Add trajectory transformer (#17141)

* Add trajectory transformer


Fix model init


Fix end of lines for .mdx files

Add trajectory transformer model to toctree

Add forward input docs

Fix docs, remove prints, simplify prediction test

Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Apply suggestions from code review

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Update docs, more descriptive comments

Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Update readme

Small comment update and add conversion script

Rebase and reformat

Fix copies

Fix rebase, remove duplicates

Fix rebase, remove duplicates

* Remove tapex

* Remove tapex

* Remove tapex
This commit is contained in:
Carl
2022-05-18 01:07:43 +02:00
committed by GitHub
parent c35264007b
commit d6b8e9cec7
19 changed files with 1297 additions and 1 deletions

1
.gitattributes vendored
View File

@ -1,3 +1,4 @@
*.py eol=lf
*.rst eol=lf
*.md eol=lf
*.mdx eol=lf

View File

@ -321,6 +321,7 @@ Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (from Google AI) released in the repository [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (from Google AI) released with the paper [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos.
1. **[TAPEX](https://huggingface.co/docs/transformers/main/model_doc/tapex)** (from Microsoft Research) released with the paper [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou.
1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/main/model_doc/trajectory_transformers)** (from the University of California at Berkeley) released with the paper [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine
1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (from Microsoft), released together with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (from Microsoft Research) released with the paper [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.

View File

@ -300,6 +300,7 @@ Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는
1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (from Google AI) released in the repository [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (from Google AI) released with the paper [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos.
1. **[TAPEX](https://huggingface.co/docs/transformers/main/model_doc/tapex)** (from Microsoft Research) released with the paper [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou.
1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/main/model_doc/trajectory_transformers)** (from the University of California at Berkeley) released with the paper [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine
1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (from Microsoft), released together with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (from Microsoft Research) released with the paper [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.

View File

@ -324,6 +324,7 @@ conda install -c huggingface transformers
1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (来自 Google AI) 伴随论文 [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) 由 Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu 发布。
1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (来自 Google AI) 伴随论文 [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) 由 Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos 发布。
1. **[TAPEX](https://huggingface.co/docs/transformers/main/model_doc/tapex)** (来自 Microsoft Research) 伴随论文 [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) 由 Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou 发布。
1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/main/model_doc/trajectory_transformers)** (from the University of California at Berkeley) released with the paper [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine
1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (来自 Google/CMU) 伴随论文 [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) 由 Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov 发布。
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (来自 Microsoft) 伴随论文 [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) 由 Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei 发布。
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (来自 Microsoft Research) 伴随论文 [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) 由 Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang 发布。

View File

@ -336,6 +336,7 @@ conda install -c huggingface transformers
1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (from Google AI) released with the paper [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (from Google AI) released with the paper [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos.
1. **[TAPEX](https://huggingface.co/docs/transformers/main/model_doc/tapex)** (from Microsoft Research) released with the paper [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou.
1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/main/model_doc/trajectory_transformers)** (from the University of California at Berkeley) released with the paper [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine
1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (from Microsoft) released with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (from Microsoft Research) released with the paper [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.

View File

@ -342,6 +342,8 @@
title: TAPAS
- local: model_doc/tapex
title: TAPEX
- local: model_doc/trajectory_transformer
title: Trajectory Transformer
- local: model_doc/transfo-xl
title: Transformer XL
- local: model_doc/trocr

View File

@ -142,6 +142,7 @@ The library currently contains JAX, PyTorch and TensorFlow implementations, pret
1. **[T5v1.1](model_doc/t5v1.1)** (from Google AI) released in the repository [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[TAPAS](model_doc/tapas)** (from Google AI) released with the paper [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos.
1. **[TAPEX](model_doc/tapex)** (from Microsoft Research) released with the paper [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou.
1. **[Trajectory Transformer](model_doc/trajectory_transformers)** (from the University of California at Berkeley) released with the paper [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine
1. **[Transformer-XL](model_doc/transfo-xl)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
1. **[TrOCR](model_doc/trocr)** (from Microsoft), released together with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
1. **[UniSpeech](model_doc/unispeech)** (from Microsoft Research) released with the paper [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.
@ -259,6 +260,7 @@ Flax), PyTorch, and/or TensorFlow.
| Swin | ❌ | ❌ | ✅ | ✅ | ❌ |
| T5 | ✅ | ✅ | ✅ | ✅ | ✅ |
| TAPAS | ✅ | ❌ | ✅ | ✅ | ❌ |
| Trajectory Transformer | ❌ | ❌ | ✅ | ❌ | ❌ |
| Transformer-XL | ✅ | ❌ | ✅ | ✅ | ❌ |
| TrOCR | ❌ | ❌ | ✅ | ❌ | ❌ |
| UniSpeech | ❌ | ❌ | ✅ | ❌ | ❌ |

