mirror of
https://github.com/huggingface/transformers.git
synced 2025-10-20 17:13:56 +08:00
Compare commits
2 Commits
3c7552f733
...
remove_dat
Author | SHA1 | Date | |
---|---|---|---|
c8121549b9 | |||
792d14b503 |
@ -39,10 +39,7 @@ from transformers import (
|
||||
DataCollatorForPermutationLanguageModeling,
|
||||
DataCollatorForWholeWordMask,
|
||||
HfArgumentParser,
|
||||
LineByLineTextDataset,
|
||||
LineByLineWithRefDataset,
|
||||
PreTrainedTokenizer,
|
||||
TextDataset,
|
||||
Trainer,
|
||||
TrainingArguments,
|
||||
set_seed,
|
||||
|
@ -24,8 +24,6 @@ objectives in our [model summary](https://huggingface.co/transformers/model_summ
|
||||
|
||||
There are two sets of scripts provided. The first set leverages the Trainer API. The second set with `no_trainer` in the suffix uses a custom training loop and leverages the 🤗 Accelerate library . Both sets use the 🤗 Datasets library. You can easily customize them to your needs if you need extra processing on your datasets.
|
||||
|
||||
**Note:** The old script `run_language_modeling.py` is still available [here](https://github.com/huggingface/transformers/blob/main/examples/legacy/run_language_modeling.py).
|
||||
|
||||
The following examples, will run on datasets hosted on our [hub](https://huggingface.co/datasets) or with your own
|
||||
text files for training and validation. We give examples of both below.
|
||||
|
||||
|
@ -375,13 +375,8 @@ else:
|
||||
_import_structure["data.datasets"] = [
|
||||
"GlueDataset",
|
||||
"GlueDataTrainingArguments",
|
||||
"LineByLineTextDataset",
|
||||
"LineByLineWithRefDataset",
|
||||
"LineByLineWithSOPTextDataset",
|
||||
"SquadDataset",
|
||||
"SquadDataTrainingArguments",
|
||||
"TextDataset",
|
||||
"TextDatasetForNextSentencePrediction",
|
||||
]
|
||||
_import_structure["generation"].extend(
|
||||
[
|
||||
@ -527,13 +522,8 @@ if TYPE_CHECKING:
|
||||
from .data.data_collator import default_data_collator as default_data_collator
|
||||
from .data.datasets import GlueDataset as GlueDataset
|
||||
from .data.datasets import GlueDataTrainingArguments as GlueDataTrainingArguments
|
||||
from .data.datasets import LineByLineTextDataset as LineByLineTextDataset
|
||||
from .data.datasets import LineByLineWithRefDataset as LineByLineWithRefDataset
|
||||
from .data.datasets import LineByLineWithSOPTextDataset as LineByLineWithSOPTextDataset
|
||||
from .data.datasets import SquadDataset as SquadDataset
|
||||
from .data.datasets import SquadDataTrainingArguments as SquadDataTrainingArguments
|
||||
from .data.datasets import TextDataset as TextDataset
|
||||
from .data.datasets import TextDatasetForNextSentencePrediction as TextDatasetForNextSentencePrediction
|
||||
from .feature_extraction_sequence_utils import SequenceFeatureExtractor as SequenceFeatureExtractor
