Compare commits

...

143 Commits

Author SHA1 Message Date
b356fce1da solve unequal cropping 2025-08-11 19:20:28 +02:00
af7f75e682 use existing methods, add default image 2025-08-11 16:44:06 +02:00
34ba5909a2 add an unnormalize image method 2025-08-11 16:43:27 +02:00
fbec904fb0 Merge branch 'main' into vision_visualizer 2025-08-06 19:19:09 +02:00
a1263dfe7b fixup 2025-08-06 19:17:38 +02:00
1878d6c4ff add captions and better tiling detection 2025-08-06 19:16:14 +02:00
cb2e0df2ec [image processor] fix glm4v (#39964)
* fix glm4v image process

* Update src/transformers/models/glm4v/image_processing_glm4v.py

---------

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
2025-08-06 17:46:58 +01:00
9ab75fc428 fix typo (#39936)
* fix typo

* fix modular instead

* fix

---------

Co-authored-by: y.korobko <y.korobko@tbank.ru>
2025-08-06 16:21:24 +00:00
43b3f58875 Fix grammatical error in MoE variable name: expert_hitted → expert_hit, hitted_experts → hit_experts (#39959)
* Fix grammatical error: expert_hitted -> expert_hit in MoE implementations

* Fix grammatical error: hitted_experts -> hit_experts in MoE implementation
2025-08-06 15:45:19 +00:00
dff6185d61 docs: fix typo in 'quantization-aware training' (#39904) 2025-08-06 14:52:43 +00:00
c7844c7a8e Enable gpt-oss mxfp4 on older hardware (sm75+) (#39940)
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-08-06 13:39:21 +00:00
dd70a8cb9d Fix MXFP4 quantizer validation to allow CPU inference with dequantize option (#39953)
* Fix MXFP4 quantizer validation to enable CPU dequantization

Move dequantize check before CUDA availability check to allow
CPU inference when quantization_config.dequantize is True.
This enables users to run MXFP4 models on CPU by automatically
converting them to BF16 format.

* Add tests for MXFP4 quantizer CPU dequantization validation

* fix: format mxfp4 test file with ruff
2025-08-06 15:20:41 +02:00
82eb67e62a [docs] ko toc fix (#39927) 2025-08-06 10:12:34 +00:00
9e76a6bb54 circleci: pin torch 2.7.1 until torchcodec is updated (#39951)
circleci torch 2.7.1

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-08-06 11:18:00 +02:00
910b319357 Fix CI: Tests failing on CPU due to torch.device('cpu').index being None (#39933)
replace routing_weights.device.index with a
2025-08-06 10:22:43 +02:00
369c99d0ce Avoid utils/check_bad_commit.py failing due to rate limit (requesting api.github.com) (#39918)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-08-05 21:52:20 +02:00
b771e476a8 [CI] post-GptOss fixes for green CI (#39929) 2025-08-05 20:04:59 +02:00
eb6e26acf3 Dev version 2025-08-05 18:09:30 +02:00
c54203a32e gpt_oss last chat template changes (#39925)
Last chat template changes
2025-08-05 18:08:08 +02:00
7c38d8fc23 Add GPT OSS model from OpenAI (#39923)
* fix

* nice

* where i am at

* Bro this works

* Update src/transformers/integrations/tensor_parallel.py

* cleanups

* yups that was breaking

* Update src/transformers/models/openai_moe/modeling_openai_moe.py

* gather on experts and not mlp

* add changes for latest convert branch

* adds options to get output_router_logits from config

* bring chat temlate + special tokens back into the script.

* initial commmit

* update

* working with shards

* add model.safetensors.index.json

* fix

* fix

* mxfp4 flag

* rm print

* Fix PAD/EOS/BOS (#18)

* fix pad/eos/bos

* base model maybe one day

* add some doc

* special tokens based on harmony.

* add in tokenizer config as well.

* prepare for rebase with main

* Fix for initialize_tensor_parallelism  now returning 4-tuple

```
[rank0]:   File "/fsx/edward/work/openai-tsm-examples/examples/generate.py", line 17, in <module>
[rank0]:     model = AutoModelForCausalLM.from_pretrained(
[rank0]:             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]:   File "/fsx/edward/work/new-model-addition-openai/src/transformers/models/auto/auto_factory.py", line 600, in from_pretrained
[rank0]:     return model_class.from_pretrained(
[rank0]:            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]:   File "/fsx/edward/work/new-model-addition-openai/src/transformers/modeling_utils.py", line 316, in _wrapper
[rank0]:     return func(*args, **kwargs)
[rank0]:            ^^^^^^^^^^^^^^^^^^^^^
[rank0]:   File "/fsx/edward/work/new-model-addition-openai/src/transformers/modeling_utils.py", line 4748, in from_pretrained
[rank0]:     tp_plan, device_map, device_mesh = initialize_tensor_parallelism(tp_plan, tp_size=None)
[rank0]:     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]: ValueError: too many values to unpack (expected 3)
```

* mxfp4

* mxfp4 draft

* fix

* fix import

* draft

* draft impl

* finally working !

* simplify

* add import

* working version

* consider blocks and scales

* device mesh fix

* initial commit

* add working dequant + quant logic

* update

* non nan, gibberish output

* working EP + quantization finally !

* start cleaning

* remove reversing process

* style

* some cleaning

* initial commmit

* more cleaning

* more cleaning

* simplify

* more cleaning

* rm duplicated function

* changing tp_plan

* update tp plan check

* add loading attribute

* dequantizing logic

* use subfunctions

* import cleaning

* update_param_name

* adds clamped swiglu

* add clamping to training path

* simplify dequant logic

* update

* Bad merge

* more simplifications & tests

* fix !

* fix registering custom attention

* fix order

* fixes

* some test nits

* nits

* nit

* fix

* Clamp sink logits

* Clean

* Soft-max trick

* Clean up

* p

* fix deepspeed

* update both modeling and modular for cleanup

* contiguous

* update tests

* fix top_k router call

* revert renaming

* test nits

* small fixes for EP

* fix path for our local tests

* update as I should not have broken that!

* fix the loss of mixtral

* revert part of the changes related to router_scores, kernel probably no ready for that!

* deleting a small nit

* update arch

* fix post processing

* update

* running version but not expected output

* moving to cuda

* initial commit

* revert

* erroring when loading on cpu

* updates

* del blocks, scales

* fix

* style

* rm comm

* comment

* add comment

* style

* remove duplicated lines

* Fix minor issue with weight_map conversion script

* fix sampling params

* rename to final name

* upate pre-final version of template

* Update src/transformers/models/gpt_oss/convert_gpt_oss_weights_to_hf.py

* fix batched inference

* serve fixes

* swizzle !

* update final chat template by Matt.

* fix responses; pin oai

* sinplify

* Thanks Matt for his tireless efforts!

Co-authored-by: Rocketknight1 <Rocketknight1@users.noreply.github.com>

* Update src/transformers/models/gpt_oss/convert_gpt_oss_weights_to_hf.py

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* fix

* Use ROCm kernels from HUB

* Make kernel modes explicit

* update final chat template by Matt. x2

* Thanks Matt for his tireless efforts!

Co-authored-by: Rocketknight1 <Rocketknight1@users.noreply.github.com>

* Fix installation

* Update setup.py

Co-authored-by: Ákos Hadnagy <akos.hadnagy@gmail.com>

* allow no content

* fix: update message handling in write_tokenizer function

* Fix template logic for user message role

* last nits for CB and flash_paged!

* there was one bad merge

* fix CB (hardcode for now, its just using kv groups instead)

* fix

* better fix for device_map

* minor device fix

* Fix flash paged

* updates

* Revert "remove dtensors, not explicit (#39840)"

This reverts commit 6dfd561d9cd722dfc09f702355518c6d09b9b4e3.

* update

* Revert "remove dtensors, not explicit (#39840)"

This reverts commit 6dfd561d9cd722dfc09f702355518c6d09b9b4e3.

* fix merge

* fix

* Fix line break when custom model indentity

* nits testing

* to locals first and pass sliding window to flash paged

* register modes for MegaBlocksMoeMlp

* add integration test in fixtures -> now update the tests to use it!

* update integration tests

* initial fix

* style and update tests

* fix

* chore(gpt oss): remove mlp_bias from configuration

It was just a leftover.

* stats

* Integration tests

* whoops

* Shouldn't move model

* Ensure assistant messages without thinking always go to "final" channel

* More checks to ensure expected format

* Add pad_token_id to model configuration in write_model function (#51)

* Add oai fix fast tests (#59)

* Fix some fast tests

* Force some updates

* Remove unnecessary fixes

* Update src/transformers/models/gpt_oss/convert_gpt_oss_weights_to_hf.py

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>

* Update src/transformers/models/gpt_oss/convert_gpt_oss_weights_to_hf.py

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>

* Update src/transformers/models/gpt_oss/convert_gpt_oss_weights_to_hf.py

* reasoning -> Reasoning

* Add additional integration tests

* fixup

* Slight fixes

* align chat template with harmony

* simplify

* Add comment

* torch testing assert close

* torch testing assert close

* torch testing assert close

* torch testing assert close

* torch testing assert close

* torch testing assert close

* Revert fixup

* skip 2 test remove todo

* merge

* padding side should be left for integration tests

* fix modular wrt to changes made to modeling

* style

* isort

* fix opies for the loss

* mmmm

---------

Co-authored-by: Quentin Gallouédec <gallouedec.quentin@gmail.com>
Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>
Co-authored-by: Marc Sun <marc@huggingface.co>
Co-authored-by: edbeeching <edbeeching@gmail.com>
Co-authored-by: Vaibhavs10 <vaibhavs10@gmail.com>
Co-authored-by: MekkCyber <mekk.cyber@gmail.com>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
Co-authored-by: Edward Beeching <edbeeching@users.noreply.github.com>
Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
Co-authored-by: Lewis Tunstall <lewis.c.tunstall@gmail.com>
Co-authored-by: Zhuohan Li <zhuohan@openai.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
Co-authored-by: joao@huggingface.co <joao@ip-10-53-88-32.ec2.internal>
Co-authored-by: Rocketknight1 <Rocketknight1@users.noreply.github.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Akos Hadnagy <akos@ahadnagy.com>
Co-authored-by: Ákos Hadnagy <akos.hadnagy@gmail.com>
Co-authored-by: Alvaro Moran <alvaro.moran@huggingface.co>
Co-authored-by: Lysandre <hi@lysand.re>
Co-authored-by: Matt <rocketknight1@gmail.com>
2025-08-05 18:02:18 +02:00
a6a18efe53 better namings 2025-08-05 17:30:05 +02:00
738c1a3899 🌐 [i18n-KO] Translated cache_explanation.md to Korean (#39535)
* update: _toctree.yml

* docs: ko: cache_explanation.md

* feat: nmt draft

* fix: apply yijun-lee's comments

* fix: apply 4N3MONE's comments

* docs: update cache_position

* docs: update cache-storage-implementation

* update: add h2 tag in cache-position

---------

Co-authored-by: taehyeonjeon <xogus294@gmail.com>
2025-08-05 08:20:13 -07:00
d2ae766836 Export SmolvLM (#39614)
Export SmolVLM for ExecuTorch
2025-08-05 16:20:23 +02:00
c430047602 [docs] update object detection guide (#39909)
* Update object_detection.md

* Update object_detection.md
2025-08-05 14:07:21 +00:00
dedcbd6e3d run model debugging with forward arg (#39905)
* run model debugging a lot simpler

* fixup

* Update src/transformers/utils/generic.py

* fixup

* mode syle?

* guard a bit
2025-08-05 15:46:19 +02:00
20ce210ab7 Revert "remove dtensors, not explicit (#39840)" (#39912)
* Revert "remove dtensors, not explicit (#39840)"
This did not work with generation (lm_head needs extra care!)
This reverts commit 6dfd561d9cd722dfc09f702355518c6d09b9b4e3.

* update

* style?
2025-08-05 15:12:14 +02:00
2589a52c5c Fix aria tests (#39879)
* fix aria tests

* awful bug

* fix copies

* fix tests

* fix style

* revert this
2025-08-05 13:48:47 +02:00
6e4a9a5b43 Fix eval thread fork bomb (#39717) 2025-08-05 10:50:32 +00:00
98a3c49135 Replace video_fps with fps in tests (#39898)
Signed-off-by: cyy <cyyever@outlook.com>
2025-08-05 10:39:55 +00:00
1af1071081 Fix misleading WandB error when WANDB_DISABLED is set (#39891)
When users set `report_to="wandb"` but also have `WANDB_DISABLED=true` in their environment,
the previous error message was misleading: "WandbCallback requires wandb to be installed. Run pip install wandb."

This was confusing because wandb was actually installed, just disabled via the environment variable.

The fix detects this specific case and provides a clear, actionable error message explaining
the conflict and how to resolve it.
2025-08-05 10:18:18 +00:00
78ef84921b Avoid aliasing in cond's branches for torch 2.8 (#39488)
Avoid alaising in cond's branches

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2025-08-05 11:18:11 +02:00
9e676e6a0e [qwen] remove unnecessary CUDA sync in qwen2_5_vl (#39870)
Signed-off-by: cyy <cyyever@outlook.com>
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
2025-08-05 08:54:16 +00:00
392be3b282 fix test_working_of_tp failure of accelerate ut (#39828)
Signed-off-by: Yao, Matrix <matrix.yao@intel.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2025-08-05 08:52:57 +00:00
cc5de36454 [Exaone4] Fixes the attn implementation! (#39906)
* fix

* fix config
2025-08-05 09:29:16 +02:00
00d47757bf Reorder serving docs (#39634)
* Slight reorg

* LLMs + draft VLMs

* Actual VLM examples

* Initial responses

* Reorder

* Update docs/source/en/serving.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update docs/source/en/tiny_agents.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update docs/source/en/open_webui.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update docs/source/en/cursor.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update docs/source/en/serving.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Responses API

* Address Pedro's comments

---------

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2025-08-05 08:43:06 +02:00
8c4ea670dc chore: update DETR model card (#39822)
* Update model card for DETR

* fix: applied suggested changes

* fix: simplified pipeline and modified notes and resources

* Update detr.md

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-08-04 12:25:53 -07:00
0bd91cc822 Add support for ModernBertForMultipleChoice (#39232)
* implement ModernBertForMultipleChoice

* fixup, style, repo consistency

* generate modeling_modernbert

* add tests + docs

* fix test
2025-08-04 20:45:43 +02:00
801e869b67 send some feedback when manually building doc via comment (#39889)
* fix

* fix

* fix

* Update .github/workflows/pr_build_doc_with_comment.yml

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2025-08-04 18:20:48 +00:00
ee7eb2d0b1 Update cohere2 vision test (#39888)
* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-08-04 20:08:18 +02:00
3bafa128dc [DOCS] : Improved mimi model card (#39824)
* [DOCS] : Improved mimi model card

* Removed additional header

* Review: addressed feedback

* Update mimi.md

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-08-04 10:07:06 -07:00
192acc2d0f Fix link to models in README (#39880)
Update README.md
2025-08-04 09:34:41 -07:00
7dca2ff8cf [typing] better return type hint for AutoModelForCausalLM and AutoModelForImageTextToText (#39881)
* Better return type hint for  AutoModelForCausalLM and AutoModelForImageTextToText

* fix imports

* fix
2025-08-04 15:03:53 +00:00
3edd14610e Set torch.backends.cudnn.allow_tf32 = False for CI (#39885)
* fix

* fix

* [test all]

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-08-04 16:55:16 +02:00
e3505cd4dc Replace Tokenizer with PreTrainedTokenizerFast in ContinuousBatchProcessor (#39858)
Replace Tokenizer with PreTrainedTokenizerFast in ContinuousBatchProcessor
2025-08-04 16:39:19 +02:00
380b2a0317 Rework add-new-model-like with modular and make test filenames coherent (#39612)
* remove tf/flax

* fix

* style

* Update add_new_model_like.py

* work in progress

* continue

* more cleanup

* simplify and first final version

* fixes -> it works

* add linter checks

* Update add_new_model_like.py

* fix

* add modular conversion at the end

* Update add_new_model_like.py

* add video processor

* Update add_new_model_like.py

* Update add_new_model_like.py

* Update add_new_model_like.py

* fix

* Update image_processing_auto.py

* Update image_processing_auto.py

* fix post rebase

* start test filenames replacement

* rename all test_processor -> test_processing

* fix copied from

* add docstrings

* Update add_new_model_like.py

* fix regex

* improve wording

* Update add_new_model_like.py

* Update add_new_model_like.py

* Update add_new_model_like.py

* start adding test

* fix

* fix

* proper first test

* tests

* fix

* fix

* fix

* fix

* modular can be used from anywhere

* protect import

* fix

* Update add_new_model_like.py

* fix
2025-08-04 14:41:09 +02:00
5fb5b6cfaf Fix quant docker for fp-quant (#39641)
* fix quant docker

* Apply style fixes

---------

Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-08-04 11:57:08 +00:00
16d6faef9a [core] Fix attn_implementation setter with missing sub_configs (#39855)
* fix

* add sub_configs

* remove case for attention setter

* fix None

* Add test

* Fix sub-configs

* fix tests_config

* fix consistency

* fix fsmt

* fix
2025-08-04 11:35:09 +01:00
2a9febd632 Add support for including in-memory videos (not just files/urls) in apply_chat_template (#39494)
* added code for handling video object ,as dictionary of frames and metadata, in chat template

* added new test where videos are passed as objects (dict of frames, metadata) in the chat template

* modified hardcoded video_len check that does not match with increased number of tests cases.

* Modify hardcoded video_len check that fails with increased number of tests

* update documentation of multi-modal chat templating with extra information about including video object in chat template.

* add array handling in load_video()

* temporary test video inlcuded

* skip testing smolvlm with videos that are list of frames

* update documentation & make fixup

* Address review comments
2025-08-04 11:49:42 +02:00
0d511f7a77 Use comment to build doc on PRs (#39846)
* try

* try

* try

* try

* try

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-08-04 10:24:45 +02:00
4819adbbaa Refactor label name handling for PEFT models in Trainer class (#39265)
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-08-04 06:29:57 +00:00
166fcad3f8 Improve is_wandb_available function to verify WandB installation (#39875)
Improve `is_wandb_available` function to verify WandB installation by checking for a key attribute
2025-08-04 08:22:52 +02:00
6dfd561d9c remove dtensors, not explicit (#39840)
* remove dtensors, not explicit

Co-authored-by: 3outeille <3outeille@users.noreply.github.com>

* style

* fix test

* update

* as we broke saving try to fix

* output layouts should exit

* nit

* devicemesh exists if it was distributed

* use _device_mesh of self

* update

* lol

* fix

* nit

* update

* fix!

* this???

* grumble grumble

* ?

* fuck me

---------

Co-authored-by: 3outeille <3outeille@users.noreply.github.com>
2025-08-01 22:02:47 +02:00
b727c2b20e Allow TrackioCallback to work when pynvml is not installed (#39851)
Allow TrackioCallback to work when pynvml is not installed
2025-08-01 18:57:25 +02:00
1ec0feccdd [image-processing] deprecate plot_keypoint_matching, make visualize_keypoint_matching as a standard (#39830)
* fix: deprecate plot_keypoint_matching and make visualize_keypoint_matching for all Keypoint Matching models

* refactor: added copied from

* fix: make style

* fix: repo consistency

* fix: make style

* docs: added missing method in SuperGlue docs
2025-08-01 16:29:57 +00:00
7b4d9843ba Add fast image processor Janus, Deepseek VL, Deepseek VL hybrid (#39739)
* add fast image processor Janus, deepseek_vl, deepseek_vl_hybrid

* fix after review
2025-08-01 12:20:08 -04:00
88ead3f518 Fix responses add tests (#39848)
* Quick responses fix

* [serve] Fix responses API and add tests

* Remove typo

* Remove typo

* Tests
2025-08-01 18:06:08 +02:00
6ea646a03a Update ux cb (#39845)
* clenaup

* nits

* updates

* fix logging

* push updates?

* just passexception

* update

* nits

* fix

* add tokencount

* style
2025-08-01 16:50:28 +02:00
3951d4ad5d Add MM Grounding DINO (#37925)
* first commit

Added modular implementation for MM Grounding DINO from starting point created by add-new-model-like. Added conversion script from mmdetection to huggingface.

TODO: Some tests are failing so that needs to be fixed.

* fixed a bug with modular definition of MMGroundingDinoForObjectDetection where box and class heads were not correctly assigned to inner model

* cleaned up a hack in the conversion script

* Fixed the expected values in integration tests

Cross att masking and cpu-gpu consistency tests are still failing however.

* changes for make style and quality

* add documentation

* clean up contrastive embedding

* add mm grounding dino to loss mapping

* add model link to config docstring

* hack fix for mm grounding dino consistency tests

* add special cases for unused config attr check

* add all models and update docs

* update model doc to the new style

* Use super_kwargs for modular config

* Move init to the _init_weights function

* Add copied from for tests

* fixup

* update typehints

* Fix-copies for tests

* fix-copies

* Fix init test

* fix snippets in docs

* fix consistency

* fix consistency

* update conversion script

* fix nits in readme and remove old comments from conversion script

* add license

* remove unused config args

* remove unnecessary if/else in model init

* fix quality

* Update references

* fix test

* fixup

---------

Co-authored-by: qubvel <qubvel@gmail.com>
2025-08-01 15:43:23 +01:00
50145474b7 [typecheck] proper export of private symbols (#39729)
* Export private symbols

Signed-off-by: cyy <cyyever@outlook.com>

* Update src/transformers/__init__.py

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* Update src/transformers/__init__.py

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* Fix format

Signed-off-by: cyy <cyyever@outlook.com>

* Add a comment for exported symbols

Signed-off-by: cyy <cyyever@outlook.com>

---------

Signed-off-by: cyy <cyyever@outlook.com>
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
2025-08-01 13:36:47 +01:00
c962f1515e [attn_implementation] remove recursive, allows custom kernels with wrappers (#39823)
* fix?

* fixme and style

* Update src/transformers/modeling_utils.py

* update

* update

* fix

* small fixees

* nit

* nits

* fix init check?

* fix

* fix default

* or fucks me

* nits

* include a small nit

* does this make it hapy?

* fixup

* fix the remaining ones
2025-08-01 12:18:28 +02:00
d3b8627b56 [VLMs] split out "get placeholder mask" to helper (#39777)
* batch upidate all models

* update

* forgot about llava onevision

* update

* fix tests

* delete file

* typo

* fix emu3 once and forever

* update cohere2 vision as well
2025-08-01 08:01:06 +00:00
a115b67392 Fix tp cb (#39838)
* fixes

* one more
2025-08-01 09:59:04 +02:00
2c0af41ce5 Fix bad markdown links (#39819)
Fix bad markdown links.
2025-07-31 09:14:14 -07:00
4fcf455517 Fix broken links (#39809)
Replace links in the form of `[text]((url))` to `[text](url)`. This is
the correct format of a url in the markdown.
2025-07-31 13:23:04 +00:00
b937d47455 [cohere2 vision] move doc to multimodal section (#39820)
move doc to multimodal section
2025-07-31 15:13:02 +02:00
6ba8a1ff45 Update documentation for Cohere2Vision models (#39817)
* Update docs with pipeline example

* Add Cohere2Vision to list of vision models

* Sort models
2025-07-31 11:58:45 +00:00
e1688d28d3 [Model] Cohere2 Vision (#39810)
* Add cohere2_vision to support CohereLabs/command-a-vision-07-2025

* update and add modualr file

* update processors and check with orig impl later

* delete unused files

* image processor reduce LOC and re-use GotOCR2

* update the config to use modular

* model tests pass

* processor fixes

* check model outputs decorator

* address one more comment

* Update tokens. Temp - need to read from tokenizer'

* fix for multi-gpu

* Fix image token handling

* upadte image token expansion logic

* fix a few issues with remote code loading

* not related but modular forces us to change all files now

* Add overview and code sample to cohere vision docs

* add scripts. TMP.

* Update inference script

* Create script

* set dtype in export script

* TO revert: modular export fix

* Fix scripts

* Revert "TO revert: modular export fix"

This reverts commit bdb2f305b61027a05f0032ce70d6ca698879191c.

* Use modular weights

* Upload to hub

Removed OOD weights ad script

* Updated docs

* fix import error

Update docs

Added pipeline test

* Updated docs

* Run modular script

remove modular for config

Added patch_size

Added docstrings in modular

Fix OOM

Add docs, fixup integration tests. 8-gpu passing

* tiny updates

* address comments + fixup

* add test for chat template

* check model outputs workaround

* aya vision fix check model inputs

* Revert "add test for chat template"

This reverts commit 42c756e397f588d76b449ff1f93292d8ee0202d8.

* reveert more changes

* last revert

* skip and merge

* faulty copy from

---------

Co-authored-by: Julian Mack <julian.mack@cohere.com>
Co-authored-by: kyle-cohere <kyle@cohere.com>
2025-07-31 10:57:34 +00:00
6c3f27ba61 [docs] fix korean docs yet again (#39813)
fix korean docs yet again
2025-07-31 09:13:25 +00:00
cb289ad243 feat(tokenization): add encode_message to tokenize messages one by one (#39507)
* feat(tokenization): add encode_message to tokenize messages one by one

* Fix the `encode_message` method, remove the `add_generation_prompt` parameter and add the corresponding error handling. Update the document to reflect this change and verify the error handling in the test.

* Optimize the `encode_message` method, improve the processing logic of the empty dialogue history, and ensure that the chat template can be applied correctly when the dialogue history is empty. Update the document to reflect these changes.

* The `_encode_message` method is deleted, the message coding logic is simplified, and the functional integrity of the `encode_message` method is ensured. Update the document to reflect these changes.

* Docs fix

* Revert changes in docstring of pad()

* Revert changes in docstring

* Update src/transformers/tokenization_utils_base.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Repair the call of the `encode_message` method, update it to `encode_message_with_chat_template` to support the chat template, and adjust the relevant test cases to reflect this change.

* Optimize the call format of the `apply_chat_template` method, and merge multi-line calls into a single line to improve code readability.

---------

Co-authored-by: pco111 <15262555+pco111@user.noreply.gitee.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2025-07-31 10:55:45 +02:00
4f93cc9174 fix: providing a tensor to cache_position in model.generate kwargs always crashes because of boolean test (#39300)
* fix: cache_position: RuntimeError: Boolean value of Tensor with more than one value is ambiguous

* test cache_position

* move test

* propagate changes

---------

Co-authored-by: Masataro Asai <guicho2.71828@gmail.com>
2025-07-30 17:30:28 +00:00
9b3203f47b Add callback to monitor progress in whisper transcription (#37483)
* Add callback to monitor progress in whisper transcription

* Added `` around variables, rewording

* Add example of `monitor_progress`.

---------

Co-authored-by: Eric B <ebezzam@gmail.com>
2025-07-30 17:40:53 +02:00
7abb5d3992 Update mT5 model card (#39702)
* Update mt5 model card

* Fix casing of model title

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-07-30 08:35:04 -07:00
1019b00028 Update model card for Cohere2 (Command R7B) (#39604)
* Update model card for Cohere2 (Command R7B)

* fix: applied suggested changes
2025-07-30 08:34:26 -07:00
ecbb5ee194 standardized BARThez model card (#39701)
* standardized barthez model card according to template

* Update docs/source/en/model_doc/barthez.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/barthez.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/barthez.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/barthez.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/barthez.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/barthez.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* suggested changes to barthez model card

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-07-30 08:33:13 -07:00
8e077a3e45 Fix re-compilations for cross attention cache (#39788)
fix recompilations for cross attn cache
2025-07-30 14:52:03 +02:00
1e0665a191 Simplify conditional code (#39781)
* Use !=

Signed-off-by: cyy <cyyever@outlook.com>

* Use get

Signed-off-by: cyy <cyyever@outlook.com>

* Format

* Simplify bool operations

Signed-off-by: cyy <cyyever@outlook.com>

---------

Signed-off-by: cyy <cyyever@outlook.com>
2025-07-30 12:32:10 +00:00
b94929eb49 Fix an invalid condition (#39762)
Fix an invalid judgement

Signed-off-by: cyy <cyyever@outlook.com>
2025-07-30 12:19:17 +00:00
bb2ac66453 fix chameleonvision UT failure (#39646)
* fix chameleonvision UT failure

Signed-off-by: matrix.yao@intel.com <Yao Matrix>

* fix style

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>

---------

Signed-off-by: matrix.yao@intel.com <Yao Matrix>
Signed-off-by: Yao, Matrix <matrix.yao@intel.com>
Co-authored-by: root <Yao Matrix>
2025-07-30 12:09:26 +00:00
5348445dfa Super tiny update (#39727)
super tiny update
2025-07-30 12:21:41 +02:00
54cbea5615 more info in model_results.json (#39783)
more info

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-07-30 11:43:10 +02:00
01d5f94695 [ASR pipline] fix with datasets 4.0 (#39504)
* fix

* handle edge case

* make
2025-07-30 08:13:40 +00:00
8ab21be570 enable static cache on vision encoder decoder (#39773)
Signed-off-by: jiqing-feng <jiqing.feng@intel.com>
2025-07-30 08:10:46 +00:00
67cfe11528 Fix Evolla and xLSTM tests (#39769)
* fix all evolla

* xlstm
2025-07-30 09:51:55 +02:00
ec4033457e Don't set run_name when none (#39695)
* Don't set run_name when none

* revert

---------

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-07-30 01:39:29 +00:00
551a89a4a3 Standardize CLAP model card format (#39738)
* Standardize CLAP model card format

* Apply review feedback

* Remove Resources section
2025-07-29 14:13:04 -07:00
da70b1389a docs: Update EfficientLoFTR documentation (#39620)
* docs: Update EfficientLoFTR documentation

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-07-29 13:54:44 -07:00
ddd2100767 Fix OmDet test after arg deprecation (#39766)
fix arg name
2025-07-29 22:10:36 +02:00
4abb053b6c Remove python3.7 reference from doc link (#39706) 2025-07-29 09:17:13 -07:00
33aa49df9d [docs] Ko doc fixes after toc update (#39660)
* update docs

* doc builder working

* make fixup
2025-07-29 17:05:26 +01:00
c4e2069898 Fix Cache.max_cache_len max value for Hybrid models (#39737)
* fix gemma

* fix min

* fix quant init issue

* fix gemma 3n

* skip quant cache test

* fix modular

* new test for Gemma

* include cyril change

---------

Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>
2025-07-29 17:12:50 +02:00
075dbbceaa fix(trainer): Correct loss scaling for incomplete gradient accumulation steps (#39659)
* Fix issue[#38837]: wrong loss scaled in last step of epoch

* chore: trigger CI

* Update src/transformers/trainer.py

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>

* Update src/transformers/modeling_flash_attention_utils.py

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>

---------

Co-authored-by: taihang <taihang@U-2RHYVWX7-2207.local>
Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>
2025-07-29 17:12:31 +02:00
1d061536cf 🌐 [i18n-KO] Translated how_to_hack_models.md to Korean (#39536)
* docs: ko: how_to_hack_models.md

* feat: nmt draft

* fix: manual edits
2025-07-29 08:09:16 -07:00
43fe41c0a8 🌐 [i18n-KO] Translated perf_train_gpu_one.md to Korean (#39552)
* docs: ko: perf_train_gpu_one.md

* feat: nmt draft

* fix: manual edits

* fix: Manually added missing backticks

* Update docs/source/ko/perf_train_gpu_one.md

fix: remove space between heading and GPU anchor

Co-authored-by: YONGSANG <71686691+4N3MONE@users.noreply.github.com>

* Update docs/source/ko/perf_train_gpu_one.md

fix: clarify table headers to indicate training speed boost and memory savings

Co-authored-by: YONGSANG <71686691+4N3MONE@users.noreply.github.com>

* Update docs/source/ko/perf_train_gpu_one.md

fix: improve readability

Co-authored-by: Woojun Jung <46880056+jungnerd@users.noreply.github.com>

* Update docs/source/ko/perf_train_gpu_one.md

fix : rephrase explanation of data preloading to improve readability

Co-authored-by: Woojun Jung <46880056+jungnerd@users.noreply.github.com>

---------

Co-authored-by: YONGSANG <71686691+4N3MONE@users.noreply.github.com>
Co-authored-by: Woojun Jung <46880056+jungnerd@users.noreply.github.com>
2025-07-29 08:08:57 -07:00
9f38763731 🌐 [i18n-KO] Translated pipeline_gradio.md to Korean (#39520)
* docs: ko: pipeline_gradio.md

* feat: nmt draft

* fix: manual edits

* docs: ko: pipeline_gradio.md
2025-07-29 08:04:30 -07:00
f72311796b 🌐 [i18n-KO] Translated tokenizer.md to Korean (#39532)
* docs: ko: tokenizer.md

* feat: nmt draft

* fix: manual edits

* fix: resolve suggestions

Co-authored-by: Yijun Lee <yijun-lee@users.noreply.github.com>

Co-authored-by: Yijun Lee <119404328+yijun-lee@users.noreply.github.com>

* fix: resolve suggestions

Co-authored-by: Yijun Lee <119404328+yijun-lee@users.noreply.github.com>

---------

Co-authored-by: Yijun Lee <119404328+yijun-lee@users.noreply.github.com>
2025-07-29 08:04:14 -07:00
d346d46752 🌐 [i18n-KO] Translated tvp.md to Korean (#39578)
* docs: ko: tvp.md

* feat: nmt draft

* fix: manual edits

* fix: manual edits

* fix: manual edits

* fix: manual edits

* fix: manual edits

Co-authored-by: Harheem Kim <49297157+harheem@users.noreply.github.com>

---------

Co-authored-by: Harheem Kim <49297157+harheem@users.noreply.github.com>
2025-07-29 08:04:00 -07:00
2f59c15b33 🌐 [i18n-KO] Translated albert.md to Korean (#39524)
* docs: ko: albert.md

* feat: nmt draft

* fix: manual edits
2025-07-29 08:03:40 -07:00
98386dcee9 🌐 [i18n-KO] Translated main_classes/peft.md (#39515)
* docs: ko: main_classes/peft.md

* feat: nmt draft

* docs: add missing TOC to documentation for `PeftAdapterMixin` section

Added a table of contents (TOC) to the documentation, specifically for the `transformers.integrations.PeftAdapterMixin` section, following the structure and content outlined in [this link](https://huggingface.co/docs/transformers/main/en/main_classes/peft#transformers.integrations.PeftAdapterMixin).

* fix: Improve naturalness of purpose expression in Korean

Changed '관리하기 위한' to '관리할 수 있도록' for more natural Korean expression when describing the purpose of providing functions.

* fix: Simplify plural form and make expression more concise

Changed '~할 수 없기 때문에' to '~할 수 없어' for more concise expression while maintaining clarity.

* fix: Replace technical term '주입' with more natural '적용'

Changed '주입할 수 없어' to '적용할 수 없어' for better readability.
Considered alternatives:

'삽입': Too literal translation of 'inject'
'입력': Could be misunderstood as data input
'통합': Implies merging two systems
'추가': Simple but less precise

'적용' was chosen as it's the most natural and widely used term in Korean technical documentation for this context.

* fix: update toctree path for PEFT to lowercase

Changed the toctree path from 'PEFT' (uppercase) to 'peft' (lowercase) to match the correct directory naming convention and prevent broken links.

* docs: update as per reviewer feedback after rebase
2025-07-29 08:03:17 -07:00
1ad216bd7d [modenbert] fix regression (#39750)
* fix regression

* add FA2 test
2025-07-29 16:58:59 +02:00
379209b603 add libcst to extras["testing"] in setup.py (#39761)
add

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-07-29 16:58:51 +02:00
abf101af1f Fix version issue in modeling_utils.py (#39759)
fix version issue
2025-07-29 16:15:30 +02:00
8db4d79161 Enable xpu allocator on caching_allocator_warmup (#39654)
* add xpu allocator

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix typo

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix variable name

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* rm useless default value

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

---------

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>
2025-07-29 16:06:52 +02:00
fb141e2c90 Support loading Qwen3 MoE GGUF (#39638)
* support loading qwen3 gguf

* qwen3moe test cases

* fix whitespaces

* fix ggml tests
2025-07-29 13:44:44 +00:00
ccb2e0e03b Fix GPT2 with cross attention (#39754)
* fix

* use new mask API

* style

* fix copies and attention tests

* fix head pruning tests
2025-07-29 15:40:31 +02:00
dfd616e658 Avoid OOM when other tests are failing (#39758)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-07-29 15:35:44 +02:00
65df73aa88 AMD disable torchcodec (#39757)
Temporarily disable torchcodec installation because of bizarre segfault
2025-07-29 13:07:25 +00:00
63b3200779 Use --gpus all in workflow files (#39752)
gpu all

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-07-29 14:53:33 +02:00
95faabf0a6 Apply several ruff SIM rules (#37283)
* Apply ruff SIM118 fix

Signed-off-by: cyy <cyyever@outlook.com>

* Apply ruff SIM910 fix

Signed-off-by: cyy <cyyever@outlook.com>

* Apply ruff SIM101 fix

Signed-off-by: cyy <cyyever@outlook.com>

* Format code

Signed-off-by: cyy <cyyever@outlook.com>

* More fixes

Signed-off-by: cyy <cyyever@outlook.com>

---------

Signed-off-by: cyy <cyyever@outlook.com>
2025-07-29 11:40:34 +00:00
cf97f6cfd1 Fix mamba regression (#39728)
* fix mamba regression

* fix compile test
2025-07-29 12:44:28 +02:00
66984ed4f6 Update IMPORTANT_MODELS list (#39734) 2025-07-29 12:34:57 +02:00
de8d0cec30 update GemmaIntegrationTest::test_model_2b_bf16_dola again (#39731)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-07-29 11:42:55 +02:00
85d5aeb324 Fix: add back base model plan (#39733)
* Fix: add back base model plan

* Fix: typo

* fixup

* remove unused import

---------

Co-authored-by: Arthur <arthur.zucker@gmail.com>
2025-07-29 11:37:33 +02:00
2a90193dd8 [Fix] import two missing typos in models/__init__.py for typo checking (#39745)
* [Fix] import lost gemma3n for type checking in vscode

* [Fix] import missing qwen2_5_omni typo

* [Refactor] sort by ascii order
2025-07-29 11:35:22 +02:00
f2aca3eccc fix cache inheritance (#39748)
* fix cache inheritance

* styule
2025-07-29 11:24:44 +02:00
f3598a95c7 extend more trainer test cases to XPU, all pass (#39652)
extend more trainer test cases to XPU

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>
2025-07-29 10:51:00 +02:00
75794792ad BLIPs clean-up (#35560)
* blips clean up

* update processor

* readability

* fix processor length

* fix copies

* tmp

* update and fix copies

* why keep these, delete?

* fix test fetcher

* irrelevant comment

* fix tests

* fix tests

* fix copies
2025-07-29 10:03:06 +02:00
4f8f51be4e Add Fast Segformer Processor (#37024)
* Add Fast Segformer Processor

* Modified the params according to segformer model

* modified test_image_processing_Segformer_fast args

- removed redundant params like do_center_crop,center_crop which aren't present in the original segformer class

* added segmentation_maps processing logic form the slow segformer processing module with references from beitimageprocessing fast

* fixed code_quality

* added recommended fixes and tests to make sure everything processess smoothly

* Fixed SegmentationMapsLogic

- modified the preprocessing of segmentation maps to use tensors
- added batch support

* fixed some mismatched files

* modified the tolerance for tests

* use modular

* fix ci

---------

Co-authored-by: yonigozlan <yoni.gozlan@huggingface.co>
2025-07-28 19:22:32 +00:00
c353f2bb5e Superpoint fast image processor (#37804)
* feat: superpoint fast image processor

* fix: reran fast cli command to generate fast config

* feat: updated test cases

* fix: removed old model add

* fix: format fix

* Update src/transformers/models/superpoint/image_processing_superpoint_fast.py

Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>

* fix: ported to torch and made requested changes

* fix: removed changes to init

* fix: init fix

* fix: init format fix

* fixed testcases and ported to torch

* fix: format fixes

* failed
test case fix

* fix superpoint fast

* fix docstring

---------

Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>
Co-authored-by: yonigozlan <yoni.gozlan@huggingface.co>
2025-07-28 18:15:06 +00:00
14adcbd937 Fix AMD dockerfile for audio models (#39669) 2025-07-28 19:05:41 +02:00
1c6b47451d Fix cache-related tests (#39676)
* fix

* fix kyutai at last

* fix unrelated tests and copies

* update musicgen as well

* revert tensor

* fix old test failures

* why it wasn't added?
2025-07-28 17:30:11 +02:00
fc2bd1eac0 Fix Layer device placement in Caches (#39732)
* fix device placement

* style

* typo in comment
2025-07-28 16:37:11 +02:00
7623aa3e5f Fix Qwen2AudioForConditionalGeneration.forward() and test_flash_attn_kernels_inference_equivalence (#39503)
* Add missing cache_position argument.

* Pass cache_position to language model.

* Overwrite prepare_inputs_for_generation.

* Set model to half precision for Flash Attention test.

* Cast model to bfloat16.
2025-07-28 16:35:08 +02:00
28f2619868 skip Glm4MoeModelTest::test_torch_compile_for_training (#39670)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-07-28 16:30:40 +02:00
88aed92b59 Update QAPipelineTests::test_large_model_course after #39193 (#39666)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-07-28 16:26:49 +02:00
da823fc04e mllama outputs refactor (#39643)
* mllama outputs refactor

* forgot kwargs

* fix output

* add can_record_outputs

* correct @check_model_inputs placement

* ruff and copies

* rebase

* feedback

* only return hidden_states

---------

Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-161-153.ec2.internal>
Co-authored-by: ita.zaporozhets@huggingface.co <ita_zaporozhets@ip-26-0-162-14.ec2.internal>
2025-07-28 15:59:20 +02:00
686bb3b098 Remove all expired deprecation cycles (#39725)
* remove all deprecation cycles

* style

* fix

* remove

* remove

* fix

* Update modular_dpt.py

* back

* typo

* typo

* final fix

* remove all args
2025-07-28 15:43:41 +02:00
a0fa500a3d [CI] Add Eric to comment slow ci (#39601)
add to ci
2025-07-28 13:24:00 +00:00
4c7da9fedf PATCH: add back n-dim device-mesh + fix tp trainer saving (#39693)
* Feat: something

* Feat: initial changes

* tmp changes to unblock

* Refactor

* remove todo

* Feat: docstring

* Fix: saving of distributed model in trainer

* Fix: distributed saving with trainer

* Feat: add pure tp saving

* Only require tp dim if ndim > 1

* Fix: default to None

* Fix: better comments/errors

* Fix: properly check tp_size attribute

* Fix: properly check for None in tp_size

---------

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-07-28 12:29:58 +00:00
cbede2969b Add self-hosted runner scale set workflow for mi325 CI (#39651) 2025-07-28 13:32:25 +02:00
b56d721397 [configuration] remove redundant classmethod (#38812)
* remove redundant classmethod

* warning message, add space between words

* fix tests

* fix copies
2025-07-28 10:38:48 +00:00
02ea23cbde update ernie model card (#39657)
* update ernie model doc

Signed-off-by: Zhang Jun <jzhang533@gmail.com>

* address ruff format error reported by ci

Signed-off-by: Zhang Jun <jzhang533@gmail.com>

* address check_repository_consistency error reported by ci

Signed-off-by: Zhang Jun <jzhang533@gmail.com>

---------

Signed-off-by: Zhang Jun <jzhang533@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2025-07-28 10:21:18 +00:00
8b237b8639 [processors] add tests for helper fn (#39629)
* add tests for helpers

* duplicate test for each model

* why llava next video has no helper

* oops must have been in the commit

* fix test after rebase

* add copy from
2025-07-28 09:41:58 +00:00
6638b3642d xpu optimization for generation case (#39573)
* xpu optimization for generation case

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* fix ci failure

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

---------

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2025-07-28 11:34:58 +02:00
5c15eb55d2 fix(tokenization): check token.content for trie (#39587)
fix: check token.content for trie
2025-07-28 11:28:56 +02:00
6a61e16626 Fix missing initialization of FastSpeech2Conformer (#39689)
* fix missing initialization of FastSpeech2Conformer

* switch order and reactivate tests

---------

Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>
2025-07-28 10:47:39 +02:00
a6393e7d28 fix missing model._tp_size from ep refactor (#39688)
* fix missing model._tp_size from ep refactor

* restore setting device_mesh too
2025-07-26 12:26:36 +02:00
18a7c29ff8 More robust tied weight test (#39681)
* Update test_modeling_common.py

* remove old ones

* Update test_modeling_common.py

* Update test_modeling_common.py

* add

* Update test_modeling_musicgen_melody.py
2025-07-25 22:03:21 +02:00
c3401d6fad dev version 4.55 2025-07-25 21:11:20 +02:00
e581d2f2ce fixup 2025-07-25 08:02:39 +00:00
1f6822d114 move processor visualizer 2025-07-25 07:58:35 +00:00
edb70ae15c Merge branch 'main' into vision_visualizer 2025-07-24 12:50:27 +00:00
27bc371bea Merge branch 'main' into vision_visualizer 2025-07-22 13:01:45 +02:00
58c619e809 draft the vision visualizer 2025-03-21 18:53:04 +01:00
1005 changed files with 25161 additions and 12326 deletions

View File

@ -18,10 +18,6 @@ jobs:
notebook_folder: transformers_doc
languages: ar de en es fr hi it ko pt tr zh ja te
custom_container: huggingface/transformers-doc-builder
# Temporary pin to work around datasets exception in the docbuilder.Remove after docker images and main have
# the right dependencies (which **should** be the case by 2025-07-20). See
# https://github.com/huggingface/transformers/actions/runs/16365952006/job/46243081358?pr=38545
pre_command: uv pip install datasets>=2.15.0
secrets:
token: ${{ secrets.HUGGINGFACE_PUSH }}
hf_token: ${{ secrets.HF_DOC_BUILD_PUSH }}

View File

@ -15,7 +15,3 @@ jobs:
pr_number: ${{ github.event.number }}
package: transformers
languages: en
# Temporary pin to work around datasets exception in the docbuilder. Remove after docker images and main have
# the right dependencies (which **should** be the case by 2025-07-20). See
# https://github.com/huggingface/transformers/actions/runs/16365952006/job/46243081358?pr=38545
pre_command: uv pip install datasets>=2.15.0

View File

@ -31,7 +31,7 @@ jobs:
group: aws-g5-4xlarge-cache
container:
image: huggingface/transformers-all-latest-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Update clone
working-directory: /transformers

View File

@ -18,7 +18,7 @@ jobs:
group: aws-g5-4xlarge-cache
container:
image: huggingface/transformers-all-latest-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
outputs:
job_splits: ${{ steps.set-matrix.outputs.job_splits }}
split_keys: ${{ steps.set-matrix.outputs.split_keys }}

View File

@ -0,0 +1,134 @@
name: PR - build doc via comment
on:
issue_comment:
types:
- created
branches-ignore:
- main
concurrency:
group: ${{ github.workflow }}-${{ github.event.issue.number }}-${{ startsWith(github.event.comment.body, 'build-doc') }}
cancel-in-progress: true
permissions: {}
jobs:
get-pr-number:
name: Get PR number
if: ${{ github.event.issue.state == 'open' && contains(fromJSON('["ydshieh", "ArthurZucker", "zucchini-nlp", "qubvel", "molbap", "gante", "LysandreJik", "Cyrilvallez", "Rocketknight1", "SunMarc", "muellerzr", "eustlb", "MekkCyber", "manueldeprada", "vasqu", "ivarflakstad", "stevhliu", "ebezzam"]'), github.actor) && (startsWith(github.event.comment.body, 'build-doc')) }}
uses: ./.github/workflows/get-pr-number.yml
get-pr-info:
name: Get PR commit SHA
needs: get-pr-number
if: ${{ needs.get-pr-number.outputs.PR_NUMBER != ''}}
uses: ./.github/workflows/get-pr-info.yml
with:
pr_number: ${{ needs.get-pr-number.outputs.PR_NUMBER }}
verity_pr_commit:
name: Verity PR commit corresponds to a specific event by comparing timestamps
if: ${{ needs.get-pr-number.outputs.PR_NUMBER != ''}}
runs-on: ubuntu-22.04
needs: get-pr-info
env:
COMMENT_DATE: ${{ github.event.comment.created_at }}
PR_MERGE_COMMIT_DATE: ${{ needs.get-pr-info.outputs.PR_MERGE_COMMIT_DATE }}
PR_MERGE_COMMIT_TIMESTAMP: ${{ needs.get-pr-info.outputs.PR_MERGE_COMMIT_TIMESTAMP }}
steps:
- run: |
COMMENT_TIMESTAMP=$(date -d "${COMMENT_DATE}" +"%s")
echo "COMMENT_DATE: $COMMENT_DATE"
echo "PR_MERGE_COMMIT_DATE: $PR_MERGE_COMMIT_DATE"
echo "COMMENT_TIMESTAMP: $COMMENT_TIMESTAMP"
echo "PR_MERGE_COMMIT_TIMESTAMP: $PR_MERGE_COMMIT_TIMESTAMP"
if [ $COMMENT_TIMESTAMP -le $PR_MERGE_COMMIT_TIMESTAMP ]; then
echo "Last commit on the pull request is newer than the issue comment triggering this run! Abort!";
exit -1;
fi
create_run:
name: Create run
needs: [get-pr-number, get-pr-info]
if: ${{ needs.get-pr-number.outputs.PR_NUMBER != '' }}
permissions:
statuses: write
runs-on: ubuntu-22.04
steps:
- name: Create Run
id: create_run
env:
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
# Create a commit status (pending) for a run of this workflow. The status has to be updated later in `update_run_status`.
# See https://docs.github.com/en/rest/commits/statuses?apiVersion=2022-11-28#create-a-commit-status
GITHUB_RUN_URL: https://github.com/${{ github.repository }}/actions/runs/${{ github.run_id }}
run: |
gh api \
--method POST \
-H "Accept: application/vnd.github+json" \
-H "X-GitHub-Api-Version: 2022-11-28" \
repos/${{ github.repository }}/statuses/${{ needs.get-pr-info.outputs.PR_HEAD_SHA }} \
-f "target_url=$GITHUB_RUN_URL" -f "state=pending" -f "description=Custom doc building job" -f "context=custom-doc-build"
reply_to_comment:
name: Reply to the comment
if: ${{ needs.create_run.result == 'success' }}
needs: [get-pr-number, create_run]
permissions:
pull-requests: write
runs-on: ubuntu-22.04
steps:
- name: Reply to the comment
env:
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
GITHUB_RUN_URL: https://github.com/${{ github.repository }}/actions/runs/${{ github.run_id }}
run: |
gh api \
--method POST \
-H "Accept: application/vnd.github+json" \
-H "X-GitHub-Api-Version: 2022-11-28" \
repos/${{ github.repository }}/issues/${{ needs.get-pr-number.outputs.PR_NUMBER }}/comments \
-f "body=[Building docs for all languages...](${{ env.GITHUB_RUN_URL }})"
build-doc:
name: Build doc
needs: [get-pr-number, get-pr-info]
if: ${{ needs.get-pr-number.outputs.PR_NUMBER != '' }}
uses: huggingface/doc-builder/.github/workflows/build_pr_documentation.yml@main
with:
commit_sha: ${{ needs.get-pr-info.outputs.PR_HEAD_SHA }}
pr_number: ${{ needs.get-pr-number.outputs.PR_NUMBER }}
package: transformers
languages: ar de en es fr hi it ko pt tr zh ja te
update_run_status:
name: Update Check Run Status
needs: [ get-pr-info, create_run, build-doc ]
permissions:
statuses: write
if: ${{ always() && needs.create_run.result == 'success' }}
runs-on: ubuntu-22.04
env:
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
GITHUB_RUN_URL: https://github.com/${{ github.repository }}/actions/runs/${{ github.run_id }}
STATUS_OK: ${{ contains(fromJSON('["skipped", "success"]'), needs.create_run.result) }}
steps:
- name: Get `build-doc` job status
run: |
echo "${{ needs.build-doc.result }}"
echo $STATUS_OK
if [ "$STATUS_OK" = "true" ]; then
echo "STATUS=success" >> $GITHUB_ENV
else
echo "STATUS=failure" >> $GITHUB_ENV
fi
- name: Update PR commit statuses
run: |
echo "${{ needs.build-doc.result }}"
echo "${{ env.STATUS }}"
gh api \
--method POST \
-H "Accept: application/vnd.github+json" \
-H "X-GitHub-Api-Version: 2022-11-28" \
repos/${{ github.repository }}/statuses/${{ needs.get-pr-info.outputs.PR_HEAD_SHA }} \
-f "target_url=$GITHUB_RUN_URL" -f "state=${{ env.STATUS }}" -f "description=Custom doc building job" -f "context=custom-doc-build"

