* Enable ruff on benchmark and scripts Signed-off-by: cyy <cyyever@outlook.com> * Cover benchmark_v2 Signed-off-by: Yuanyuan Chen <cyyever@outlook.com> * correct * style * style --------- Signed-off-by: cyy <cyyever@outlook.com> Signed-off-by: Yuanyuan Chen <cyyever@outlook.com> Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>
503 lines
19 KiB
Python
503 lines
19 KiB
Python
# Copyright 2025 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import argparse
|
|
import importlib.util
|
|
import json
|
|
import logging
|
|
import os
|
|
import sys
|
|
import uuid
|
|
from datetime import datetime
|
|
|
|
import pandas as pd
|
|
|
|
|
|
try:
|
|
from psycopg2.extensions import register_adapter
|
|
from psycopg2.extras import Json
|
|
|
|
register_adapter(dict, Json)
|
|
PSYCOPG2_AVAILABLE = True
|
|
except ImportError:
|
|
PSYCOPG2_AVAILABLE = False
|
|
|
|
|
|
class ImportModuleException(Exception):
|
|
pass
|
|
|
|
|
|
class MetricsRecorder:
|
|
def __init__(
|
|
self,
|
|
connection,
|
|
logger: logging.Logger,
|
|
repository: str,
|
|
branch: str,
|
|
commit_id: str,
|
|
commit_msg: str,
|
|
collect_csv_data: bool = True,
|
|
):
|
|
self.conn = connection
|
|
self.use_database = connection is not None
|
|
if self.use_database:
|
|
self.conn.autocommit = True
|
|
self.logger = logger
|
|
self.repository = repository
|
|
self.branch = branch
|
|
self.commit_id = commit_id
|
|
self.commit_msg = commit_msg
|
|
self.collect_csv_data = collect_csv_data
|
|
|
|
# For CSV export - store all data in pandas DataFrames (only if CSV collection is enabled)
|
|
if self.collect_csv_data:
|
|
# Initialize empty DataFrames with proper schemas
|
|
self.benchmarks_df = pd.DataFrame(
|
|
columns=[
|
|
"benchmark_id",
|
|
"repository",
|
|
"branch",
|
|
"commit_id",
|
|
"commit_message",
|
|
"metadata",
|
|
"created_at",
|
|
]
|
|
)
|
|
self.device_measurements_df = pd.DataFrame(
|
|
columns=["benchmark_id", "cpu_util", "mem_megabytes", "gpu_util", "gpu_mem_megabytes", "time"]
|
|
)
|
|
self.model_measurements_df = pd.DataFrame(
|
|
columns=[
|
|
"benchmark_id",
|
|
"time",
|
|
"model_load_time",
|
|
"first_eager_forward_pass_time_secs",
|
|
"second_eager_forward_pass_time_secs",
|
|
"first_eager_generate_time_secs",
|
|
"second_eager_generate_time_secs",
|
|
"time_to_first_token_secs",
|
|
"time_to_second_token_secs",
|
|
"time_to_third_token_secs",
|
|
"time_to_next_token_mean_secs",
|
|
"first_compile_generate_time_secs",
|
|
"second_compile_generate_time_secs",
|
|
"third_compile_generate_time_secs",
|
|
"fourth_compile_generate_time_secs",
|
|
]
|
|
)
|
|
else:
|
|
self.benchmarks_df = None
|
|
self.device_measurements_df = None
|
|
self.model_measurements_df = None
|
|
|
|
def initialise_benchmark(self, metadata: dict[str, str]) -> str:
|
|
"""
|
|
Creates a new benchmark, returns the benchmark id (UUID)
|
|
"""
|
|
# Generate a unique UUID for this benchmark
|
|
benchmark_id = str(uuid.uuid4())
|
|
|
|
if self.use_database:
|
|
with self.conn.cursor() as cur:
|
|
cur.execute(
|
|
"INSERT INTO benchmarks (benchmark_id, repository, branch, commit_id, commit_message, metadata) VALUES (%s, %s, %s, %s, %s, %s)",
|
|
(benchmark_id, self.repository, self.branch, self.commit_id, self.commit_msg, metadata),
|
|
)
|
|
self.logger.debug(f"initialised benchmark #{benchmark_id}")
|
|
|
|
# Store benchmark data for CSV export (if enabled)
|
|
if self.collect_csv_data:
|
|
# Add row to pandas DataFrame
|
|
new_row = pd.DataFrame(
|
|
[
|
|
{
|
|
"benchmark_id": benchmark_id,
|
|
"repository": self.repository,
|
|
"branch": self.branch,
|
|
"commit_id": self.commit_id,
|
|
