mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Fixes https://github.com/microsoft/onnx-converters-private/issues/132 @kit1980 and @malfet agreed in disabling ONNX tests for Caffe2 builds. With this change, exporting models with `operator+export_type=ONNX_ATEN_FALLBACK` will properly test non-caffe2 builds, which is the only scenario for aten fallback after caffe2 deprecation Pull Request resolved: https://github.com/pytorch/pytorch/pull/90475 Approved by: https://github.com/kit1980, https://github.com/BowenBao
73 lines
2.7 KiB
Python
73 lines
2.7 KiB
Python
# Owner(s): ["module: onnx"]
|
|
|
|
# Some standard imports
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import pytorch_test_common
|
|
|
|
import torch.nn.init as init
|
|
import torch.onnx
|
|
from caffe2.python.core import workspace
|
|
from caffe2.python.model_helper import ModelHelper
|
|
from pytorch_helper import PyTorchModule
|
|
from torch import nn
|
|
from torch.testing._internal import common_utils
|
|
from torch.testing._internal.common_utils import skipIfNoLapack
|
|
|
|
|
|
class TestCaffe2Backend(pytorch_test_common.ExportTestCase):
|
|
@skipIfNoLapack
|
|
@unittest.skip("test broken because Lapack was always missing.")
|
|
def test_helper(self):
|
|
class SuperResolutionNet(nn.Module):
|
|
def __init__(self, upscale_factor, inplace=False):
|
|
super().__init__()
|
|
|
|
self.relu = nn.ReLU(inplace=inplace)
|
|
self.conv1 = nn.Conv2d(1, 64, (5, 5), (1, 1), (2, 2))
|
|
self.conv2 = nn.Conv2d(64, 64, (3, 3), (1, 1), (1, 1))
|
|
self.conv3 = nn.Conv2d(64, 32, (3, 3), (1, 1), (1, 1))
|
|
self.conv4 = nn.Conv2d(32, upscale_factor**2, (3, 3), (1, 1), (1, 1))
|
|
self.pixel_shuffle = nn.PixelShuffle(upscale_factor)
|
|
|
|
self._initialize_weights()
|
|
|
|
def forward(self, x):
|
|
x = self.relu(self.conv1(x))
|
|
x = self.relu(self.conv2(x))
|
|
x = self.relu(self.conv3(x))
|
|
x = self.pixel_shuffle(self.conv4(x))
|
|
return x
|
|
|
|
def _initialize_weights(self):
|
|
init.orthogonal(self.conv1.weight, init.calculate_gain("relu"))
|
|
init.orthogonal(self.conv2.weight, init.calculate_gain("relu"))
|
|
init.orthogonal(self.conv3.weight, init.calculate_gain("relu"))
|
|
init.orthogonal(self.conv4.weight)
|
|
|
|
torch_model = SuperResolutionNet(upscale_factor=3)
|
|
|
|
fake_input = torch.randn(1, 1, 224, 224, requires_grad=True)
|
|
|
|
# use ModelHelper to create a C2 net
|
|
helper = ModelHelper(name="test_model")
|
|
start = helper.Sigmoid(["the_input"])
|
|
# Embed the ONNX-converted pytorch net inside it
|
|
(toutput,) = PyTorchModule(helper, torch_model, (fake_input,), [start])
|
|
output = helper.Sigmoid(toutput)
|
|
|
|
workspace.RunNetOnce(helper.InitProto())
|
|
workspace.FeedBlob("the_input", fake_input.data.numpy())
|
|
# print([ k for k in workspace.blobs ])
|
|
workspace.RunNetOnce(helper.Proto())
|
|
c2_out = workspace.FetchBlob(str(output))
|
|
|
|
torch_out = torch.sigmoid(torch_model(torch.sigmoid(fake_input)))
|
|
|
|
np.testing.assert_almost_equal(torch_out.data.cpu().numpy(), c2_out, decimal=3)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
common_utils.run_tests()
|