mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 04:44:13 +08:00
Page:
Home
Pages
A quick guide on how to add and cache dependencies on PyTorch CI
Adding and maintaining type annotations in PyTorch
Autograd Basics
Autograd Onboarding Lab
Best Practices to Edit and Compile PyTorch Source Code On Windows
Bot commands
Boxing and Unboxing in the PyTorch Operator Library
Build PyTorch and LibTorch on Windows ARM64
CUDA basics
Code review values
Codegen and Structured Kernels
Continuous Integration
Core Frontend Onboarding
Cpp API Quick Walkthrough
Data Basics
DataPipes Testing Requirements
Debugging CI Failures without SSH Access
Debugging Windows with Remote Desktop or CDB (CLI windbg) on CircleCI
Debugging using with ssh for Github Actions
Dev Infra Office Hours
Developer FAQ
Dispatcher Structured Kernels Lab
Docker image build on CircleCI
Docstring Guidelines
Getting help as a contributor
Guide for adding type annotations to PyTorch
Home
How to propose feature changes to PyTorch
How to support `torch.set_deterministic()` in PyTorch operators
How to use TensorIterator
Life of a Tensor
MPS Backend
Memory format propagation rules
Modular components for benchmarking PyTorch snippets. (Experimental)
Module Onboarding Lab
Multiprocessing Technical Notes
OpInfos FAQ
Operators with Channels Last support
Public API definition and documentation
Pull request review etiquette
PyTorch's Python Frontend Backward and Forward Compatibility Policy
PyTorch AutoLabel Bot
PyTorch Basics
PyTorch CI Metrics Dashboards: the HUD
PyTorch Data Flow and Interface Diagram
PyTorch IR
PyTorch ONNX Exporter Code Reviews and Duty Rotation
PyTorch ONNX Topics
PyTorch ONNX exporter
PyTorch OSS benchmark infra
PyTorch Ops to oneDNN Functions Mapping
PyTorch Versions
PyTorch Workflow Cheatsheet
PyTorch dispatcher walkthrough
Pytorch Training Loops
Running and writing tests
Sharing design documents for discussion
Software Architecture for c10
TH to ATen porting guide
Tensor and Operator Basics
The PyTorch Contribution Process
The Ultimate Guide to PyTorch Contributions
The torch.fft module in PyTorch 1.7
Troubleshooting Documentation Build
Troubleshooting
Using hud.pytorch.org
What is considered a SEV?
Where or how should I add documentation
Writing Python in cpp (a manifesto)
Writing memory format aware operators
Writing tests in PyTorch 1.8
clang format
function transforms (aka torch.func, functorch)
lintrunner
nn Basics
torch.nn Module Documentation Style Guide
torch.onnx Namespacing
vmap Basics
vmap Onboarding Lab
Clone
130
Home
Svetlana Karslioglu edited this page 2025-08-01 12:28:33 -07:00
Welcome to the PyTorch developer's wiki!
Welcome to the PyTorch developer's wiki!
Please read our best practices if you're interested in adding a page or making edits
Community
Contributing
User docs
- Release notes
- PyTorch Versions
- Public API definition and documentation
- Frontend Backward and Forward Compatibility Policy
- Docstring Guidelines
- Troubleshooting Documentation Build
Onboarding
New to PyTorch? Don't know where to start?
Developer docs
- Developer FAQ
- Where should I add documentation?
- PyTorch Data Flow and Interface Diagram
- Multiprocessing Technical Notes
- Software Architecture for c10
- PyTorch JIT IR format (slightly out of date now)
- TH to ATen porting guide
- Writing Python in C++ (a manifesto)
- Introducing Quantized Tensor
- Life of a Tensor
- How to use
TensorIterator
- Running and writing tests
- Writing memory format aware operators
- Guide for adding type annotations to PyTorch
- The torch.fft module in PyTorch 1.7
- PyTorch-ONNX exporter
Notes
- Automatic Mixed Precision package
- Automatic Mixed Precision examples
- Autograd mechanics
- Broadcasting semantics
- CPU threading and TorchScript inference
- CUDA semantics
- Frequently Asked Questions
- Extending PyTorch
- Features for large-scale deployments
- Multiprocessing best practices
- Reproducibility
- Serialization semantics
- Windows FAQ
- Python Language Reference Coverage
- Complex Numbers
- Android
- iOS
- How-to: Writing PyTorch & Caffe2 Operators
- CUDA IPC Refcounting implementation explained
- Autograd
- Code Coverage Tool for Pytorch
- How to write tests using FileCheck
- PyTorch Release Scripts
- Serialized operator test framework
- Observers
- Snapdragon NPE Support
- Using TensorBoard in ifbpy
Named Tensors
Quantization
- Introduction to Quantization
- Quantization Operation coverage
- Implementing native quantized ops
- Extend PyTorch Quantization to Custom Backends
JIT/TorchScript
- JIT Technical Overview
- Static Runtime
- TorchScript serialization
- PyTorch Fuser
- Implementation reference for the CUDA PyTorch JIT Fuser
- TorchScript
- TorchScript Language Reference
- TorchScript Unsupported Pytorch Constructs
Distributed
- Distributed RPC Framework
- Distributed Autograd Design
- Remote Reference Protocol
- Distributed Data Parallel
- Distributed communication package
- Contributing to PyTorch Distributed
C++
- PyTorch with C++
- The C++ Frontend
- PyTorch C++ API
- Tensor basics
- Tensor Creation API
- Tensor Indexing API
- MaybeOwned<Tensor>
- Installing C++ Distributions of PyTorch
- Torch Library API
- libtorch
- C++ / Python API parity tracker
- TensorExpr C++ Tests
- JIT C++ Tests
- C++ Frontend Tests
- FAQ
- Best Practices to Edit and Compile Pytorch Source Code On Window
Benchmarks
- Distributed Data Parallel Benchmark
- Fast RNN benchmarks
- PyTorch/Caffe2 Operator Micro-benchmarks
- torch_function micro-benchmarks
- Benchmarking tool for the autograd AP
- Modular Benchmarking Components
DataLoader
Workflow docs
I would love to contribute to PyTorch!