|
||||
|
||||
# Feature Extractor
|
||||
|
@ -13,11 +13,4 @@
|
||||
# limitations under the License.
|
||||
|
||||
from .glue import GlueDataset, GlueDataTrainingArguments
|
||||
from .language_modeling import (
|
||||
LineByLineTextDataset,
|
||||
LineByLineWithRefDataset,
|
||||
LineByLineWithSOPTextDataset,
|
||||
TextDataset,
|
||||
TextDatasetForNextSentencePrediction,
|
||||
)
|
||||
from .squad import SquadDataset, SquadDataTrainingArguments
|
||||
|
@ -1,514 +0,0 @@
|
||||
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import json
|
||||
import os
|
||||
import pickle
|
||||
import random
|
||||
import time
|
||||
import warnings
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
from filelock import FileLock
|
||||
from torch.utils.data import Dataset
|
||||
|
||||
from ...tokenization_utils import PreTrainedTokenizer
|
||||
from ...utils import logging
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
DEPRECATION_WARNING = (
|
||||
"This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets "
|
||||
"library. You can have a look at this example script for pointers: {0}"
|
||||
)
|
||||
|
||||
|
||||
class TextDataset(Dataset):
|
||||
def __init__(
|
||||
self,
|
||||
tokenizer: PreTrainedTokenizer,
|
||||
file_path: str,
|
||||
block_size: int,
|
||||
overwrite_cache=False,
|
||||
cache_dir: Optional[str] = None,
|
||||
):
|
||||
warnings.warn(
|
||||
DEPRECATION_WARNING.format(
|
||||
"https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm.py"
|
||||
),
|
||||
FutureWarning,
|
||||
)
|
||||
if os.path.isfile(file_path) is False:
|
||||
raise ValueError(f"Input file path {file_path} not found")
|
||||
|
||||
block_size = block_size - tokenizer.num_special_tokens_to_add(pair=False)
|
||||
|
||||
directory, filename = os.path.split(file_path)
|
||||
cached_features_file = os.path.join(
|
||||
cache_dir if cache_dir is not None else directory,
|
||||
f"cached_lm_{tokenizer.__class__.__name__}_{block_size}_{filename}",
|
||||
)
|
||||
|
||||
# Make sure only the first process in distributed training processes the dataset,
|
||||
# and the others will use the cache.
|
||||
lock_path = cached_features_file + ".lock"
|
||||
with FileLock(lock_path):
|
||||
if os.path.exists(cached_features_file) and not overwrite_cache:
|
||||
start = time.time()
|
||||
with open(cached_features_file, "rb") as handle:
|
||||
self.examples = pickle.load(handle)
|
||||
logger.info(
|
||||
f"Loading features from cached file {cached_features_file} [took %.3f s]", time.time() - start
|
||||
)
|
||||
|
||||
else:
|
||||
logger.info(f"Creating features from dataset file at {directory}")
|
||||
|
||||
self.examples = []
|
||||
with open(file_path, encoding="utf-8") as f:
|
||||
text = f.read()
|
||||
|
||||
tokenized_text = tokenizer.convert_tokens_to_ids(tokenizer.tokenize(text))
|
||||
|
||||
for i in range(0, len(tokenized_text) - block_size + 1, block_size): # Truncate in block of block_size
|
||||
self.examples.append(
|
||||
tokenizer.build_inputs_with_special_tokens(tokenized_text[i : i + block_size])
|
||||
)
|
||||
# Note that we are losing the last truncated example here for the sake of simplicity (no padding)
|
||||
# If your dataset is small, first you should look for a bigger one :-) and second you
|
||||
# can change this behavior by adding (model specific) padding.
|
||||
|
||||
start = time.time()
|
||||
with open(cached_features_file, "wb") as handle:
|
||||
pickle.dump(self.examples, handle, protocol=pickle.HIGHEST_PROTOCOL)
|
||||
logger.info(
|
||||
f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]"
|
||||
)
|
||||
|
||||
def __len__(self):
|
||||
return len(self.examples)
|
||||
|
||||
def __getitem__(self, i) -> torch.Tensor:
|
||||
return torch.tensor(self.examples[i], dtype=torch.long)
|
||||
|
||||
|
||||
class LineByLineTextDataset(Dataset):
|
||||
def __init__(self, tokenizer: PreTrainedTokenizer, file_path: str, block_size: int):
|
||||
warnings.warn(
|
||||
DEPRECATION_WARNING.format(
|
||||
"https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm.py"
|
||||
),
|
||||
FutureWarning,
|
||||
)
|
||||
if os.path.isfile(file_path) is False:
|
||||
raise ValueError(f"Input file path {file_path} not found")
|
||||
# Here, we do not cache the features, operating under the assumption
|
||||
# that we will soon use fast multithreaded tokenizers from the
|
||||
# `tokenizers` repo everywhere =)
|
||||
logger.info(f"Creating features from dataset file at {file_path}")
