diff --git a/PyTorch-ONNX-exporter.md b/PyTorch-ONNX-exporter.md index 3e8e34b..8e77302 100644 --- a/PyTorch-ONNX-exporter.md +++ b/PyTorch-ONNX-exporter.md @@ -15,6 +15,8 @@ Documentation for developing the PyTorch-ONNX exporter (`torch.onnx`). * [Adding tests](#adding-tests) * [Links](#links) * [Relevant parts of PyTorch repo](#relevant-parts-of-pytorch-repo) +* [Features](#features) + * [Quantized model export](#quantized-model-export) # Development process @@ -151,3 +153,10 @@ An example of adding unit tests for a new symbolic function: [Add binary_cross_e * More Python tests: [test/jit/test_onnx_export.py](https://github.com/pytorch/pytorch/tree/onnx_ms_1/test/jit/test_onnx_export.py) * Python code: [torch/onnx/](https://github.com/pytorch/pytorch/tree/onnx_ms_1/torch/onnx) * C++ code: [torch/csrc/jit/passes/onnx/](https://github.com/pytorch/pytorch/tree/onnx_ms_1/torch/csrc/jit/passes/onnx) + +# Features + +## Quantized model export + +To support quantized model export, we need to unpack the quantized tensor inputs and the PackedParam weights (https://github.com/pytorch/pytorch/pull/69232). We construct through `TupleConstruct` to have a 1-to-1 input mapping, +so that we can use `replaceAllUsesWith` API for its successors. In addition, we support quantized namespace export, and the developers can add more symbolics for quantized operators conveniently in the current framework. \ No newline at end of file