mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-22 22:25:10 +08:00
Summary: Stacked on https://github.com/pytorch/pytorch/pull/14378, only look at the last commit. This changes the way methods are defined in TorchScript archives to use PythonPrint rather than ONNX protobufs. It also updates torch.proto to directly document the tensor data structure actually being serialized. Notes: * because PythonPrint prints all the methods at once per module, this removes MethodDef in favor of a single torchscript_area and a separate caffe2_graphs entry. Note that NetDef's already have method names, so there is no need or a separate method name entry. * This switches cpp/pickle area to RecordRef (references to a file in the container format) since it is possible the data in these arenas may be large and not suited to json ouput. * Removes 'annotations' -- annotations should be re-added on the first commit that actually has a practical use for them. In the current state it is unlikely they are representing the right information. * Some expect files have changed because PythonPrint is preserving more debug name information for parameter names. * MethodEncoder (the ONNX output format) has been deleted. There is still some cleanup possible combining EncoderBase and GraphEncode now that there is only a single pathway using EncoderBase. * This incorporates the changes from #14397 to define TensorDef Pull Request resolved: https://github.com/pytorch/pytorch/pull/14400 Reviewed By: suo Differential Revision: D13231800 Pulled By: zdevito fbshipit-source-id: af5c1152d0bd6bca8b06c4703f59b161bb19f571
606 lines
26 KiB
Python
606 lines
26 KiB
Python
r"""
|
|
The torch.onnx module contains functions to export models into the ONNX
|
|
IR format. These models can be loaded with the ONNX library and then
|
|
converted to models which run on other deep learning frameworks.
|
|
"""
|
|
|
|
import torch
|
|
import torch.jit
|
|
import torch.autograd
|
|
import torch.serialization
|
|
import re
|
|
from torch._six import container_abcs
|
|
import contextlib
|
|
import numbers
|
|
import warnings
|
|
import functools
|
|
import types
|
|
from torch._six import string_classes
|
|
from torch.autograd import Function, function
|
|
from torch.jit import _unique_state_dict
|
|
from torch.onnx import ONNX_ARCHIVE_MODEL_PROTO_NAME, ExportTypes, OperatorExportTypes
|
|
from torch._C import ListType
|
|
|
|
|
|
@contextlib.contextmanager
|
|
def set_training(model, mode):
|
|
r"""
|
|
A context manager to temporarily set the training mode of 'model'
|
|
to 'mode', resetting it when we exit the with-block. A no-op if
|
|
mode is None.
|
|
"""
|
|
if mode is None:
|
|
yield
|
|
return
|
|
old_mode = model.training
|
|
if old_mode != mode:
|
|
model.train(mode)
|
|
try:
|
|
yield
|
|
finally:
|
|
if old_mode != mode:
|
|
model.train(old_mode)
|
|
|
|
|
|
def export(model, args, f, export_params=True, verbose=False, training=False,
|
|
input_names=None, output_names=None, aten=False, export_raw_ir=False,
|
|
operator_export_type=None):
|
|
r"""
|
|
Export a model into ONNX format. This exporter runs your model
|
|
once in order to get a trace of its execution to be exported;
|
|
at the moment, it supports a limited set of dynamic models (e.g., RNNs.)
|
|
|
|
See also: :ref:`onnx-export`
|
|
|
|
Arguments:
|
|
model (torch.nn.Module): the model to be exported.
|
|
args (tuple of arguments): the inputs to
|
|
the model, e.g., such that ``model(*args)`` is a valid
|
|
invocation of the model. Any non-Tensor arguments will
|
|
be hard-coded into the exported model; any Tensor arguments
|
|
will become inputs of the exported model, in the order they
|
|
occur in args. If args is a Tensor, this is equivalent
|
|
to having called it with a 1-ary tuple of that Tensor.
|
|
(Note: passing keyword arguments to the model is not currently
|
|
supported. Give us a shout if you need it.)
|
|
f: a file-like object (has to implement fileno that returns a file descriptor)
|
|
or a string containing a file name. A binary Protobuf will be written
|
|
to this file.
