Files
pytorch/torch/_C/_functorch.pyi
zhxchen17 ffd58293f7 [dynamo] Guard serialization for FUNCTORCH_STACK_MATCH (#152616)
Make Functorch interpreters serializable most of the time, so that we can save the guards on functorch states.

## Test Cases:

0. torch.compile() without functorch layers present. Guard should fail with any layer being pushed.
1. torch.compile() nested in vmap.
2. torch.compile() nested in grad.
3. torch.compile() nested in jvp + vmap
4. torch.compile() nested functionalize
5. torch.compile() nested in vmap + grad

Differential Revision: [D74008787](https://our.internmc.facebook.com/intern/diff/D74008787/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/152616
Approved by: https://github.com/zou3519
ghstack dependencies: #152615
2025-05-05 18:05:56 +00:00

87 lines
3.2 KiB
Python

# mypy: allow-untyped-defs
from enum import Enum
from torch import Tensor
# Defined in torch/csrc/functorch/init.cpp
def _set_dynamic_layer_keys_included(included: bool) -> None: ...
def get_unwrapped(tensor: Tensor) -> Tensor: ...
def is_batchedtensor(tensor: Tensor) -> bool: ...
def is_functionaltensor(tensor: Tensor) -> bool: ...
def is_functorch_wrapped_tensor(tensor: Tensor) -> bool: ...
def is_gradtrackingtensor(tensor: Tensor) -> bool: ...
def is_legacy_batchedtensor(tensor: Tensor) -> bool: ...
def maybe_get_bdim(tensor: Tensor) -> int: ...
def maybe_get_level(tensor: Tensor) -> int: ...
def maybe_current_level() -> int | None: ...
def unwrap_if_dead(tensor: Tensor) -> Tensor: ...
def _unwrap_for_grad(tensor: Tensor, level: int) -> Tensor: ...
def _wrap_for_grad(tensor: Tensor, level: int) -> Tensor: ...
def _unwrap_batched(tensor: Tensor, level: int) -> tuple[Tensor, int | None]: ...
def current_level() -> int: ...
def count_jvp_interpreters() -> int: ...
def _add_batch_dim(tensor: Tensor, bdim: int, level: int) -> Tensor: ...
def set_single_level_autograd_function_allowed(allowed: bool) -> None: ...
def get_single_level_autograd_function_allowed() -> bool: ...
def _unwrap_functional_tensor(tensor: Tensor, reapply_views: bool) -> Tensor: ...
def _wrap_functional_tensor(tensor: Tensor, level: int) -> Tensor: ...
def _vmap_increment_nesting(batch_size: int, randomness: str) -> int: ...
def _vmap_decrement_nesting() -> int: ...
def _grad_increment_nesting() -> int: ...
def _grad_decrement_nesting() -> int: ...
def _jvp_increment_nesting() -> int: ...
def _jvp_decrement_nesting() -> int: ...
# Defined in aten/src/ATen/functorch/Interpreter.h
class TransformType(Enum):
Torch = ...
Vmap = ...
Grad = ...
Jvp = ...
Functionalize = ...
class RandomnessType(Enum):
Error = ...
Same = ...
Different = ...
class CInterpreter:
def key(self) -> TransformType: ...
def level(self) -> int: ...
def serialize(self) -> bytes: ...
@staticmethod
def deserialize(bytes) -> CInterpreter: ...
class CGradInterpreterPtr:
def __init__(self, interpreter: CInterpreter) -> None: ...
def lift(self, Tensor) -> Tensor: ...
def prevGradMode(self) -> bool: ...
class CJvpInterpreterPtr:
def __init__(self, interpreter: CInterpreter) -> None: ...
def lift(self, Tensor) -> Tensor: ...
def prevFwdGradMode(self) -> bool: ...
class CFunctionalizeInterpreterPtr:
def __init__(self, interpreter: CInterpreter) -> None: ...
def key(self) -> TransformType: ...
def level(self) -> int: ...
def functionalizeAddBackViews(self) -> bool: ...
class CVmapInterpreterPtr:
def __init__(self, interpreter: CInterpreter) -> None: ...
def key(self) -> TransformType: ...
def level(self) -> int: ...
def batchSize(self) -> int: ...
def randomness(self) -> RandomnessType: ...
class DynamicLayer: ...
def get_dynamic_layer_stack_depth() -> int: ...
def get_interpreter_stack() -> list[CInterpreter]: ...
def peek_interpreter_stack() -> CInterpreter: ...
def pop_dynamic_layer_stack() -> DynamicLayer: ...
def pop_dynamic_layer_stack_and_undo_to_depth(int) -> None: ...
def push_dynamic_layer_stack(dl: DynamicLayer) -> int: ...