Add Gemma2 GGUF support (#34002)

* initial setup for ggml.py

* initial setup of GGUFGemma2Converter class

* Add gemma2 model to gguf.md doc

* Partial work on GGUF_TENSOR_MAPPING

* initial setup of GGUF_TENSOR_MAPPING for Gemma2

* refactor: rename GemmaConvert class to GemmaConverter for naming consistency

* feat: complete gemma2 tensor mapping implementation

* feat: add initial implementation of GGUFGemmaConverter

* feat: complete GGUFGemmaConverter implementation

* feat: add test code for gemma2

* refactor: minor code cleanup

* refactor: minor code cleanup

* fix: resolve suggestions

* Update tests/quantization/ggml/test_ggml.py

Co-authored-by: Isotr0py <2037008807@qq.com>

---------

Co-authored-by: Isotr0py <2037008807@qq.com>
This commit is contained in:
Yijun Lee
2025-01-03 22:50:07 +09:00
committed by GitHub
parent 1fe2d53d4e
commit e5fd865eba
5 changed files with 180 additions and 3 deletions

View File

@ -88,6 +88,7 @@ For now the supported model architectures are the architectures that have been v
- T5
- Mamba
- Nemotron
- Gemma2
## Example usage

View File

@ -1271,7 +1271,7 @@ class XGLMConverter(SpmConverter):
)
class GemmaConvert(SpmConverter):
class GemmaConverter(SpmConverter):
handle_byte_fallback = True
SpmExtractor = GemmaSentencePieceExtractor
# start and end of turn tokens must be marked as special
@ -1601,7 +1601,7 @@ SLOW_TO_FAST_CONVERTERS = {
"XGLMTokenizer": XGLMConverter,
"LlamaTokenizer": LlamaConverter,
"CodeLlamaTokenizer": LlamaConverter,
"GemmaTokenizer": GemmaConvert,
"GemmaTokenizer": GemmaConverter,
"Phi3Tokenizer": LlamaConverter,
}

