mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
This reverts commit ad22f0ffb456fc3f967ad32e09376f7c9cf94a56. Reverted https://github.com/pytorch/pytorch/pull/102133 on behalf of https://github.com/jcaip due to breaking lots of internal builds, see D48144534 ([comment](https://github.com/pytorch/pytorch/pull/102133#issuecomment-1671707821))
386 lines
16 KiB
Python
386 lines
16 KiB
Python
import warnings
|
|
from collections import namedtuple
|
|
from typing import Any, Optional
|
|
|
|
import torch
|
|
|
|
__all__ = [
|
|
"SparseSemiStructuredTensor",
|
|
"to_sparse_semi_structured",
|
|
]
|
|
|
|
_SEMI_STRUCTURED_SPARSE_CONFIG = namedtuple(
|
|
"_SEMI_STRUCTURED_SPARSE_CONFIG", "compression_factor min_rows min_cols"
|
|
)
|
|
_DTYPE_TO_SEMI_STRUCTURED_SPARSE_CONFIG = {
|
|
torch.int8: _SEMI_STRUCTURED_SPARSE_CONFIG(10, 32, 128),
|
|
torch.float16: _SEMI_STRUCTURED_SPARSE_CONFIG(9, 32, 64),
|
|
torch.bfloat16: _SEMI_STRUCTURED_SPARSE_CONFIG(9, 32, 64),
|
|
}
|
|
|
|
_WARNING_SHOWN = False
|
|
|
|
|
|
class SparseSemiStructuredTensor(torch.Tensor):
|
|
"""This class implementes semi-structured sparsity as a Tensor subclass.
|
|
|
|
Semi-structured sparsity describes a sparsity pattern where n in every 2n elements are sparse,
|
|
depending on the datatype. It is also referred to as 2:4 sparsity or fine-grained
|
|
structured sparsity.
|
|
|
|
Currently, this class supports 2:4 sparsity for int8, float16 and bfloat16 dtypes.
|
|
|
|
This subclass stores the dense tensor in a compressed form by only storing the specified elements and corresponding metadata.
|
|
These two are stored next to each other in one contiguous tensor.
|
|
|
|
We choose to store the specified elements and the metadata in a single tensor for future compatibilty with cuSPARSELt.
|
|
|
|
compressed tensor = [ specified elements of original tensor | metadata ]
|
|
|
|
For an original tensor of size (m, k) we expect the first m * k // 2 elements to be the kept elements
|
|
The rest of the tensor is metadata.
|
|
|
|
This subclass also overrides __torch_dispatch__ to use _sparse_semi_structured_linear for faster matrix multiplications
|
|
via sparse CUTLASS kernels. In the future we will also call into cuSPARSELt kernels for more performance gains.
|
|
"""
|
|
|
|
@staticmethod
|
|
def __new__(
|
|
cls,
|
|
original_tensor: Optional[torch.Tensor],
|
|
original_shape: Optional[torch.Size] = None,
|
|
compressed_tensor: Optional[torch.Tensor] = None,
|
|
transposed: bool = False,
|
|
):
|
|
"""
|
|
Create a new instance of the class.
|
|
|
|
When original_tensor is passed in, we compress it and store the compresed representation.
|
|
We can also create new instance of the class from the compressed representation without the original tensor.
|
|
|
|
Args:
|
|
original_tensor: The original dense tensor, or None, if we have already compressed the tensor.
|
|
original_shape: The shape of the original dense tensor
|
|
compressed_tensor: A flattened tensor to store the specified elements and metadata.
|
|
transposed: Whether the tensor is transposed or not.
|
|
|
|
Returns:
|
|
torch.Tensor: A torch.Tensor wrapper subclass.
|
|
|
|
Raises:
|
|
ValueError: If both original_tensor and compressed_tensor are None.
|
|
|
|
"""
|
|
if original_tensor is not None:
|
|
previous_tensor = original_tensor
|
|
original_shape = original_tensor.shape
|
|
elif compressed_tensor is not None:
|
|
previous_tensor = compressed_tensor
|
|
else:
|
|
raise ValueError("Both compressed_tensor and original_tensor are None!")
|
|
|
|
kwargs = {}
|
|
kwargs["device"] = previous_tensor.device # type: ignore[assignment]
|
|
kwargs["dtype"] = previous_tensor.dtype # type: ignore[assignment]
|
|
kwargs["layout"] = previous_tensor.layout # type: ignore[assignment]
|
|
kwargs["requires_grad"] = False # type: ignore[assignment]
|
|
|
|
return torch.Tensor._make_wrapper_subclass(cls, original_shape, **kwargs) # type: ignore[attr-defined]
|
|
|
|
@staticmethod
|
|
def __get_indices_dtype(values_dtype):
|
|
if values_dtype == torch.int8:
|
|
return torch.int32
|
|
elif values_dtype in (torch.float16, torch.bfloat16):
|
|
return torch.int16
|
|
else:
|
|
raise RuntimeError(f"Datatype {values_dtype} is not supported!")