View File

@ -0,0 +1,49 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Trajectory Transformer
## Overview
The Trajectory Transformer model was proposed in [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine.
The abstract from the paper is the following:
*Reinforcement learning (RL) is typically concerned with estimating stationary policies or single-step models,
leveraging the Markov property to factorize problems in time. However, we can also view RL as a generic sequence
modeling problem, with the goal being to produce a sequence of actions that leads to a sequence of high rewards.
Viewed in this way, it is tempting to consider whether high-capacity sequence prediction models that work well
in other domains, such as natural-language processing, can also provide effective solutions to the RL problem.
To this end, we explore how RL can be tackled with the tools of sequence modeling, using a Transformer architecture
to model distributions over trajectories and repurposing beam search as a planning algorithm. Framing RL as sequence
modeling problem simplifies a range of design decisions, allowing us to dispense with many of the components common
in offline RL algorithms. We demonstrate the flexibility of this approach across long-horizon dynamics prediction,
imitation learning, goal-conditioned RL, and offline RL. Further, we show that this approach can be combined with
existing model-free algorithms to yield a state-of-the-art planner in sparse-reward, long-horizon tasks.*
Tips:
This Transformer is used for deep reinforcement learning. To use it, you need to create sequences from
actions, states and rewards from all previous timesteps. This model will treat all these elements together
as one big sequence (a trajectory).
This model was contributed by [CarlCochet](https://huggingface.co/CarlCochet). The original code can be found [here](https://github.com/jannerm/trajectory-transformer).
## TrajectoryTransformerConfig
[[autodoc]] TrajectoryTransformerConfig
## TrajectoryTransformerModel
[[autodoc]] TrajectoryTransformerModel
- forward

View File

@ -284,6 +284,10 @@ _import_structure = {
"models.t5": ["T5_PRETRAINED_CONFIG_ARCHIVE_MAP", "T5Config"],
"models.tapas": ["TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP", "TapasConfig", "TapasTokenizer"],
"models.tapex": ["TapexTokenizer"],
"models.trajectory_transformer": [
"TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"TrajectoryTransformerConfig",
],
"models.transfo_xl": [
"TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP",
"TransfoXLConfig",
@ -1571,6 +1575,13 @@ else:
"load_tf_weights_in_t5",
]
)
_import_structure["models.trajectory_transformer"].extend(
[
"TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"TrajectoryTransformerModel",
"TrajectoryTransformerPreTrainedModel",
]
)
_import_structure["models.transfo_xl"].extend(
[
"TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST",
@ -2788,6 +2799,10 @@ if TYPE_CHECKING:
from .models.t5 import T5_PRETRAINED_CONFIG_ARCHIVE_MAP, T5Config
from .models.tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig, TapasTokenizer
from .models.tapex import TapexTokenizer
from .models.trajectory_transformer import (
TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
TrajectoryTransformerConfig,
)
from .models.transfo_xl import (
TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP,
TransfoXLConfig,
@ -3863,6 +3878,11 @@ if TYPE_CHECKING:
T5PreTrainedModel,
load_tf_weights_in_t5,
)
from .models.trajectory_transformer import (
TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TrajectoryTransformerModel,
TrajectoryTransformerPreTrainedModel,
)
from .models.transfo_xl import (
TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST,
AdaptiveEmbedding,

View File

@ -116,6 +116,7 @@ from . import (
t5,
tapas,
tapex,
trajectory_transformer,
transfo_xl,
trocr,
unispeech,

View File

@ -113,6 +113,7 @@ CONFIG_MAPPING_NAMES = OrderedDict(
("swin", "SwinConfig"),
("t5", "T5Config"),
("tapas", "TapasConfig"),
("trajectory_transformer", "TrajectoryTransformerConfig"),
("transfo-xl", "TransfoXLConfig"),
("trocr", "TrOCRConfig"),
("unispeech", "UniSpeechConfig"),
@ -338,6 +339,7 @@ MODEL_NAMES_MAPPING = OrderedDict(
("t5v1.1", "T5v1.1"),
("tapas", "TAPAS"),
("tapex", "TAPEX"),
("trajectory_transformer", "Trajectory Transformer"),
("transfo-xl", "Transformer-XL"),
("trocr", "TrOCR"),
("unispeech", "UniSpeech"),

View File

@ -108,6 +108,7 @@ MODEL_MAPPING_NAMES = OrderedDict(
("swin", "SwinModel"),
("t5", "T5Model"),
("tapas", "TapasModel"),
("trajectory_transformer", "TrajectoryTransformerModel"),
("transfo-xl", "TransfoXLModel"),
("unispeech", "UniSpeechModel"),
("unispeech-sat", "UniSpeechSatModel"),

View File

@ -0,0 +1,68 @@
# flake8: noqa
# There's no way to ignore "F401 '...' imported but unused" warnings in this
# module, but to preserve other warnings. So, don't check this module at all.
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_import_structure = {
"configuration_trajectory_transformer": [
"TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"TrajectoryTransformerConfig",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_trajectory_transformer"] = [
"TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"TrajectoryTransformerModel",
"TrajectoryTransformerPreTrainedModel",
"load_tf_weights_in_trajectory_transformer",
]
if TYPE_CHECKING:
from .configuration_trajectory_transformer import (
TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
TrajectoryTransformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_trajectory_transformer import (
TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TrajectoryTransformerModel,
TrajectoryTransformerPreTrainedModel,
load_tf_weights_in_trajectory_transformer,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)

