mirror of
https://github.com/huggingface/transformers.git
synced 2025-10-20 17:13:56 +08:00
Enable FURB rules in ruff (#41395)
* Apply ruff FURB rules Signed-off-by: Yuanyuan Chen <cyyever@outlook.com> * Enable ruff FURB rules Signed-off-by: Yuanyuan Chen <cyyever@outlook.com> * More fixes Signed-off-by: Yuanyuan Chen <cyyever@outlook.com> * More fixes Signed-off-by: Yuanyuan Chen <cyyever@outlook.com> * Revert changes Signed-off-by: Yuanyuan Chen <cyyever@outlook.com> * More fixes Signed-off-by: Yuanyuan Chen <cyyever@outlook.com> --------- Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
This commit is contained in:
@ -60,8 +60,8 @@ def pack_data_dir(tok, data_dir: Path, max_tokens, save_path):
|
|||||||
save_path.mkdir(exist_ok=True)
|
save_path.mkdir(exist_ok=True)
|
||||||
for split in ["train"]:
|
for split in ["train"]:
|
||||||
src_path, tgt_path = data_dir / f"{split}.source", data_dir / f"{split}.target"
|
src_path, tgt_path = data_dir / f"{split}.source", data_dir / f"{split}.target"
|
||||||
src_docs = [x.rstrip() for x in Path(src_path).open().readlines()]
|
src_docs = [x.rstrip() for x in Path(src_path).open()]
|
||||||
tgt_docs = [x.rstrip() for x in Path(tgt_path).open().readlines()]
|
tgt_docs = [x.rstrip() for x in Path(tgt_path).open()]
|
||||||
packed_src, packed_tgt = pack_examples(tok, src_docs, tgt_docs, max_tokens)
|
packed_src, packed_tgt = pack_examples(tok, src_docs, tgt_docs, max_tokens)
|
||||||
print(f"packed {split} split from {len(src_docs)} examples -> {len(packed_src)}.")
|
print(f"packed {split} split from {len(src_docs)} examples -> {len(packed_src)}.")
|
||||||
Path(save_path / f"{split}.source").open("w").write("\n".join(packed_src))
|
Path(save_path / f"{split}.source").open("w").write("\n".join(packed_src))
|
||||||
|
@ -19,8 +19,8 @@ from utils import calculate_rouge, save_json
|
|||||||
|
|
||||||
def calculate_rouge_path(pred_path, tgt_path, save_path=None, **kwargs):
|
def calculate_rouge_path(pred_path, tgt_path, save_path=None, **kwargs):
|
||||||
"""Kwargs will be passed to calculate_rouge"""
|
"""Kwargs will be passed to calculate_rouge"""
|
||||||
pred_lns = [x.strip() for x in open(pred_path).readlines()]
|
pred_lns = [x.strip() for x in open(pred_path)]
|
||||||
tgt_lns = [x.strip() for x in open(tgt_path).readlines()][: len(pred_lns)]
|
tgt_lns = [x.strip() for x in open(tgt_path)][: len(pred_lns)]
|
||||||
metrics = calculate_rouge(pred_lns, tgt_lns, **kwargs)
|
metrics = calculate_rouge(pred_lns, tgt_lns, **kwargs)
|
||||||
if save_path is not None:
|
if save_path is not None:
|
||||||
save_json(metrics, save_path, indent=None)
|
save_json(metrics, save_path, indent=None)
|
||||||
|
@ -205,7 +205,7 @@ def run_generate():
|
|||||||
return
|
return
|
||||||
tgt_file = Path(args.data_dir).joinpath(args.type_path + ".target")
|
tgt_file = Path(args.data_dir).joinpath(args.type_path + ".target")
|
||||||
with open(tgt_file) as f:
|
with open(tgt_file) as f:
|
||||||
labels = [x.rstrip() for x in f.readlines()][: len(preds)]
|
labels = [x.rstrip() for x in f][: len(preds)]
|
||||||
|
|
||||||
# Calculate metrics, save metrics, and save _generations.txt
|
# Calculate metrics, save metrics, and save _generations.txt
|
||||||
calc_bleu = "translation" in args.task
|
calc_bleu = "translation" in args.task
|
||||||
|
@ -130,7 +130,7 @@ def run_generate(verbose=True):
|
|||||||
parsed_args = parse_numeric_n_bool_cl_kwargs(rest)
|
parsed_args = parse_numeric_n_bool_cl_kwargs(rest)
|
||||||
