Collated reports (#40080)

* Add initial collated reports script and job definition

* provide commit hash for this run. Also use hash in generated artifact name. Json formatting

* tidy

* Add option to upload collated reports to hf hub

* Add glob pattern for test report folders

* Fix glob

* Use machine_type as path filter instead of glob. Include machine_type in collated report
This commit is contained in:
ivarflakstad
2025-08-13 14:48:15 +02:00
committed by GitHub
parent e78571f5ce
commit ebceef343a
2 changed files with 268 additions and 0 deletions

49
.github/workflows/collated-reports.yml vendored Normal file
View File

@ -0,0 +1,49 @@
name: CI collated reports
on:
workflow_call:
inputs:
job:
required: true
type: string
report_repo_id:
required: true
type: string
machine_type:
required: true
type: string
gpu_name:
description: Name of the GPU used for the job. Its enough that the value contains the name of the GPU, e.g. "noise-h100-more-noise". Case insensitive.
required: true
type: string
jobs:
collated_reports:
name: Collated reports
runs-on: ubuntu-22.04
if: always()
steps:
- uses: actions/checkout@v4
- uses: actions/download-artifact@v4
- name: Collated reports
shell: bash
env:
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
CI_SHA: ${{ github.sha }}
TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN: ${{ secrets.TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN }}
run: |
pip install huggingface_hub
python3 utils/collated_reports.py \
--path /transformers/reports/ \
--machine-type ${{ inputs.machine_type }} \
--commit-hash ${{ env.CI_SHA }} \
--job ${{ inputs.job }} \
--report-repo-id ${{ inputs.report_repo_id }} \
--gpu-name ${{ inputs.gpu_name }}
- name: Upload collated reports
uses: actions/upload-artifact@v4
with:
name: collated_reports_${{ env.CI_SHA }}.json
path: collated_reports_${{ env.CI_SHA }}.json