|
||||
|
||||
with open(file_path, encoding="utf-8") as f:
|
||||
lines = [line for line in f.read().splitlines() if (len(line) > 0 and not line.isspace())]
|
||||
|
||||
batch_encoding = tokenizer(lines, add_special_tokens=True, truncation=True, max_length=block_size)
|
||||
self.examples = batch_encoding["input_ids"]
|
||||
self.examples = [{"input_ids": torch.tensor(e, dtype=torch.long)} for e in self.examples]
|
||||
|
||||
def __len__(self):
|
||||
return len(self.examples)
|
||||
|
||||
def __getitem__(self, i) -> dict[str, torch.tensor]:
|
||||
return self.examples[i]
|
||||
|
||||
|
||||
class LineByLineWithRefDataset(Dataset):
|
||||
def __init__(self, tokenizer: PreTrainedTokenizer, file_path: str, block_size: int, ref_path: str):
|
||||
warnings.warn(
|
||||
DEPRECATION_WARNING.format(
|
||||
"https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm_wwm.py"
|
||||
),
|
||||
FutureWarning,
|
||||
)
|
||||
if os.path.isfile(file_path) is False:
|
||||
raise ValueError(f"Input file path {file_path} not found")
|
||||
if os.path.isfile(ref_path) is False:
|
||||
raise ValueError(f"Ref file path {file_path} not found")
|
||||
# Here, we do not cache the features, operating under the assumption
|
||||
# that we will soon use fast multithreaded tokenizers from the
|
||||
# `tokenizers` repo everywhere =)
|
||||
logger.info(f"Creating features from dataset file at {file_path}")
|
||||
logger.info(f"Use ref segment results at {ref_path}")
|
||||
with open(file_path, encoding="utf-8") as f:
|
||||
data = f.readlines() # use this method to avoid delimiter '\u2029' to split a line
|
||||
data = [line.strip() for line in data if len(line) > 0 and not line.isspace()]
|
||||
# Get ref inf from file
|
||||
with open(ref_path, encoding="utf-8") as f:
|
||||
ref = [json.loads(line) for line in f.read().splitlines() if (len(line) > 0 and not line.isspace())]
|
||||
if len(data) != len(ref):
|
||||
raise ValueError(
|
||||
f"Length of Input file should be equal to Ref file. But the length of {file_path} is {len(data)} "
|
||||
f"while length of {ref_path} is {len(ref)}"
|
||||
)
|
||||
|
||||
batch_encoding = tokenizer(data, add_special_tokens=True, truncation=True, max_length=block_size)
|
||||
self.examples = batch_encoding["input_ids"]
|
||||
self.examples = [{"input_ids": torch.tensor(e, dtype=torch.long)} for e in self.examples]
|
||||
|
||||
n = len(self.examples)
|
||||
for i in range(n):
|
||||
self.examples[i]["chinese_ref"] = torch.tensor(ref[i], dtype=torch.long)
|
||||
|
||||
def __len__(self):
|
||||
return len(self.examples)
|
||||
|
||||
def __getitem__(self, i) -> dict[str, torch.tensor]:
|
||||
return self.examples[i]
|
||||
|
||||
|
||||
class LineByLineWithSOPTextDataset(Dataset):
|
||||
"""
|
||||
Dataset for sentence order prediction task, prepare sentence pairs for SOP task
|
||||
"""
|
||||
|
||||
def __init__(self, tokenizer: PreTrainedTokenizer, file_dir: str, block_size: int):
|
||||
warnings.warn(
|
||||
DEPRECATION_WARNING.format(
|
||||
"https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm.py"
|
||||
),
|
||||
FutureWarning,
|
||||
)
|
||||
if os.path.isdir(file_dir) is False:
|
||||
raise ValueError(f"{file_dir} is not a directory")
|
||||
logger.info(f"Creating features from dataset file folder at {file_dir}")
|
||||
self.examples = []
|
||||
# TODO: randomness could apply a random seed, ex. rng = random.Random(random_seed)
|
||||
# file path looks like ./dataset/wiki_1, ./dataset/wiki_2
|
||||
for file_name in os.listdir(file_dir):
|
||||
file_path = os.path.join(file_dir, file_name)
|
||||
if os.path.isfile(file_path) is False:
|
||||
raise ValueError(f"{file_path} is not a file")
|
||||
article_open = False
|
||||
with open(file_path, encoding="utf-8") as f:
|
||||
original_lines = f.readlines()
|
||||
article_lines = []
|
||||
for line in original_lines:
|
||||
if "<doc id=" in line:
|
||||
article_open = True
|
||||
elif "</doc>" in line:
|
||||
article_open = False
|
||||
document = [
|
||||
tokenizer.convert_tokens_to_ids(tokenizer.tokenize(line))
|
||||
for line in article_lines[1:]
|
||||
if (len(line) > 0 and not line.isspace())
|
||||
]
|
||||
|
||||
examples = self.create_examples_from_document(document, block_size, tokenizer)
|
||||
self.examples.extend(examples)
|
||||
article_lines = []
|
||||
else:
|
||||
if article_open:
|
||||
article_lines.append(line)
|
||||
|
||||
logger.info("Dataset parse finished.")