|
|
export_params (bool, default True): if specified, all parameters will
|
|
be exported. Set this to False if you want to export an untrained model.
|
|
In this case, the exported model will first take all of its parameters
|
|
as arguments, the ordering as specified by ``model.state_dict().values()``
|
|
verbose (bool, default False): if specified, we will print out a debug
|
|
description of the trace being exported.
|
|
training (bool, default False): export the model in training mode. At
|
|
the moment, ONNX is oriented towards exporting models for inference
|
|
only, so you will generally not need to set this to True.
|
|
input_names(list of strings, default empty list): names to assign to the
|
|
input nodes of the graph, in order
|
|
output_names(list of strings, default empty list): names to assign to the
|
|
output nodes of the graph, in order
|
|
aten (bool, default False): [DEPRECATED. use operator_export_type] export the
|
|
model in aten mode. If using aten mode, all the ops original exported
|
|
by the functions in symbolic.py are exported as ATen ops.
|
|
export_raw_ir (bool, default False): [DEPRECATED. use operator_export_type]
|
|
export the internal IR directly instead of converting it to ONNX ops.
|
|
operator_export_type (enum, default OperatorExportTypes.ONNX):
|
|
OperatorExportTypes.ONNX: all ops are exported as regular ONNX ops.
|
|
OperatorExportTypes.ONNX_ATEN: all ops are exported as ATen ops.
|
|
OperatorExportTypes.ONNX_ATEN_FALLBACK: if symbolic is missing,
|
|
fall back on ATen op.
|
|
OperatorExportTypes.RAW: export raw ir.
|
|
"""
|
|
if aten or export_raw_ir:
|
|
assert operator_export_type is None
|
|
assert aten ^ export_raw_ir
|
|
operator_export_type = OperatorExportTypes.ATEN if aten else OperatorExportTypes.RAW
|
|
elif operator_export_type is None:
|
|
if torch.onnx.PYTORCH_ONNX_CAFFE2_BUNDLE:
|
|
operator_export_type = OperatorExportTypes.ONNX_ATEN_FALLBACK
|
|
else:
|
|
operator_export_type = OperatorExportTypes.ONNX
|
|
_export(model, args, f, export_params, verbose, training, input_names, output_names,
|
|
operator_export_type=operator_export_type)
|
|
|
|
|
|
# ONNX can't handle constants that are lists of tensors, which can
|
|
# get generated in constant prop. So we split them back into prim::ListConstructs
|
|
def _split_tensor_list_constants(g, block):
|
|
for node in block.nodes():
|
|
for subblock in node.blocks():
|
|
_split_tensor_list_constants(g, subblock)
|
|
if node.kind() == "prim::Constant":
|
|
output_type = node.output().type()
|
|
if output_type.isSubtypeOf(ListType.ofTensors()):
|
|
inputs = [g.create("prim::Constant").t_('value', t)
|
|
.insertBefore(node).output()
|
|
for t in node['value']]
|
|
lc = (g.create("prim::ListConstruct", inputs)
|
|
.insertBefore(node)
|
|
.output()
|
|
.setType(ListType.ofTensors()))
|
|
node.output().replaceAllUsesWith(lc)
|
|
|
|
|
|
def _optimize_graph(graph, operator_export_type):
|
|
torch._C._jit_pass_remove_inplace_ops(graph)
|
|
# we record now record some ops like ones/zeros
|
|
# into a trace where we previously recorded constants
|
|
# use constant prop to maintain our current level of onnx support
|
|
# without implementing symbolics for all of them
|
|
torch._C._jit_pass_constant_propagation(graph)
|
|
_split_tensor_list_constants(graph, graph)
|
|
# run dce to eliminate dead parts of the graph that might have been
|
|
# left behind by things like symbolic_override
|
|
torch._C._jit_pass_dce(graph)
|
|
torch._C._jit_pass_lint(graph)
|
|
|
|
torch._C._jit_pass_canonicalize_ops(graph)
|
|
torch._C._jit_pass_lint(graph)