|
|
return None
|
|
|
|
def __init__(
|
|
self,
|
|
original_tensor: Optional[torch.Tensor],
|
|
original_shape: Optional[torch.Size] = None,
|
|
compressed_tensor: Optional[torch.Tensor] = None,
|
|
transposed: bool = False,
|
|
) -> None:
|
|
"""SparseSemiStructuredTensor constructor.
|
|
|
|
Args:
|
|
original_tensor: The original dense tensor, or None, if we have already compressed the tensor.
|
|
original_shape: The shape of the original dense tensor
|
|
compressed_tensor: A flattened tensor to store the specified elements and metadata.
|
|
transposed: Whether the tensor is transposed or not.
|
|
|
|
Returns:
|
|
None
|
|
|
|
Raises:
|
|
RuntimeError: If original_tensor is not a supported dtype, dim, shape, or device.
|
|
"""
|
|
global _WARNING_SHOWN
|
|
if not _WARNING_SHOWN:
|
|
warnings.warn(
|
|
(
|
|
"The PyTorch API of SparseSemiStructuredTensor is in prototype stage "
|
|
"and will change in the near future. Please open a Github issue "
|
|
"for features requests and see our documentation on the torch.sparse "
|
|
"module for further information about the project."
|
|
),
|
|
UserWarning,
|
|
)
|
|
_WARNING_SHOWN = True
|
|
|
|
# if original tensor is passed in, we need to compress it and store the compressed representation.
|
|
if original_tensor is not None:
|
|
# check device
|
|
if not original_tensor.is_cuda:
|
|
raise RuntimeError(
|
|
f"Error original_tensor.device= {original_tensor.device} is not supported! "
|
|
"Only CUDA tensors are currently supported."
|
|
)
|
|
|
|
# check dim
|
|
if original_tensor.dim() != 2:
|
|
raise RuntimeError(
|
|
f"Error original_tensor.dim = {original_tensor.dim()} is not supported! "
|
|
"Only 2d tensors are currently supported."
|
|
)
|
|
|
|
# check dtype
|
|
if original_tensor.dtype not in _DTYPE_TO_SEMI_STRUCTURED_SPARSE_CONFIG:
|
|
raise RuntimeError(
|
|
f"Error original_tensor.dtype {original_tensor.dtype} is not a supported dtype! "
|
|
"dtype must be one of: {_DTYPE_TO_SEMI_STRUCTURED_SPARSE_CONFIG}"
|
|
)
|
|
|
|
# check shape
|
|
m, n = original_tensor.shape
|
|
min_rows = _DTYPE_TO_SEMI_STRUCTURED_SPARSE_CONFIG[original_tensor.dtype].min_rows
|
|
min_cols = _DTYPE_TO_SEMI_STRUCTURED_SPARSE_CONFIG[original_tensor.dtype].min_cols
|
|
if m < min_rows or m % min_rows or n < min_cols or n % min_cols:
|
|
# TODO in the future we can add in padding to support dimensions that aren't perfect multiples
|
|
raise RuntimeError(
|
|
f"Error original_tensor.shape {original_tensor.shape} is not supported! "
|
|
"Both dimensions must be larger or equal than and a multiple of ({min_rows}, {min_cols})"
|
|
)
|
|
|
|
# This code calculates the size of the compressed tensor.
|
|
# compression factor is different based on dtype it's given by the formula below for 2:4 sparsity:
|
|
# compression_factor = 1/2 + 1/bitwidth(dtype)
|
|
original_size = original_tensor.nelement()
|
|
compression_factor = _DTYPE_TO_SEMI_STRUCTURED_SPARSE_CONFIG[
|
|
original_tensor.dtype
|
|
].compression_factor
|
|
compressed_size = original_size * compression_factor // 16
|
|
|
|
compressed_tensor = torch.empty(
|
|
(compressed_size,),
|
|
dtype=original_tensor.dtype,
|
|
device=original_tensor.device,
|
|
)
|
|
|
|
from torch.sparse._semi_structured_conversions import sparse_semi_structured_from_dense
|
|
|
|
sparse, meta = sparse_semi_structured_from_dense(original_tensor)
|
|
compressed_tensor[: m * n // 2] = sparse.view(-1)
|
|
compressed_tensor[m * n // 2 :] = meta.view(original_tensor.dtype).view(-1)
|
|
|
|
# set values
|
|
self.original_tensor = None
|
|
self.compressed_tensor = compressed_tensor
|
|
self.transposed = transposed
|
|
|
|
def __repr__(self) -> str: # type: ignore[override]
|
|
"""Return string representation of SparseSemiStructuredTensor
|
|
|
|
Returns:
|
|
str: String representation
|
|
|
|
Raises:
|
|
None
|
|
"""
|
|
return (
|
|
f"SparseSemiStructuredTensor(shape={self.shape}, "
|
|
f"transposed={self.transposed}"
|
|
f"values={self.values()}"
|
|
f"metadata={self.indices()})"
|
|
)
|
|
|
|
__torch_function__ = torch._C._disabled_torch_function_impl
|
|
|
|
@classmethod
|
|
def __torch_dispatch__(cls, func, types, args, kwargs) -> Any:
|
|
"""Overload __torch_dispatch__ to use torch._sparse_semi_structured_linear.