"commit_message": self.commit_msg,
|
|
"metadata": json.dumps(metadata),
|
|
"created_at": datetime.utcnow().isoformat(),
|
|
}
|
|
]
|
|
)
|
|
self.benchmarks_df = pd.concat([self.benchmarks_df, new_row], ignore_index=True)
|
|
|
|
mode_info = []
|
|
if self.use_database:
|
|
mode_info.append("database")
|
|
if self.collect_csv_data:
|
|
mode_info.append("CSV")
|
|
mode_str = " + ".join(mode_info) if mode_info else "no storage"
|
|
|
|
self.logger.debug(f"initialised benchmark #{benchmark_id} ({mode_str} mode)")
|
|
return benchmark_id
|
|
|
|
def collect_device_measurements(self, benchmark_id: str, cpu_util, mem_megabytes, gpu_util, gpu_mem_megabytes):
|
|
"""
|
|
Collect device metrics, such as CPU & GPU usage. These are "static", as in you cannot pass arbitrary arguments to the function.
|
|
"""
|
|
# Store device measurements for CSV export (if enabled)
|
|
if self.collect_csv_data:
|
|
# Add row to pandas DataFrame
|
|
new_row = pd.DataFrame(
|
|
[
|
|
{
|
|
"benchmark_id": benchmark_id,
|
|
"cpu_util": cpu_util,
|
|
"mem_megabytes": mem_megabytes,
|
|
"gpu_util": gpu_util,
|
|
"gpu_mem_megabytes": gpu_mem_megabytes,
|
|
"time": datetime.utcnow().isoformat(),
|
|
}
|
|
]
|
|
)
|
|
self.device_measurements_df = pd.concat([self.device_measurements_df, new_row], ignore_index=True)
|
|
|
|
# Store in database if available
|
|
if self.use_database:
|
|
with self.conn.cursor() as cur:
|
|
cur.execute(
|
|
"INSERT INTO device_measurements (benchmark_id, cpu_util, mem_megabytes, gpu_util, gpu_mem_megabytes) VALUES (%s, %s, %s, %s, %s)",
|
|
(benchmark_id, cpu_util, mem_megabytes, gpu_util, gpu_mem_megabytes),
|
|
)
|
|
|
|
self.logger.debug(
|
|
f"collected device measurements for benchmark #{benchmark_id} [CPU util: {cpu_util}, mem MBs: {mem_megabytes}, GPU util: {gpu_util}, GPU mem MBs: {gpu_mem_megabytes}]"
|
|
)
|
|
|
|
def collect_model_measurements(self, benchmark_id: str, measurements: dict[str, float]):
|
|
# Store model measurements for CSV export (if enabled)
|
|
if self.collect_csv_data:
|
|
# Add row to pandas DataFrame with flattened measurements
|
|
row_data = {"benchmark_id": benchmark_id, "time": datetime.utcnow().isoformat()}
|
|
# Flatten the measurements dict into the row
|
|
row_data.update(measurements)
|
|
|
|
new_row = pd.DataFrame([row_data])
|
|
self.model_measurements_df = pd.concat([self.model_measurements_df, new_row], ignore_index=True)
|
|
|
|
# Store in database if available
|
|
if self.use_database:
|
|
with self.conn.cursor() as cur:
|
|
cur.execute(
|
|
"""
|
|
INSERT INTO model_measurements (
|
|
benchmark_id,
|
|
measurements
|
|
) VALUES (%s, %s)
|
|
""",
|
|
(
|
|
benchmark_id,
|
|
measurements,
|
|
),
|
|
)
|
|
|
|
self.logger.debug(f"collected model measurements for benchmark #{benchmark_id}: {measurements}")
|
|
|
|
def export_to_csv(self, output_dir: str = "benchmark_results"):
|
|
"""
|
|
Export all collected data to CSV files using pandas DataFrames
|
|
"""
|
|
if not self.collect_csv_data:
|
|
self.logger.warning("CSV data collection is disabled - no CSV files will be generated")
|
|
return
|
|
|
|
if not os.path.exists(output_dir):
|
|
os.makedirs(output_dir)
|
|
self.logger.info(f"Created output directory: {output_dir}")
|
|
|
|
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
|
files_created = []
|
|
|
|
# Export using pandas DataFrames
|
|
self._export_pandas_data(output_dir, timestamp, files_created)
|
|
|
|
self.logger.info(f"CSV export complete! Created {len(files_created)} files in {output_dir}")
|
|
|
|
def _export_pandas_data(self, output_dir: str, timestamp: str, files_created: list):
|
|
"""
|
|
Export CSV files using pandas DataFrames
