mirror of
https://github.com/huggingface/transformers.git
synced 2025-10-20 17:13:56 +08:00
Collated reports (#40080)
* Add initial collated reports script and job definition * provide commit hash for this run. Also use hash in generated artifact name. Json formatting * tidy * Add option to upload collated reports to hf hub * Add glob pattern for test report folders * Fix glob * Use machine_type as path filter instead of glob. Include machine_type in collated report
This commit is contained in:
49
.github/workflows/collated-reports.yml
vendored
Normal file
49
.github/workflows/collated-reports.yml
vendored
Normal file
@ -0,0 +1,49 @@
|
||||
name: CI collated reports
|
||||
|
||||
on:
|
||||
workflow_call:
|
||||
inputs:
|
||||
job:
|
||||
required: true
|
||||
type: string
|
||||
report_repo_id:
|
||||
required: true
|
||||
type: string
|
||||
machine_type:
|
||||
required: true
|
||||
type: string
|
||||
gpu_name:
|
||||
description: Name of the GPU used for the job. Its enough that the value contains the name of the GPU, e.g. "noise-h100-more-noise". Case insensitive.
|
||||
required: true
|
||||
type: string
|
||||
|
||||
jobs:
|
||||
collated_reports:
|
||||
name: Collated reports
|
||||
runs-on: ubuntu-22.04
|
||||
if: always()
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/download-artifact@v4
|
||||
|
||||
- name: Collated reports
|
||||
shell: bash
|
||||
env:
|
||||
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
|
||||
CI_SHA: ${{ github.sha }}
|
||||
TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN: ${{ secrets.TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN }}
|
||||
run: |
|
||||
pip install huggingface_hub
|
||||
python3 utils/collated_reports.py \
|
||||
--path /transformers/reports/ \
|
||||
--machine-type ${{ inputs.machine_type }} \
|
||||
--commit-hash ${{ env.CI_SHA }} \
|
||||
--job ${{ inputs.job }} \
|
||||
--report-repo-id ${{ inputs.report_repo_id }} \
|
||||
--gpu-name ${{ inputs.gpu_name }}
|
||||
|
||||
- name: Upload collated reports
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: collated_reports_${{ env.CI_SHA }}.json
|
||||
path: collated_reports_${{ env.CI_SHA }}.json
|
219
utils/collated_reports.py
Normal file
219
utils/collated_reports.py
Normal file
@ -0,0 +1,219 @@
|
||||
# Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import argparse
|
||||
import json
|
||||
import subprocess
|
||||
from dataclasses import dataclass
|
||||
from pathlib import Path
|
||||
|
||||
|
||||
DEFAULT_GPU_NAMES = ["mi300", "mi325", "mi355", "h100", "a10"]
|
||||
|
||||
|
||||
def simplify_gpu_name(gpu_name: str, simplified_names: list[str]) -> str:
|
||||
matches = []
|
||||
for simplified_name in simplified_names:
|
||||
if simplified_name in gpu_name:
|
||||
matches.append(simplified_name)
|
||||
if len(matches) == 1:
|
||||
return matches[0]
|
||||
return gpu_name
|
||||
|
||||
|
||||
def parse_short_summary_line(line: str) -> tuple[str | None, int]:
|
||||
if line.startswith("PASSED"):
|
||||
return "passed", 1
|
||||
if line.startswith("FAILED"):
|
||||
return "failed", 1
|
||||
if line.startswith("SKIPPED"):
|
||||
line = line.split("[", maxsplit=1)[1]
|
||||
line = line.split("]", maxsplit=1)[0]
|
||||
return "skipped", int(line)
|
||||
if line.startswith("ERROR"):
|
||||
return "error", 1
|
||||
return None, 0
|
||||
|
||||
|
||||
def validate_path(p: str) -> Path:
|
||||
# Validate path and apply glob pattern if provided
|
||||
path = Path(p)
|
||||
assert path.is_dir(), f"Path {path} is not a directory"
|
||||
return path
|
||||
|
||||
|
||||
def get_gpu_name(gpu_name: str | None) -> str:
|
||||
# Get GPU name if available
|
||||
if gpu_name is None:
|
||||
try:
|
||||
import torch
|
||||
|
||||
gpu_name = torch.cuda.get_device_name()
|
||||
except Exception as e:
|
||||
print(f"Failed to get GPU name with {e}")
|
||||
gpu_name = "unknown"
|
||||
else:
|
||||
gpu_name = gpu_name.replace(" ", "_").lower()
|
||||
gpu_name = simplify_gpu_name(gpu_name, DEFAULT_GPU_NAMES)
|
||||
|
||||
return gpu_name
|
||||
|
||||
|
||||
def get_commit_hash(commit_hash: str | None) -> str:
|
||||
# Get commit hash if available
|
||||
if commit_hash is None:
|
||||
try:
|
||||
commit_hash = subprocess.check_output(["git", "rev-parse", "HEAD"]).decode("utf-8").strip()
|
||||
except Exception as e:
|
||||
print(f"Failed to get commit hash with {e}")
|
||||
commit_hash = "unknown"
|
||||
|
||||
return commit_hash[:7]
|
||||
|
||||
|
||||
@dataclass
|
||||
class Args:
|
||||
path: Path
|
||||
machine_type: str
|
||||
gpu_name: str
|
||||
commit_hash: str
|
||||
job: str | None
|
||||
report_repo_id: str | None
|
||||
|
||||
|
||||
