Files
pytorch/test/distributed/test_functional_api.py
Tristan Rice ddd0ed1b43 distributed: templated ring attention (#124215)
This adds a templated version of the ring attention forwards function as well as tests it with memory efficient attention. This doesn't add support for memory efficient attention in DTensor. That will be added in a follow up PR.

This templating is also a POC of how to support other attention ops such as Jagged/nested tensor and as well how to implement striped attention in a scalable way.

Misc changes:

* Fixes all_to_all_single autograd implementation with CUDA + adds NCCL test
* Adds compile support to the ring attention implementations (required some tweaks to process groups)

Test plan:

```
pytest test/distributed/_tensor/test_attention.py
pytest test/distributed/test_functional_api.py
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/124215
Approved by: https://github.com/wanchaol
2024-04-19 00:57:08 +00:00

815 lines
28 KiB
Python

# Owner(s): ["oncall: distributed"]
import os
import sys
import unittest
from functools import partial, wraps
import torch
import torch.distributed as dist
import torch.distributed._functional_collectives as ft_c
import torch.distributed._tensor as dt
import torch.distributed.distributed_c10d as c10d
from functorch import make_fx
from torch._inductor.utils import run_and_get_code
from torch.testing import FileCheck
from torch.testing._internal.distributed.fake_pg import FakeStore
from torch.utils._triton import has_triton
if not dist.is_available():
print("Distributed not available, skipping tests", file=sys.stderr)
sys.exit(0)
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
MultiThreadedTestCase,
requires_nccl,
TEST_SKIPS,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
def new_subgroups(group_size: int, pg_tag=None):
world_size = dist.get_world_size()
subgroups = []
cur_subgroup = None
for subgroup_id in range(world_size // group_size):
start_rank = subgroup_id * group_size
end_rank = start_rank + group_size
ranks_in_subgroup = list(range(start_rank, end_rank))
subgroup = c10d._new_group_with_tag(
ranks=ranks_in_subgroup,
pg_tag=pg_tag,
)
subgroups.append(subgroup)
rank = dist.get_rank()
if rank in ranks_in_subgroup:
cur_subgroup = subgroup
return cur_subgroup, subgroups
class TestExpand(MultiThreadedTestCase):
@property
def world_size(self):
return 4
def setUp(self):
super().setUp()
self._spawn_threads()
def test_expand_1d_rank_list(self):
tag, rankset, group_size = ft_c._expand_group([0, 1, 2, 3])
self.assertEqual("", tag)
self.assertEqual([0, 1, 2, 3], rankset)
self.assertEqual(4, group_size)
tag, rankset, group_size = ft_c._expand_group([0, 1, 2, 3], "bla")
self.assertEqual("bla", tag)
def test_expand_2d_rank_list(self):
tag, rankset, group_size = ft_c._expand_group([[0, 1], [2, 3]])
self.assertEqual("", tag)
self.assertEqual([0, 1, 2, 3], rankset)
self.assertEqual(2, group_size)
tag, rankset, group_size = ft_c._expand_group([[0, 1], [2, 3]], "blu")
self.assertEqual("blu", tag)
with self.assertRaisesRegex(ValueError, "group sizes must be identical"):
ft_c._expand_group([[0], [1, 2, 3]])
def test_expand_process_group(self):
tag, rankset, group_size = ft_c._expand_group(dist.group.WORLD)
self.assertEqual(c10d._get_group_tag(dist.group.WORLD), tag)