|
|
|
|
torch._C._jit_pass_peephole(graph, True)
|
|
torch._C._jit_pass_lint(graph)
|
|
|
|
# onnx only supports tensors, but 1 / 2 = 0.5 and tensor(1) / tensor(2) = 0
|
|
torch._C._jit_pass_prepare_division_for_onnx(graph)
|
|
# onnx only supports tensors, so we turn all out number types into tensors
|
|
torch._C._jit_pass_erase_number_types(graph)
|
|
# onnx does not support tuples, so try to remove them
|
|
torch._C._jit_pass_lower_all_tuples(graph)
|
|
torch._C._jit_pass_peephole(graph, True)
|
|
torch._C._jit_pass_lint(graph)
|
|
|
|
if operator_export_type != OperatorExportTypes.RAW:
|
|
graph = torch._C._jit_pass_onnx(graph, operator_export_type)
|
|
torch._C._jit_pass_lint(graph)
|
|
torch._C._jit_pass_onnx_peephole(graph)
|
|
torch._C._jit_pass_lint(graph)
|
|
torch._C._jit_pass_dce(graph)
|
|
torch._C._jit_pass_lint(graph)
|
|
torch._C._jit_pass_fixup_onnx_loops(graph)
|
|
torch._C._jit_pass_lint(graph)
|
|
graph = torch._C._jit_pass_canonicalize(graph)
|
|
torch._C._jit_pass_lint(graph)
|
|
return graph
|
|
|
|
|
|
def _trace(func, args, operator_export_type, return_outs=False):
|
|
# Special case for common case of passing a single Tensor
|
|
if isinstance(args, torch.Tensor):
|
|
args = (args, )
|
|
|
|
trace, torch_out = torch.jit.get_trace_graph(func, args, _force_outplace=True)
|
|
trace.set_graph(_optimize_graph(trace.graph(), operator_export_type))
|
|
if return_outs:
|
|
return trace, torch_out
|
|
return trace
|
|
|
|
|
|
def _trace_and_get_graph_from_model(model, args, training):
|
|
|
|
# A basic sanity check: make sure the state_dict keys are the same
|
|
# before and after running the model. Fail fast!
|
|
orig_state_dict_keys = _unique_state_dict(model).keys()
|
|
|
|
# By default, training=False, which is good because running a model in
|
|
# training mode could result in internal buffers getting updated, dropout
|
|
# getting applied, etc. If you really know what you're doing, you
|
|
# can turn training=True (or None, to preserve whatever the original
|
|
# training mode was.)
|
|
with set_training(model, training):
|
|
trace, torch_out = torch.jit.get_trace_graph(model, args, _force_outplace=True)
|
|
|
|
if orig_state_dict_keys != _unique_state_dict(model).keys():
|
|
raise RuntimeError("state_dict changed after running the tracer; "
|
|
"something weird is happening in your model!")
|
|
|
|
return trace.graph(), torch_out
|
|
|
|
|
|
def _model_to_graph(model, args, f, verbose=False, training=False,
|
|
input_names=None, output_names=None,
|
|
operator_export_type=OperatorExportTypes.ONNX,
|
|
example_outputs=None, propagate=False):
|
|
# Special case for common case of passing a single Tensor
|
|
if isinstance(args, torch.Tensor):
|
|
args = (args, )
|
|
|
|
if isinstance(model, torch.jit.ScriptModule):
|
|
torch_out = None
|
|
assert example_outputs is not None, "example_outputs must be provided when exporting a ScriptModule"
|
|
if isinstance(example_outputs, torch.Tensor):
|
|
example_outputs = [example_outputs]
|
|
try:
|
|
method = model.__getattr__('forward')
|
|
graph = method.propagate_and_assign_input_and_output_shapes(
|
|
args, example_outputs, False, propagate)
|
|
# Erase number types to bring the graph to a pre-NumberType state
|
|
params = method.params()
|
|
except AttributeError:
|
|
# TODO: just trace it
|
|
raise RuntimeError('\'forward\' method must be a script method')
|
|
else:
|
|
graph, torch_out = _trace_and_get_graph_from_model(model, args, training)
|
|
params = list(_unique_state_dict(model).values())
|
|
|
|
graph = _optimize_graph(graph, operator_export_type)
