Remove unnecessary list comprehension (#41305)

Remove unnecessary comprehension

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
This commit is contained in:
Yuanyuan Chen
2025-10-06 22:49:02 +08:00
committed by GitHub
parent 7a1aeec36e
commit fa36c973fc
22 changed files with 25 additions and 27 deletions

View File

@ -387,7 +387,7 @@ def main():
return return
# 6. Get the column names for input/target. # 6. Get the column names for input/target.
dataset_columns = dataset_name_mapping.get(data_args.dataset_name, None) dataset_columns = dataset_name_mapping.get(data_args.dataset_name)
if data_args.image_column is None: if data_args.image_column is None:
image_column = dataset_columns[0] if dataset_columns is not None else column_names[0] image_column = dataset_columns[0] if dataset_columns is not None else column_names[0]
else: else:

View File

@ -933,7 +933,7 @@ def main():
all_end_top_index.append(accelerator.gather_for_metrics(end_top_index).cpu().numpy()) all_end_top_index.append(accelerator.gather_for_metrics(end_top_index).cpu().numpy())
all_cls_logits.append(accelerator.gather_for_metrics(cls_logits).cpu().numpy()) all_cls_logits.append(accelerator.gather_for_metrics(cls_logits).cpu().numpy())
max_len = max([x.shape[1] for x in all_end_top_log_probs]) # Get the max_length of the tensor max_len = max(x.shape[1] for x in all_end_top_log_probs) # Get the max_length of the tensor
# concatenate all numpy arrays collected above # concatenate all numpy arrays collected above
start_top_log_probs_concat = create_and_fill_np_array(all_start_top_log_probs, eval_dataset, max_len) start_top_log_probs_concat = create_and_fill_np_array(all_start_top_log_probs, eval_dataset, max_len)
@ -993,7 +993,7 @@ def main():
all_end_top_index.append(accelerator.gather_for_metrics(end_top_index).cpu().numpy()) all_end_top_index.append(accelerator.gather_for_metrics(end_top_index).cpu().numpy())
all_cls_logits.append(accelerator.gather_for_metrics(cls_logits).cpu().numpy()) all_cls_logits.append(accelerator.gather_for_metrics(cls_logits).cpu().numpy())
max_len = max([x.shape[1] for x in all_end_top_log_probs]) # Get the max_length of the tensor max_len = max(x.shape[1] for x in all_end_top_log_probs) # Get the max_length of the tensor
# concatenate all numpy arrays collected above # concatenate all numpy arrays collected above
start_top_log_probs_concat = create_and_fill_np_array(all_start_top_log_probs, predict_dataset, max_len) start_top_log_probs_concat = create_and_fill_np_array(all_start_top_log_probs, predict_dataset, max_len)

View File

@ -416,7 +416,7 @@ def main():
return return
# Get the column names for input/target. # Get the column names for input/target.
dataset_columns = question_answering_column_name_mapping.get(data_args.dataset_name, None) dataset_columns = question_answering_column_name_mapping.get(data_args.dataset_name)
if data_args.question_column is None: if data_args.question_column is None:
question_column = dataset_columns[0] if dataset_columns is not None else column_names[0] question_column = dataset_columns[0] if dataset_columns is not None else column_names[0]
else: else:

View File

@ -531,7 +531,7 @@ def main():
model.config.forced_bos_token_id = forced_bos_token_id model.config.forced_bos_token_id = forced_bos_token_id
# Get the column names for input/target. # Get the column names for input/target.
dataset_columns = summarization_name_mapping.get(data_args.dataset_name, None) dataset_columns = summarization_name_mapping.get(data_args.dataset_name)
if data_args.text_column is None: if data_args.text_column is None:
text_column = dataset_columns[0] if dataset_columns is not None else column_names[0] text_column = dataset_columns[0] if dataset_columns is not None else column_names[0]
else: else:

View File

@ -476,7 +476,7 @@ def main():
column_names = raw_datasets["train"].column_names column_names = raw_datasets["train"].column_names
# Get the column names for input/target. # Get the column names for input/target.
dataset_columns = summarization_name_mapping.get(args.dataset_name, None) dataset_columns = summarization_name_mapping.get(args.dataset_name)
if args.text_column is None: if args.text_column is None:
text_column = dataset_columns[0] if dataset_columns is not None else column_names[0] text_column = dataset_columns[0] if dataset_columns is not None else column_names[0]
else: else:

View File

@ -65,7 +65,7 @@ class DeepseekVLHybridImageProcessorFast(BaseImageProcessorFast):
if kwargs.get("image_mean") is None: if kwargs.get("image_mean") is None:
background_color = (127, 127, 127) background_color = (127, 127, 127)
else: else:
background_color = tuple([int(x * 255) for x in kwargs.get("image_mean")]) background_color = tuple(int(x * 255) for x in kwargs.get("image_mean"))
if kwargs.get("high_res_image_mean") is None: if kwargs.get("high_res_image_mean") is None:
high_res_background_color = (127, 127, 127) high_res_background_color = (127, 127, 127)
else: else:

View File

@ -764,7 +764,7 @@ class DeepseekVLHybridImageProcessorFast(DeepseekVLImageProcessorFast):
if kwargs.get("image_mean") is None: if kwargs.get("image_mean") is None:
background_color = (127, 127, 127) background_color = (127, 127, 127)
else: else:
background_color = tuple([int(x * 255) for x in kwargs.get("image_mean")]) background_color = tuple(int(x * 255) for x in kwargs.get("image_mean"))
if kwargs.get("high_res_image_mean") is None: if kwargs.get("high_res_image_mean") is None:
high_res_background_color = (127, 127, 127) high_res_background_color = (127, 127, 127)
else: else:

View File

@ -551,7 +551,7 @@ class MusicgenDecoder(MusicgenPreTrainedModel):
past_key_values_length = past_key_values.get_seq_length() if past_key_values is not None else 0 past_key_values_length = past_key_values.get_seq_length() if past_key_values is not None else 0
if inputs_embeds is None: if inputs_embeds is None:
inputs_embeds = sum([self.embed_tokens[codebook](input[:, codebook]) for codebook in range(num_codebooks)]) inputs_embeds = sum(self.embed_tokens[codebook](input[:, codebook]) for codebook in range(num_codebooks))
attention_mask = self._update_causal_mask( attention_mask = self._update_causal_mask(
attention_mask, attention_mask,

View File

@ -718,7 +718,7 @@ class OneFormerLoss(nn.Module):
""" """
Computes the average number of target masks across the batch, for normalization purposes. Computes the average number of target masks across the batch, for normalization purposes.
""" """
num_masks = sum([len(classes) for classes in class_labels]) num_masks = sum(len(classes) for classes in class_labels)
num_masks = torch.as_tensor([num_masks], dtype=torch.float, device=device) num_masks = torch.as_tensor([num_masks], dtype=torch.float, device=device)
world_size = 1 world_size = 1
if is_accelerate_available(): if is_accelerate_available():

View File

@ -184,7 +184,7 @@ def get_min_tile_covering_grid(
for tile_grid in candidate_tile_grids: for tile_grid in candidate_tile_grids:
tile_regions = split_image_into_grid(image_height, image_width, tile_grid) tile_regions = split_image_into_grid(image_height, image_width, tile_grid)
tile_covering_ratio = ( tile_covering_ratio = (
sum([compute_patch_covering_area(*region, target_patch_size) for region in tile_regions]) / image_area sum(compute_patch_covering_area(*region, target_patch_size) for region in tile_regions) / image_area
) )
evaluated_grids.append((tile_grid, tile_covering_ratio)) evaluated_grids.append((tile_grid, tile_covering_ratio))

View File

@ -1542,7 +1542,7 @@ class PatchTSMixerForPrediction(PatchTSMixerPreTrainedModel):
"normal": NormalOutput, "normal": NormalOutput,
"negative_binomial": NegativeBinomialOutput, "negative_binomial": NegativeBinomialOutput,
} }
output_class = distribution_output_map.get(config.distribution_output, None) output_class = distribution_output_map.get(config.distribution_output)
if output_class is not None: if output_class is not None:
self.distribution_output = output_class(dim=dim) self.distribution_output = output_class(dim=dim)
else: else:

View File

@ -237,7 +237,7 @@ class Phi4MultimodalImageProcessorFast(BaseImageProcessorFast):
images_tokens.append(num_img_tokens) images_tokens.append(num_img_tokens)
image_sizes.append([height, width]) image_sizes.append([height, width])
max_crops = hd_image_reshape.size(0) max_crops = hd_image_reshape.size(0)
max_crops = max([img.size(0) for img in images_transformed]) max_crops = max(img.size(0) for img in images_transformed)
images_transformed = [self.pad_to_max_num_crops(im, max_crops) for im in images_transformed] images_transformed = [self.pad_to_max_num_crops(im, max_crops) for im in images_transformed]
images_transformed = torch.stack(images_transformed, dim=0) images_transformed = torch.stack(images_transformed, dim=0)
masks_transformed = [self.pad_mask_to_max_num_crops(mask, max_crops) for mask in masks_transformed] masks_transformed = [self.pad_mask_to_max_num_crops(mask, max_crops) for mask in masks_transformed]

View File

@ -265,7 +265,7 @@ class Pop2PianoTokenizer(PreTrainedTokenizer):
current_idx = start_idx current_idx = start_idx
current_velocity = 0 current_velocity = 0
note_onsets_ready = [None for i in range(sum([k.endswith("NOTE") for k in self.encoder]) + 1)] note_onsets_ready = [None for i in range(sum(k.endswith("NOTE") for k in self.encoder) + 1)]
notes = [] notes = []
for token_type, number in words: for token_type, number in words:
if token_type == "TOKEN_SPECIAL": if token_type == "TOKEN_SPECIAL":

View File

@ -171,7 +171,7 @@ class SamHQProcessor(ProcessorMixin):
r""" r"""
The method pads the 2D points and labels to the maximum number of points in the batch. The method pads the 2D points and labels to the maximum number of points in the batch.
""" """
expected_nb_points = max([point.shape[0] for point in input_points]) expected_nb_points = max(point.shape[0] for point in input_points)
processed_input_points = [] processed_input_points = []
for i, point in enumerate(input_points): for i, point in enumerate(input_points):
if point.shape[0] != expected_nb_points: if point.shape[0] != expected_nb_points:

View File

@ -552,8 +552,8 @@ class Mask2FormerImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase
fuse_targets = [1 for el in el_unfused if el["label_id"] == 1] fuse_targets = [1 for el in el_unfused if el["label_id"] == 1]
num_to_fuse = 0 if len(fuse_targets) == 0 else sum(fuse_targets) - 1 num_to_fuse = 0 if len(fuse_targets) == 0 else sum(fuse_targets) - 1
# Expected number of segments after fusing # Expected number of segments after fusing
expected_num_segments = max([el["id"] for el in el_unfused]) - num_to_fuse expected_num_segments = max(el["id"] for el in el_unfused) - num_to_fuse
num_segments_fused = max([el["id"] for el in el_fused]) num_segments_fused = max(el["id"] for el in el_fused)
self.assertEqual(num_segments_fused, expected_num_segments) self.assertEqual(num_segments_fused, expected_num_segments)
def test_slow_fast_equivalence(self): def test_slow_fast_equivalence(self):

View File

@ -540,8 +540,8 @@ class MaskFormerImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase)
fuse_targets = [1 for el in el_unfused if el["label_id"] == 1] fuse_targets = [1 for el in el_unfused if el["label_id"] == 1]
num_to_fuse = 0 if len(fuse_targets) == 0 else sum(fuse_targets) - 1 num_to_fuse = 0 if len(fuse_targets) == 0 else sum(fuse_targets) - 1
# Expected number of segments after fusing # Expected number of segments after fusing
expected_num_segments = max([el["id"] for el in el_unfused]) - num_to_fuse expected_num_segments = max(el["id"] for el in el_unfused) - num_to_fuse
num_segments_fused = max([el["id"] for el in el_fused]) num_segments_fused = max(el["id"] for el in el_fused)
self.assertEqual(num_segments_fused, expected_num_segments) self.assertEqual(num_segments_fused, expected_num_segments)
def test_slow_fast_equivalence(self): def test_slow_fast_equivalence(self):

View File

@ -242,7 +242,7 @@ class MusicgenDecoderTest(ModelTesterMixin, GenerationTesterMixin, PipelineTeste
input_ids = input_ids.reshape(-1, config.num_codebooks, input_ids.shape[-1]) input_ids = input_ids.reshape(-1, config.num_codebooks, input_ids.shape[-1])
inputs["inputs_embeds"] = sum( inputs["inputs_embeds"] = sum(
[embed_tokens[codebook](input_ids[:, codebook]) for codebook in range(config.num_codebooks)] embed_tokens[codebook](input_ids[:, codebook]) for codebook in range(config.num_codebooks)
) )
with torch.no_grad(): with torch.no_grad():