self.assertEqual([0, 1, 2, 3], rankset)
self.assertEqual(4, group_size)
tag, rankset, group_size = ft_c._expand_group(dist.group.WORLD, "bla")
self.assertEqual("bla", tag)
my_pg, others = new_subgroups(group_size=2)
tag, rankset, group_size = ft_c._expand_group(my_pg)
self.assertEqual(c10d._get_group_tag(my_pg), tag)
self.assertEqual(dist.get_process_group_ranks(my_pg), rankset)
self.assertEqual(2, group_size)
my_pg = None
for i in range(dist.get_world_size()):
group = c10d._new_group_with_tag([i], pg_tag="my_pg")
if i == dist.get_rank():
my_pg = group
tag, rankset, group_size = ft_c._expand_group(my_pg)
self.assertEqual("my_pg", tag)
self.assertEqual([dist.get_rank()], rankset)
self.assertEqual(1, group_size)
tag, rankset, group_size = ft_c._expand_group(my_pg, "bla")
self.assertEqual("bla", tag)
def test_expand_device_mesh(self):
mesh = dt.DeviceMesh("cpu", torch.arange(4))
tag, rankset, group_size = ft_c._expand_group(mesh)
self.assertEqual(c10d._get_group_tag(mesh.get_group(mesh_dim=0)), tag)
self.assertEqual([0, 1, 2, 3], rankset)
self.assertEqual(4, group_size)
mesh = dt.DeviceMesh("cpu", torch.arange(4))
tag, rankset, group_size = ft_c._expand_group(mesh)
self.assertEqual(c10d._get_group_tag(mesh.get_group(mesh_dim=0)), tag)
self.assertEqual([0, 1, 2, 3], rankset)
self.assertEqual(4, group_size)
def test_expand_device_mesh_tuple(self):
mesh = dt.DeviceMesh("cpu", torch.arange(4).view(2, 2))
with self.assertRaisesRegex(AssertionError, "Only 1D mesh"):
tag, rankset, group_size = ft_c._expand_group(mesh)
tag, rankset, group_size = ft_c._expand_group((mesh, 0))
self.assertEqual(c10d._get_group_tag(mesh.get_group(mesh_dim=0)), tag)
expected_rankset = [0, 2] if dist.get_rank() in [0, 2] else [1, 3]
self.assertEqual(expected_rankset, rankset)
self.assertEqual(2, group_size)
tag, rankset, group_size = ft_c._expand_group((mesh, 1))
expected_rankset = [0, 1] if dist.get_rank() in [0, 1] else [2, 3]
self.assertEqual(c10d._get_group_tag(mesh.get_group(mesh_dim=1)), tag)
self.assertEqual(expected_rankset, rankset)
self.assertEqual(2, group_size)
class TestPgTag(MultiThreadedTestCase):
@property
def world_size(self):
return 4
def setUp(self):
super().setUp()
self._spawn_threads()
"""
The behavior we want is as follow:
- rankset+tag will always result in the same PG.
Do we enforce this by failing creation of new PGs or returning existing ones?
Return existing one.
- default tag gives existing behavior.
This means we should create duplicates.
- _expand_group on _default-tagged pg should always resolve to it
This mean we can't depend on empty tag + rankset.
"""
def test_pg_creation_with_tag(self):
my_group, _ = new_subgroups(group_size=2, pg_tag="blu")
my_group2, _ = new_subgroups(group_size=2, pg_tag="blu")
self.assertEqual(my_group, my_group2)
my_group3, _ = new_subgroups(group_size=2, pg_tag="blu2")
self.assertNotEqual(my_group, my_group3)
my_group4, _ = new_subgroups(group_size=2)
self.assertNotEqual(my_group, my_group4)
my_group5, _ = new_subgroups(group_size=2)
self.assertNotEqual(my_group4, my_group5)
def test_pg_lookup_roundtrip(self):
pg_tag0, _ = new_subgroups(group_size=2, pg_tag="blu")
pg_tag1, _ = new_subgroups(group_size=2, pg_tag="blu2")
pg_notag0, _ = new_subgroups(group_size=2)