|
|
|
|
# NB: ONNX requires complete information about output types, which might be
|
|
# erased by some optimizations, so we need to set it explicitly again.
|
|
if torch_out is not None:
|
|
output_tensors, _ = torch._C._jit_flatten(torch_out)
|
|
for output, tensor in zip(graph.outputs(), output_tensors):
|
|
output.inferTypeFrom(tensor)
|
|
|
|
_set_input_and_output_names(graph, input_names, output_names)
|
|
if verbose:
|
|
print(graph)
|
|
|
|
return graph, params, torch_out
|
|
|
|
|
|
def export_to_pretty_string(model, args, f, export_params=True, verbose=False, training=False,
|
|
input_names=None, output_names=None, aten=False, export_raw_ir=False,
|
|
operator_export_type=None, export_type=ExportTypes.PROTOBUF_FILE,
|
|
example_outputs=None, propagate=False, google_printer=False):
|
|
if aten or export_raw_ir:
|
|
assert operator_export_type is None
|
|
assert aten ^ export_raw_ir
|
|
operator_export_type = OperatorExportTypes.ATEN if aten else OperatorExportTypes.RAW
|
|
elif operator_export_type is None:
|
|
operator_export_type = OperatorExportTypes.ONNX
|
|
return _export_to_pretty_string(model, args, f, export_params, verbose, training,
|
|
input_names, output_names, operator_export_type,
|
|
export_type, example_outputs, propagate, google_printer)
|
|
|
|
|
|
def _export_to_pretty_string(model, args, f, export_params=True, verbose=False, training=False,
|
|
input_names=None, output_names=None, operator_export_type=OperatorExportTypes.ONNX,
|
|
export_type=ExportTypes.PROTOBUF_FILE, example_outputs=None, propagate=False,
|
|
google_printer=False):
|
|
graph, params, torch_out = _model_to_graph(model, args, f, verbose,
|
|
training, input_names,
|
|
output_names, operator_export_type,
|
|
example_outputs, propagate)
|
|
|
|
from torch.onnx.symbolic import _onnx_opset_version
|
|
return graph._pretty_print_onnx(params, _onnx_opset_version, False, operator_export_type, google_printer)
|
|
|
|
|
|
# NOTE: the output `torch_out` will contain the output tensors resulting from
|
|
# the trace of a Module. In the case that a torch.nn.ScriptModule is passed in,
|
|
# this output will be None, since we are not doing any tracing but rather
|
|
# directly extracting the graph.
|
|
def _export(model, args, f, export_params=True, verbose=False, training=False,
|
|
input_names=None, output_names=None, operator_export_type=OperatorExportTypes.ONNX,
|
|
export_type=ExportTypes.PROTOBUF_FILE, example_outputs=None, propagate=False):
|
|
graph, params, torch_out = _model_to_graph(model, args, f, verbose,
|
|
training, input_names,
|
|
output_names, operator_export_type,
|
|
example_outputs, propagate)
|
|
|
|
# TODO: Don't allocate a in-memory string for the protobuf
|
|
from torch.onnx.symbolic import _onnx_opset_version
|
|
defer_weight_export = export_type is not ExportTypes.PROTOBUF_FILE
|
|
if export_params:
|
|
proto, export_map = graph._export_onnx(params, _onnx_opset_version, defer_weight_export, operator_export_type)
|
|
else:
|
|
proto, export_map = graph._export_onnx([], _onnx_opset_version, False, operator_export_type)
|
|
|
|
if export_type == ExportTypes.PROTOBUF_FILE:
|
|
assert(len(export_map) == 0)
|
|
torch.serialization._with_file_like(f, "wb", lambda f: f.write(proto))
|
|