def get_arguments(args: argparse.Namespace) -> Args:
|
||||
path = validate_path(args.path)
|
||||
machine_type = args.machine_type
|
||||
gpu_name = get_gpu_name(args.gpu_name)
|
||||
commit_hash = get_commit_hash(args.commit_hash)
|
||||
job = args.job
|
||||
report_repo_id = args.report_repo_id
|
||||
return Args(path, machine_type, gpu_name, commit_hash, job, report_repo_id)
|
||||
|
||||
|
||||
def upload_collated_report(job: str, report_repo_id: str, filename: str):
|
||||
# Alternatively we can check for the existence of the collated_reports file and upload in notification_service.py
|
||||
import os
|
||||
|
||||
from get_previous_daily_ci import get_last_daily_ci_run
|
||||
from huggingface_hub import HfApi
|
||||
|
||||
api = HfApi()
|
||||
|
||||
# if it is not a scheduled run, upload the reports to a subfolder under `report_repo_folder`
|
||||
report_repo_subfolder = ""
|
||||
if os.getenv("GITHUB_EVENT_NAME") != "schedule":
|
||||
report_repo_subfolder = f"{os.getenv('GITHUB_RUN_NUMBER')}-{os.getenv('GITHUB_RUN_ID')}"
|
||||
report_repo_subfolder = f"runs/{report_repo_subfolder}"
|
||||
|
||||
workflow_run = get_last_daily_ci_run(
|
||||
token=os.environ["ACCESS_REPO_INFO_TOKEN"], workflow_run_id=os.getenv("GITHUB_RUN_ID")
|
||||
)
|
||||
workflow_run_created_time = workflow_run["created_at"]
|
||||
report_repo_folder = workflow_run_created_time.split("T")[0]
|
||||
|
||||
if report_repo_subfolder:
|
||||
report_repo_folder = f"{report_repo_folder}/{report_repo_subfolder}"
|
||||
|
||||
api.upload_file(
|
||||
path_or_fileobj=f"ci_results_{job}/{filename}",
|
||||
path_in_repo=f"{report_repo_folder}/ci_results_{job}/{filename}",
|
||||
repo_id=report_repo_id,
|
||||
repo_type="dataset",
|
||||
token=os.getenv("TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN"),
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Post process models test reports.")
|
||||
parser.add_argument("--path", "-p", help="Path to the reports folder")
|
||||
parser.add_argument(
|
||||
"--machine-type", "-m", help="Process single or multi GPU results", choices=["single-gpu", "multi-gpu"]
|
||||
)
|
||||
parser.add_argument("--gpu-name", "-g", help="GPU name", default=None)
|
||||
parser.add_argument("--commit-hash", "-c", help="Commit hash", default=None)
|
||||
parser.add_argument("--job", "-j", help="Optional job name required for uploading reports", default=None)
|
||||
parser.add_argument(
|
||||
"--report-repo-id", "-r", help="Optional report repository ID required for uploading reports", default=None
|
||||
)
|
||||
args = get_arguments(parser.parse_args())
|
||||
|
||||
# Initialize accumulators for collated report
|
||||
total_status_count = {
|
||||
"passed": 0,
|
||||
"failed": 0,
|
||||
"skipped": 0,
|
||||
"error": 0,
|
||||
None: 0,
|
||||
}
|
||||
collated_report_buffer = []
|
||||
|
||||
path = args.path
|
||||
machine_type = args.machine_type
|
||||
gpu_name = args.gpu_name
|
||||
commit_hash = args.commit_hash
|
||||
job = args.job
|
||||
report_repo_id = args.report_repo_id
|
||||
|
||||
# Find the origin directory based on machine type
|
||||
origin = path
|
||||
for p in path.iterdir():
|
||||
if machine_type in p.name:
|
||||
origin = p
|
||||
break
|
||||
|
||||
# Loop through model directories and create collated reports
|
||||
for model_dir in sorted(origin.iterdir()):
|
||||
# Create a new entry for the model
|
||||
model_name = model_dir.name.removesuffix("_test_reports")
|
||||
report = {"model": model_name, "results": []}
|
||||
results = []
|
||||
|
||||
# Read short summary
|
||||
with open(model_dir / "summary_short.txt", "r") as f:
|
||||
short_summary_lines = f.readlines()
|
||||
|
||||
# Parse short summary
|
||||
for line in short_summary_lines[1:]:
|
||||
status, count = parse_short_summary_line(line)
|
||||
total_status_count[status] += count
|
||||
if status:
|
||||
result = {
|
||||
"status": status,
|
||||
"test": line.split(status.upper(), maxsplit=1)[1].strip(),
|
||||
"count": count,
|
||||
}
|
||||
results.append(result)
|
||||
|
||||
# Add short summaries to report
|
||||
report["results"] = results
|
||||
|
||||
collated_report_buffer.append(report)
|
||||
|
||||
# Write collated report
|
||||
with open(f"collated_reports_{commit_hash}.json", "w") as f:
|
||||
json.dump(
|
||||
{
|
||||
"gpu_name": gpu_name,
|
||||
"machine_type": machine_type,
|
||||
"commit_hash": commit_hash,
|
||||
"total_status_count": total_status_count,
|
||||
"results": collated_report_buffer,
|
||||
},
|
||||
f,
|
||||
indent=2,
|
||||
)
|
||||
|
||||
if job and report_repo_id:
|
||||
upload_collated_report(job, report_repo_id, f"collated_reports_{commit_hash}.json")
|
Reference in New Issue
Block a user