pg_notag1, _ = new_subgroups(group_size=2)
def roundtrip(pg):
tag, rankset, _ = ft_c._expand_group(pg)
return c10d._find_pg_by_ranks_and_tag(tag, rankset)
self.assertEqual(pg_tag0, roundtrip(pg_tag0))
self.assertEqual(pg_tag1, roundtrip(pg_tag1))
self.assertEqual(pg_notag0, roundtrip(pg_notag0))
self.assertEqual(pg_notag1, roundtrip(pg_notag1))
def test_pg_lookup_with_tag(self):
pg_tag0, _ = new_subgroups(group_size=2, pg_tag="blu")
pg_tag1, _ = new_subgroups(group_size=2, pg_tag="bla")
pg_notag0, _ = new_subgroups(group_size=2)
def roundtrip(pg, pg_tag):
tag, rankset, _ = ft_c._expand_group(pg, pg_tag)
return c10d._find_pg_by_ranks_and_tag(tag, rankset)
self.assertEqual(pg_tag0, roundtrip(pg_tag1, "blu"))
self.assertEqual(pg_tag0, roundtrip(pg_notag0, "blu"))
# Cannot erase the tag of a PG
self.assertEqual(pg_tag0, roundtrip(pg_tag0, ""))
def test_find_or_create_pg(self):
pg = c10d._find_or_create_pg_by_ranks_and_tag("blu", [0, 1, 2, 3], 2)
pg_tag0, _ = new_subgroups(group_size=2, pg_tag="blu")
self.assertEqual(pg, pg_tag0)
def test_find_root_pg(self):
pg = c10d._find_pg_by_ranks_and_tag("", [0, 1, 2, 3])
self.assertEqual(dist.group.WORLD, pg)
@instantiate_parametrized_tests
class TestTraceableCollectives(MultiThreadedTestCase):
@property
def world_size(self):
return 4
def setUp(self):
super().setUp()
self._spawn_threads()
@parametrize("device", ["cpu", "cuda"])
def test_broadcast(self, device):
if device == "cuda":
if torch.cuda.device_count() < self.world_size:
self.skipTest("Not enough CUDA devices")
torch.cuda.set_device(dist.get_rank())
if dist.get_rank() == 0:
tensor = torch.ones([4], device=device)
else:
tensor = torch.zeros([4], device=device)
mesh = dt.DeviceMesh(device, torch.arange(4))
res = ft_c.broadcast(tensor, 0, mesh)
self.assertEqual(res, torch.ones([4], device=device))
@parametrize("device", ["cpu", "cuda"])
def test_all_reduce_eager(self, device):
if device == "cuda":
if torch.cuda.device_count() < self.world_size:
self.skipTest("Not enough CUDA devices")
torch.cuda.set_device(dist.get_rank())
tensor = torch.ones([4], device=device)
mesh = dt.DeviceMesh(device, torch.arange(4))
res = ft_c.all_reduce(tensor, "sum", mesh)
self.assertEqual(res, torch.tensor([4, 4, 4, 4], dtype=torch.float))
mesh = dt.DeviceMesh(device, torch.arange(4).view(2, 2))
res2 = ft_c.all_reduce(tensor, "sum", (mesh, 1))
self.assertEqual(res2, torch.tensor([2, 2, 2, 2], dtype=torch.float))
@parametrize("device", ["cpu", "cuda"])
def test_all_reduce_coalesced_eager(self, device):
if device == "cuda":
if torch.cuda.device_count() < self.world_size:
self.skipTest("Not enough CUDA devices")
torch.cuda.set_device(dist.get_rank())
t0 = torch.ones([4], device=device)
t1 = torch.ones([6], device=device) + 2
mesh = dt.DeviceMesh(device, torch.arange(4))
res = ft_c.all_reduce_coalesced([t0, t1], "sum", mesh)
self.assertEqual(res[0], t0 * 4)
self.assertEqual(res[1], t1 * 4)
@parametrize("device", ["cpu", "cuda"])
def test_all_gather_tensor(self, device):
if device == "cuda":
if torch.cuda.device_count() < self.world_size:
self.skipTest("Not enough CUDA devices")
torch.cuda.set_device(dist.get_rank())
# testing 1d/2d mesh
mesh_1d = dt.DeviceMesh(device, torch.arange(self.world_size))