View File

@ -0,0 +1,167 @@
# coding=utf-8
# Copyright 2022 The Trajectory Transformers paper authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" TrajectoryTransformer model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"CarlCochet/trajectory-transformer-halfcheetah-medium-v2": (
"https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json"
),
# See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer
}
class TrajectoryTransformerConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`TrajectoryTransformerModel`]. It is used to
instantiate an TrajectoryTransformer model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the
TrajectoryTransformer
[CarlCochet/trajectory-transformer-halfcheetah-medium-v2](https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2)
architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 100):
Vocabulary size of the TrajectoryTransformer model. Defines the number of different tokens that can be
represented by the `trajectories` passed when calling [`TrajectoryTransformerModel`]
batch_size (`int`, *optional*, defaults to 256):
Size of the batch of trajectories passed to the model.
action_weight (`int`, *optional*, defaults to 5):
Weight of the action in the loss function
reward_weight (`int`, *optional*, defaults to 1):
Weight of the reward in the loss function
value_weight (`int`, *optional*, defaults to 1):
Weight of the value in the loss function
block_size (`int`, *optional*, defaults to 249):
Size of the blocks in the trajectory transformer.
action_dim (`int`, *optional*, defaults to 6):
Dimension of the action space.
observation_dim (`int`, *optional*, defaults to 17):
Dimension of the observation space.
transition_dim (`int`, *optional*, defaults to 25):
Dimension of the transition space.
n_layer (`int`, *optional*, defaults to 4):
Number of hidden layers in the Transformer encoder.
n_head (`int`, *optional*, defaults to 4):
Number of attention heads for each attention layer in the Transformer encoder.
n_embd (`int`, *optional*, defaults to 128):
Dimensionality of the embeddings and hidden states.
resid_pdrop (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
embd_pdrop (`int`, *optional*, defaults to 0.1):
The dropout ratio for the embeddings.
attn_pdrop (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
type_vocab_size (`int`, *optional*, defaults to 2):
The vocabulary size of the `token_type_ids` passed when calling [`TrajectoryTransformerModel`]
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
kaiming_initializer_range (`float, *optional*, defaults to 1):
A coefficient scaling the negative slope of the kaiming initializer rectifier for EinLinear layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
Example:
```python
>>> from transformers import TrajectoryTransformerModel, TrajectoryTransformerConfig
>>> # Initializing a TrajectoryTransformer CarlCochet/trajectory-transformer-halfcheetah-medium-v2 style configuration
>>> configuration = TrajectoryTransformerConfig()
>>> # Initializing a model from the CarlCochet/trajectory-transformer-halfcheetah-medium-v2 style configuration
>>> model = TrajectoryTransformerModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "trajectory_transformer"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {
"hidden_size": "n_embd",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__(
self,
vocab_size=100,
batch_size=256,
action_weight=5,
reward_weight=1,
value_weight=1,
block_size=249,
action_dim=6,
observation_dim=17,
transition_dim=25,
n_layer=4,
n_head=4,
n_embd=128,
embd_pdrop=0.1,
attn_pdrop=0.1,
resid_pdrop=0.1,
learning_rate=0.0006,
max_position_embeddings=512,
type_vocab_size=2,
initializer_range=0.02,
layer_norm_eps=1e-12,
kaiming_initializer_range=1,
use_cache=True,
is_encoder_decoder=False,
pad_token_id=1,
bos_token_id=50256,
eos_token_id=50256,
**kwargs
):
self.vocab_size = vocab_size
self.batch_size = batch_size
self.action_weight = action_weight
self.reward_weight = reward_weight
self.value_weight = value_weight
self.max_position_embeddings = max_position_embeddings
self.block_size = block_size
self.action_dim = action_dim
self.observation_dim = observation_dim
self.transition_dim = transition_dim
self.learning_rate = learning_rate
self.n_layer = n_layer
self.n_head = n_head
self.n_embd = n_embd
self.embd_pdrop = embd_pdrop
self.attn_pdrop = attn_pdrop
self.resid_pdrop = resid_pdrop
self.initializer_range = initializer_range
self.type_vocab_size = type_vocab_size
self.layer_norm_eps = layer_norm_eps
self.kaiming_initializer_range = kaiming_initializer_range
self.use_cache = use_cache
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)

View File

@ -0,0 +1,70 @@
# coding=utf-8
# Copyright 2022 The Trajectory Transformers paper authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" TrajectoryTransformer pytorch checkpoint conversion"""
import torch
import trajectory.utils as utils
from transformers import TrajectoryTransformerModel
class Parser(utils.Parser):
dataset: str = "halfcheetah-medium-expert-v2"
config: str = "config.offline"
def convert_trajectory_transformer_original_pytorch_checkpoint_to_pytorch(logbase, dataset, loadpath, epoch, device):