View File

@ -25,7 +25,7 @@ from tokenizers import Tokenizer, decoders, normalizers, pre_tokenizers, process
from tokenizers.models import BPE, Unigram
from .. import AddedToken
from ..convert_slow_tokenizer import GPT2Converter, LlamaConverter, Qwen2Converter, T5Converter
from ..convert_slow_tokenizer import GemmaConverter, GPT2Converter, LlamaConverter, Qwen2Converter, T5Converter
from ..utils import logging
from ..utils.logging import tqdm
@ -262,6 +262,22 @@ GGUF_TENSOR_MAPPING = {
"output.weight": "lm_head.weight",
"output_norm": "model.norm",
},
"gemma2": {
"token_embd": "model.embed_tokens",
"blk": "model.layers",
"ffn_up": "mlp.up_proj",
"ffn_down": "mlp.down_proj",
"ffn_gate": "mlp.gate_proj",
"ffn_norm": "pre_feedforward_layernorm",
"post_attention_norm": "post_attention_layernorm",
"post_ffw_norm": "post_feedforward_layernorm",
"attn_norm": "input_layernorm",
"attn_q": "self_attn.q_proj",
"attn_v": "self_attn.v_proj",
"attn_k": "self_attn.k_proj",
"attn_output": "self_attn.o_proj",
"output_norm": "model.norm",
},
}
@ -423,6 +439,18 @@ GGUF_CONFIG_MAPPING = {
"attention.layer_norm_rms_epsilon": "norm_eps",
"vocab_size": "vocab_size",
},
"gemma2": {
"context_length": "max_position_embeddings",
"block_count": "num_hidden_layers",
"feed_forward_length": "intermediate_size",
"embedding_length": "hidden_size",
"rope.dimension_count": None,
"rope.freq_base": "rope_theta",
"attention.head_count": "num_attention_heads",
"attention.head_count_kv": "num_key_value_heads",
"attention.layer_norm_rms_epsilon": "rms_norm_eps",
"vocab_size": "vocab_size",
},
}
GGUF_TOKENIZER_MAPPING = {
@ -807,6 +835,71 @@ class GGUFT5Converter(T5Converter):
return tokenizer
class GGUFGemmaConverter(GemmaConverter):
def __init__(self, tokenizer_dict):
# set dummy data to avoid unnecessary merges calculation
tokenizer_dict["merges"] = ["dummy text"]
self.proto = GGUFTokenizerSkeleton(tokenizer_dict)
self.original_tokenizer = self.proto
self.additional_kwargs = {}
def vocab(self, proto):
original_vocab = list(zip(proto.tokens, proto.scores))
updated_vocab = []
for token, score in original_vocab:
if token == "<0x09>":
updated_vocab.append(("\t", score))
elif " " in token and len(token.strip()) == 0:
underscores = "" * len(token)
updated_vocab.append((underscores, score))
else:
updated_vocab.append((token, score))
return updated_vocab
def normalizer(self, proto):
return normalizers.Replace(" ", "")
def decoder(self, replacement, add_prefix_space):
sequence = [
decoders.Replace("", " "),
decoders.ByteFallback(),
decoders.Fuse(),
]
if add_prefix_space:
sequence += [decoders.Strip(content=" ", left=1)]
return decoders.Sequence(sequence)
def converted(self) -> Tokenizer:
vocab_scores = self.vocab(self.proto)
tokenizer = Tokenizer(
Unigram(
vocab_scores,
unk_id=self.proto.unk_token_id,
byte_fallback=self.handle_byte_fallback,
)
)
normalizer = self.normalizer(self.proto)
if normalizer is not None:
tokenizer.normalizer = normalizer
replacement = ""
add_prefix_space = True
if hasattr(self.original_tokenizer, "add_prefix_space"):
add_prefix_space = self.original_tokenizer.add_prefix_space
tokenizer.decoder = self.decoder(replacement, add_prefix_space)
pre_tokenizer = self.pre_tokenizer(replacement, add_prefix_space)
if pre_tokenizer is not None:
tokenizer.pre_tokenizer = pre_tokenizer
return tokenizer
GGUF_TO_FAST_CONVERTERS = {
"llama": GGUFLlamaConverter,
"qwen2": GGUFQwen2Converter,
@ -820,6 +913,7 @@ GGUF_TO_FAST_CONVERTERS = {
"t5": GGUFT5Converter,
"mamba": GGUFGPTConverter,
"nemotron": GGUFGPTConverter,
"gemma2": GGUFGemmaConverter,
}

View File

@ -238,6 +238,18 @@ class MambaTensorProcessor(TensorProcessor):
return GGUFTensor(weights, name, {})
class Gemma2TensorProcessor(TensorProcessor):
def __init__(self, config=None):
super().__init__(config=config)
# ref: https://github.com/ggerganov/llama.cpp/blob/d79d8f39b4da6deca4aea8bf130c6034c482b320/convert_hf_to_gguf.py#L3191
# ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
def process(self, weights, name, **kwargs):
if "norm.weight" in name:
weights = weights - 1
return GGUFTensor(weights, name, {})
TENSOR_PROCESSORS = {
"llama": LlamaTensorProcessor,
"qwen2moe": Qwen2MoeTensorProcessor,
@ -246,6 +258,7 @@ TENSOR_PROCESSORS = {
"t5encoder": T5TensorProcessor,
"gpt2": GPT2TensorProcessor,
"mamba": MambaTensorProcessor,
"gemma2": Gemma2TensorProcessor,
}