if parsed_args and verbose:
|
if parsed_args and verbose:
|
||||||
print(f"parsed the following generate kwargs: {parsed_args}")
|
print(f"parsed the following generate kwargs: {parsed_args}")
|
||||||
examples = [" " + x.rstrip() if "t5" in args.model_name else x.rstrip() for x in open(args.input_path).readlines()]
|
examples = [" " + x.rstrip() if "t5" in args.model_name else x.rstrip() for x in open(args.input_path)]
|
||||||
if args.n_obs > 0:
|
if args.n_obs > 0:
|
||||||
examples = examples[: args.n_obs]
|
examples = examples[: args.n_obs]
|
||||||
Path(args.save_path).parent.mkdir(exist_ok=True)
|
Path(args.save_path).parent.mkdir(exist_ok=True)
|
||||||
@ -159,8 +159,8 @@ def run_generate(verbose=True):
|
|||||||
|
|
||||||
# Compute scores
|
# Compute scores
|
||||||
score_fn = calculate_bleu if "translation" in args.task else calculate_rouge
|
score_fn = calculate_bleu if "translation" in args.task else calculate_rouge
|
||||||
output_lns = [x.rstrip() for x in open(args.save_path).readlines()]
|
output_lns = [x.rstrip() for x in open(args.save_path)]
|
||||||
reference_lns = [x.rstrip() for x in open(args.reference_path).readlines()][: len(output_lns)]
|
reference_lns = [x.rstrip() for x in open(args.reference_path)][: len(output_lns)]
|
||||||
scores: dict = score_fn(output_lns, reference_lns)
|
scores: dict = score_fn(output_lns, reference_lns)
|
||||||
scores.update(runtime_metrics)
|
scores.update(runtime_metrics)
|
||||||
|
|
||||||
|
@ -162,7 +162,7 @@ class AbstractSeq2SeqDataset(Dataset):
|
|||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def get_char_lens(data_file):
|
def get_char_lens(data_file):
|
||||||
return [len(x) for x in Path(data_file).open().readlines()]
|
return [len(x) for x in Path(data_file).open()]
|
||||||
|
|
||||||
@cached_property
|
@cached_property
|
||||||
def tgt_lens(self):
|
def tgt_lens(self):
|
||||||
|
@ -31,7 +31,7 @@ with open(dataset) as f_p:
|
|||||||
continue
|
continue
|
||||||
|
|
||||||
if (subword_len_counter + current_subwords_len) > max_len:
|
if (subword_len_counter + current_subwords_len) > max_len:
|
||||||
print("")
|
print()
|
||||||
print(line)
|
print(line)
|
||||||
subword_len_counter = current_subwords_len
|
subword_len_counter = current_subwords_len
|
||||||
continue
|
continue
|
||||||
|
@ -616,8 +616,7 @@ def main():
|
|||||||
output_predictions_file = os.path.join(training_args.output_dir, "predictions.txt")
|
output_predictions_file = os.path.join(training_args.output_dir, "predictions.txt")
|
||||||
if trainer.is_world_process_zero():
|
if trainer.is_world_process_zero():
|
||||||
with open(output_predictions_file, "w") as writer:
|
with open(output_predictions_file, "w") as writer:
|
||||||
for prediction in true_predictions:
|
writer.writelines(" ".join(prediction) + "\n" for prediction in true_predictions)
|
||||||
writer.write(" ".join(prediction) + "\n")
|
|
||||||
|
|
||||||
kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "token-classification"}
|
kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "token-classification"}
|
||||||
if data_args.dataset_name is not None:
|
if data_args.dataset_name is not None:
|
||||||
|
@ -32,7 +32,7 @@ line-length = 119
|
|||||||
ignore = ["C901", "E501", "E741", "F402", "F823", "SIM1", "SIM300", "SIM212", "SIM905", "UP009", "UP015", "UP031", "UP028", "UP004", "UP045", "UP007"]
|
ignore = ["C901", "E501", "E741", "F402", "F823", "SIM1", "SIM300", "SIM212", "SIM905", "UP009", "UP015", "UP031", "UP028", "UP004", "UP045", "UP007"]