"""Converting Sequential blocks to ModuleList"""
gpt, gpt_epoch = utils.load_model(logbase, dataset, loadpath, epoch=epoch, device=device)
trajectory_transformer = TrajectoryTransformerModel(gpt.config)
trajectory_transformer.tok_emb.load_state_dict(gpt.tok_emb.state_dict())
trajectory_transformer.pos_emb = gpt.pos_emb
trajectory_transformer.drop.load_state_dict(gpt.drop.state_dict())
trajectory_transformer.ln_f.load_state_dict(gpt.ln_f.state_dict())
trajectory_transformer.head.load_state_dict(gpt.head.state_dict())
for i, block in enumerate(gpt.blocks):
trajectory_transformer.blocks[i].ln1.load_state_dict(gpt.blocks[i].ln1.state_dict())
trajectory_transformer.blocks[i].ln2.load_state_dict(gpt.blocks[i].ln2.state_dict())
trajectory_transformer.blocks[i].attn.load_state_dict(gpt.blocks[i].attn.state_dict())
trajectory_transformer.blocks[i].l1.load_state_dict(gpt.blocks[i].mlp[0].state_dict())
trajectory_transformer.blocks[i].act.load_state_dict(gpt.blocks[i].mlp[1].state_dict())
trajectory_transformer.blocks[i].l2.load_state_dict(gpt.blocks[i].mlp[2].state_dict())
trajectory_transformer.blocks[i].drop.load_state_dict(gpt.blocks[i].mlp[3].state_dict())
torch.save(trajectory_transformer.state_dict(), "pytorch_model.bin")
if __name__ == "__main__":
"""
To run this script you will need to install the original repository to run the original model. You can find it
here: https://github.com/jannerm/trajectory-transformer From this repository code you can also download the
original pytorch checkpoints.
Run with the command:
```sh
>>> python convert_trajectory_transformer_original_pytorch_checkpoint_to_pytorch.py --dataset <dataset_name>
... --gpt_loadpath <path_to_original_pytorch_checkpoint>
```
"""
args = Parser().parse_args("plan")
convert_trajectory_transformer_original_pytorch_checkpoint_to_pytorch(
args.logbase, args.dataset, args.gpt_loadpath, args.gpt_epoch, args.device
)

View File

@ -0,0 +1,617 @@
# coding=utf-8
# Copyright 2022 The Trajectory Transformers paper authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch TrajectoryTransformer model."""
import math
import os
from dataclasses import dataclass
from typing import Optional, Tuple
import numpy as np
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import functional as F
from ...modeling_utils import PreTrainedModel
from ...utils import (
ModelOutput,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_trajectory_transformer import TrajectoryTransformerConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "CarlCochet/trajectory-transformer-halfcheetah-medium-v2"
_CONFIG_FOR_DOC = "TrajectoryTransformerConfig"
TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = [
"CarlCochet/trajectory-transformer-halfcheetah-medium-v2",
# See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer
]
def load_tf_weights_in_trajectory_transformer(model, config, tf_checkpoint_path):
"""Load tf checkpoints in a pytorch model."""
try:
import re
import numpy as np
import tensorflow as tf
except ImportError:
logger.error(
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
"https://www.tensorflow.org/install/ for installation instructions."
)
raise
tf_path = os.path.abspath(tf_checkpoint_path)
logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
# Load weights from TF model
init_vars = tf.train.list_variables(tf_path)
names = []
arrays = []
for name, shape in init_vars:
logger.info(f"Loading TF weight {name} with shape {shape}")
array = tf.train.load_variable(tf_path, name)
names.append(name)
arrays.append(array)
for name, array in zip(names, arrays):
name = name.split("/")
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
# which are not required for using pretrained model
if any(
n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"]
for n in name
):
logger.info(f"Skipping {'/'.join(name)}")
continue
pointer = model
for m_name in name:
if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
scope_names = re.split(r"_(\d+)", m_name)
else:
scope_names = [m_name]
if scope_names[0] == "kernel" or scope_names[0] == "gamma":
pointer = getattr(pointer, "weight")
elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
pointer = getattr(pointer, "bias")
elif scope_names[0] == "output_weights":
pointer = getattr(pointer, "weight")
elif scope_names[0] == "squad":
pointer = getattr(pointer, "classifier")
else:
try:
pointer = getattr(pointer, scope_names[0])
except AttributeError:
logger.info(f"Skipping {'/'.join(name)}")
continue
if len(scope_names) >= 2:
num = int(scope_names[1])
pointer = pointer[num]
if m_name[-11:] == "_embeddings":
pointer = getattr(pointer, "weight")
elif m_name == "kernel":
array = np.transpose(array)
try:
if pointer.shape != array.shape:
raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched")
except AssertionError as e:
e.args += (pointer.shape, array.shape)
raise
logger.info(f"Initialize PyTorch weight {name}")
pointer.data = torch.from_numpy(array)
return model
@dataclass
class TrajectoryTransformerOutput(ModelOutput):
"""
