 +17,11 @@
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer
from ...configuration_utils import PretrainedConfig
from ...file_utils import TensorType, is_torch_available
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeq2SeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
@ -385,3 +385,6 @@ class BlenderbotSmallOnnxConfig(OnnxSeq2SeqConfigWithPast):
flattened_output = super(OnnxSeq2SeqConfigWithPast, self)._flatten_past_key_values_(
flattened_output, name, idx, t
)
__all__ = ["BlenderbotSmallConfig", "BlenderbotSmallOnnxConfig"]

View File

@ -1561,3 +1561,11 @@ class BlenderbotSmallForCausalLM(BlenderbotSmallPreTrainedModel):
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
)
return reordered_past
__all__ = [
"BlenderbotSmallPreTrainedModel",
"BlenderbotSmallModel",
"BlenderbotSmallForConditionalGeneration",
"BlenderbotSmallForCausalLM",
]

View File

@ -1519,3 +1519,9 @@ overwrite_call_docstring(
append_replace_return_docstrings(
FlaxBlenderbotSmallForConditionalGeneration, output_type=FlaxSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC
)
__all__ = [
"FlaxBlenderbotSmallPreTrainedModel",
"FlaxBlenderbotSmallModel",
"FlaxBlenderbotSmallForConditionalGeneration",
]

View File

@ -1523,3 +1523,11 @@ class TFBlenderbotSmallForConditionalGeneration(TFBlenderbotSmallPreTrainedModel
if getattr(self, "bias_layer", None) is not None:
with tf.name_scope(self.bias_layer.name):
self.bias_layer.build(None)
__all__ = [
"TFBlenderbotSmallPreTrainedModel",
"TFBlenderbotSmallModel",
"TFBlenderbotSmallForConditionalGeneration",
"TFBlenderbotSmallMainLayer",
]

View File

@ -217,3 +217,6 @@ class BlenderbotSmallTokenizer(PreTrainedTokenizer):
index += 1
return vocab_file, merge_file
__all__ = ["BlenderbotSmallTokenizer"]

View File

@ -98,3 +98,6 @@ class BlenderbotSmallTokenizerFast(PreTrainedTokenizerFast):
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
__all__ = ["BlenderbotSmallTokenizerFast"]

View File

@ -13,110 +13,20 @@
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
_import_structure = {
"configuration_blip": [
"BlipConfig",
"BlipTextConfig",
"BlipVisionConfig",
],
"processing_blip": ["BlipProcessor"],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["image_processing_blip"] = ["BlipImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_blip"] = [
"BlipModel",
"BlipPreTrainedModel",
"BlipForConditionalGeneration",
"BlipForQuestionAnswering",
"BlipVisionModel",
"BlipTextModel",
"BlipForImageTextRetrieval",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_tf_blip"] = [
"TFBlipModel",
"TFBlipPreTrainedModel",
"TFBlipForConditionalGeneration",
"TFBlipForQuestionAnswering",
"TFBlipVisionModel",
"TFBlipTextModel",
"TFBlipForImageTextRetrieval",
]
if TYPE_CHECKING:
from .configuration_blip import BlipConfig, BlipTextConfig, BlipVisionConfig
from .processing_blip import BlipProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_blip import BlipImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blip import (
BlipForConditionalGeneration,
BlipForImageTextRetrieval,
BlipForQuestionAnswering,
BlipModel,
BlipPreTrainedModel,
BlipTextModel,
BlipVisionModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blip import (
TFBlipForConditionalGeneration,
TFBlipForImageTextRetrieval,
TFBlipForQuestionAnswering,
TFBlipModel,
TFBlipPreTrainedModel,
TFBlipTextModel,
TFBlipVisionModel,
)
from .configuration_blip import *
from .image_processing_blip import *
from .modeling_blip import *
from .modeling_blip_text import *
from .modeling_tf_blip import *
from .modeling_tf_blip_text import *
from .processing_blip import *
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)

View File

@ -360,3 +360,6 @@ class BlipConfig(PretrainedConfig):
"""
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
__all__ = ["BlipTextConfig", "BlipVisionConfig", "BlipConfig"]

View File

@ -34,6 +34,7 @@ from ...image_utils import (
validate_preprocess_arguments,
)
from ...utils import TensorType, filter_out_non_signature_kwargs, is_vision_available, logging
from ...utils.import_utils import export
if is_vision_available():
@ -43,6 +44,7 @@ if is_vision_available():
logger = logging.get_logger(__name__)
@export(backends=("vision",))
class BlipImageProcessor(BaseImageProcessor):
r"""
Constructs a BLIP image processor.
@ -292,3 +294,6 @@ class BlipImageProcessor(BaseImageProcessor):
encoded_outputs = BatchFeature(data={"pixel_values": images}, tensor_type=return_tensors)
return encoded_outputs
__all__ = ["BlipImageProcessor"]

View File

@ -1563,3 +1563,13 @@ class BlipForImageTextRetrieval(BlipPreTrainedModel):
attentions=vision_outputs.attentions,
question_embeds=question_embeds,
)
__all__ = [
"BlipPreTrainedModel",
"BlipVisionModel",
"BlipModel",
"BlipForConditionalGeneration",
"BlipForQuestionAnswering",
"BlipForImageTextRetrieval",
]

View File

@ -568,6 +568,8 @@ class BlipTextPreTrainedModel(PreTrainedModel):
# Adapted from https://github.com/salesforce/BLIP/blob/3a29b7410476bf5f2ba0955827390eb6ea1f4f9d/models/med.py#L571
class BlipTextModel(BlipTextPreTrainedModel):
"""
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
@ -948,3 +950,6 @@ class BlipTextLMHeadModel(BlipTextPreTrainedModel):
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
)
return reordered_past
__all__ = ["BlipTextModel"]

View File

@ -1696,3 +1696,14 @@ class TFBlipForImageTextRetrieval(TFBlipPreTrainedModel):
if getattr(self, "itm_head", None) is not None:
with tf.name_scope(self.itm_head.name):
self.itm_head.build([None, None, self.config.text_config.hidden_size])
__all__ = [
"TFBlipPreTrainedModel",
"TFBlipVisionModel",
"TFBlipModel",
"TFBlipForConditionalGeneration",
"TFBlipForQuestionAnswering",
"TFBlipForImageTextRetrieval",
"TFBlipMainLayer",
]

Some files were not shown because too many files have changed in this diff Show More