|
||||||
# RUF013: Checks for the use of implicit Optional
|
# RUF013: Checks for the use of implicit Optional
|
||||||
# in type annotations when the default parameter value is None.
|
# in type annotations when the default parameter value is None.
|
||||||
select = ["C", "E", "F", "I", "W", "RUF013", "PERF102", "PLC1802", "PLC0208", "SIM", "UP", "PIE794"]
|
select = ["C", "E", "F", "I", "W", "RUF013", "PERF102", "PLC1802", "PLC0208", "SIM", "UP", "PIE794", "FURB"]
|
||||||
extend-safe-fixes = ["UP006"]
|
extend-safe-fixes = ["UP006"]
|
||||||
|
|
||||||
# Ignore import violations in all `__init__.py` files.
|
# Ignore import violations in all `__init__.py` files.
|
||||||
|
@ -140,7 +140,7 @@ class BartphoTokenizer(PreTrainedTokenizer):
|
|||||||
self.fairseq_tokens_to_ids[str(token)] = cnt
|
self.fairseq_tokens_to_ids[str(token)] = cnt
|
||||||
cnt += 1
|
cnt += 1
|
||||||
with open(monolingual_vocab_file, "r", encoding="utf-8") as f:
|
with open(monolingual_vocab_file, "r", encoding="utf-8") as f:
|
||||||
for line in f.readlines():
|
for line in f:
|
||||||
token = line.strip().split()[0]
|
token = line.strip().split()[0]
|
||||||
self.fairseq_tokens_to_ids[token] = len(self.fairseq_tokens_to_ids)
|
self.fairseq_tokens_to_ids[token] = len(self.fairseq_tokens_to_ids)
|
||||||
if str(mask_token) not in self.fairseq_tokens_to_ids:
|
if str(mask_token) not in self.fairseq_tokens_to_ids:
|
||||||
|
@ -2171,7 +2171,7 @@ class DFineHybridEncoder(nn.Module):
|
|||||||
new_fpn_feature_map = fpn_block(fused_feature_map)
|
new_fpn_feature_map = fpn_block(fused_feature_map)
|
||||||
fpn_feature_maps.append(new_fpn_feature_map)
|
fpn_feature_maps.append(new_fpn_feature_map)
|
||||||
|
|
||||||
fpn_feature_maps = fpn_feature_maps[::-1]
|
fpn_feature_maps.reverse()
|
||||||
|
|
||||||
# bottom-up PAN
|
# bottom-up PAN
|
||||||
pan_feature_maps = [fpn_feature_maps[0]]
|
pan_feature_maps = [fpn_feature_maps[0]]
|
||||||
|
@ -265,7 +265,7 @@ class JukeboxResnet1D(nn.Module):
|
|||||||
blocks.append(JukeboxResConv1DBlock(config, conv_width, block_depth, res_scale))
|
blocks.append(JukeboxResConv1DBlock(config, conv_width, block_depth, res_scale))
|
||||||
|
|
||||||
if reverse_dilation:
|
if reverse_dilation:
|
||||||
blocks = blocks[::-1]
|
blocks.reverse()
|
||||||
self.resnet_block = nn.ModuleList(blocks)
|
self.resnet_block = nn.ModuleList(blocks)
|
||||||
|
|
||||||
def forward(self, hidden_states):
|
def forward(self, hidden_states):
|
||||||
|
@ -617,7 +617,7 @@ class EfficientLoFTRFineFusionLayer(nn.Module):
|
|||||||
def forward(
|
def forward(
|
||||||
self,
|
self,
|
||||||
coarse_features: torch.Tensor,
|
coarse_features: torch.Tensor,
|
||||||
residual_features: list[torch.Tensor],
|
residual_features: list[torch.Tensor] | tuple[torch.Tensor],
|
||||||
) -> tuple[torch.Tensor, torch.Tensor]:
|
) -> tuple[torch.Tensor, torch.Tensor]:
|
||||||
"""
|
"""
|
||||||
For each image pair, compute the fine features of pixels.