Base class for model's outputs that also contains a pooling of the last hidden states.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss.
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
past_key_values (`Tuple[Tuple[torch.Tensor]]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of length `config.n_layers`, containing tuples of tensors of shape `(batch_size, num_heads,
sequence_length, embed_size_per_head)`). Contains pre-computed hidden-states (key and values in the
attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. GPT2Attentions weights after the attention softmax, used to compute the weighted average
in the self-attention heads.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
class TrajectoryTransformerPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = TrajectoryTransformerConfig
load_tf_weights = load_tf_weights_in_trajectory_transformer
base_model_prefix = "trajectory_transformer"
main_input_name = "trajectories"
supports_gradient_checkpointing = True
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, TrajectoryTransformerModel):
module.gradient_checkpointing = value
def _init_weights(self, module):
if isinstance(module, (nn.Linear, nn.Embedding)):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, EinLinear):
for i in range(module.n_models):
nn.init.kaiming_uniform_(module.weight[i], a=math.sqrt(5) / self.config.kaiming_initializer_range)
if module.bias is not None:
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(module.weight[i])
bound = (1 / math.sqrt(fan_in)) * self.config.initializer_range
nn.init.uniform_(module.bias[i], -bound, bound)
TRAJECTORY_TRANSFORMER_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`TrajectoryTransformerConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
TRAJECTORY_TRANSFORMER_INPUTS_DOCSTRING = r"""
Args:
trajectories (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Batch of trajectories, where a trajectory is a sequence of states, actions and rewards.
past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.n_layers`, *optional*):
Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
`past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have
their past given to this model should not be passed as `input_ids` as they have already been computed.
targets (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Desired targets used to compute the loss.
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
class EinLinear(nn.Module):
def __init__(self, n_models, in_features, out_features, bias):
super().__init__()
self.n_models = n_models
self.out_features = out_features
self.in_features = in_features
self.weight = nn.Parameter(torch.Tensor(n_models, out_features, in_features))
if bias:
self.bias = nn.Parameter(torch.Tensor(n_models, out_features))
else:
self.register_parameter("bias", None)
def reset_parameters(self):
for i in range(self.n_models):
nn.init.kaiming_uniform_(self.weight[i], a=math.sqrt(5))
if self.bias is not None:
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight[i])
bound = 1 / math.sqrt(fan_in)
nn.init.uniform_(self.bias[i], -bound, bound)
def forward(self, input):
"""
Args:
input (`torch.FloatTensor` of shape `(B, n_models, input_dim)`):
The input to the layer.
"""
# [ batch_size x n_models x output_dim ]
output = torch.einsum("eoi,bei->beo", self.weight, input)
if self.bias is not None:
raise RuntimeError()
return output
class CausalSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
if config.n_embd % config.n_head != 0:
raise ValueError(f"n_head ({config.n_head}) should be a divisor of n_embd ({config.n_embd})")
# key, query, value projections for all heads
self.key = nn.Linear(config.n_embd, config.n_embd)
self.query = nn.Linear(config.n_embd, config.n_embd)
self.value = nn.Linear(config.n_embd, config.n_embd)
# regularization
self.attn_drop = nn.Dropout(config.attn_pdrop)
self.resid_drop = nn.Dropout(config.resid_pdrop)
# output projection
self.proj = nn.Linear(config.n_embd, config.n_embd)
# causal mask to ensure that attention is only applied to the left in the input sequence
self.register_buffer(
"mask",
torch.tril(torch.ones(config.block_size, config.block_size)).view(
1, 1, config.block_size, config.block_size
),
)
# mask previous value estimates
joined_dim = config.observation_dim + config.action_dim + 2
self.mask.squeeze()[:, joined_dim - 1 :: joined_dim] = 0
self.n_head = config.n_head
def forward(
self,
hidden_states: Optional[Tuple[torch.FloatTensor]],
layer_past: Optional[Tuple[torch.Tensor]] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
):
batch_size, sequence_length, embedding_dim = hidden_states.size()
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
# [ batch_size x n_heads x sequence_length x head_dim ]
key = (
self.key(hidden_states)
.view(batch_size, sequence_length, self.n_head, embedding_dim // self.n_head)
.transpose(1, 2)
)
query = (
self.query(hidden_states)
.view(batch_size, sequence_length, self.n_head, embedding_dim // self.n_head)
.transpose(1, 2)
)
value = (
self.value(hidden_states)
.view(batch_size, sequence_length, self.n_head, embedding_dim // self.n_head)
.transpose(1, 2)
)
if layer_past is not None:
past_key, past_value = layer_past