View File

@ -16,28 +16,6 @@ jobs:
with:
pr_number: ${{ needs.get-pr-number.outputs.PR_NUMBER }}
# We only need to verify the timestamp if the workflow is triggered by `issue_comment`.
verity_pr_commit:
name: Verity PR commit corresponds to a specific event by comparing timestamps
if: ${{ github.event.comment.created_at != '' }}
runs-on: ubuntu-22.04
needs: get-pr-info
env:
COMMENT_DATE: ${{ github.event.comment.created_at }}
PR_MERGE_COMMIT_DATE: ${{ needs.get-pr-info.outputs.PR_MERGE_COMMIT_DATE }}
PR_MERGE_COMMIT_TIMESTAMP: ${{ needs.get-pr-info.outputs.PR_MERGE_COMMIT_TIMESTAMP }}
steps:
- run: |
COMMENT_TIMESTAMP=$(date -d "${COMMENT_DATE}" +"%s")
echo "COMMENT_DATE: $COMMENT_DATE"
echo "PR_MERGE_COMMIT_DATE: $PR_MERGE_COMMIT_DATE"
echo "COMMENT_TIMESTAMP: $COMMENT_TIMESTAMP"
echo "PR_MERGE_COMMIT_TIMESTAMP: $PR_MERGE_COMMIT_TIMESTAMP"
if [ $COMMENT_TIMESTAMP -le $PR_MERGE_COMMIT_TIMESTAMP ]; then
echo "Last commit on the pull request is newer than the issue comment triggering this run! Abort!";
exit -1;
fi
get-jobs:
name: Get test files to run
runs-on: ubuntu-22.04

View File

@ -29,7 +29,7 @@ jobs:
runs-on: ubuntu-22.04
name: Get PR number
# For security: only allow team members to run
if: ${{ github.event.issue.state == 'open' && contains(fromJSON('["ydshieh", "ArthurZucker", "zucchini-nlp", "qubvel", "molbap", "gante", "LysandreJik", "Cyrilvallez", "Rocketknight1", "SunMarc", "muellerzr", "eustlb", "MekkCyber", "manueldeprada", "vasqu", "ivarflakstad", "stevhliu"]'), github.actor) && (startsWith(github.event.comment.body, 'run-slow') || startsWith(github.event.comment.body, 'run slow') || startsWith(github.event.comment.body, 'run_slow')) }}
if: ${{ github.event.issue.state == 'open' && contains(fromJSON('["ydshieh", "ArthurZucker", "zucchini-nlp", "qubvel", "molbap", "gante", "LysandreJik", "Cyrilvallez", "Rocketknight1", "SunMarc", "muellerzr", "eustlb", "MekkCyber", "manueldeprada", "vasqu", "ivarflakstad", "stevhliu", "ebezzam"]'), github.actor) && (startsWith(github.event.comment.body, 'run-slow') || startsWith(github.event.comment.body, 'run slow') || startsWith(github.event.comment.body, 'run_slow')) }}
outputs:
PR_NUMBER: ${{ steps.set_pr_number.outputs.PR_NUMBER }}
steps:

View File

@ -36,7 +36,7 @@ jobs:
group: '${{ matrix.machine_type }}'
container:
image: huggingface/transformers-all-latest-gpu-push-ci
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
outputs:
matrix: ${{ steps.set-matrix.outputs.matrix }}
test_map: ${{ steps.set-matrix.outputs.test_map }}
@ -136,7 +136,7 @@ jobs:
group: '${{ matrix.machine_type }}'
container:
image: huggingface/transformers-all-latest-gpu-push-ci
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
env:
# For the meaning of these environment variables, see the job `Setup`
CI_BRANCH_PUSH: ${{ github.event.ref }}
@ -362,7 +362,7 @@ jobs:
group: '${{ matrix.machine_type }}'
container:
image: huggingface/transformers-pytorch-deepspeed-latest-gpu-push-ci
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
env:
# For the meaning of these environment variables, see the job `Setup`
CI_BRANCH_PUSH: ${{ github.event.ref }}

View File

@ -0,0 +1,63 @@
name: Self-hosted runner scale set (AMD mi325 scheduled CI caller)
# Note: For every job in this workflow, the name of the runner scale set is finalized in the runner yaml i.e. huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled_arc_scale_set.yaml
# For example, 1gpu scale set: amd-mi325-ci-1gpu
# 2gpu scale set: amd-mi325-ci-2gpu
on:
workflow_run:
workflows: ["Self-hosted runner (AMD scheduled CI caller)"]
branches: ["main"]
types: [completed]
push:
branches:
- run_amd_scheduled_ci_caller*
jobs:
model-ci:
name: Model CI
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled_arc_scale_set.yaml@main
with:
job: run_models_gpu
slack_report_channel: "#amd-hf-ci"
runner_scale_set: amd-mi325-ci
docker: huggingface/transformers-pytorch-amd-gpu
ci_event: Scheduled CI (AMD) - mi325
report_repo_id: optimum-amd/transformers_daily_ci
secrets: inherit
torch-pipeline:
name: Torch pipeline CI
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled_arc_scale_set.yaml@main
with:
job: run_pipelines_torch_gpu
slack_report_channel: "#amd-hf-ci"
runner_scale_set: amd-mi325-ci
docker: huggingface/transformers-pytorch-amd-gpu
ci_event: Scheduled CI (AMD) - mi325
report_repo_id: optimum-amd/transformers_daily_ci
secrets: inherit
example-ci:
name: Example CI
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled_arc_scale_set.yaml@main
with:
job: run_examples_gpu
slack_report_channel: "#amd-hf-ci"
runner_scale_set: amd-mi325-ci
docker: huggingface/transformers-pytorch-amd-gpu
ci_event: Scheduled CI (AMD) - mi325
report_repo_id: optimum-amd/transformers_daily_ci
secrets: inherit
deepspeed-ci:
name: DeepSpeed CI
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled_arc_scale_set.yaml@main
with:
job: run_torch_cuda_extensions_gpu
slack_report_channel: "#amd-hf-ci"
runner_scale_set: amd-mi325-ci
docker: huggingface/transformers-pytorch-deepspeed-amd-gpu
ci_event: Scheduled CI (AMD) - mi325
report_repo_id: optimum-amd/transformers_daily_ci
secrets: inherit

View File

@ -55,7 +55,7 @@ jobs:
group: '${{ matrix.machine_type }}'
container:
image: huggingface/transformers-all-latest-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
outputs:
folder_slices: ${{ steps.set-matrix.outputs.folder_slices }}
slice_ids: ${{ steps.set-matrix.outputs.slice_ids }}
@ -219,7 +219,7 @@ jobs:
group: '${{ matrix.machine_type }}'
container:
image: huggingface/transformers-all-latest-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Update clone
working-directory: /transformers

View File

@ -242,7 +242,7 @@ pipeline(
- This library is not a modular toolbox of building blocks for neural nets. The code in the model files is not refactored with additional abstractions on purpose, so that researchers can quickly iterate on each of the models without diving into additional abstractions/files.
- The training API is optimized to work with PyTorch models provided by Transformers. For generic machine learning loops, you should use another library like [Accelerate](https://huggingface.co/docs/accelerate).
- The [example scripts]((https://github.com/huggingface/transformers/tree/main/examples)) are only *examples*. They may not necessarily work out-of-the-box on your specific use case and you'll need to adapt the code for it to work.
- The [example scripts](https://github.com/huggingface/transformers/tree/main/examples) are only *examples*. They may not necessarily work out-of-the-box on your specific use case and you'll need to adapt the code for it to work.
## 100 projects using Transformers
@ -280,8 +280,8 @@ Expand each modality below to see a few example models for various use cases.
- Automatic mask generation with [SAM](https://huggingface.co/facebook/sam-vit-base)
- Depth estimation with [DepthPro](https://huggingface.co/apple/DepthPro-hf)
- Image classification with [DINO v2](https://huggingface.co/facebook/dinov2-base)
- Keypoint detection with [SuperGlue](https://huggingface.co/magic-leap-community/superglue_outdoor)
- Keypoint matching with [SuperGlue](https://huggingface.co/magic-leap-community/superglue)
- Keypoint detection with [SuperPoint](https://huggingface.co/magic-leap-community/superpoint)
- Keypoint matching with [SuperGlue](https://huggingface.co/magic-leap-community/superglue_outdoor)
- Object detection with [RT-DETRv2](https://huggingface.co/PekingU/rtdetr_v2_r50vd)
- Pose Estimation with [VitPose](https://huggingface.co/usyd-community/vitpose-base-simple)
- Universal segmentation with [OneFormer](https://huggingface.co/shi-labs/oneformer_ade20k_swin_large)

View File

@ -23,13 +23,12 @@ from os.path import abspath, dirname, join
import _pytest
import pytest
from transformers.testing_utils import HfDoctestModule, HfDocTestParser
from transformers.testing_utils import HfDoctestModule, HfDocTestParser, is_torch_available
NOT_DEVICE_TESTS = {
"test_tokenization",
"test_tokenization_mistral_common",
"test_processor",
"test_processing",
"test_beam_constraints",
"test_configuration_utils",
@ -128,3 +127,10 @@ class CustomOutputChecker(OutputChecker):
doctest.OutputChecker = CustomOutputChecker
_pytest.doctest.DoctestModule = HfDoctestModule
doctest.DocTestParser = HfDocTestParser
if is_torch_available():
import torch
# The flag below controls whether to allow TF32 on cuDNN. This flag defaults to True.
# We set it to `False` for CI. See https://github.com/pytorch/pytorch/issues/157274#issuecomment-3090791615
torch.backends.cudnn.allow_tf32 = False

View File

@ -5,7 +5,7 @@ ARG REF=main
RUN apt-get update && apt-get install -y time git g++ pkg-config make git-lfs
ENV UV_PYTHON=/usr/local/bin/python
RUN pip install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools GitPython
RUN uv pip install --no-cache-dir --upgrade 'torch' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir --upgrade 'torch<2.8' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
# tensorflow pin matching setup.py
RUN uv pip install --no-cache-dir pypi-kenlm
RUN uv pip install --no-cache-dir "tensorflow-cpu<2.16" "tf-keras<2.16"

View File

@ -16,7 +16,7 @@ RUN cmake .. -DCMAKE_INSTALL_PREFIX=/usr/local
RUN make install -j 10
RUN uv pip install --no-cache --upgrade 'torch' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache --upgrade 'torch<2.8' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir --no-deps accelerate --extra-index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[ja,testing,sentencepiece,jieba,spacy,ftfy,rjieba]" unidic unidic-lite
# spacy is not used so not tested. Causes to failures. TODO fix later

View File

@ -5,7 +5,7 @@ USER root
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git g++ cmake pkg-config openssh-client git ffmpeg
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' 'torchcodec' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir 'torch<2.8' 'torchaudio' 'torchvision' 'torchcodec' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-deps timm accelerate --extra-index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir librosa "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[sklearn,sentencepiece,vision,testing]" seqeval albumentations jiwer
RUN uv pip uninstall transformers

View File

@ -5,7 +5,7 @@ USER root
RUN apt-get update && apt-get install -y libsndfile1-dev espeak-ng time git libgl1-mesa-glx libgl1 g++ tesseract-ocr
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir 'torch<2.8' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir --no-deps timm accelerate
RUN pip install -U --upgrade-strategy eager --no-cache-dir pytesseract python-Levenshtein opencv-python nltk
# RUN uv pip install --no-cache-dir natten==0.15.1+torch210cpu -f https://shi-labs.com/natten/wheels

View File

@ -5,7 +5,7 @@ USER root
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git pkg-config openssh-client git ffmpeg
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' 'torchcodec' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir 'torch<2.8' 'torchaudio' 'torchvision' 'torchcodec' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-deps timm accelerate --extra-index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir librosa "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[sklearn,sentencepiece,vision,testing]"
RUN uv pip uninstall transformers

View File

@ -6,7 +6,7 @@ RUN apt-get update && apt-get install -y libsndfile1-dev espeak-ng time git g++
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
RUN uv pip install --no-deps accelerate
RUN uv pip install --no-cache-dir 'torch' 'torchvision' 'torchaudio' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir 'torch<2.8' 'torchvision' 'torchaudio' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir "scipy<1.13" "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[flax,audio,sklearn,sentencepiece,vision,testing]"

View File

@ -5,7 +5,7 @@ USER root
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git g++ cmake pkg-config openssh-client git git-lfs ffmpeg
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' 'torchcodec' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir 'torch<2.8' 'torchaudio' 'torchvision' 'torchcodec' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-deps timm accelerate --extra-index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir librosa "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[sklearn,sentencepiece,vision,testing,tiktoken,num2words,video]"
RUN uv pip uninstall transformers

View File

@ -7,7 +7,7 @@ RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-de
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
RUN uv pip install --no-cache-dir --no-deps accelerate --extra-index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir 'torch<2.8' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
RUN git lfs install
RUN uv pip install --no-cache-dir pypi-kenlm

View File

@ -3,9 +3,6 @@ LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive
ARG TORCH_VISION='0.22.0'
ARG TORCH_AUDIO='2.7.0'
RUN apt update && \
apt install -y --no-install-recommends git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-dev python3-pip python3-dev ffmpeg git-lfs && \
apt clean && \
@ -23,9 +20,12 @@ WORKDIR /
ADD https://api.github.com/repos/huggingface/transformers/git/refs/heads/main version.json
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
RUN python3 -m pip install --no-cache-dir torchvision==$TORCH_VISION torchaudio==$TORCH_AUDIO
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev-torch,testing,video]
# On ROCm, torchcodec is required to decode audio files
# RUN python3 -m pip install --no-cache-dir torchcodec
# Install transformers
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev-torch,testing,video,audio]
# Remove tensorflow and flax as they are no longer supported by transformers
RUN python3 -m pip uninstall -y tensorflow flax
# When installing in editable mode, `transformers` is not recognized as a package.
@ -36,4 +36,4 @@ RUN cd transformers && python3 setup.py develop
RUN python3 -m pip uninstall py3nvml pynvml nvidia-ml-py apex -y
# `kernels` may causes many failing tests
RUN python3 -m pip uninstall -y kernels
RUN python3 -m pip uninstall -y kernels

View File

@ -79,7 +79,8 @@ RUN git clone https://github.com/NetEase-FuXi/EETQ.git && cd EETQ/ && git submod
# RUN python3 -m pip install --no-cache-dir git+https://github.com/Dao-AILab/fast-hadamard-transform.git
# Add fp-quant for quantization testing
RUN python3 -m pip install --no-cache-dir "fp-quant>=0.1.6"
# Requires py3.11 but our CI runs on 3.9
# RUN python3 -m pip install --no-cache-dir "fp-quant>=0.1.6"
# Add compressed-tensors for quantization testing
RUN python3 -m pip install --no-cache-dir compressed-tensors

View File

@ -13,11 +13,11 @@
في هذا الدليل، سنستعرض التقنيات الفعالة لتُحسِّن من كفاءة نشر نماذج اللغة الكبيرة:
1. سنتناول تقنية "دقة أقل" التي أثبتت الأبحاث فعاليتها في تحقيق مزايا حسابية دون التأثير بشكل ملحوظ على أداء النموذج عن طريق العمل بدقة رقمية أقل [8 بت و4 بت](/main_classes/quantization.md).
1. سنتناول تقنية "دقة أقل" التي أثبتت الأبحاث فعاليتها في تحقيق مزايا حسابية دون التأثير بشكل ملحوظ على أداء النموذج عن طريق العمل بدقة رقمية أقل [8 بت و4 بت](/main_classes/quantization).
2. **اFlash Attention:** إن Flash Attention وهي نسخة مُعدَّلة من خوارزمية الانتباه التي لا توفر فقط نهجًا أكثر كفاءة في استخدام الذاكرة، ولكنها تحقق أيضًا كفاءة متزايدة بسبب الاستخدام الأمثل لذاكرة GPU.
3. **الابتكارات المعمارية:** حيث تم اقتراح هياكل متخصصة تسمح باستدلال أكثر فعالية نظرًا لأن نماذج اللغة الكبيرة يتم نشرها دائمًا بنفس الطريقة أثناء عملية الاستدلال، أي توليد النص التنبؤي التلقائي مع سياق الإدخال الطويل، فقد تم اقتراح بنيات نموذج متخصصة تسمح بالاستدلال الأكثر كفاءة. أهم تقدم في بنيات النماذج هنا هو [عذر](https://huggingface.co/papers/2108.12409)، [الترميز الدوار](https://huggingface.co/papers/2104.09864)، [الاهتمام متعدد الاستعلامات (MQA)](https://huggingface.co/papers/1911.02150) و [مجموعة الانتباه بالاستعلام (GQA)]((https://huggingface.co/papers/2305.13245)).
3. **الابتكارات المعمارية:** حيث تم اقتراح هياكل متخصصة تسمح باستدلال أكثر فعالية نظرًا لأن نماذج اللغة الكبيرة يتم نشرها دائمًا بنفس الطريقة أثناء عملية الاستدلال، أي توليد النص التنبؤي التلقائي مع سياق الإدخال الطويل، فقد تم اقتراح بنيات نموذج متخصصة تسمح بالاستدلال الأكثر كفاءة. أهم تقدم في بنيات النماذج هنا هو [عذر](https://huggingface.co/papers/2108.12409)، [الترميز الدوار](https://huggingface.co/papers/2104.09864)، [الاهتمام متعدد الاستعلامات (MQA)](https://huggingface.co/papers/1911.02150) و [مجموعة الانتباه بالاستعلام (GQA)](https://huggingface.co/papers/2305.13245).
على مدار هذا الدليل، سنقدم تحليلًا للتوليد التنبؤي التلقائي من منظور المُوتِّرات. نتعمق في مزايا وعيوب استخدام دقة أقل، ونقدم استكشافًا شاملاً لخوارزميات الانتباه الأحدث، ونناقش بنيات نماذج نماذج اللغة الكبيرة المحسنة. سندعم الشرح بأمثلة عملية تُبرِز كل تحسين على حدة.

View File

@ -89,6 +89,18 @@
- local: chat_extras
title: Tools and RAG
title: Chat with models
- sections:
- local: serving
title: Serving LLMs, VLMs, and other chat-based models
- local: jan
title: Jan
- local: cursor
title: Cursor
- local: tiny_agents
title: Tiny-Agents CLI and MCP tools
- local: open_webui
title: Open WebUI
title: Serving
- sections:
- local: perf_torch_compile
title: torch.compile
@ -103,8 +115,6 @@
title: Agents
- local: tools
title: Tools
- local: serving
title: Serving
- local: transformers_as_backend
title: Inference server backends
title: Inference
@ -501,6 +511,8 @@
title: GPT2
- local: model_doc/gpt_bigcode
title: GPTBigCode
- local: model_doc/gpt_oss
title: GptOss
- local: model_doc/gptsan-japanese
title: GPTSAN Japanese
- local: model_doc/gpt-sw3
@ -971,6 +983,8 @@
title: CLIPSeg
- local: model_doc/clvp
title: CLVP
- local: model_doc/cohere2_vision
title: Cohere2Vision
- local: model_doc/colpali
title: ColPali
- local: model_doc/colqwen2
@ -1049,6 +1063,8 @@
title: Mistral3
- local: model_doc/mllama
title: mllama
- local: model_doc/mm-grounding-dino
title: MM Grounding DINO
- local: model_doc/nougat
title: Nougat
- local: model_doc/omdet-turbo

View File

@ -111,6 +111,7 @@ Some vision models also support video inputs. The message format is very similar
- The content `"type"` should be `"video"` to indicate the content is a video.
- For videos, it can be a link to the video (`"url"`) or it could be a file path (`"path"`). Videos loaded from a URL can only be decoded with [PyAV](https://pyav.basswood-io.com/docs/stable/) or [Decord](https://github.com/dmlc/decord).
- In addition to loading videos from a URL or file path, you can also pass decoded video data directly. This is useful if youve already preprocessed or decoded video frames elsewhere in memory (e.g., using OpenCV, decord, or torchvision). You don't need to save to files or store it in an URL.
> [!WARNING]
> Loading a video from `"url"` is only supported by the PyAV or Decord backends.
@ -137,6 +138,52 @@ messages = [
]
```
### Example: Passing decoded video objects
```python
import numpy as np
video_object1 = np.random.randint(0, 255, size=(16, 224, 224, 3), dtype=np.uint8),
messages = [
{
"role": "system",
"content": [{"type": "text", "text": "You are a friendly chatbot who always responds in the style of a pirate"}],
},
{
"role": "user",
"content": [
{"type": "video", "video": video_object1},
{"type": "text", "text": "What do you see in this video?"}
],
},
]
```
You can also use existing (`"load_video()"`) function to load a video, edit the video in memory and pass it in the messages.
```python
# Make sure a video backend library (pyav, decord, or torchvision) is available.
from transformers.video_utils import load_video
# load a video file in memory for testing
video_object2, _ = load_video(
"https://test-videos.co.uk/vids/bigbuckbunny/mp4/h264/720/Big_Buck_Bunny_720_10s_10MB.mp4"
)
messages = [
{
"role": "system",
"content": [{"type": "text", "text": "You are a friendly chatbot who always responds in the style of a pirate"}],
},
{
"role": "user",
"content": [
{"type": "video", "video": video_object2},
{"type": "text", "text": "What do you see in this video?"}
],
},
]
```
Pass `messages` to [`~ProcessorMixin.apply_chat_template`] to tokenize the input content. There are a few extra parameters to include in [`~ProcessorMixin.apply_chat_template`] that controls the sampling process.
The `video_load_backend` parameter refers to a specific framework to load a video. It supports [PyAV](https://pyav.basswood-io.com/docs/stable/), [Decord](https://github.com/dmlc/decord), [OpenCV](https://github.com/opencv/opencv), and [torchvision](https://pytorch.org/vision/stable/index.html).

View File

@ -27,7 +27,7 @@ This guide shows you how to quickly start chatting with Transformers from the co
## chat CLI
After you've [installed Transformers](./installation.md), chat with a model directly from the command line as shown below. It launches an interactive session with a model, with a few base commands listed at the start of the session.
After you've [installed Transformers](./installation), chat with a model directly from the command line as shown below. It launches an interactive session with a model, with a few base commands listed at the start of the session.
```bash
transformers chat Qwen/Qwen2.5-0.5B-Instruct
@ -158,4 +158,4 @@ The easiest solution for improving generation speed is to either quantize a mode
You can also try techniques like [speculative decoding](./generation_strategies#speculative-decoding), where a smaller model generates candidate tokens that are verified by the larger model. If the candidate tokens are correct, the larger model can generate more than one token per `forward` pass. This significantly alleviates the bandwidth bottleneck and improves generation speed.
> [!TIP]
> Parameters may not be active for every generated token in MoE models such as [Mixtral](./model_doc/mixtral), [Qwen2MoE](./model_doc/qwen2_moe.md), and [DBRX](./model_doc/dbrx). As a result, MoE models generally have much lower memory bandwidth requirements and can be faster than a regular LLM of the same size. However, techniques like speculative decoding are ineffective with MoE models because parameters become activated with each new speculated token.
> Parameters may not be active for every generated token in MoE models such as [Mixtral](./model_doc/mixtral), [Qwen2MoE](./model_doc/qwen2_moe), and [DBRX](./model_doc/dbrx). As a result, MoE models generally have much lower memory bandwidth requirements and can be faster than a regular LLM of the same size. However, techniques like speculative decoding are ineffective with MoE models because parameters become activated with each new speculated token.

42
docs/source/en/cursor.md Normal file
View File

@ -0,0 +1,42 @@
# Using Cursor as a client of transformers serve
This example shows how to use `transformers serve` as a local LLM provider for [Cursor](https://cursor.com/), the popular IDE. In this particular case, requests to `transformers serve` will come from an external IP (Cursor's server IPs), which requires some additional setup. Furthermore, some of Cursor's requests require [CORS](https://developer.mozilla.org/en-US/docs/Web/HTTP/Guides/CORS), which is disabled by default for security reasons.
To launch a server with CORS enabled, run
```shell
transformers serve --enable-cors
```
You'll also need to expose your server to external IPs. A potential solution is to use [`ngrok`](https://ngrok.com/), which has a permissive free tier. After setting up your `ngrok` account and authenticating on your server machine, you run
```shell
ngrok http [port]
```
where `port` is the port used by `transformers serve` (`8000` by default). On the terminal where you launched `ngrok`, you'll see a https address in the "Forwarding" row, as in the image below. This is the address to send requests to.
<h3 align="center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/transformers_serve_ngrok.png"/>
</h3>
You're now ready to set things up on the app side! In Cursor, while you can't set a new provider, you can change the endpoint for OpenAI requests in the model selection settings. First, navigate to "Settings" > "Cursor Settings", "Models" tab, and expand the "API Keys" collapsible. To set your `transformers serve` endpoint, follow this order:
1. Unselect ALL models in the list above (e.g. `gpt4`, ...);
2. Add and select the model you want to use (e.g. `Qwen/Qwen3-4B`)
3. Add some random text to OpenAI API Key. This field won't be used, but it cant be empty;
4. Add the https address from `ngrok` to the "Override OpenAI Base URL" field, appending `/v1` to the address (i.e. `https://(...).ngrok-free.app/v1`);
5. Hit "Verify".
After you follow these steps, your "Models" tab should look like the image below. Your server should also have received a few requests from the verification step.
<h3 align="center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/transformers_serve_cursor.png"/>
</h3>
You are now ready to use your local model in Cursor! For instance, if you toggle the AI Pane, you can select the model you added and ask it questions about your local files.
<h3 align="center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/transformers_serve_cursor_chat.png"/>
</h3>

32
docs/source/en/jan.md Normal file
View File

@ -0,0 +1,32 @@
# Jan: using the serving API as a local LLM provider
This example shows how to use `transformers serve` as a local LLM provider for the [Jan](https://jan.ai/) app. Jan is a ChatGPT-alternative graphical interface, fully running on your machine. The requests to `transformers serve` come directly from the local app -- while this section focuses on Jan, you can extrapolate some instructions to other apps that make local requests.
## Running models locally
To connect `transformers serve` with Jan, you'll need to set up a new model provider ("Settings" > "Model Providers"). Click on "Add Provider", and set a new name. In your new model provider page, all you need to set is the "Base URL" to the following pattern:
```shell
http://[host]:[port]/v1
```
where `host` and `port` are the `transformers serve` CLI parameters (`localhost:8000` by default). After setting this up, you should be able to see some models in the "Models" section, hitting "Refresh". Make sure you add some text in the "API key" text field too -- this data is not actually used, but the field can't be empty. Your custom model provider page should look like this:
<h3 align="center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/transformers_serve_jan_model_providers.png"/>
</h3>
You are now ready to chat!
> [!TIP]
> You can add any `transformers`-compatible model to Jan through `transformers serve`. In the custom model provider you created, click on the "+" button in the "Models" section and add its Hub repository name, e.g. `Qwen/Qwen3-4B`.
## Running models on a separate machine
To conclude this example, let's look into a more advanced use-case. If you have a beefy machine to serve models with, but prefer using Jan on a different device, you need to add port forwarding. If you have `ssh` access from your Jan machine into your server, this can be accomplished by typing the following to your Jan machine's terminal
```
ssh -N -f -L 8000:localhost:8000 your_server_account@your_server_IP -p port_to_ssh_into_your_server
```
Port forwarding is not Jan-specific: you can use it to connect `transformers serve` running in a different machine with an app of your choice.

View File

@ -148,9 +148,9 @@ print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
| Option name | Type | Simplified description |
|---|---|---|
| `max_new_tokens` | `int` | Controls the maximum generation length. Be sure to define it, as it usually defaults to a small value. |
| `do_sample` | `bool` | Defines whether generation will sample the next token (`True`), or is greedy instead (`False`). Most use cases should set this flag to `True`. Check [this guide](./generation_strategies.md) for more information. |
| `do_sample` | `bool` | Defines whether generation will sample the next token (`True`), or is greedy instead (`False`). Most use cases should set this flag to `True`. Check [this guide](./generation_strategies) for more information. |
| `temperature` | `float` | How unpredictable the next selected token will be. High values (`>0.8`) are good for creative tasks, low values (e.g. `<0.4`) for tasks that require "thinking". Requires `do_sample=True`. |
| `num_beams` | `int` | When set to `>1`, activates the beam search algorithm. Beam search is good on input-grounded tasks. Check [this guide](./generation_strategies.md) for more information. |
| `num_beams` | `int` | When set to `>1`, activates the beam search algorithm. Beam search is good on input-grounded tasks. Check [this guide](./generation_strategies) for more information. |
| `repetition_penalty` | `float` | Set it to `>1.0` if you're seeing the model repeat itself often. Larger values apply a larger penalty. |
| `eos_token_id` | `list[int]` | The token(s) that will cause generation to stop. The default value is usually good, but you can specify a different token. |

View File

@ -23,11 +23,11 @@ The crux of these challenges lies in augmenting the computational and memory cap
In this guide, we will go over the effective techniques for efficient LLM deployment:
1. **Lower Precision:** Research has shown that operating at reduced numerical precision, namely [8-bit and 4-bit](./main_classes/quantization.md) can achieve computational advantages without a considerable decline in model performance.
1. **Lower Precision:** Research has shown that operating at reduced numerical precision, namely [8-bit and 4-bit](./main_classes/quantization) can achieve computational advantages without a considerable decline in model performance.
2. **Flash Attention:** Flash Attention is a variation of the attention algorithm that not only provides a more memory-efficient approach but also realizes increased efficiency due to optimized GPU memory utilization.
3. **Architectural Innovations:** Considering that LLMs are always deployed in the same way during inference, namely autoregressive text generation with a long input context, specialized model architectures have been proposed that allow for more efficient inference. The most important advancement in model architectures hereby are [Alibi](https://huggingface.co/papers/2108.12409), [Rotary embeddings](https://huggingface.co/papers/2104.09864), [Multi-Query Attention (MQA)](https://huggingface.co/papers/1911.02150) and [Grouped-Query-Attention (GQA)]((https://huggingface.co/papers/2305.13245)).
3. **Architectural Innovations:** Considering that LLMs are always deployed in the same way during inference, namely autoregressive text generation with a long input context, specialized model architectures have been proposed that allow for more efficient inference. The most important advancement in model architectures hereby are [Alibi](https://huggingface.co/papers/2108.12409), [Rotary embeddings](https://huggingface.co/papers/2104.09864), [Multi-Query Attention (MQA)](https://huggingface.co/papers/1911.02150) and [Grouped-Query-Attention (GQA)](https://huggingface.co/papers/2305.13245).
Throughout this guide, we will offer an analysis of auto-regressive generation from a tensor's perspective. We delve into the pros and cons of adopting lower precision, provide a comprehensive exploration of the latest attention algorithms, and discuss improved LLM architectures. While doing so, we run practical examples showcasing each of the feature improvements.

View File

@ -65,6 +65,10 @@ Learn how to quantize models in the [Quantization](../quantization) guide.
[[autodoc]] HqqConfig
## Mxfp4Config
[[autodoc]] Mxfp4Config
## FbgemmFp8Config
[[autodoc]] FbgemmFp8Config

View File

@ -14,49 +14,81 @@ rendered properly in your Markdown viewer.
-->
# BARThez
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
</div>
</div>
## Overview
# BARThez
The BARThez model was proposed in [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://huggingface.co/papers/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis on 23 Oct,
2020.
[BARThez](https://huggingface.co/papers/2010.12321) is a [BART](./bart) model designed for French language tasks. Unlike existing French BERT models, BARThez includes a pretrained encoder-decoder, allowing it to generate text as well. This model is also available as a multilingual variant, mBARThez, by continuing pretraining multilingual BART on a French corpus.
The abstract of the paper:
You can find all of the original BARThez checkpoints under the [BARThez](https://huggingface.co/collections/dascim/barthez-670920b569a07aa53e3b6887) collection.
> [!TIP]
> This model was contributed by [moussakam](https://huggingface.co/moussakam).
> Refer to the [BART](./bart) docs for more usage examples.
*Inductive transfer learning, enabled by self-supervised learning, have taken the entire Natural Language Processing
(NLP) field by storm, with models such as BERT and BART setting new state of the art on countless natural language
understanding tasks. While there are some notable exceptions, most of the available models and research have been
conducted for the English language. In this work, we introduce BARThez, the first BART model for the French language
(to the best of our knowledge). BARThez was pretrained on a very large monolingual French corpus from past research
that we adapted to suit BART's perturbation schemes. Unlike already existing BERT-based French language models such as
CamemBERT and FlauBERT, BARThez is particularly well-suited for generative tasks, since not only its encoder but also
its decoder is pretrained. In addition to discriminative tasks from the FLUE benchmark, we evaluate BARThez on a novel
summarization dataset, OrangeSum, that we release with this paper. We also continue the pretraining of an already
pretrained multilingual BART on BARThez's corpus, and we show that the resulting model, which we call mBARTHez,
provides a significant boost over vanilla BARThez, and is on par with or outperforms CamemBERT and FlauBERT.*
The example below demonstrates how to predict the `<mask>` token with [`Pipeline`], [`AutoModel`], and from the command line.
This model was contributed by [moussakam](https://huggingface.co/moussakam). The Authors' code can be found [here](https://github.com/moussaKam/BARThez).
<hfoptions id="usage">
<hfoption id="Pipeline">
<Tip>
```py
import torch
from transformers import pipeline
BARThez implementation is the same as BART, except for tokenization. Refer to [BART documentation](bart) for information on
configuration classes and their parameters. BARThez-specific tokenizers are documented below.
pipeline = pipeline(
task="fill-mask",
model="moussaKam/barthez",
torch_dtype=torch.float16,
device=0
)
pipeline("Les plantes produisent <mask> grâce à un processus appelé photosynthèse.")
```
</Tip>
</hfoption>
<hfoption id="AutoModel">
## Resources
```py
import torch
from transformers import AutoModelForMaskedLM, AutoTokenizer
- BARThez can be fine-tuned on sequence-to-sequence tasks in a similar way as BART, check:
[examples/pytorch/summarization/](https://github.com/huggingface/transformers/tree/main/examples/pytorch/summarization/README.md).
tokenizer = AutoTokenizer.from_pretrained(
"moussaKam/barthez",
)
model = AutoModelForMaskedLM.from_pretrained(
"moussaKam/barthez",
torch_dtype=torch.float16,
device_map="auto",
)
inputs = tokenizer("Les plantes produisent <mask> grâce à un processus appelé photosynthèse.", return_tensors="pt").to("cuda")
with torch.no_grad():
outputs = model(**inputs)
predictions = outputs.logits
masked_index = torch.where(inputs['input_ids'] == tokenizer.mask_token_id)[1]
predicted_token_id = predictions[0, masked_index].argmax(dim=-1)
predicted_token = tokenizer.decode(predicted_token_id)
print(f"The predicted token is: {predicted_token}")
```
</hfoption>
<hfoption id="transformers CLI">
```bash
echo -e "Les plantes produisent <mask> grâce à un processus appelé photosynthèse." | transformers run --task fill-mask --model moussaKam/barthez --device 0
```
</hfoption>
</hfoptions>
## BarthezTokenizer

View File

@ -14,25 +14,50 @@ rendered properly in your Markdown viewer.
-->
# CLAP
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
## Overview
# CLAP
The CLAP model was proposed in [Large Scale Contrastive Language-Audio pretraining with
feature fusion and keyword-to-caption augmentation](https://huggingface.co/papers/2211.06687) by Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, Shlomo Dubnov.
[CLAP (Contrastive Language-Audio Pretraining)](https://huggingface.co/papers/2211.06687) is a multimodal model that combines audio data with natural language descriptions through contrastive learning.
CLAP (Contrastive Language-Audio Pretraining) is a neural network trained on a variety of (audio, text) pairs. It can be instructed in to predict the most relevant text snippet, given an audio, without directly optimizing for the task. The CLAP model uses a SWINTransformer to get audio features from a log-Mel spectrogram input, and a RoBERTa model to get text features. Both the text and audio features are then projected to a latent space with identical dimension. The dot product between the projected audio and text features is then used as a similar score.
It incorporates feature fusion and keyword-to-caption augmentation to process variable-length audio inputs and to improve performance. CLAP doesn't require task-specific training data and can learn meaningful audio representations through natural language.
The abstract from the paper is the following:
You can find all the original CLAP checkpoints under the [CLAP](https://huggingface.co/collections/laion/clap-contrastive-language-audio-pretraining-65415c0b18373b607262a490) collection.
*Contrastive learning has shown remarkable success in the field of multimodal representation learning. In this paper, we propose a pipeline of contrastive language-audio pretraining to develop an audio representation by combining audio data with natural language descriptions. To accomplish this target, we first release LAION-Audio-630K, a large collection of 633,526 audio-text pairs from different data sources. Second, we construct a contrastive language-audio pretraining model by considering different audio encoders and text encoders. We incorporate the feature fusion mechanism and keyword-to-caption augmentation into the model design to further enable the model to process audio inputs of variable lengths and enhance the performance. Third, we perform comprehensive experiments to evaluate our model across three tasks: text-to-audio retrieval, zero-shot audio classification, and supervised audio classification. The results demonstrate that our model achieves superior performance in text-to-audio retrieval task. In audio classification tasks, the model achieves state-of-the-art performance in the zeroshot setting and is able to obtain performance comparable to models' results in the non-zero-shot setting. LAION-Audio-6*
> [!TIP]
> This model was contributed by [ybelkada](https://huggingface.co/ybelkada) and [ArthurZ](https://huggingface.co/ArthurZ).
>
> Click on the CLAP models in the right sidebar for more examples of how to apply CLAP to different audio retrieval and classification tasks.
This model was contributed by [Younes Belkada](https://huggingface.co/ybelkada) and [Arthur Zucker](https://huggingface.co/ArthurZ) .
The original code can be found [here](https://github.com/LAION-AI/Clap).
The example below demonstrates how to extract text embeddings with the [`AutoModel`] class.
<hfoptions id="usage">
<hfoption id="AutoModel">
```python
import torch
from transformers import AutoTokenizer, AutoModel
model = AutoModel.from_pretrained("laion/clap-htsat-unfused", torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained("laion/clap-htsat-unfused")
texts = ["the sound of a cat", "the sound of a dog", "music playing"]
inputs = tokenizer(texts, padding=True, return_tensors="pt").to("cuda")
with torch.no_grad():
text_features = model.get_text_features(**inputs)
print(f"Text embeddings shape: {text_features.shape}")
print(f"Text embeddings: {text_features}")
```
</hfoption>
</hfoptions>
## ClapConfig

View File

@ -1,43 +1,115 @@
# Cohere
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="Tensor parallelism" src="https://img.shields.io/badge/Tensor%20parallelism-06b6d4?style=flat&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="Tensor parallelism" src="https://img.shields.io/badge/Tensor%20parallelism-06b6d4?style=flat&logoColor=white">
</div>
</div>
## Overview
[C4AI Command R7B](https://cohere.com/blog/command-r7b) is an open weights research release of a 7B billion parameter model developed by Cohere and Cohere For AI. It has advanced capabilities optimized for various use cases, including reasoning, summarization, question answering, and code. The model is trained to perform sophisticated tasks including Retrieval Augmented Generation (RAG) and tool use. The model also has powerful agentic capabilities that can use and combine multiple tools over multiple steps to accomplish more difficult tasks. It obtains top performance on enterprise-relevant code use cases. C4AI Command R7B is a multilingual model trained on 23 languages.
The model features three layers with sliding window attention (window size 4096) and ROPE for efficient local context modeling and relative positional encoding. A fourth layer uses global attention without positional embeddings, enabling unrestricted token interactions across the entire sequence.
# Cohere2
The model has been trained on 23 languages: English, French, Spanish, Italian, German, Portuguese, Japanese, Korean, Arabic, Chinese, Russian, Polish, Turkish, Vietnamese, Dutch, Czech, Indonesian, Ukrainian, Romanian, Greek, Hindi, Hebrew, and Persian.
[Cohere Command R7B](https://cohere.com/blog/command-r7b) is an open weights research release of a 7B billion parameter model. It is a multilingual model trained on 23 languages and has a context window of 128k. The model features three layers with sliding window attention and ROPE for efficient local context modeling and relative positional encoding. A fourth layer uses global attention without positional embeddings, enabling unrestricted token interactions across the entire sequence.
## Usage tips
The model and tokenizer can be loaded via:
This model is optimized for speed, cost-performance, and compute resources.
You can find all the original Command-R checkpoints under the [Command Models](https://huggingface.co/collections/CohereForAI/command-models-67652b401665205e17b192ad) collection.
> [!TIP]
> Click on the Cohere models in the right sidebar for more examples of how to apply Cohere to different language tasks.
The example below demonstrates how to generate text with [`Pipeline`] or the [`AutoModel`] class, and from the command line.
<hfoptions id="usage">
<hfoption id="Pipeline">
```python
# pip install transformers
import torch
from transformers import pipeline
pipeline = pipeline(
task="text-generation",
model="CohereLabs/c4ai-command-r7b-12-2024",
torch_dtype=torch.float16,
device_map=0
)
messages = [
{"role": "user", "content": "Hello, can you please help me book a hotel in Japan?"},
]
pipeline(messages)
```
</hfoption>
<hfoption id="AutoModel">
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
model_id = "CohereForAI/c4ai-command-r7b-12-2024"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained("CohereLabs/c4ai-command-r7b-12-2024")
model = AutoModelForCausalLM.from_pretrained(
"CohereLabs/c4ai-command-r7b-12-2024",
torch_dtype=torch.float16,
device_map="auto",
attn_implementation="sdpa"
)
# Format message with the command-r chat template
messages = [{"role": "user", "content": "Hello, how are you?"}]
input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
gen_tokens = model.generate(
# format message with the Command-R chat template
messages = [{"role": "user", "content": "Hello, can you please help me book a hotel in Japan?"}]
input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to("cuda")
output = model.generate(
input_ids,
max_new_tokens=100,
do_sample=True,
temperature=0.3,
cache_implementation="static",
)
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
</hfoption>
<hfoption id="transformers CLI">
```bash
# pip install -U flash-attn --no-build-isolation
transformers-cli chat CohereLabs/c4ai-command-r7b-12-2024 --torch_dtype auto --attn_implementation flash_attention_2
```
</hfoption>
</hfoptions>
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview.md) overview for more available quantization backends.
The example below uses [bitsandbytes](../quantization/bitsandbytes.md) to quantize the weights to 4-bits.
```python
import torch
from transformers import BitsAndBytesConfig, AutoTokenizer, AutoModelForCausalLM
bnb_config = BitsAndBytesConfig(load_in_4bit=True)
tokenizer = AutoTokenizer.from_pretrained("CohereLabs/c4ai-command-r7b-12-2024")
model = AutoModelForCausalLM.from_pretrained(
"CohereLabs/c4ai-command-r7b-12-2024",
torch_dtype=torch.float16,
device_map="auto",
quantization_config=bnb_config,
attn_implementation="sdpa"
)
gen_text = tokenizer.decode(gen_tokens[0])
print(gen_text)
# format message with the Command-R chat template
messages = [{"role": "user", "content": "Hello, can you please help me book a hotel in Japan?"}]
input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to("cuda")
output = model.generate(
input_ids,
max_new_tokens=100,
do_sample=True,
temperature=0.3,
cache_implementation="static",
)
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
## Cohere2Config

View File

@ -0,0 +1,123 @@
# Command A Vision
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="Tensor parallelism" src="https://img.shields.io/badge/Tensor%20parallelism-06b6d4?style=flat&logoColor=white">
</div>
## Overview
Command A Vision is a state-of-the-art multimodal model designed to seamlessly integrate visual and textual information for a wide range of applications. By combining advanced computer vision techniques with natural language processing capabilities, Command A Vision enables users to analyze, understand, and generate insights from both visual and textual data.
The model excels at tasks including image captioning, visual question answering, document understanding, and chart understanding. This makes it a versatile tool for AI practitioners. Its ability to process complex visual and textual inputs makes it useful in settings where text-only representations are imprecise or unavailable, like real-world image understanding and graphics-heavy document processing.
Command A Vision is built upon a robust architecture that leverages the latest advancements in VLMs. It's highly performant and efficient, even when dealing with large-scale datasets. The model's flexibility makes it suitable for a wide range of use cases, from content moderation and image search to medical imaging analysis and robotics.
## Usage tips
The model and image processor can be loaded as follows:
<hfoptions id="usage">
<hfoption id="AutoModel">
```python
import torch
from transformers import AutoProcessor, AutoModelForImageTextToText
model_id = "CohereLabs/command-a-vision-07-2025"
processor = AutoProcessor.from_pretrained(model_id)
model = AutoModelForImageTextToText.from_pretrained(
model_id, device_map="auto", torch_dtype=torch.float16
)
# Format message with the Command-A-Vision chat template
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"url": "https://images.pexels.com/photos/1108099/pexels-photo-1108099.jpeg",
},
{"type": "text", "text": "what is in this image?"},
],
},
]
inputs = processor.apply_chat_template(
messages,
padding=True,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
).to(model.device)
gen_tokens = model.generate(
**inputs,
max_new_tokens=300,
do_sample=True,
temperature=0.3,
)
print(
processor.tokenizer.decode(
gen_tokens[0][inputs.input_ids.shape[1] :], skip_special_tokens=True
)
)
```
</hfoption>
<hfoption id="Pipeline">
```python
from transformers import pipeline
pipe = pipeline(model="CohereLabs/command-a-vision-07-2025", task="image-text-to-text", device_map="auto")
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"url": "https://media.istockphoto.com/id/458012057/photo/istanbul-turkey.jpg?s=612x612&w=0&k=20&c=qogAOVvkpfUyqLUMr_XJQyq-HkACXyYUSZbKhBlPrxo=",
},
{"type": "text", "text": "Where was this taken ?"},
],
},
]
outputs = pipe(text=messages, max_new_tokens=300, return_full_text=False)
print(outputs)
```
</hfoption>
</hfoptions>
## Cohere2VisionConfig
[[autodoc]] Cohere2VisionConfig
## Cohere2VisionForConditionalGeneration
[[autodoc]] Cohere2VisionForConditionalGeneration
- forward
## Cohere2VisionModel
[[autodoc]] Cohere2VisionModel
- forward
## Cohere2VisionImageProcessorFast
[[autodoc]] Cohere2VisionImageProcessorFast
- preprocess
## Cohere2VisionProcessor
[[autodoc]] Cohere2VisionProcessor

View File

@ -95,7 +95,7 @@ images = [
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
The example below uses [bitsandbytes](../quantization/bitsandbytes.md) to quantize the weights to int4.
The example below uses [bitsandbytes](../quantization/bitsandbytes) to quantize the weights to int4.
```python
import requests