mesh_2d = dt.DeviceMesh(device, torch.arange(self.world_size).view(2, 2))
for mesh in [mesh_1d, mesh_2d]:
dims_to_gather = [0, 1, 2]
for dim in dims_to_gather:
output_size = [3, 3, 3]
output_size[dim] *= mesh.size(0)
# each rank have its own tensor, all_gather gives a bigger tensor
local_tensor = torch.ones([3, 3, 3], device=device)
gathered_tensor = ft_c.all_gather_tensor(
local_tensor, gather_dim=dim, group=(mesh, 0)
)
self.assertEqual(gathered_tensor, torch.ones(output_size))
@parametrize("device", ["cpu", "cuda"])
def test_all_gather_into_tensor_coalesced(self, device):
if device == "cuda":
if torch.cuda.device_count() < self.world_size:
self.skipTest("Not enough CUDA devices")
torch.cuda.set_device(dist.get_rank())
tensors = [torch.ones([4], device=device), torch.ones([4], device=device) + 1]
mesh = dt.DeviceMesh(device, torch.arange(4))
res = ft_c.all_gather_into_tensor_coalesced(tensors, mesh)
self.assertEqual(2, len(res))
self.assertEqual(torch.ones([4 * dist.get_world_size()], device=device), res[0])
self.assertEqual(
torch.ones([4 * dist.get_world_size()], device=device) + 1, res[1]
)
@parametrize("device", ["cpu", "cuda"])
def test_reduce_scatter_tensor(self, device):
if device == "cuda":
if torch.cuda.device_count() < self.world_size:
self.skipTest("Not enough CUDA devices")
torch.cuda.set_device(dist.get_rank())
# testing 1d/2d mesh
mesh_1d = dt.DeviceMesh(device, torch.arange(self.world_size))
mesh_2d = dt.DeviceMesh(device, torch.arange(self.world_size).view(2, 2))
for mesh in [mesh_1d, mesh_2d]:
dims_to_scatter = [0, 1]
for dim in dims_to_scatter:
group_size = mesh.size(0)
input_size = [3, 3]
output_size = [3, 3]
output_size[dim] *= group_size
input_tensor = torch.ones(output_size, device=device)
res_num = 1 * group_size
rs_tensor = ft_c.reduce_scatter_tensor(
input_tensor, "sum", scatter_dim=dim, group=(mesh, 0)
)
self.assertEqual(rs_tensor, torch.ones(input_size) * res_num)
@parametrize("device", ["cpu", "cuda"])
def test_reduce_scatter_into_tensor_coalesced(self, device):
if device == "cuda":
if torch.cuda.device_count() < self.world_size:
self.skipTest("Not enough CUDA devices")
torch.cuda.set_device(dist.get_rank())
tensors = [
torch.ones([4], dtype=torch.int64, device=device),
torch.ones([4], dtype=torch.int64, device=device) + 1,
]
mesh = dt.DeviceMesh(device, torch.arange(4))
res = ft_c.reduce_scatter_tensor_coalesced(tensors, "sum", [0, 0], mesh)
self.assertEqual(2, len(res))
self.assertEqual(torch.tensor([4], device=device), res[0])
self.assertEqual(torch.tensor([8], device=device), res[1])
class TestMetaCollectives(TestCase):
def test_all_reduce(self):
x = torch.rand((2, 3, 4), device="meta")
out = ft_c.all_reduce(x, "sum", "0")
self.assertEqual(x.size(), out.size())
class TestGradCollectives(MultiThreadedTestCase):
@property
def world_size(self):
return 2
def setUp(self):
super().setUp()
self._spawn_threads()
def test_all_reduce(self):
x = torch.rand([4], requires_grad=True)
y = torch.rand([4], requires_grad=True)
out = ft_c.all_reduce(x, "sum", dist.group.WORLD)
(out + y).sum().backward()
self.assertIsNone(x.grad)
class TestMakeFx(MultiThreadedTestCase):
@property
def world_size(self):
return 2
def setUp(self):
super().setUp()
self._spawn_threads()
def tearDown(self):
super().tearDown()