|
||||
|
||||
def create_examples_from_document(self, document, block_size, tokenizer, short_seq_prob=0.1):
|
||||
"""Creates examples for a single document."""
|
||||
|
||||
# Account for special tokens
|
||||
max_num_tokens = block_size - tokenizer.num_special_tokens_to_add(pair=True)
|
||||
|
||||
# We *usually* want to fill up the entire sequence since we are padding
|
||||
# to `block_size` anyways, so short sequences are generally wasted
|
||||
# computation. However, we *sometimes*
|
||||
# (i.e., short_seq_prob == 0.1 == 10% of the time) want to use shorter
|
||||
# sequences to minimize the mismatch between pretraining and fine-tuning.
|
||||
# The `target_seq_length` is just a rough target however, whereas
|
||||
# `block_size` is a hard limit.
|
||||
target_seq_length = max_num_tokens
|
||||
if random.random() < short_seq_prob:
|
||||
target_seq_length = random.randint(2, max_num_tokens)
|
||||
|
||||
# We DON'T just concatenate all of the tokens from a document into a long
|
||||
# sequence and choose an arbitrary split point because this would make the
|
||||
# next sentence prediction task too easy. Instead, we split the input into
|
||||
# segments "A" and "B" based on the actual "sentences" provided by the user
|
||||
# input.
|
||||
examples = []
|
||||
current_chunk = [] # a buffer stored current working segments
|
||||
current_length = 0
|
||||
i = 0
|
||||
while i < len(document):
|
||||
segment = document[i] # get a segment
|
||||
if not segment:
|
||||
i += 1
|
||||
continue
|
||||
current_chunk.append(segment) # add a segment to current chunk
|
||||
current_length += len(segment) # overall token length
|
||||
# if current length goes to the target length or reaches the end of file, start building token a and b
|
||||
if i == len(document) - 1 or current_length >= target_seq_length:
|
||||
if current_chunk:
|
||||
# `a_end` is how many segments from `current_chunk` go into the `A` (first) sentence.
|
||||
a_end = 1
|
||||
# if current chunk has more than 2 sentences, pick part of it `A` (first) sentence
|
||||
if len(current_chunk) >= 2:
|
||||
a_end = random.randint(1, len(current_chunk) - 1)
|
||||
# token a
|
||||
tokens_a = []
|
||||
for j in range(a_end):
|
||||
tokens_a.extend(current_chunk[j])
|
||||
|
||||
# token b
|
||||
tokens_b = []
|
||||
for j in range(a_end, len(current_chunk)):
|
||||
tokens_b.extend(current_chunk[j])
|
||||
|
||||
if len(tokens_a) == 0 or len(tokens_b) == 0:
|
||||
continue
|
||||
|
||||
# switch tokens_a and tokens_b randomly
|
||||
if random.random() < 0.5:
|
||||
is_next = False
|
||||
tokens_a, tokens_b = tokens_b, tokens_a
|
||||
else:
|
||||
is_next = True
|
||||
|
||||
def truncate_seq_pair(tokens_a, tokens_b, max_num_tokens):
|
||||
"""Truncates a pair of sequences to a maximum sequence length."""
|
||||
while True:
|
||||
total_length = len(tokens_a) + len(tokens_b)
|
||||
if total_length <= max_num_tokens:
|
||||
break
|
||||
trunc_tokens = tokens_a if len(tokens_a) > len(tokens_b) else tokens_b
|
||||
if not (len(trunc_tokens) >= 1):
|
||||
raise ValueError("Sequence length to be truncated must be no less than one")