View File

@ -99,7 +99,7 @@ images = [
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
The example below uses [bitsandbytes](../quantization/bitsandbytes.md) to quantize the weights to int4.
The example below uses [bitsandbytes](../quantization/bitsandbytes) to quantize the weights to int4.
```python
import requests

View File

@ -21,7 +21,7 @@ rendered properly in your Markdown viewer.
The Conversational Speech Model (CSM) is the first open-source contextual text-to-speech model [released by Sesame](https://www.sesame.com/research/crossing_the_uncanny_valley_of_voice). It is designed to generate natural-sounding speech with or without conversational context. This context typically consists of multi-turn dialogue between speakers, represented as sequences of text and corresponding spoken audio.
**Model Architecture:**
CSM is composed of two LLaMA-style auto-regressive transformer decoders: a backbone decoder that predicts the first codebook token and a depth decoder that generates the remaining tokens. It uses the pretrained codec model [Mimi](./mimi.md), introduced by Kyutai, to encode speech into discrete codebook tokens and decode them back into audio.
CSM is composed of two LLaMA-style auto-regressive transformer decoders: a backbone decoder that predicts the first codebook token and a depth decoder that generates the remaining tokens. It uses the pretrained codec model [Mimi](./mimi), introduced by Kyutai, to encode speech into discrete codebook tokens and decode them back into audio.
The original csm-1b checkpoint is available under the [Sesame](https://huggingface.co/sesame/csm-1b) organization on Hugging Face.

View File

@ -209,6 +209,10 @@ model = DeepseekVLForConditionalGeneration.from_pretrained(
[[autodoc]] DeepseekVLImageProcessor
## DeepseekVLImageProcessorFast
[[autodoc]] DeepseekVLImageProcessorFast
## DeepseekVLModel
[[autodoc]] DeepseekVLModel

View File

@ -208,6 +208,10 @@ model = DeepseekVLHybridForConditionalGeneration.from_pretrained(
[[autodoc]] DeepseekVLHybridImageProcessor
## DeepseekVLHybridImageProcessorFast
[[autodoc]] DeepseekVLHybridImageProcessorFast
## DeepseekVLHybridModel
[[autodoc]] DeepseekVLHybridModel

View File

@ -14,132 +14,122 @@ rendered properly in your Markdown viewer.
-->
# DETR
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
## Overview
# DETR
The DETR model was proposed in [End-to-End Object Detection with Transformers](https://huggingface.co/papers/2005.12872) by
Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov and Sergey Zagoruyko. DETR
consists of a convolutional backbone followed by an encoder-decoder Transformer which can be trained end-to-end for
object detection. It greatly simplifies a lot of the complexity of models like Faster-R-CNN and Mask-R-CNN, which use
things like region proposals, non-maximum suppression procedure and anchor generation. Moreover, DETR can also be
naturally extended to perform panoptic segmentation, by simply adding a mask head on top of the decoder outputs.
[DETR](https://huggingface.co/papers/2005.12872) consists of a convolutional backbone followed by an encoder-decoder Transformer which can be trained end-to-end for object detection. It greatly simplifies a lot of the complexity of models like Faster-R-CNN and Mask-R-CNN, which use things like region proposals, non-maximum suppression procedure and anchor generation. Moreover, DETR can also be naturally extended to perform panoptic segmentation, by simply adding a mask head on top of the decoder outputs.
The abstract from the paper is the following:
You can find all the original DETR checkpoints under the [AI at Meta](https://huggingface.co/facebook/models?search=detr) organization.
*We present a new method that views object detection as a direct set prediction problem. Our approach streamlines the
detection pipeline, effectively removing the need for many hand-designed components like a non-maximum suppression
procedure or anchor generation that explicitly encode our prior knowledge about the task. The main ingredients of the
new framework, called DEtection TRansformer or DETR, are a set-based global loss that forces unique predictions via
bipartite matching, and a transformer encoder-decoder architecture. Given a fixed small set of learned object queries,
DETR reasons about the relations of the objects and the global image context to directly output the final set of
predictions in parallel. The new model is conceptually simple and does not require a specialized library, unlike many
other modern detectors. DETR demonstrates accuracy and run-time performance on par with the well-established and
highly-optimized Faster RCNN baseline on the challenging COCO object detection dataset. Moreover, DETR can be easily
generalized to produce panoptic segmentation in a unified manner. We show that it significantly outperforms competitive
baselines.*
> [!TIP]
> This model was contributed by [nielsr](https://huggingface.co/nielsr).
>
> Click on the DETR models in the right sidebar for more examples of how to apply DETR to different object detection and segmentation tasks.
This model was contributed by [nielsr](https://huggingface.co/nielsr). The original code can be found [here](https://github.com/facebookresearch/detr).
The example below demonstrates how to perform object detection with the [`Pipeline`] or the [`AutoModel`] class.
## How DETR works
<hfoptions id="usage">
<hfoption id="Pipeline">
```python
from transformers import pipeline
import torch
pipeline = pipeline(
"object-detection",
model="facebook/detr-resnet-50",
torch_dtype=torch.float16,
device_map=0
)
pipeline("http://images.cocodataset.org/val2017/000000039769.jpg")
```
</hfoption>
<hfoption id="AutoModel">
```python
from transformers import AutoImageProcessor, AutoModelForObjectDetection
from PIL import Image
import requests
import torch
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
image_processor = AutoImageProcessor.from_pretrained("facebook/detr-resnet-50")
model = AutoModelForObjectDetection.from_pretrained("facebook/detr-resnet-50")
# prepare image for the model
inputs = image_processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
results = image_processor.post_process_object_detection(outputs, target_sizes=torch.tensor([image.size[::-1]]), threshold=0.3)
for result in results:
for score, label_id, box in zip(result["scores"], result["labels"], result["boxes"]):
score, label = score.item(), label_id.item()
box = [round(i, 2) for i in box.tolist()]
print(f"{model.config.id2label[label]}: {score:.2f} {box}")
```
</hfoption>
</hfoptions>
<details>
<summary>How DETR works</summary>
Here's a TLDR explaining how [`~transformers.DetrForObjectDetection`] works:
First, an image is sent through a pre-trained convolutional backbone (in the paper, the authors use
ResNet-50/ResNet-101). Let's assume we also add a batch dimension. This means that the input to the backbone is a
tensor of shape `(batch_size, 3, height, width)`, assuming the image has 3 color channels (RGB). The CNN backbone
outputs a new lower-resolution feature map, typically of shape `(batch_size, 2048, height/32, width/32)`. This is
then projected to match the hidden dimension of the Transformer of DETR, which is `256` by default, using a
`nn.Conv2D` layer. So now, we have a tensor of shape `(batch_size, 256, height/32, width/32).` Next, the
feature map is flattened and transposed to obtain a tensor of shape `(batch_size, seq_len, d_model)` =
`(batch_size, width/32*height/32, 256)`. So a difference with NLP models is that the sequence length is actually
longer than usual, but with a smaller `d_model` (which in NLP is typically 768 or higher).
First, an image is sent through a pre-trained convolutional backbone (in the paper, the authors use ResNet-50/ResNet-101). Let's assume we also add a batch dimension. This means that the input to the backbone is a tensor of shape `(batch_size, 3, height, width)`, assuming the image has 3 color channels (RGB). The CNN backbone outputs a new lower-resolution feature map, typically of shape `(batch_size, 2048, height/32, width/32)`. This is then projected to match the hidden dimension of the Transformer of DETR, which is `256` by default, using a `nn.Conv2D` layer. So now, we have a tensor of shape `(batch_size, 256, height/32, width/32).` Next, the feature map is flattened and transposed to obtain a tensor of shape `(batch_size, seq_len, d_model)` = `(batch_size, width/32*height/32, 256)`. So a difference with NLP models is that the sequence length is actually longer than usual, but with a smaller `d_model` (which in NLP is typically 768 or higher).
Next, this is sent through the encoder, outputting `encoder_hidden_states` of the same shape (you can consider
these as image features). Next, so-called **object queries** are sent through the decoder. This is a tensor of shape
`(batch_size, num_queries, d_model)`, with `num_queries` typically set to 100 and initialized with zeros.
These input embeddings are learnt positional encodings that the authors refer to as object queries, and similarly to
the encoder, they are added to the input of each attention layer. Each object query will look for a particular object
in the image. The decoder updates these embeddings through multiple self-attention and encoder-decoder attention layers
to output `decoder_hidden_states` of the same shape: `(batch_size, num_queries, d_model)`. Next, two heads
are added on top for object detection: a linear layer for classifying each object query into one of the objects or "no
object", and a MLP to predict bounding boxes for each query.
Next, this is sent through the encoder, outputting `encoder_hidden_states` of the same shape (you can consider these as image features). Next, so-called **object queries** are sent through the decoder. This is a tensor of shape `(batch_size, num_queries, d_model)`, with `num_queries` typically set to 100 and initialized with zeros. These input embeddings are learnt positional encodings that the authors refer to as object queries, and similarly to the encoder, they are added to the input of each attention layer. Each object query will look for a particular object in the image. The decoder updates these embeddings through multiple self-attention and encoder-decoder attention layers to output `decoder_hidden_states` of the same shape: `(batch_size, num_queries, d_model)`. Next, two heads are added on top for object detection: a linear layer for classifying each object query into one of the objects or "no object", and a MLP to predict bounding boxes for each query.
The model is trained using a **bipartite matching loss**: so what we actually do is compare the predicted classes +
bounding boxes of each of the N = 100 object queries to the ground truth annotations, padded up to the same length N
(so if an image only contains 4 objects, 96 annotations will just have a "no object" as class and "no bounding box" as
bounding box). The [Hungarian matching algorithm](https://en.wikipedia.org/wiki/Hungarian_algorithm) is used to find
an optimal one-to-one mapping of each of the N queries to each of the N annotations. Next, standard cross-entropy (for
the classes) and a linear combination of the L1 and [generalized IoU loss](https://giou.stanford.edu/) (for the
bounding boxes) are used to optimize the parameters of the model.
The model is trained using a **bipartite matching loss**: so what we actually do is compare the predicted classes + bounding boxes of each of the N = 100 object queries to the ground truth annotations, padded up to the same length N (so if an image only contains 4 objects, 96 annotations will just have a "no object" as class and "no bounding box" as bounding box). The [Hungarian matching algorithm](https://en.wikipedia.org/wiki/Hungarian_algorithm) is used to find an optimal one-to-one mapping of each of the N queries to each of the N annotations. Next, standard cross-entropy (for the classes) and a linear combination of the L1 and [generalized IoU loss](https://giou.stanford.edu/) (for the bounding boxes) are used to optimize the parameters of the model.
DETR can be naturally extended to perform panoptic segmentation (which unifies semantic segmentation and instance
segmentation). [`~transformers.DetrForSegmentation`] adds a segmentation mask head on top of
[`~transformers.DetrForObjectDetection`]. The mask head can be trained either jointly, or in a two steps process,
where one first trains a [`~transformers.DetrForObjectDetection`] model to detect bounding boxes around both
"things" (instances) and "stuff" (background things like trees, roads, sky), then freeze all the weights and train only
the mask head for 25 epochs. Experimentally, these two approaches give similar results. Note that predicting boxes is
required for the training to be possible, since the Hungarian matching is computed using distances between boxes.
DETR can be naturally extended to perform panoptic segmentation (which unifies semantic segmentation and instance segmentation). [`~transformers.DetrForSegmentation`] adds a segmentation mask head on top of [`~transformers.DetrForObjectDetection`]. The mask head can be trained either jointly, or in a two steps process, where one first trains a [`~transformers.DetrForObjectDetection`] model to detect bounding boxes around both "things" (instances) and "stuff" (background things like trees, roads, sky), then freeze all the weights and train only the mask head for 25 epochs. Experimentally, these two approaches give similar results. Note that predicting boxes is required for the training to be possible, since the Hungarian matching is computed using distances between boxes.
## Usage tips
</details>
- DETR uses so-called **object queries** to detect objects in an image. The number of queries determines the maximum
number of objects that can be detected in a single image, and is set to 100 by default (see parameter
`num_queries` of [`~transformers.DetrConfig`]). Note that it's good to have some slack (in COCO, the
authors used 100, while the maximum number of objects in a COCO image is ~70).
- The decoder of DETR updates the query embeddings in parallel. This is different from language models like GPT-2,
which use autoregressive decoding instead of parallel. Hence, no causal attention mask is used.
- DETR adds position embeddings to the hidden states at each self-attention and cross-attention layer before projecting
to queries and keys. For the position embeddings of the image, one can choose between fixed sinusoidal or learned
absolute position embeddings. By default, the parameter `position_embedding_type` of
[`~transformers.DetrConfig`] is set to `"sine"`.
- During training, the authors of DETR did find it helpful to use auxiliary losses in the decoder, especially to help
the model output the correct number of objects of each class. If you set the parameter `auxiliary_loss` of
[`~transformers.DetrConfig`] to `True`, then prediction feedforward neural networks and Hungarian losses
are added after each decoder layer (with the FFNs sharing parameters).
- If you want to train the model in a distributed environment across multiple nodes, then one should update the
_num_boxes_ variable in the _DetrLoss_ class of _modeling_detr.py_. When training on multiple nodes, this should be
set to the average number of target boxes across all nodes, as can be seen in the original implementation [here](https://github.com/facebookresearch/detr/blob/a54b77800eb8e64e3ad0d8237789fcbf2f8350c5/models/detr.py#L227-L232).
- [`~transformers.DetrForObjectDetection`] and [`~transformers.DetrForSegmentation`] can be initialized with
any convolutional backbone available in the [timm library](https://github.com/rwightman/pytorch-image-models).
Initializing with a MobileNet backbone for example can be done by setting the `backbone` attribute of
[`~transformers.DetrConfig`] to `"tf_mobilenetv3_small_075"`, and then initializing the model with that
config.
- DETR resizes the input images such that the shortest side is at least a certain amount of pixels while the longest is
at most 1333 pixels. At training time, scale augmentation is used such that the shortest side is randomly set to at
least 480 and at most 800 pixels. At inference time, the shortest side is set to 800. One can use
[`~transformers.DetrImageProcessor`] to prepare images (and optional annotations in COCO format) for the
model. Due to this resizing, images in a batch can have different sizes. DETR solves this by padding images up to the
largest size in a batch, and by creating a pixel mask that indicates which pixels are real/which are padding.
Alternatively, one can also define a custom `collate_fn` in order to batch images together, using
[`~transformers.DetrImageProcessor.pad_and_create_pixel_mask`].
- The size of the images will determine the amount of memory being used, and will thus determine the `batch_size`.
It is advised to use a batch size of 2 per GPU. See [this Github thread](https://github.com/facebookresearch/detr/issues/150) for more info.
## Notes
There are three ways to instantiate a DETR model (depending on what you prefer):
- DETR uses so-called **object queries** to detect objects in an image. The number of queries determines the maximum number of objects that can be detected in a single image, and is set to 100 by default (see parameter `num_queries` of [`~transformers.DetrConfig`]). Note that it's good to have some slack (in COCO, the authors used 100, while the maximum number of objects in a COCO image is ~70).
- The decoder of DETR updates the query embeddings in parallel. This is different from language models like GPT-2, which use autoregressive decoding instead of parallel. Hence, no causal attention mask is used.
- DETR adds position embeddings to the hidden states at each self-attention and cross-attention layer before projecting to queries and keys. For the position embeddings of the image, one can choose between fixed sinusoidal or learned absolute position embeddings. By default, the parameter `position_embedding_type` of [`~transformers.DetrConfig`] is set to `"sine"`.
- During training, the authors of DETR did find it helpful to use auxiliary losses in the decoder, especially to help the model output the correct number of objects of each class. If you set the parameter `auxiliary_loss` of [`~transformers.DetrConfig`] to `True`, then prediction feedforward neural networks and Hungarian losses are added after each decoder layer (with the FFNs sharing parameters).
- If you want to train the model in a distributed environment across multiple nodes, then one should update the _num_boxes_ variable in the _DetrLoss_ class of _modeling_detr.py_. When training on multiple nodes, this should be set to the average number of target boxes across all nodes, as can be seen in the original implementation [here](https://github.com/facebookresearch/detr/blob/a54b77800eb8e64e3ad0d8237789fcbf2f8350c5/models/detr.py#L227-L232).
- [`~transformers.DetrForObjectDetection`] and [`~transformers.DetrForSegmentation`] can be initialized with any convolutional backbone available in the [timm library](https://github.com/rwightman/pytorch-image-models). Initializing with a MobileNet backbone for example can be done by setting the `backbone` attribute of [`~transformers.DetrConfig`] to `"tf_mobilenetv3_small_075"`, and then initializing the model with that config.
- DETR resizes the input images such that the shortest side is at least a certain amount of pixels while the longest is at most 1333 pixels. At training time, scale augmentation is used such that the shortest side is randomly set to at least 480 and at most 800 pixels. At inference time, the shortest side is set to 800. One can use [`~transformers.DetrImageProcessor`] to prepare images (and optional annotations in COCO format) for the model. Due to this resizing, images in a batch can have different sizes. DETR solves this by padding images up to the largest size in a batch, and by creating a pixel mask that indicates which pixels are real/which are padding. Alternatively, one can also define a custom `collate_fn` in order to batch images together, using [`~transformers.DetrImageProcessor.pad_and_create_pixel_mask`].
- The size of the images will determine the amount of memory being used, and will thus determine the `batch_size`. It is advised to use a batch size of 2 per GPU. See [this Github thread](https://github.com/facebookresearch/detr/issues/150) for more info.
Option 1: Instantiate DETR with pre-trained weights for entire model
```py
>>> from transformers import DetrForObjectDetection
There are three other ways to instantiate a DETR model (depending on what you prefer):
>>> model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50")
- Option 1: Instantiate DETR with pre-trained weights for entire model
```python
from transformers import DetrForObjectDetection
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50")
```
Option 2: Instantiate DETR with randomly initialized weights for Transformer, but pre-trained weights for backbone
```py
>>> from transformers import DetrConfig, DetrForObjectDetection
- Option 2: Instantiate DETR with randomly initialized weights for Transformer, but pre-trained weights for backbone
```python
from transformers import DetrConfig, DetrForObjectDetection
>>> config = DetrConfig()
>>> model = DetrForObjectDetection(config)
config = DetrConfig()
model = DetrForObjectDetection(config)
```
Option 3: Instantiate DETR with randomly initialized weights for backbone + Transformer
```py
>>> config = DetrConfig(use_pretrained_backbone=False)
>>> model = DetrForObjectDetection(config)
- Option 3: Instantiate DETR with randomly initialized weights for backbone + Transformer
```python
config = DetrConfig(use_pretrained_backbone=False)
model = DetrForObjectDetection(config)
```
As a summary, consider the following table:
@ -153,24 +143,12 @@ As a summary, consider the following table:
| **Postprocessing** (i.e. converting the output of the model to Pascal VOC format) | [`~transformers.DetrImageProcessor.post_process`] | [`~transformers.DetrImageProcessor.post_process_segmentation`] | [`~transformers.DetrImageProcessor.post_process_segmentation`], [`~transformers.DetrImageProcessor.post_process_panoptic`] |
| **evaluators** | `CocoEvaluator` with `iou_types="bbox"` | `CocoEvaluator` with `iou_types="bbox"` or `"segm"` | `CocoEvaluator` with `iou_tupes="bbox"` or `"segm"`, `PanopticEvaluator` |
In short, one should prepare the data either in COCO detection or COCO panoptic format, then use
[`~transformers.DetrImageProcessor`] to create `pixel_values`, `pixel_mask` and optional
`labels`, which can then be used to train (or fine-tune) a model. For evaluation, one should first convert the
outputs of the model using one of the postprocessing methods of [`~transformers.DetrImageProcessor`]. These can
be provided to either `CocoEvaluator` or `PanopticEvaluator`, which allow you to calculate metrics like
mean Average Precision (mAP) and Panoptic Quality (PQ). The latter objects are implemented in the [original repository](https://github.com/facebookresearch/detr). See the [example notebooks](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/DETR) for more info regarding evaluation.
- In short, one should prepare the data either in COCO detection or COCO panoptic format, then use [`~transformers.DetrImageProcessor`] to create `pixel_values`, `pixel_mask` and optional `labels`, which can then be used to train (or fine-tune) a model.
- For evaluation, one should first convert the outputs of the model using one of the postprocessing methods of [`~transformers.DetrImageProcessor`]. These can be provided to either `CocoEvaluator` or `PanopticEvaluator`, which allow you to calculate metrics like mean Average Precision (mAP) and Panoptic Quality (PQ). The latter objects are implemented in the [original repository](https://github.com/facebookresearch/detr). See the [example notebooks](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/DETR) for more info regarding evaluation.
## Resources
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with DETR.
<PipelineTag pipeline="object-detection"/>
- All example notebooks illustrating fine-tuning [`DetrForObjectDetection`] and [`DetrForSegmentation`] on a custom dataset can be found [here](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/DETR).
- Scripts for finetuning [`DetrForObjectDetection`] with [`Trainer`] or [Accelerate](https://huggingface.co/docs/accelerate/index) can be found [here](https://github.com/huggingface/transformers/tree/main/examples/pytorch/object-detection).
- See also: [Object detection task guide](../tasks/object_detection).
If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
- Refer to these [notebooks](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/DETR) for examples of fine-tuning [`DetrForObjectDetection`] and [`DetrForSegmentation`] on a custom dataset.
## DetrConfig

View File

@ -26,14 +26,14 @@ rendered properly in your Markdown viewer.
## Overview
Dia is an opensource text-to-speech (TTS) model (1.6B parameters) developed by [Nari Labs](https://huggingface.co/nari-labs).
It can generate highly realistic dialogue from transcript including nonverbal communications such as laughter and coughing.
Dia is an open-source text-to-speech (TTS) model (1.6B parameters) developed by [Nari Labs](https://huggingface.co/nari-labs).
It can generate highly realistic dialogue from transcript including non-verbal communications such as laughter and coughing.
Furthermore, emotion and tone control is also possible via audio conditioning (voice cloning).
**Model Architecture:**
Dia is an encoder-decoder transformer based on the original transformer architecture. However, some more modern features such as
rotational positional embeddings (RoPE) are also included. For its text portion (encoder), a byte tokenizer is utilized while
for the audio portion (decoder), a pretrained codec model [DAC](./dac.md) is used - DAC encodes speech into discrete codebook
for the audio portion (decoder), a pretrained codec model [DAC](./dac) is used - DAC encodes speech into discrete codebook
tokens and decodes them back into audio.
## Usage Tips

View File

@ -10,84 +10,114 @@ specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white" >
</div>
</div>
# EfficientLoFTR
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
[EfficientLoFTR](https://huggingface.co/papers/2403.04765) is an efficient detector-free local feature matching method that produces semi-dense matches across images with sparse-like speed. It builds upon the original [LoFTR](https://huggingface.co/papers/2104.00680) architecture but introduces significant improvements for both efficiency and accuracy. The key innovation is an aggregated attention mechanism with adaptive token selection that makes the model ~2.5× faster than LoFTR while achieving higher accuracy. EfficientLoFTR can even surpass state-of-the-art efficient sparse matching pipelines like [SuperPoint](./superpoint) + [LightGlue](./lightglue) in terms of speed, making it suitable for large-scale or latency-sensitive applications such as image retrieval and 3D reconstruction.
## Overview
> [!TIP]
> This model was contributed by [stevenbucaille](https://huggingface.co/stevenbucaille).
>
> Click on the EfficientLoFTR models in the right sidebar for more examples of how to apply EfficientLoFTR to different computer vision tasks.
The EfficientLoFTR model was proposed in [Efficient LoFTR: Semi-Dense Local Feature Matching with Sparse-Like Speed](https://arxiv.org/abs/2403.04765) by Yifan Wang, Xingyi He, Sida Peng, Dongli Tan and Xiaowei Zhou.
The example below demonstrates how to match keypoints between two images with the [`AutoModel`] class.
This model consists of matching two images together by finding pixel correspondences. It can be used to estimate the pose between them.
This model is useful for tasks such as image matching, homography estimation, etc.
The abstract from the paper is the following:
*We present a novel method for efficiently producing semidense matches across images. Previous detector-free matcher
LoFTR has shown remarkable matching capability in handling large-viewpoint change and texture-poor scenarios but suffers
from low efficiency. We revisit its design choices and derive multiple improvements for both efficiency and accuracy.
One key observation is that performing the transformer over the entire feature map is redundant due to shared local
information, therefore we propose an aggregated attention mechanism with adaptive token selection for efficiency.
Furthermore, we find spatial variance exists in LoFTRs fine correlation module, which is adverse to matching accuracy.
A novel two-stage correlation layer is proposed to achieve accurate subpixel correspondences for accuracy improvement.
Our efficiency optimized model is 2.5× faster than LoFTR which can even surpass state-of-the-art efficient sparse
matching pipeline SuperPoint + LightGlue. Moreover, extensive experiments show that our method can achieve higher
accuracy compared with competitive semi-dense matchers, with considerable efficiency benefits. This opens up exciting
prospects for large-scale or latency-sensitive applications such as image retrieval and 3D reconstruction.
Project page: [https://zju3dv.github.io/efficientloftr/](https://zju3dv.github.io/efficientloftr/).*
## How to use
Here is a quick example of using the model.
```python
import torch
<hfoptions id="usage">
<hfoption id="AutoModel">
```py
from transformers import AutoImageProcessor, AutoModelForKeypointMatching
from transformers.image_utils import load_image
import torch
from PIL import Image
import requests
image1 = load_image("https://raw.githubusercontent.com/magicleap/SuperGluePretrainedNetwork/refs/heads/master/assets/phototourism_sample_images/united_states_capitol_98169888_3347710852.jpg")
image2 = load_image("https://raw.githubusercontent.com/magicleap/SuperGluePretrainedNetwork/refs/heads/master/assets/phototourism_sample_images/united_states_capitol_26757027_6717084061.jpg")
url_image1 = "https://raw.githubusercontent.com/magicleap/SuperGluePretrainedNetwork/refs/heads/master/assets/phototourism_sample_images/united_states_capitol_98169888_3347710852.jpg"
image1 = Image.open(requests.get(url_image1, stream=True).raw)
url_image2 = "https://raw.githubusercontent.com/magicleap/SuperGluePretrainedNetwork/refs/heads/master/assets/phototourism_sample_images/united_states_capitol_26757027_6717084061.jpg"
image2 = Image.open(requests.get(url_image2, stream=True).raw)
images = [image1, image2]
processor = AutoImageProcessor.from_pretrained("stevenbucaille/efficientloftr")
model = AutoModelForKeypointMatching.from_pretrained("stevenbucaille/efficientloftr")
processor = AutoImageProcessor.from_pretrained("zju-community/efficientloftr")
model = AutoModelForKeypointMatching.from_pretrained("zju-community/efficientloftr")
inputs = processor(images, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
```
You can use the `post_process_keypoint_matching` method from the `ImageProcessor` to get the keypoints and matches in a more readable format:
```python
# Post-process to get keypoints and matches
image_sizes = [[(image.height, image.width) for image in images]]
outputs = processor.post_process_keypoint_matching(outputs, image_sizes, threshold=0.2)
for i, output in enumerate(outputs):
print("For the image pair", i)
for keypoint0, keypoint1, matching_score in zip(
output["keypoints0"], output["keypoints1"], output["matching_scores"]
):
print(
f"Keypoint at coordinate {keypoint0.numpy()} in the first image matches with keypoint at coordinate {keypoint1.numpy()} in the second image with a score of {matching_score}."
)
processed_outputs = processor.post_process_keypoint_matching(outputs, image_sizes, threshold=0.2)
```
From the post processed outputs, you can visualize the matches between the two images using the following code:
```python
images_with_matching = processor.visualize_keypoint_matching(images, outputs)
```
</hfoption>
</hfoptions>
![image/png](https://cdn-uploads.huggingface.co/production/uploads/632885ba1558dac67c440aa8/2nJZQlFToCYp_iLurvcZ4.png)
## Notes
This model was contributed by [stevenbucaille](https://huggingface.co/stevenbucaille).
The original code can be found [here](https://github.com/zju3dv/EfficientLoFTR).
- EfficientLoFTR is designed for efficiency while maintaining high accuracy. It uses an aggregated attention mechanism with adaptive token selection to reduce computational overhead compared to the original LoFTR.
```py
from transformers import AutoImageProcessor, AutoModelForKeypointMatching
import torch
from PIL import Image
import requests
processor = AutoImageProcessor.from_pretrained("zju-community/efficientloftr")
model = AutoModelForKeypointMatching.from_pretrained("zju-community/efficientloftr")
# EfficientLoFTR requires pairs of images
images = [image1, image2]
inputs = processor(images, return_tensors="pt")
outputs = model(**inputs)
# Extract matching information
keypoints = outputs.keypoints # Keypoints in both images
matches = outputs.matches # Matching indices
matching_scores = outputs.matching_scores # Confidence scores
```
- The model produces semi-dense matches, offering a good balance between the density of matches and computational efficiency. It excels in handling large viewpoint changes and texture-poor scenarios.
- For better visualization and analysis, use the [`~EfficientLoFTRImageProcessor.post_process_keypoint_matching`] method to get matches in a more readable format.
```py
# Process outputs for visualization
image_sizes = [[(image.height, image.width) for image in images]]
processed_outputs = processor.post_process_keypoint_matching(outputs, image_sizes, threshold=0.2)
for i, output in enumerate(processed_outputs):
print(f"For the image pair {i}")
for keypoint0, keypoint1, matching_score in zip(
output["keypoints0"], output["keypoints1"], output["matching_scores"]
):
print(f"Keypoint at {keypoint0.numpy()} matches with keypoint at {keypoint1.numpy()} with score {matching_score}")
```
- Visualize the matches between the images using the built-in plotting functionality.
```py
# Easy visualization using the built-in plotting method
visualized_images = processor.visualize_keypoint_matching(images, processed_outputs)
```
- EfficientLoFTR uses a novel two-stage correlation layer that achieves accurate subpixel correspondences, improving upon the original LoFTR's fine correlation module.
<div class="flex justify-center">
<img src="https://cdn-uploads.huggingface.co/production/uploads/632885ba1558dac67c440aa8/2nJZQlFToCYp_iLurvcZ4.png">
</div>
## Resources
- Refer to the [original EfficientLoFTR repository](https://github.com/zju3dv/EfficientLoFTR) for more examples and implementation details.
- [EfficientLoFTR project page](https://zju3dv.github.io/efficientloftr/) with interactive demos and additional information.
## EfficientLoFTRConfig
@ -101,6 +131,8 @@ The original code can be found [here](https://github.com/zju3dv/EfficientLoFTR).
- post_process_keypoint_matching
- visualize_keypoint_matching
<frameworkcontent>
<pt>
## EfficientLoFTRModel
[[autodoc]] EfficientLoFTRModel
@ -111,4 +143,7 @@ The original code can be found [here](https://github.com/zju3dv/EfficientLoFTR).
[[autodoc]] EfficientLoFTRForKeypointMatching
- forward
- forward
</pt>
</frameworkcontent>

View File

@ -14,29 +14,83 @@ rendered properly in your Markdown viewer.
-->
# ERNIE
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white" >
</div>
</div>
## Overview
ERNIE is a series of powerful models proposed by baidu, especially in Chinese tasks,
including [ERNIE1.0](https://huggingface.co/papers/1904.09223), [ERNIE2.0](https://ojs.aaai.org/index.php/AAAI/article/view/6428),
[ERNIE3.0](https://huggingface.co/papers/2107.02137), [ERNIE-Gram](https://huggingface.co/papers/2010.12148), [ERNIE-health](https://huggingface.co/papers/2110.07244), etc.
# ERNIE
These models are contributed by [nghuyong](https://huggingface.co/nghuyong) and the official code can be found in [PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP) (in PaddlePaddle).
[ERNIE1.0](https://arxiv.org/abs/1904.09223), [ERNIE2.0](https://ojs.aaai.org/index.php/AAAI/article/view/6428),
[ERNIE3.0](https://arxiv.org/abs/2107.02137), [ERNIE-Gram](https://arxiv.org/abs/2010.12148), [ERNIE-health](https://arxiv.org/abs/2110.07244) are a series of powerful models proposed by baidu, especially in Chinese tasks.
### Usage example
Take `ernie-1.0-base-zh` as an example:
ERNIE (Enhanced Representation through kNowledge IntEgration) is designed to learn language representation enhanced by knowledge masking strategies, which includes entity-level masking and phrase-level masking.
```Python
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("nghuyong/ernie-1.0-base-zh")
model = AutoModel.from_pretrained("nghuyong/ernie-1.0-base-zh")
Other ERNIE models released by baidu can be found at [Ernie 4.5](./ernie4_5), and [Ernie 4.5 MoE](./ernie4_5_moe).
> [!TIP]
> This model was contributed by [nghuyong](https://huggingface.co/nghuyong), and the official code can be found in [PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP) (in PaddlePaddle).
>
> Click on the ERNIE models in the right sidebar for more examples of how to apply ERNIE to different language tasks.
The example below demonstrates how to predict the `[MASK]` token with [`Pipeline`], [`AutoModel`], and from the command line.
<hfoptions id="usage">
<hfoption id="Pipeline">
```py
from transformers import pipeline
pipeline = pipeline(
task="fill-mask",
model="nghuyong/ernie-3.0-xbase-zh"
)
pipeline("巴黎是[MASK]国的首都。")
```
### Model checkpoints
</hfoption>
<hfoption id="AutoModel">
```py
import torch
from transformers import AutoModelForMaskedLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(
"nghuyong/ernie-3.0-xbase-zh",
)
model = AutoModelForMaskedLM.from_pretrained(
"nghuyong/ernie-3.0-xbase-zh",
torch_dtype=torch.float16,
device_map="auto"
)
inputs = tokenizer("巴黎是[MASK]国的首都。", return_tensors="pt").to("cuda")
with torch.no_grad():
outputs = model(**inputs)
predictions = outputs.logits
masked_index = torch.where(inputs['input_ids'] == tokenizer.mask_token_id)[1]
predicted_token_id = predictions[0, masked_index].argmax(dim=-1)
predicted_token = tokenizer.decode(predicted_token_id)
print(f"The predicted token is: {predicted_token}")
```
</hfoption>
<hfoption id="transformers CLI">
```bash
echo -e "巴黎是[MASK]国的首都。" | transformers run --task fill-mask --model nghuyong/ernie-3.0-xbase-zh --device 0
```
</hfoption>
</hfoptions>
## Notes
Model variants are available in different sizes and languages.
| Model Name | Language | Description |
|:-------------------:|:--------:|:-------------------------------:|
@ -51,18 +105,11 @@ model = AutoModel.from_pretrained("nghuyong/ernie-1.0-base-zh")
| ernie-health-zh | Chinese | Layer:12, Heads:12, Hidden:768 |
| ernie-gram-zh | Chinese | Layer:12, Heads:12, Hidden:768 |
You can find all the supported models from huggingface's model hub: [huggingface.co/nghuyong](https://huggingface.co/nghuyong), and model details from paddle's official
repo: [PaddleNLP](https://paddlenlp.readthedocs.io/zh/latest/model_zoo/transformers/ERNIE/contents.html)
and [ERNIE](https://github.com/PaddlePaddle/ERNIE/blob/repro).
## Resources
- [Text classification task guide](../tasks/sequence_classification)
- [Token classification task guide](../tasks/token_classification)
- [Question answering task guide](../tasks/question_answering)
- [Causal language modeling task guide](../tasks/language_modeling)
- [Masked language modeling task guide](../tasks/masked_language_modeling)
- [Multiple choice task guide](../tasks/multiple_choice)
You can find all the supported models from huggingface's model hub: [huggingface.co/nghuyong](https://huggingface.co/nghuyong), and model details from paddle's official
repo: [PaddleNLP](https://paddlenlp.readthedocs.io/zh/latest/model_zoo/transformers/ERNIE/contents.html)
and [ERNIE's legacy branch](https://github.com/PaddlePaddle/ERNIE/tree/legacy/develop).
## ErnieConfig
@ -116,4 +163,4 @@ and [ERNIE](https://github.com/PaddlePaddle/ERNIE/blob/repro).
## ErnieForQuestionAnswering
[[autodoc]] ErnieForQuestionAnswering
- forward
- forward

View File

@ -29,9 +29,9 @@ rendered properly in your Markdown viewer.
The Ernie 4.5 model was released in the [Ernie 4.5 Model Family](https://ernie.baidu.com/blog/posts/ernie4.5/) release by baidu.
This family of models contains multiple different architectures and model sizes. This model in specific targets the base text
model without mixture of experts (moe) with 0.3B parameters in total. It uses the standard [Llama](./llama.md) at its core.
model without mixture of experts (moe) with 0.3B parameters in total. It uses the standard [Llama](./llama) at its core.
Other models from the family can be found at [Ernie 4.5 Moe](./ernie4_5_moe.md).
Other models from the family can be found at [Ernie 4.5 Moe](./ernie4_5_moe).
<div class="flex justify-center">
<img src="https://ernie.baidu.com/blog/posts/ernie4.5/overview.png"/>

View File

@ -30,10 +30,10 @@ rendered properly in your Markdown viewer.
The Ernie 4.5 Moe model was released in the [Ernie 4.5 Model Family](https://ernie.baidu.com/blog/posts/ernie4.5/) release by baidu.
This family of models contains multiple different architectures and model sizes. This model in specific targets the base text
model with mixture of experts (moe) - one with 21B total, 3B active parameters and another one with 300B total, 47B active parameters.
It uses the standard [Llama](./llama.md) at its core combined with a specialized MoE based on [Mixtral](./mixtral.md) with additional shared
It uses the standard [Llama](./llama) at its core combined with a specialized MoE based on [Mixtral](./mixtral) with additional shared
experts.
Other models from the family can be found at [Ernie 4.5](./ernie4_5.md).
Other models from the family can be found at [Ernie 4.5](./ernie4_5).
<div class="flex justify-center">
<img src="https://ernie.baidu.com/blog/posts/ernie4.5/overview.png"/>

View File

@ -30,7 +30,7 @@ Gemma3n is a multimodal model with pretrained and instruction-tuned variants, av
large portions of the language model architecture are shared with prior Gemma releases, there are many new additions in
this model, including [Alternating Updates][altup] (AltUp), [Learned Augmented Residual Layer][laurel] (LAuReL),
[MatFormer][matformer], Per-Layer Embeddings (PLE), [Activation Sparsity with Statistical Top-k][spark-transformer], and KV cache sharing. The language model uses
a similar attention pattern to [Gemma 3](./gemma3.md) with alternating 4 local sliding window self-attention layers for
a similar attention pattern to [Gemma 3](./gemma3) with alternating 4 local sliding window self-attention layers for
every global self-attention layer with a maximum context length of 32k tokens. Gemma 3n introduces
[MobileNet v5][mobilenetv5] as the vision encoder, using a default resolution of 768x768 pixels, and adds a newly
trained audio encoder based on the [Universal Speech Model][usm] (USM) architecture.

View File

@ -0,0 +1,58 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
# GptOss
## Overview
The GptOss model was proposed in [<INSERT PAPER NAME HERE>](<INSERT PAPER LINK HERE>) by <INSERT AUTHORS HERE>.
<INSERT SHORT SUMMARY HERE>
The abstract from the paper is the following:
*<INSERT PAPER ABSTRACT HERE>*
Tips:
<INSERT TIPS ABOUT MODEL HERE>
This model was contributed by [INSERT YOUR HF USERNAME HERE](https://huggingface.co/<INSERT YOUR HF USERNAME HERE>).
The original code can be found [here](<INSERT LINK TO GITHUB REPO HERE>).
## GptOssConfig
[[autodoc]] GptOssConfig
## GptOssModel
[[autodoc]] GptOssModel
- forward
## GptOssForCausalLM
[[autodoc]] GptOssForCausalLM
- forward

View File

@ -169,9 +169,9 @@ model = Idefics2ForConditionalGeneration.from_pretrained(
## Shrinking down Idefics2 using quantization
As the Idefics2 model has 8 billion parameters, that would require about 16GB of GPU RAM in half precision (float16), since each parameter is stored in 2 bytes. However, one can shrink down the size of the model using [quantization](../quantization.md). If the model is quantized to 4 bits (or half a byte per parameter), that requires only about 3.5GB of RAM.
As the Idefics2 model has 8 billion parameters, that would require about 16GB of GPU RAM in half precision (float16), since each parameter is stored in 2 bytes. However, one can shrink down the size of the model using [quantization](../quantization). If the model is quantized to 4 bits (or half a byte per parameter), that requires only about 3.5GB of RAM.
Quantizing a model is as simple as passing a `quantization_config` to the model. One can change the code snippet above with the changes below. We'll leverage the BitsAndyBytes quantization (but refer to [this page](../quantization.md) for other quantization methods):
Quantizing a model is as simple as passing a `quantization_config` to the model. One can change the code snippet above with the changes below. We'll leverage the BitsAndyBytes quantization (but refer to [this page](../quantization) for other quantization methods):
```diff
+ from transformers import BitsAndBytesConfig
@ -193,7 +193,7 @@ model = Idefics2ForConditionalGeneration.from_pretrained(
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with Idefics2. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
- A notebook on how to fine-tune Idefics2 on a custom dataset using the [Trainer](../main_classes/trainer.md) can be found [here](https://colab.research.google.com/drive/1NtcTgRbSBKN7pYD3Vdx1j9m8pt3fhFDB?usp=sharing). It supports both full fine-tuning as well as (quantized) LoRa.
- A notebook on how to fine-tune Idefics2 on a custom dataset using the [Trainer](../main_classes/trainer) can be found [here](https://colab.research.google.com/drive/1NtcTgRbSBKN7pYD3Vdx1j9m8pt3fhFDB?usp=sharing). It supports both full fine-tuning as well as (quantized) LoRa.
- A script regarding how to fine-tune Idefics2 using the TRL library can be found [here](https://gist.github.com/edbeeching/228652fc6c2b29a1641be5a5778223cb).
- Demo notebook regarding fine-tuning Idefics2 for JSON extraction use cases can be found [here](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/Idefics2). 🌎

View File

@ -44,11 +44,11 @@ Here is the example of visual understanding with a single image.
> Note that the model has been trained with a specific prompt format for chatting. Use `processor.apply_chat_template(my_conversation_dict)` to correctly format your prompts.
```python
import torch
from PIL import Image
import requests
import torch
from PIL import Image
import requests
from transformers import JanusForConditionalGeneration, JanusProcessor
from transformers import JanusForConditionalGeneration, JanusProcessor
model_id = "deepseek-community/Janus-Pro-1B"
# Prepare Input for generation.
@ -64,7 +64,7 @@ messages = [
# Set generation mode to `text` to perform text generation.
processor = JanusProcessor.from_pretrained(model_id)
model = JanusForConditionalGeneration.from_pretrained(model_id,
model = JanusForConditionalGeneration.from_pretrained(model_id,
torch_dtype=torch.bfloat16,
device_map="auto")
@ -209,6 +209,10 @@ for i, image in enumerate(images['pixel_values']):
[[autodoc]] JanusImageProcessor
## JanusImageProcessorFast
[[autodoc]] JanusImageProcessorFast
## JanusVisionModel
[[autodoc]] JanusVisionModel

View File

@ -107,7 +107,7 @@ processed_outputs = processor.post_process_keypoint_matching(outputs, image_size
```py
# Easy visualization using the built-in plotting method
processor.plot_keypoint_matching(images, processed_outputs)
processor.visualize_keypoint_matching(images, processed_outputs)
```
<div class="flex justify-center">
@ -128,7 +128,7 @@ processed_outputs = processor.post_process_keypoint_matching(outputs, image_size
- preprocess
- post_process_keypoint_matching
- plot_keypoint_matching
- visualize_keypoint_matching
<frameworkcontent>
<pt>

View File

@ -33,7 +33,7 @@ alt="drawing" width="600"/>
<small> MGP-STR architecture. Taken from the <a href="https://huggingface.co/papers/2209.03592">original paper</a>. </small>
MGP-STR is trained on two synthetic datasets [MJSynth]((http://www.robots.ox.ac.uk/~vgg/data/text/)) (MJ) and [SynthText](http://www.robots.ox.ac.uk/~vgg/data/scenetext/) (ST) without fine-tuning on other datasets. It achieves state-of-the-art results on six standard Latin scene text benchmarks, including 3 regular text datasets (IC13, SVT, IIIT) and 3 irregular ones (IC15, SVTP, CUTE).
MGP-STR is trained on two synthetic datasets [MJSynth](http://www.robots.ox.ac.uk/~vgg/data/text/) (MJ) and [SynthText](http://www.robots.ox.ac.uk/~vgg/data/scenetext/) (ST) without fine-tuning on other datasets. It achieves state-of-the-art results on six standard Latin scene text benchmarks, including 3 regular text datasets (IC13, SVT, IIIT) and 3 irregular ones (IC15, SVTP, CUTE).
This model was contributed by [yuekun](https://huggingface.co/yuekun). The original code can be found [here](https://github.com/AlibabaResearch/AdvancedLiterateMachinery/tree/main/OCR/MGP-STR).
## Inference example

View File

@ -14,30 +14,29 @@ rendered properly in your Markdown viewer.
-->
# Mimi
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
## Overview
# Mimi
The Mimi model was proposed in [Moshi: a speech-text foundation model for real-time dialogue](https://kyutai.org/Moshi.pdf) by Alexandre Défossez, Laurent Mazaré, Manu Orsini, Amélie Royer, Patrick Pérez, Hervé Jégou, Edouard Grave and Neil Zeghidour. Mimi is a high-fidelity audio codec model developed by the Kyutai team, that combines semantic and acoustic information into audio tokens running at 12Hz and a bitrate of 1.1kbps. In other words, it can be used to map audio waveforms into “audio tokens”, known as “codebooks”.
[Mimi](huggingface.co/papers/2410.00037) is a neural audio codec model with pretrained and quantized variants, designed for efficient speech representation and compression. The model operates at 1.1 kbps with a 12 Hz frame rate and uses a convolutional encoder-decoder architecture combined with a residual vector quantizer of 16 codebooks. Mimi outputs dual token streams i.e. semantic and acoustic to balance linguistic richness with high fidelity reconstruction. Key features include a causal streaming encoder for low-latency use, dual-path tokenization for flexible downstream generation, and integration readiness with large speech models like Moshi.
The abstract from the paper is the following:
You can find the original Mimi checkpoints under the [Kyutai](https://huggingface.co/kyutai/models?search=mimi) organization.
*We introduce Moshi, a speech-text foundation model and full-duplex spoken dialogue framework. Current systems for spoken dialogue rely on pipelines of independent components, namely voice activity detection, speech recognition, textual dialogue and text-to-speech. Such frameworks cannot emulate the experience of real conversations. First, their complexity induces a latency of several seconds between interactions. Second, text being the intermediate modality for dialogue, non-linguistic information that modifies meaning— such as emotion or non-speech sounds— is lost in the interaction. Finally, they rely on a segmentation into speaker turns, which does not take into account overlapping speech, interruptions and interjections. Moshi solves these independent issues altogether by casting spoken dialogue as speech-to-speech generation. Starting from a text language model backbone, Moshi generates speech as tokens from the residual quantizer of a neural audio codec, while modeling separately its own speech and that of the user into parallel streams. This allows for the removal of explicit speaker turns, and the modeling of arbitrary conversational dynamics. We moreover extend the hierarchical semantic-to-acoustic token generation of previous work to first predict time-aligned text tokens as a prefix to audio tokens. Not only this “Inner Monologue” method significantly improves the linguistic quality of generated speech, but we also illustrate how it can provide streaming speech recognition and text-to-speech. Our resulting model is the first real-time full-duplex spoken large language model, with a theoretical latency of 160ms, 200ms in practice, and is available at github.com/kyutai-labs/moshi.*
>[!TIP]
> This model was contributed by [ylacombe](https://huggingface.co/ylacombe).
>
> Click on the Mimi models in the right sidebar for more examples of how to apply Mimi.
Its architecture is based on [Encodec](model_doc/encodec) with several major differences:
* it uses a much lower frame-rate.
* it uses additional transformers for encoding and decoding for better latent contextualization
* it uses a different quantization scheme: one codebook is dedicated to semantic projection.
The example below demonstrates how to encode and decode audio with the [`AutoModel`] class.
## Usage example
Here is a quick example of how to encode and decode an audio using this model:
<hfoptions id="usage">
<hfoption id="AutoModel">
```python
>>> from datasets import load_dataset, Audio
@ -59,9 +58,8 @@ Here is a quick example of how to encode and decode an audio using this model:
>>> audio_values = model(inputs["input_values"], inputs["padding_mask"]).audio_values
```
This model was contributed by [Yoach Lacombe (ylacombe)](https://huggingface.co/ylacombe).
The original code can be found [here](https://github.com/kyutai-labs/moshi).
</hfoption>
</hfoptions>
## MimiConfig
@ -72,4 +70,4 @@ The original code can be found [here](https://github.com/kyutai-labs/moshi).
[[autodoc]] MimiModel
- decode
- encode
- forward
- forward

View File

@ -115,9 +115,9 @@ The Flash Attention-2 model uses also a more memory efficient cache slicing mech
## Shrinking down MiniMax using quantization
As the MiniMax model has 456 billion parameters, that would require about 912GB of GPU RAM in half precision (float16), since each parameter is stored in 2 bytes. However, one can shrink down the size of the model using [quantization](../quantization.md). If the model is quantized to 4 bits (or half a byte per parameter), about 228 GB of RAM is required.
As the MiniMax model has 456 billion parameters, that would require about 912GB of GPU RAM in half precision (float16), since each parameter is stored in 2 bytes. However, one can shrink down the size of the model using [quantization](../quantization). If the model is quantized to 4 bits (or half a byte per parameter), about 228 GB of RAM is required.
Quantizing a model is as simple as passing a `quantization_config` to the model. Below, we'll leverage the bitsandbytes quantization library (but refer to [this page](../quantization.md) for alternative quantization methods):
Quantizing a model is as simple as passing a `quantization_config` to the model. Below, we'll leverage the bitsandbytes quantization library (but refer to [this page](../quantization) for alternative quantization methods):
```python
>>> import torch

View File

@ -146,9 +146,9 @@ The Flash Attention-2 model uses also a more memory efficient cache slicing mech
## Shrinking down Mixtral using quantization
As the Mixtral model has 45 billion parameters, that would require about 90GB of GPU RAM in half precision (float16), since each parameter is stored in 2 bytes. However, one can shrink down the size of the model using [quantization](../quantization.md). If the model is quantized to 4 bits (or half a byte per parameter), a single A100 with 40GB of RAM is enough to fit the entire model, as in that case only about 27 GB of RAM is required.
As the Mixtral model has 45 billion parameters, that would require about 90GB of GPU RAM in half precision (float16), since each parameter is stored in 2 bytes. However, one can shrink down the size of the model using [quantization](../quantization). If the model is quantized to 4 bits (or half a byte per parameter), a single A100 with 40GB of RAM is enough to fit the entire model, as in that case only about 27 GB of RAM is required.
Quantizing a model is as simple as passing a `quantization_config` to the model. Below, we'll leverage the bitsandbytes quantization library (but refer to [this page](../quantization.md) for alternative quantization methods):
Quantizing a model is as simple as passing a `quantization_config` to the model. Below, we'll leverage the bitsandbytes quantization library (but refer to [this page](../quantization) for alternative quantization methods):
```python
>>> import torch