# race condition with threads causes is_fx_tracing flag to be set incorrectly.
torch.fx._symbolic_trace._is_fx_tracing_flag = False
self.assertFalse(torch.fx._symbolic_trace.is_fx_tracing())
def test_all_reduce_tracing(self):
def allred(input):
return ft_c.all_reduce(input, "sum", group=dist.group.WORLD) + 1
graph = make_fx(allred)(torch.rand(4))
FileCheck().check("all_reduce").check("wait_tensor").run(str(graph.graph))
mesh = dt.DeviceMesh("cpu", torch.arange(self.world_size))
def allred_mesh(input):
return ft_c.all_reduce(input, "sum", mesh) + 1
mesh_graph = make_fx(allred_mesh)(torch.rand(4))
FileCheck().check_not("get_attr").check("wait_tensor").run(
str(mesh_graph.graph)
)
def allred_mesh_dim(input):
return ft_c.all_reduce(input, "sum", (mesh, 0)) + 1
mesh_dim_graph = make_fx(allred_mesh_dim)(torch.rand(4))
FileCheck().check_not("get_attr").check("wait_tensor").run(
str(mesh_dim_graph.graph)
)
BACKEND = dist.Backend.NCCL if torch.cuda.is_available() else dist.Backend.GLOO
WORLD_SIZE = 2
def exit_if_lt_x_gpu(x):
if torch.cuda.device_count() < x:
sys.exit(TEST_SKIPS[f"multi-gpu-{x}"].exit_code)
def with_comms(func=None):
if func is None:
return partial(
with_comms,
)
@wraps(func)
def wrapper(self, *args, **kwargs):
if BACKEND == dist.Backend.NCCL and torch.cuda.device_count() < self.world_size:
sys.exit(TEST_SKIPS[f"multi-gpu-{self.world_size}"].exit_code)
self.dist_init()
func(self)
self.destroy_comms()
return wrapper
class TestCollectivesWithNCCL(MultiProcessTestCase):
def setUp(self):
super().setUp()
os.environ["WORLD_SIZE"] = str(self.world_size)
os.environ["BACKEND"] = dist.Backend.NCCL
self._spawn_processes()
@property
def device(self):
return torch.device(self.rank)
@property
def world_size(self):
return WORLD_SIZE
@property
def process_group(self):
return dist.group.WORLD
def dist_init(self):
dist.init_process_group(
backend=BACKEND,
world_size=self.world_size,
rank=self.rank,
init_method=f"file://{self.file_name}",
)
# set device for nccl pg for collectives
if BACKEND == "nccl":
torch.cuda.set_device(self.rank)
def destroy_comms(self):
# Wait for all ranks to reach here before starting shutdown.
dist.barrier()
dist.destroy_process_group()
@requires_nccl()
@with_comms()
def test_all_gather_into_tensor_coalesced(self):
exit_if_lt_x_gpu(self.world_size)
tensors = [
torch.ones([4], device=f"cuda:{self.rank}"),
torch.ones([4], device=f"cuda:{self.rank}") + 1,
]
mesh = dt.DeviceMesh(f"cuda:{self.rank}", torch.arange(self.world_size))
res = ft_c.all_gather_into_tensor_coalesced(tensors, mesh)
self.assertEqual(2, len(res))
self.assertEqual(torch.ones([4 * dist.get_world_size()]), res[0])
self.assertEqual(torch.ones([4 * dist.get_world_size()]) + 1, res[1])
@with_comms()
def test_all_to_all_single(self):
device = "cuda" if BACKEND == dist.Backend.NCCL else "cpu"
mesh = dt.DeviceMesh(device, torch.arange(self.world_size))
rank = dist.get_rank()
row = self.world_size * (rank + 1) * (self.world_size + 1) / 2
x = torch.ones(int(row), 5, device=device) * (rank + 1)
split_sizes = [(i + 1) * (rank + 1) for i in range(self.world_size)]
y = ft_c.all_to_all_single(
x, output_split_sizes=split_sizes, input_split_sizes=split_sizes, group=mesh
)
expected = []
for idx, tensor in enumerate(torch.split(x, split_sizes)):
expected.append(torch.full_like(tensor, (idx + 1)))
expected = torch.cat(expected)
self.assertEqual(y, expected)
@with_comms()
def test_all_to_all_single_1d_input(self):
device = "cuda" if BACKEND == dist.Backend.NCCL else "cpu"
mesh = dt.DeviceMesh(device, torch.arange(self.world_size))
rank = dist.get_rank()
row = self.world_size * (rank + 1) * (self.world_size + 1) / 2
x = torch.ones(int(row), device=device) * (rank + 1)