|
||||
# We want to sometimes truncate from the front and sometimes from the
|
||||
# back to add more randomness and avoid biases.
|
||||
if random.random() < 0.5:
|
||||
del trunc_tokens[0]
|
||||
else:
|
||||
trunc_tokens.pop()
|
||||
|
||||
truncate_seq_pair(tokens_a, tokens_b, max_num_tokens)
|
||||
if not (len(tokens_a) >= 1):
|
||||
raise ValueError(f"Length of sequence a is {len(tokens_a)} which must be no less than 1")
|
||||
if not (len(tokens_b) >= 1):
|
||||
raise ValueError(f"Length of sequence b is {len(tokens_b)} which must be no less than 1")
|
||||
|
||||
# add special tokens
|
||||
input_ids = tokenizer.build_inputs_with_special_tokens(tokens_a, tokens_b)
|
||||
# add token type ids, 0 for sentence a, 1 for sentence b
|
||||
token_type_ids = tokenizer.create_token_type_ids_from_sequences(tokens_a, tokens_b)
|
||||
|
||||
example = {
|
||||
"input_ids": torch.tensor(input_ids, dtype=torch.long),
|
||||
"token_type_ids": torch.tensor(token_type_ids, dtype=torch.long),
|
||||
"sentence_order_label": torch.tensor(0 if is_next else 1, dtype=torch.long),
|
||||
}
|
||||
examples.append(example)
|
||||
current_chunk = [] # clear current chunk
|
||||
current_length = 0 # reset current text length
|
||||
i += 1 # go to next line
|
||||
return examples
|
||||
|
||||
def __len__(self):
|
||||
return len(self.examples)
|
||||
|
||||
def __getitem__(self, i) -> dict[str, torch.tensor]:
|
||||
return self.examples[i]
|
||||
|
||||
|
||||
class TextDatasetForNextSentencePrediction(Dataset):
|
||||
def __init__(
|
||||
self,
|
||||
tokenizer: PreTrainedTokenizer,
|
||||
file_path: str,
|
||||
block_size: int,
|
||||
overwrite_cache=False,
|
||||
short_seq_probability=0.1,
|
||||
nsp_probability=0.5,
|
||||
):
|
||||
warnings.warn(
|
||||
DEPRECATION_WARNING.format(
|
||||
"https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm.py"
|
||||
),
|
||||
FutureWarning,
|
||||
)
|
||||
if not os.path.isfile(file_path):
|
||||
raise ValueError(f"Input file path {file_path} not found")
|
||||
|
||||
self.short_seq_probability = short_seq_probability
|
||||
self.nsp_probability = nsp_probability
|
||||
|
||||
directory, filename = os.path.split(file_path)
|
||||
cached_features_file = os.path.join(
|
||||
directory,
|
||||
f"cached_nsp_{tokenizer.__class__.__name__}_{block_size}_{filename}",
|
||||
)
|
||||
|
||||
self.tokenizer = tokenizer
|
||||
|
||||
# Make sure only the first process in distributed training processes the dataset,
|
||||
# and the others will use the cache.
|
||||
lock_path = cached_features_file + ".lock"
|
||||
|
||||
# Input file format:
|
||||
# (1) One sentence per line. These should ideally be actual sentences, not
|
||||
# entire paragraphs or arbitrary spans of text. (Because we use the
|
||||
# sentence boundaries for the "next sentence prediction" task).
|
||||
# (2) Blank lines between documents. Document boundaries are needed so
|
||||
# that the "next sentence prediction" task doesn't span between documents.
|
||||
#
|
||||
# Example:
|
||||
# I am very happy.
|
||||
# Here is the second sentence.
|
||||
#
|
||||
# A new document.
|
||||
|
||||
with FileLock(lock_path):
|
||||
if os.path.exists(cached_features_file) and not overwrite_cache:
|
||||
start = time.time()
|
||||
with open(cached_features_file, "rb") as handle:
|
||||
self.examples = pickle.load(handle)
|
||||
logger.info(
|
||||
f"Loading features from cached file {cached_features_file} [took %.3f s]", time.time() - start
|
||||
)
|
||||
else:
|
||||
logger.info(f"Creating features from dataset file at {directory}")
|
||||
|
||||
self.documents = [[]]
|
||||
with open(file_path, encoding="utf-8") as f:
|
||||
while True:
|
||||
line = f.readline()
|
||||
if not line:
|
||||
break
|
||||
line = line.strip()
|
||||
|
||||
# Empty lines are used as document delimiters
|
||||
if not line and len(self.documents[-1]) != 0:
|
||||
self.documents.append([])
|
||||
tokens = tokenizer.tokenize(line)
|
||||
tokens = tokenizer.convert_tokens_to_ids(tokens)
|
||||
if tokens:
|
||||
self.documents[-1].append(tokens)
|
||||
|
||||
logger.info(f"Creating examples from {len(self.documents)} documents.")