219
utils/collated_reports.py Normal file
View File

@ -0,0 +1,219 @@
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import json
import subprocess
from dataclasses import dataclass
from pathlib import Path
DEFAULT_GPU_NAMES = ["mi300", "mi325", "mi355", "h100", "a10"]
def simplify_gpu_name(gpu_name: str, simplified_names: list[str]) -> str:
matches = []
for simplified_name in simplified_names:
if simplified_name in gpu_name:
matches.append(simplified_name)
if len(matches) == 1:
return matches[0]
return gpu_name
def parse_short_summary_line(line: str) -> tuple[str | None, int]:
if line.startswith("PASSED"):
return "passed", 1
if line.startswith("FAILED"):
return "failed", 1
if line.startswith("SKIPPED"):
line = line.split("[", maxsplit=1)[1]
line = line.split("]", maxsplit=1)[0]
return "skipped", int(line)
if line.startswith("ERROR"):
return "error", 1
return None, 0
def validate_path(p: str) -> Path:
# Validate path and apply glob pattern if provided
path = Path(p)
assert path.is_dir(), f"Path {path} is not a directory"
return path
def get_gpu_name(gpu_name: str | None) -> str:
# Get GPU name if available
if gpu_name is None:
try:
import torch
gpu_name = torch.cuda.get_device_name()
except Exception as e:
print(f"Failed to get GPU name with {e}")
gpu_name = "unknown"
else:
gpu_name = gpu_name.replace(" ", "_").lower()
gpu_name = simplify_gpu_name(gpu_name, DEFAULT_GPU_NAMES)
return gpu_name
def get_commit_hash(commit_hash: str | None) -> str:
# Get commit hash if available
if commit_hash is None:
try:
commit_hash = subprocess.check_output(["git", "rev-parse", "HEAD"]).decode("utf-8").strip()
except Exception as e:
print(f"Failed to get commit hash with {e}")
commit_hash = "unknown"
return commit_hash[:7]
@dataclass
class Args:
path: Path
machine_type: str
gpu_name: str
commit_hash: str
job: str | None
report_repo_id: str | None
def get_arguments(args: argparse.Namespace) -> Args:
path = validate_path(args.path)
machine_type = args.machine_type
gpu_name = get_gpu_name(args.gpu_name)
commit_hash = get_commit_hash(args.commit_hash)
job = args.job
report_repo_id = args.report_repo_id
return Args(path, machine_type, gpu_name, commit_hash, job, report_repo_id)
def upload_collated_report(job: str, report_repo_id: str, filename: str):
# Alternatively we can check for the existence of the collated_reports file and upload in notification_service.py
import os
from get_previous_daily_ci import get_last_daily_ci_run
from huggingface_hub import HfApi
api = HfApi()
# if it is not a scheduled run, upload the reports to a subfolder under `report_repo_folder`
report_repo_subfolder = ""
if os.getenv("GITHUB_EVENT_NAME") != "schedule":
report_repo_subfolder = f"{os.getenv('GITHUB_RUN_NUMBER')}-{os.getenv('GITHUB_RUN_ID')}"
report_repo_subfolder = f"runs/{report_repo_subfolder}"
workflow_run = get_last_daily_ci_run(
token=os.environ["ACCESS_REPO_INFO_TOKEN"], workflow_run_id=os.getenv("GITHUB_RUN_ID")
)
workflow_run_created_time = workflow_run["created_at"]
report_repo_folder = workflow_run_created_time.split("T")[0]
if report_repo_subfolder:
report_repo_folder = f"{report_repo_folder}/{report_repo_subfolder}"
api.upload_file(
path_or_fileobj=f"ci_results_{job}/{filename}",
path_in_repo=f"{report_repo_folder}/ci_results_{job}/{filename}",
repo_id=report_repo_id,
repo_type="dataset",
token=os.getenv("TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN"),
)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Post process models test reports.")
parser.add_argument("--path", "-p", help="Path to the reports folder")
parser.add_argument(
"--machine-type", "-m", help="Process single or multi GPU results", choices=["single-gpu", "multi-gpu"]
)
parser.add_argument("--gpu-name", "-g", help="GPU name", default=None)
parser.add_argument("--commit-hash", "-c", help="Commit hash", default=None)
parser.add_argument("--job", "-j", help="Optional job name required for uploading reports", default=None)
parser.add_argument(
"--report-repo-id", "-r", help="Optional report repository ID required for uploading reports", default=None
)
args = get_arguments(parser.parse_args())
# Initialize accumulators for collated report
total_status_count = {
"passed": 0,
"failed": 0,
"skipped": 0,
"error": 0,
None: 0,
}
collated_report_buffer = []
path = args.path
machine_type = args.machine_type
gpu_name = args.gpu_name
commit_hash = args.commit_hash
job = args.job
report_repo_id = args.report_repo_id
# Find the origin directory based on machine type
origin = path
for p in path.iterdir():
if machine_type in p.name:
origin = p
break
# Loop through model directories and create collated reports
for model_dir in sorted(origin.iterdir()):
# Create a new entry for the model
model_name = model_dir.name.removesuffix("_test_reports")
report = {"model": model_name, "results": []}
results = []
# Read short summary
with open(model_dir / "summary_short.txt", "r") as f:
short_summary_lines = f.readlines()
# Parse short summary
for line in short_summary_lines[1:]:
status, count = parse_short_summary_line(line)
total_status_count[status] += count
if status:
result = {
"status": status,
"test": line.split(status.upper(), maxsplit=1)[1].strip(),
"count": count,
}
results.append(result)
# Add short summaries to report
report["results"] = results
collated_report_buffer.append(report)
# Write collated report
with open(f"collated_reports_{commit_hash}.json", "w") as f:
json.dump(
{
"gpu_name": gpu_name,
"machine_type": machine_type,
"commit_hash": commit_hash,
"total_status_count": total_status_count,
"results": collated_report_buffer,
},
f,
indent=2,
)
if job and report_repo_id:
upload_collated_report(job, report_repo_id, f"collated_reports_{commit_hash}.json")