|
For each image pair, compute the fine features of pixels.
|
||||||
|
@ -723,7 +723,7 @@ def batch_frexp(inputs, max_bit=31):
|
|||||||
tmp_m = []
|
tmp_m = []
|
||||||
for m in output_m:
|
for m in output_m:
|
||||||
int_m_shifted = int(
|
int_m_shifted = int(
|
||||||
decimal.Decimal(m * (2**max_bit)).quantize(decimal.Decimal("1"), rounding=decimal.ROUND_HALF_UP)
|
decimal.Decimal(m * (2**max_bit)).quantize(decimal.Decimal(1), rounding=decimal.ROUND_HALF_UP)
|
||||||
)
|
)
|
||||||
tmp_m.append(int_m_shifted)
|
tmp_m.append(int_m_shifted)
|
||||||
output_m = np.array(tmp_m)
|
output_m = np.array(tmp_m)
|
||||||
|
@ -1033,7 +1033,7 @@ class LukeTokenizer(PreTrainedTokenizer):
|
|||||||
if head_token_span[0] < tail_token_span[0]:
|
if head_token_span[0] < tail_token_span[0]:
|
||||||
first_entity_token_spans[0] = (head_token_span[0], head_token_span[1] + 2)
|
first_entity_token_spans[0] = (head_token_span[0], head_token_span[1] + 2)
|
||||||
first_entity_token_spans[1] = (tail_token_span[0] + 2, tail_token_span[1] + 4)
|
first_entity_token_spans[1] = (tail_token_span[0] + 2, tail_token_span[1] + 4)
|
||||||
token_span_with_special_token_ids = reversed(token_span_with_special_token_ids)
|
token_span_with_special_token_ids.reverse()
|
||||||
else:
|
else:
|
||||||
first_entity_token_spans[0] = (head_token_span[0] + 2, head_token_span[1] + 4)
|
first_entity_token_spans[0] = (head_token_span[0] + 2, head_token_span[1] + 4)
|
||||||
first_entity_token_spans[1] = (tail_token_span[0], tail_token_span[1] + 2)
|
first_entity_token_spans[1] = (tail_token_span[0], tail_token_span[1] + 2)
|
||||||
|
@ -868,7 +868,7 @@ class MLukeTokenizer(PreTrainedTokenizer):
|
|||||||
if head_token_span[0] < tail_token_span[0]:
|
if head_token_span[0] < tail_token_span[0]:
|
||||||
first_entity_token_spans[0] = (head_token_span[0], head_token_span[1] + 2)
|
first_entity_token_spans[0] = (head_token_span[0], head_token_span[1] + 2)
|
||||||
first_entity_token_spans[1] = (tail_token_span[0] + 2, tail_token_span[1] + 4)
|
first_entity_token_spans[1] = (tail_token_span[0] + 2, tail_token_span[1] + 4)
|
||||||
token_span_with_special_token_ids = reversed(token_span_with_special_token_ids)
|
token_span_with_special_token_ids.reverse()
|
||||||
else:
|
else:
|
||||||
first_entity_token_spans[0] = (head_token_span[0] + 2, head_token_span[1] + 4)
|
first_entity_token_spans[0] = (head_token_span[0] + 2, head_token_span[1] + 4)
|
||||||
first_entity_token_spans[1] = (tail_token_span[0], tail_token_span[1] + 2)
|
first_entity_token_spans[1] = (tail_token_span[0], tail_token_span[1] + 2)
|
||||||
|
@ -1262,7 +1262,7 @@ class RTDetrHybridEncoder(nn.Module):
|
|||||||
new_fpn_feature_map = fpn_block(fused_feature_map)
|
new_fpn_feature_map = fpn_block(fused_feature_map)
|
||||||
fpn_feature_maps.append(new_fpn_feature_map)
|
