mirror of
https://github.com/huggingface/transformers.git
synced 2025-10-20 17:13:56 +08:00
Update doc and default value of TextNetImageProcessor (#35563)
update doc and default value
This commit is contained in:
@ -56,7 +56,7 @@ class TextNetImageProcessor(BaseImageProcessor):
|
||||
do_resize (`bool`, *optional*, defaults to `True`):
|
||||
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by
|
||||
`do_resize` in the `preprocess` method.
|
||||
size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`):
|
||||
size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 640}`):
|
||||
Size of the image after resizing. The shortest edge of the image is resized to size["shortest_edge"], with
|
||||
the longest edge resized to keep the input aspect ratio. Can be overridden by `size` in the `preprocess`
|
||||
method.
|
||||
@ -108,7 +108,7 @@ class TextNetImageProcessor(BaseImageProcessor):
|
||||
**kwargs,
|
||||
) -> None:
|
||||
super().__init__(**kwargs)
|
||||
size = size if size is not None else {"shortest_edge": 224}
|
||||
size = size if size is not None else {"shortest_edge": 640}
|
||||
size = get_size_dict(size, default_to_square=False)
|
||||
crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
|
||||
crop_size = get_size_dict(crop_size, param_name="crop_size")
|
||||
|
@ -370,7 +370,7 @@ class TextNetForImageClassification(TextNetPreTrainedModel):
|
||||
>>> processor = TextNetImageProcessor.from_pretrained("czczup/textnet-base")
|
||||
>>> model = TextNetForImageClassification.from_pretrained("czczup/textnet-base")
|
||||
|
||||
>>> inputs = processor(images=image, return_tensors="pt", size={"height": 640, "width": 640})
|
||||
>>> inputs = processor(images=image, return_tensors="pt")
|
||||
>>> with torch.no_grad():
|
||||
... outputs = model(**inputs)
|
||||
>>> outputs.logits.shape
|
||||
|
Reference in New Issue
Block a user