|
|
"""
|
|
# Export benchmarks
|
|
benchmarks_file = os.path.join(output_dir, f"benchmarks_{timestamp}.csv")
|
|
self.benchmarks_df.to_csv(benchmarks_file, index=False)
|
|
files_created.append(benchmarks_file)
|
|
self.logger.info(f"Exported {len(self.benchmarks_df)} benchmark records to {benchmarks_file}")
|
|
|
|
# Export device measurements
|
|
device_file = os.path.join(output_dir, f"device_measurements_{timestamp}.csv")
|
|
self.device_measurements_df.to_csv(device_file, index=False)
|
|
files_created.append(device_file)
|
|
self.logger.info(f"Exported {len(self.device_measurements_df)} device measurement records to {device_file}")
|
|
|
|
# Export model measurements (already flattened)
|
|
model_file = os.path.join(output_dir, f"model_measurements_{timestamp}.csv")
|
|
self.model_measurements_df.to_csv(model_file, index=False)
|
|
files_created.append(model_file)
|
|
self.logger.info(f"Exported {len(self.model_measurements_df)} model measurement records to {model_file}")
|
|
|
|
# Create comprehensive summary using pandas operations
|
|
summary_file = os.path.join(output_dir, f"benchmark_summary_{timestamp}.csv")
|
|
self._create_summary(summary_file)
|
|
files_created.append(summary_file)
|
|
|
|
def _create_summary(self, summary_file: str):
|
|
"""
|
|
Create a comprehensive summary CSV using pandas operations
|
|
"""
|
|
if len(self.benchmarks_df) == 0:
|
|
# Create empty summary file
|
|
summary_df = pd.DataFrame()
|
|
summary_df.to_csv(summary_file, index=False)
|
|
self.logger.info(f"Created empty benchmark summary at {summary_file}")
|
|
return
|
|
|
|
# Start with benchmarks as the base
|
|
summary_df = self.benchmarks_df.copy()
|
|
|
|
# Add model measurements (join on benchmark_id)
|
|
if len(self.model_measurements_df) > 0:
|
|
# Drop 'time' column from model measurements to avoid conflicts
|
|
model_df = self.model_measurements_df.drop(columns=["time"], errors="ignore")
|
|
summary_df = summary_df.merge(model_df, on="benchmark_id", how="left")
|
|
|
|
# Calculate device measurement aggregates using pandas groupby
|
|
if len(self.device_measurements_df) > 0:
|
|
device_agg = (
|
|
self.device_measurements_df.groupby("benchmark_id")
|
|
.agg(
|
|
{
|
|
"cpu_util": ["mean", "max", "std", "count"],
|
|
"mem_megabytes": ["mean", "max", "std"],
|
|
"gpu_util": ["mean", "max", "std"],
|
|
"gpu_mem_megabytes": ["mean", "max", "std"],
|
|
}
|
|
)
|
|
.round(3)
|
|
)
|
|
|
|
# Flatten column names
|
|
device_agg.columns = [f"{col[0]}_{col[1]}" for col in device_agg.columns]
|
|
device_agg = device_agg.reset_index()
|
|
|
|
# Rename count column to be more descriptive
|
|
if "cpu_util_count" in device_agg.columns:
|
|
device_agg = device_agg.rename(columns={"cpu_util_count": "device_measurement_count"})
|
|
|
|
# Merge with summary
|
|
summary_df = summary_df.merge(device_agg, on="benchmark_id", how="left")
|
|
|
|
# Export the comprehensive summary
|
|
summary_df.to_csv(summary_file, index=False)
|
|
self.logger.info(f"Created comprehensive benchmark summary with {len(summary_df)} records at {summary_file}")
|
|
|
|
def close(self):
|
|
if self.use_database and self.conn:
|
|
self.conn.close()
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
logger.setLevel(logging.INFO)
|
|
|
|
handler = logging.StreamHandler(sys.stdout)
|
|
handler.setLevel(logging.INFO)
|
|
formatter = logging.Formatter("[%(levelname)s - %(asctime)s] %(message)s")
|
|
handler.setFormatter(formatter)
|
|
logger.addHandler(handler)
|
|
|
|
|
|
def parse_arguments() -> tuple[str, str, str, str, bool, str]:
|
|
"""
|
|
Parse command line arguments for the benchmarking CLI.