fpn_feature_maps.append(new_fpn_feature_map)
|
||||||
|
|
||||||
fpn_feature_maps = fpn_feature_maps[::-1]
|
fpn_feature_maps.reverse()
|
||||||
|
|
||||||
# bottom-up PAN
|
# bottom-up PAN
|
||||||
pan_feature_maps = [fpn_feature_maps[0]]
|
pan_feature_maps = [fpn_feature_maps[0]]
|
||||||
|
@ -1218,7 +1218,7 @@ class RTDetrV2HybridEncoder(nn.Module):
|
|||||||
new_fpn_feature_map = fpn_block(fused_feature_map)
|
new_fpn_feature_map = fpn_block(fused_feature_map)
|
||||||
fpn_feature_maps.append(new_fpn_feature_map)
|
fpn_feature_maps.append(new_fpn_feature_map)
|
||||||
|
|
||||||
fpn_feature_maps = fpn_feature_maps[::-1]
|
fpn_feature_maps.reverse()
|
||||||
|
|
||||||
# bottom-up PAN
|
# bottom-up PAN
|
||||||
pan_feature_maps = [fpn_feature_maps[0]]
|
pan_feature_maps = [fpn_feature_maps[0]]
|
||||||
|
@ -457,7 +457,7 @@ class Swin2SRLayer(nn.Module):
|
|||||||
self.layernorm_after = nn.LayerNorm(dim, eps=config.layer_norm_eps)
|
self.layernorm_after = nn.LayerNorm(dim, eps=config.layer_norm_eps)
|
||||||
|
|
||||||
def _compute_window_shift(self, target_window_size, target_shift_size) -> tuple[tuple[int, int], tuple[int, int]]:
|
def _compute_window_shift(self, target_window_size, target_shift_size) -> tuple[tuple[int, int], tuple[int, int]]:
|
||||||
window_size = [r if r <= w else w for r, w in zip(self.input_resolution, target_window_size)]
|
window_size = [min(r, w) for r, w in zip(self.input_resolution, target_window_size)]
|
||||||
shift_size = [0 if r <= w else s for r, w, s in zip(self.input_resolution, window_size, target_shift_size)]
|
shift_size = [0 if r <= w else s for r, w, s in zip(self.input_resolution, window_size, target_shift_size)]
|
||||||
return window_size, shift_size
|
return window_size, shift_size
|
||||||
|
|
||||||
|
@ -626,7 +626,7 @@ class Swinv2Layer(nn.Module):
|
|||||||
self.layernorm_after = nn.LayerNorm(dim, eps=config.layer_norm_eps)
|
self.layernorm_after = nn.LayerNorm(dim, eps=config.layer_norm_eps)
|
||||||
|
|
||||||
def _compute_window_shift(self, target_window_size, target_shift_size) -> tuple[tuple[int, int], tuple[int, int]]:
|
def _compute_window_shift(self, target_window_size, target_shift_size) -> tuple[tuple[int, int], tuple[int, int]]:
|
||||||
window_size = [r if r <= w else w for r, w in zip(self.input_resolution, target_window_size)]
|
window_size = [min(r, w) for r, w in zip(self.input_resolution, target_window_size)]
|
||||||
shift_size = [0 if r <= w else s for r, w, s in zip(self.input_resolution, window_size, target_shift_size)]
|
shift_size = [0 if r <= w else s for r, w, s in zip(self.input_resolution, window_size, target_shift_size)]
|
||||||
return window_size, shift_size
|
return window_size, shift_size
|
||||||
|
|
||||||
|
@ -329,7 +329,7 @@ def convert_checkpoint(
|
|||||||
phonemize = True
|
phonemize = True
|
||||||
else:
|
else:
|
||||||
# Save vocab as temporary json file
|
# Save vocab as temporary json file
|
||||||
symbols = [line.replace("\n", "") for line in open(vocab_path, encoding="utf-8").readlines()]
|
symbols = [line.replace("\n", "") for line in open(vocab_path, encoding="utf-8")]
|
||||||
symbol_to_id = {s: i for i, s in enumerate(symbols)}
|
symbol_to_id = {s: i for i, s in enumerate(symbols)}
|
||||||
# MMS-TTS does not use a <pad> token, so we set to the token used to space characters
|
# MMS-TTS does not use a <pad> token, so we set to the token used to space characters
|
||||||
_pad = symbols[0]
|
_pad = symbols[0]
|
||||||
|
@ -36,8 +36,7 @@ def download_checkpoint(path):
|
|||||||
|
|
||||||
with open(path, "wb") as f:
|
with open(path, "wb") as f:
|
||||||
with requests.get(url, stream=True) as req:
|
with requests.get(url, stream=True) as req:
|
||||||
for chunk in req.iter_content(chunk_size=2048):
|
f.writelines(req.iter_content(chunk_size=2048))
|
||||||
f.write(chunk)
|
|
||||||
|
|
||||||
|
|
||||||
def get_vivit_config() -> VivitConfig:
|
def get_vivit_config() -> VivitConfig:
|
||||||
|
@ -317,8 +317,7 @@ def convert_tiktoken_to_hf(
|
|||||||
|
|
||||||
with open(merge_file, "w", encoding="utf-8") as writer:
|
with open(merge_file, "w", encoding="utf-8") as writer:
|
||||||
writer.write("#version: 0.2\n")
|
writer.write("#version: 0.2\n")
|
||||||
for bpe_tokens in merges:
|
writer.writelines(bpe_tokens + "\n" for bpe_tokens in merges)
|
||||||
writer.write(bpe_tokens + "\n")
|
|
||||||
|
|
||||||
hf_tokenizer = WhisperTokenizer(vocab_file, merge_file)
|
hf_tokenizer = WhisperTokenizer(vocab_file, merge_file)
|
||||||
|
|
||||||
|
@ -40,8 +40,7 @@ class BartphoTokenizerTest(TokenizerTesterMixin, unittest.TestCase):
|
|||||||
|
|
||||||
cls.monolingual_vocab_file = os.path.join(cls.tmpdirname, VOCAB_FILES_NAMES["monolingual_vocab_file"])
|
cls.monolingual_vocab_file = os.path.join(cls.tmpdirname, VOCAB_FILES_NAMES["monolingual_vocab_file"])
|
||||||
with open(cls.monolingual_vocab_file, "w", encoding="utf-8") as fp:
|
with open(cls.monolingual_vocab_file, "w", encoding="utf-8") as fp:
|
||||||
for token in vocab_tokens:
|
fp.writelines(f"{token} {vocab_tokens[token]}\n" for token in vocab_tokens)
|
||||||
fp.write(f"{token} {vocab_tokens[token]}\n")
|
|
||||||
|
|
||||||
tokenizer = BartphoTokenizer(SAMPLE_VOCAB, cls.monolingual_vocab_file, **cls.special_tokens_map)
|
tokenizer = BartphoTokenizer(SAMPLE_VOCAB, cls.monolingual_vocab_file, **cls.special_tokens_map)
|
||||||
tokenizer.save_pretrained(cls.tmpdirname)
|
tokenizer.save_pretrained(cls.tmpdirname)
|
||||||
|
@ -38,8 +38,7 @@ class BertweetTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
|
|||||||
cls.vocab_file = os.path.join(cls.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
|