View File

@ -0,0 +1,124 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
# MM Grounding DINO
[MM Grounding DINO](https://arxiv.org/abs/2401.02361) model was proposed in [An Open and Comprehensive Pipeline for Unified Object Grounding and Detection](https://arxiv.org/abs/2401.02361) by Xiangyu Zhao, Yicheng Chen, Shilin Xu, Xiangtai Li, Xinjiang Wang, Yining Li, Haian Huang>.
MM Grounding DINO improves upon the [Grounding DINO](https://huggingface.co/docs/transformers/model_doc/grounding-dino) by improving the contrastive class head and removing the parameter sharing in the decoder, improving zero-shot detection performance on both COCO (50.6(+2.2) AP) and LVIS (31.9(+11.8) val AP and 41.4(+12.6) minival AP).
You can find all the original MM Grounding DINO checkpoints under the [MM Grounding DINO](https://huggingface.co/collections/openmmlab-community/mm-grounding-dino-688cbde05b814c4e2832f9df) collection. This model also supports LLMDet inference. You can find LLMDet checkpoints under the [LLMDet](https://huggingface.co/collections/iSEE-Laboratory/llmdet-688475906dc235d5f1dc678e) collection.
> [!TIP]
> Click on the MM Grounding DINO models in the right sidebar for more examples of how to apply MM Grounding DINO to different MM Grounding DINO tasks.
The example below demonstrates how to generate text based on an image with the [`AutoModelForZeroShotObjectDetection`] class.
<hfoptions id="usage">
<hfoption id="AutoModel">
```py
import torch
from transformers import AutoModelForZeroShotObjectDetection, AutoProcessor
from transformers.image_utils import load_image
# Prepare processor and model
model_id = "openmmlab-community/mm_grounding_dino_tiny_o365v1_goldg_v3det"
device = "cuda" if torch.cuda.is_available() else "cpu"
processor = AutoProcessor.from_pretrained(model_id)
model = AutoModelForZeroShotObjectDetection.from_pretrained(model_id).to(device)
# Prepare inputs
image_url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = load_image(image_url)
text_labels = [["a cat", "a remote control"]]
inputs = processor(images=image, text=text_labels, return_tensors="pt").to(device)
# Run inference
with torch.no_grad():
outputs = model(**inputs)
# Postprocess outputs
results = processor.post_process_grounded_object_detection(
outputs,
threshold=0.4,
target_sizes=[(image.height, image.width)]
)
# Retrieve the first image result
result = results[0]
for box, score, labels in zip(result["boxes"], result["scores"], result["labels"]):
box = [round(x, 2) for x in box.tolist()]
print(f"Detected {labels} with confidence {round(score.item(), 3)} at location {box}")
```
</hfoption>
</hfoptions>
## Notes
- Here's a table of models and their object detection performance results on COCO (results from [official repo](https://github.com/open-mmlab/mmdetection/blob/main/configs/mm_grounding_dino/README.md)):
| Model | Backbone | Pre-Train Data | Style | COCO mAP |
| ------------------------------------------------------------------------------------------------------------------------------ | -------- | ------------------------ | --------- | ---------- |
| [mm_grounding_dino_tiny_o365v1_goldg](https://huggingface.co/openmmlab-community/mm_grounding_dino_tiny_o365v1_goldg) | Swin-T | O365,GoldG | Zero-shot | 50.4(+2.3) |
| [mm_grounding_dino_tiny_o365v1_goldg_grit](https://huggingface.co/openmmlab-community/mm_grounding_dino_tiny_o365v1_goldg_grit) | Swin-T | O365,GoldG,GRIT | Zero-shot | 50.5(+2.1) |
| [mm_grounding_dino_tiny_o365v1_goldg_v3det](https://huggingface.co/openmmlab-community/mm_grounding_dino_tiny_o365v1_goldg_v3det) | Swin-T | O365,GoldG,V3Det | Zero-shot | 50.6(+2.2) |
| [mm_grounding_dino_tiny_o365v1_goldg_grit_v3det](https://huggingface.co/openmmlab-community/mm_grounding_dino_tiny_o365v1_goldg_grit_v3det) | Swin-T | O365,GoldG,GRIT,V3Det | Zero-shot | 50.4(+2.0) |
| [mm_grounding_dino_base_o365v1_goldg_v3det](https://huggingface.co/openmmlab-community/mm_grounding_dino_base_o365v1_goldg_v3det) | Swin-B | O365,GoldG,V3Det | Zero-shot | 52.5 |
| [mm_grounding_dino_base_all](https://huggingface.co/openmmlab-community/mm_grounding_dino_base_all) | Swin-B | O365,ALL | - | 59.5 |
| [mm_grounding_dino_large_o365v2_oiv6_goldg](https://huggingface.co/openmmlab-community/mm_grounding_dino_large_o365v2_oiv6_goldg) | Swin-L | O365V2,OpenImageV6,GoldG | Zero-shot | 53.0 |
| [mm_grounding_dino_large_all](https://huggingface.co/openmmlab-community/mm_grounding_dino_large_all) | Swin-L | O365V2,OpenImageV6,ALL | - | 60.3 |
- Here's a table of MM Grounding DINO tiny models and their object detection performance on LVIS (results from [official repo](https://github.com/open-mmlab/mmdetection/blob/main/configs/mm_grounding_dino/README.md)):
| Model | Pre-Train Data | MiniVal APr | MiniVal APc | MiniVal APf | MiniVal AP | Val1.0 APr | Val1.0 APc | Val1.0 APf | Val1.0 AP |
| ------------------------------------------------------------------------------------------------------------------------------ | --------------------- | ----------- | ----------- | ----------- | ----------- | ---------- | ---------- | ---------- | ----------- |
| [mm_grounding_dino_tiny_o365v1_goldg](https://huggingface.co/openmmlab-community/mm_grounding_dino_tiny_o365v1_goldg) | O365,GoldG | 28.1 | 30.2 | 42.0 | 35.7(+6.9) | 17.1 | 22.4 | 36.5 | 27.0(+6.9) |
| [mm_grounding_dino_tiny_o365v1_goldg_grit](https://huggingface.co/openmmlab-community/mm_grounding_dino_tiny_o365v1_goldg_grit) | O365,GoldG,GRIT | 26.6 | 32.4 | 41.8 | 36.5(+7.7) | 17.3 | 22.6 | 36.4 | 27.1(+7.0) |
| [mm_grounding_dino_tiny_o365v1_goldg_v3det](https://huggingface.co/openmmlab-community/mm_grounding_dino_tiny_o365v1_goldg_v3det) | O365,GoldG,V3Det | 33.0 | 36.0 | 45.9 | 40.5(+11.7) | 21.5 | 25.5 | 40.2 | 30.6(+10.5) |
| [mm_grounding_dino_tiny_o365v1_goldg_grit_v3det](https://huggingface.co/openmmlab-community/mm_grounding_dino_tiny_o365v1_goldg_grit_v3det) | O365,GoldG,GRIT,V3Det | 34.2 | 37.4 | 46.2 | 41.4(+12.6) | 23.6 | 27.6 | 40.5 | 31.9(+11.8) |
- This implementation also supports inference for [LLMDet](https://github.com/iSEE-Laboratory/LLMDet). Here's a table of LLMDet models and their performance on LVIS (results from [official repo](https://github.com/iSEE-Laboratory/LLMDet)):
| Model | Pre-Train Data | MiniVal APr | MiniVal APc | MiniVal APf | MiniVal AP | Val1.0 APr | Val1.0 APc | Val1.0 APf | Val1.0 AP |
| --------------------------------------------------------- | -------------------------------------------- | ------------ | ----------- | ----------- | ----------- | ---------- | ---------- | ---------- | ----------- |
| [llmdet_tiny](https://huggingface.co/iSEE-Laboratory/llmdet_tiny) | (O365,GoldG,GRIT,V3Det) + GroundingCap-1M | 44.7 | 37.3 | 39.5 | 50.7 | 34.9 | 26.0 | 30.1 | 44.3 |
| [llmdet_base](https://huggingface.co/iSEE-Laboratory/llmdet_base) | (O365,GoldG,V3Det) + GroundingCap-1M | 48.3 | 40.8 | 43.1 | 54.3 | 38.5 | 28.2 | 34.3 | 47.8 |
| [llmdet_large](https://huggingface.co/iSEE-Laboratory/llmdet_large) | (O365V2,OpenImageV6,GoldG) + GroundingCap-1M | 51.1 | 45.1 | 46.1 | 56.6 | 42.0 | 31.6 | 38.8 | 50.2 |
## MMGroundingDinoConfig
[[autodoc]] MMGroundingDinoConfig
## MMGroundingDinoModel
[[autodoc]] MMGroundingDinoModel
- forward
## MMGroundingDinoForObjectDetection
[[autodoc]] MMGroundingDinoForObjectDetection
- forward

View File

@ -115,6 +115,11 @@ echo -e "Plants create [MASK] through a process known as photosynthesis." | tran
[[autodoc]] ModernBertForTokenClassification
- forward
## ModernBertForMultipleChoice
[[autodoc]] ModernBertForMultipleChoice
- forward
## ModernBertForQuestionAnswering
[[autodoc]] ModernBertForQuestionAnswering

View File

@ -14,54 +14,115 @@ rendered properly in your Markdown viewer.
-->
# mT5
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=">
</div>
</div>
## Overview
# mT5
The mT5 model was presented in [mT5: A massively multilingual pre-trained text-to-text transformer](https://huggingface.co/papers/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya
Siddhant, Aditya Barua, Colin Raffel.
[mT5](https://huggingface.co/papers/2010.11934) is a multilingual variant of [T5](./t5), training on 101 languages. It also incorporates a new "accidental translation" technique to prevent the model from incorrectly translating predictions into the wrong language.
The abstract from the paper is the following:
You can find all the original [mT5] checkpoints under the [mT5](https://huggingface.co/collections/google/mt5-release-65005f1a520f8d7b4d039509) collection.
*The recent "Text-to-Text Transfer Transformer" (T5) leveraged a unified text-to-text format and scale to attain
state-of-the-art results on a wide variety of English-language NLP tasks. In this paper, we introduce mT5, a
multilingual variant of T5 that was pre-trained on a new Common Crawl-based dataset covering 101 languages. We detail
the design and modified training of mT5 and demonstrate its state-of-the-art performance on many multilingual
benchmarks. We also describe a simple technique to prevent "accidental translation" in the zero-shot setting, where a
generative model chooses to (partially) translate its prediction into the wrong language. All of the code and model
checkpoints used in this work are publicly available.*
> [!TIP]
> This model was contributed by [patrickvonplaten](https://huggingface.co/patrickvonplaten).
>
> Click on the mT5 models in the right sidebar for more examples of how to apply mT5 to different language tasks.
Note: mT5 was only pre-trained on [mC4](https://huggingface.co/datasets/mc4) excluding any supervised training.
Therefore, this model has to be fine-tuned before it is usable on a downstream task, unlike the original T5 model.
Since mT5 was pre-trained unsupervisedly, there's no real advantage to using a task prefix during single-task
fine-tuning. If you are doing multi-task fine-tuning, you should use a prefix.
The example below demonstrates how to summarize text with [`Pipeline`], [`AutoModel`], and from the command line.
Google has released the following variants:
<hfoptions id="usage">
<hfoption id="Pipeline">
- [google/mt5-small](https://huggingface.co/google/mt5-small)
```python
import torch
from transformers import pipeline
- [google/mt5-base](https://huggingface.co/google/mt5-base)
pipeline = pipeline(
task="text2text-generation",
model="csebuetnlp/mT5_multilingual_XLSum",
torch_dtype=torch.float16,
device=0
)
pipeline("""Plants are remarkable organisms that produce their own food using a method called photosynthesis.
This process involves converting sunlight, carbon dioxide, and water into glucose, which provides energy for growth.
Plants play a crucial role in sustaining life on Earth by generating oxygen and serving as the foundation of most ecosystems.""")
```
- [google/mt5-large](https://huggingface.co/google/mt5-large)
</hfoption>
<hfoption id="AutoModel">
- [google/mt5-xl](https://huggingface.co/google/mt5-xl)
```python
import torch
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
- [google/mt5-xxl](https://huggingface.co/google/mt5-xxl).
tokenizer = AutoTokenizer.from_pretrained(
"csebuetnlp/mT5_multilingual_XLSum"
)
model = AutoModelForSeq2SeqLM.from_pretrained(
"csebuetnlp/mT5_multilingual_XLSum",
torch_dtype=torch.float16,
device_map="auto",
)
This model was contributed by [patrickvonplaten](https://huggingface.co/patrickvonplaten). The original code can be
found [here](https://github.com/google-research/multilingual-t5).
input_text = """Plants are remarkable organisms that produce their own food using a method called photosynthesis.
This process involves converting sunlight, carbon dioxide, and water into glucose, which provides energy for growth.
Plants play a crucial role in sustaining life on Earth by generating oxygen and serving as the foundation of most ecosystems."""
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
## Resources
output = model.generate(**input_ids, cache_implementation="static")
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
- [Translation task guide](../tasks/translation)
- [Summarization task guide](../tasks/summarization)
</hfoption>
<hfoption id="transformers CLI">
```bash
echo -e "Plants are remarkable organisms that produce their own food using a method called photosynthesis." | transformers run --task text2text-generation --model csebuetnlp/mT5_multilingual_XLSum --device 0
```
</hfoption>
</hfoptions>
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
The example below uses [bitsandbytes](../quantization/bitsandbytes) to only quantize the weights to int4.
```python
import torch
from transformers import BitsAndBytesConfig, AutoModelForSeq2SeqLM, AutoTokenizer
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_quant_type="nf4"
)
model = AutoModelForSeq2SeqLM.from_pretrained(
"csebuetnlp/mT5_multilingual_XLSum",
torch_dtype=torch.bfloat16,
device_map="auto",
quantization_config=quantization_config
)
tokenizer = AutoTokenizer.from_pretrained(
"csebuetnlp/mT5_multilingual_XLSum"
)
input_text = """Plants are remarkable organisms that produce their own food using a method called photosynthesis.
This process involves converting sunlight, carbon dioxide, and water into glucose, which provides energy for growth.
Plants play a crucial role in sustaining life on Earth by generating oxygen and serving as the foundation of most ecosystems."""
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
output = model.generate(**input_ids, cache_implementation="static")
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
## Notes
- mT5 must be fine-tuned for downstream tasks because it was only pretrained on the [mc4](https://huggingface.co/datasets/mc4) dataset.
## MT5Config

View File

@ -38,7 +38,7 @@ This model was contributed by [ajati](https://huggingface.co/ajati), [vijaye12](
## Usage example
The code snippet below shows how to randomly initialize a PatchTSMixer model. The model is compatible with the [Trainer API](../trainer.md).
The code snippet below shows how to randomly initialize a PatchTSMixer model. The model is compatible with the [Trainer API](../trainer).
```python

View File

@ -24,7 +24,7 @@ rendered properly in your Markdown viewer.
# Qwen2MoE
[Qwen2MoE]((https://huggingface.co/papers/2407.10671) ) is a Mixture-of-Experts (MoE) variant of [Qwen2](./qwen2), available as a base model and an aligned chat model. It uses SwiGLU activation, group query attention and a mixture of sliding window attention and full attention. The tokenizer can also be adapted to multiple languages and codes.
[Qwen2MoE](https://huggingface.co/papers/2407.10671) is a Mixture-of-Experts (MoE) variant of [Qwen2](./qwen2), available as a base model and an aligned chat model. It uses SwiGLU activation, group query attention and a mixture of sliding window attention and full attention. The tokenizer can also be adapted to multiple languages and codes.
The MoE architecture uses upcyled models from the dense language models. For example, Qwen1.5-MoE-A2.7B is upcycled from Qwen-1.8B. It has 14.3B parameters but only 2.7B parameters are activated during runtime.

View File

@ -128,6 +128,12 @@ If you're interested in submitting a resource to be included here, please feel f
- preprocess
- post_process_semantic_segmentation
## SegformerImageProcessorFast
[[autodoc]] SegformerImageProcessorFast
- preprocess
- post_process_semantic_segmentation
<frameworkcontent>
<pt>
@ -175,4 +181,4 @@ If you're interested in submitting a resource to be included here, please feel f
- call
</tf>
</frameworkcontent>
</frameworkcontent>

View File

@ -103,38 +103,11 @@ processed_outputs = processor.post_process_keypoint_matching(outputs, image_size
print(f"Keypoint at {keypoint0.numpy()} matches with keypoint at {keypoint1.numpy()} with score {matching_score}")
```
- The example below demonstrates how to visualize matches between two images.
- Visualize the matches between the images using the built-in plotting functionality.
```py
import matplotlib.pyplot as plt
import numpy as np
# Create side by side image
merged_image = np.zeros((max(image1.height, image2.height), image1.width + image2.width, 3))
merged_image[: image1.height, : image1.width] = np.array(image1) / 255.0
merged_image[: image2.height, image1.width :] = np.array(image2) / 255.0
plt.imshow(merged_image)
plt.axis("off")
# Retrieve the keypoints and matches
output = processed_outputs[0]
keypoints0 = output["keypoints0"]
keypoints1 = output["keypoints1"]
matching_scores = output["matching_scores"]
# Plot the matches
for keypoint0, keypoint1, matching_score in zip(keypoints0, keypoints1, matching_scores):
plt.plot(
[keypoint0[0], keypoint1[0] + image1.width],
[keypoint0[1], keypoint1[1]],
color=plt.get_cmap("RdYlGn")(matching_score.item()),
alpha=0.9,
linewidth=0.5,
)
plt.scatter(keypoint0[0], keypoint0[1], c="black", s=2)
plt.scatter(keypoint1[0] + image1.width, keypoint1[1], c="black", s=2)
plt.savefig("matched_image.png", dpi=300, bbox_inches='tight')
# Easy visualization using the built-in plotting method
processor.visualize_keypoint_matching(images, processed_outputs)
```
<div class="flex justify-center">
@ -155,6 +128,7 @@ processed_outputs = processor.post_process_keypoint_matching(outputs, image_size
- preprocess
- post_process_keypoint_matching
- visualize_keypoint_matching
<frameworkcontent>
<pt>

View File

@ -130,6 +130,11 @@ processed_outputs = processor.post_process_keypoint_detection(outputs, [image_si
[[autodoc]] SuperPointImageProcessor
- preprocess
## SuperPointImageProcessorFast
[[autodoc]] SuperPointImageProcessorFast
- preprocess
- post_process_keypoint_detection

View File

@ -69,11 +69,11 @@ print(tokenizer.decode(outputs[0]))
## Model card
The model cards can be found at:
* [Zamba-7B](MODEL_CARD_ZAMBA-7B-v1.md)
* [Zamba-7B](https://huggingface.co/Zyphra/Zamba-7B-v1)
## Issues
For issues with model output, or community discussion, please use the Hugging Face community [forum](https://huggingface.co/zyphra/zamba-7b)
For issues with model output, or community discussion, please use the Hugging Face community [forum](https://huggingface.co/Zyphra/Zamba-7B-v1/discussions)
## License

View File

@ -0,0 +1,22 @@
# Audio transcriptions with WebUI and `transformers serve`
This guide shows how to do audio transcription for chat purposes, using `transformers serve` and [Open WebUI](https://openwebui.com/). This guide assumes you have Open WebUI installed on your machine and ready to run. Please refer to the examples above to use the text functionalities of `transformer serve` with Open WebUI -- the instructions are the same.
To start, let's launch the server. Some of Open WebUI's requests require [CORS](https://developer.mozilla.org/en-US/docs/Web/HTTP/Guides/CORS), which is disabled by default for security reasons, so you need to enable it:
```shell
transformers serve --enable-cors
```
Before you can speak into Open WebUI, you need to update its settings to use your server for speech to text (STT) tasks. Launch Open WebUI, and navigate to the audio tab inside the admin settings. If you're using Open WebUI with the default ports, [this link (default)](http://localhost:3000/admin/settings/audio) or [this link (python deployment)](http://localhost:8080/admin/settings/audio) will take you there. Do the following changes there:
1. Change the type of "Speech-to-Text Engine" to "OpenAI";
2. Update the address to your server's address -- `http://localhost:8000/v1` by default;
3. Type your model of choice into the "STT Model" field, e.g. `openai/whisper-large-v3` ([available models](https://huggingface.co/models?pipeline_tag=automatic-speech-recognition&sort=trending)).
If you've done everything correctly, the audio tab should look like this
<h3 align="center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/transformers_openwebui_stt_settings.png"/>
</h3>
You're now ready to speak! Open a new chat, utter a few words after hitting the microphone button, and you should see the corresponding text on the chat input after the model transcribes it.

View File

@ -16,7 +16,7 @@ rendered properly in your Markdown viewer.
# FP-Quant
[FP-Quant](https://github.com/IST-DASLab/FP-Quant) is a family of quantization algorithms tailored for the Blackwell generation of Nvidia GPUs. The goal is to allow for efficient post-training quantization (PTQ) and quantization-aware trainin (QAT) of LLMs in the [MXFP4 and NVFP4 data-types](https://www.opencompute.org/documents/ocp-microscaling-formats-mx-v1-0-spec-final-pdf).
[FP-Quant](https://github.com/IST-DASLab/FP-Quant) is a family of quantization algorithms tailored for the Blackwell generation of Nvidia GPUs. The goal is to allow for efficient post-training quantization (PTQ) and quantization-aware training (QAT) of LLMs in the [MXFP4 and NVFP4 data-types](https://www.opencompute.org/documents/ocp-microscaling-formats-mx-v1-0-spec-final-pdf).
Currently, only PTQ with MXFP4 is supported. Models can either be quantized on the fly with `quantization_config=FPQuantConfig()`:
@ -63,4 +63,4 @@ model.forward = torch.compile(model.forward, mode="max-autotune", fullgraph=True
FP-Quant currently performs best for very large batch size processing.
See [QuTLASS README](https://github.com/IST-DASLab/qutlass/blob/main/README.md) for speedups.
See [QuTLASS README](https://github.com/IST-DASLab/qutlass/blob/main/README.md) for speedups.

View File

@ -16,7 +16,7 @@ rendered properly in your Markdown viewer.
# SpQR
The [SpQR]((https://hf.co/papers/2306.03078)) quantization algorithm involves a 16x16 tiled bi-level group 3-bit quantization structure with sparse outliers.
The [SpQR](https://hf.co/papers/2306.03078) quantization algorithm involves a 16x16 tiled bi-level group 3-bit quantization structure with sparse outliers.
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/spqr-diagram.png">

View File

@ -18,7 +18,7 @@ rendered properly in your Markdown viewer.
[ONNX](http://onnx.ai) is an open standard that defines a common set of operators and a file format to represent deep learning models in different frameworks, including PyTorch and TensorFlow. When a model is exported to ONNX, the operators construct a computational graph (or *intermediate representation*) which represents the flow of data through the model. Standardized operators and data types makes it easy to switch between frameworks.
The [Optimum](https://huggingface.co/docs/optimum/index) library exports a model to ONNX with configuration objects which are supported for [many architectures]((https://huggingface.co/docs/optimum/exporters/onnx/overview)) and can be easily extended. If a model isn't supported, feel free to make a [contribution](https://huggingface.co/docs/optimum/exporters/onnx/usage_guides/contribute) to Optimum.
The [Optimum](https://huggingface.co/docs/optimum/index) library exports a model to ONNX with configuration objects which are supported for [many architectures](https://huggingface.co/docs/optimum/exporters/onnx/overview) and can be easily extended. If a model isn't supported, feel free to make a [contribution](https://huggingface.co/docs/optimum/exporters/onnx/usage_guides/contribute) to Optimum.
The benefits of exporting to ONNX include the following.

View File

@ -18,8 +18,17 @@ rendered properly in your Markdown viewer.
Transformer models can be efficiently deployed using libraries such as vLLM, Text Generation Inference (TGI), and others. These libraries are designed for production-grade user-facing services, and can scale to multiple servers and millions of concurrent users. Refer to [Transformers as Backend for Inference Servers](./transformers_as_backends) for usage examples.
> [!TIP]
> Responses API is now supported as an experimental API! Read more about it [here](#responses-api).
Apart from that you can also serve transformer models easily using the `transformers serve` CLI. This is ideal for experimentation purposes, or to run models locally for personal and private use.
In this document, we dive into the different supported endpoints and modalities; we also cover the setup of several user interfaces that can be used on top of `transformers serve` in the following guides:
- [Jan (text and MCP user interface)](./jan.md)
- [Cursor (IDE)](./cursor.md)
- [Open WebUI (text, image, speech user interface)](./open_webui.md)
- [Tiny-Agents (text and MCP CLI tool)](./tiny_agents.md)
## Serve CLI
> [!WARNING]
@ -45,7 +54,14 @@ The simplest way to interact with the server is through our `transformers chat`
transformers chat localhost:8000 --model-name-or-path Qwen/Qwen3-4B
```
or by sending an HTTP request with `cURL`, e.g.
or by sending an HTTP request, like we'll see below.
## Chat Completions - text-based
See below for examples for text-based requests. Both LLMs and VLMs should handle
<hfoptions id="chat-completion-http">
<hfoption id="curl">
```shell
curl -X POST http://localhost:8000/v1/chat/completions -H "Content-Type: application/json" -d '{"messages": [{"role": "system", "content": "hello"}], "temperature": 0.9, "max_tokens": 1000, "stream": true, "model": "Qwen/Qwen2.5-0.5B-Instruct"}'
@ -61,7 +77,289 @@ data: {"object": "chat.completion.chunk", "id": "req_0", "created": 1751377863,
(...)
```
The server is also an MCP client, so it can interact with MCP tools in agentic use cases. This, of course, requires the use of an LLM that is designed to use tools.
</hfoption>
<hfoption id="python - huggingface_hub">
```python
import asyncio
from huggingface_hub import AsyncInferenceClient
messages = [{"role": "user", "content": "What is the Transformers library known for?"}]
client = AsyncInferenceClient("http://localhost:8000")
async def responses_api_test_async():
async for chunk in (await client.chat_completion(messages, model="Qwen/Qwen2.5-0.5B-Instruct", max_tokens=256, stream=True)):
token = chunk.choices[0].delta.content
if token:
print(token, end='')
asyncio.run(responses_api_test_async())
asyncio.run(client.close())
```
From which you should get an iterative string printed:
```shell
The Transformers library is primarily known for its ability to create and manipulate large-scale language models [...]
```
</hfoption>
<hfoption id="python - openai">
```python
from openai import OpenAI
client = OpenAI(base_url="http://localhost:8000/v1", api_key="<random_string>")
completion = client.chat.completions.create(
model="Qwen/Qwen2.5-0.5B-Instruct",
messages=[
{
"role": "user",
"content": "What is the Transformers library known for?"
}
],
stream=True
)
for chunk in completion:
token = chunk.choices[0].delta.content
if token:
print(token, end='')
```
From which you should get an iterative string printed:
```shell
The Transformers library is primarily known for its ability to create and manipulate large-scale language models [...]
```
</hfoption>
</hfoptions>
## Chat Completions - VLMs
The Chat Completion API also supports images; see below for examples for text-and-image-based requests.
<hfoptions id="chat-completion-http-images">
<hfoption id="curl">
```shell
curl http://localhost:8000/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "Qwen/Qwen2.5-VL-7B-Instruct",
"stream": true,
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": "What is in this image?"
},
{
"type": "image_url",
"image_url": {
"url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
}
}
]
}
],
"max_tokens": 300
}'
```
from which you'll receive multiple chunks in the Completions API format
```shell
data: {"id":"req_0","choices":[{"delta":{"role":"assistant"},"index":0}],"created":1753366665,"model":"Qwen/Qwen2.5-VL-7B-Instruct@main","object":"chat.completion.chunk","system_fingerprint":""}
data: {"id":"req_0","choices":[{"delta":{"content":"The "},"index":0}],"created":1753366701,"model":"Qwen/Qwen2.5-VL-7B-Instruct@main","object":"chat.completion.chunk","system_fingerprint":""}
data: {"id":"req_0","choices":[{"delta":{"content":"image "},"index":0}],"created":1753366701,"model":"Qwen/Qwen2.5-VL-7B-Instruct@main","object":"chat.completion.chunk","system_fingerprint":""}
```
</hfoption>
<hfoption id="python - huggingface_hub">
```python
import asyncio
from huggingface_hub import AsyncInferenceClient
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": "What's in this image?"},
{
"type": "image_url",
"image_url": {
"url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/astronaut.jpg",
}
},
],
}
]
client = AsyncInferenceClient("http://localhost:8000")
async def responses_api_test_async():
async for chunk in (await client.chat_completion(messages, model="Qwen/Qwen2.5-VL-7B-Instruct", max_tokens=256, stream=True)):
token = chunk.choices[0].delta.content
if token:
print(token, end='')
asyncio.run(responses_api_test_async())
asyncio.run(client.close())
```
From which you should get an iterative string printed:
```xmp
The image depicts an astronaut in a space suit standing on what appears to be the surface of the moon, given the barren, rocky landscape and the dark sky in the background. The astronaut is holding a large egg that has cracked open, revealing a small creature inside. The scene is imaginative and playful, combining elements of space exploration with a whimsical twist involving the egg and the creature.
```
</hfoption>
<hfoption id="python - openai">
```python
from openai import OpenAI
client = OpenAI(base_url="http://localhost:8000/v1", api_key="<random_string>")
completion = client.chat.completions.create(
model="Qwen/Qwen2.5-VL-7B-Instruct",
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "What's in this image?"},
{
"type": "image_url",
"image_url": {
"url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/astronaut.jpg",
}
},
],
}
],
stream=True
)
for chunk in completion:
token = chunk.choices[0].delta.content
if token:
print(token, end='')
```
From which you should get an iterative string printed:
```xmp
The image depicts an astronaut in a space suit standing on what appears to be the surface of the moon, given the barren, rocky landscape and the dark sky in the background. The astronaut is holding a large egg that has cracked open, revealing a small creature inside. The scene is imaginative and playful, combining elements of space exploration with a whimsical twist involving the egg and the creature.
```
</hfoption>
</hfoptions>
## Responses API
The Responses API is the newest addition to the supported APIs of `transformers serve`.
> [!TIP]
> This API is still experimental: expect bug patches and additition of new features in the coming weeks.
> If you run into any issues, please let us know and we'll work on fixing them ASAP.
Instead of the previous `/v1/chat/completions` path, the Responses API lies behind the `/v1/responses` path.
See below for examples interacting with our Responses endpoint with `curl`, as well as the Python OpenAI client.
So far, this endpoint only supports text and therefore only LLMs. VLMs to come!
<hfoptions id="responses">
<hfoption id="curl">
```shell
curl http://localhost:8000/v1/responses \
-H "Content-Type: application/json" \
-d '{
"model": "Qwen/Qwen2.5-0.5B-Instruct",
"stream": true,
"input": "Tell me a three sentence bedtime story about a unicorn."
}'
```
from which you'll receive multiple chunks in the Responses API format
```shell
data: {"response":{"id":"resp_req_0","created_at":1754059817.783648,"model":"Qwen/Qwen2.5-0.5B-Instruct@main","object":"response","output":[],"parallel_tool_calls":false,"tool_choice":"auto","tools":[],"status":"queued","text":{"format":{"type":"text"}}},"sequence_number":0,"type":"response.created"}
data: {"response":{"id":"resp_req_0","created_at":1754059817.783648,"model":"Qwen/Qwen2.5-0.5B-Instruct@main","object":"response","output":[],"parallel_tool_calls":false,"tool_choice":"auto","tools":[],"status":"in_progress","text":{"format":{"type":"text"}}},"sequence_number":1,"type":"response.in_progress"}
data: {"item":{"id":"msg_req_0","content":[],"role":"assistant","status":"in_progress","type":"message"},"output_index":0,"sequence_number":2,"type":"response.output_item.added"}
data: {"content_index":0,"item_id":"msg_req_0","output_index":0,"part":{"annotations":[],"text":"","type":"output_text"},"sequence_number":3,"type":"response.content_part.added"}
data: {"content_index":0,"delta":"","item_id":"msg_req_0","output_index":0,"sequence_number":4,"type":"response.output_text.delta"}
data: {"content_index":0,"delta":"Once ","item_id":"msg_req_0","output_index":0,"sequence_number":5,"type":"response.output_text.delta"}
data: {"content_index":0,"delta":"upon ","item_id":"msg_req_0","output_index":0,"sequence_number":6,"type":"response.output_text.delta"}
data: {"content_index":0,"delta":"a ","item_id":"msg_req_0","output_index":0,"sequence_number":7,"type":"response.output_text.delta"}
```
</hfoption>
<hfoption id="python - openai">
```python
from openai import OpenAI
client = OpenAI(base_url="http://localhost:8000/v1", api_key="<KEY>")
response = client.responses.create(
model="Qwen/Qwen2.5-0.5B-Instruct",
instructions="You are a helpful assistant.",
input="Hello!",
stream=True,
metadata={"foo": "bar"},
)
for event in response:
print(event)
```
From which you should get events printed out successively.
```shell
ResponseCreatedEvent(response=Response(id='resp_req_0', created_at=1754060400.3718212, error=None, incomplete_details=None, instructions='You are a helpful assistant.', metadata={'foo': 'bar'}, model='Qwen/Qwen2.5-0.5B-Instruct@main', object='response', output=[], parallel_tool_calls=False, temperature=None, tool_choice='auto', tools=[], top_p=None, background=None, max_output_tokens=None, max_tool_calls=None, previous_response_id=None, prompt=None, reasoning=None, service_tier=None, status='queued', text=ResponseTextConfig(format=ResponseFormatText(type='text')), top_logprobs=None, truncation=None, usage=None, user=None), sequence_number=0, type='response.created')
ResponseInProgressEvent(response=Response(id='resp_req_0', created_at=1754060400.3718212, error=None, incomplete_details=None, instructions='You are a helpful assistant.', metadata={'foo': 'bar'}, model='Qwen/Qwen2.5-0.5B-Instruct@main', object='response', output=[], parallel_tool_calls=False, temperature=None, tool_choice='auto', tools=[], top_p=None, background=None, max_output_tokens=None, max_tool_calls=None, previous_response_id=None, prompt=None, reasoning=None, service_tier=None, status='in_progress', text=ResponseTextConfig(format=ResponseFormatText(type='text')), top_logprobs=None, truncation=None, usage=None, user=None), sequence_number=1, type='response.in_progress')
ResponseOutputItemAddedEvent(item=ResponseOutputMessage(id='msg_req_0', content=[], role='assistant', status='in_progress', type='message'), output_index=0, sequence_number=2, type='response.output_item.added')
ResponseContentPartAddedEvent(content_index=0, item_id='msg_req_0', output_index=0, part=ResponseOutputText(annotations=[], text='', type='output_text', logprobs=None), sequence_number=3, type='response.content_part.added')
ResponseTextDeltaEvent(content_index=0, delta='', item_id='msg_req_0', output_index=0, sequence_number=4, type='response.output_text.delta')
ResponseTextDeltaEvent(content_index=0, delta='', item_id='msg_req_0', output_index=0, sequence_number=5, type='response.output_text.delta')
ResponseTextDeltaEvent(content_index=0, delta='Hello! ', item_id='msg_req_0', output_index=0, sequence_number=6, type='response.output_text.delta')
ResponseTextDeltaEvent(content_index=0, delta='How ', item_id='msg_req_0', output_index=0, sequence_number=7, type='response.output_text.delta')
ResponseTextDeltaEvent(content_index=0, delta='can ', item_id='msg_req_0', output_index=0, sequence_number=8, type='response.output_text.delta')
ResponseTextDeltaEvent(content_index=0, delta='I ', item_id='msg_req_0', output_index=0, sequence_number=9, type='response.output_text.delta')
ResponseTextDeltaEvent(content_index=0, delta='assist ', item_id='msg_req_0', output_index=0, sequence_number=10, type='response.output_text.delta')
ResponseTextDeltaEvent(content_index=0, delta='you ', item_id='msg_req_0', output_index=0, sequence_number=11, type='response.output_text.delta')
ResponseTextDeltaEvent(content_index=0, delta='', item_id='msg_req_0', output_index=0, sequence_number=12, type='response.output_text.delta')
ResponseTextDeltaEvent(content_index=0, delta='', item_id='msg_req_0', output_index=0, sequence_number=13, type='response.output_text.delta')
ResponseTextDeltaEvent(content_index=0, delta='today?', item_id='msg_req_0', output_index=0, sequence_number=14, type='response.output_text.delta')
ResponseTextDoneEvent(content_index=0, item_id='msg_req_0', output_index=0, sequence_number=15, text='Hello! How can I assist you today?', type='response.output_text.done')
ResponseContentPartDoneEvent(content_index=0, item_id='msg_req_0', output_index=0, part=ResponseOutputText(annotations=[], text='Hello! How can I assist you today?', type='output_text', logprobs=None), sequence_number=16, type='response.content_part.done')
ResponseOutputItemDoneEvent(item=ResponseOutputMessage(id='msg_req_0', content=[ResponseOutputText(annotations=[], text='Hello! How can I assist you today?', type='output_text', logprobs=None)], role='assistant', status='completed', type='message', annotations=[]), output_index=0, sequence_number=17, type='response.output_item.done')
ResponseCompletedEvent(response=Response(id='resp_req_0', created_at=1754060400.3718212, error=None, incomplete_details=None, instructions='You are a helpful assistant.', metadata={'foo': 'bar'}, model='Qwen/Qwen2.5-0.5B-Instruct@main', object='response', output=[ResponseOutputMessage(id='msg_req_0', content=[ResponseOutputText(annotations=[], text='Hello! How can I assist you today?', type='output_text', logprobs=None)], role='assistant', status='completed', type='message', annotations=[])], parallel_tool_calls=False, temperature=None, tool_choice='auto', tools=[], top_p=None, background=None, max_output_tokens=None, max_tool_calls=None, previous_response_id=None, prompt=None, reasoning=None, service_tier=None, status='completed', text=ResponseTextConfig(format=ResponseFormatText(type='text')), top_logprobs=None, truncation=None, usage=None, user=None), sequence_number=18, type='response.completed')
```
</hfoption>
</hfoptions>
## MCP integration
The `transformers serve` server is also an MCP client, so it can interact with MCP tools in agentic use cases. This, of course, requires the use of an LLM that is designed to use tools.
> [!TIP]
> At the moment, MCP tool usage in `transformers` is limited to the `qwen` family of models.
@ -69,142 +367,5 @@ The server is also an MCP client, so it can interact with MCP tools in agentic u
<!-- TODO: example with a minimal python example, and explain that it is possible to pass a full generation config in the request -->
### Usage example 1: chat with local requests (feat. Jan)
This example shows how to use `transformers serve` as a local LLM provider for the [Jan](https://jan.ai/) app. Jan is a ChatGPT-alternative graphical interface, fully running on your machine. The requests to `transformers serve` come directly from the local app -- while this section focuses on Jan, you can extrapolate some instructions to other apps that make local requests.
To connect `transformers serve` with Jan, you'll need to set up a new model provider ("Settings" > "Model Providers"). Click on "Add Provider", and set a new name. In your new model provider page, all you need to set is the "Base URL" to the following pattern:
```shell
http://[host]:[port]/v1
```
where `host` and `port` are the `transformers serve` CLI parameters (`localhost:8000` by default). After setting this up, you should be able to see some models in the "Models" section, hitting "Refresh". Make sure you add some text in the "API key" text field too -- this data is not actually used, but the field can't be empty. Your custom model provider page should look like this:
<h3 align="center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/transformers_serve_jan_model_providers.png"/>
</h3>
You are now ready to chat!
> [!TIP]
> You can add any `transformers`-compatible model to Jan through `transformers serve`. In the custom model provider you created, click on the "+" button in the "Models" section and add its Hub repository name, e.g. `Qwen/Qwen3-4B`.
To conclude this example, let's look into a more advanced use-case. If you have a beefy machine to serve models with, but prefer using Jan on a different device, you need to add port forwarding. If you have `ssh` access from your Jan machine into your server, this can be accomplished by typing the following to your Jan machine's terminal
```
ssh -N -f -L 8000:localhost:8000 your_server_account@your_server_IP -p port_to_ssh_into_your_server
```
Port forwarding is not Jan-specific: you can use it to connect `transformers serve` running in a different machine with an app of your choice.
### Usage example 2: chat with external requests (feat. Cursor)
This example shows how to use `transformers serve` as a local LLM provider for [Cursor](https://cursor.com/), the popular IDE. Unlike in the previous example, requests to `transformers serve` will come from an external IP (Cursor's server IPs), which requires some additional setup. Furthermore, some of Cursor's requests require [CORS](https://developer.mozilla.org/en-US/docs/Web/HTTP/Guides/CORS), which is disabled by default for security reasons.
To launch a server with CORS enabled, run
```shell
transformers serve --enable-cors
```
You'll also need to expose your server to external IPs. A potential solution is to use [`ngrok`](https://ngrok.com/), which has a permissive free tier. After setting up your `ngrok` account and authenticating on your server machine, you run
```shell
ngrok http [port]
```
where `port` is the port used by `transformers serve` (`8000` by default). On the terminal where you launched `ngrok`, you'll see an https address in the "Forwarding" row, as in the image below. This is the address to send requests to.
<h3 align="center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/transformers_serve_ngrok.png"/>
</h3>
You're now ready to set things up on the app side! In Cursor, while you can't set a new provider, you can change the endpoint for OpenAI requests in the model selection settings. First, navigate to "Settings" > "Cursor Settings", "Models" tab, and expand the "API Keys" collapsible. To set your `transformers serve` endpoint, follow this order:
1. Unselect ALL models in the list above (e.g. `gpt4`, ...);
2. Add and select the model you want to use (e.g. `Qwen/Qwen3-4B`)
3. Add some random text to OpenAI API Key. This field won't be used, but it cant be empty;
4. Add the https address from `ngrok` to the "Override OpenAI Base URL" field, appending `/v1` to the address (i.e. `https://(...).ngrok-free.app/v1`);
5. Hit "Verify".
After you follow these steps, your "Models" tab should look like the image below. Your server should also have received a few requests from the verification step.
<h3 align="center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/transformers_serve_cursor.png"/>
</h3>
You are now ready to use your local model in Cursor! For instance, if you toggle the AI Pane, you can select the model you added and ask it questions about your local files.
<h3 align="center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/transformers_serve_cursor_chat.png"/>
</h3>
### Usage example 3: `tiny-agents` CLI and MCP Tools
To showcase the use of MCP tools, let's see how to integrate the `transformers serve` server with the [`tiny-agents`](https://huggingface.co/blog/python-tiny-agents) CLI.
> [!TIP]
> Many Hugging Face Spaces can be used as MCP servers, as in this example. You can find all compatible Spaces [here](https://huggingface.co/spaces?filter=mcp-server).
The first step to use MCP tools is to let the model know which tools are available. As an example, let's consider a `tiny-agents` configuration file with a reference to an [image generation MCP server](https://evalstate-flux1-schnell.hf.space/).
```json
{
"model": "Menlo/Jan-nano",
"endpointUrl": "http://localhost:8000",
"servers": [
{
"type": "sse",
"url": "https://evalstate-flux1-schnell.hf.space/gradio_api/mcp/sse"
}
]
}
```
You can then launch your `tiny-agents` chat interface with the following command.
```bash
tiny-agents run path/to/your/config.json
```
If you have `transformers serve` running in the background, you're ready to use MCP tools from a local model! For instance, here's the example of a chat session with `tiny-agents`:
```bash
Agent loaded with 1 tools:
• flux1_schnell_infer
» Generate an image of a cat on the moon
<Tool req_0_tool_call>flux1_schnell_infer {"prompt": "a cat on the moon", "seed": 42, "randomize_seed": true, "width": 1024, "height": 1024, "num_inference_steps": 4}
Tool req_0_tool_call
[Binary Content: Image image/webp, 57732 bytes]
The task is complete and the content accessible to the User
Image URL: https://evalstate-flux1-schnell.hf.space/gradio_api/file=/tmp/gradio/3dbddc0e53b5a865ed56a4e3dbdd30f3f61cf3b8aabf1b456f43e5241bd968b8/image.webp
380576952
I have generated an image of a cat on the moon using the Flux 1 Schnell Image Generator. The image is 1024x1024 pixels and was created with 4 inference steps. Let me know if you would like to make any changes or need further assistance!
```
### Usage example 4: speech to text transcription (feat. Open WebUI)
This guide shows how to do audio transcription for chat purposes, using `transformers serve` and [Open WebUI](https://openwebui.com/). This guide assumes you have Open WebUI installed on your machine and ready to run. Please refer to the examples above to use the text functionalities of `transformer serve` with Open WebUI -- the instructions are the same.
To start, let's launch the server. Some of Open WebUI's requests require [CORS](https://developer.mozilla.org/en-US/docs/Web/HTTP/Guides/CORS), which is disabled by default for security reasons, so you need to enable it:
```shell
transformers serve --enable-cors
```
Before you can speak into Open WebUI, you need to update its settings to use your server for speech to text (STT) tasks. Launch Open WebUI, and navigate to the audio tab inside the admin settings. If you're using Open WebUI with the default ports, [this link (default)](http://localhost:3000/admin/settings/audio) or [this link (python deployment)](http://localhost:8080/admin/settings/audio) will take you there. Do the following changes there:
1. Change the type of "Speech-to-Text Engine" to "OpenAI";
2. Update the address to your server's address -- `http://localhost:8000/v1` by default;
3. Type your model of choice into the "STT Model" field, e.g. `openai/whisper-large-v3` ([available models](https://huggingface.co/models?pipeline_tag=automatic-speech-recognition&sort=trending)).
If you've done everything correctly, the audio tab should look like this
<h3 align="center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/transformers_openwebui_stt_settings.png"/>
</h3>
You're now ready to speak! Open a new chat, utter a few words after hitting the microphone button, and you should see the corresponding text on the chat input after the model transcribes it.

View File

@ -25,7 +25,7 @@ Keypoint detection identifies and locates specific points of interest within an
In this guide, we will show how to extract keypoints from images.
For this tutorial, we will use [SuperPoint](./model_doc/superpoint.md), a foundation model for keypoint detection.
For this tutorial, we will use [SuperPoint](./model_doc/superpoint), a foundation model for keypoint detection.
```python
from transformers import AutoImageProcessor, SuperPointForKeypointDetection

View File

@ -146,7 +146,7 @@ To get an even better understanding of the data, visualize an example in the dat
>>> annotations = cppe5["train"][2]["objects"]
>>> draw = ImageDraw.Draw(image)
>>> categories = cppe5["train"].features["objects"].feature["category"].names
>>> categories = cppe5["train"].features["objects"]["category"].feature.names
>>> id2label = {index: x for index, x in enumerate(categories, start=0)}
>>> label2id = {v: k for k, v in id2label.items()}

View File

@ -20,7 +20,7 @@ rendered properly in your Markdown viewer.
Video-text-to-text models, also known as video language models or vision language models with video input, are language models that take a video input. These models can tackle various tasks, from video question answering to video captioning.
These models have nearly the same architecture as [image-text-to-text](../image_text_to_text.md) models except for some changes to accept video data, since video data is essentially image frames with temporal dependencies. Some image-text-to-text models take in multiple images, but this alone is inadequate for a model to accept videos. Moreover, video-text-to-text models are often trained with all vision modalities. Each example might have videos, multiple videos, images and multiple images. Some of these models can also take interleaved inputs. For example, you can refer to a specific video inside a string of text by adding a video token in text like "What is happening in this video? `<video>`".
These models have nearly the same architecture as [image-text-to-text](../image_text_to_text) models except for some changes to accept video data, since video data is essentially image frames with temporal dependencies. Some image-text-to-text models take in multiple images, but this alone is inadequate for a model to accept videos. Moreover, video-text-to-text models are often trained with all vision modalities. Each example might have videos, multiple videos, images and multiple images. Some of these models can also take interleaved inputs. For example, you can refer to a specific video inside a string of text by adding a video token in text like "What is happening in this video? `<video>`".
In this guide, we provide a brief overview of video LMs and show how to use them with Transformers for inference.

View File

@ -18,7 +18,7 @@ rendered properly in your Markdown viewer.
[LiteRT](https://ai.google.dev/edge/litert) (previously known as TensorFlow Lite) is a high-performance runtime designed for on-device machine learning.
The [Optimum](https://huggingface.co/docs/optimum/index) library exports a model to LiteRT for [many architectures]((https://huggingface.co/docs/optimum/exporters/onnx/overview)).
The [Optimum](https://huggingface.co/docs/optimum/index) library exports a model to LiteRT for [many architectures](https://huggingface.co/docs/optimum/exporters/onnx/overview).
The benefits of exporting to LiteRT include the following.