|
|
"""
|
|
parser = argparse.ArgumentParser(description="CLI for benchmarking the huggingface/transformers.")
|
|
|
|
parser.add_argument(
|
|
"repository",
|
|
type=str,
|
|
help="The repository name on which the benchmarking is performed.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"branch",
|
|
type=str,
|
|
help="The branch name on which the benchmarking is performed.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"commit_id",
|
|
type=str,
|
|
help="The commit hash on which the benchmarking is performed.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"commit_msg",
|
|
type=str,
|
|
help="The commit message associated with the commit, truncated to 70 characters.",
|
|
)
|
|
|
|
parser.add_argument("--csv", action="store_true", default=False, help="Enable CSV output files generation.")
|
|
|
|
parser.add_argument(
|
|
"--csv-output-dir",
|
|
type=str,
|
|
default="benchmark_results",
|
|
help="Directory for CSV output files (default: benchmark_results).",
|
|
)
|
|
|
|
args = parser.parse_args()
|
|
|
|
# CSV is disabled by default, only enabled when --csv is used
|
|
generate_csv = args.csv
|
|
|
|
return args.repository, args.branch, args.commit_id, args.commit_msg, generate_csv, args.csv_output_dir
|
|
|
|
|
|
def import_from_path(module_name, file_path):
|
|
try:
|
|
spec = importlib.util.spec_from_file_location(module_name, file_path)
|
|
module = importlib.util.module_from_spec(spec)
|
|
sys.modules[module_name] = module
|
|
spec.loader.exec_module(module)
|
|
return module
|
|
except Exception as e:
|
|
raise ImportModuleException(f"failed to load python module: {e}")
|
|
|
|
|
|
def create_database_connection():
|
|
"""
|
|
Try to create a database connection. Returns None if connection fails.
|
|
"""
|
|
if not PSYCOPG2_AVAILABLE:
|
|
logger.warning("psycopg2 not available - running in CSV-only mode")
|
|
return None
|
|
|
|
try:
|
|
import psycopg2
|
|
|
|
conn = psycopg2.connect("dbname=metrics")
|
|
logger.info("Successfully connected to database")
|
|
return conn
|
|
except Exception as e:
|
|
logger.warning(f"Failed to connect to database: {e}. Running in CSV-only mode")
|
|
return None
|
|
|
|
|
|
def create_global_metrics_recorder(
|
|
repository: str, branch: str, commit_id: str, commit_msg: str, generate_csv: bool = False
|
|
) -> MetricsRecorder:
|
|
"""
|
|
Create a global metrics recorder that will be used across all benchmarks.