|
|
|
|
`torch.structured_sparse_linear` uses accelerated sparse CUTLASS kernels.
|
|
In the future we plan to also add in support for cuSPARSELt kernels.
|
|
|
|
Args:
|
|
func: The function being dispatched.
|
|
types: The types of the arguments.
|
|
args: The arguments passed to the function.
|
|
kwargs: The keyword arguments passed to the function.
|
|
|
|
Returns:
|
|
Any: The result of the dispatched operation.
|
|
|
|
Raises:
|
|
NotImplementedError: If the dispatched operation is not implemented.
|
|
"""
|
|
# Since this code runs below autograd, a detach corresponds to only returning a new object
|
|
if func is torch.ops.aten.detach.default:
|
|
return SparseSemiStructuredTensor(
|
|
args[0].original_tensor,
|
|
original_shape=args[0].shape,
|
|
compressed_tensor=args[0].compressed_tensor,
|
|
transposed=args[0].transposed,
|
|
)
|
|
|
|
# Because we cannot go from the compressed representation back to the dense representation currently,
|
|
# we just keep track of how many times we have been transposed. Depending on whether the sparse matrix
|
|
# is the first or second argument, we expect an even / odd number of calls to transpose respectively.
|
|
if func is torch.ops.aten.t.default:
|
|
return SparseSemiStructuredTensor(
|
|
args[0].original_tensor,
|
|
original_shape=args[0].shape,
|
|
compressed_tensor=args[0].compressed_tensor,
|
|
transposed=not args[0].transposed,
|
|
)
|
|
|
|
# handle addmm
|
|
if func is torch.ops.aten.addmm.default:
|
|
bias, input_A, input_B = args
|
|
|
|
# Currently, we only support the first matrix being sparse for addmm/mm in cuSPARSELT and CUTLASS.
|
|
# CUTLASS only supports the first input to be sparse for a given matmul.
|
|
# cuSPARSELt does not have this limitation, although our implementation is only for sparse first.
|
|
|
|
# We support second matrix sparse matmul by taking advantage of some transpose properties:
|
|
# This is also why we want an odd number of transposed for second matrix sparse vs an even number
|
|
# of transpose calss for first matrix sparse.
|
|
# F.linear(x) = addmm(bias, input, weight.t()) = b + xW' = (b + xW')''
|
|
# = (W''x' + b')' = (Wx' + b')' = addmm(bias.T, weight, input).T
|
|
if isinstance(input_B, cls) and input_B.transposed:
|
|
result = torch._sparse_semi_structured_linear(
|
|
input_A, input_B.values(), input_B.indices(), bias=bias
|
|
)
|
|
return result
|
|
|
|
# handle mm
|
|
if func is torch.ops.aten.mm.default:
|
|
input_A, input_B = args
|
|
|
|
if isinstance(input_A, cls) and not input_A.transposed:
|
|
transposed_result = torch._sparse_semi_structured_linear(
|
|
input_B.t(), input_A.values(), input_A.indices()
|
|
)
|
|
return transposed_result.t()
|
|
|
|
elif isinstance(input_B, cls) and input_B.transposed:
|
|
result = torch._sparse_semi_structured_linear(
|
|
input_A, input_B.values(), input_B.indices()
|
|
)
