Files
transformers-mirror/benchmark_v2/run_benchmarks.py
Yuanyuan Chen a5ecd94a3f Enable ruff on benchmark and scripts (#40634)
* Enable ruff on benchmark and scripts

Signed-off-by: cyy <cyyever@outlook.com>

* Cover benchmark_v2

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* correct

* style

* style

---------

Signed-off-by: cyy <cyyever@outlook.com>
Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>
2025-09-10 11:38:06 +02:00

341 lines
12 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Top-level benchmarking script that automatically discovers and runs all benchmarks
in the ./benches directory, organizing outputs into model-specific subfolders.
"""
import argparse
import importlib.util
import json
import logging
import os
import sys
from datetime import datetime
from pathlib import Path
from typing import Any, Optional
def setup_logging(log_level: str = "INFO", enable_file_logging: bool = False) -> logging.Logger:
"""Setup logging configuration."""
numeric_level = getattr(logging, log_level.upper(), None)
if not isinstance(numeric_level, int):
raise ValueError(f"Invalid log level: {log_level}")
handlers = [logging.StreamHandler(sys.stdout)]
if enable_file_logging:
handlers.append(logging.FileHandler(f"benchmark_run_{datetime.now().strftime('%Y%m%d_%H%M%S')}.log"))
logging.basicConfig(
level=numeric_level, format="[%(levelname)s - %(asctime)s] %(name)s: %(message)s", handlers=handlers
)
return logging.getLogger(__name__)
def discover_benchmarks(benches_dir: str) -> list[dict[str, Any]]:
"""
Discover all benchmark modules in the benches directory.
Returns:
List of dictionaries containing benchmark module info
"""
benchmarks = []
benches_path = Path(benches_dir)
if not benches_path.exists():
raise FileNotFoundError(f"Benches directory not found: {benches_dir}")
for py_file in benches_path.glob("*.py"):
if py_file.name.startswith("__"):
continue
module_name = py_file.stem
try:
# Import the module
spec = importlib.util.spec_from_file_location(module_name, py_file)
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module)
# Check if it has a benchmark runner function
if hasattr(module, f"run_{module_name}"):
benchmarks.append(
{
"name": module_name,
"path": str(py_file),
"module": module,
"runner_function": getattr(module, f"run_{module_name}"),
}
)
elif hasattr(module, "run_benchmark"):
benchmarks.append(
{
"name": module_name,
"path": str(py_file),
"module": module,
"runner_function": getattr(module, "run_benchmark"),
}
)
else:
logging.warning(f"No runner function found in {py_file}")
except Exception as e:
logging.error(f"Failed to import {py_file}: {e}")
return benchmarks
def run_single_benchmark(
benchmark_info: dict[str, Any], output_dir: str, logger: logging.Logger, **kwargs
) -> Optional[str]:
"""
Run a single benchmark and return the output file path.
Args:
benchmark_info: Dictionary containing benchmark module info
output_dir: Base output directory
logger: Logger instance
**kwargs: Additional arguments to pass to the benchmark
Returns:
Path to the output file if successful, None otherwise
"""
benchmark_name = benchmark_info["name"]
runner_func = benchmark_info["runner_function"]
logger.info(f"Running benchmark: {benchmark_name}")
try:
# Check function signature to determine what arguments to pass
import inspect
sig = inspect.signature(runner_func)
# Prepare arguments based on function signature
func_kwargs = {"logger": logger, "output_dir": output_dir}
# Add other kwargs if the function accepts them
for param_name in sig.parameters:
if param_name in kwargs:
func_kwargs[param_name] = kwargs[param_name]
# Filter kwargs to only include parameters the function accepts
# If function has **kwargs, include all provided kwargs
has_var_kwargs = any(param.kind == param.VAR_KEYWORD for param in sig.parameters.values())
if has_var_kwargs:
valid_kwargs = {**func_kwargs, **kwargs}
else:
valid_kwargs = {k: v for k, v in func_kwargs.items() if k in sig.parameters}
# Run the benchmark
result = runner_func(**valid_kwargs)
if isinstance(result, str):
# Function returned a file path
return result
else:
logger.info(f"Benchmark {benchmark_name} completed successfully")
return "completed"
except Exception as e:
logger.error(f"Benchmark {benchmark_name} failed: {e}")
import traceback
logger.debug(traceback.format_exc())
return None
def generate_summary_report(output_dir: str, benchmark_results: dict[str, Any], logger: logging.Logger) -> str:
"""Generate a summary report of all benchmark runs."""
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
summary_file = os.path.join(output_dir, f"benchmark_summary_{timestamp}.json")
summary_data = {
"run_metadata": {
"timestamp": datetime.utcnow().isoformat(),
"total_benchmarks": len(benchmark_results),
"successful_benchmarks": len([r for r in benchmark_results.values() if r is not None]),