split_sizes = [(i + 1) * (rank + 1) for i in range(self.world_size)]
y = ft_c.all_to_all_single(
x, output_split_sizes=split_sizes, input_split_sizes=split_sizes, group=mesh
)
expected = []
for idx, tensor in enumerate(torch.split(x, split_sizes)):
expected.append(torch.full_like(tensor, (idx + 1)))
expected = torch.cat(expected)
self.assertEqual(y, expected)
@with_comms()
def test_all_to_all_single_split_sizes_none(self):
device = "cuda" if BACKEND == dist.Backend.NCCL else "cpu"
mesh = dt.DeviceMesh(device, torch.arange(self.world_size))
rank = dist.get_rank()
x = torch.ones(self.world_size, self.world_size, device=device) * (rank + 1)
y = ft_c.all_to_all_single(
x, output_split_sizes=None, input_split_sizes=None, group=mesh
)
expected = []
for idx, tensor in enumerate(torch.chunk(x, self.world_size)):
expected.append(torch.full_like(tensor, (idx + 1)))
expected = torch.cat(expected)
self.assertEqual(y, expected)
@unittest.skipIf(not has_triton(), "Inductor+gpu needs triton and recent GPU arch")
@requires_nccl()
@with_comms()
def test_tracing(self):
def allreduce(t, pg):
return ft_c.all_reduce(t, "sum", pg)
compiled_allreduce = torch.compile(allreduce, fullgraph=True)
compiled_allreduce(torch.randn(8, device=self.device), self.process_group)
@unittest.skipIf(not has_triton(), "Inductor+gpu needs triton and recent GPU arch")
def test_tracing_with_fakepg(self):
exit_if_lt_x_gpu(self.world_size)
def allreduce(t, pg):
return ft_c.all_reduce(t, "sum", pg)
compiled_allreduce = torch.compile(allreduce, fullgraph=True)
dist.init_process_group(
backend="fake",
rank=0,
world_size=8,
store=FakeStore(),
)
allreduce(torch.randn(8, device=self.device), pg=dist.group.WORLD)
class TestNCCLCollectivesWithWorldSize4(TestCollectivesWithNCCL):
@property
def world_size(self):
return 4
@requires_nccl()
@with_comms()
def test_permute_tensor_with_sub_group(self):
exit_if_lt_x_gpu(self.world_size)
device = "cuda"
mesh_dim_names = ["dp", "tp"]
mesh_2d = dt.init_device_mesh(
device, (2, self.world_size // 2), mesh_dim_names=mesh_dim_names
)
for mesh_name in mesh_dim_names:
mesh = mesh_2d[mesh_name]
rank = mesh.get_local_rank()
# rank0: [0., 1.], rank1: [2., 3.]
send_tensor = torch.arange(2, dtype=torch.float32, device=device) + 2 * rank
recvd_tensor = ft_c.permute_tensor(send_tensor, [1, 0], group=mesh)
# rank0: [2., 3.], rank1: [0., 1.]
expected = torch.arange(2, dtype=torch.float32, device=device) + 2 * (
(rank - 1 + 2) % 2
)
self.assertEqual(
recvd_tensor,
expected,
msg=f"Expected {expected} on {self.rank=} (local_rank={rank}), "
f"but received {recvd_tensor} instead.",
)
@instantiate_parametrized_tests
class TestFunctionalAutograd(MultiThreadedTestCase):
def setUp(self):
super().setUp()
self._spawn_threads()
@property
def world_size(self):
return 2
@parametrize("compile", [True, False])
def test_all_to_all_single(self, compile: bool = True) -> None:
group = dist.group.WORLD.group_name
t = torch.ones((self.world_size, 2), requires_grad=True)
def my_func(t: torch.Tensor, world_size: int) -> torch.Tensor:
sizes = [1] * world_size
t = t * 2
assert t.requires_grad
out = ft_c.all_to_all_single_autograd(t, sizes, sizes, group)
out = out + 0
return out
if compile:
compiled = torch.compile(my_func, fullgraph=True, backend="aot_eager")
else:
compiled = my_func
out = compiled(t, self.world_size)
self.assertEqual(out.shape, t.shape)
self.assertEqual(out, torch.full_like(t, 2.0))
self.assertIsNotNone(out.grad_fn)
self.assertTrue(out.requires_grad)
loss = out.sum()
loss.backward()
self.assertEqual(t.grad, torch.full_like(t, 2.0))
def test_all_to_all_single_inductor(self) -> None:
group = dist.group.WORLD.group_name
t = torch.rand((self.world_size, 2), requires_grad=True)