View File

@ -64,6 +64,8 @@ class GgufIntegrationTests(unittest.TestCase):
mamba_model_id = "jpodivin/mamba-2.8b-hf-GGUF"
nemotron_original_model_id = "nvidia/Nemotron-Mini-4B-Instruct"
nemotron_model_id = "bartowski/Nemotron-Mini-4B-Instruct-GGUF"
original_gemma2_model_id = "google/gemma-2-2b-it"
gemma2_model_id = "bartowski/gemma-2-2b-it-GGUF"
# standard quants
q4_0_gguf_model_id = "tinyllama-1.1b-chat-v1.0.Q4_0.gguf"
@ -111,6 +113,9 @@ class GgufIntegrationTests(unittest.TestCase):
fp16_mamba_model_id = "ggml-model-f16.gguf"
q6_k_nemotron_model_id = "Nemotron-Mini-4B-Instruct-Q6_K.gguf"
fp16_nemotron_model_id = "Nemotron-Mini-4B-Instruct-f16.gguf"
q3_k_gemma2_model_id = "gemma-2-2b-it-Q3_K_L.gguf"
q8_0_gemma2_model_id = "gemma-2-2b-it-Q8_0.gguf"
fp32_gemma2_model_id = "gemma-2-2b-it-f32.gguf"
example_text = "Hello"
@ -833,6 +838,70 @@ class GgufIntegrationTests(unittest.TestCase):
EXPECTED_TEXT = "'Hello. hotmail.com.'"
self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT)
def test_gemma2_q3_k(self):
model = AutoModelForCausalLM.from_pretrained(
self.gemma2_model_id,
gguf_file=self.q3_k_gemma2_model_id,
torch_dtype=torch.float16,
)
tokenizer = AutoTokenizer.from_pretrained(self.gemma2_model_id, gguf_file=self.q3_k_gemma2_model_id)
text = tokenizer(self.example_text, return_tensors="pt")["input_ids"]
out = model.generate(text, max_new_tokens=10)
EXPECTED_TEXT = "Hello! 👋\n\nI'm trying to create a"
self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT)
def test_gemma2_q8_0(self):
model = AutoModelForCausalLM.from_pretrained(
self.gemma2_model_id,
gguf_file=self.q8_0_gemma2_model_id,
torch_dtype=torch.float16,
)
tokenizer = AutoTokenizer.from_pretrained(self.gemma2_model_id, gguf_file=self.q8_0_gemma2_model_id)
text = tokenizer(self.example_text, return_tensors="pt")["input_ids"]
out = model.generate(text, max_new_tokens=10)
EXPECTED_TEXT = "Hello! 👋\n\nI'm a large language model"
self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT)
def test_gemma2_fp32(self):
model = AutoModelForCausalLM.from_pretrained(
self.gemma2_model_id,
gguf_file=self.fp32_gemma2_model_id,
torch_dtype=torch.float16,
)
tokenizer = AutoTokenizer.from_pretrained(self.gemma2_model_id, gguf_file=self.fp32_gemma2_model_id)
text = tokenizer(self.example_text, return_tensors="pt")["input_ids"]
out = model.generate(text, max_new_tokens=10)
EXPECTED_TEXT = "Hello! 👋\n\nI'm a large language model"
self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT)
def test_gemma2_weights_conversion_fp32(self):
original_model = AutoModelForCausalLM.from_pretrained(
self.original_gemma2_model_id,
torch_dtype=torch.float16,
)
converted_model = AutoModelForCausalLM.from_pretrained(
self.gemma2_model_id,
gguf_file=self.fp32_gemma2_model_id,
torch_dtype=torch.float16,
)
converted_state_dict = converted_model.state_dict()
original_state_dict = original_model.state_dict()
for layer_name, original_params in original_state_dict.items():
if layer_name in converted_state_dict:
self.assertTrue(original_params.shape == converted_state_dict[layer_name].shape)
torch.testing.assert_close(original_params, converted_state_dict[layer_name])
else:
raise ValueError(f"Layer {layer_name} is not presented in GGUF model")
def test_tokenization_xnli(self):
import tqdm
from datasets import load_dataset