|
|
return result
|
|
|
|
# When torch is run with inference mode, pytorch does not decompose torch.ops.aten.linear into a .t() and addmm(),
|
|
# so we must match the aten.linear op.
|
|
# TODO see if there's a way to force pytorch to decompose the op so we don't have to handle this here.
|
|
if func is torch.ops.aten.linear.default:
|
|
input_tensor, weight, bias = args
|
|
if isinstance(weight, cls):
|
|
result = torch._sparse_semi_structured_linear(
|
|
input_tensor, weight.values(), weight.indices(), bias=bias
|
|
)
|
|
return result
|
|
|
|
# handle values
|
|
if func is torch.ops.aten.values.default:
|
|
m, k = args[0].shape
|
|
num_kept_elements = m * k // 2
|
|
return args[0].compressed_tensor[:num_kept_elements].view(m, k // 2)
|
|
|
|
# handle indices
|
|
if func is torch.ops.aten.indices.default:
|
|
m, k = args[0].shape
|
|
num_kept_elements = m * k // 2
|
|
metadata = args[0].compressed_tensor[num_kept_elements:].view(m, -1)
|
|
|
|
# the metadata is expected to be in different datatypes for fp16/int8 respectively for CUTLASS.
|
|
indices_dtype = SparseSemiStructuredTensor.__get_indices_dtype(args[0].dtype)
|
|
return metadata.view(indices_dtype)
|
|
|
|
error_string = "\n".join(
|
|
[f"func {func} with args: "]
|
|
+ [f"arg{i}: {arg}" for i, arg in enumerate(args)]
|
|
)
|
|
raise NotImplementedError(error_string)
|
|
|
|
def to_dense(self):
|
|
if self.compressed_tensor is None:
|
|
raise RuntimeError("Compressed tensor is not set, cannot convert to dense!")
|
|
|
|
m, n = self.shape
|
|
indices_dtype = SparseSemiStructuredTensor.__get_indices_dtype(self.dtype)
|
|
|
|
from torch.sparse._semi_structured_conversions import sparse_semi_structured_to_dense
|
|
|
|
return sparse_semi_structured_to_dense(
|
|
self.compressed_tensor[: m * n // 2].view(m, -1),
|
|
self.compressed_tensor[m * n // 2 :].view(indices_dtype).view(m, -1)
|
|
)
|
|
|
|
|
|
def to_sparse_semi_structured(
|
|
original_tensor: torch.Tensor,
|
|
transposed: bool = False,
|
|
) -> SparseSemiStructuredTensor:
|
|
"""
|
|
This function converts a dense tensor into a sparse semi-structured tensor.
|
|
It will return a SparseSemiStructuredTensor, a subclass of torch.Tensor.
|
|
|
|
This function will check to ensure the dense tensor has the right dtype, size, dims, and device.
|
|
We currently only support semi-structured sparse tensors for 2d CUDA tensors.
|
|
Additionally, your tensor must be a positive multiple of a block size given the dtype
|
|
|
|
- torch.float16 (r, c) must be >= and a multiple of 64
|
|
- torch.int8 (r, c) must be >= and a multiple of 128
|
|
|
|
Args:
|
|
original_tensor (Tensor): the dense tensor to convert
|
|
transposed (bool, optional): whether the dense tensor is transposed
|
|
|
|
Returns:
|
|
SparseSemiStructuredTensor: A sparse semi-structured tensor created from the given original_tensor
|
|
|
|
Raises:
|
|
None
|
|
Example:
|
|
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA)
|
|
>>> A = torch.Tensor([0, 0, 1, 1]).tile((128, 32)).half().cuda()
|
|
tensor([[0., 0., 1., ..., 0., 1., 1.],
|
|
[0., 0., 1., ..., 0., 1., 1.],
|
|
[0., 0., 1., ..., 0., 1., 1.],
|
|
...,
|
|
[0., 0., 1., ..., 0., 1., 1.],
|
|
[0., 0., 1., ..., 0., 1., 1.],
|
|
[0., 0., 1., ..., 0., 1., 1.]], device='cuda:0', dtype=torch.float16)
|
|
>>> A_sparse = to_sparse_semi_structured(A)
|
|
SparseSemiStructuredTensor(shape=torch.Size([128, 128]), transposed=False, values=tensor([[1., 1., 1., ..., 1., 1., 1.],
|
|
[1., 1., 1., ..., 1., 1., 1.],
|
|
[1., 1., 1., ..., 1., 1., 1.],
|
|
...,
|
|
[1., 1., 1., ..., 1., 1., 1.],
|
|
[1., 1., 1., ..., 1., 1., 1.],
|
|
[1., 1., 1., ..., 1., 1., 1.]], device='cuda:0', dtype=torch.float16),
|
|
metadata=tensor([[-4370, -4370, -4370, ..., -4370, -4370, -4370],
|
|
[-4370, -4370, -4370, ..., -4370, -4370, -4370],
|
|
[-4370, -4370, -4370, ..., -4370, -4370, -4370],
|
|
...,
|
|
[-4370, -4370, -4370, ..., -4370, -4370, -4370],
|
|
[-4370, -4370, -4370, ..., -4370, -4370, -4370],
|
|
[-4370, -4370, -4370, ..., -4370, -4370, -4370]], device='cuda:0',
|
|
dtype=torch.int16))
|
|
"""
|
|
return SparseSemiStructuredTensor(original_tensor, transposed=transposed)
|