key = torch.cat((past_key, key), dim=-2)
value = torch.cat((past_value, value), dim=-2)
if use_cache is True:
present = (key, value)
else:
present = None
# causal self-attention
# [ batch_size x n_heads x sequence_length x sequence_length ]
attn_weights = (torch.matmul(query, key.transpose(-2, -1))) * (1.0 / math.sqrt(key.size(-1)))
attn_weights = attn_weights.masked_fill(
self.mask[:, :, :sequence_length, :sequence_length] == 0, float("-inf")
)
attn_weights = F.softmax(attn_weights, dim=-1)
self._attn_map = attn_weights.clone()
attn_weights = self.attn_drop(attn_weights)
output = torch.matmul(attn_weights, value)
# [ batch_size x sequence_length x embedding_dim ]
# re-assemble all head outputs side by side
output = output.transpose(1, 2).contiguous().view(batch_size, sequence_length, embedding_dim)
# output projection
output = self.resid_drop(self.proj(output))
outputs = (output, present)
if output_attentions:
outputs += (attn_weights,)
return outputs
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.ln1 = nn.LayerNorm(config.n_embd)
self.ln2 = nn.LayerNorm(config.n_embd)
self.attn = CausalSelfAttention(config)
# MLP
self.l1 = nn.Linear(config.n_embd, 4 * config.n_embd)
self.act = nn.GELU()
self.l2 = nn.Linear(4 * config.n_embd, config.n_embd)
self.drop = nn.Dropout(config.resid_pdrop)
def forward(
self,
hidden_states: Optional[Tuple[torch.FloatTensor]],
layer_past: Optional[Tuple[torch.Tensor]] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
):
residual = hidden_states
hidden_states = self.ln1(hidden_states)
attn_outputs = self.attn(
hidden_states, layer_past=layer_past, use_cache=use_cache, output_attentions=output_attentions
)
attn_output = attn_outputs[0]
outputs = attn_outputs[1:]
hidden_states = attn_output + residual
residual = hidden_states
hidden_states = self.ln2(hidden_states)
hidden_states = self.l1(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.l2(hidden_states)
hidden_states = residual + self.drop(hidden_states)
if use_cache:
outputs = (hidden_states,) + outputs
else:
outputs = (hidden_states,) + outputs[1:]
return outputs
@add_start_docstrings(
"The bare TrajectoryTransformer Model transformer outputting raw hidden-states without any specific head on top.",
TRAJECTORY_TRANSFORMER_START_DOCSTRING,
)
class TrajectoryTransformerModel(TrajectoryTransformerPreTrainedModel):
"""the full GPT language model, with a context size of block_size"""
def __init__(self, config):
super().__init__(config)
# input embedding stem (+1 for stop token)
self.tok_emb = nn.Embedding(config.vocab_size * config.transition_dim + 1, config.n_embd)
self.pos_emb = nn.Parameter(torch.zeros(1, config.block_size, config.n_embd))
self.drop = nn.Dropout(config.embd_pdrop)
# transformer
self.blocks = nn.ModuleList([Block(config) for _ in range(config.n_layer)])
# decoder head
self.ln_f = nn.LayerNorm(config.n_embd)
self.head = EinLinear(config.transition_dim, config.n_embd, config.vocab_size + 1, bias=False)
self.vocab_size = config.vocab_size
self.stop_token = config.vocab_size * config.transition_dim
self.block_size = config.block_size
self.observation_dim = config.observation_dim
self.action_dim = config.action_dim
self.transition_dim = config.transition_dim
self.embedding_dim = config.n_embd
self.action_weight = config.action_weight
self.reward_weight = config.reward_weight
self.value_weight = config.value_weight
self.gradient_checkpointing = False
self.post_init()
def get_block_size(self):
return self.block_size
def offset_tokens(self, trajectories):
_, sequence_length = trajectories.shape
n_states = int(np.ceil(sequence_length / self.transition_dim))
offsets = torch.arange(self.transition_dim) * self.vocab_size
offsets = offsets.repeat(n_states).to(trajectories.device)
offset_trajectories = trajectories + offsets[:sequence_length]
offset_trajectories[trajectories == self.vocab_size] = self.stop_token
return offset_trajectories
def pad_to_full_observation(self, hidden_states):
batch_size, sequence_length, _ = hidden_states.shape
n_pad = (self.transition_dim - sequence_length % self.transition_dim) % self.transition_dim
padding = torch.zeros(batch_size, n_pad, self.embedding_dim, device=hidden_states.device)
# [ batch_size x padded_sequence_length' x embedding_dim ]
hidden_states_pad = torch.cat([hidden_states, padding], dim=1)
hidden_states_pad = hidden_states_pad.view(-1, self.transition_dim, self.embedding_dim)
return hidden_states_pad, n_pad
@add_start_docstrings_to_model_forward(
TRAJECTORY_TRANSFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")
)
@replace_return_docstrings(output_type=TrajectoryTransformerOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
trajectories: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
targets: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
r"""
Returns:
Examples:
```python
>>> from transformers import TrajectoryTransformerModel
>>> import torch
>>> model = TrajectoryTransformerModel.from_pretrained(
... "CarlCochet/trajectory-transformer-halfcheetah-medium-v2"
... )
>>> model.to(device)
>>> model.eval()
>>> observations_dim, action_dim, batch_size = 17, 6, 256
