chore: standardize DeBERTa model card (#37409)

* chore: standardize DeBERTa model card

* Apply suggestions from code review in docs

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* fix: Update deberta.md with code cleanup suggestions

* Update docs/source/en/model_doc/deberta.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/deberta.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update deberta.md

* Update deberta.md

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
This commit is contained in:
Shoumik Gandre
2025-08-11 10:30:37 -07:00
committed by GitHub
parent 43001fd3c6
commit eca703026e

View File

@ -14,72 +14,89 @@ rendered properly in your Markdown viewer.
-->
# DeBERTa
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
</div>
</div>
</div>
## Overview
# DeBERTa
The DeBERTa model was proposed in [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://huggingface.co/papers/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen It is based on Google's
BERT model released in 2018 and Facebook's RoBERTa model released in 2019.
[DeBERTa](https://huggingface.co/papers/2006.03654) improves the pretraining efficiency of BERT and RoBERTa with two key ideas, disentangled attention and an enhanced mask decoder. Instead of mixing everything together like BERT, DeBERTa separates a word's *content* from its *position* and processes them independently. This gives it a clearer sense of what's being said and where in the sentence it's happening.
It builds on RoBERTa with disentangled attention and enhanced mask decoder training with half of the data used in
RoBERTa.
The enhanced mask decoder replaces the traditional softmax decoder to make better predictions.
The abstract from the paper is the following:
Even with less training data than RoBERTa, DeBERTa manages to outperform it on several benchmarks.
*Recent progress in pre-trained neural language models has significantly improved the performance of many natural
language processing (NLP) tasks. In this paper we propose a new model architecture DeBERTa (Decoding-enhanced BERT with
disentangled attention) that improves the BERT and RoBERTa models using two novel techniques. The first is the
disentangled attention mechanism, where each word is represented using two vectors that encode its content and
position, respectively, and the attention weights among words are computed using disentangled matrices on their
contents and relative positions. Second, an enhanced mask decoder is used to replace the output softmax layer to
predict the masked tokens for model pretraining. We show that these two techniques significantly improve the efficiency
of model pretraining and performance of downstream tasks. Compared to RoBERTa-Large, a DeBERTa model trained on half of
the training data performs consistently better on a wide range of NLP tasks, achieving improvements on MNLI by +0.9%
(90.2% vs. 91.1%), on SQuAD v2.0 by +2.3% (88.4% vs. 90.7%) and RACE by +3.6% (83.2% vs. 86.8%). The DeBERTa code and
pre-trained models will be made publicly available at https://github.com/microsoft/DeBERTa.*
You can find all the original DeBERTa checkpoints under the [Microsoft](https://huggingface.co/microsoft?search_models=deberta) organization.
This model was contributed by [DeBERTa](https://huggingface.co/DeBERTa). This model TF 2.0 implementation was
contributed by [kamalkraj](https://huggingface.co/kamalkraj) . The original code can be found [here](https://github.com/microsoft/DeBERTa).
> [!TIP]
> Click on the DeBERTa models in the right sidebar for more examples of how to apply DeBERTa to different language tasks.
## Resources
The example below demonstrates how to classify text with [`Pipeline`], [`AutoModel`], and from the command line.
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with DeBERTa. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
<hfoptions id="usage">
<hfoption id="Pipeline">
<PipelineTag pipeline="text-classification"/>
```py
import torch
from transformers import pipeline
- A blog post on how to [Accelerate Large Model Training using DeepSpeed](https://huggingface.co/blog/accelerate-deepspeed) with DeBERTa.
- A blog post on [Supercharged Customer Service with Machine Learning](https://huggingface.co/blog/supercharge-customer-service-with-machine-learning) with DeBERTa.
- [`DebertaForSequenceClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification.ipynb).
- [`TFDebertaForSequenceClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/text-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification-tf.ipynb).
- [Text classification task guide](../tasks/sequence_classification)
classifier = pipeline(
task="text-classification",
model="microsoft/deberta-base-mnli",
device=0,
)
<PipelineTag pipeline="token-classification" />
classifier({
"text": "A soccer game with multiple people playing.",
"text_pair": "Some people are playing a sport."
})
```
- [`DebertaForTokenClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/token-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification.ipynb).
- [`TFDebertaForTokenClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/token-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification-tf.ipynb).
- [Token classification](https://huggingface.co/course/chapter7/2?fw=pt) chapter of the 🤗 Hugging Face Course.
- [Byte-Pair Encoding tokenization](https://huggingface.co/course/chapter6/5?fw=pt) chapter of the 🤗 Hugging Face Course.
- [Token classification task guide](../tasks/token_classification)
</hfoption>
<hfoption id="AutoModel">
<PipelineTag pipeline="fill-mask"/>
```py
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer
- [`DebertaForMaskedLM`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/language-modeling#robertabertdistilbert-and-masked-language-modeling) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb).
- [`TFDebertaForMaskedLM`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/language-modeling#run_mlmpy) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling-tf.ipynb).
- [Masked language modeling](https://huggingface.co/course/chapter7/3?fw=pt) chapter of the 🤗 Hugging Face Course.
- [Masked language modeling task guide](../tasks/masked_language_modeling)
model_name = "microsoft/deberta-base-mnli"
tokenizer = AutoTokenizer.from_pretrained("microsoft/deberta-base-mnli")
model = AutoModelForSequenceClassification.from_pretrained("microsoft/deberta-base-mnli", device_map="auto")
<PipelineTag pipeline="question-answering"/>
inputs = tokenizer(
"A soccer game with multiple people playing.",
"Some people are playing a sport.",
return_tensors="pt"
).to("cuda")
- [`DebertaForQuestionAnswering`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/question-answering) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/question_answering.ipynb).
- [`TFDebertaForQuestionAnswering`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/question-answering) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/question_answering-tf.ipynb).
- [Question answering](https://huggingface.co/course/chapter7/7?fw=pt) chapter of the 🤗 Hugging Face Course.
- [Question answering task guide](../tasks/question_answering)
with torch.no_grad():
logits = model(**inputs).logits
predicted_class = logits.argmax().item()
labels = ["contradiction", "neutral", "entailment"]
print(f"The predicted relation is: {labels[predicted_class]}")
```
</hfoption>
<hfoption id="transformers CLI">
```bash
echo -e '{"text": "A soccer game with multiple people playing.", "text_pair": "Some people are playing a sport."}' | transformers run --task text-classification --model microsoft/deberta-base-mnli --device 0
```
</hfoption>
</hfoptions>
## Notes
- DeBERTa uses **relative position embeddings**, so it does not require **right-padding** like BERT.
- For best results, use DeBERTa on sentence-level or sentence-pair classification tasks like MNLI, RTE, or SST-2.
- If you're using DeBERTa for token-level tasks like masked language modeling, make sure to load a checkpoint specifically pretrained or fine-tuned for token-level tasks.
## DebertaConfig