Files
pytorch/test/cpp/jit/test_backend_compiler_lib.cpp
2025-07-17 12:08:33 +00:00

202 lines
7.4 KiB
C++

#include <ATen/Utils.h>
#include <c10/core/TensorImpl.h>
#include <c10/util/ApproximateClock.h>
#include <torch/csrc/jit/backends/backend.h>
#include <torch/csrc/jit/backends/backend_exception.h>
#ifndef NO_PROFILING
#include <torch/csrc/jit/mobile/profiler_edge.h>
#endif
namespace torch {
namespace jit {
// Implementation of a PyTorch Backend that can process, compile and execute
// TorchScript Modules composed of 'add' and 'sub' operators. It just supports
// for modules that implement a sum or subtraction of 2 inputs (i.e. in1 + in2
// or in1 - in2). Hence the methods of the models expect exactly 2 inputs of
// type Tensor. This backend is used to demonstrate the flow of compilation and
// execution with minimum amount of work. It's not intended to a practical
// backend that can be used for actual inference.
// Implementation details:
//
// Compilation
// 1. A backend with minimum compilation features, "backend_with_compiler_demo"
// is added.
// 2. The compilation happens AOT in the preprocess function registered to this
// backend.
// 3. Compiled results are stored in a string blob for each method. They are
// serialized to the lowered module with __getstate__ function.
// 4. Error message with model source code is thrown, for features not handled
// by the backend compiler.
//
// Runtime
// 1. The compiled blob is loaded in __setstate__ method.
// 2. The compile function of the backend: parse the preprocessed blob to the
// format (a list of tokens) that the backend can understand.
// 3. The execute function of the backend executes the specified method
// (handle).
namespace {
std::vector<std::tuple<std::string, int64_t>> parseMethodHandle(
const std::string& blob) {
std::vector<std::tuple<std::string, int64_t>> result;
std::stringstream s_stream(blob);
constexpr char debug_handle_token[] = "<debug_handle>";
while (s_stream.good()) {
std::string substr;
getline(s_stream, substr, ',');
auto debug_handle_pos = substr.find(debug_handle_token);
int64_t debug_handle{-1};
auto instruction = substr.substr(0);
if (debug_handle_pos != std::string::npos) {
instruction = substr.substr(0, debug_handle_pos);
debug_handle = stoi(substr.substr(debug_handle_pos + 14));
}
result.push_back(std::make_tuple(instruction, debug_handle));
}
return result;
}
float* float_data_ptr(const at::Tensor& t) {
return t.data_ptr<float>();
}
} // namespace
class BackendWithCompiler : public PyTorchBackendInterface {
public:
// Constructor.
// NOLINTNEXTLINE(modernize-use-equals-default)
explicit BackendWithCompiler() {}
virtual ~BackendWithCompiler() override = default;
bool is_available() override {
return true;
}
// Since the actual compilation is done AOT for this backend, compile just
// forwards everything along. In a non toy setup this could grab information
// from that runtime that might be relevant to execute, such as build flags
// the resolution of the devices camera, or basically any runtime specific
// information that wouldn't be available server side where preprocess is
// called.
c10::impl::GenericDict compile(
c10::IValue processed,
c10::impl::GenericDict method_compile_spec) override {
auto dict = processed.toGenericDict();
auto handles =
c10::Dict<std::string, std::vector<std::tuple<std::string, int64_t>>>();
for (const auto& kv : dict) {
auto tokens = parseMethodHandle(kv.value().toStringRef());
handles.insert(kv.key().toStringRef(), tokens);
}
return c10::impl::toGenericDict(handles);
}
// Function that actually executes the model in the backend. Here there is
// nothing to dispatch to, so the backend is implemented locally within
// execute and it only supports add, subtract, and constant. In a non toy
// backend you can imagine how this function could be used to actually
// dispatch the inputs to the relevant backend/device.
c10::impl::GenericList execute(
c10::IValue
handle, // example: [('prim::Constant#1', 14), ('aten::add', 15)]
c10::impl::GenericList inputs) override {
TORCH_INTERNAL_ASSERT(inputs.size() == 2);
c10::IValue val0 = inputs[0];
at::Tensor x = val0.toTensor();
c10::IValue val1 = inputs[1];
at::Tensor h = val1.toTensor();
std::vector<std::tuple<int64_t, int64_t, std::string>> op_runtimes_us;
op_runtimes_us.reserve(handle.toList().size());
c10::List<at::Tensor> output_list;
#ifndef NO_PROFILING
auto start_us = c10::getTime() / 1000;
#endif
for (const auto& token : handle.toList()) {
IValue val = token;
auto instruction = val.toTupleRef().elements()[0].toStringRef();
auto debug_handle = val.toTupleRef().elements()[1].toInt();
#ifndef NO_PROFILING
auto start_time_us = c10::getTime() / 1000;
#endif
try {
if (instruction.rfind("prim::Constant", 0) == 0) {
// 15 is the length of 'prim::Constant#' the constant val comes after
TORCH_CHECK(
instruction.size() > 15,
"Constant value is expected in ",
instruction);
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
auto sub = instruction.substr(15);
} else if (instruction == "aten::add" || instruction == "aten::sub") {
TORCH_CHECK(x.sizes() == h.sizes());
if (x.dim() > 1 || (x.dim() == 1 && x.size(0) > 1)) {
TORCH_WARN(
"Only the first elements of the tensors are added or subbed.");
}
TORCH_CHECK(
(x.scalar_type() == c10::ScalarType::Float &&
h.scalar_type() == c10::ScalarType::Float),
"Only float tensors are compatible for add and sub.");
at::Tensor y = at::detail::empty_cpu(x.sizes(), at::kFloat);
auto x_ptr = float_data_ptr(x);
auto h_ptr = float_data_ptr(h);
auto y_ptr = float_data_ptr(y);
#ifndef NO_PROFILING
RECORD_BACKEND_MEMORY_EVENT_TO_EDGE_PROFILER(
x_ptr,
x.numel() * sizeof(float),
x.numel() * sizeof(float),
x.numel() * sizeof(float) + y.numel() * sizeof(float) +
h.numel() * sizeof(float),
c10::Device(c10::kCPU));
#endif
if (instruction == "aten::add") {
y_ptr[0] = x_ptr[0] + h_ptr[0];
} else {
y_ptr[0] = x_ptr[0] - h_ptr[0];
}
output_list.emplace_back(y);
} else {
TORCH_CHECK(
false,
"Instruction, ",
instruction,
" is not supported. ",
"Contact the backend POC for details. ");
}
} catch (c10::Error& e) {
TORCH_DELEGATED_BACKEND_THROW(false, e.what(), debug_handle);
}
#ifndef NO_PROFILING
auto end_time_us = c10::getTime() / 1000;
auto duration = end_time_us - start_time_us;
op_runtimes_us.emplace_back(duration, debug_handle, instruction);
#endif
}
#ifndef NO_PROFILING
for (const auto& tup : op_runtimes_us) {
RECORD_BACKEND_EVENT_TO_EDGE_PROFILER(
start_us,
start_us + std::get<0>(tup),
std::get<1>(tup),
std::get<2>(tup),
"test_backend");
start_us = start_us + std::get<0>(tup);
}
#endif
return c10::impl::toList(output_list);
}
};
namespace {
constexpr auto backend_name = "backend_with_compiler_demo";
static auto cls = torch::jit::backend<BackendWithCompiler>(backend_name);
} // namespace
} // namespace jit
} // namespace torch