>>> seq_length = observations_dim + action_dim + 1
>>> trajectories = torch.LongTensor([np.random.permutation(self.seq_length) for _ in range(batch_size)]).to(
... device
... )
>>> targets = torch.LongTensor([np.random.permutation(self.seq_length) for _ in range(batch_size)]).to(device)
>>> outputs = model(
... trajectories,
... targets=targets,
... use_cache=True,
... output_attentions=True,
... output_hidden_states=True,
... return_dict=True,
... )
```
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
if past_key_values is None:
past_key_values = tuple([None] * len(self.blocks))
batch_size, sequence_length = trajectories.size()
if sequence_length > self.block_size:
raise ValueError("Cannot forward, model block size is exhausted.")
offset_trajectories = self.offset_tokens(trajectories)
# [ batch_size x sequence_length x embedding_dim ]
# forward the GPT model
token_embeddings = self.tok_emb(offset_trajectories) # each index maps to a (learnable) vector
position_embeddings = self.pos_emb[:, :sequence_length, :] # each position maps to a (learnable) vector
hidden_states = self.drop(token_embeddings + position_embeddings)
presents = () if use_cache else None
all_self_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
for i, (block, layer_past) in enumerate(zip(self.blocks, past_key_values)):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
layer_past,
use_cache,
output_attentions,
)
else:
outputs = block(hidden_states, layer_past, use_cache, output_attentions)
hidden_states = outputs[0]
if use_cache is True:
presents = presents + (outputs[1],)
if output_attentions:
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
# [ batch_size x sequence_length x embedding_dim ]
hidden_state = self.ln_f(hidden_states)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
hidden_states_pad, n_pad = self.pad_to_full_observation(hidden_state)
logits = self.head(hidden_states_pad)
logits = logits.reshape(batch_size, sequence_length + n_pad, self.vocab_size + 1)
logits = logits[:, :sequence_length]
# if we are given some desired targets also calculate the loss
if targets is not None:
loss = F.cross_entropy(logits.reshape(-1, logits.size(-1)), targets.view(-1), reduction="none")
if self.action_weight != 1 or self.reward_weight != 1 or self.value_weight != 1:
# make weights
n_states = int(np.ceil(sequence_length / self.transition_dim))
weights = torch.cat(
[
torch.ones(self.observation_dim, device=trajectories.device),
torch.ones(self.action_dim, device=trajectories.device) * self.action_weight,
torch.ones(1, device=trajectories.device) * self.reward_weight,
torch.ones(1, device=trajectories.device) * self.value_weight,
]
)
weights = weights.repeat(n_states)
weights = weights[1:].repeat(batch_size, 1)
loss = loss * weights.view(-1)
loss = (loss * attention_mask.view(-1)).mean()
else:
loss = None
if not return_dict:
return tuple(v for v in [loss, logits, presents, all_hidden_states, all_self_attentions] if v is not None)
return TrajectoryTransformerOutput(
loss=loss,
logits=logits,
past_key_values=presents,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)

View File

@ -4028,6 +4028,23 @@ def load_tf_weights_in_t5(*args, **kwargs):
requires_backends(load_tf_weights_in_t5, ["torch"])
TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TrajectoryTransformerModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class TrajectoryTransformerPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST = None

View File

@ -0,0 +1,275 @@
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch TrajectoryTransformer model. """
import inspect
import unittest
import numpy as np
from transformers import TrajectoryTransformerConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_generation_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, random_attention_mask
if is_torch_available():
import torch
from transformers import TrajectoryTransformerModel
from transformers.models.trajectory_transformer.modeling_trajectory_transformer import (
TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
)
class TrajectoryTransformerModelTester:
def __init__(self, parent, batch_size=13, n_embd=128, action_dim=6, observation_dim=17, is_training=True):
self.parent = parent
self.batch_size = batch_size
self.n_embd = n_embd
self.action_dim = action_dim
self.observation_dim = observation_dim
self.is_training = is_training
self.seq_length = self.action_dim + self.observation_dim + 1
def prepare_config_and_inputs(self):
trajectories = torch.LongTensor([np.random.permutation(self.seq_length) for _ in range(self.batch_size)]).to(
torch_device
)
attention_mask = random_attention_mask((self.batch_size, self.seq_length)).to(torch_device)
targets = torch.LongTensor([np.random.permutation(self.seq_length) for _ in range(self.batch_size)]).to(
torch_device
)
config = self.get_config()
return config, trajectories, attention_mask, targets
def get_config(self):
return TrajectoryTransformerConfig(
batch_size=self.batch_size,
n_embd=self.n_embd,
action_dim=self.action_dim,
observation_dim=self.observation_dim,
)
def create_and_check_model(self, config, input_dict):