"failed_benchmarks": len([r for r in benchmark_results.values() if r is None]),
},
"benchmark_results": benchmark_results,
"output_directory": output_dir,
}
with open(summary_file, "w") as f:
json.dump(summary_data, f, indent=2, default=str)
logger.info(f"Summary report saved to: {summary_file}")
return summary_file
def main():
"""Main entry point for the benchmarking script."""
parser = argparse.ArgumentParser(description="Run all benchmarks in the ./benches directory")
parser.add_argument(
"--output-dir",
type=str,
default="benchmark_results",
help="Base output directory for benchmark results (default: benchmark_results)",
)
parser.add_argument(
"--benches-dir",
type=str,
default="./benches",
help="Directory containing benchmark implementations (default: ./benches)",
)
parser.add_argument(
"--log-level",
type=str,
choices=["DEBUG", "INFO", "WARNING", "ERROR"],
default="INFO",
help="Logging level (default: INFO)",
)
parser.add_argument("--model-id", type=str, help="Specific model ID to benchmark (if supported by benchmarks)")
parser.add_argument("--warmup-iterations", type=int, default=3, help="Number of warmup iterations (default: 3)")
parser.add_argument(
"--measurement-iterations", type=int, default=5, help="Number of measurement iterations (default: 5)"
)
parser.add_argument(
"--num-tokens-to-generate",
type=int,
default=100,
help="Number of tokens to generate in benchmarks (default: 100)",
)
parser.add_argument("--include", type=str, nargs="*", help="Only run benchmarks matching these names")
parser.add_argument("--exclude", type=str, nargs="*", help="Exclude benchmarks matching these names")
parser.add_argument("--enable-mock", action="store_true", help="Enable mock benchmark (skipped by default)")
parser.add_argument("--enable-file-logging", action="store_true", help="Enable file logging (disabled by default)")
parser.add_argument(
"--commit-id", type=str, help="Git commit ID for metadata (if not provided, will auto-detect from git)"
)
args = parser.parse_args()
# Setup logging
logger = setup_logging(args.log_level, args.enable_file_logging)
logger.info("Starting benchmark discovery and execution")
logger.info(f"Output directory: {args.output_dir}")
logger.info(f"Benches directory: {args.benches_dir}")
# Create output directory
os.makedirs(args.output_dir, exist_ok=True)
try:
# Discover benchmarks
benchmarks = discover_benchmarks(args.benches_dir)
logger.info(f"Discovered {len(benchmarks)} benchmark(s): {[b['name'] for b in benchmarks]}")
if not benchmarks:
logger.warning("No benchmarks found!")
return 1
# Filter benchmarks based on include/exclude
filtered_benchmarks = benchmarks
if args.include:
filtered_benchmarks = [
b for b in filtered_benchmarks if any(pattern in b["name"] for pattern in args.include)
]
logger.info(f"Filtered to include: {[b['name'] for b in filtered_benchmarks]}")
if args.exclude:
filtered_benchmarks = [
b for b in filtered_benchmarks if not any(pattern in b["name"] for pattern in args.exclude)
]
logger.info(f"After exclusion: {[b['name'] for b in filtered_benchmarks]}")
if not filtered_benchmarks:
logger.warning("No benchmarks remaining after filtering!")
return 1
# Prepare common kwargs for benchmarks
benchmark_kwargs = {
"warmup_iterations": args.warmup_iterations,
"measurement_iterations": args.measurement_iterations,
"num_tokens_to_generate": args.num_tokens_to_generate,
}
if args.model_id:
benchmark_kwargs["model_id"] = args.model_id
# Add enable_mock flag for mock benchmark
benchmark_kwargs["enable_mock"] = args.enable_mock
# Add commit_id if provided
if args.commit_id:
benchmark_kwargs["commit_id"] = args.commit_id
# Run benchmarks
benchmark_results = {}
successful_count = 0
for benchmark_info in filtered_benchmarks:
result = run_single_benchmark(benchmark_info, args.output_dir, logger, **benchmark_kwargs)
benchmark_results[benchmark_info["name"]] = result
if result is not None:
successful_count += 1
# Generate summary report
summary_file = generate_summary_report(args.output_dir, benchmark_results, logger)
# Final summary
total_benchmarks = len(filtered_benchmarks)
failed_count = total_benchmarks - successful_count
logger.info("=" * 60)
logger.info("BENCHMARK RUN SUMMARY")
logger.info("=" * 60)
logger.info(f"Total benchmarks: {total_benchmarks}")
logger.info(f"Successful: {successful_count}")
logger.info(f"Failed: {failed_count}")
logger.info(f"Output directory: {args.output_dir}")
logger.info(f"Summary report: {summary_file}")
if failed_count > 0:
logger.warning(f"{failed_count} benchmark(s) failed. Check logs for details.")
return 1
else:
logger.info("All benchmarks completed successfully!")
return 0
except Exception as e:
logger.error(f"Benchmark run failed: {e}")
import traceback
logger.debug(traceback.format_exc())
return 1
if __name__ == "__main__":
sys.exit(main())