View File

@ -0,0 +1,45 @@
### `tiny-agents` CLI and MCP Tools
To showcase the use of MCP tools, let's see how to integrate the `transformers serve` server with the [`tiny-agents`](https://huggingface.co/blog/python-tiny-agents) CLI.
> [!TIP]
> Many Hugging Face Spaces can be used as MCP servers, as in this example. You can find all compatible Spaces [here](https://huggingface.co/spaces?filter=mcp-server).
The first step to use MCP tools is to let the model know which tools are available. As an example, let's consider a `tiny-agents` configuration file with a reference to an [image generation MCP server](https://evalstate-flux1-schnell.hf.space/).
```json
{
"model": "Menlo/Jan-nano",
"endpointUrl": "http://localhost:8000",
"servers": [
{
"type": "sse",
"url": "https://evalstate-flux1-schnell.hf.space/gradio_api/mcp/sse"
}
]
}
```
You can then launch your `tiny-agents` chat interface with the following command.
```bash
tiny-agents run path/to/your/config.json
```
If you have `transformers serve` running in the background, you're ready to use MCP tools from a local model! For instance, here's the example of a chat session with `tiny-agents`:
```bash
Agent loaded with 1 tools:
• flux1_schnell_infer
» Generate an image of a cat on the moon
<Tool req_0_tool_call>flux1_schnell_infer {"prompt": "a cat on the moon", "seed": 42, "randomize_seed": true, "width": 1024, "height": 1024, "num_inference_steps": 4}
Tool req_0_tool_call
[Binary Content: Image image/webp, 57732 bytes]
The task is complete and the content accessible to the User
Image URL: https://evalstate-flux1-schnell.hf.space/gradio_api/file=/tmp/gradio/3dbddc0e53b5a865ed56a4e3dbdd30f3f61cf3b8aabf1b456f43e5241bd968b8/image.webp
380576952
I have generated an image of a cat on the moon using the Flux 1 Schnell Image Generator. The image is 1024x1024 pixels and was created with 4 inference steps. Let me know if you would like to make any changes or need further assistance!
```

View File

@ -307,7 +307,7 @@ culture, and they allow us to design the'
アシストデコーディングを有効にするには、`assistant_model` 引数をモデルで設定します。
このガイドは、さまざまなデコーディング戦略を可能にする主要なパラメーターを説明しています。さらに高度なパラメーターは [`generate`] メソッドに存在し、[`generate`] メソッドの動作をさらに制御できます。使用可能なパラメーターの完全なリストについては、[APIドキュメント](./main_classes/text_generation.md) を参照してください。
このガイドは、さまざまなデコーディング戦略を可能にする主要なパラメーターを説明しています。さらに高度なパラメーターは [`generate`] メソッドに存在し、[`generate`] メソッドの動作をさらに制御できます。使用可能なパラメーターの完全なリストについては、[APIドキュメント](./main_classes/text_generation) を参照してください。
```python

View File

@ -111,7 +111,7 @@ BART を始めるのに役立つ公式 Hugging Face およびコミュニティ
- [`TFBartForConditionalGeneration`] は、この [サンプル スクリプト](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/summarization) および [ノートブック](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/summarization-tf.ipynb)。
- [`FlaxBartForConditionalGeneration`] は、この [サンプル スクリプト](https://github.com/huggingface/transformers/tree/main/examples/flax/summarization) でサポートされています。
- [要約](https://huggingface.co/course/chapter7/5?fw=pt#summarization) 🤗 ハグフェイスコースの章。
- [要約タスクガイド](../tasks/summarization.md)
- [要約タスクガイド](../tasks/summarization)
<PipelineTag pipeline="fill-mask"/>

File diff suppressed because it is too large Load Diff

View File

@ -14,6 +14,8 @@ rendered properly in your Markdown viewer.
-->
<!-- TODO: this was copied from the korean version of `gpu_selection.md`, and is not up to date with the english version of `accelerator_selection.md` -->
# GPU 선택하기 [[gpu-selection]]
분산 학습 과정에서 사용할 GPU의 개수와 순서를 정할 수 있습니다. 이 방법은 서로 다른 연산 성능을 가진 GPU가 있을 때 더 빠른 GPU를 우선적으로 사용하거나, 사용 가능한 GPU 중 일부만 선택하여 활용하고자 할 때 유용합니다. 이 선택 과정은 [DistributedDataParallel](https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParallel.html)과 [DataParallel](https://pytorch.org/docs/stable/generated/torch.nn.DataParallel.html)에서 모두 작동합니다. Accelerate나 [DeepSpeed 통합](./main_classes/deepspeed)은 필요하지 않습니다.
@ -93,4 +95,4 @@ export CUDA_DEVICE_ORDER=FASTEST_FIRST
The `CUDA_DEVICE_ORDER` is especially useful if your training setup consists of an older and newer GPU, where the older GPU appears first, but you cannot physically swap the cards to make the newer GPU appear first. In this case, set `CUDA_DEVICE_ORDER=FASTEST_FIRST` to always use the newer and faster GPU first (`nvidia-smi` or `rocm-smi` still reports the GPUs in their PCIe order). Or you could also set `export CUDA_VISIBLE_DEVICES=1,0`.
`CUDA_DEVICE_ORDER`는 구형 GPU와 신형 GPU가 혼합된 환경에서 특히 유용합니다. 예를 들어, 구형 GPU가 먼저 표시되지만 물리적으로 교체할 수 없는 경우, `CUDA_DEVICE_ORDER=FASTEST_FIRST`를 설정하면 항상 신형 및 더 빠른 GPU를 우선적으로 사용(nvidia-smi 또는 rocm-smi는 PCIe 순서대로 GPU를 표시함)할 수 있습니다. 또는, `export CUDA_VISIBLE_DEVICES=1,0`을 설정하여 GPU 사용 순서를 직접 지정할 수도 있습니다.
`CUDA_DEVICE_ORDER`는 구형 GPU와 신형 GPU가 혼합된 환경에서 특히 유용합니다. 예를 들어, 구형 GPU가 먼저 표시되지만 물리적으로 교체할 수 없는 경우, `CUDA_DEVICE_ORDER=FASTEST_FIRST`를 설정하면 항상 신형 및 더 빠른 GPU를 우선적으로 사용(nvidia-smi 또는 rocm-smi는 PCIe 순서대로 GPU를 표시함)할 수 있습니다. 또는, `export CUDA_VISIBLE_DEVICES=1,0`을 설정하여 GPU 사용 순서를 직접 지정할 수도 있습니다.

View File

@ -1,54 +0,0 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# 어텐션 메커니즘[[attention_mechanisms]]
대부분의 트랜스포머 모델은 정방행렬인 전체 어텐션을 사용합니다.
하지만 이는 긴 텍스트를 다룰 때는 큰 계산 병목 현상을 유발할 수 있습니다.
`Longformer``Reformer`는 훈련 속도를 높이기 위해 어텐션 행렬의 희소 버전을 사용하여 효율을 높이려는 모델입니다.
## LSH 어텐션[[lsh_attention]]
[Reformer](model_doc/reformer)는 LSH(Locality Sensitive Hashing) 어텐션을 사용합니다. softmax(QK^t)에서는 행렬 QK^t의 (softmax 차원에서) 가장 큰 요소들만 유용한 기여를 할 것입니다.
따라서 각각의 쿼리 q에 대해, q와 가까운 키 k만 고려할 수 있습니다. 해시 함수는 q와 k가 가까운지 여부를 결정하는 데 사용됩니다.
어텐션 마스크는 현재 토큰을 마스킹하여 변경됩니다. 이 때 첫 번째 위치의 토큰은 제외합니다. 왜냐하면 쿼리와 키가 동일한 값을 갖게 되기 때문입니다(서로 매우 유사함).
해시는 약간의 무작위성을 가질 수 있으므로, 실제로는 여러 개의 해시 함수가 사용되고 (`n_rounds` 매개변수에 의해 결정됨) 그 후에 평균값을 취하게 됩니다.
## 지역 어텐션[[local_attention]]
[Longformer](model_doc/longformer)는 지역 어텐션을 사용합니다. 종종 특정 토큰에 대해 지역 컨텍스트(예: 왼쪽과 오른쪽에 있는 두 개의 토큰은 무엇인가요?)만으로도 작업을 수행하는데 충분합니다.
또한 작은 창(window)을 가진 어텐션 레이어를 쌓음으로써 마지막 레이어는 창 내의 토큰뿐만 아니라 더 많은 수의 토큰에 대한 수용 영역(receptive field)을 갖게 되어 전체 문장의 표현을 구축할 수 있습니다.
사전에 선택된 일부 입력 토큰들은 전역 어텐션을 받습니다. 이 몇 개의 토큰에 대해서는 어텐션 행렬이 모든 토큰에 접근할 수 있으며, 이 과정은 대칭적으로 이루어집니다.
다른 모든 토큰들은 로컬 창 내의 토큰들에 더해 해당 특정 토큰들에도 접근할 수 있습니다. 이는 논문의 Figure 2d에서 나타나며, 아래에 샘플 어텐션 마스크가 제시되어 있습니다:
<div class="flex justify-center">
<img scale="50 %" align="center" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/local_attention_mask.png"/>
</div>
적은 파라미터의 어텐션 행렬을 사용하면 모델이 더 큰 시퀀스 입력 길이를 가질 수 있습니다.
## 다른 방법들[[other_tricks]]
### 축별 위치 인코딩[[axial_positional_encodings]]
[Reformer](model_doc/reformer)는 축별 위치 인코딩(axial positional encodings)을 사용합니다. 기존의 트랜스포머 모델에서는 위치 인코딩 행렬 E는 크기가 \\(l \times d\\)인 행렬이며,
여기서 \\(l\\)은 시퀀스 길이(sequence length)이고 \\(d\\)는 숨겨진 상태(hidden state)의 차원입니다. 매우 긴 텍스트의 경우, 이 행렬은 매우 크며 GPU 상에서 공간을 많이 차지할 수 있습니다.
이를 완화하기 위해, 축별 위치 인코딩은 큰 행렬 E를 두 개의 작은 행렬 E1과 E2로 분해합니다. 이때 E1의 크기는 \\(l_{1} \times d_{1}\\)이고, E2의 크기는 \\(l_{2} \times d_{2}\\)입니다.
이때 \\(l_{1} \times l_{2} = l\\)이고 \\(d_{1} + d_{2} = d\\)(길이에 대한 곱셈 연산을 사용하면 훨씬 작아집니다). E의 시간 단계 j에 대한 임베딩은 E1에서 시간 단계 \\(j \% l1\\)의 임베딩과 E2에서 시간 단계 \\(j // l1\\)의 임베딩을 연결하여 얻습니다.

View File

@ -1,144 +0,0 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# AutoClass로 사전 학습된 인스턴스 로드[[load-pretrained-instances-with-an-autoclass]]
트랜스포머 아키텍처가 매우 다양하기 때문에 체크포인트에 맞는 아키텍처를 생성하는 것이 어려울 수 있습니다. 라이브러리를 쉽고 간단하며 유연하게 사용하기 위한 Transformer 핵심 철학의 일환으로, `AutoClass`는 주어진 체크포인트에서 올바른 아키텍처를 자동으로 추론하여 로드합니다. `from_pretrained()` 메서드를 사용하면 모든 아키텍처에 대해 사전 학습된 모델을 빠르게 로드할 수 있으므로 모델을 처음부터 학습하는 데 시간과 리소스를 투입할 필요가 없습니다.
체크포인트에 구애받지 않는 코드를 생성한다는 것은 코드가 한 체크포인트에서 작동하면 아키텍처가 다르더라도 다른 체크포인트(유사한 작업에 대해 학습된 경우)에서도 작동한다는 것을 의미합니다.
<Tip>
아키텍처는 모델의 골격을 의미하며 체크포인트는 주어진 아키텍처에 대한 가중치입니다. 예를 들어, [BERT](https://huggingface.co/google-bert/bert-base-uncased)는 아키텍처이고, `google-bert/bert-base-uncased`는 체크포인트입니다. 모델은 아키텍처 또는 체크포인트를 의미할 수 있는 일반적인 용어입니다.
</Tip>
이 튜토리얼에서는 다음을 학습합니다:
* 사전 학습된 토크나이저 로드하기.
* 사전 학습된 이미지 프로세서 로드하기.
* 사전 학습된 특징 추출기 로드하기.
* 사전 훈련된 프로세서 로드하기.
* 사전 학습된 모델 로드하기.
## AutoTokenizer[[autotokenizer]]
거의 모든 NLP 작업은 토크나이저로 시작됩니다. 토크나이저는 사용자의 입력을 모델에서 처리할 수 있는 형식으로 변환합니다.
[`AutoTokenizer.from_pretrained`]로 토크나이저를 로드합니다:
```py
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
```
그리고 아래와 같이 입력을 토큰화합니다:
```py
>>> sequence = "In a hole in the ground there lived a hobbit."
>>> print(tokenizer(sequence))
{'input_ids': [101, 1999, 1037, 4920, 1999, 1996, 2598, 2045, 2973, 1037, 7570, 10322, 4183, 1012, 102],
'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}
```
## AutoImageProcessor[[autoimageprocessor]]
비전 작업의 경우 이미지 프로세서가 이미지를 올바른 입력 형식으로 처리합니다.
```py
>>> from transformers import AutoImageProcessor
>>> image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224")
```
## AutoFeatureExtractor[[autofeatureextractor]]
오디오 작업의 경우 특징 추출기가 오디오 신호를 올바른 입력 형식으로 처리합니다.
[`AutoFeatureExtractor.from_pretrained`]로 특징 추출기를 로드합니다:
```py
>>> from transformers import AutoFeatureExtractor
>>> feature_extractor = AutoFeatureExtractor.from_pretrained(
... "ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition"
... )
```
## AutoProcessor[[autoprocessor]]
멀티모달 작업에는 두 가지 유형의 전처리 도구를 결합한 프로세서가 필요합니다. 예를 들어 LayoutLMV2 모델에는 이미지를 처리하는 이미지 프로세서와 텍스트를 처리하는 토크나이저가 필요하며, 프로세서는 이 두 가지를 결합합니다.
[`AutoProcessor.from_pretrained()`]로 프로세서를 로드합니다:
```py
>>> from transformers import AutoProcessor
>>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv2-base-uncased")
```
## AutoModel[[automodel]]
<frameworkcontent>
<pt>
마지막으로 AutoModelFor클래스를 사용하면 주어진 작업에 대해 미리 학습된 모델을 로드할 수 있습니다 (사용 가능한 작업의 전체 목록은 [여기](model_doc/auto)를 참조하세요). 예를 들어, [`AutoModelForSequenceClassification.from_pretrained`]를 사용하여 시퀀스 분류용 모델을 로드할 수 있습니다:
```py
>>> from transformers import AutoModelForSequenceClassification
>>> model = AutoModelForSequenceClassification.from_pretrained("distilbert/distilbert-base-uncased")
```
동일한 체크포인트를 쉽게 재사용하여 다른 작업에 아키텍처를 로드할 수 있습니다:
```py
>>> from transformers import AutoModelForTokenClassification
>>> model = AutoModelForTokenClassification.from_pretrained("distilbert/distilbert-base-uncased")
```
<Tip warning={true}>
PyTorch모델의 경우 `from_pretrained()` 메서드는 내부적으로 피클을 사용하여 안전하지 않은 것으로 알려진 `torch.load()`를 사용합니다.
일반적으로 신뢰할 수 없는 소스에서 가져왔거나 변조되었을 수 있는 모델은 로드하지 마세요. 허깅 페이스 허브에서 호스팅되는 공개 모델의 경우 이러한 보안 위험이 부분적으로 완화되며, 각 커밋 시 멀웨어를 [검사합니다](https://huggingface.co/docs/hub/security-malware). GPG를 사용해 서명된 [커밋 검증](https://huggingface.co/docs/hub/security-gpg#signing-commits-with-gpg)과 같은 모범사례는 [문서](https://huggingface.co/docs/hub/security)를 참조하세요.
텐서플로우와 Flax 체크포인트는 영향을 받지 않으며, `from_pretrained`메서드에 `from_tf``from_flax` 키워드 가변 인자를 사용하여 이 문제를 우회할 수 있습니다.
</Tip>
일반적으로 AutoTokenizer 클래스와 AutoModelFor 클래스를 사용하여 미리 학습된 모델 인스턴스를 로드하는 것이 좋습니다. 이렇게 하면 매번 올바른 아키텍처를 로드할 수 있습니다. 다음 [튜토리얼](preprocessing)에서는 새롭게 로드한 토크나이저, 이미지 프로세서, 특징 추출기를 사용하여 미세 튜닝용 데이터 세트를 전처리하는 방법에 대해 알아봅니다.
</pt>
<tf>
마지막으로 `TFAutoModelFor` 클래스를 사용하면 주어진 작업에 대해 사전 훈련된 모델을 로드할 수 있습니다. (사용 가능한 작업의 전체 목록은 [여기](model_doc/auto)를 참조하세요. 예를 들어, [`TFAutoModelForSequenceClassification.from_pretrained`]로 시퀀스 분류를 위한 모델을 로드합니다:
```py
>>> from transformers import TFAutoModelForSequenceClassification
>>> model = TFAutoModelForSequenceClassification.from_pretrained("distilbert/distilbert-base-uncased")
```
쉽게 동일한 체크포인트를 재사용하여 다른 작업에 아키텍처를 로드할 수 있습니다:
```py
>>> from transformers import TFAutoModelForTokenClassification
>>> model = TFAutoModelForTokenClassification.from_pretrained("distilbert/distilbert-base-uncased")
```
일반적으로, `AutoTokenizer`클래스와 `TFAutoModelFor` 클래스를 사용하여 미리 학습된 모델 인스턴스를 로드하는 것이 좋습니다. 이렇게 하면 매번 올바른 아키텍처를 로드할 수 있습니다. 다음 [튜토리얼](preprocessing)에서는 새롭게 로드한 토크나이저, 이미지 프로세서, 특징 추출기를 사용하여 미세 튜닝용 데이터 세트를 전처리하는 방법에 대해 알아봅니다.
</tf>
</frameworkcontent>

View File

@ -1,41 +0,0 @@
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# BERTology
BERT와 같은 대규모 트랜스포머의 내부 동작을 조사하는 연구 분야가 점점 더 중요해지고 있습니다.
혹자는 "BERTology"라 칭하기도 합니다. 이 분야의 좋은 예시는 다음과 같습니다:
- BERT는 고전적인 NLP 파이프라인의 재발견 - Ian Tenney, Dipanjan Das, Ellie Pavlick:
https://huggingface.co/papers/1905.05950
- 16개의 헤드가 정말로 1개보다 나은가? - Paul Michel, Omer Levy, Graham Neubig:
https://huggingface.co/papers/1905.10650
- BERT는 무엇을 보는가? BERT의 어텐션 분석 - Kevin Clark, Urvashi Khandelwal, Omer Levy, Christopher D. Manning:
https://huggingface.co/papers/1906.04341
- CAT-probing: 프로그래밍 언어에 대해 사전훈련된 모델이 어떻게 코드 구조를 보는지 알아보기 위한 메트릭 기반 접근 방법:
https://huggingface.co/papers/2210.04633
우리는 이 새로운 연구 분야의 발전을 돕기 위해, BERT/GPT/GPT-2 모델에 내부 표현을 살펴볼 수 있는 몇 가지 기능을 추가했습니다.
이 기능들은 주로 Paul Michel의 훌륭한 작업을 참고하여 개발되었습니다
(https://huggingface.co/papers/1905.10650):
- BERT/GPT/GPT-2의 모든 은닉 상태에 접근하기,
- BERT/GPT/GPT-2의 각 헤드의 모든 어텐션 가중치에 접근하기,
- 헤드의 출력 값과 그래디언트를 검색하여 헤드 중요도 점수를 계산하고 https://huggingface.co/papers/1905.10650에서 설명된 대로 헤드를 제거하는 기능을 제공합니다.
이러한 기능들을 이해하고 직접 사용해볼 수 있도록 [bertology.py](https://github.com/huggingface/transformers-research-projects/tree/main/bertology/run_bertology.py) 예제 스크립트를 추가했습니다. 이 예제 스크립트에서는 GLUE에 대해 사전훈련된 모델에서 정보를 추출하고 모델을 가지치기(prune)해봅니다.

View File

@ -1,122 +0,0 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# 큰 모델 인스턴스화 [[instantiating-a-big-model]]
매우 큰 사전훈련된 모델을 사용하려면, RAM 사용을 최소화해야 하는 과제가 있습니다. 일반적인 PyTorch 워크플로우는 다음과 같습니다:
1. 무작위 가중치로 모델을 생성합니다.
2. 사전훈련된 가중치를 불러옵니다.
3. 사전훈련된 가중치를 무작위 모델에 적용합니다.
1단계와 2단계 모두 모델의 전체 버전을 메모리에 적재해야 하며, 대부분 문제가 없지만 모델이 기가바이트급의 용량을 차지하기 시작하면 복사본 2개가 RAM을 초과하여 메모리 부족 이슈를 야기할 수 있습니다. 더 심각한 문제는 분산 학습을 위해 `torch.distributed`를 사용하는 경우, 프로세스마다 사전훈련된 모델을 로드하고 복사본을 2개씩 RAM에 저장한다는 것입니다.
<Tip>
무작위로 생성된 모델은 "비어 있는" (즉 그때 메모리에 있던 것으로 이뤄진) 텐서로 초기화되며 메모리 공간을 차지합니다. 초기화된 모델/파라미터의 종류에 적합한 분포(예: 정규 분포)에 따른 무작위 초기화는 가능한 한 빠르게 하기 위해 초기화되지 않은 가중치에 대해 3단계 이후에만 수행됩니다!
</Tip>
이 안내서에서는 Transformers가 이 문제를 해결하기 위해 제공하는 솔루션을 살펴봅니다. 주의할 점은 아직 활발히 개발 중인 분야이므로 여기서 설명하는 API가 앞으로 약간 변경될 수 있다는 것입니다.
## 샤딩된 체크포인트 [[sharded-checkpoints]]
4.18.0 버전 이후, 10GB 이상의 공간을 차지하는 모델 체크포인트는 자동으로 작은 조각들로 샤딩됩니다. `model.save_pretrained(save_dir)`를 실행할 때 하나의 단일 체크포인트를 가지게 될 대신, 여러 부분 체크포인트(각각의 크기는 10GB 미만)와 매개변수 이름을 해당 파일에 매핑하는 인덱스가 생성됩니다.
`max_shard_size` 매개변수로 샤딩 전 최대 크기를 제어할 수 있으므로, 이 예제를 위해 샤드 크기가 작은 일반 크기의 모델을 사용하겠습니다: 전통적인 BERT 모델을 사용해 봅시다.
```py
from transformers import AutoModel
model = AutoModel.from_pretrained("google-bert/bert-base-cased")
```
[`~PreTrainedModel.save_pretrained`]을 사용하여 모델을 저장하면, 모델의 구성과 가중치가 들어있는 두 개의 파일이 있는 새 폴더가 생성됩니다:
```py
>>> import os
>>> import tempfile
>>> with tempfile.TemporaryDirectory() as tmp_dir:
... model.save_pretrained(tmp_dir)
... print(sorted(os.listdir(tmp_dir)))
['config.json', 'pytorch_model.bin']
```
이제 최대 샤드 크기를 200MB로 사용해 봅시다:
```py
>>> with tempfile.TemporaryDirectory() as tmp_dir:
... model.save_pretrained(tmp_dir, max_shard_size="200MB")
... print(sorted(os.listdir(tmp_dir)))
['config.json', 'pytorch_model-00001-of-00003.bin', 'pytorch_model-00002-of-00003.bin', 'pytorch_model-00003-of-00003.bin', 'pytorch_model.bin.index.json']
```
모델의 구성에 더해, 세 개의 다른 가중치 파일과 파라미터 이름과 해당 파일의 매핑이 포함된 `index.json` 파일을 볼 수 있습니다. 이러한 체크포인트는 [`~PreTrainedModel.from_pretrained`] 메서드를 사용하여 완전히 다시 로드할 수 있습니다:
```py
>>> with tempfile.TemporaryDirectory() as tmp_dir:
... model.save_pretrained(tmp_dir, max_shard_size="200MB")
... new_model = AutoModel.from_pretrained(tmp_dir)
```
큰 모델의 경우 이러한 방식으로 처리하는 주된 장점은 위에서 보여준 흐름의 2단계에서, 각 샤드가 이전 샤드 다음에 로드되므로 메모리 사용량이 모델 크기와 가장 큰 샤드의 크기를 초과하지 않는다는 점입니다.
이 인덱스 파일은 키가 체크포인트에 있는지, 그리고 해당 가중치가 어디에 저장되어 있는지를 결정하는 데 사용됩니다. 이 인덱스를 json과 같이 로드하고 딕셔너리를 얻을 수 있습니다:
```py
>>> import json
>>> with tempfile.TemporaryDirectory() as tmp_dir:
... model.save_pretrained(tmp_dir, max_shard_size="200MB")
... with open(os.path.join(tmp_dir, "pytorch_model.bin.index.json"), "r") as f:
... index = json.load(f)
>>> print(index.keys())
dict_keys(['metadata', 'weight_map'])
```
메타데이터는 현재 모델의 총 크기만 포함됩니다. 앞으로 다른 정보를 추가할 계획입니다:
```py
>>> index["metadata"]
{'total_size': 433245184}
```
가중치 맵은 이 인덱스의 주요 부분으로, 각 매개변수 이름(PyTorch 모델 `state_dict`에서 보통 찾을 수 있는)을 해당 파일에 매핑합니다:
```py
>>> index["weight_map"]
{'embeddings.LayerNorm.bias': 'pytorch_model-00001-of-00003.bin',
'embeddings.LayerNorm.weight': 'pytorch_model-00001-of-00003.bin',
...
```
만약 [`~PreTrainedModel.from_pretrained`]를 사용하지 않고 모델 내에서 이러한 샤딩된 체크포인트를 직접 가져오려면 (전체 체크포인트를 위해 `model.load_state_dict()`를 수행하는 것처럼), [`~modeling_utils.load_sharded_checkpoint`]를 사용해야 합니다.
```py
>>> from transformers.modeling_utils import load_sharded_checkpoint
>>> with tempfile.TemporaryDirectory() as tmp_dir:
... model.save_pretrained(tmp_dir, max_shard_size="200MB")
... load_sharded_checkpoint(model, tmp_dir)
```
## 저(低)메모리 로딩 [[low-memory-loading]]
샤딩된 체크포인트는 위에서 언급한 작업 흐름의 2단계에서 메모리 사용량을 줄이지만, 저(低)메모리 설정에서 모델을 사용하기 위해 우리의 Accelerate 라이브러리를 기반으로 한 도구를 활용하는 것이 좋습니다.
자세한 사항은 다음 가이드를 참조해주세요: [Accelerate로 대규모 모델 가져오기 (영문)](../en/main_classes/model#large-model-loading)

View File

@ -0,0 +1,184 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contains specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# 캐싱[[caching]]
누군가와 대화를 나누고 있는데, 상대방이 이전에 했던 말을 기억하지 못하고 당신이 대답할 때마다 처음부터 다시 시작해야 한다고 상상해 보세요. 이는 느리고 비효율적이겠죠?
이 비유를 트랜스포머 모델에도 적용할 수 있습니다. 자기회귀 모델의 생성은 한 번에 하나의 토큰씩 예측하기 때문에 느릴 수 있습니다. 각각의 새로운 예측은 이전의 모든 문맥에 의존합니다.
1000번째 토큰을 예측하려면, 모델은 이전 999개 토큰의 정보가 필요합니다. 이 정보는 각 토큰 표현들 사이의 행렬 곱을 통해 표현됩니다.
1001번째 토큰을 예측하려면, 이전 999개 토큰의 동일한 정보에 더하여 1000번째 토큰의 정보도 필요합니다. 이렇게 되면 토큰마다 모델은 반복적으로 많은 행렬 연산을 수행해야 합니다!
이러한 비효율성을 제거하기 위해 KV 캐시(Key-Value Cache)를 사용합니다. 어텐션 레이어에서 이전에 처리한 토큰으로부터 얻은 키와 값 쌍을 저장해두고, 이후 토큰 예측 시 이를 재사용하여 연산을 줄이는 방식입니다.
> [!WARNING]
> 캐싱은 **추론**에만 사용해야 합니다. 학습 중에 활성화되면 예상치 못한 오류가 발생할 수 있습니다.
캐싱이 어떻게 그리고 왜 작동하는지 더 잘 이해하기 위해, 어텐션 행렬의 구조를 자세히 살펴보겠습니다.
## 어텐션 행렬[[attention-matrices]]
**스케일드 닷-프로덕트 어텐션**은 배치 크기 `b`, 어텐션 헤드 수 `h`, 현재까지의 시퀀스 길이 `T`, 어텐션 헤드당 차원 `d_head`에 대해 아래와 같이 계산됩니다.
$$
\text{Attention}(Q, K, V) = \text{softmax}\left( \frac{Q K^\top}{\sqrt{d_{\text{head}}}} \times \text{mask} \right) V
$$
쿼리(`Q`), 키(`K`), 값(`V`) 행렬은 `(b, h, T, d_head)` 형태의 입력 임베딩에서의 투영입니다.
인과적 어텐션의 경우, 마스크는 모델이 미래 토큰에 어텐션 하는 것을 방지합니다. 토큰이 한 번 처리되면, 그 표현은 미래 토큰과 관련하여 절대 변하지 않습니다. 이는 \\( K_{\text{past}} \\)와 \\( V_{\text{past}} \\)를 캐시하여 마지막 토큰의 표현을 계산하는 데 재사용할 수 있음을 의미합니다.
$$
\text{Attention}(q_t, [\underbrace{k_1, k_2, \dots, k_{t-1}}_{\text{cached}}, k_{t}], [\underbrace{v_1, v_2, \dots, v_{t-1}}_{\text{cached}}, v_{t}])
$$
추론 시에는 다음 토큰 \\( t+1 \\)을 예측하는 표현 \\( x_t \\)를 계산하기 위해 마지막 토큰의 쿼리만 필요합니다. 단계에서 새로운 키와 값 벡터가 캐시에 **저장**되고 과거 키와 값에 **추가**됩니다.
$$
K_{\text{cache}} \leftarrow \text{concat}(K_{\text{past}}, k_t), \quad V_{\text{cache}} \leftarrow \text{concat}(V_{\text{past}}, v_t)
$$
어텐션은 모델의 각 레이어에서 독립적으로 계산되며, 캐싱은 레이어별로 수행됩니다.
캐싱이 효율성을 어떻게 개선하는지 비교한 아래 표를 참조하세요.
| 캐싱 없음 | 캐싱 사용 |
|---|---|
| 단계마다 이전의 모든 `K``V`를 재계산 | 단계마다 현재의 `K``V`만 계산 |
| 단계당 어텐션 비용이 시퀀스 길이에 대해 **제곱** | 단계당 어텐션 비용이 시퀀스 길이에 대해 **선형** (메모리는 선형적으로 증가하지만, 토큰당 계산은 낮게 유지됨) |
## 캐시 클래스[[cache-class]]
기본 KV 캐시 인터페이스는 현재 토큰의 키와 값 텐서를 받아서 업데이트된 `K``V` 텐서를 반환합니다. 이는 모델의 `forward` 메소드에 의해 내부적으로 관리됩니다.
```py
new_K, new_V = cache.update(k_t, v_t, layer_idx)
attn_output = attn_layer_idx_fn(q_t, new_K, new_V)
```
Transformers의 [`Cache`] 클래스를 사용할 때, 셀프 어텐션 모듈은 과거와 현재 정보를 통합하기 위해 몇 가지 중요한 단계를 수행합니다.
1. 어텐션 모듈은 현재 kv 쌍을 캐시에 저장된 과거 kv 쌍과 연결합니다. 이는 `(new_tokens_length, past_kv_length + new_tokens_length)` 형태의 어텐션 가중치를 생성합니다. 현재와 과거 kv 쌍이 본질적으로 결합해 어텐션 점수를 계산하며, 모델이 이전 문맥과 현재 입력을 인식하도록 보장합니다.
2. `forward` 메소드가 반복적으로 호출될 때, 어텐션 마스크 형태가 과거와 현재 kv 쌍의 결합된 길이와 일치하는 것이 중요합니다. 어텐션 마스크는 `(batch_size, past_kv_length + new_tokens_length)` 형태여야 합니다. 이는 일반적으로 [`~GenerationMixin.generate`]에서 내부적으로 처리되지만, [`Cache`]로 자체 생성 루프를 구현하고 싶다면 이를 염두에 두세요! 어텐션 마스크는 과거와 현재 토큰값을 보유해야 합니다.
3. `cache_position`을 인식하는 것도 중요합니다. 이는 유효한 `cache_position` 값을 전달해야 하므로 `forward` 메소드로 미리 채워진 [`Cache`]를 재사용하고 싶을 때 중요합니다. 이는 시퀀스에서의 입력 위치를 나타냅니다. `cache_position`은 패딩에 영향받지 않으며, 각 토큰에 대해 항상 하나씩 더 많은 위치를 추가합니다. 예를 들어, kv 캐시가 10개의 토큰을 포함하면 - 패드 토큰과 관계없이 - 다음 토큰의 캐시 위치는 `torch.tensor([10])`이어야 합니다.
## 캐시 저장소 구현[[cache-storage-implementation]]
캐시는 각 레이어가 key와 value 캐시를 포함하는 레이어 목록 형태로 구성되어 있습니다. key 및 value 캐시는 `[batch_size, num_heads, seq_len, head_dim]` 형태의 텐서입니다.
레이어는 서로 다른 타입일 수 있으며(예: `DynamicLayer`, `StaticLayer`, `SlidingWindowLayer`), 이는 주로 시퀀스 길이를 어떻게 처리하고 캐시를 어떻게 갱신하는지에 따라 달라집니다.
가장 단순한 형태는 `DynamicLayer`로, 더 많은 토큰이 처리됨에 따라 점진적으로 확장됩니다. 시퀀스 길이 차원(`seq_len`)은 새로운 토큰이 추가될 때마다 증가합니다:
```py
cache.layers[idx].keys = torch.cat([cache.layers[idx].keys, key_states], dim=-2)
cache.layers[idx].values = torch.cat([cache.layers[idx].values, value_states], dim=-2)
```
`StaticLayer``SlidingWindowLayer`와 같은 다른 레이어 타입은 캐시가 생성될 때 고정된 시퀀스 길이를 가지며, 이는 `torch.compile`과 호환되도록 만듭니다. `SlidingWindowLayer`의 경우, 새로운 토큰이 추가되면 기존 토큰은 캐시에서 제거됩니다.
아래 예제는 [`DynamicCache`]로 생성 루프를 만드는 방법을 보여줍니다. 논의된 바와 같이, 어텐션 마스크는 과거와 현재 토큰값의 연결이며 다음 토큰을 위해 캐시 위치에 `1`이 추가됩니다.
```py
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, DynamicCache
model_id = "meta-llama/Llama-2-7b-chat-hf"
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="cuda:0")
tokenizer = AutoTokenizer.from_pretrained(model_id)
past_key_values = DynamicCache()
messages = [{"role": "user", "content": "Hello, what's your name."}]
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt", return_dict=True).to("cuda:0")
generated_ids = inputs.input_ids
cache_position = torch.arange(inputs.input_ids.shape[1], dtype=torch.int64, device="cuda:0")
max_new_tokens = 10
for _ in range(max_new_tokens):
outputs = model(**inputs, cache_position=cache_position, past_key_values=past_key_values, use_cache=True)
# 탐욕적 기법으로 다음 토큰 하나를 샘플링
next_token_ids = outputs.logits[:, -1:].argmax(-1)
generated_ids = torch.cat([generated_ids, next_token_ids], dim=-1)
# 처리되지 않은 토큰을 남겨두어 다음 생성 단계를 위한 입력을 준비합니다. 우리의 경우 새로운 토큰 하나만 존재합니다.
# 위에서 설명한 대로 새로운 토큰을 위해 어텐션 마스크를 확장합니다
attention_mask = inputs["attention_mask"]
attention_mask = torch.cat([attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1)
inputs = {"input_ids": next_token_ids, "attention_mask": attention_mask}
cache_position = cache_position[-1:] + 1 # 다음 토큰을 위해 하나 더 위치 추가
print(tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0])
"[INST] Hello, what's your name. [/INST] Hello! My name is LLaMA,"
```
## 캐시 위치[[cache-position]]
캐시 위치는 어텐션 캐시에서 새로운 토큰을 삽입할 위치를 추적합니다. 이는 패딩이나 배치 구조와 무관하게 컨텍스트 내에서 각 토큰의 절대적 위치를 나타냅니다. 이미 `N`개의 토큰을 캐시했고 현재 `K`개의 새로운 토큰을 처리하고 있다고 가정하겠습니다. 새로운 토큰에 대한 캐시 위치는 `N`부터 `N + K - 1`까지의 범위가 됩니다. 즉, `[N, N + 1, N + 2, ..., N + K - 1]` 위치의 토큰들을 처리하는 것입니다.
캐시 위치는 내부적으로 두 가지 목적으로 사용됩니다:
1. 입력 시퀀스에서 처리할 새로운 토큰을 선택하고, 아직 캐시되지 않은 토큰만 모델의 `forward`에 전달되도록 보장합니다.
2. 키/값 쌍을 캐시의 올바른 위치에 저장합니다. 이는 특정 캐시 길이를 미리 할당하는 [`StaticCache`]와 같은 고정 크기 캐시에서 특히 중요합니다.
생성 루프는 일반적으로 캐시 위치를 관리하지만, 사용자 정의 생성 메소드를 작성할 때는 캐시 위치가 정확해야 합니다. 캐시 위치는 고정된 슬롯에 키/값 상태를 읽고 쓰는 데 사용되기 때문입니다.
```py
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, DynamicCache
model_id = "meta-llama/Llama-2-7b-chat-hf"
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="cuda:0")
tokenizer = AutoTokenizer.from_pretrained(model_id)
messages = [{"role": "user", "content": "You are a helpful assistant."}]
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt", return_dict=True).to("cuda:0")
generated_ids = model.generate(**inputs, use_cache=True, max_new_tokens=10)
```
## 레거시 캐시 형식[[legacy-cache-format]]
[`Cache`] 클래스 이전에는 캐시가 텐서의 튜플의 튜플로 저장되었습니다. 이 형식은 텍스트가 생성됨에 따라 증가하기 때문에 동적이며, [`DynamicCache`]와 유사합니다.
레거시 형식은 본질적으로 동일한 데이터 구조이지만 다르게 조직화되었습니다.
- 각 내부 튜플은 레이어의 키와 값 텐서를 포함하는 튜플의 튜플입니다.
- 텐서는 동일한 형태 `[batch_size, num_heads, seq_len, head_dim]`를 갖습니다.
- 이 형식은 덜 유연하며 양자화나 오프로딩과 같은 기능을 지원하지 않습니다.
프로젝트가 이 레거시 형식에 의존한다면, [`~DynamicCache.from_legacy_cache`]를 사용하여 [`DynamicCache`]로 변환하는 것을 권장합니다. 레거시 캐시 형식은 사용이 중단되었으며 `Transformers`에서 더 이상 사용되지 않습니다. 특정 형식에서 캐시를 조작하는 커스텀 로직이 있는 경우 도움이 되는 [`DynamicCache.to_legacy_cache`] 함수를 사용하여 튜플 형식으로 다시 변환할 수 있습니다.
```py
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, DynamicCache
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf")
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf", torch_dtype=torch.float16, device_map="auto")
inputs = tokenizer("Hello, my name is", return_tensors="pt").to(model.device)
# 캐시를 반환하려면 `return_dict_in_generate=True`가 필요하고 `return_legacy_cache`는 반환된 캐시를
# 레거시 형식으로 강제합니다
generation_outputs = model.generate(**inputs, return_dict_in_generate=True, return_legacy_cache=True, max_new_tokens=5)
cache = DynamicCache.from_legacy_cache(generation_outputs.past_key_values)
legacy_format_cache = cache.to_legacy_cache()
```

View File

@ -1,388 +0,0 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# 맞춤형 아키텍처 만들기[[create-a-custom-architecture]]
[`AutoClass`](model_doc/auto)는 모델 아키텍처를 자동으로 추론하고 미리 학습된 configuration과 가중치를 다운로드합니다. 일반적으로 체크포인트에 구애받지 않는 코드를 생성하려면 `AutoClass`를 사용하는 것이 좋습니다. 하지만 특정 모델 파라미터를 보다 세밀하게 제어하고자 하는 사용자는 몇 가지 기본 클래스만으로 커스텀 🤗 Transformers 모델을 생성할 수 있습니다. 이는 🤗 Transformers 모델을 연구, 교육 또는 실험하는 데 관심이 있는 모든 사용자에게 특히 유용할 수 있습니다. 이 가이드에서는 'AutoClass'를 사용하지 않고 커스텀 모델을 만드는 방법에 대해 알아보겠습니다:
- 모델 configuration을 가져오고 사용자 지정합니다.
- 모델 아키텍처를 생성합니다.
- 텍스트에 사용할 느리거나 빠른 토큰화기를 만듭니다.
- 비전 작업을 위한 이미지 프로세서를 생성합니다.
- 오디오 작업을 위한 특성 추출기를 생성합니다.
- 멀티모달 작업용 프로세서를 생성합니다.
## Configuration[[configuration]]
[configuration](main_classes/configuration)은 모델의 특정 속성을 나타냅니다. 각 모델 구성에는 서로 다른 속성이 있습니다. 예를 들어, 모든 NLP 모델에는 `hidden_size`, `num_attention_heads`, `num_hidden_layers``vocab_size` 속성이 공통으로 있습니다. 이러한 속성은 모델을 구성할 attention heads 또는 hidden layers의 수를 지정합니다.
[DistilBERT](model_doc/distilbert) 속성을 검사하기 위해 [`DistilBertConfig`]에 접근하여 자세히 살펴봅니다:
```py
>>> from transformers import DistilBertConfig
>>> config = DistilBertConfig()
>>> print(config)
DistilBertConfig {
"activation": "gelu",
"attention_dropout": 0.1,
"dim": 768,
"dropout": 0.1,
"hidden_dim": 3072,
"initializer_range": 0.02,
"max_position_embeddings": 512,
"model_type": "distilbert",
"n_heads": 12,
"n_layers": 6,
"pad_token_id": 0,
"qa_dropout": 0.1,
"seq_classif_dropout": 0.2,
"sinusoidal_pos_embds": false,
"transformers_version": "4.16.2",
"vocab_size": 30522
}
```
[`DistilBertConfig`]는 기본 [`DistilBertModel`]을 빌드하는 데 사용되는 모든 기본 속성을 표시합니다. 모든 속성은 커스터마이징이 가능하므로 실험을 위한 공간을 만들 수 있습니다. 예를 들어 기본 모델을 다음과 같이 커스터마이즈할 수 있습니다:
- `activation` 파라미터로 다른 활성화 함수를 사용해 보세요.
- `attention_dropout` 파라미터를 사용하여 어텐션 확률에 더 높은 드롭아웃 비율을 사용하세요.
```py
>>> my_config = DistilBertConfig(activation="relu", attention_dropout=0.4)
>>> print(my_config)
DistilBertConfig {
"activation": "relu",
"attention_dropout": 0.4,
"dim": 768,
"dropout": 0.1,
"hidden_dim": 3072,
"initializer_range": 0.02,
"max_position_embeddings": 512,
"model_type": "distilbert",
"n_heads": 12,
"n_layers": 6,
"pad_token_id": 0,
"qa_dropout": 0.1,
"seq_classif_dropout": 0.2,
"sinusoidal_pos_embds": false,
"transformers_version": "4.16.2",
"vocab_size": 30522
}
```
사전 학습된 모델 속성은 [`~PretrainedConfig.from_pretrained`] 함수에서 수정할 수 있습니다:
```py
>>> my_config = DistilBertConfig.from_pretrained("distilbert/distilbert-base-uncased", activation="relu", attention_dropout=0.4)
```
모델 구성이 만족스러우면 [`~PretrainedConfig.save_pretrained`]로 저장할 수 있습니다. 설정 파일은 지정된 작업 경로에 JSON 파일로 저장됩니다:
```py
>>> my_config.save_pretrained(save_directory="./your_model_save_path")
```
configuration 파일을 재사용하려면 [`~PretrainedConfig.from_pretrained`]를 사용하여 가져오세요:
```py
>>> my_config = DistilBertConfig.from_pretrained("./your_model_save_path/config.json")
```
<Tip>
configuration 파일을 딕셔너리로 저장하거나 사용자 정의 configuration 속성과 기본 configuration 속성의 차이점만 저장할 수도 있습니다! 자세한 내용은 [configuration](main_classes/configuration) 문서를 참조하세요.
</Tip>
## 모델[[model]]
다음 단계는 [모델(model)](main_classes/models)을 만드는 것입니다. 느슨하게 아키텍처라고도 불리는 모델은 각 계층이 수행하는 동작과 발생하는 작업을 정의합니다. configuration의 `num_hidden_layers`와 같은 속성은 아키텍처를 정의하는 데 사용됩니다. 모든 모델은 기본 클래스 [`PreTrainedModel`]과 입력 임베딩 크기 조정 및 셀프 어텐션 헤드 가지 치기와 같은 몇 가지 일반적인 메소드를 공유합니다. 또한 모든 모델은 [`torch.nn.Module`](https://pytorch.org/docs/stable/generated/torch.nn.Module.html), [`tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) 또는 [`flax.linen.Module`](https://flax.readthedocs.io/en/latest/api_reference/flax.linen/module.html)의 서브클래스이기도 합니다. 즉, 모델은 각 프레임워크의 사용법과 호환됩니다.
<frameworkcontent>
<pt>
사용자 지정 configuration 속성을 모델에 가져옵니다:
```py
>>> from transformers import DistilBertModel
>>> my_config = DistilBertConfig.from_pretrained("./your_model_save_path/config.json")
>>> model = DistilBertModel(my_config)
```
이제 사전 학습된 가중치 대신 임의의 값을 가진 모델이 생성됩니다. 이 모델을 훈련하기 전까지는 유용하게 사용할 수 없습니다. 훈련은 비용과 시간이 많이 소요되는 프로세스입니다. 일반적으로 훈련에 필요한 리소스의 일부만 사용하면서 더 나은 결과를 더 빨리 얻으려면 사전 훈련된 모델을 사용하는 것이 좋습니다.
사전 학습된 모델을 [`~PreTrainedModel.from_pretrained`]로 생성합니다:
```py
>>> model = DistilBertModel.from_pretrained("distilbert/distilbert-base-uncased")
```
🤗 Transformers에서 제공한 모델의 사전 학습된 가중치를 사용하는 경우 기본 모델 configuration을 자동으로 불러옵니다. 그러나 원하는 경우 기본 모델 configuration 속성의 일부 또는 전부를 사용자 지정으로 바꿀 수 있습니다:
```py
>>> model = DistilBertModel.from_pretrained("distilbert/distilbert-base-uncased", config=my_config)
```
</pt>
<tf>
사용자 지정 configuration 속성을 모델에 불러옵니다:
```py
>>> from transformers import TFDistilBertModel
>>> my_config = DistilBertConfig.from_pretrained("./your_model_save_path/my_config.json")
>>> tf_model = TFDistilBertModel(my_config)
```
이제 사전 학습된 가중치 대신 임의의 값을 가진 모델이 생성됩니다. 이 모델을 훈련하기 전까지는 유용하게 사용할 수 없습니다. 훈련은 비용과 시간이 많이 소요되는 프로세스입니다. 일반적으로 훈련에 필요한 리소스의 일부만 사용하면서 더 나은 결과를 더 빨리 얻으려면 사전 훈련된 모델을 사용하는 것이 좋습니다.
사전 학습된 모델을 [`~TFPreTrainedModel.from_pretrained`]로 생성합니다:
```py
>>> tf_model = TFDistilBertModel.from_pretrained("distilbert/distilbert-base-uncased")
```
🤗 Transformers에서 제공한 모델의 사전 학습된 가중치를 사용하는 경우 기본 모델 configuration을 자동으로 불러옵니다. 그러나 원하는 경우 기본 모델 configuration 속성의 일부 또는 전부를 사용자 지정으로 바꿀 수 있습니다:
```py
>>> tf_model = TFDistilBertModel.from_pretrained("distilbert/distilbert-base-uncased", config=my_config)
```
</tf>
</frameworkcontent>
### 모델 헤드[[model-heads]]
이 시점에서 *은닉 상태(hidden state)*를 출력하는 기본 DistilBERT 모델을 갖게 됩니다. 은닉 상태는 최종 출력을 생성하기 위해 모델 헤드에 입력으로 전달됩니다. 🤗 Transformers는 모델이 해당 작업을 지원하는 한 각 작업마다 다른 모델 헤드를 제공합니다(즉, 번역과 같은 시퀀스 간 작업에는 DistilBERT를 사용할 수 없음).
<frameworkcontent>
<pt>
예를 들어, [`DistilBertForSequenceClassification`]은 시퀀스 분류 헤드가 있는 기본 DistilBERT 모델입니다. 시퀀스 분류 헤드는 풀링된 출력 위에 있는 선형 레이어입니다.
```py
>>> from transformers import DistilBertForSequenceClassification
>>> model = DistilBertForSequenceClassification.from_pretrained("distilbert/distilbert-base-uncased")
```
다른 모델 헤드로 전환하여 이 체크포인트를 다른 작업에 쉽게 재사용할 수 있습니다. 질의응답 작업의 경우, [`DistilBertForQuestionAnswering`] 모델 헤드를 사용할 수 있습니다. 질의응답 헤드는 숨겨진 상태 출력 위에 선형 레이어가 있다는 점을 제외하면 시퀀스 분류 헤드와 유사합니다.
```py
>>> from transformers import DistilBertForQuestionAnswering
>>> model = DistilBertForQuestionAnswering.from_pretrained("distilbert/distilbert-base-uncased")
```
</pt>
<tf>
예를 들어, [`TFDistilBertForSequenceClassification`]은 시퀀스 분류 헤드가 있는 기본 DistilBERT 모델입니다. 시퀀스 분류 헤드는 풀링된 출력 위에 있는 선형 레이어입니다.
```py
>>> from transformers import TFDistilBertForSequenceClassification
>>> tf_model = TFDistilBertForSequenceClassification.from_pretrained("distilbert/distilbert-base-uncased")
```
다른 모델 헤드로 전환하여 이 체크포인트를 다른 작업에 쉽게 재사용할 수 있습니다. 질의응답 작업의 경우, [`TFDistilBertForQuestionAnswering`] 모델 헤드를 사용할 수 있습니다. 질의응답 헤드는 숨겨진 상태 출력 위에 선형 레이어가 있다는 점을 제외하면 시퀀스 분류 헤드와 유사합니다.
```py
>>> from transformers import TFDistilBertForQuestionAnswering
>>> tf_model = TFDistilBertForQuestionAnswering.from_pretrained("distilbert/distilbert-base-uncased")
```
</tf>
</frameworkcontent>
## 토크나이저[[tokenizer]]
텍스트 데이터에 모델을 사용하기 전에 마지막으로 필요한 기본 클래스는 원시 텍스트를 텐서로 변환하는 [토크나이저](main_classes/tokenizer)입니다. 🤗 Transformers에 사용할 수 있는 토크나이저는 두 가지 유형이 있습니다:
- [`PreTrainedTokenizer`]: 파이썬으로 구현된 토크나이저입니다.
- [`PreTrainedTokenizerFast`]: Rust 기반 [🤗 Tokenizer](https://huggingface.co/docs/tokenizers/python/latest/) 라이브러리로 만들어진 토크나이저입니다. 이 토크나이저는 Rust로 구현되어 배치 토큰화에서 특히 빠릅니다. 빠른 토크나이저는 토큰을 원래 단어나 문자에 매핑하는 *오프셋 매핑*과 같은 추가 메소드도 제공합니다.
두 토크나이저 모두 인코딩 및 디코딩, 새 토큰 추가, 특수 토큰 관리와 같은 일반적인 방법을 지원합니다.
<Tip warning={true}>
모든 모델이 빠른 토크나이저를 지원하는 것은 아닙니다. 이 [](index#supported-frameworks)에서 모델의 빠른 토크나이저 지원 여부를 확인하세요.
</Tip>
토크나이저를 직접 학습한 경우, *어휘(vocabulary)* 파일에서 토크나이저를 만들 수 있습니다:
```py
>>> from transformers import DistilBertTokenizer
>>> my_tokenizer = DistilBertTokenizer(vocab_file="my_vocab_file.txt", do_lower_case=False, padding_side="left")
```
사용자 지정 토크나이저의 어휘는 사전 학습된 모델의 토크나이저에서 생성된 어휘와 다를 수 있다는 점을 기억하는 것이 중요합니다. 사전 학습된 모델을 사용하는 경우 사전 학습된 모델의 어휘를 사용해야 하며, 그렇지 않으면 입력이 의미를 갖지 못합니다. [`DistilBertTokenizer`] 클래스를 사용하여 사전 학습된 모델의 어휘로 토크나이저를 생성합니다:
```py
>>> from transformers import DistilBertTokenizer
>>> slow_tokenizer = DistilBertTokenizer.from_pretrained("distilbert/distilbert-base-uncased")
```
[`DistilBertTokenizerFast`] 클래스로 빠른 토크나이저를 생성합니다:
```py
>>> from transformers import DistilBertTokenizerFast
>>> fast_tokenizer = DistilBertTokenizerFast.from_pretrained("distilbert/distilbert-base-uncased")
```
<Tip>
[`AutoTokenizer`]는 기본적으로 빠른 토크나이저를 가져오려고 합니다. 이 동작을 비활성화하려면 `from_pretrained`에서 `use_fast=False`를 설정하면 됩니다.
</Tip>
## 이미지 프로세서[[image-processor]]
이미지 프로세서(image processor)는 비전 입력을 처리합니다. 기본 [`~image_processing_utils.ImageProcessingMixin`] 클래스에서 상속합니다.
사용하려면 사용 중인 모델과 연결된 이미지 프로세서를 생성합니다. 예를 들어, 이미지 분류에 [ViT](model_doc/vit)를 사용하는 경우 기본 [`ViTImageProcessor`]를 생성합니다:
```py
>>> from transformers import ViTImageProcessor
>>> vit_extractor = ViTImageProcessor()
>>> print(vit_extractor)
ViTImageProcessor {
"do_normalize": true,
"do_resize": true,
"feature_extractor_type": "ViTImageProcessor",
"image_mean": [
0.5,
0.5,
0.5
],
"image_std": [
0.5,
0.5,
0.5
],
"resample": 2,
"size": 224
}
```
<Tip>
사용자 지정을 원하지 않는 경우 `from_pretrained` 메소드를 사용하여 모델의 기본 이미지 프로세서 매개변수를 불러오면 됩니다.
</Tip>
사용자 지정 이미지 프로세서를 생성하려면 [`ViTImageProcessor`] 파라미터를 수정합니다:
```py
>>> from transformers import ViTImageProcessor
>>> my_vit_extractor = ViTImageProcessor(resample="PIL.Image.BOX", do_normalize=False, image_mean=[0.3, 0.3, 0.3])
>>> print(my_vit_extractor)
ViTImageProcessor {
"do_normalize": false,
"do_resize": true,
"feature_extractor_type": "ViTImageProcessor",
"image_mean": [
0.3,
0.3,
0.3
],
"image_std": [
0.5,
0.5,
0.5
],
"resample": "PIL.Image.BOX",
"size": 224
}
```
## 특성 추출기[[feature-extractor]]
특성 추출기(feature extractor)는 오디오 입력을 처리합니다. 기본 [`~feature_extraction_utils.FeatureExtractionMixin`] 클래스에서 상속되며, 오디오 입력을 처리하기 위해 [`SequenceFeatureExtractor`] 클래스에서 상속할 수도 있습니다.
사용하려면 사용 중인 모델과 연결된 특성 추출기를 생성합니다. 예를 들어, 오디오 분류에 [Wav2Vec2](model_doc/wav2vec2)를 사용하는 경우 기본 [`Wav2Vec2FeatureExtractor`]를 생성합니다:
```py
>>> from transformers import Wav2Vec2FeatureExtractor
>>> w2v2_extractor = Wav2Vec2FeatureExtractor()
>>> print(w2v2_extractor)
Wav2Vec2FeatureExtractor {
"do_normalize": true,
"feature_extractor_type": "Wav2Vec2FeatureExtractor",
"feature_size": 1,
"padding_side": "right",
"padding_value": 0.0,
"return_attention_mask": false,
"sampling_rate": 16000
}
```
<Tip>
사용자 지정이 필요하지 않은 경우 `from_pretrained` 메소드를 사용하여 모델의 기본 특성 추출기 ㅁ개변수를 불러 오면 됩니다.
</Tip>
사용자 지정 특성 추출기를 만들려면 [`Wav2Vec2FeatureExtractor`] 매개변수를 수정합니다:
```py
>>> from transformers import Wav2Vec2FeatureExtractor
>>> w2v2_extractor = Wav2Vec2FeatureExtractor(sampling_rate=8000, do_normalize=False)
>>> print(w2v2_extractor)
Wav2Vec2FeatureExtractor {
"do_normalize": false,
"feature_extractor_type": "Wav2Vec2FeatureExtractor",
"feature_size": 1,
"padding_side": "right",
"padding_value": 0.0,
"return_attention_mask": false,
"sampling_rate": 8000
}
```
## 프로세서[[processor]]
멀티모달 작업을 지원하는 모델의 경우, 🤗 Transformers는 특성 추출기 및 토크나이저와 같은 처리 클래스를 단일 객체로 편리하게 래핑하는 프로세서 클래스를 제공합니다. 예를 들어, 자동 음성 인식 작업(Automatic Speech Recognition task (ASR))에 [`Wav2Vec2Processor`]를 사용한다고 가정해 보겠습니다. 자동 음성 인식 작업은 오디오를 텍스트로 변환하므로 특성 추출기와 토크나이저가 필요합니다.
오디오 입력을 처리할 특성 추출기를 만듭니다:
```py
>>> from transformers import Wav2Vec2FeatureExtractor
>>> feature_extractor = Wav2Vec2FeatureExtractor(padding_value=1.0, do_normalize=True)
```
텍스트 입력을 처리할 토크나이저를 만듭니다:
```py
>>> from transformers import Wav2Vec2CTCTokenizer
>>> tokenizer = Wav2Vec2CTCTokenizer(vocab_file="my_vocab_file.txt")
```
[`Wav2Vec2Processor`]에서 특성 추출기와 토크나이저를 결합합니다:
```py
>>> from transformers import Wav2Vec2Processor
>>> processor = Wav2Vec2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer)
```
configuration과 모델이라는 두 가지 기본 클래스와 추가 전처리 클래스(토크나이저, 이미지 프로세서, 특성 추출기 또는 프로세서)를 사용하면 🤗 Transformers에서 지원하는 모든 모델을 만들 수 있습니다. 이러한 각 기본 클래스는 구성이 가능하므로 원하는 특정 속성을 사용할 수 있습니다. 학습을 위해 모델을 쉽게 설정하거나 기존의 사전 학습된 모델을 수정하여 미세 조정할 수 있습니다.

View File

@ -289,7 +289,7 @@ time."\n\nHe added: "I am very proud of the work I have been able to do in the l
culture, and they allow us to design the'
```
이 가이드에서는 다양한 디코딩 전략을 가능하게 하는 주요 매개변수를 보여줍니다. [`generate`] 메서드에 대한 고급 매개변수가 존재하므로 [`generate`] 메서드의 동작을 더욱 세부적으로 제어할 수 있습니다. 사용 가능한 매개변수의 전체 목록은 [API 문서](./main_classes/text_generation.md)를 참조하세요.
이 가이드에서는 다양한 디코딩 전략을 가능하게 하는 주요 매개변수를 보여줍니다. [`generate`] 메서드에 대한 고급 매개변수가 존재하므로 [`generate`] 메서드의 동작을 더욱 세부적으로 제어할 수 있습니다. 사용 가능한 매개변수의 전체 목록은 [API 문서](./main_classes/text_generation)를 참조하세요.
### 추론 디코딩(Speculative Decoding)[[speculative-decoding]]