model = TrajectoryTransformerModel(config=config)
model.to(torch_device)
model.eval()
result = model(trajectories=input_dict["trajectories"], attention_mask=input_dict["attention_mask"])
result = model(
trajectories=input_dict["trajectories"],
output_hidden_states=True,
output_attentions=True,
use_cache=True,
return_dict=True,
)
self.parent.assertEqual(result.hidden_states[-1].shape, (self.batch_size, self.seq_length, self.n_embd))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(config, trajectories, attention_mask, targets) = config_and_inputs
inputs_dict = {"trajectories": trajectories, "attention_mask": attention_mask, "targets": targets}
return config, inputs_dict
@require_torch
class TrajectoryTransformerModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
all_model_classes = (TrajectoryTransformerModel,) if is_torch_available() else ()
# Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids
test_generate_without_input_ids = False
# Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features
test_pruning = False
test_resize_embeddings = False
test_head_masking = False
test_attention_outputs = False
test_hidden_states_output = False
test_inputs_embeds = False
test_model_common_attributes = False
test_torchscript = False
def setUp(self):
self.model_tester = TrajectoryTransformerModelTester(self)
self.config_tester = ConfigTester(self, config_class=TrajectoryTransformerConfig, n_embd=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_conditional_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["trajectories"]
self.assertListEqual(arg_names[:1], expected_arg_names)
# # Input is 'trajectories' not 'input_ids'
def test_model_main_input_name(self):
model_signature = inspect.signature(getattr(TrajectoryTransformerModel, "forward"))
# The main input is the name of the argument after `self`
observed_main_input_name = list(model_signature.parameters.keys())[1]
self.assertEqual(TrajectoryTransformerModel.main_input_name, observed_main_input_name)
def test_retain_grad_hidden_states_attentions(self):
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.output_hidden_states = True
config.output_attentions = self.has_attentions
model = TrajectoryTransformerModel(config)
model.to(torch_device)
outputs = model(
trajectories=input_dict["trajectories"],
attention_mask=input_dict["attention_mask"],
targets=input_dict["targets"],
output_hidden_states=True,
output_attentions=True,
use_cache=True,
return_dict=True,
)
output = outputs[0]
hidden_states = outputs.hidden_states[0]
hidden_states.retain_grad()
if self.has_attentions:
attentions = outputs.attentions[0]
attentions.retain_grad()
output.flatten()[0].backward(retain_graph=True)
self.assertIsNotNone(hidden_states.grad)
if self.has_attentions:
self.assertIsNotNone(attentions.grad)
def test_training(self):
if not self.model_tester.is_training:
return
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
model = TrajectoryTransformerModel(config)
model.to(torch_device)
model.train()
loss = model(
trajectories=input_dict["trajectories"],
attention_mask=input_dict["attention_mask"],
targets=input_dict["targets"],
output_hidden_states=True,
output_attentions=True,
use_cache=True,
return_dict=True,
).loss
loss.backward()
def test_training_gradient_checkpointing(self):
if not self.model_tester.is_training:
return
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
model = TrajectoryTransformerModel(config)
model.gradient_checkpointing_enable()
model.to(torch_device)
model.train()
loss = model(
trajectories=input_dict["trajectories"],
attention_mask=input_dict["attention_mask"],
targets=input_dict["targets"],
output_hidden_states=True,
output_attentions=True,
use_cache=False,
return_dict=True,
).loss
loss.backward()
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
@slow
def test_model_from_pretrained(self):
for model_name in TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = TrajectoryTransformerModel.from_pretrained(model_name)
self.assertIsNotNone(model)
@require_torch
class TrajectoryTransformerModelIntegrationTest(unittest.TestCase):
@slow
def test_prediction(self):
batch_size = 1
config = TrajectoryTransformerConfig.from_pretrained("CarlCochet/trajectory-transformer-halfcheetah-medium-v2")
model = TrajectoryTransformerModel.from_pretrained(
"CarlCochet/trajectory-transformer-halfcheetah-medium-v2", config=config
)
model.to(torch_device)
model.eval()
seq_length = model.config.action_dim + model.config.observation_dim + 1
trajectories = torch.LongTensor(
[[3, 19, 20, 22, 9, 7, 23, 10, 18, 14, 13, 4, 17, 11, 5, 6, 15, 21, 2, 8, 1, 0, 12, 16]]
).to(torch_device)
outputs = model(
trajectories=trajectories,
output_hidden_states=True,
output_attentions=True,
use_cache=True,
return_dict=True,
)
output = outputs.logits
expected_shape = torch.Size((batch_size, seq_length, model.config.vocab_size + 1))
expected_slice = torch.tensor(
[[[-0.7193, -0.2532, -0.0898], [1.9429, 2.0434, 2.3975], [-3.3651, -2.8744, -2.4532]]]
).to(torch_device)
output_slice = output[:, :3, :3]
self.assertEqual(output.shape, expected_shape)
self.assertTrue(torch.allclose(output_slice, expected_slice, atol=1e-4))