View File

@ -251,7 +251,7 @@ class MusicgenMelodyDecoderTest(ModelTesterMixin, GenerationTesterMixin, unittes
input_ids = input_ids.reshape(-1, config.num_codebooks, input_ids.shape[-1]) input_ids = input_ids.reshape(-1, config.num_codebooks, input_ids.shape[-1])
inputs["inputs_embeds"] = sum( inputs["inputs_embeds"] = sum(
[embed_tokens[codebook](input_ids[:, codebook]) for codebook in range(config.num_codebooks)] embed_tokens[codebook](input_ids[:, codebook]) for codebook in range(config.num_codebooks)
) )
with torch.no_grad(): with torch.no_grad():

View File

@ -187,7 +187,7 @@ class OwlViTProcessorTest(ProcessorTesterMixin, unittest.TestCase):
seq_length = 16 seq_length = 16
batch_size = len(input_texts) batch_size = len(input_texts)
num_max_text_queries = max([len(texts) for texts in input_texts]) num_max_text_queries = max(len(texts) for texts in input_texts)
self.assertListEqual(list(inputs.keys()), ["input_ids", "attention_mask"]) self.assertListEqual(list(inputs.keys()), ["input_ids", "attention_mask"])
self.assertEqual(inputs["input_ids"].shape, (batch_size * num_max_text_queries, seq_length)) self.assertEqual(inputs["input_ids"].shape, (batch_size * num_max_text_queries, seq_length))

View File

@ -352,9 +352,7 @@ class CacheHardIntegrationTest(unittest.TestCase):
decoded = tokenizer.batch_decode(gen_out.sequences, skip_special_tokens=True) decoded = tokenizer.batch_decode(gen_out.sequences, skip_special_tokens=True)
# sum of the scores for the generated tokens # sum of the scores for the generated tokens
input_length = inputs.input_ids.shape[1] input_length = inputs.input_ids.shape[1]
score_sum = sum( score_sum = sum(score[0][gen_out.sequences[0][input_length + idx]] for idx, score in enumerate(gen_out.scores))
[score[0][gen_out.sequences[0][input_length + idx]] for idx, score in enumerate(gen_out.scores)]
)
EXPECTED_GENERATION = ( EXPECTED_GENERATION = (
"Here's everything I know about cats. Cats are mammals, they have four legs, they have a tail, they have " "Here's everything I know about cats. Cats are mammals, they have four legs, they have a tail, they have "

View File

@ -179,7 +179,7 @@ if __name__ == "__main__":
# we start applying modular conversion to each list in parallel, starting from the first list # we start applying modular conversion to each list in parallel, starting from the first list
console.print(f"[bold yellow]Number of dependency levels: {len(ordered_files)}[/bold yellow]") console.print(f"[bold yellow]Number of dependency levels: {len(ordered_files)}[/bold yellow]")
console.print(f"[bold yellow]Files per level: {tuple([len(x) for x in ordered_files])}[/bold yellow]") console.print(f"[bold yellow]Files per level: {tuple(len(x) for x in ordered_files)}[/bold yellow]")
try: try:
for dependency_level_files in ordered_files: for dependency_level_files in ordered_files:

View File

@ -876,7 +876,7 @@ def create_reverse_dependency_map() -> dict[str, list[str]]:
# all the modules impacted by that init. # all the modules impacted by that init.
for m in [f for f in all_modules if f.endswith("__init__.py")]: for m in [f for f in all_modules if f.endswith("__init__.py")]:
direct_deps = get_module_dependencies(m, cache=cache) direct_deps = get_module_dependencies(m, cache=cache)
deps = sum([reverse_map[d] for d in direct_deps if not d.endswith("__init__.py")], direct_deps) deps = sum((reverse_map[d] for d in direct_deps if not d.endswith("__init__.py")), direct_deps)
reverse_map[m] = list(set(deps) - {m}) reverse_map[m] = list(set(deps) - {m})
return reverse_map return reverse_map