mirror of
https://github.com/huggingface/transformers.git
synced 2025-10-20 17:13:56 +08:00
fix red check-copies (#33964)
This commit is contained in:
@ -46,7 +46,7 @@ logger = logging.get_logger(__name__)
|
||||
_CONFIG_FOR_DOC = "PaliGemmaConfig"
|
||||
|
||||
|
||||
# Adapted from transformers.models.llama.modeling_llama._prepare_4d_causal_attention_mask_with_cache_position
|
||||
# Adapted from transformers.models.llama.modeling_llama.LlamaModel._prepare_4d_causal_attention_mask_with_cache_position
|
||||
# But Paligemma has no causal mask on prefix
|
||||
def _prepare_4d_causal_attention_mask_with_cache_position(
|
||||
attention_mask: torch.Tensor,
|
||||
|
@ -283,7 +283,7 @@ class VipLlavaForConditionalGeneration(VipLlavaPreTrainedModel, GenerationMixin)
|
||||
return model_embeds
|
||||
|
||||
# Ignore copy
|
||||
def get_image_features(self, pixel_values: torch.FloatTensor, vision_feature_layers: list[int]):
|
||||
def get_image_features(self, pixel_values: torch.FloatTensor, vision_feature_layers: List[int]):
|
||||
image_outputs = self.vision_tower(pixel_values, output_hidden_states=True)
|
||||
|
||||
# For VIP-llava, the image features are computed this way
|
||||
|
@ -77,60 +77,6 @@ logger = logging.get_logger(__name__)
|
||||
_CONFIG_FOR_DOC = "ZambaConfig"
|
||||
|
||||
|
||||
# Copied from transformers.models.llama.modeling_llama._prepare_4d_causal_attention_mask_with_cache_position
|
||||
def _prepare_4d_causal_attention_mask_with_cache_position(
|
||||
attention_mask: torch.Tensor,
|
||||
sequence_length: int,
|
||||
target_length: int,
|
||||
dtype: torch.dtype,
|
||||
device: torch.device,
|
||||
min_dtype: float,
|
||||
cache_position: torch.Tensor,
|
||||
batch_size: int,
|
||||
):
|
||||
"""
|
||||
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
||||
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
|
||||
|
||||
Args:
|
||||
attention_mask (`torch.Tensor`):
|
||||
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
|
||||
sequence_length (`int`):
|
||||
The sequence length being processed.
|
||||
target_length (`int`):
|
||||
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
|
||||
dtype (`torch.dtype`):
|
||||
The dtype to use for the 4D attention mask.
|
||||
device (`torch.device`):
|
||||
The device to plcae the 4D attention mask on.
|
||||
min_dtype (`float`):
|
||||
The minimum value representable with the dtype `dtype`.
|
||||
cache_position (`torch.Tensor`):
|
||||
Indices depicting the position of the input sequence tokens in the sequence.
|
||||
batch_size (`torch.Tensor`):
|
||||
Batch size.
|
||||
"""
|
||||
if attention_mask is not None and attention_mask.dim() == 4:
|
||||
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
||||
causal_mask = attention_mask
|
||||
else:
|
||||
causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
|
||||
if sequence_length != 1:
|
||||
causal_mask = torch.triu(causal_mask, diagonal=1)
|
||||
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
||||
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
||||
if attention_mask is not None:
|
||||
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
||||
mask_length = attention_mask.shape[-1]
|
||||
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
|
||||
padding_mask = padding_mask == 0
|
||||
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
||||
padding_mask, min_dtype
|
||||
)
|
||||
|
||||
return causal_mask
|
||||
|
||||
|
||||
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Zamba
|
||||
class ZambaRMSNorm(nn.Module):
|
||||
def __init__(self, hidden_size, eps=1e-6):
|
||||
|
@ -154,7 +154,7 @@ class PhimoeModelTester:
|
||||
|
||||
input_mask = None
|
||||
if self.use_input_mask:
|
||||
input_mask = torch.tril(torch.ones(self.batch_size, self.seq_length)).to(torch_device)
|
||||
input_mask = torch.tril(torch.ones_like(input_ids).to(torch_device))
|
||||
|
||||
token_type_ids = None
|
||||
if self.use_token_type_ids:
|
||||
|
Reference in New Issue
Block a user