|
||||
self.examples = []
|
||||
for doc_index, document in enumerate(self.documents):
|
||||
self.create_examples_from_document(document, doc_index, block_size)
|
||||
|
||||
start = time.time()
|
||||
with open(cached_features_file, "wb") as handle:
|
||||
pickle.dump(self.examples, handle, protocol=pickle.HIGHEST_PROTOCOL)
|
||||
logger.info(
|
||||
f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]"
|
||||
)
|
||||
|
||||
def create_examples_from_document(self, document: list[list[int]], doc_index: int, block_size: int):
|
||||
"""Creates examples for a single document."""
|
||||
|
||||
max_num_tokens = block_size - self.tokenizer.num_special_tokens_to_add(pair=True)
|
||||
|
||||
# We *usually* want to fill up the entire sequence since we are padding
|
||||
# to `block_size` anyways, so short sequences are generally wasted
|
||||
# computation. However, we *sometimes*
|
||||
# (i.e., short_seq_prob == 0.1 == 10% of the time) want to use shorter
|
||||
# sequences to minimize the mismatch between pretraining and fine-tuning.
|
||||
# The `target_seq_length` is just a rough target however, whereas
|
||||
# `block_size` is a hard limit.
|
||||
target_seq_length = max_num_tokens
|
||||
if random.random() < self.short_seq_probability:
|
||||
target_seq_length = random.randint(2, max_num_tokens)
|
||||
|
||||
current_chunk = [] # a buffer stored current working segments
|
||||
current_length = 0
|
||||
i = 0
|
||||
|
||||
while i < len(document):
|
||||
segment = document[i]
|
||||
current_chunk.append(segment)
|
||||
current_length += len(segment)
|
||||
if i == len(document) - 1 or current_length >= target_seq_length:
|
||||
if current_chunk:
|
||||
# `a_end` is how many segments from `current_chunk` go into the `A`
|
||||
# (first) sentence.
|
||||
a_end = 1
|
||||
if len(current_chunk) >= 2:
|
||||
a_end = random.randint(1, len(current_chunk) - 1)
|
||||
|
||||
tokens_a = []
|
||||
for j in range(a_end):
|
||||
tokens_a.extend(current_chunk[j])
|
||||
|
||||
tokens_b = []
|
||||
|
||||
if len(current_chunk) == 1 or random.random() < self.nsp_probability:
|
||||
is_random_next = True
|
||||
target_b_length = target_seq_length - len(tokens_a)
|
||||
|
||||
# This should rarely go for more than one iteration for large
|
||||
# corpora. However, just to be careful, we try to make sure that
|
||||
# the random document is not the same as the document
|
||||
# we're processing.
|
||||
for _ in range(10):
|
||||
random_document_index = random.randint(0, len(self.documents) - 1)
|
||||
if random_document_index != doc_index:
|
||||
break
|
||||
|
||||
random_document = self.documents[random_document_index]
|
||||
random_start = random.randint(0, len(random_document) - 1)
|
||||
for j in range(random_start, len(random_document)):
|
||||
tokens_b.extend(random_document[j])
|
||||
if len(tokens_b) >= target_b_length:
|
||||
break
|
||||
# We didn't actually use these segments so we "put them back" so
|
||||
# they don't go to waste.
|
||||
num_unused_segments = len(current_chunk) - a_end
|
||||
i -= num_unused_segments
|
||||
# Actual next
|
||||
else:
|
||||
is_random_next = False
|
||||
for j in range(a_end, len(current_chunk)):
|
||||
tokens_b.extend(current_chunk[j])
|
||||
|
||||
if not (len(tokens_a) >= 1):
|
||||
raise ValueError(f"Length of sequence a is {len(tokens_a)} which must be no less than 1")
|
||||
if not (len(tokens_b) >= 1):
|
||||
raise ValueError(f"Length of sequence b is {len(tokens_b)} which must be no less than 1")
|
||||
|
||||
# add special tokens
|
||||
input_ids = self.tokenizer.build_inputs_with_special_tokens(tokens_a, tokens_b)
|
||||
# add token type ids, 0 for sentence a, 1 for sentence b
|
||||
token_type_ids = self.tokenizer.create_token_type_ids_from_sequences(tokens_a, tokens_b)
|
||||
|
||||
example = {
|
||||
"input_ids": torch.tensor(input_ids, dtype=torch.long),
|
||||
"token_type_ids": torch.tensor(token_type_ids, dtype=torch.long),
|
||||
"next_sentence_label": torch.tensor(1 if is_random_next else 0, dtype=torch.long),
|
||||
}
|
||||
|
||||
self.examples.append(example)
|
||||
|
||||
current_chunk = []
|
||||
current_length = 0
|
||||
|
||||
i += 1
|
||||
|
||||
def __len__(self):
|
||||
return len(self.examples)
|
||||
|
||||
def __getitem__(self, i):
|
||||
return self.examples[i]
|
@ -93,27 +93,6 @@ class GlueDataTrainingArguments(metaclass=DummyObject):
|
||||
requires_backends(self, ["torch"])
|
||||
|
||||
|
||||
class LineByLineTextDataset(metaclass=DummyObject):
|
||||
_backends = ["torch"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch"])
|
||||
|
||||
|
||||
class LineByLineWithRefDataset(metaclass=DummyObject):
|
||||
_backends = ["torch"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch"])
|
||||
|
||||
|
||||
class LineByLineWithSOPTextDataset(metaclass=DummyObject):
|
||||
_backends = ["torch"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch"])
|
||||
|
||||
|
||||
class SquadDataset(metaclass=DummyObject):
|
||||
_backends = ["torch"]
|
||||
|
||||
@ -128,20 +107,6 @@ class SquadDataTrainingArguments(metaclass=DummyObject):
|
||||
requires_backends(self, ["torch"])
|
||||
|
||||
|
||||
class TextDataset(metaclass=DummyObject):
|
||||
_backends = ["torch"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch"])
|
||||
|
||||
|
||||
class TextDatasetForNextSentencePrediction(metaclass=DummyObject):
|
||||
_backends = ["torch"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch"])
|
||||
|
||||
|
||||
class AlternatingCodebooksLogitsProcessor(metaclass=DummyObject):
|
||||
_backends = ["torch"]
|
||||
|
||||
|
@ -148,7 +148,6 @@ if is_torch_available():
|
||||
GlueDataTrainingArguments,
|
||||
GPT2Config,
|
||||
GPT2LMHeadModel,
|
||||
LineByLineTextDataset,
|
||||
LlamaConfig,
|
||||
LlamaForCausalLM,
|
||||
PreTrainedModel,
|
||||
|
@ -948,9 +948,6 @@ DEPRECATED_OBJECTS = [
|
||||
"DataCollatorForSOP",
|
||||
"GlueDataset",
|
||||
"GlueDataTrainingArguments",
|
||||
"LineByLineTextDataset",
|
||||
"LineByLineWithRefDataset",
|
||||
"LineByLineWithSOPTextDataset",
|
||||
"NerPipeline",
|
||||
"OwlViTFeatureExtractor",
|
||||
"PretrainedBartModel",
|
||||
@ -962,8 +959,6 @@ DEPRECATED_OBJECTS = [
|
||||
"SquadFeatures",
|
||||
"SquadV1Processor",
|
||||
"SquadV2Processor",
|
||||
"TextDataset",
|
||||
"TextDatasetForNextSentencePrediction",
|
||||
"Wav2Vec2ForMaskedLM",
|
||||
"Wav2Vec2Tokenizer",
|
||||
"glue_compute_metrics",
|
||||
|
@ -321,7 +321,6 @@ src/transformers/convert_slow_tokenizer.py
|
||||
src/transformers/convert_slow_tokenizers_checkpoints_to_fast.py
|
||||
src/transformers/data/data_collator.py
|
||||
src/transformers/data/datasets/glue.py
|
||||
src/transformers/data/datasets/language_modeling.py
|
||||
src/transformers/data/datasets/squad.py
|
||||
src/transformers/data/metrics/squad_metrics.py
|
||||
src/transformers/data/processors/glue.py
|
||||
|
Reference in New Issue
Block a user