def my_func(t: torch.Tensor, world_size: int) -> torch.Tensor:
sizes = [1] * world_size
t = t * 10
assert t.requires_grad
out = ft_c.all_to_all_single_autograd(t, sizes, sizes, group)
out = out + 2
return out.sum()
compiled = torch.compile(my_func, fullgraph=True)
def run_with_backward():
out = compiled(t, self.world_size)
out.backward()
res, codes = run_and_get_code(run_with_backward)
for code in codes:
FileCheck().check_count(
"_c10d_functional.all_to_all_single.default", 1, exactly=True
).check_count("_c10d_functional.wait_tensor.default", 1, exactly=True).run(
code
)
self.assertIsNotNone(t.grad)
@parametrize("compile", [True, False])
def test_all_gather_tensor(self, compile: bool) -> None:
group = dist.group.WORLD.group_name
def my_func(t: torch.Tensor, dim: int) -> torch.Tensor:
assert t.requires_grad
out = ft_c.all_gather_tensor_autograd(
t * 1.0,
gather_dim=dim,
group=group,
)
out = out * 1.0
return out
if compile:
compiled = torch.compile(my_func, fullgraph=True, backend="aot_eager")
else:
compiled = my_func
dims_to_gather = [0, 1, 2]
for dim in dims_to_gather:
output_size = [3, 3, 3]
output_size[dim] *= self.world_size
# each rank have its own tensor, all_gather gives a bigger tensor
local_tensor = torch.ones([3, 3, 3], requires_grad=True)
gathered_tensor = compiled(local_tensor, dim)
self.assertEqual(gathered_tensor, torch.ones(output_size))
gathered_tensor.sum().backward()
self.assertEqual(
local_tensor.grad,
torch.full((3, 3, 3), fill_value=float(self.world_size)),
)
@parametrize("compile", [True, False])
def test_reduce_scatter_tensor(self, compile: bool) -> None:
group = dist.group.WORLD.group_name
def my_func(t: torch.Tensor, dim: int) -> torch.Tensor:
assert t.requires_grad
rs_tensor = (
ft_c.reduce_scatter_tensor_autograd(
input_tensor * 1.0, "sum", scatter_dim=dim, group=group
)
* 1.0
)
return rs_tensor
if compile:
compiled = torch.compile(my_func, fullgraph=True, backend="aot_eager")
else:
compiled = my_func
dims_to_scatter = [0, 1]
for dim in dims_to_scatter:
group_size = self.world_size
input_size = [3, 3]
output_size = [3, 3]
output_size[dim] *= group_size
input_tensor = torch.ones(output_size, requires_grad=True)
rs_tensor = compiled(input_tensor, dim)
res_num = 1 * group_size
self.assertEqual(rs_tensor, torch.ones(input_size) * res_num)
rs_tensor.sum().backward()
self.assertEqual(input_tensor.grad, torch.full(output_size, fill_value=1.0))
class TestFunctionalAutogradWithNCCL(MultiProcessTestCase):
def setUp(self):
super().setUp()
os.environ["WORLD_SIZE"] = str(self.world_size)
os.environ["BACKEND"] = dist.Backend.NCCL
self._spawn_processes()
@property
def device(self):
return torch.device(self.rank)
@property
def world_size(self):
return 2
@property
def process_group(self):
return dist.group.WORLD
def dist_init(self):
dist.init_process_group(
backend=BACKEND,
world_size=self.world_size,
rank=self.rank,
init_method=f"file://{self.file_name}",
)
# set device for nccl pg for collectives
if BACKEND == "nccl":
torch.cuda.set_device(self.rank)
def destroy_comms(self):
# Wait for all ranks to reach here before starting shutdown.
dist.barrier()
dist.destroy_process_group()
@requires_nccl()
@with_comms()
def test_all_to_all_single(self) -> None:
group = self.process_group.group_name
t = torch.ones((self.world_size, 2), requires_grad=True, device=self.device)
sizes = [1] * self.world_size
assert t.requires_grad
out = ft_c.all_to_all_single_autograd(t * 2, sizes, sizes, group) + 0
self.assertEqual(out.shape, t.shape)
self.assertEqual(out, torch.full_like(t, 2.0))
self.assertIsNotNone(out.grad_fn)
self.assertTrue(out.requires_grad)
loss = out.sum()
loss.backward()
self.assertEqual(t.grad, torch.full_like(t, 2.0))
if __name__ == "__main__":
run_tests()