|
|
"""
|
|
connection = create_database_connection()
|
|
recorder = MetricsRecorder(connection, logger, repository, branch, commit_id, commit_msg, generate_csv)
|
|
|
|
# Log the storage mode
|
|
storage_modes = []
|
|
if connection is not None:
|
|
storage_modes.append("database")
|
|
if generate_csv:
|
|
storage_modes.append("CSV")
|
|
|
|
if not storage_modes:
|
|
logger.warning("Running benchmarks with NO data storage (no database connection, CSV disabled)")
|
|
logger.warning("Use --csv flag to enable CSV output when database is unavailable")
|
|
else:
|
|
logger.info(f"Running benchmarks with: {' + '.join(storage_modes)} storage")
|
|
|
|
return recorder
|
|
|
|
|
|
if __name__ == "__main__":
|
|
benchmarks_folder_path = os.path.dirname(os.path.realpath(__file__))
|
|
benches_folder_path = os.path.join(benchmarks_folder_path, "benches")
|
|
|
|
repository, branch, commit_id, commit_msg, generate_csv, csv_output_dir = parse_arguments()
|
|
|
|
# Create a global metrics recorder
|
|
global_metrics_recorder = create_global_metrics_recorder(repository, branch, commit_id, commit_msg, generate_csv)
|
|
|
|
successful_benchmarks = 0
|
|
failed_benchmarks = 0
|
|
|
|
# Automatically discover all benchmark modules in benches/ folder
|
|
benchmark_modules = []
|
|
|
|
if os.path.exists(benches_folder_path):
|
|
logger.debug(f"Scanning for benchmarks in: {benches_folder_path}")
|
|
for entry in os.scandir(benches_folder_path):
|
|
if not entry.name.endswith(".py"):
|
|
continue
|
|
if entry.name.startswith("__"): # Skip __init__.py, __pycache__, etc.
|
|
continue
|
|
|
|
# Check if the file has a run_benchmark function
|
|
try:
|
|
logger.debug(f"checking if benches/{entry.name} has run_benchmark function")
|
|
module = import_from_path(entry.name.split(".")[0], entry.path)
|
|
if hasattr(module, "run_benchmark"):
|
|
benchmark_modules.append(entry.name)
|
|
logger.debug(f"discovered benchmark: {entry.name}")
|
|
else:
|
|
logger.debug(f"skipping {entry.name} - no run_benchmark function found")
|
|
except Exception as e:
|
|
logger.debug(f"failed to check benches/{entry.name}: {e}")
|
|
else:
|
|
logger.warning(f"Benches directory not found: {benches_folder_path}")
|
|
|
|
if benchmark_modules:
|
|
logger.info(f"Discovered {len(benchmark_modules)} benchmark(s): {benchmark_modules}")
|
|
else:
|
|
logger.warning("No benchmark modules found in benches/ directory")
|
|
|
|
for module_name in benchmark_modules:
|
|
module_path = os.path.join(benches_folder_path, module_name)
|
|
try:
|
|
logger.debug(f"loading: {module_name}")
|
|
module = import_from_path(module_name.split(".")[0], module_path)
|
|
logger.info(f"running benchmarks in: {module_name}")
|
|
|
|
# Check if the module has an updated run_benchmark function that accepts metrics_recorder
|
|
try:
|
|
# Try the new signature first
|
|
module.run_benchmark(logger, repository, branch, commit_id, commit_msg, global_metrics_recorder)
|
|
except TypeError:
|
|
# Fall back to the old signature for backward compatibility
|
|
logger.warning(
|
|
f"Module {module_name} using old run_benchmark signature - database connection will be created per module"
|
|
)
|
|
module.run_benchmark(logger, repository, branch, commit_id, commit_msg)
|
|
|
|
successful_benchmarks += 1
|
|
except ImportModuleException as e:
|
|
logger.error(e)
|
|
failed_benchmarks += 1
|
|
except Exception as e:
|
|
logger.error(f"error running benchmarks for {module_name}: {e}")
|
|
failed_benchmarks += 1
|
|
|
|
# Export CSV results at the end (if enabled)
|
|
try:
|
|
if generate_csv:
|
|
global_metrics_recorder.export_to_csv(csv_output_dir)
|
|
logger.info(f"CSV reports have been generated and saved to the {csv_output_dir} directory")
|
|
else:
|
|
logger.info("CSV generation disabled - no CSV files created (use --csv to enable)")
|
|
|
|
logger.info(f"Benchmark run completed. Successful: {successful_benchmarks}, Failed: {failed_benchmarks}")
|
|
except Exception as e:
|
|
logger.error(f"Failed to export CSV results: {e}")
|
|
finally:
|
|
global_metrics_recorder.close()
|