View File

@ -0,0 +1,152 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# 모델 구성 요소 맞춤 설정하기[[customizing-model-components]]
모델을 완전히 새로 작성하는 대신 구성 요소를 수정하여 모델을 맞춤 설정하는 방법이 있습니다. 이 방법으로 모델을 특정 사용 사례에 맞게 모델을 조정할 수 있습니다. 예를 들어, 새로운 레이어를 추가하거나 아키텍처의 어텐션 메커니즘을 최적화할 수 있습니다. 이러한 맞춤 설정은 트랜스포머 모델에 직접 적용되므로, [`Trainer`], [`PreTrainedModel`] 및 [PEFT](https://huggingface.co/docs/peft/en/index) 라이브러리와 같은 기능을 계속 사용할 수 있습니다.
이 가이드에서는 모델의 어텐션 메커니즘을 맞춤 설정하여 [Low-Rank Adaptation (LoRA)](https://huggingface.co/docs/peft/conceptual_guides/adapter#low-rank-adaptation-lora)를 적용하는 방법을 설명합니다.
> [!TIP]
> 모델 코드를 반복적으로 수정하고 개발할 때 [clear_import_cache](https://github.com/huggingface/transformers/blob/9985d06add07a4cc691dc54a7e34f54205c04d40/src/transformers/utils/import_utils.py#L2286) 유틸리티가 매우 유용합니다. 이 기능은 캐시된 모든 트랜스포머 모듈을 제거하여 Python이 환경을 재시작하지 않고도 수정된 코드를 다시 가져올 수 있도록 합니다.
>
> ```py
> from transformers import AutoModel
> from transformers.utils.import_utils import clear_import_cache
>
> model = AutoModel.from_pretrained("bert-base-uncased")
> # 모델 코드 수정
> # 캐시를 지워 수정된 코드를 다시 가져오기
> clear_import_cache()
> # 업데이트된 코드를 사용하기 위해 다시 가져오기
> model = AutoModel.from_pretrained("bert-base-uncased")
> ```
## 어텐션 클래스[[attention-class]]
[Segment Anything](./model_doc/sam)은 이미지 분할 모델로, 어텐션 메커니즘에서 query-key-value(`qkv`) 프로젝션을 결합합니다. 학습 가능한 파라미터 수와 연산 부담을 줄이기 위해 `qkv` 프로젝션에 LoRA를 적용할 수 있습니다. 이를 위해서는 `qkv` 프로젝션을 분리하여 `q``v`에 LoRA를 개별적으로 적용해야 합니다.
1. 원래의 `SamVisionAttention` 클래스를 상속하여 `SamVisionAttentionSplit`이라는 사용자 정의 어텐션 클래스를 만듭니다. `__init__`에서 결합된 `qkv`를 삭제하고, `q`, `k`, `v`를 위한 개별 선형 레이어를 생성합니다.
```py
import torch
import torch.nn as nn
from transformers.models.sam.modeling_sam import SamVisionAttention
class SamVisionAttentionSplit(SamVisionAttention, nn.Module):
def __init__(self, config, window_size):
super().__init__(config, window_size)
# 결합된 qkv 제거
del self.qkv
# q, k, v 개별 프로젝션 생성
self.q = nn.Linear(config.hidden_size, config.hidden_size, bias=config.qkv_bias)
self.k = nn.Linear(config.hidden_size, config.hidden_size, bias=config.qkv_bias)
self.v = nn.Linear(config.hidden_size, config.hidden_size, bias=config.qkv_bias)
self._register_load_state_dict_pre_hook(self.split_q_k_v_load_hook)
```
2. `_split_qkv_load_hook` 함수는 모델을 가져올 때, 사전 훈련된 `qkv` 가중치를 `q`, `k`, `v`로 분리하여 사전 훈련된 모델과의 호환성을 보장합니다.
```py
def split_q_k_v_load_hook(self, state_dict, prefix, *args):
keys_to_delete = []
for key in list(state_dict.keys()):
if "qkv." in key:
# 결합된 프로젝션에서 q, k, v 분리
q, k, v = state_dict[key].chunk(3, dim=0)
# 개별 q, k, v 프로젝션으로 대체
state_dict[key.replace("qkv.", "q.")] = q
state_dict[key.replace("qkv.", "k.")] = k
state_dict[key.replace("qkv.", "v.")] = v
# 기존 qkv 키를 삭제 대상으로 표시
keys_to_delete.append(key)
# 기존 qkv 키 제거
for key in keys_to_delete:
del state_dict[key]
```
3. `forward` 단계에서 `q`, `k`, `v`는 개별적으로 계산되며, 어텐션 메커니즘의 나머지 부분은 동일하게 유지됩니다.
```py
def forward(self, hidden_states: torch.Tensor, output_attentions=False) -> torch.Tensor:
batch_size, height, width, _ = hidden_states.shape
qkv_shapes = (batch_size * self.num_attention_heads, height * width, -1)
query = self.q(hidden_states).reshape((batch_size, height * width,self.num_attention_heads, -1)).permute(0,2,1,3).reshape(qkv_shapes)
key = self.k(hidden_states).reshape((batch_size, height * width,self.num_attention_heads, -1)).permute(0,2,1,3).reshape(qkv_shapes)
value = self.v(hidden_states).reshape((batch_size, height * width,self.num_attention_heads, -1)).permute(0,2,1,3).reshape(qkv_shapes)
attn_weights = (query * self.scale) @ key.transpose(-2, -1)
attn_weights = torch.nn.functional.softmax(attn_weights, dtype=torch.float32, dim=-1).to(query.dtype)
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = (attn_probs @ value).reshape(batch_size, self.num_attention_heads, height, width, -1)
attn_output = attn_output.permute(0, 2, 3, 1, 4).reshape(batch_size, height, width, -1)
attn_output = self.proj(attn_output)
if output_attentions:
outputs = (attn_output, attn_weights)
else:
outputs = (attn_output, None)
return outputs
```
사용자 정의 `SamVisionAttentionSplit` 클래스를 원본 모델의 `SamVisionAttention` 모듈에 할당하여 교체합니다. 모델 내 모든 `SamVisionAttention` 인스턴스는 분리된 어텐션 버전으로 대체됩니다.
[`~PreTrainedModel.from_pretrained`]로 모델을 가져오세요.
```py
from transformers import SamModel
# 사전 훈련된 SAM 모델 가져오기
model = SamModel.from_pretrained("facebook/sam-vit-base")
# 비전-인코더 모듈에서 어텐션 클래스 교체
for layer in model.vision_encoder.layers:
if hasattr(layer, "attn"):
layer.attn = SamVisionAttentionSplit(model.config.vision_config, model.config.vision_config.window_size)
```
## LoRA[[lora]]
분리된 `q`, `k`, `v` 프로젝션을 사용할 때 , `q``v`에 LoRA를 적용합니다.
[LoraConfig](https://huggingface.co/docs/peft/package_reference/config#peft.PeftConfig)를 생성하고, 랭크 `r`, `lora_alpha`, `lora_dropout`, `task_type`, 그리고 가장 중요한 적용될 모듈을 지정합니다.
```py
from peft import LoraConfig, get_peft_model
config = LoraConfig(
r=16,
lora_alpha=32,
# q와 v에 LoRA 적용
target_modules=["q", "v"],
lora_dropout=0.1,
task_type="FEATURE_EXTRACTION"
)
```
모델과 [LoraConfig](https://huggingface.co/docs/peft/package_reference/config#peft.PeftConfig)를 [get\_peft\_model](https://huggingface.co/docs/peft/package_reference/peft_model#peft.get_peft_model)에 전달하여 모델에 LoRA를 적용합니다.
```py
model = get_peft_model(model, config)
```
[print_trainable_parameters](https://huggingface.co/docs/peft/package_reference/peft_model#peft.PeftMixedModel.print_trainable_parameters)를 호출하여 전체 파라미터 수 대비 훈련되는 파라미터 수를 확인하세요.
```py
model.print_trainable_parameters()
"trainable params: 589,824 || all params: 94,274,096 || trainable%: 0.6256"
```

View File

@ -21,11 +21,11 @@ GPT3/4, [Falcon](https://huggingface.co/tiiuae/falcon-40b), [Llama](https://hugg
이 가이드에서는 효율적인 대규모 언어 모델 배포를 위한 효과적인 기법들을 살펴보겠습니다.
1. **낮은 정밀도:** 연구에 따르면, [8비트와 4비트](./main_classes/quantization.md)와 같이 낮은 수치 정밀도로 작동하면 모델 성능의 큰 저하 없이 계산상의 이점을 얻을 수 있습니다.
1. **낮은 정밀도:** 연구에 따르면, [8비트와 4비트](./main_classes/quantization)와 같이 낮은 수치 정밀도로 작동하면 모델 성능의 큰 저하 없이 계산상의 이점을 얻을 수 있습니다.
2. **플래시 어텐션:** 플래시 어텐션은 메모리 효율성을 높일 뿐만 아니라 최적화된 GPU 메모리 활용을 통해 효율성을 향상시키는 어텐션 알고리즘의 변형입니다.
3. **아키텍처 혁신:** 추론 시 대규모 언어 모델은 주로 동일한 방식(긴 입력 맥락을 가진 자기회귀 텍스트 생성 방식)으로 배포되는데, 더 효율적인 추론을 가능하게 하는 특화된 모델 아키텍처가 제안되었습니다. 이러한 모델 아키텍처의 가장 중요한 발전으로는 [Alibi](https://huggingface.co/papers/2108.12409), [Rotary embeddings](https://huggingface.co/papers/2104.09864), [Multi-Query Attention (MQA)](https://huggingface.co/papers/1911.02150), [Grouped-Query-Attention (GQA)]((https://huggingface.co/papers/2305.13245))이 있습니다.
3. **아키텍처 혁신:** 추론 시 대규모 언어 모델은 주로 동일한 방식(긴 입력 맥락을 가진 자기회귀 텍스트 생성 방식)으로 배포되는데, 더 효율적인 추론을 가능하게 하는 특화된 모델 아키텍처가 제안되었습니다. 이러한 모델 아키텍처의 가장 중요한 발전으로는 [Alibi](https://huggingface.co/papers/2108.12409), [Rotary embeddings](https://huggingface.co/papers/2104.09864), [Multi-Query Attention (MQA)](https://huggingface.co/papers/1911.02150), [Grouped-Query-Attention (GQA)](https://huggingface.co/papers/2305.13245)이 있습니다.
이 가이드에서는 텐서의 관점에서 자기회귀 생성에 대한 분석을 제공합니다. 낮은 정밀도를 채택하는 것의 장단점을 논의하고, 최신 어텐션 알고리즘을 포괄적으로 탐구하며, 향상된 대규모 언어 모델 아키텍처에 대해 논합니다. 이 과정에서 각 기능의 개선 사항을 보여주는 실용적인 예제를 확인합니다.
@ -756,4 +756,4 @@ GQA의 가장 주목할 만한 적용 사례는 [Llama-v2](https://huggingface.c
연구 커뮤니티는 점점 더 큰 대규모 언어 모델의 추론 시간을 가속화하기 위한 새로운 기발한 방법들을 끊임없이 찾아내고 있습니다. 예를 들어, [추측 디코딩](https://huggingface.co/papers/2211.17192)이라는 유망한 연구 방향이 있습니다. 여기서 "쉬운 토큰"은 더 작고 빠른 언어 모델에 의해 생성되고, "어려운 토큰"만 대규모 언어 모델 자체에 의해 생성됩니다. 자세한 내용은 이 노트북의 범위를 벗어나지만, [멋진 블로그 포스트](https://huggingface.co/blog/assisted-generation)에서 읽어볼 수 있습니다.
GPT3/4, Llama-2-70b, Claude, PaLM과 같은 거대한 대규모 언어 모델이 [Hugging Face Chat](https://huggingface.co/chat/) 또는 ChatGPT와 같은 채팅 인터페이스에서 빠르게 실행될 수 있는 이유는 위에서 언급한 정밀도, 알고리즘, 아키텍처의 개선 덕분입니다. 앞으로 GPU, TPU 등과 같은 가속기는 점점 더 빨라지고 더 많은 메모리를 사용할 것입니다. 따라서 가장 좋은 알고리즘과 아키텍처를 사용하여 최고의 효율을 얻는 것이 중요합니다 🤗
GPT3/4, Llama-2-70b, Claude, PaLM과 같은 거대한 대규모 언어 모델이 [Hugging Face Chat](https://huggingface.co/chat/) 또는 ChatGPT와 같은 채팅 인터페이스에서 빠르게 실행될 수 있는 이유는 위에서 언급한 정밀도, 알고리즘, 아키텍처의 개선 덕분입니다. 앞으로 GPU, TPU 등과 같은 가속기는 점점 더 빨라지고 더 많은 메모리를 사용할 것입니다. 따라서 가장 좋은 알고리즘과 아키텍처를 사용하여 최고의 효율을 얻는 것이 중요합니다 🤗

View File

@ -0,0 +1,23 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# PEFT[[transformers.integrations.PeftAdapterMixin]]
[`~integrations.PeftAdapterMixin`]은 Transformers 라이브러리와 함께 어댑터를 관리할 수 있도록 [PEFT](https://huggingface.co/docs/peft/index) 라이브러리의 함수들을 제공합니다. 이 믹스인은 현재 LoRA, IA3, AdaLora를 지원합니다. 프리픽스 튜닝 방법들(프롬프트 튜닝, 프롬프트 학습)은 torch 모듈에 삽입할 수 없는 구조이므로 지원되지 않습니다.
[[autodoc]] integrations.PeftAdapterMixin
- load_adapter
- add_adapter
- set_adapter
- disable_adapters
- enable_adapters
- active_adapters
- get_adapter_state_dict

View File

@ -0,0 +1,82 @@
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# 토크나이저[[tokenizer]]
토크나이저는 모델의 입력을 준비하는 역할을 담당합니다. 이 라이브러리에는 모든 모델을 위한 토크나이저가 포함되어 있습니다. 대부분의 토크나이저는 두 가지 버전으로 제공됩니다. 완전한 파이썬 구현과 Rust 라이브러리 [🤗 Tokenizers](https://github.com/huggingface/tokenizers)에 기반한 "Fast" 구현입니다. "Fast" 구현은 다음을 가능하게 합니다:
1. 특히 배치 토큰화를 수행할 때 속도가 크게 향상됩니다.
2. 원본 문자열(문자 및 단어)과 토큰 공간 사이를 매핑하는 추가적인 메소드를 제공합니다. (예: 특정 문자를 포함하는 토큰의 인덱스를 얻거나, 특정 토큰에 해당하는 문자 범위를 가져오는 등).
기본 클래스인 [`PreTrainedTokenizer`]와 [`PreTrainedTokenizerFast`]는 문자열 입력을 인코딩하는 메소드를 구현하며(아래 참조), 로컬 파일이나 디렉토리, 또는 라이브러리에서 제공하는 사전 훈련된 토크나이저(HuggingFace의 AWS S3 저장소에서 다운로드된)로부터 파이썬 및 "Fast" 토크나이저를 인스턴스화하거나 저장하는 기능을 제공합니다. 이 두 클래스는 공통 메소드를 포함하는 [`~tokenization_utils_base.PreTrainedTokenizerBase`]와 [`~tokenization_utils_base.SpecialTokensMixin`]에 의존합니다.
[`PreTrainedTokenizer`]와 [`PreTrainedTokenizerFast`]는 모든 토크나이저에서 사용되는 주요 메소드들을 구현합니다:
- 토큰화(문자열을 하위 단어 토큰 문자열로 분할), 토큰 문자열을 ID로 변환 및 그 반대 과정, 그리고 인코딩/디코딩(즉, 토큰화 및 정수로 변환)을 수행합니다.
- 구조(BPE, SentencePiece 등)에 구애받지 않고 어휘에 새로운 토큰을 추가합니다.
- 특수 토큰(마스크, 문장 시작 등) 관리: 토큰을 추가하고, 쉽게 접근할 수 있도록 토크나이저의 속성에 할당하며, 토큰화 과정에서 분리되지 않도록 보장합니다.
[`BatchEncoding`]은 [`~tokenization_utils_base.PreTrainedTokenizerBase`]의 인코딩 메소드(`__call__`, `encode_plus`, `batch_encode_plus`)의 출력을 담고 있으며, 파이썬 딕셔너리를 상속받습니다. 토크나이저가 순수 파이썬 토크나이저인 경우 이 클래스는 표준 파이썬 딕셔너리처럼 동작하며, 이러한 메소드들로 계산된 다양한 모델 입력(`input_ids`, `attention_mask` 등)을 갖습니다. 토크나이저가 "Fast" 토크나이저일 경우(즉, HuggingFace [tokenizers 라이브러리](https://github.com/huggingface/tokenizers) 기반일 경우), 이 클래스는 추가적으로 원본 문자열(문자 및 단어)과 토큰 공간 사이를 매핑하는 데 사용할 수 있는 여러 고급 정렬 메소드를 제공합니다 (예: 특정 문자를 포함하는 토큰의 인덱스를 얻거나, 특정 토큰에 해당하는 문자 범위를 얻는 등).
# 멀티모달 토크나이저[[multimodal-tokenizer]]
그 외에도 각 토크나이저는 "멀티모달" 토크나이저가 될 수 있으며, 이는 토크나이저가 모든 관련 특수 토큰을 토크나이저 속성의 일부로 저장하여 더 쉽게 접근할 수 있도록 한다는 것을 의미합니다. 예를 들어, LLaVA와 같은 비전-언어 모델에서 토크나이저를 가져오면, `tokenizer.image_token_id`에 접근하여 플레이스홀더로 사용되는 특수 이미지 토큰을 얻을 수 있습니다.
모든 유형의 토크나이저에 추가 특수 토큰을 활성화하려면, 다음 코드를 추가하고 토크나이저를 저장해야 합니다. 추가 특수 토큰은 반드시 특정 모달리티와 관련될 필요는 없으며, 모델이 자주 접근해야 하는 어떤 것이든 될 수 있습니다. 아래 코드에서 `output_dir`에 저장된 토크나이저는 세 개의 추가 특수 토큰에 직접 접근할 수 있게 됩니다.
```python
vision_tokenizer = AutoTokenizer.from_pretrained(
"llava-hf/llava-1.5-7b-hf",
extra_special_tokens={"image_token": "<image>", "boi_token": "<image_start>", "eoi_token": "<image_end>"}
)
print(vision_tokenizer.image_token, vision_tokenizer.image_token_id)
("<image>", 32000)
```
## PreTrainedTokenizer[[transformers.PreTrainedTokenizer]]
[[autodoc]] PreTrainedTokenizer
- __call__
- add_tokens
- add_special_tokens
- apply_chat_template
- batch_decode
- decode
- encode
- push_to_hub
- all
## PreTrainedTokenizerFast[[transformers.PreTrainedTokenizerFast]]
[`PreTrainedTokenizerFast`]는 [tokenizers](https://huggingface.co/docs/tokenizers) 라이브러리에 의존합니다. 🤗 tokenizers 라이브러리에서 얻은 토크나이저는
🤗 transformers로 매우 간단하게 가져올 수 있습니다. 어떻게 하는지 알아보려면 [Using tokenizers from 🤗 tokenizers](../fast_tokenizers) 페이지를 참고하세요.
[[autodoc]] PreTrainedTokenizerFast
- __call__
- add_tokens
- add_special_tokens
- apply_chat_template
- batch_decode
- decode
- encode
- push_to_hub
- all
## BatchEncoding[[transformers.BatchEncoding]]
[[autodoc]] BatchEncoding

View File

@ -0,0 +1,263 @@
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white" >
<img alt= "TensorFlow" src= "https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white" >
<img alt= "Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style…Nu+W0m6K/I9gGPd/dfx/EN/wN62AhsBWuAAAAAElFTkSuQmCC">
<img alt="SDPA" src= "https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white" >
</div>
</div>
# ALBERT[[albert]]
[ALBERT](https://huggingface.co/papers/1909.11942)는 [BERT](./bert)의 확장성과 학습 시 메모리 한계를 해결하기 위해 설계된 모델입니다. 이 모델은 두 가지 파라미터 감소 기법을 도입합니다. 첫 번째는 임베딩 행렬 분해(factorized embedding parametrization)로, 큰 어휘 임베딩 행렬을 두 개의 작은 행렬로 분해하여 히든 사이즈를 늘려도 파라미터 수가 크게 증가하지 않도록 합니다. 두 번째는 계층 간 파라미터 공유(cross-layer parameter sharing)로, 여러 계층이 파라미터를 공유하여 학습해야 할 파라미터 수를 줄입니다.
ALBERT는 BERT에서 발생하는 GPU/TPU 메모리 한계, 긴 학습 시간, 갑작스런 성능 저하 문제를 해결하기 위해 만들어졌습니다. ALBERT는 파라미터를 줄이기 위해 두 가지 기법을 사용하여 메모리 사용량을 줄이고 BERT의 학습 속도를 높입니다:
- **임베딩 행렬 분해:** 큰 어휘 임베딩 행렬을 두 개의 더 작은 행렬로 분해하여 메모리 사용량을 줄입니다.
- **계층 간 파라미터 공유:** 각 트랜스포머 계층마다 별도의 파라미터를 학습하는 대신, 여러 계층이 파라미터를 공유하여 학습해야 할 가중치 수를 더욱 줄입니다.
ALBERT는 BERT와 마찬가지로 절대 위치 임베딩(absolute position embeddings)을 사용하므로, 입력 패딩은 오른쪽에 적용해야 합니다. 임베딩 크기는 128이며, BERT의 768보다 작습니다. ALBERT는 한 번에 최대 512개의 토큰을 처리할 수 있습니다.
모든 공식 ALBERT 체크포인트는 [ALBERT 커뮤니티](https://huggingface.co/albert) 조직에서 확인하실 수 있습니다.
> [!TIP]
> 오른쪽 사이드바의 ALBERT 모델을 클릭하시면 다양한 언어 작업에 ALBERT를 적용하는 예시를 더 확인하실 수 있습니다.
아래 예시는 [`Pipeline`], [`AutoModel`] 그리고 커맨드라인에서 `[MASK]` 토큰을 예측하는 방법을 보여줍니다.
<hfoptions id="usage">
<hfoption id="Pipeline">
```py
import torch
from transformers import pipeline
pipeline = pipeline(
task="fill-mask",
model="albert-base-v2",
torch_dtype=torch.float16,
device=0
)
pipeline("식물은 광합성이라고 알려진 과정을 통해 [MASK]를 생성합니다.", top_k=5)
```
</hfoption>
<hfoption id="AutoModel">
```py
import torch
from transformers import AutoModelForMaskedLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("albert/albert-base-v2")
model = AutoModelForMaskedLM.from_pretrained(
"albert/albert-base-v2",
torch_dtype=torch.float16,
attn_implementation="sdpa",
device_map="auto"
)
prompt = "식물은 [MASK]이라고 알려진 과정을 통해 에너지를 생성합니다."
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model(**inputs)
mask_token_index = torch.where(inputs["input_ids"] == tokenizer.mask_token_id)[1]
predictions = outputs.logits[0, mask_token_index]
top_k = torch.topk(predictions, k=5).indices.tolist()
for token_id in top_k[0]:
print(f"예측: {tokenizer.decode([token_id])}")
```
</hfoption>
<hfoption id="transformers CLI">
```bash
echo -e "Plants create [MASK] through a process known as photosynthesis." | transformers run --task fill-mask --model albert-base-v2 --device 0
```
</hfoption>
</hfoptions>
## 참고 사항[[notes]]
- BERT는 절대 위치 임베딩을 사용하므로, 오른쪽에 입력이 패딩돼야 합니다.
- 임베딩 크기 `E`는 히든 크기 `H`와 다릅니다. 임베딩은 문맥에 독립적(각 토큰마다 하나의 임베딩 벡터)이고, 은닉 상태는 문맥에 의존적(토큰 시퀀스마다 하나의 은닉 상태)입니다. 임베딩 행렬은 `V x E`(V: 어휘 크기)이므로, 일반적으로 `H >> E`가 더 논리적입니다. `E < H`일 때 모델 파라미터가 더 적어집니다.
## 참고 자료[[resources]]
아래 섹션의 자료들은 공식 Hugging Face 및 커뮤니티(🌎 표시) 자료로, AlBERT를 시작하는 데 도움이 됩니다. 여기에 추가할 자료가 있다면 Pull Request를 보내주세요! 기존 자료와 중복되지 않고 새로운 내용을 담고 있으면 좋습니다.
<PipelineTag pipeline="text-classification"/>
- [`AlbertForSequenceClassification`]은 이 [예제 스크립트](https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification)에서 지원됩니다.
- [`TFAlbertForSequenceClassification`]은 이 [예제 스크립트](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/text-classification)에서 지원됩니다.
- [`FlaxAlbertForSequenceClassification`]은 이 [예제 스크립트](https://github.com/huggingface/transformers/tree/main/examples/flax/text-classification)와 [노트북](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification_flax.ipynb)에서 지원됩니다.
- [텍스트 분류 작업 가이드](../tasks/sequence_classification)에서 모델 사용법을 확인하세요.
<PipelineTag pipeline="token-classification"/>
- [`AlbertForTokenClassification`]은 이 [예제 스크립트](https://github.com/huggingface/transformers/tree/main/examples/pytorch/token-classification)에서 지원됩니다.
- [`TFAlbertForTokenClassification`]은 이 [예제 스크립트](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/token-classification)와 [노트북](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification-tf.ipynb)에서 지원됩니다.
- [`FlaxAlbertForTokenClassification`]은 이 [예제 스크립트](https://github.com/huggingface/transformers/tree/main/examples/flax/token-classification)에서 지원됩니다.
- 🤗 Hugging Face의 [토큰 분류](https://huggingface.co/course/chapter7/2?fw=pt) 강좌
- [토큰 분류 작업 가이드](../tasks/token_classification)에서 모델 사용법을 확인하세요.
<PipelineTag pipeline="fill-mask"/>
- [`AlbertForMaskedLM`]은 이 [예제 스크립트](https://github.com/huggingface/transformers/tree/main/examples/pytorch/language-modeling#robertabertdistilbert-and-masked-language-modeling)와 [노트북](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb)에서 지원됩니다.
- [`TFAlbertForMaskedLM`]은 이 [예제 스크립트](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/language-modeling#run_mlmpy)와 [노트북](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling-tf.ipynb)에서 지원됩니다.
- [`FlaxAlbertForMaskedLM`]은 이 [예제 스크립트](https://github.com/huggingface/transformers/tree/main/examples/flax/language-modeling#masked-language-modeling)와 [노트북](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/masked_language_modeling_flax.ipynb)에서 지원됩니다.
- 🤗 Hugging Face의 [마스킹 언어 모델링](https://huggingface.co/course/chapter7/3?fw=pt) 강좌
- [마스킹 언어 모델링 작업 가이드](../tasks/masked_language_modeling)에서 모델 사용법을 확인하세요.
<PipelineTag pipeline="question-answering"/>
- [`AlbertForQuestionAnswering`]은 이 [예제 스크립트](https://github.com/huggingface/transformers/tree/main/examples/pytorch/question-answering)와 [노트북](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/question_answering.ipynb)에서 지원됩니다.
- [`TFAlbertForQuestionAnswering`]은 이 [예제 스크립트](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/question-answering)와 [노트북](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/question_answering-tf.ipynb)에서 지원됩니다.
- [`FlaxAlbertForQuestionAnswering`]은 이 [예제 스크립트](https://github.com/huggingface/transformers/tree/main/examples/flax/question-answering)에서 지원됩니다.
- [질의응답](https://huggingface.co/course/chapter7/7?fw=pt) 🤗 Hugging Face 강좌의 챕터.
- [질의응답 작업 가이드](../tasks/question_answering)에서 모델 사용법을 확인하세요.
**다중 선택(Multiple choice)**
- [`AlbertForMultipleChoice`]는 이 [예제 스크립트](https://github.com/huggingface/transformers/tree/main/examples/pytorch/multiple-choice)와 [노트북](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/multiple_choice.ipynb)에서 지원됩니다.
- [`TFAlbertForMultipleChoice`]는 이 [예제 스크립트](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/multiple-choice)와 [노트북](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/multiple_choice-tf.ipynb)에서 지원됩니다.
- [다중 선택 작업 가이드](../tasks/multiple_choice)에서 모델 사용법을 확인하세요.
## AlbertConfig[[albertconfig]]
[[autodoc]] AlbertConfig
## AlbertTokenizer[[alberttokenizer]]
[[autodoc]] AlbertTokenizer - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - save_vocabulary
## AlbertTokenizerFast[[alberttokenizerfast]]
[[autodoc]] AlbertTokenizerFast
## Albert 특화 출력[[albert-specific-outputs]]
[[autodoc]] models.albert.modeling_albert.AlbertForPreTrainingOutput
[[autodoc]] models.albert.modeling_tf_albert.TFAlbertForPreTrainingOutput
<frameworkcontent>
<pt>
## AlbertModel[[albertmodel]]
[[autodoc]] AlbertModel - forward
## AlbertForPreTraining[[albertforpretraining]]
[[autodoc]] AlbertForPreTraining - forward
## AlbertForMaskedLM[[albertformaskedlm]]
[[autodoc]] AlbertForMaskedLM - forward
## AlbertForSequenceClassification[[albertforsequenceclassification]]
[[autodoc]] AlbertForSequenceClassification - forward
## AlbertForMultipleChoice[[albertformultiplechoice]]
[[autodoc]] AlbertForMultipleChoice
## AlbertForTokenClassification[[albertfortokenclassification]]
[[autodoc]] AlbertForTokenClassification - forward
## AlbertForQuestionAnswering[[albertforquestionanswering]]
[[autodoc]] AlbertForQuestionAnswering - forward
</pt>
<tf>
## TFAlbertModel[[tfalbertmodel]]
[[autodoc]] TFAlbertModel - call
## TFAlbertForPreTraining[[tfalbertforpretraining]]
[[autodoc]] TFAlbertForPreTraining - call
## TFAlbertForMaskedLM[[tfalbertformaskedlm]]
[[autodoc]] TFAlbertForMaskedLM - call
## TFAlbertForSequenceClassification[[tfalbertforsequenceclassification]]
[[autodoc]] TFAlbertForSequenceClassification - call
## TFAlbertForMultipleChoice[[tfalbertformultiplechoice]]
[[autodoc]] TFAlbertForMultipleChoice - call
## TFAlbertForTokenClassification[[tfalbertfortokenclassification]]
[[autodoc]] TFAlbertForTokenClassification - call
## TFAlbertForQuestionAnswering[[tfalbertforquestionanswering]]
[[autodoc]] TFAlbertForQuestionAnswering - call
</tf>
<jax>
## FlaxAlbertModel[[flaxalbertmodel]]
[[autodoc]] FlaxAlbertModel - **call**
## FlaxAlbertForPreTraining[[flaxalbertforpretraining]]
[[autodoc]] FlaxAlbertForPreTraining - **call**
## FlaxAlbertForMaskedLM[[flaxalbertformaskedlm]]
[[autodoc]] FlaxAlbertForMaskedLM - **call**
## FlaxAlbertForSequenceClassification[[flaxalbertforsequenceclassification]]
[[autodoc]] FlaxAlbertForSequenceClassification - **call**
## FlaxAlbertForMultipleChoice[[flaxalbertformultiplechoice]]
[[autodoc]] FlaxAlbertForMultipleChoice - **call**
## FlaxAlbertForTokenClassification[[flaxalbertfortokenclassification]]
[[autodoc]] FlaxAlbertForTokenClassification - **call**
## FlaxAlbertForQuestionAnswering[[flaxalbertforquestionanswering]]
[[autodoc]] FlaxAlbertForQuestionAnswering - **call**
</jax>
</frameworkcontent>

View File

@ -136,9 +136,9 @@ pip install -U flash-attn --no-build-isolation
## 양자화로 미스트랄 크기 줄이기[[shrinking-down-mistral-using-quantization]]
미스트랄 모델은 70억 개의 파라미터를 가지고 있어, 절반의 정밀도(float16)로 약 14GB의 GPU RAM이 필요합니다. 각 파라미터가 2바이트로 저장되기 때문입니다. 하지만 [양자화](../quantization.md)를 사용하면 모델 크기를 줄일 수 있습니다. 모델을 4비트(즉, 파라미터당 반 바이트)로 양자화하면 약 3.5GB의 RAM만 필요합니다.
미스트랄 모델은 70억 개의 파라미터를 가지고 있어, 절반의 정밀도(float16)로 약 14GB의 GPU RAM이 필요합니다. 각 파라미터가 2바이트로 저장되기 때문입니다. 하지만 [양자화](../quantization)를 사용하면 모델 크기를 줄일 수 있습니다. 모델을 4비트(즉, 파라미터당 반 바이트)로 양자화하면 약 3.5GB의 RAM만 필요합니다.
모델을 양자화하는 것은 `quantization_config`를 모델에 전달하는 것만큼 간단합니다. 아래에서는 BitsAndBytes 양자화를 사용하지만, 다른 양자화 방법은 [이 페이지](../quantization.md)를 참고하세요:
모델을 양자화하는 것은 `quantization_config`를 모델에 전달하는 것만큼 간단합니다. 아래에서는 BitsAndBytes 양자화를 사용하지만, 다른 양자화 방법은 [이 페이지](../quantization)를 참고하세요:
```python
>>> import torch

View File

@ -35,7 +35,7 @@ PatchTSMixer는 MLP-Mixer 아키텍처를 기반으로 한 경량 시계열 모
## 사용 예[[usage-example]]
아래의 코드 스니펫은 PatchTSMixer 모델을 무작위로 초기화하는 방법을 보여줍니다.
PatchTSMixer 모델은 [Trainer API](../trainer.md)와 호환됩니다.
PatchTSMixer 모델은 [Trainer API](../trainer)와 호환됩니다.
```python

View File

@ -0,0 +1,189 @@
<!--Copyright 2023 The Intel Team Authors and HuggingFace Inc. team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# TVP [[tvp]]
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
## 개요 [[overview]]
Text-Visual Prompting(TVP) 프레임워크는 Yimeng Zhang, Xin Chen, Jinghan Jia, Sijia Liu, Ke Ding이 발표한 논문 [Text-Visual Prompting for Efficient 2D Temporal Video Grounding](https://huggingface.co/papers/2303.04995)에서 제안되었습니다.
논문의 초록은 다음과 같습니다:
*본 논문에서는 길고, 편집되지 않은 비디오에서 문장으로 설명된 순간의 시작/종료 시점을 예측하는 것을 목표로 하는 Temporal Video Grounding(TVG) 문제를 다룹니다. 세밀한 3D 시각적 특징 덕분에 TVG 기술은 최근 몇 년 동안 놀라운 발전을 이뤘습니다. 하지만 3D 합성곱 신경망(CNN)의 높은 복잡성으로 인해 밀도 높은 3D 시각적 특징을 추출하는 데 시간이 오래 걸리고 그만큼 많은 메모리와 연산 자원을 필요로 합니다. 효율적인 TVG를 위해, 본 논문에서는 TVG 모델의 시각적 입력과 텍스트 특징 모두에 최적화된 교란 패턴('프롬프트'라고 부름)을 통합하는 새로운 Text-Visual Prompting(TVP) 프레임워크를 제안합니다. 3D CNN과 뚜렷이 대비되게 TVP가 2D TVG 모델에서 비전 인코더와 언어 인코더를 효과적으로 공동 학습할 수 있게 하고, 낮은 복잡도의 희소한 2D 시각적 특징만을 사용하여 크로스 모달 특징 융합의 성능을 향상시킵니다. 더 나아가, TVG의 효율적인 학습을 위해 Temporal-Distance IoU(TDIoU) 손실 함수를 제안합니다. 두 개의 벤치마크 데이터 세트인 Charades-STA와 ActivityNet Captions 데이터셋에 대한 실험을 통해, 제안된 TVP가 2D TVG의 성능을 크게 향상시키고(예: Charades-STA에서 9.79% 향상, ActivityNet Captions에서 30.77% 향상) 3D 시각적 특징을 사용하는 TVG에 비해 5배의 추론 가속을 달성함을 실험적으로 입증합니다.*
이 연구는 Temporal Video Grounding(TVG)을 다룹니다. TVG는 문장으로 설명된 특정 이벤트의 시작 및 종료 시점을 긴 비디오에서 정확히 찾아내는 과정입니다. TVG 성능을 향상시키기 위해 Text-Visual Prompting(TVP)이 제안되었습니다. TVP는 '프롬프트'라고 알려진 특별히 설계된 패턴을 TVG 모델의 시각적(이미지 기반) 및 텍스트(단어 기반) 입력 구성 요소 모두에 통합하는 것을 방식입니다. 이 프롬프트는 추가적인 시공간적 컨텍스트를 제공함으로써 모델이 비디오 내 이벤트 시점의 예측 정확도를 높입니다. 이 접근 방식은 3D 시각적 입력 대신 2D 입력을 사용합니다. 3D 입력은 보다 풍부한 시공간적 세부 정보를 제공하지만 처리하는 데 시간이 더 많이 걸립니다. 따라서 프롬프팅 메소드와 함께 2D 입력을 사용하여 이와 유사한 수준의 컨텍스트와 정확도를 더 효율적으로 제공하는 것을 목표로 합니다.
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/tvp_architecture.png"
alt="drawing" width="600"/>
<small> TVP 아키텍처. <a href="https://huggingface.co/papers/2303.04995">원본 논문에서 발췌.</a> </small>
이 모델은 [Jiqing Feng](https://huggingface.co/Jiqing)님이 기여했습니다. 원본 코드는 [이 곳](https://github.com/intel/TVP)에서 찾을 수 있습니다.
## 사용 팁 및 예시 [[usage-tips-and-examples]]
프롬프트는 최적화된 교란 패턴으로 입력 비디오 프레임이나 텍스트 특징에 추가되는 패턴입니다. 범용 세트란 모든 입력에 대해 동일한 프롬프트 세트를 사용하는 것을 말합니다. 즉, 입력 내용과 관계없이 모든 비디오 프레임과 텍스트 특징에 이 프롬프트들을 일관적으로 추가합니다.
TVP는 시각 인코더와 크로스 모달 인코더로 구성됩니다. 범용 시각 프롬프트와 텍스트 프롬프트 세트가 각각 샘플링된 비디오 프레임과 텍스트 특징에 통합됩니다. 특히, 서로 다른 시각 프롬프트 세트가 편집되지 않은 한 비디오에서 균일하게 샘플링된 프레임에 순서대로 적용됩니다.
이 모델의 목표는 학습 가능한 프롬프트를 시각적 입력과 텍스트 특징 모두에 통합하여 Temporal Video Grounding(TVG) 문제를 해결하는 것입니다.
원칙적으로, 제안된 아키텍처에는 어떤 시각 인코더나 크로스 모달 인코더라도 적용할 수 있습니다.
[TvpProcessor]는 [BertTokenizer]와 [TvpImageProcessor]를 단일 인스턴스로 래핑하여 텍스트를 인코딩하고 이미지를 각각 준비합니다.
다음 예시는 [TvpProcessor]와 [TvpForVideoGrounding]을 사용하여 TVG를 실행하는 방법을 보여줍니다.
```python
import av
import cv2
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from transformers import AutoProcessor, TvpForVideoGrounding
def pyav_decode(container, sampling_rate, num_frames, clip_idx, num_clips, target_fps):
'''
원본 fps의 비디오를 지정한 fps(target_fps)로 변환하고 PyAV 디코더로 비디오를 디코딩합니다.
Args:
container (container): pyav 컨테이너 객체입니다.
sampling_rate (int): 프레임 샘플링 속도입니다.(샘플링된 두개의 프레임 사이의 간격을 말합니다)
num_frames (int): 샘플링할 프레임 수입니다.
clip_idx (int): clip_idx가 -1이면 시간 축에서 무작위 샘플링을 수행합니다.
clip_idx가 -1보다 크면 비디오를 num_clips 개로 균등 분할한 후
clip_idx번째 비디오 클립을 선택합니다.
num_clips (int): 주어진 비디오에서 균일하게 샘플링할 전체 클립 수입니다.
target_fps (int): 입력 비디오의 fps가 다를 수 있으므로, 샘플링 전에
지정한 fps로 변환합니다
Returns:
frames (tensor): 비디오에서 디코딩된 프레임입니다. 비디오 스트림을 찾을 수 없는 경우
None을 반환합니다.
fps (float): 비디오의 초당 프레임 수입니다.
'''
video = container.streams.video[0]
fps = float(video.average_rate)
clip_size = sampling_rate * num_frames / target_fps * fps
delta = max(num_frames - clip_size, 0)
start_idx = delta * clip_idx / num_clips
end_idx = start_idx + clip_size - 1
timebase = video.duration / num_frames
video_start_pts = int(start_idx * timebase)
video_end_pts = int(end_idx * timebase)
seek_offset = max(video_start_pts - 1024, 0)
container.seek(seek_offset, any_frame=False, backward=True, stream=video)
frames = {}
for frame in container.decode(video=0):
if frame.pts < video_start_pts:
continue
frames[frame.pts] = frame
if frame.pts > video_end_pts:
break
frames = [frames[pts] for pts in sorted(frames)]
return frames, fps
def decode(container, sampling_rate, num_frames, clip_idx, num_clips, target_fps):
'''
비디오를 디코딩하고 시간 축 샘플링을 수행합니다.
Args:
container (container): pyav 컨테이너 객체입니다.
sampling_rate (int): 프레임 샘플링 속도입니다.(샘플링된 두개의 프레임 사이의 간격을 말합니다)
num_frames (int): 샘플링할 프레임 수입니다.
clip_idx (int): clip_idx가 -1이면 시간 축에서 무작위 샘플링을 수행합니다.
clip_idx가 -1보다 크면 비디오를 num_clips 개로 균등 분할한 후
clip_idx번째 비디오 클립을 선택합니다.
num_clips (int): 주어진 비디오에서 균일하게 샘플링할 전체 클립 수입니다.
target_fps (int): 입력 비디오의 fps가 다를 수 있으므로, 샘플링 전에
지정한 fps로 변환합니다
Returns:
frames (tensor): 비디오에서 디코딩된 프레임입니다.
'''
assert clip_idx >= -2, "Not a valid clip_idx {}".format(clip_idx)
frames, fps = pyav_decode(container, sampling_rate, num_frames, clip_idx, num_clips, target_fps)
clip_size = sampling_rate * num_frames / target_fps * fps
index = np.linspace(0, clip_size - 1, num_frames)
index = np.clip(index, 0, len(frames) - 1).astype(np.int64)
frames = np.array([frames[idx].to_rgb().to_ndarray() for idx in index])
frames = frames.transpose(0, 3, 1, 2)
return frames
file = hf_hub_download(repo_id="Intel/tvp_demo", filename="AK2KG.mp4", repo_type="dataset")
model = TvpForVideoGrounding.from_pretrained("Intel/tvp-base")
decoder_kwargs = dict(
container=av.open(file, metadata_errors="ignore"),
sampling_rate=1,
num_frames=model.config.num_frames,
clip_idx=0,
num_clips=1,
target_fps=3,
)
raw_sampled_frms = decode(**decoder_kwargs)
text = "a person is sitting on a bed."
processor = AutoProcessor.from_pretrained("Intel/tvp-base")
model_inputs = processor(
text=[text], videos=list(raw_sampled_frms), return_tensors="pt", max_text_length=100#, size=size
)
model_inputs["pixel_values"] = model_inputs["pixel_values"].to(model.dtype)
output = model(**model_inputs)
def get_video_duration(filename):
cap = cv2.VideoCapture(filename)
if cap.isOpened():
rate = cap.get(5)
frame_num = cap.get(7)
duration = frame_num/rate
return duration
return -1
duration = get_video_duration(file)
start, end = processor.post_process_video_grounding(output.logits, duration)
print(f"The time slot of the video corresponding to the text \"{text}\" is from {start}s to {end}s")
```
팁:
- 이 TVP 구현은 텍스트 임베딩을 생성하기 위해 [BertTokenizer]를 사용하고, 시각적 임베딩을 계산하기 위해 Resnet-50 모델을 사용합니다.
- 사전 학습된 [tvp-base](https://huggingface.co/Intel/tvp-base)의 체크포인트가 공개되어 있습니다.
- 시간적 비디오 그라운딩 작업에 대한 TVP의 성능은 [표 2](https://huggingface.co/papers/2303.04995)를 참고하세요.
## TvpConfig [[transformers.TvpConfig]]
[[autodoc]] TvpConfig
## TvpImageProcessor [[transformers.TvpImageProcessor]]
[[autodoc]] TvpImageProcessor
- preprocess
## TvpProcessor [[transformers.TvpProcessor]]
[[autodoc]] TvpProcessor
- __call__
## TvpModel [[transformers.TvpModel]]
[[autodoc]] TvpModel
- forward
## TvpForVideoGrounding [[transformers.TvpForVideoGrounding]]
[[autodoc]] TvpForVideoGrounding
- forward