cls.vocab_file = os.path.join(cls.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
|
||||||
cls.merges_file = os.path.join(cls.tmpdirname, VOCAB_FILES_NAMES["merges_file"])
|
cls.merges_file = os.path.join(cls.tmpdirname, VOCAB_FILES_NAMES["merges_file"])
|
||||||
with open(cls.vocab_file, "w", encoding="utf-8") as fp:
|
with open(cls.vocab_file, "w", encoding="utf-8") as fp:
|
||||||
for token in vocab_tokens:
|
fp.writelines(f"{token} {vocab_tokens[token]}\n" for token in vocab_tokens)
|
||||||
fp.write(f"{token} {vocab_tokens[token]}\n")
|
|
||||||
with open(cls.merges_file, "w", encoding="utf-8") as fp:
|
with open(cls.merges_file, "w", encoding="utf-8") as fp:
|
||||||
fp.write("\n".join(merges))
|
fp.write("\n".join(merges))
|
||||||
|
|
||||||
|
@ -39,8 +39,7 @@ class PhobertTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
|
|||||||
cls.merges_file = os.path.join(cls.tmpdirname, VOCAB_FILES_NAMES["merges_file"])
|
cls.merges_file = os.path.join(cls.tmpdirname, VOCAB_FILES_NAMES["merges_file"])
|
||||||
|
|
||||||
with open(cls.vocab_file, "w", encoding="utf-8") as fp:
|
with open(cls.vocab_file, "w", encoding="utf-8") as fp:
|
||||||
for token in vocab_tokens:
|
fp.writelines(f"{token} {vocab_tokens[token]}\n" for token in vocab_tokens)
|
||||||
fp.write(f"{token} {vocab_tokens[token]}\n")
|
|
||||||
with open(cls.merges_file, "w", encoding="utf-8") as fp:
|
with open(cls.merges_file, "w", encoding="utf-8") as fp:
|
||||||
fp.write("\n".join(merges))
|
fp.write("\n".join(merges))
|
||||||
|
|
||||||
|
@ -210,8 +210,7 @@ if __name__ == "__main__":
|
|||||||
response.raise_for_status()
|
response.raise_for_status()
|
||||||
|
|
||||||
with open(filename, "wb") as f:
|
with open(filename, "wb") as f:
|
||||||
for chunk in response.iter_content(chunk_size=8192):
|
f.writelines(response.iter_content(chunk_size=8192))
|
||||||
f.write(chunk)
|
|
||||||
print(f"Successfully downloaded: {filename}")
|
print(f"Successfully downloaded: {filename}")
|
||||||
except requests.exceptions.RequestException as e:
|
except requests.exceptions.RequestException as e:
|
||||||
print(f"Error downloading {filename}: {e}")
|
print(f"Error downloading {filename}: {e}")
|
||||||
|
@ -34,7 +34,7 @@ def convert_relative_import_to_absolute(
|
|||||||
rel_level = len(import_node.relative)
|
rel_level = len(import_node.relative)
|
||||||
|
|
||||||
# Strip file extension and split into parts
|
# Strip file extension and split into parts
|
||||||
file_path_no_ext = file_path[:-3] if file_path.endswith(".py") else file_path
|
file_path_no_ext = file_path.removesuffix(".py")
|
||||||
file_parts = file_path_no_ext.split(os.path.sep)
|
file_parts = file_path_no_ext.split(os.path.sep)
|
||||||
|
|
||||||
# Ensure the file path includes the package name
|
# Ensure the file path includes the package name
|
||||||
|
Reference in New Issue
Block a user