View File

@ -1,107 +0,0 @@
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Transformer 모델군[[the-transformer-model-family]]
2017년에 소개된 [기본 Transformer](https://huggingface.co/papers/1706.03762) 모델은 자연어 처리(NLP) 작업을 넘어 새롭고 흥미로운 모델들에 영감을 주었습니다. [단백질 접힘 구조 예측](https://huggingface.co/blog/deep-learning-with-proteins), [치타의 달리기 훈련](https://huggingface.co/blog/train-decision-transformers), [시계열 예측](https://huggingface.co/blog/time-series-transformers) 등을 위한 다양한 모델이 생겨났습니다. Transformer의 변형이 너무 많아서, 큰 그림을 놓치기 쉽습니다. 하지만 여기 있는 모든 모델의 공통점은 기본 Trasnformer 아키텍처를 기반으로 한다는 점입니다. 일부 모델은 인코더 또는 디코더만 사용하고, 다른 모델들은 인코더와 디코더를 모두 사용하기도 합니다. 이렇게 Transformer 모델군 내 상위 레벨에서의 차이점을 분류하고 검토하면 유용한 분류 체계를 얻을 수 있으며, 이전에 접해보지 못한 Transformer 모델들 또한 이해하는 데 도움이 될 것입니다.
기본 Transformer 모델에 익숙하지 않거나 복습이 필요한 경우, Hugging Face 강의의 [트랜스포머는 어떻게 동작하나요?](https://huggingface.co/course/chapter1/4?fw=pt) 챕터를 확인하세요.
<div align="center">
<iframe width="560" height="315" src="https://www.youtube.com/embed/H39Z_720T5s" title="YouTube video player"
frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope;
picture-in-picture" allowfullscreen></iframe>
</div>
## 컴퓨터 비전[[computer-vision]]
<iframe style="border: 1px solid rgba(0, 0, 0, 0.1);" width="1000" height="450" src="https://www.figma.com/embed?embed_host=share&url=https%3A%2F%2Fwww.figma.com%2Ffile%2FacQBpeFBVvrDUlzFlkejoz%2FModelscape-timeline%3Fnode-id%3D0%253A1%26t%3Dm0zJ7m2BQ9oe0WtO-1" allowfullscreen></iframe>
### 합성곱 네트워크[[convolutional-network]]
[Vision Transformer](https://huggingface.co/papers/2010.11929)가 확장성과 효율성을 입증하기 전까지 오랫동안 합성곱 네트워크(CNN)가 컴퓨터 비전 작업의 지배적인 패러다임이었습니다. 그럼에도 불구하고, 이동 불변성(translation invariance)과 같은 CNN의 우수한 부분이 도드라지기 때문에 몇몇 (특히 특정 과업에서의) Transformer 모델은 아키텍처에 합성곱을 통합하기도 했습니다. [ConvNeXt](model_doc/convnext)는 이런 관례를 뒤집어 CNN을 현대화하기 위해 Transformer의 디자인을 차용합니다. 예를 들면 ConvNeXt는 겹치지 않는 슬라이딩 창(sliding window)을 사용하여 이미지를 패치화하고, 더 큰 커널로 전역 수용 필드(global receptive field)를 확장시킵니다. ConvNeXt는 또한 메모리 효율을 높이고 성능을 향상시키기 위해 여러 레이어 설계를 선택하기 때문에 Transformer와 견줄만합니다!
### 인코더[[cv-encoder]]
[Vision Transformer(ViT)](model_doc/vit)는 합성곱 없는 컴퓨터 비전 작업의 막을 열었습니다. ViT는 표준 Transformer 인코더를 사용하지만, 가장 큰 혁신은 이미지를 처리하는 방식이었습니다. 문장을 토큰으로 분할하는 것처럼 이미지를 고정된 크기의 패치로 분할하고, 이를 사용하여 임베딩을 생성합니다. ViT는 Transformer의 효율적인 아키텍처를 활용하여 훈련에 더 적은 자원을 사용하면서도 당시 CNN에 비견하는 결과를 입증했습니다. 그리고 ViT를 뒤이어 분할(segmentation)과 같은 고밀도 비전 작업과 탐지 작업도 다룰 수 있는 다른 비전 모델이 등장했습니다.
이러한 모델 중 하나가 [Swin](model_doc/swin) Transformer입니다. 이 모델은 작은 크기의 패치에서 계층적 특징 맵(CNN 👀과 같지만 ViT와는 다름)을 만들고 더 깊은 레이어의 인접 패치와 병합합니다. 어텐션(Attention)은 지역 윈도우 내에서만 계산되며, 모델이 더 잘 학습할 수 있도록 어텐션 레이어 간에 윈도우를 이동하며 연결을 생성합니다. Swin Transformer는 계층적 특징 맵을 생성할 수 있으므로, 분할(segmentation)과 탐지와 같은 고밀도 예측 작업에 적합합니다. [SegFormer](model_doc/segformer) 역시 Transformer 인코더를 사용하여 계층적 특징 맵을 구축하지만, 상단에 간단한 다층 퍼셉트론(MLP) 디코더를 추가하여 모든 특징 맵을 결합하고 예측을 수행합니다.
BeIT와 ViTMAE와 같은 다른 비전 모델은 BERT의 사전훈련 목표(objective)에서 영감을 얻었습니다. [BeIT](model_doc/beit)는 *마스크드 이미지 모델링(MIM)*으로 사전훈련되며, 이미지 패치는 임의로 마스킹되고 이미지도 시각적 토큰으로 토큰화됩니다. BeIT는 마스킹된 패치에 해당하는 시각적 토큰을 예측하도록 학습됩니다. [ViTMAE](model_doc/vitmae)도 비슷한 사전훈련 목표가 있지만, 시각적 토큰 대신 픽셀을 예측해야 한다는 점이 다릅니다. 특이한 점은 이미지 패치의 75%가 마스킹되어 있다는 것입니다! 디코더는 마스킹된 토큰과 인코딩된 패치에서 픽셀을 재구성합니다. 사전훈련이 끝나면 디코더는 폐기되고 인코더는 다운스트림 작업에 사용할 준비가 됩니다.
### 디코더[[cv-decoder]]
대부분의 비전 모델은 인코더에 의존하여 이미지 표현을 학습하기 때문에 디코더 전용 비전 모델은 드뭅니다. 하지만 이미지 생성 등의 사례의 경우, GPT-2와 같은 텍스트 생성 모델에서 보았듯이 디코더가 가장 적합합니다. [ImageGPT](model_doc/imagegpt)는 GPT-2와 동일한 아키텍처를 사용하지만, 시퀀스의 다음 토큰을 예측하는 대신 이미지의 다음 픽셀을 예측합니다. ImageGPT는 이미지 생성 뿐만 아니라 이미지 분류를 위해 미세 조정할 수도 있습니다.
### 인코더-디코더[[cv-encoder-decoder]]
비전 모델은 일반적으로 인코더(백본으로도 알려짐)를 사용하여 중요한 이미지 특징을 추출한 후, 이를 Transformer 디코더로 전달합니다. [DETR](model_doc/detr)에 사전훈련된 백본이 있지만, 객체 탐지를 위해 완전한 Transformer 인코더-디코더 아키텍처도 사용합니다. 인코더는 이미지 표현을 학습하고 이를 디코더에서 객체 쿼리(각 객체 쿼리는 이미지의 영역 또는 객체에 중점을 두고 학습된 임베딩)와 결합합니다. DETR은 각 객체 쿼리에 대한 바운딩 박스 좌표와 클래스 레이블을 예측합니다.
## 자연어처리[[natural-language-processing]]
<iframe style="border: 1px solid rgba(0, 0, 0, 0.1);" width="1000" height="450" src="https://www.figma.com/embed?embed_host=share&url=https%3A%2F%2Fwww.figma.com%2Ffile%2FUhbQAZDlpYW5XEpdFy6GoG%2Fnlp-model-timeline%3Fnode-id%3D0%253A1%26t%3D4mZMr4r1vDEYGJ50-1" allowfullscreen></iframe>
### 인코더[[nlp-encoder]]
[BERT](model_doc/bert)는 인코더 전용 Transformer로, 다른 토큰을 보고 소위 "부정 행위"를 저지르는 걸 막기 위해 입력에서 특정 토큰을 임의로 마스킹합니다. 사전훈련의 목표는 컨텍스트를 기반으로 마스킹된 토큰을 예측하는 것입니다. 이를 통해 BERT는 왼쪽과 오른쪽 컨텍스트를 충분히 활용하여 입력에 대해 더 깊고 풍부한 표현을 학습할 수 있습니다. 그러나 BERT의 사전훈련 전략에는 여전히 개선의 여지가 남아 있었습니다. [RoBERTa](model_doc/roberta)는 더 긴 시간 동안 더 큰 배치에 대한 훈련을 포함하고, 전처리 중에 한 번만 마스킹하는 것이 아니라 각 에폭에서 토큰을 임의로 마스킹하고, 다음 문장 예측 목표를 제거하는 새로운 사전훈련 방식을 도입함으로써 이를 개선했습니다.
성능 개선을 위한 전략으로 모델 크기를 키우는 것이 지배적입니다. 하지만 큰 모델을 훈련하려면 계산 비용이 많이 듭니다. 계산 비용을 줄이는 한 가지 방법은 [DistilBERT](model_doc/distilbert)와 같이 작은 모델을 사용하는 것입니다. DistilBERT는 압축 기법인 [지식 증류(knowledge distillation)](https://huggingface.co/papers/1503.02531)를 사용하여, 거의 모든 언어 이해 능력을 유지하면서 더 작은 버전의 BERT를 만듭니다.
그러나 대부분의 Transformer 모델에 더 많은 매개변수를 사용하는 경향이 이어졌고, 이에 따라 훈련 효율성을 개선하는 것에 중점을 둔 새로운 모델이 등장했습니다. [ALBERT](model_doc/albert)는 두 가지 방법으로 매개변수 수를 줄여 메모리 사용량을 줄였습니다. 바로 큰 어휘를 두 개의 작은 행렬로 분리하는 것과 레이어가 매개변수를 공유하도록 하는 것입니다. [DeBERTa](model_doc/deberta)는 단어와 그 위치를 두 개의 벡터로 개별적으로 인코딩하는 분리된(disentangled) 어텐션 메커니즘을 추가했습니다. 어텐션은 단어와 위치 임베딩을 포함하는 단일 벡터 대신 이 별도의 벡터에서 계산됩니다. [Longformer](model_doc/longformer)는 특히 시퀀스 길이가 긴 문서를 처리할 때, 어텐션을 더 효율적으로 만드는 것에 중점을 두었습니다. 지역(local) 윈도우 어텐션(각 토큰 주변의 고정된 윈도우 크기에서만 계산되는 어텐션)과 전역(global) 어텐션(분류를 위해 `[CLS]`와 같은 특정 작업 토큰에만 해당)의 조합을 사용하여 전체(full) 어텐션 행렬 대신 희소(sparse) 어텐션 행렬을 생성합니다.
### 디코더[[nlp-decoder]]
[GPT-2](model_doc/gpt2)는 시퀀스에서 다음 단어를 예측하는 디코더 전용 Transformer입니다. 토큰을 오른쪽으로 마스킹하여 모델이 이전 토큰을 보고 "부정 행위"를 하지 못하도록 합니다. GPT-2는 방대한 텍스트에 대해 사전훈련하여 텍스트가 일부만 정확하거나 사실인 경우에도 상당히 능숙하게 텍스트를 생성할 수 있게 되었습니다. 하지만 GPT-2는 BERT가 사전훈련에서 갖는 양방향 컨텍스트가 부족하기 때문에 특정 작업에 적합하지 않았습니다. [XLNET](model_doc/xlnet)은 양방향 훈련이 가능한 permutation language modeling objective(PLM)를 사용하여 BERT와 GPT-2의 사전훈련 목표에 대한 장점을 함께 가지고 있습니다.
GPT-2 이후, 언어 모델은 더욱 거대해졌고 현재는 *대규모 언어 모델(LLM)*로 알려져 있습니다. 충분히 큰 데이터 세트로 사전훈련된 LLM은 퓨샷(few-shot) 또는 제로샷(zero-shot) 학습을 수행합니다. [GPT-J](model_doc/gptj)는 6B 크기의 매개변수가 있고 400B 크기의 토큰으로 훈련된 LLM입니다. GPT-J에 이어 디코더 전용 모델군인 [OPT](model_doc/opt)가 등장했으며, 이 중 가장 큰 모델은 175B 크기이고 180B 크기의 토큰으로 훈련되었습니다. [BLOOM](model_doc/bloom)은 비슷한 시기에 출시되었으며, 이 중 가장 큰 모델은 176B 크기의 매개변수가 있고 46개의 언어와 13개의 프로그래밍 언어로 된 366B 크기의 토큰으로 훈련되었습니다.
### 인코더-디코더[[nlp-encoder-decoder]]
[BART](model_doc/bart)는 기본 Transformer 아키텍처를 유지하지만, 일부 텍스트 스팬(span)이 단일 `마스크` 토큰으로 대체되는 *text infilling* 변형으로 사전훈련 목표를 수정합니다. 디코더는 변형되지 않은 토큰(향후 토큰은 마스킹됨)을 예측하고 인코더의 은닉 상태를 사용하여 이 작업을 돕습니다. [Pegasus](model_doc/pegasus)는 BART와 유사하지만, Pegasus는 텍스트 스팬 대신 전체 문장을 마스킹합니다. Pegasus는 마스크드 언어 모델링 외에도 gap sentence generation(GSG)로 사전훈련됩니다. GSG는 문서에 중요한 문장 전체를 마스킹하여 `마스크` 토큰으로 대체하는 것을 목표로 합니다. 디코더는 남은 문장에서 출력을 생성해야 합니다. [T5](model_doc/t5)는 특정 접두사를 사용하여 모든 NLP 작업을 텍스트 투 텍스트 문제로 변환하는 더 특수한 모델입니다. 예를 들어, 접두사 `Summarize:`은 요약 작업을 나타냅니다. T5는 지도(GLUE 및 SuperGLUE) 훈련과 자기지도 훈련(토큰의 15%를 임의로 샘플링하여 제거)으로 사전훈련됩니다.
## 오디오[[audio]]
<iframe style="border: 1px solid rgba(0, 0, 0, 0.1);" width="1000" height="450" src="https://www.figma.com/embed?embed_host=share&url=https%3A%2F%2Fwww.figma.com%2Ffile%2Fvrchl8jDV9YwNVPWu2W0kK%2Fspeech-and-audio-model-timeline%3Fnode-id%3D0%253A1%26t%3DmM4H8pPMuK23rClL-1" allowfullscreen></iframe>
### 인코더[[audio-encoder]]
[Wav2Vec2](model_doc/wav2vec2)는 Transformer 인코더를 사용하여 원본 오디오 파형(raw audio waveform)에서 직접 음성 표현을 학습합니다. 허위 음성 표현 세트에서 실제 음성 표현을 판별하는 대조 작업으로 사전훈련됩니다. [HuBERT](model_doc/hubert)는 Wav2Vec2와 유사하지만 훈련 과정이 다릅니다. 타겟 레이블이 유사한 오디오 세그먼트가 클러스터에 할당되어 은닉 단위(unit)가 되는 군집화(clustering) 단계에서 생성됩니다. 은닉 단위는 예측을 위한 임베딩에 매핑됩니다.
### 인코더-디코더[[audio-encoder-decoder]]
[Speech2Text](model_doc/speech_to_text)는 자동 음성 인식(ASR) 및 음성 번역을 위해 고안된 음성 모델입니다. 이 모델은 오디오 파형에서 추출한 log mel-filter bank 특징을 채택하고 자기회귀 방식으로 사전훈련하여, 전사본 또는 번역을 만듭니다. [Whisper](model_doc/whisper)은 ASR 모델이지만, 다른 많은 음성 모델과 달리 제로샷 성능을 위해 대량의 ✨ 레이블이 지정된 ✨ 오디오 전사 데이터에 대해 사전훈련됩니다. 데이터 세트의 큰 묶음에는 영어가 아닌 언어도 포함되어 있어서 자원이 적은 언어에도 Whisper를 사용할 수 있습니다. 구조적으로, Whisper는 Speech2Text와 유사합니다. 오디오 신호는 인코더에 의해 인코딩된 log-mel spectrogram으로 변환됩니다. 디코더는 인코더의 은닉 상태와 이전 토큰으로부터 자기회귀 방식으로 전사를 생성합니다.
## 멀티모달[[multimodal]]
<iframe style="border: 1px solid rgba(0, 0, 0, 0.1);" width="1000" height="450" src="https://www.figma.com/embed?embed_host=share&url=https%3A%2F%2Fwww.figma.com%2Ffile%2FcX125FQHXJS2gxeICiY93p%2Fmultimodal%3Fnode-id%3D0%253A1%26t%3DhPQwdx3HFPWJWnVf-1" allowfullscreen></iframe>
### 인코더[[mm-encoder]]
[VisualBERT](model_doc/visual_bert)는 BERT 이후에 출시된 비전 언어 작업을 위한 멀티모달 모델입니다. 이 모델은 BERT와 사전훈련된 객체 탐지 시스템을 결합하여 이미지 특징을 시각 임베딩으로 추출하고, 텍스트 임베딩과 함께 BERT로 전달합니다. VisualBERT는 마스킹되지 않은 텍스트와 시각 임베딩을 기반으로 마스킹된 텍스트를 예측하고, 텍스트가 이미지와 일치하는지 예측해야 합니다. ViT가 이미지 임베딩을 구하는 방식이 더 쉬웠기 때문에, ViT가 출시된 후 [ViLT](model_doc/vilt)는 아키텍처에 ViT를 채택했습니다. 이미지 임베딩은 텍스트 임베딩과 함께 처리됩니다. 여기에서, ViLT는 이미지 텍스트 매칭, 마스크드 언어 모델링, 전체 단어 마스킹을 통해 사전훈련됩니다.
[CLIP](model_doc/clip)은 다른 접근 방식을 사용하여 (`이미지`, `텍스트`)의 쌍 예측을 수행합니다. (`이미지`, `텍스트`) 쌍에서의 이미지와 텍스트 임베딩 간의 유사도를 최대화하기 위해 4억 개의 (`이미지`, `텍스트`) 쌍 데이터 세트에 대해 이미지 인코더(ViT)와 텍스트 인코더(Transformer)를 함께 훈련합니다. 사전훈련 후, 자연어를 사용하여 이미지가 주어진 텍스트를 예측하거나 그 반대로 예측하도록 CLIP에 지시할 수 있습니다. [OWL-ViT](model_doc/owlvit)는 CLIP을 제로샷 객체 탐지를 위한 백본(backbone)으로 사용하여 CLIP 상에 구축됩니다. 사전훈련 후, 객체 탐지 헤드가 추가되어 (`클래스`, `바운딩 박스`) 쌍에 대한 집합(set) 예측을 수행합니다.
### 인코더-디코더[[mm-encoder-decoder]]
광학 문자 인식(OCR)은 이미지를 이해하고 텍스트를 생성하기 위해 다양한 구성 요소를 필요로 하는 전통적인 텍스트 인식 작업입니다. [TrOCR](model_doc/trocr)은 종단간(end-to-end) Transformer를 사용하여 이 프로세스를 간소화합니다. 인코더는 이미지 이해를 위한 ViT 방식의 모델이며 이미지를 고정된 크기의 패치로 처리합니다. 디코더는 인코더의 은닉 상태를 받아서 자기회귀 방식으로 텍스트를 생성합니다. [Donut](model_doc/donut)은 OCR 기반 접근 방식에 의존하지 않는 더 일반적인 시각 문서 이해 모델입니다. 이 모델은 Swin Transformer를 인코더로, 다국어 BART를 디코더로 사용합니다. Donut은 이미지와 텍스트 주석을 기반으로 다음 단어를 예측하여 텍스트를 읽도록 사전훈련됩니다. 디코더는 프롬프트가 주어지면 토큰 시퀀스를 생성합니다. 프롬프트는 각 다운스트림 작업에 대한 특수 토큰으로 표현됩니다. 예를 들어, 문서 파싱(parsing)에는 인코더의 은닉 상태와 결합되어 문서를 정형 출력 형식(JSON)으로 파싱하는 특수 `파싱` 토큰이 있습니다.
## 강화 학습[[reinforcement-learning]]
<iframe style="border: 1px solid rgba(0, 0, 0, 0.1);" width="1000" height="450" src="https://www.figma.com/embed?embed_host=share&url=https%3A%2F%2Fwww.figma.com%2Ffile%2FiB3Y6RvWYki7ZuKO6tNgZq%2Freinforcement-learning%3Fnode-id%3D0%253A1%26t%3DhPQwdx3HFPWJWnVf-1" allowfullscreen></iframe>
### 디코더[[rl-decoder]]
Decision 및 Trajectory Transformer는 상태(state), 행동(action), 보상(reward)을 시퀀스 모델링 문제로 표현합니다. [Decision Transformer](model_doc/decision_transformer)는 기대 보상(returns-to-go), 과거 상태 및 행동을 기반으로 미래의 원하는 수익(return)으로 이어지는 일련의 행동을 생성합니다. 마지막 *K* 시간 스텝(timestep)에 대해, 세 가지 모달리티는 각각 토큰 임베딩으로 변환되고 GPT와 같은 모델에 의해 처리되어 미래의 액션 토큰을 예측합니다. [Trajectory Transformer](model_doc/trajectory_transformer)도 상태, 행동, 보상을 토큰화하여 GPT 아키텍처로 처리합니다. 보상 조건에 중점을 둔 Decision Transformer와 달리 Trajectory Transformer는 빔 서치(beam search)로 미래 행동을 생성합니다.

View File

@ -1,192 +0,0 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# 다국어 모델 추론하기[[multilingual-models-for-inference]]
[[open-in-colab]]
🤗 Transformers에는 여러 종류의 다국어(multilingual) 모델이 있으며, 단일 언어(monolingual) 모델과 추론 시 사용법이 다릅니다.
그렇다고 해서 *모든* 다국어 모델의 사용법이 다른 것은 아닙니다.
[google-bert/bert-base-multilingual-uncased](https://huggingface.co/google-bert/bert-base-multilingual-uncased)와 같은 몇몇 모델은 단일 언어 모델처럼 사용할 수 있습니다.
이번 가이드에서 다국어 모델의 추론 시 사용 방법을 알아볼 것입니다.
## XLM[[xlm]]
XLM에는 10가지 체크포인트(checkpoint)가 있는데, 이 중 하나만 단일 언어입니다.
나머지 체크포인트 9개는 언어 임베딩을 사용하는 체크포인트와 그렇지 않은 체크포인트의 두 가지 범주로 나눌 수 있습니다.
### 언어 임베딩을 사용하는 XLM[[xlm-with-language-embeddings]]
다음 XLM 모델은 추론 시에 언어 임베딩을 사용합니다:
- `FacebookAI/xlm-mlm-ende-1024` (마스킹된 언어 모델링, 영어-독일어)
- `FacebookAI/xlm-mlm-enfr-1024` (마스킹된 언어 모델링, 영어-프랑스어)
- `FacebookAI/xlm-mlm-enro-1024` (마스킹된 언어 모델링, 영어-루마니아어)
- `FacebookAI/xlm-mlm-xnli15-1024` (마스킹된 언어 모델링, XNLI 데이터 세트에서 제공하는 15개 국어)
- `FacebookAI/xlm-mlm-tlm-xnli15-1024` (마스킹된 언어 모델링 + 번역, XNLI 데이터 세트에서 제공하는 15개 국어)
- `FacebookAI/xlm-clm-enfr-1024` (Causal language modeling, 영어-프랑스어)
- `FacebookAI/xlm-clm-ende-1024` (Causal language modeling, 영어-독일어)
언어 임베딩은 모델에 전달된 `input_ids`와 동일한 shape의 텐서로 표현됩니다.
이러한 텐서의 값은 사용된 언어에 따라 다르며 토크나이저의 `lang2id``id2lang` 속성에 의해 식별됩니다.
다음 예제에서는 `FacebookAI/xlm-clm-enfr-1024` 체크포인트(코잘 언어 모델링(causal language modeling), 영어-프랑스어)를 가져옵니다:
```py
>>> import torch
>>> from transformers import XLMTokenizer, XLMWithLMHeadModel
>>> tokenizer = XLMTokenizer.from_pretrained("FacebookAI/xlm-clm-enfr-1024")
>>> model = XLMWithLMHeadModel.from_pretrained("FacebookAI/xlm-clm-enfr-1024")
```
토크나이저의 `lang2id` 속성은 모델의 언어와 해당 ID를 표시합니다:
```py
>>> print(tokenizer.lang2id)
{'en': 0, 'fr': 1}
```
다음으로, 예제 입력을 만듭니다:
```py
>>> input_ids = torch.tensor([tokenizer.encode("Wikipedia was used to")]) # 배치 크기는 1입니다
```
언어 ID를 `"en"`으로 설정해 언어 임베딩을 정의합니다.
언어 임베딩은 영어의 언어 ID인 `0`으로 채워진 텐서입니다.
이 텐서는 `input_ids`와 같은 크기여야 합니다.
```py
>>> language_id = tokenizer.lang2id["en"] # 0
>>> langs = torch.tensor([language_id] * input_ids.shape[1]) # torch.tensor([0, 0, 0, ..., 0])
>>> # (batch_size, sequence_length) shape의 텐서가 되도록 만듭니다.
>>> langs = langs.view(1, -1) # 이제 [1, sequence_length] shape이 되었습니다(배치 크기는 1입니다)
```
이제 `input_ids`와 언어 임베딩을 모델로 전달합니다:
```py
>>> outputs = model(input_ids, langs=langs)
```
[run_generation.py](https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-generation/run_generation.py) 스크립트로 `xlm-clm` 체크포인트를 사용해 텍스트와 언어 임베딩을 생성할 수 있습니다.
### 언어 임베딩을 사용하지 않는 XLM[[xlm-without-language-embeddings]]
다음 XLM 모델은 추론 시에 언어 임베딩이 필요하지 않습니다:
- `FacebookAI/xlm-mlm-17-1280` (마스킹된 언어 모델링, 17개 국어)
- `FacebookAI/xlm-mlm-100-1280` (마스킹된 언어 모델링, 100개 국어)
이전의 XLM 체크포인트와 달리 이 모델은 일반 문장 표현에 사용됩니다.
## BERT[[bert]]
다음 BERT 모델은 다국어 태스크에 사용할 수 있습니다:
- `google-bert/bert-base-multilingual-uncased` (마스킹된 언어 모델링 + 다음 문장 예측, 102개 국어)
- `google-bert/bert-base-multilingual-cased` (마스킹된 언어 모델링 + 다음 문장 예측, 104개 국어)
이러한 모델은 추론 시에 언어 임베딩이 필요하지 않습니다.
문맥에서 언어를 식별하고, 식별된 언어로 추론합니다.
## XLM-RoBERTa[[xlmroberta]]
다음 XLM-RoBERTa 또한 다국어 다국어 태스크에 사용할 수 있습니다:
- `FacebookAI/xlm-roberta-base` (마스킹된 언어 모델링, 100개 국어)
- `FacebookAI/xlm-roberta-large` (마스킹된 언어 모델링, 100개 국어)
XLM-RoBERTa는 100개 국어에 대해 새로 생성되고 정제된 2.5TB 규모의 CommonCrawl 데이터로 학습되었습니다.
이전에 공개된 mBERT나 XLM과 같은 다국어 모델에 비해 분류, 시퀀스 라벨링, 질의 응답과 같은 다운스트림(downstream) 작업에서 이점이 있습니다.
## M2M100[[m2m100]]
다음 M2M100 모델 또한 다국어 다국어 태스크에 사용할 수 있습니다:
- `facebook/m2m100_418M` (번역)
- `facebook/m2m100_1.2B` (번역)
이 예제에서는 `facebook/m2m100_418M` 체크포인트를 가져와서 중국어를 영어로 번역합니다.
토크나이저에서 번역 대상 언어(source language)를 설정할 수 있습니다:
```py
>>> from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
>>> en_text = "Do not meddle in the affairs of wizards, for they are subtle and quick to anger."
>>> chinese_text = "不要插手巫師的事務, 因為他們是微妙的, 很快就會發怒."
>>> tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M", src_lang="zh")
>>> model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M")
```
문장을 토큰화합니다:
```py
>>> encoded_zh = tokenizer(chinese_text, return_tensors="pt")
```
M2M100은 번역을 진행하기 위해 첫 번째로 생성되는 토큰은 번역할 언어(target language) ID로 강제 지정합니다.
영어로 번역하기 위해 `generate` 메소드에서 `forced_bos_token_id``en`으로 설정합니다:
```py
>>> generated_tokens = model.generate(**encoded_zh, forced_bos_token_id=tokenizer.get_lang_id("en"))
>>> tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
'Do not interfere with the matters of the witches, because they are delicate and will soon be angry.'
```
## MBart[[mbart]]
다음 MBart 모델 또한 다국어 태스크에 사용할 수 있습니다:
- `facebook/mbart-large-50-one-to-many-mmt` (일대다 다국어 번역, 50개 국어)
- `facebook/mbart-large-50-many-to-many-mmt` (다대다 다국어 번역, 50개 국어)
- `facebook/mbart-large-50-many-to-one-mmt` (다대일 다국어 번역, 50개 국어)
- `facebook/mbart-large-50` (다국어 번역, 50개 국어)
- `facebook/mbart-large-cc25`
이 예제에서는 핀란드어를 영어로 번역하기 위해 `facebook/mbart-large-50-many-to-many-mmt` 체크포인트를 가져옵니다.
토크나이저에서 번역 대상 언어(source language)를 설정할 수 있습니다:
```py
>>> from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
>>> en_text = "Do not meddle in the affairs of wizards, for they are subtle and quick to anger."
>>> fi_text = "Älä sekaannu velhojen asioihin, sillä ne ovat hienovaraisia ja nopeasti vihaisia."
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-50-many-to-many-mmt", src_lang="fi_FI")
>>> model = AutoModelForSeq2SeqLM.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
```
문장을 토큰화합니다:
```py
>>> encoded_en = tokenizer(en_text, return_tensors="pt")
```
MBart는 번역을 진행하기 위해 첫 번째로 생성되는 토큰은 번역할 언어(target language) ID로 강제 지정합니다.
영어로 번역하기 위해 `generate` 메소드에서 `forced_bos_token_id``en`으로 설정합니다:
```py
>>> generated_tokens = model.generate(**encoded_en, forced_bos_token_id=tokenizer.lang_code_to_id("en_XX"))
>>> tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
"Don't interfere with the wizard's affairs, because they are subtle, will soon get angry."
```
`facebook/mbart-large-50-many-to-one-mmt` 체크포인트를 사용하고 있다면, 첫 번째로 생성되는 토큰을 번역할 언어(target language) ID로 강제 지정할 필요는 없습니다.

View File

@ -0,0 +1,294 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# GPU[[gpu]]
GPU는 높은 메모리 대역폭과 병렬 처리 능력 덕분에 딥러닝 모델 학습에 널리 사용됩니다. GPU 사양과 모델 크기에 따라 수십억 개 매개변수를 가진 모델도 학습할 수 있습니다. 핵심은 GPU 메모리 활용도(데이터 처리량/학습 시간)와 학습 속도 사이에서 최적의 균형을 찾는 것입니다.
이 가이드는 Transformers와 PyTorch에서 GPU를 활용해 모델을 효율적으로 학습하기 위해 제공하는 기능을 소개합니다. 대부분의 경우, 이 기능들을 조합해서 학습을 최적화하는 것이 좋습니다.
아래 표를 참고하면 자신의 학습 시나리오에 적합한 기능을 빠르게 파악할 수 있습니다.
| 기능 | 학습 속도 가속 | 메모리 사용량 절약 |
| --------------------------- | --------- | ------------- |
| 배치 크기 | 예 | 예 |
| 그레이디언트 누적 | 아니요 | 예 |
| 그레이디언트 체크포인팅 | 아니요 | 예 |
| 혼합 정밀도 | 예 | 조건부 |
| 옵티마이저 | 예 | 예 |
| 데이터 사전 적재 | 예 | 아니요 |
| torch_empty_cache_steps | 아니요 | 예 |
| torch.compile | 예 | 아니요 |
| 스케일된 내적 어텐션 (SDPA) | 예 | 예 |
## Trainer[[trainer]]
Trainer는 [`TrainingArguments`]로 설정할 수 있는 다양한 학습 기능을 제공합니다. 이번 섹션에서는 학습 최적화에 특히 유용한 주요 기능 몇 가지를 살펴봅니다.
### 배치 크기[[batch-size]]
배치 크기는 GPU 학습 효율을 좌우하는 가장 중요한 하이퍼파라미터 중 하나로, 메모리 사용량과 학습 속도에 직접적인 영향을 줍니다. 배치 크기를 크게 하면 GPU의 병렬 처리 능력을 극대화하여 학습 속도를 높일 수 있습니다. 일반적으로 8, 64, 128, 256, 512처럼 2의 거듭제곱 값을 사용하는 것이 좋습니다. 적절한 배치 크기는 GPU 사양과 모델의 데이터 타입에 따라 달라집니다.
배치 크기는 [`TrainingArguments`]의 [`~TrainingArguments.per_device_train_batch_size`] 옵션으로 설정합니다.
```py
from transformers import TrainingArguments
args = TrainingArguments(
per_device_train_batch_size=256,
per_device_eval_batch_size=256,
)
```
성능, 입력 피처 수와 출력 뉴런 수, 배치 크기가 성능에 미치는 영향에 대해서는 NVIDIA [Performance](https://docs.nvidia.com/deeplearning/performance/dl-performance-fully-connected/index.html#input-features) 가이드를 참고하세요. 이 매개변수들은 GPU에서 실행되는 General Matrix Multiplications(GEMMs)에 사용됩니다. 매개변수가 클수록 병렬화와 효율성이 향상됩니다.
데이터 타입과 GPU에 따른 최적의 배치 크기를 선택해 텐서 곱셈 속도를 극대화하려면, [Tensor Core Requirements](https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc) 섹션을 참고하는 것이 유용합니다. 그 예시로, fp16에서는 8의 배수가 권장되지만, A100 GPU에서는 64의 배수가 더 적합하다는 사실을 확인할 수 있습니다.
마지막으로, 작은 매개변수를 사용할 때는 [Dimension Quantization Effects](https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#dim-quantization)를 고려하세요. 행렬 차원이 GPU 스레드 블록의 타일 크기로 나누어지지 않으면 타일 양자화가 발생하여 GPU 자원을 충분히 활용하지 못합니다. 행렬이 타일 크기로 정확히 나뉘도록 올바른 배치 크기 배수를 선택하며 학습 속도가 크게 향상됩니다.
### 그레이디언트 누적[[gradient-accumulation]]
그레이디언트 누적은 메모리 제약을 극복하는 방법으로, 단일 GPU에 맞지 않는 매우 큰 모델을 학습할 때 유용합니다. 이는 매개변수를 업데이트하기 전에 여러 미니 배치에 걸쳐 그레이디언트를 누적하는 방식입니다. 그 결과, 저장해야 하는 그레이디언트 수가 줄어 메모리 사용량이 줄어들고, 일반적으로 하나의 배치에서만 매개변수를 갱신하는 방식보다 더 큰 유효 배치 크기로 학습할 수 있습니다. 다만, 추가적인 순전파와 역전파가 필요하기 때문에 학습 속도가 느려질 수 있습니다.
그레이디언트 누적을 활성화하려면 [`TrainingArguments`]에서 [`TrainingArguments.per_device_train_batch_size`] 옵션을 설정하세요.
```py
from transformers import TrainingArguments
# 효율적인 배치 크기 64
args = TrainingArguments(
per_device_train_batch_size=4,
gradient_accumulation_steps=16,
)
```
학습 속도가 느려질 수 있기 때문에 그레이디언트 누적 단계를 너무 크게 설정하지 않는 것이 좋습니다. 아래 예시를 참고하세요, GPU에 담을 수 있는 최대 배치 크기가 4라면 GPU의 효율적인 사용을 위해 배치 크기를 4로 유지하는 것이 좋습니다.
| 배치 크기 | 그레이디언트 누적 단계 | 효율적인 배치 크기 | |
| --------- | ---------------------- | ------------------ | --- |
| 1 | 64 | 64 | 👎 |
| 4 | 16 | 64 | 👍 |
### 그레이디언트 체크포인팅[[gradient-checkpointing]]
그레이디언트 체크포인팅은 역전파 과정에서 일부 중간 활성화 값만 저장하고 나머지는 다시 계산해 메모리 사용량을 줄입니다. 이를 통해 순전파 과정에서 모든 중간 활성화 값을 저장하지 않아도 되어 메모리 오버헤드를 크게 줄일 수 있습니다. 다만, 학습 속도가 약 20% 느려지는 한계가 있습니다.
그레이디언트 누적을 활성화하려면 [`TrainingArguments`]에서 [`~TrainingArguments.gradient_checkpointing`] 옵션을 설정하세요.
```py
from transformers import TrainingArguments
args = TrainingArguments(
per_device_train_batch_size=4,
gradient_accumulation_steps=16,
gradient_checkpointing=True,
)
```
### 혼합 정밀도[[mixed-precision]]
혼합 정밀도는 일부 계산을 반정밀도(fp16)로, 나머지를 전정밀도(fp32)로 수행해 학습 속도를 높이는 기법입니다. 반정밀도 계산은 전정밀도보다 계산량이 적어 더 빠르게 수행됩니다. 한편, 전정밀도로 일부 계산을 수행하면 정확도를 유지할 수 있습니다.
혼합 정밀도 학습을 위해 여러 자료형을 사용할 수 있습니다.
<hfoptions id="mixed-precision">
<hfoption id="fp16">
혼합 정밀도 학습의 주요 장점은 활성화 값을 fp16으로 저장할 수 있다는 것입니다.
fp16 자료형으로 혼합 정밀도 학습을 활성화하려면 [`TrainingArguments`]에서 [`~TrainingArguments.fp16`] 옵션을 설정하세요.
```py
from transformers import TrainingArguments
args = TrainingArguments(
per_device_train_batch_size=4,
gradient_accumulation_steps=16,
gradient_checkpointing=True,
fp16=True.
)
```
fp16은 메모리 사용에 최적화된 방식이 아닙니다. 이는 fp16으로 계산된 그레이디언트가 최적화 단계에서 fp32로 다시 변환되기 때문입니다. 특히 배치 크기가 작을 때는, GPU에 두 가지 자료형(fp16, fp32)이 적재되어 있기 때문에 더 많은 GPU 메모리를 사용하게 됩니다.
</hfoption>
<hfoption id="bf16">
[bf16](https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus)은 일부 정밀도를 포기하는 대신, 훨씬 더 넓은 동적 범위를 제공하여 오버플로와 언더플로 오류를 방지하는 데 도움이 됩니다. bf16은 fp16과 달리 손실 스케일링 기법을 추가하지 않고도 사용할 수 있습니다. bf16은 NVIDIA의 Ampere 아키텍처 이상에서 지원됩니다.
bf16 자료형으로 혼합 정밀도 학습을 활성화하려면 [`TrainingArguments`]에서 [`~TrainingArguments.bf16`] 옵션을 설정하세요.
```py
from transformers import TrainingArguments
args = TrainingArguments(
per_device_train_batch_size=4,
gradient_accumulation_steps=16,
gradient_checkpointing=True,
bf16=True,
)
```
</hfoption>
<hfoption id="tf32">
[tf32](https://blogs.nvidia.com/blog/tensorfloat-32-precision-format/)는 NVIDIA Ampere GPU에서 합성곱과 행렬곱 입력을 tf32로 변환하는 모드입니다. 다른 모든 저장과 연산은 fp32로 유지됩니다. 이를 통해 tf32는 fp32와 동일한 범위, fp16과 동일한 정밀도, 그리고 bf16보다 더 높은 정밀도를 유지할 수 있습니다. tf32를 fp16 또는 bf16 혼합 정밀도 학습과 결합하면 처리량을 16배 향상할 수 있습니다.
tf32는 NVIDIA Ampere GPU에서 기본적으로 활성화되어 있지만, fp32 학습 또는 추론 코드에 아래 코드를 추가하여 명시적으로 활성화할 수도 있습니다.
```py
import torch
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
```
tf32 모드에서 혼합 정밀도 학습을 활성화하려면 [`TrainingArguments`]에서 [tf32()](https://huggingface.co/docs/transformers/main_classes/trainer#transformers.TrainingArguments.tf32) 옵션을 설정하세요.
```py
from transformers import TrainingArguments
args = TrainingArguments(
per_device_train_batch_size=4,
gradient_accumulation_steps=16,
gradient_checkpointing=True,
bf16=True.
tf32=True,
)
```
</hfoption>
</hfoptions>
### 옵티마이저[[optimizers]]
Transformers는 기본적으로 PyTorch의 [AdamW (adamw_torch)](https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html) 옵티마이저를 사용합니다. 하지만, 이 옵티마이저는 과거 그레이디언트의 가중 평균을 저장하기 때문에, 그레이디언트를 저장하기 위해 모델 매개변수 수에 비례한 추가 메모리가 필요합니다. 이는 매우 큰 모델을 학습할 때 문제가 될 수 있으며, 이러면 다른 옵티마이저를 선택하는 것을 고려해야 합니다. 예를 들어, [NVIDIA](https://github.com/NVIDIA/apex) 또는 [AMD](https://github.com/ROCm/apex)에 [Apex](https://nvidia.github.io/apex/index.html)가 설치되어 있다면, 모든 AdamW 옵티마이저 중 `adamw_apex_fused` 옵티마이저를 사용하는 것이 가장 빠른 학습 속도를 얻을 수 있습니다.
옵티마이저를 선택하기 위해서는 [`TrainingArguments`]에서 [`~TrainingArguments.optim`] 옵션을 설정하세요.
```py
from transformers import TrainingArguments
args = TrainingArguments(
per_device_train_batch_size=4,
gradient_accumulation_steps=16,
gradient_checkpointing=True,
bf16=True,
optim="adamw_bnb_8bit"
)
```
학습 시나리오에 맞게 선택할 수 있는 다양한 옵티마이저가 있습니다. (전체 지원 목록은 [OptimizerNames](https://github.com/huggingface/transformers/blob/34f4080ff59b1668d919a1ba9f8bc4a3a2a3f478/src/transformers/training_args.py#L145)를 참고하세요) 예를 들어 Adafactor는 행렬의 각 요소 대신 행 또는 열 단위의 가중 평균만 저장해 메모리 요구량을 크게 줄일 수 있지만, 수렴 속도는 느려질 수 있습니다. 또 다른 예로, bitandbytes의 [8-bit AdamW optimizer](https://huggingface.co/docs/bitsandbytes)를 사용하면 옵티마이저의 상태를 8비트로 양자화할 수 있습니다. 옵티마이저 상태는 낮은 정밀도로 저장되었다가 옵티마이저 단계에서 사용되기 전에 역 양자화됩니다.
특화된 옵티마이저에 대해 더 알고 싶다면 [optimizer](./optimizers) 가이드를 참고하세요.
### 데이터 사전 적재[[data-preloading]]
데이터 사전 적재(Data preloading)는 GPU가 지속적으로 작업할 수 있도록 CPU에서 미리 배치 단위의 데이터를 적재하고 준비하는 기능입니다. 이를 통해 GPU 유휴 시간을 줄이고 활용도를 높일 수 있습니다. GPU가 항상 작업을 계속하도록 하려면 다음 데이터 사전 적재를 위한 두 가지 방법을 사용할 수 있습니다.
1. 데이터를 저장할 고정 메모리를 CPU에 할당한 뒤, 이를 GPU로 직접 전송합니다.
2. CPU 스레드 및 워커 수를 늘려 데이터를 더 빠르게 사전 적재합니다.
고정 메모리를 할당하고 워커 수를 늘리기 위해서는 [`TrainingArguments`]에서 [`~TrainingArguments.dataloader_pin_memory`]와 [`~TrainingArguments.dataloader_num_workers`] 옵션을 설정하세요.
```py
from transformers import TrainingArguments
args = TrainingArguments(
per_device_train_batch_size=4,
gradient_accumulation_steps=16,
gradient_checkpointing=True,
bf16=True,
optim="adamw_bnb_8bit",
dataloader_pin_memory=True,
dataloader_num_workers=4,
)
```
## PyTorch[[pytorch]]
PyTorch는 메모리 요구사항을 줄이고 학습 속도를 높이기 위한 여러 기능을 제공합니다. 이러한 기능들은 Transformers에서 몇 줄의 코드만 추가하여 활성화할 수 있습니다.
### torch.empty_cache_steps[[torchemptycachesteps]]
[torch.cuda.empty_cache](https://pytorch.org/docs/stable/generated/torch.cuda.empty_cache.html#torch.cuda.empty_cache) 함수는 사용하지 않는 캐시 메모리를 해제하여 메모리 부족(OOM) 오류를 방지할 수 있지만, 학습 속도가 약 10% 느려질 수 있습니다.
특정 학습 단계 이후에 이 기능을 활성화하고 싶다면, [`TrainingArguments`]에서 [torch_empty_cache_steps()](https://huggingface.co/docs/transformers/main_classes/trainer#transformers.TrainingArguments.torch_empty_cache_steps)를 설정하세요.
```py
from transformers import TrainingArguments
args = TrainingArguments(
per_device_train_batch_size=4,
gradient_accumulation_steps=16,
gradient_checkpointing=True,
bf16=True,
optim="adamw_bnb_8bit",
dataloader_pin_memory=True,
dataloader_num_workers=4,
torch_empty_cache_steps=4,
)
```
### torch.compile[[torchcompile]]
[torch.compile](https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html)은 PyTorch 코드를 최적화된 커널로 컴파일해 학습 속도를 크게 높여줍니다. 이 기능은 TorchDynamo를 사용해 프레임 평가 API로부터 PyTorch 그래프를 캡처하며, 이렇게 캡처한 그래프는 다양한 백엔드에 추가로 최적화된 커널로 컴파일될 수 있습니다.
이를 활성화하려면 [`TrainingArguments`]에서 [`~TrainingArguments.torch_compile`]를 설정하세요. 백엔드는 [torch_compile_backend()](https://huggingface.co/docs/transformers/main_classes/trainer#transformers.TrainingArguments.torch_compile_backend)를 통해 선택할 수 있습니다.
```py
from transformers import TrainingArguments
args = TrainingArguments(
per_device_train_batch_size=4,
gradient_accumulation_steps=16,
gradient_checkpointing=True,
bf16=True,
optim="adamw_bnb_8bit",
dataloader_pin_memory=True,
dataloader_num_workers=4,
torch_empty_cache_steps=4,
torch_compile=True,
torch_compile_backend="inductor"
)
```
아래 표를 참고하여 학습 시나리오에 적합한 백엔드를 선택하세요.
| 백엔드 | 설명 | 목표 |
| -------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------ |
| eager | PyTorch를 사용해 추출된 GraphModule을 실행합니다 | 디버깅 |
| aot_eager | AOTAutograd로 추출된 순전파 및 역전파 그래프를 Pytorch eager 모드로 실행합니다 | 디버깅 |
| inductor | Triton 커널을 활용하는 TorchInductor와 AOTAutograd, CUDA Graphs를 사용합니다 | 학습 및 추론 |
| nvfuser | TorchScript와 함께 nvFuser를 사용합니다 | 학습 및 추론 |
| aot_nvfuser | AOTAutograd와 함께 nvFuser를 사용합니다 | 학습 및 추론 |
| aot_cudagraphs | AOTAutograd와 함께 CUDA Graphs를 사용합니다 | 학습 및 추론 |
| ofi | TorchScripts의 [optimize_for_inference](https://pytorch.org/docs/stable/generated/torch.jit.optimize_for_inference.html#torch-jit-optimize-for-inference)를 사용합니다 | 추론 |
| fx2trt | [Torch-TensorRT](https://pytorch.org/TensorRT/tutorials/getting_started_with_fx_path.html)를 사용합니다 | 추론 |
| onnxrt | CPU 및 GPU 추론을 위해 [ONNX-RT](https://onnxruntime.ai/)를 사용합니다 | 추론 |
| ipex | CPU 추론을 위해 [IPEX](https://github.com/intel/intel-extension-for-pytorch)를 사용합니다 | 추론 |
### 스케일된 내적 어텐션[[scaled-dot-production-attention]]
[torch.nn.functional.scaled_dot_product_attention](https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html) (SDPA)는 스케일된 내적 어텐션 메커니즘을 PyTorch에 내장해 구현한 함수입니다. SDPA는 트랜스포머 모델의 기존 어텐션 메커니즘보다 더 효율적이고 최적화되어 있습니다. 세 가지 유형의 스케일된 내적 어텐션을 지원합니다.
- [FlashAttention2](https://github.com/Dao-AILab/flash-attention)는 fp16 또는 bf16 torch 타입 모델에서 자동으로 활성화됩니다. 먼저 모델을 적절한 타입으로 캐스팅했는지 확인하세요.
- [xFormers](https://github.com/facebookresearch/xformers) 또는 Memory-Efficient Attention은 fp32 torch 타입 모델을 지원합니다.
- C++로 구현된 스케일된 내적 어텐션입니다.
SDPA는 PyTorch 2.1.1 버전 이상에서 기본적으로 활성화되어 있지만, [`~PreTrainedModel.from_pretrained`]에서 `attn_implementation="sdpa"`를 설정해 명시적으로 활성화할 수 있습니다.
```py
from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.1-8B", device_map="auto", attn_implementation="sdpa")
```

View File

@ -1,162 +0,0 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# TensorFlow로 TPU에서 훈련하기[[training-on-tpu-with-tensorflow]]
<Tip>
자세한 설명이 필요하지 않고 바로 TPU 샘플 코드를 시작하고 싶다면 [우리의 TPU 예제 노트북!](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/tpu_training-tf.ipynb)을 확인하세요.
</Tip>
### TPU가 무엇인가요?[[what-is-a-tpu]]
TPU는 **텐서 처리 장치**입니다. Google에서 설계한 하드웨어로, GPU처럼 신경망 내에서 텐서 연산을 더욱 빠르게 처리하기 위해 사용됩니다. 네트워크 훈련과 추론 모두에 사용할 수 있습니다. 일반적으로 Google의 클라우드 서비스를 통해 이용할 수 있지만, Google Colab과 Kaggle Kernel을 통해 소규모 TPU를 무료로 직접 이용할 수도 있습니다.
[🤗 Transformers의 모든 Tensorflow 모델은 Keras 모델](https://huggingface.co/blog/tensorflow-philosophy)이기 때문에, 이 문서에서 다루는 대부분의 메소드는 대체로 모든 Keras 모델을 위한 TPU 훈련에 적용할 수 있습니다! 하지만 Transformer와 데이터 세트의 HuggingFace 생태계(hug-o-system?)에 특화된 몇 가지 사항이 있으며, 해당 사항에 대해 설명할 때 반드시 언급하도록 하겠습니다.
### 어떤 종류의 TPU가 있나요?[[what-kinds-of-tpu-are-available]]
신규 사용자는 TPU의 범위와 다양한 이용 방법에 대해 매우 혼란스러워하는 경우가 많습니다. **TPU 노드**와 **TPU VM**의 차이점은 가장 먼저 이해해야 할 핵심적인 구분 사항입니다.
**TPU 노드**를 사용한다면, 실제로는 원격 TPU를 간접적으로 이용하는 것입니다. 네트워크와 데이터 파이프라인을 초기화한 다음, 이를 원격 노드로 전달할 별도의 VM이 필요합니다. Google Colab에서 TPU를 사용하는 경우, **TPU 노드** 방식으로 이용하게 됩니다.
TPU 노드를 사용하는 것은 이를 사용하지 않는 사용자에게 예기치 않은 현상이 발생하기도 합니다! 특히, TPU는 파이썬 코드를 실행하는 기기(machine)와 물리적으로 다른 시스템에 있기 때문에 로컬 기기에 데이터를 저장할 수 없습니다. 즉, 컴퓨터의 내부 저장소에서 가져오는 데이터 파이프라인은 절대 작동하지 않습니다! 로컬 기기에 데이터를 저장하는 대신에, 데이터 파이프라인이 원격 TPU 노드에서 실행 중일 때에도 데이터 파이프라인이 계속 이용할 수 있는 Google Cloud Storage에 데이터를 저장해야 합니다.
<Tip>
메모리에 있는 모든 데이터를 `np.ndarray` 또는 `tf.Tensor`로 맞출 수 있다면, Google Cloud Storage에 업로드할 필요 없이, Colab 또는 TPU 노드를 사용해서 해당 데이터에 `fit()` 할 수 있습니다.
</Tip>
<Tip>
**🤗특수한 Hugging Face 팁🤗:** TF 코드 예제에서 볼 수 있는 `Dataset.to_tf_dataset()` 메소드와 그 상위 래퍼(wrapper)인 `model.prepare_tf_dataset()`는 모두 TPU 노드에서 작동하지 않습니다. 그 이유는 `tf.data.Dataset`을 생성하더라도 “순수한” `tf.data` 파이프라인이 아니며 `tf.numpy_function` 또는 `Dataset.from_generator()`를 사용하여 기본 HuggingFace `Dataset`에서 데이터를 전송하기 때문입니다. 이 HuggingFace `Dataset`는 로컬 디스크에 있는 데이터로 지원되며 원격 TPU 노드가 읽을 수 없습니다.
</Tip>
TPU를 이용하는 두 번째 방법은 **TPU VM**을 사용하는 것입니다. TPU VM을 사용할 때, GPU VM에서 훈련하는 것과 같이 TPU가 장착된 기기에 직접 연결합니다. 특히 데이터 파이프라인과 관련하여, TPU VM은 대체로 작업하기 더 쉽습니다. 위의 모든 경고는 TPU VM에는 해당되지 않습니다!
이 문서는 의견이 포함된 문서이며, 저희의 의견이 여기에 있습니다: **가능하면 TPU 노드를 사용하지 마세요.** TPU 노드는 TPU VM보다 더 복잡하고 디버깅하기가 더 어렵습니다. 또한 향후에는 지원되지 않을 가능성이 높습니다. Google의 최신 TPU인 TPUv4는 TPU VM으로만 이용할 수 있으므로, TPU 노드는 점점 더 "구식" 이용 방법이 될 것으로 전망됩니다. 그러나 TPU 노드를 사용하는 Colab과 Kaggle Kernel에서만 무료 TPU 이용이 가능한 것으로 확인되어, 필요한 경우 이를 다루는 방법을 설명해 드리겠습니다! 이에 대한 자세한 설명이 담긴 코드 샘플은 [TPU 예제 노트북](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/tpu_training-tf.ipynb)에서 확인하시기 바랍니다.
### 어떤 크기의 TPU를 사용할 수 있나요?[[what-sizes-of-tpu-are-available]]
단일 TPU(v2-8/v3-8/v4-8)는 8개의 복제본(replicas)을 실행합니다. TPU는 수백 또는 수천 개의 복제본을 동시에 실행할 수 있는 **pod**로 존재합니다. 단일 TPU를 하나 이상 사용하지만 전체 Pod보다 적게 사용하는 경우(예를 들면, v3-32), TPU 구성을 **pod 슬라이스**라고 합니다.
Colab을 통해 무료 TPU에 이용하는 경우, 기본적으로 단일 v2-8 TPU를 제공받습니다.
### XLA에 대해 들어본 적이 있습니다. XLA란 무엇이고 TPU와 어떤 관련이 있나요?[[i-keep-hearing-about-this-xla-thing-whats-xla-and-how-does-it-relate-to-tpus]]
XLA는 최적화 컴파일러로, TensorFlow와 JAX에서 모두 사용됩니다. JAX에서는 유일한 컴파일러이지만, TensorFlow에서는 선택 사항입니다(하지만 TPU에서는 필수입니다!). Keras 모델을 훈련할 때 이를 활성화하는 가장 쉬운 방법은 `jit_compile=True` 인수를 `model.compile()`에 전달하는 것입니다. 오류가 없고 성능이 양호하다면, TPU로 전환할 준비가 되었다는 좋은 신호입니다!
TPU에서 디버깅하는 것은 대개 CPU/GPU보다 조금 더 어렵기 때문에, TPU에서 시도하기 전에 먼저 XLA로 CPU/GPU에서 코드를 실행하는 것을 권장합니다. 물론 오래 학습할 필요는 없습니다. 즉, 모델과 데이터 파이프라인이 예상대로 작동하는지 확인하기 위해 몇 단계만 거치면 됩니다.
<Tip>
XLA로 컴파일된 코드는 대체로 더 빠릅니다. 따라서 TPU에서 실행할 계획이 없더라도, `jit_compile=True`를 추가하면 성능이 향상될 수 있습니다. 하지만 XLA 호환성에 대한 아래 주의 사항을 반드시 확인하세요!
</Tip>
<Tip warning={true}>
**뼈아픈 경험에서 얻은 팁:** `jit_compile=True`를 사용하면 속도를 높이고 CPU/GPU 코드가 XLA와 호환되는지 검증할 수 있는 좋은 방법이지만, 실제 TPU에서 훈련할 때 그대로 남겨두면 많은 문제를 초래할 수 있습니다. XLA 컴파일은 TPU에서 암시적으로 이뤄지므로, 실제 TPU에서 코드를 실행하기 전에 해당 줄을 제거하는 것을 잊지 마세요!
</Tip>
### 제 XLA 모델과 호환하려면 어떻게 해야 하나요?[[how-do-i-make-my-model-xla-compatible]]
대부분의 경우, 여러분의 코드는 이미 XLA와 호환될 것입니다! 그러나 표준 TensorFlow에서 작동하지만, XLA에서는 작동하지 않는 몇 가지 사항이 있습니다. 이를 아래 세 가지 핵심 규칙으로 간추렸습니다:
<Tip>
**특수한 HuggingFace 팁🤗:** 저희는 TensorFlow 모델과 손실 함수를 XLA와 호환되도록 재작성하는 데 많은 노력을 기울였습니다. 저희의 모델과 손실 함수는 대개 기본적으로 규칙 #1과 #2를 따르므로 `transformers` 모델을 사용하는 경우, 이를 건너뛸 수 있습니다. 하지만 자체 모델과 손실 함수를 작성할 때는 이러한 규칙을 잊지 마세요!
</Tip>
#### XLA 규칙 #1: 코드에서 “데이터 종속 조건문”을 사용할 수 없습니다[[xla-rule-1-your-code-cannot-have-datadependent-conditionals]]
어떤 `if`문도 `tf.Tensor` 내부의 값에 종속될 수 없다는 것을 의미합니다. 예를 들어, 이 코드 블록은 XLA로 컴파일할 수 없습니다!
```python
if tf.reduce_sum(tensor) > 10:
tensor = tensor / 2.0
```
처음에는 매우 제한적으로 보일 수 있지만, 대부분의 신경망 코드에서는 이를 수행할 필요가 없습니다. `tf.cond`를 사용하거나([여기](https://www.tensorflow.org/api_docs/python/tf/cond) 문서를 참조), 다음과 같이 조건문을 제거하고 대신 지표 변수를 사용하는 영리한 수학 트릭을 찾아내어 이 제한을 우회할 수 있습니다:
```python
sum_over_10 = tf.cast(tf.reduce_sum(tensor) > 10, tf.float32)
tensor = tensor / (1.0 + sum_over_10)
```
이 코드는 위의 코드와 정확히 동일한 효과를 구현하지만, 조건문을 제거하여 문제 없이 XLA로 컴파일되도록 합니다!
#### XLA 규칙 #2: 코드에서 "데이터 종속 크기"를 가질 수 없습니다[[xla-rule-2-your-code-cannot-have-datadependent-shapes]]
코드에서 모든 `tf.Tensor` 객체의 크기가 해당 값에 종속될 수 없다는 것을 의미합니다. 예를 들어, `tf.unique` 함수는 입력에서 각 고유 값의 인스턴스 하나를 포함하는 `tensor`를 반환하기 때문에 XLA로 컴파일할 수 없습니다. 이 출력의 크기는 입력 `Tensor`가 얼마나 반복적인지에 따라 분명히 달라질 것이므로, XLA는 이를 처리하지 못합니다!
일반적으로, 대부분의 신경망 코드는 기본값으로 규칙 2를 따릅니다. 그러나 문제가 되는 몇 가지 대표적인 사례가 있습니다. 가장 흔한 사례 중 하나는 **레이블 마스킹**을 사용하여 손실(loss)을 계산할 때, 해당 위치를 무시하도록 나타내기 위해 레이블을 음수 값으로 설정하는 경우입니다. 레이블 마스킹을 지원하는 NumPy나 PyTorch 손실 함수를 보면 [불 인덱싱](https://numpy.org/doc/stable/user/basics.indexing.html#boolean-array-indexing)을 사용하는 다음과 같은 코드를 자주 접할 수 있습니다:
```python
label_mask = labels >= 0
masked_outputs = outputs[label_mask]
masked_labels = labels[label_mask]
loss = compute_loss(masked_outputs, masked_labels)
mean_loss = torch.mean(loss)
```
이 코드는 NumPy나 PyTorch에서는 문제 없이 작동하지만, XLA에서는 손상됩니다! 왜 그럴까요? 얼마나 많은 위치가 마스킹되는지에 따라 `masked_outputs``masked_labels`의 크기가 달라져서, **데이터 종속 크기**가 되기 때문입니다. 그러나 규칙 #1과 마찬가지로, 이 코드를 다시 작성하면 데이터 종속적 모양 크기가 정확히 동일한 출력을 산출할 수 있습니다.
```python
label_mask = tf.cast(labels >= 0, tf.float32)
loss = compute_loss(outputs, labels)
loss = loss * label_mask # Set negative label positions to 0
mean_loss = tf.reduce_sum(loss) / tf.reduce_sum(label_mask)
```
여기서, 모든 위치에 대한 손실을 계산하지만, 평균을 계산할 때 분자와 분모 모두에서 마스크된 위치를 0으로 처리합니다. 이는 데이터 종속 크기를 방지하고 XLA 호환성을 유지하면서 첫 번째 블록과 정확히 동일한 결과를 산출합니다. 규칙 #1에서와 동일한 트릭을 사용하여 `tf.bool``tf.float32`로 변환하고 이를 지표 변수로 사용합니다. 해당 트릭은 매우 유용하며, 자체 코드를 XLA로 변환해야 할 경우 기억해 두세요!
#### XLA 규칙 #3: XLA는 각기 다른 입력 크기가 나타날 때마다 모델을 다시 컴파일해야 합니다[[xla-rule-3-xla-will-need-to-recompile-your-model-for-every-different-input-shape-it-sees]]
이것은 가장 큰 문제입니다. 입력 크기가 매우 가변적인 경우, XLA는 모델을 반복해서 다시 컴파일해야 하므로 성능에 큰 문제가 발생할 수 있습니다. 이 문제는 토큰화 후 입력 텍스트의 길이가 가변적인 NLP 모델에서 주로 발생합니다. 다른 모달리티에서는 정적 크기가 더 흔하며, 해당 규칙이 훨씬 덜 문제시 됩니다.
규칙 #3을 어떻게 우회할 수 있을까요? 핵심은 **패딩**입니다. 모든 입력을 동일한 길이로 패딩한 다음, `attention_mask`를 사용하면 어떤 XLA 문제도 없이 가변 크기에서 가져온 것과 동일한 결과를 가져올 수 있습니다. 그러나 과도한 패딩은 심각한 속도 저하를 야기할 수도 있습니다. 모든 샘플을 전체 데이터 세트의 최대 길이로 패딩하면, 무한한 패딩 토큰으로 구성된 배치가 생성되어 많은 연산과 메모리가 낭비될 수 있습니다!
이 문제에 대한 완벽한 해결책은 없습니다. 하지만, 몇 가지 트릭을 시도해볼 수 있습니다. 한 가지 유용한 트릭은 **샘플 배치를 32 또는 64 토큰과 같은 숫자의 배수까지 패딩하는 것입니다.** 이는 토큰 수가 소폭 증가하지만, 모든 입력 크기가 32 또는 64의 배수여야 하기 때문에 고유한 입력 크기의 수가 대폭 줄어듭니다. 고유한 입력 크기가 적다는 것은 XLA 컴파일 횟수가 적어진다는 것을 의미합니다!
<Tip>
**🤗특수한 HuggingFace 팁🤗:** 토크나이저와 데이터 콜레이터에 도움이 될 수 있는 메소드가 있습니다. 토크나이저를 불러올 때 `padding="max_length"` 또는 `padding="longest"`를 사용하여 패딩된 데이터를 출력하도록 할 수 있습니다. 토크나이저와 데이터 콜레이터는 나타나는 고유한 입력 크기의 수를 줄이기 위해 사용할 수 있는 `pad_to_multiple_of` 인수도 있습니다!
</Tip>
### 실제 TPU로 모델을 훈련하려면 어떻게 해야 하나요?[[how-do-i-actually-train-my-model-on-tpu]]
훈련이 XLA와 호환되고 (TPU 노드/Colab을 사용하는 경우) 데이터 세트가 적절하게 준비되었다면, TPU에서 실행하는 것은 놀랍도록 쉽습니다! 코드에서 몇 줄만 추가하여, TPU를 초기화하고 모델과 데이터 세트가 `TPUStrategy` 범위 내에 생성되도록 변경하면 됩니다. [우리의 TPU 예제 노트북](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/tpu_training-tf.ipynb)을 참조하여 실제로 작동하는 모습을 확인해 보세요!
### 요약[[summary]]
여기에 많은 내용이 포함되어 있으므로, TPU 훈련을 위한 모델을 준비할 때 따를 수 있는 간략한 체크리스트로 요약해 보겠습니다:
- 코드가 XLA의 세 가지 규칙을 따르는지 확인합니다.
- CPU/GPU에서 `jit_compile=True`로 모델을 컴파일하고 XLA로 훈련할 수 있는지 확인합니다.
- 데이터 세트를 메모리에 가져오거나 TPU 호환 데이터 세트를 가져오는 방식을 사용합니다([노트북](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/tpu_training-tf.ipynb) 참조)
- 코드를 Colab(accelerator가 “TPU”로 설정됨) 또는 Google Cloud의 TPU VM으로 마이그레이션합니다.
- TPU 초기화 코드를 추가합니다([노트북](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/tpu_training-tf.ipynb) 참조)
- `TPUStrategy`를 생성하고 데이터 세트를 가져오는 것과 모델 생성이 `strategy.scope()` 내에 있는지 확인합니다([노트북](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/tpu_training-tf.ipynb) 참조)
- TPU로 이동할 때 `jit_compile=True`를 다시 설정하는 것을 잊지 마세요!
- 🙏🙏🙏🥺🥺🥺
- model.fit()을 불러옵니다.
- 여러분이 해냈습니다!

View File

@ -1,96 +0,0 @@
<!---
Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# 성능 및 확장성 [[performance-and-scalability]]
점점 더 큰 규모의 트랜스포머 모델을 훈련하고 프로덕션에 배포하는 데에는 다양한 어려움이 따릅니다. 훈련 중에는 모델이 사용 가능한 GPU 메모리보다 더 많은 메모리를 필요로 하거나 훈련 속도가 매우 느릴 수 있으며, 추론을 위해 배포할 때는 제품 환경에서 요구되는 처리량으로 인해 과부하가 발생할 수 있습니다. 이 문서는 이러한 문제를 극복하고 사용 사례에 가장 적합한 설정을 찾도록 도움을 주기 위해 설계되었습니다. 훈련과 추론으로 가이드를 분할했는데, 이는 각각 다른 문제와 해결 방법이 있기 때문입니다. 그리고 각 가이드에는 다양한 종류의 하드웨어 설정에 대한 별도의 가이드가 있습니다(예: 훈련을 위한 단일 GPU vs 다중 GPU 또는 추론을 위한 CPU vs GPU).
![perf_overview](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/perf_overview.png)
이 문서는 사용자의 상황에 유용할 수 있는 방법들에 대한 개요 및 시작점 역할을 합니다.
## 훈련 [[training]]
효율적인 트랜스포머 모델 훈련에는 GPU나 TPU와 같은 가속기가 필요합니다. 가장 일반적인 경우는 단일 GPU만 사용하는 경우지만, 다중 GPU 및 CPU 훈련에 대한 섹션도 있습니다(곧 더 많은 내용이 추가될 예정).
<Tip>
참고: 단일 GPU 섹션에서 소개된 대부분의 전략(예: 혼합 정밀도 훈련 또는 그라디언트 누적)은 일반적인 모델 훈련에도 적용되므로, 다중 GPU나 CPU 훈련과 같은 섹션을 살펴보기 전에 꼭 참고하시길 바랍니다.
</Tip>
### 단일 GPU [[single-gpu]]
단일 GPU에서 대규모 모델을 훈련하는 것은 어려울 수 있지만, 이를 가능하게 하는 여러 가지 도구와 방법이 있습니다. 이 섹션에서는 혼합 정밀도 훈련, 그라디언트 누적 및 체크포인팅, 효율적인 옵티마이저, 최적의 배치 크기를 결정하기 위한 전략 등에 대해 논의합니다.
[단일 GPU 훈련 섹션으로 이동](perf_train_gpu_one)
### 다중 GPU [[multigpu]]
단일 GPU에서 훈련하는 것이 너무 느리거나 대규모 모델에 적합하지 않은 경우도 있습니다. 다중 GPU 설정으로 전환하는 것은 논리적인 단계이지만, 여러 GPU에서 한 번에 훈련하려면 각 GPU마다 모델의 전체 사본을 둘지, 혹은 모델 자체도 여러 GPU에 분산하여 둘지 등 새로운 결정을 내려야 합니다. 이 섹션에서는 데이터, 텐서 및 파이프라인 병렬화에 대해 살펴봅니다.
[다중 GPU 훈련 섹션으로 이동](perf_train_gpu_many)
### CPU [[cpu]]
[CPU 훈련 섹션으로 이동](perf_train_cpu)
### TPU [[tpu]]
[_곧 제공될 예정_](perf_train_tpu)
### 특수한 하드웨어 [[specialized-hardware]]
[_곧 제공될 예정_](perf_train_special)
## 추론 [[inference]]
제품 및 서비스 환경에서 대규모 모델을 효율적으로 추론하는 것은 모델을 훈련하는 것만큼 어려울 수 있습니다. 이어지는 섹션에서는 CPU 및 단일/다중 GPU 설정에서 추론을 진행하는 단계를 살펴봅니다.
### CPU [[cpu]]
[CPU 추론 섹션으로 이동](perf_infer_cpu)
### 단일 GPU [[single-gpu]]
[단일 GPU 추론 섹션으로 이동](perf_infer_gpu_one)
### 다중 GPU [[multigpu]]
[다중 GPU 추론 섹션으로 이동](perf_infer_gpu_many)
### 특수한 하드웨어 [[specialized-hardware]]
[_곧 제공될 예정_](perf_infer_special)
## 하드웨어 [[hardware]]
하드웨어 섹션에서는 자신만의 딥러닝 장비를 구축할 때 유용한 팁과 요령을 살펴볼 수 있습니다.
[하드웨어 섹션으로 이동](perf_hardware)
## 기여하기 [[contribute]]
이 문서는 완성되지 않은 상태이며, 추가해야 할 내용이나 수정 사항이 많이 있습니다. 따라서 추가하거나 수정할 내용이 있으면 주저하지 말고 PR을 열어 주시거나, 자세한 내용을 논의하기 위해 Issue를 시작해 주시기 바랍니다.
A가 B보다 좋다고 하는 기여를 할 때는, 재현 가능한 벤치마크와/또는 해당 정보의 출처 링크를 포함해주세요(당신으로부터의 직접적인 정보가 아닌 경우).

View File

@ -0,0 +1,52 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# 머신러닝 앱 [[machine-learning-apps]]
머신러닝 앱을 빠르고 쉽게 구축하고 공유할 수 있는 라이브러리인 [Gradio](https://www.gradio.app/)는 [`Pipeline`]과 통합되어 추론을 위한 간단한 인터페이스를 빠르게 생성할 수 있습니다.
시작하기 전에 Gradio가 설치되어 있는지 확인하세요.
```py
!pip install gradio
```
원하는 작업에 맞는 pipeline을 생성한 다음, Gradio의 [Interface.from_pipeline](https://www.gradio.app/docs/gradio/interface#interface-from_pipeline) 함수에 전달하여 인터페이스를 만드세요. Gradio는 [`Pipeline`]에 맞는 입력 및 출력 컴포넌트를 자동으로 결정합니다.
[launch](https://www.gradio.app/main/docs/gradio/blocks#blocks-launch)를 추가하여 웹 서버를 생성하고 앱을 시작하세요.
```py
from transformers import pipeline
import gradio as gr
pipeline = pipeline("image-classification", model="google/vit-base-patch16-224")
gr.Interface.from_pipeline(pipeline).launch()
```
웹 앱은 기본적으로 로컬 서버에서 실행됩니다. 다른 사용자와 앱을 공유하려면 [launch](https://www.gradio.app/main/docs/gradio/blocks#blocks-launch)에서 `share=True`로 설정하여 임시 공개 링크를 생성하세요. 더 지속적인 솔루션을 원한다면 Hugging Face [Spaces](https://hf.co/spaces)에서 앱을 호스팅하세요.
```py
gr.Interface.from_pipeline(pipeline).launch(share=True)
```
아래 Space는 위 코드를 사용하여 생성되었으며, Spaces에서 호스팅됩니다.
<iframe
src="https://stevhliu-gradio-pipeline-demo.hf.space"
frameborder="0"
width="850"
height="850"
></iframe>

View File

@ -1,539 +0,0 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# 전처리[[preprocess]]
[[open-in-colab]]
모델을 훈련하려면 데이터 세트를 모델에 맞는 입력 형식으로 전처리해야 합니다. 텍스트, 이미지 또는 오디오인지 관계없이 데이터를 텐서 배치로 변환하고 조립할 필요가 있습니다. 🤗 Transformers는 모델에 대한 데이터를 준비하는 데 도움이 되는 일련의 전처리 클래스를 제공합니다. 이 튜토리얼에서는 다음 내용을 배울 수 있습니다:
* 텍스트는 [Tokenizer](./main_classes/tokenizer)를 사용하여 토큰 시퀀스로 변환하고 토큰의 숫자 표현을 만든 후 텐서로 조립합니다.
* 음성 및 오디오는 [Feature extractor](./main_classes/feature_extractor)를 사용하여 오디오 파형에서 시퀀스 특성을 파악하여 텐서로 변환합니다.
* 이미지 입력은 [ImageProcessor](./main_classes/image)을 사용하여 이미지를 텐서로 변환합니다.
* 멀티모달 입력은 [Processor](./main_classes/processors)을 사용하여 토크나이저와 특성 추출기 또는 이미지 프로세서를 결합합니다.
<Tip>
`AutoProcessor`**언제나** 작동하여 토크나이저, 이미지 프로세서, 특성 추출기 또는 프로세서 등 사용 중인 모델에 맞는 클래스를 자동으로 선택합니다.
</Tip>
시작하기 전에 🤗 Datasets를 설치하여 실험에 사용할 데이터를 불러올 수 있습니다:
```bash
pip install datasets
```
## 자연어처리[[natural-language-processing]]
<Youtube id="Yffk5aydLzg"/>
텍스트 데이터를 전처리하기 위한 기본 도구는 [tokenizer](main_classes/tokenizer)입니다. 토크나이저는 일련의 규칙에 따라 텍스트를 *토큰*으로 나눕니다. 토큰은 숫자로 변환되고 텐서는 모델 입력이 됩니다. 모델에 필요한 추가 입력은 토크나이저에 의해 추가됩니다.
<Tip>
사전훈련된 모델을 사용할 계획이라면 모델과 함께 사전훈련된 토크나이저를 사용하는 것이 중요합니다. 이렇게 하면 텍스트가 사전훈련 말뭉치와 동일한 방식으로 분할되고 사전훈련 중에 동일한 해당 토큰-인덱스 쌍(일반적으로 *vocab*이라고 함)을 사용합니다.
</Tip>
시작하려면 [`AutoTokenizer.from_pretrained`] 메소드를 사용하여 사전훈련된 토크나이저를 불러오세요. 모델과 함께 사전훈련된 *vocab*을 다운로드합니다:
```py
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-cased")
```
그 다음으로 텍스트를 토크나이저에 넣어주세요:
```py
>>> encoded_input = tokenizer("Do not meddle in the affairs of wizards, for they are subtle and quick to anger.")
>>> print(encoded_input)
{'input_ids': [101, 2079, 2025, 19960, 10362, 1999, 1996, 3821, 1997, 16657, 1010, 2005, 2027, 2024, 11259, 1998, 4248, 2000, 4963, 1012, 102],
'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}
```
토크나이저는 세 가지 중요한 항목을 포함한 딕셔너리를 반환합니다:
* [input_ids](glossary#input-ids)는 문장의 각 토큰에 해당하는 인덱스입니다.
* [attention_mask](glossary#attention-mask)는 토큰을 처리해야 하는지 여부를 나타냅니다.
* [token_type_ids](glossary#token-type-ids)는 두 개 이상의 시퀀스가 있을 때 토큰이 속한 시퀀스를 식별합니다.
`input_ids`를 디코딩하여 입력을 반환합니다:
```py
>>> tokenizer.decode(encoded_input["input_ids"])
'[CLS] Do not meddle in the affairs of wizards, for they are subtle and quick to anger. [SEP]'
```
토크나이저가 두 개의 특수한 토큰(분류 토큰 `CLS`와 분할 토큰 `SEP`)을 문장에 추가했습니다.
모든 모델에 특수한 토큰이 필요한 것은 아니지만, 필요하다면 토크나이저가 자동으로 추가합니다.
전처리할 문장이 여러 개 있는 경우에는 리스트로 토크나이저에 전달합니다:
```py
>>> batch_sentences = [
... "But what about second breakfast?",
... "Don't think he knows about second breakfast, Pip.",
... "What about elevensies?",
... ]
>>> encoded_inputs = tokenizer(batch_sentences)
>>> print(encoded_inputs)
{'input_ids': [[101, 1252, 1184, 1164, 1248, 6462, 136, 102],
[101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102],
[101, 1327, 1164, 5450, 23434, 136, 102]],
'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]],
'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1]]}
```
### 패딩[[pad]]
모델 입력인 텐서는 모양이 균일해야 하지만, 문장의 길이가 항상 같지는 않기 때문에 문제가 될 수 있습니다. 패딩은 짧은 문장에 특수한 *패딩 토큰*을 추가하여 텐서를 직사각형 모양이 되도록 하는 전략입니다.
`padding` 매개변수를 `True`로 설정하여 배치 내의 짧은 시퀀스를 가장 긴 시퀀스에 맞춰 패딩합니다.
```py
>>> batch_sentences = [
... "But what about second breakfast?",
... "Don't think he knows about second breakfast, Pip.",
... "What about elevensies?",
... ]
>>> encoded_input = tokenizer(batch_sentences, padding=True)
>>> print(encoded_input)
{'input_ids': [[101, 1252, 1184, 1164, 1248, 6462, 136, 102, 0, 0, 0, 0, 0, 0, 0],
[101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102],
[101, 1327, 1164, 5450, 23434, 136, 102, 0, 0, 0, 0, 0, 0, 0, 0]],
'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]],
'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]]}
```
길이가 짧은 첫 문장과 세 번째 문장이 이제 `0`으로 채워졌습니다.
### 잘라내기[[truncation]]
한편, 때로는 시퀀스가 모델에서 처리하기에 너무 길 수도 있습니다. 이 경우, 시퀀스를 더 짧게 줄일 필요가 있습니다.
모델에서 허용하는 최대 길이로 시퀀스를 자르려면 `truncation` 매개변수를 `True`로 설정하세요:
```py
>>> batch_sentences = [
... "But what about second breakfast?",
... "Don't think he knows about second breakfast, Pip.",
... "What about elevensies?",
... ]
>>> encoded_input = tokenizer(batch_sentences, padding=True, truncation=True)
>>> print(encoded_input)
{'input_ids': [[101, 1252, 1184, 1164, 1248, 6462, 136, 102, 0, 0, 0, 0, 0, 0, 0],
[101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102],
[101, 1327, 1164, 5450, 23434, 136, 102, 0, 0, 0, 0, 0, 0, 0, 0]],
'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]],
'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]]}
```
<Tip>
다양한 패딩과 잘라내기 인수에 대해 더 알아보려면 [패딩과 잘라내기](./pad_truncation) 개념 가이드를 확인해보세요.
</Tip>
### 텐서 만들기[[build-tensors]]
마지막으로, 토크나이저가 모델에 공급되는 실제 텐서를 반환하도록 합니다.
`return_tensors` 매개변수를 PyTorch의 경우 `pt`, TensorFlow의 경우 `tf`로 설정하세요:
<frameworkcontent>
<pt>
```py
>>> batch_sentences = [
... "But what about second breakfast?",
... "Don't think he knows about second breakfast, Pip.",
... "What about elevensies?",
... ]
>>> encoded_input = tokenizer(batch_sentences, padding=True, truncation=True, return_tensors="pt")
>>> print(encoded_input)
{'input_ids': tensor([[101, 1252, 1184, 1164, 1248, 6462, 136, 102, 0, 0, 0, 0, 0, 0, 0],
[101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102],
[101, 1327, 1164, 5450, 23434, 136, 102, 0, 0, 0, 0, 0, 0, 0, 0]]),
'token_type_ids': tensor([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]),
'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]])}
```
</pt>
<tf>
```py
>>> batch_sentences = [
... "But what about second breakfast?",
... "Don't think he knows about second breakfast, Pip.",
... "What about elevensies?",
... ]
>>> encoded_input = tokenizer(batch_sentences, padding=True, truncation=True, return_tensors="tf")
>>> print(encoded_input)
{'input_ids': <tf.Tensor: shape=(2, 9), dtype=int32, numpy=
array([[101, 1252, 1184, 1164, 1248, 6462, 136, 102, 0, 0, 0, 0, 0, 0, 0],
[101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102],
[101, 1327, 1164, 5450, 23434, 136, 102, 0, 0, 0, 0, 0, 0, 0, 0]],
dtype=int32)>,
'token_type_ids': <tf.Tensor: shape=(2, 9), dtype=int32, numpy=
array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=int32)>,
'attention_mask': <tf.Tensor: shape=(2, 9), dtype=int32, numpy=
array([[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=int32)>}
```
</tf>
</frameworkcontent>
## 오디오[[audio]]
오디오 작업은 모델에 맞는 데이터 세트를 준비하기 위해 [특성 추출기](main_classes/feature_extractor)가 필요합니다. 특성 추출기는 원시 오디오 데이터에서 특성를 추출하고 이를 텐서로 변환하는 것이 목적입니다.
오디오 데이터 세트에 특성 추출기를 사용하는 방법을 보기 위해 [MInDS-14](https://huggingface.co/datasets/PolyAI/minds14) 데이터 세트를 가져오세요. (데이터 세트를 가져오는 방법은 🤗 [데이터 세트 튜토리얼](https://huggingface.co/docs/datasets/load_hub)에서 자세히 설명하고 있습니다.)
```py
>>> from datasets import load_dataset, Audio
>>> dataset = load_dataset("PolyAI/minds14", name="en-US", split="train")
```
`audio` 열의 첫 번째 요소에 접근하여 입력을 살펴보세요. `audio` 열을 호출하면 오디오 파일을 자동으로 가져오고 리샘플링합니다.
```py
>>> dataset[0]["audio"]
{'array': array([ 0. , 0.00024414, -0.00024414, ..., -0.00024414,
0. , 0. ], dtype=float32),
'path': '/root/.cache/huggingface/datasets/downloads/extracted/f14948e0e84be638dd7943ac36518a4cf3324e8b7aa331c5ab11541518e9368c/en-US~JOINT_ACCOUNT/602ba55abb1e6d0fbce92065.wav',
'sampling_rate': 8000}
```
이렇게 하면 세 가지 항목이 반환됩니다:
* `array`는 1D 배열로 가져와서 (필요한 경우) 리샘플링된 음성 신호입니다.
* `path`는 오디오 파일의 위치를 가리킵니다.
* `sampling_rate`는 음성 신호에서 초당 측정되는 데이터 포인트 수를 나타냅니다.
이 튜토리얼에서는 [Wav2Vec2](https://huggingface.co/facebook/wav2vec2-base) 모델을 사용합니다. 모델 카드를 보면 Wav2Vec2가 16kHz 샘플링된 음성 오디오를 기반으로 사전훈련된 것을 알 수 있습니다.
모델을 사전훈련하는 데 사용된 데이터 세트의 샘플링 레이트와 오디오 데이터의 샘플링 레이트가 일치해야 합니다. 데이터의 샘플링 레이트가 다르면 데이터를 리샘플링해야 합니다.
1. 🤗 Datasets의 [`~datasets.Dataset.cast_column`] 메소드를 사용하여 샘플링 레이트를 16kHz로 업샘플링하세요:
```py
>>> dataset = dataset.cast_column("audio", Audio(sampling_rate=16_000))
```
2. 오디오 파일을 리샘플링하기 위해 `audio` 열을 다시 호출합니다:
```py
>>> dataset[0]["audio"]
{'array': array([ 2.3443763e-05, 2.1729663e-04, 2.2145823e-04, ...,
3.8356509e-05, -7.3497440e-06, -2.1754686e-05], dtype=float32),
'path': '/root/.cache/huggingface/datasets/downloads/extracted/f14948e0e84be638dd7943ac36518a4cf3324e8b7aa331c5ab11541518e9368c/en-US~JOINT_ACCOUNT/602ba55abb1e6d0fbce92065.wav',
'sampling_rate': 16000}
```
다음으로, 입력을 정규화하고 패딩할 특성 추출기를 가져오세요. 텍스트 데이터의 경우, 더 짧은 시퀀스에 대해 `0`이 추가됩니다. 오디오 데이터에도 같은 개념이 적용됩니다.
특성 추출기는 배열에 `0`(묵음으로 해석)을 추가합니다.
[`AutoFeatureExtractor.from_pretrained`]를 사용하여 특성 추출기를 가져오세요:
```py
>>> from transformers import AutoFeatureExtractor
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base")
```
오디오 `array`를 특성 추출기에 전달하세요. 또한, 발생할 수 있는 조용한 오류(silent errors)를 더 잘 디버깅할 수 있도록 특성 추출기에 `sampling_rate` 인수를 추가하는 것을 권장합니다.
```py
>>> audio_input = [dataset[0]["audio"]["array"]]
>>> feature_extractor(audio_input, sampling_rate=16000)
{'input_values': [array([ 3.8106556e-04, 2.7506407e-03, 2.8015103e-03, ...,
5.6335266e-04, 4.6588284e-06, -1.7142107e-04], dtype=float32)]}
```
토크나이저와 마찬가지로 배치 내에서 가변적인 시퀀스를 처리하기 위해 패딩 또는 잘라내기를 적용할 수 있습니다. 이 두 개의 오디오 샘플의 시퀀스 길이를 확인해보세요:
```py
>>> dataset[0]["audio"]["array"].shape
(173398,)
>>> dataset[1]["audio"]["array"].shape
(106496,)
```
오디오 샘플의 길이가 동일하도록 데이터 세트를 전처리하는 함수를 만드세요. 최대 샘플 길이를 지정하면 특성 추출기가 해당 길이에 맞춰 시퀀스를 패딩하거나 잘라냅니다:
```py
>>> def preprocess_function(examples):
... audio_arrays = [x["array"] for x in examples["audio"]]
... inputs = feature_extractor(
... audio_arrays,
... sampling_rate=16000,
... padding=True,
... max_length=100000,
... truncation=True,
... )
... return inputs
```
`preprocess_function`을 데이터 세트의 처음 예시 몇 개에 적용해보세요:
```py
>>> processed_dataset = preprocess_function(dataset[:5])
```
이제 샘플 길이가 모두 같고 지정된 최대 길이에 맞게 되었습니다. 드디어 전처리된 데이터 세트를 모델에 전달할 수 있습니다!
```py
>>> processed_dataset["input_values"][0].shape
(100000,)
>>> processed_dataset["input_values"][1].shape
(100000,)
```
## 컴퓨터 비전[[computer-vision]]
컴퓨터 비전 작업의 경우, 모델에 대한 데이터 세트를 준비하기 위해 [이미지 프로세서](main_classes/image_processor)가 필요합니다.
이미지 전처리는 이미지를 모델이 예상하는 입력으로 변환하는 여러 단계로 이루어집니다.
이러한 단계에는 크기 조정, 정규화, 색상 채널 보정, 이미지의 텐서 변환 등이 포함됩니다.
<Tip>
이미지 전처리는 이미지 증강 기법을 몇 가지 적용한 뒤에 할 수도 있습니다.
이미지 전처리 및 이미지 증강은 모두 이미지 데이터를 변형하지만, 서로 다른 목적을 가지고 있습니다:
* 이미지 증강은 과적합(over-fitting)을 방지하고 모델의 견고함(resiliency)을 높이는 데 도움이 되는 방식으로 이미지를 수정합니다.
밝기와 색상 조정, 자르기, 회전, 크기 조정, 확대/축소 등 다양한 방법으로 데이터를 증강할 수 있습니다.
그러나 증강으로 이미지의 의미가 바뀌지 않도록 주의해야 합니다.
* 이미지 전처리는 이미지가 모델이 예상하는 입력 형식과 일치하도록 보장합니다.
컴퓨터 비전 모델을 미세 조정할 때 이미지는 모델이 초기에 훈련될 때와 정확히 같은 방식으로 전처리되어야 합니다.
이미지 증강에는 원하는 라이브러리를 무엇이든 사용할 수 있습니다. 이미지 전처리에는 모델과 연결된 `ImageProcessor`를 사용합니다.
</Tip>
[food101](https://huggingface.co/datasets/food101) 데이터 세트를 가져와서 컴퓨터 비전 데이터 세트에서 이미지 프로세서를 어떻게 사용하는지 알아보세요.
데이터 세트를 불러오는 방법은 🤗 [데이터 세트 튜토리얼](https://huggingface.co/docs/datasets/load_hub)을 참고하세요.
<Tip>
데이터 세트가 상당히 크기 때문에 🤗 Datasets의 `split` 매개변수를 사용하여 훈련 세트에서 작은 샘플만 가져오세요!
</Tip>
```py
>>> from datasets import load_dataset
>>> dataset = load_dataset("food101", split="train[:100]")
```
다음으로, 🤗 Datasets의 [`image`](https://huggingface.co/docs/datasets/package_reference/main_classes?highlight=image#datasets.Image)로 이미지를 확인해보세요:
```py
>>> dataset[0]["image"]
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/vision-preprocess-tutorial.png"/>
</div>
[`AutoImageProcessor.from_pretrained`]로 이미지 프로세서를 가져오세요:
```py
>>> from transformers import AutoImageProcessor
>>> image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224")
```
먼저 이미지 증강 단계를 추가해 봅시다. 아무 라이브러리나 사용해도 괜찮지만, 이번 튜토리얼에서는 torchvision의 [`transforms`](https://pytorch.org/vision/stable/transforms.html) 모듈을 사용하겠습니다.
다른 데이터 증강 라이브러리를 사용해보고 싶다면, [Albumentations](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification_albumentations.ipynb) 또는 [Kornia notebooks](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification_kornia.ipynb)에서 어떻게 사용하는지 배울 수 있습니다.
1. [`Compose`](https://pytorch.org/vision/master/generated/torchvision.transforms.Compose.html)로 [`RandomResizedCrop`](https://pytorch.org/vision/main/generated/torchvision.transforms.RandomResizedCrop.html)와 [`ColorJitter`](https://pytorch.org/vision/main/generated/torchvision.transforms.ColorJitter.html) 등 변환을 몇 가지 연결하세요.
참고로 크기 조정에 필요한 이미지의 크기 요구사항은 `image_processor`에서 가져올 수 있습니다.
일부 모델은 정확한 높이와 너비를 요구하지만, 제일 짧은 변의 길이(`shortest_edge`)만 정의된 모델도 있습니다.
```py
>>> from torchvision.transforms import RandomResizedCrop, ColorJitter, Compose
>>> size = (
... image_processor.size["shortest_edge"]
... if "shortest_edge" in image_processor.size
... else (image_processor.size["height"], image_processor.size["width"])
... )
>>> _transforms = Compose([RandomResizedCrop(size), ColorJitter(brightness=0.5, hue=0.5)])
```
2. 모델은 입력으로 [`pixel_values`](model_doc/visionencoderdecoder#transformers.VisionEncoderDecoderModel.forward.pixel_values)를 받습니다.
`ImageProcessor`는 이미지 정규화 및 적절한 텐서 생성을 처리할 수 있습니다.
배치 이미지에 대한 이미지 증강 및 이미지 전처리를 결합하고 `pixel_values`를 생성하는 함수를 만듭니다:
```py
>>> def transforms(examples):
... images = [_transforms(img.convert("RGB")) for img in examples["image"]]
... examples["pixel_values"] = image_processor(images, do_resize=False, return_tensors="pt")["pixel_values"]
... return examples
```
<Tip>
위의 예에서는 이미지 증강 중에 이미지 크기를 조정했기 때문에 `do_resize=False`로 설정하고, 해당 `image_processor`에서 `size` 속성을 활용했습니다.
이미지 증강 중에 이미지 크기를 조정하지 않은 경우 이 매개변수를 생략하세요.
기본적으로는 `ImageProcessor`가 크기 조정을 처리합니다.
증강 변환 과정에서 이미지를 정규화하려면 `image_processor.image_mean``image_processor.image_std` 값을 사용하세요.
</Tip>
3. 🤗 Datasets의 [`set_transform`](https://huggingface.co/docs/datasets/process#format-transform)를 사용하여 실시간으로 변환을 적용합니다:
```py
>>> dataset.set_transform(transforms)
```
4. 이제 이미지에 접근하면 이미지 프로세서가 `pixel_values`를 추가한 것을 알 수 있습니다.
드디어 처리된 데이터 세트를 모델에 전달할 수 있습니다!
```py
>>> dataset[0].keys()
```
다음은 변형이 적용된 후의 이미지입니다. 이미지가 무작위로 잘려나갔고 색상 속성이 다릅니다.
```py
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> img = dataset[0]["pixel_values"]
>>> plt.imshow(img.permute(1, 2, 0))
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/preprocessed_image.png"/>
</div>
<Tip>
`ImageProcessor`는 객체 감지, 시맨틱 세그멘테이션(semantic segmentation), 인스턴스 세그멘테이션(instance segmentation), 파놉틱 세그멘테이션(panoptic segmentation)과 같은 작업에 대한 후처리 방법을 제공합니다.
이러한 방법은 모델의 원시 출력을 경계 상자나 세그멘테이션 맵과 같은 의미 있는 예측으로 변환해줍니다.
</Tip>
### 패딩[[pad]]
예를 들어, [DETR](./model_doc/detr)와 같은 경우에는 모델이 훈련할 때 크기 조정 증강을 적용합니다.
이로 인해 배치 내 이미지 크기가 달라질 수 있습니다.
[`DetrImageProcessor`]의 [`DetrImageProcessor.pad`]를 사용하고 사용자 정의 `collate_fn`을 정의해서 배치 이미지를 처리할 수 있습니다.
```py
>>> def collate_fn(batch):
... pixel_values = [item["pixel_values"] for item in batch]
... encoding = image_processor.pad(pixel_values, return_tensors="pt")
... labels = [item["labels"] for item in batch]
... batch = {}
... batch["pixel_values"] = encoding["pixel_values"]
... batch["pixel_mask"] = encoding["pixel_mask"]
... batch["labels"] = labels
... return batch
```
## 멀티모달[[multimodal]]
멀티모달 입력이 필요한 작업의 경우, 모델에 데이터 세트를 준비하기 위한 [프로세서](main_classes/processors)가 필요합니다.
프로세서는 토크나이저와 특성 추출기와 같은 두 가지 처리 객체를 결합합니다.
[LJ Speech](https://huggingface.co/datasets/lj_speech) 데이터 세트를 가져와서 자동 음성 인식(ASR)을 위한 프로세서를 사용하는 방법을 확인하세요.
(데이터 세트를 가져오는 방법에 대한 자세한 내용은 🤗 [데이터 세트 튜토리얼](https://huggingface.co/docs/datasets/load_hub)에서 볼 수 있습니다.)
```py
>>> from datasets import load_dataset
>>> lj_speech = load_dataset("lj_speech", split="train")
```
자동 음성 인식(ASR)에서는 `audio``text`에만 집중하면 되므로, 다른 열들은 제거할 수 있습니다:
```py
>>> lj_speech = lj_speech.map(remove_columns=["file", "id", "normalized_text"])
```
이제 `audio``text`열을 살펴보세요:
```py
>>> lj_speech[0]["audio"]
{'array': array([-7.3242188e-04, -7.6293945e-04, -6.4086914e-04, ...,
7.3242188e-04, 2.1362305e-04, 6.1035156e-05], dtype=float32),
'path': '/root/.cache/huggingface/datasets/downloads/extracted/917ece08c95cf0c4115e45294e3cd0dee724a1165b7fc11798369308a465bd26/LJSpeech-1.1/wavs/LJ001-0001.wav',
'sampling_rate': 22050}
>>> lj_speech[0]["text"]
'Printing, in the only sense with which we are at present concerned, differs from most if not from all the arts and crafts represented in the Exhibition'
```
기존에 사전훈련된 모델에서 사용된 데이터 세트와 새로운 오디오 데이터 세트의 샘플링 레이트를 일치시키기 위해 오디오 데이터 세트의 샘플링 레이트를 [리샘플링](preprocessing#audio)해야 합니다!
```py
>>> lj_speech = lj_speech.cast_column("audio", Audio(sampling_rate=16_000))
```
[`AutoProcessor.from_pretrained`]로 프로세서를 가져오세요:
```py
>>> from transformers import AutoProcessor
>>> processor = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h")
```
1. `array`에 들어 있는 오디오 데이터를 `input_values`로 변환하고 `text`를 토큰화하여 `labels`로 변환하는 함수를 만듭니다.
모델의 입력은 다음과 같습니다:
```py
>>> def prepare_dataset(example):
... audio = example["audio"]
... example.update(processor(audio=audio["array"], text=example["text"], sampling_rate=16000))
... return example
```
2. 샘플을 `prepare_dataset` 함수에 적용하세요:
```py
>>> prepare_dataset(lj_speech[0])
```
이제 프로세서가 `input_values``labels`를 추가하고, 샘플링 레이트도 올바르게 16kHz로 다운샘플링했습니다.
드디어 처리된 데이터 세트를 모델에 전달할 수 있습니다!

Some files were not shown because too many files have changed in this diff Show More