elif export_type in [ExportTypes.ZIP_ARCHIVE, ExportTypes.COMPRESSED_ZIP_ARCHIVE]:
|
|
import zipfile
|
|
compression = zipfile.ZIP_DEFLATED \
|
|
if export_type == ExportTypes.COMPRESSED_ZIP_ARCHIVE \
|
|
else zipfile.ZIP_STORED
|
|
with zipfile.ZipFile(f, 'w', compression=compression) as z:
|
|
z.writestr(ONNX_ARCHIVE_MODEL_PROTO_NAME, proto)
|
|
for k, v in export_map.items():
|
|
z.writestr(k, v)
|
|
elif export_type == ExportTypes.DIRECTORY:
|
|
import os
|
|
if os.path.exists(f):
|
|
assert(os.path.isdir(f))
|
|
else:
|
|
os.makedirs(f)
|
|
|
|
model_proto_file = os.path.join(f, ONNX_ARCHIVE_MODEL_PROTO_NAME)
|
|
torch.serialization._with_file_like(
|
|
model_proto_file, "wb", lambda f: f.write(proto))
|
|
|
|
for k, v in export_map.items():
|
|
weight_proto_file = os.path.join(f, k)
|
|
torch.serialization._with_file_like(
|
|
weight_proto_file, "wb", lambda f: f.write(v))
|
|
else:
|
|
raise RuntimeError('Unknown export type')
|
|
return torch_out
|
|
|
|
|
|
def _set_input_and_output_names(graph, input_names, output_names):
|
|
def set_names(node_list, name_list, descriptor):
|
|
if name_list is None:
|
|
return
|
|
if len(name_list) > len(node_list):
|
|
raise RuntimeError(
|
|
"number of %s names provided (%d) exceeded number of %ss (%d)"
|
|
% (descriptor, len(name_list), descriptor, len(node_list)))
|
|
for name, node in zip(name_list, node_list):
|
|
if node.uniqueName() != name:
|
|
node.setUniqueName(name)
|
|
set_names(list(graph.inputs()), input_names, 'input')
|
|
set_names(list(graph.outputs()), output_names, 'output')
|
|
|
|
attr_pattern = re.compile("^(.+)_([ifstgz])$")
|
|
|
|
|
|
def _run_symbolic_method(op_name, symbolic_fn, args):
|
|
r"""
|
|
This trampoline function gets invoked for every symbolic method
|
|
call from C++.
|
|
"""
|
|
try:
|
|
return symbolic_fn(*args)
|
|
except TypeError as e:
|
|
# Handle the specific case where we didn't successfully dispatch
|
|
# to symbolic_fn. Otherwise, the backtrace will have the clues
|
|
# you need.
|
|
e.args = ("{} (occurred when translating {})".format(e.args[0], op_name), )
|
|
raise
|
|
|
|
|
|
def _is_onnx_list(value):
|
|
if not isinstance(value, string_classes) and \
|
|
not isinstance(value, torch.Tensor) and \
|
|
isinstance(value, container_abcs.Iterable):
|
|
return True
|
|
return False
|
|
|
|
|
|
def _add_attribute(node, key, value, aten):
|
|
r""" initializes the right attribute based on type of value """
|
|
m = attr_pattern.match(key)
|
|
if m is None:
|
|
raise IndexError((
|
|
"Invalid attribute specifier '{}' names " +
|
|
" must be suffixed with type, e.g. 'dim_i' or 'dims_i'").format(key))
|
|
name, kind = m.group(1), m.group(2)
|
|
if _is_onnx_list(value):
|
|
kind += "s"
|
|
if aten:
|
|
if isinstance(value, torch.Tensor):
|
|
# Caffe2 proto does not support tensor attribute.
|
|
if value.numel() > 1:
|
|
raise ValueError("Should not pass tensor attribute")
|
|
value = _scalar(value)
|
|
if isinstance(value, float):
|
|
kind = "f"
|
|
else:
|
|
kind = "i"
|
|
return getattr(node, kind + "_")(name, value)
|
|
|
|
|
|
def _scalar(x):
|
|
"""Convert a scalar tensor into a Python value."""
|
|
assert x.numel() == 1
|
|
return x[0]
|
|
|
|
|
|
def _newNode(g, opname, outputs, *args, **kwargs):
|
|
if "::" in opname:
|
|
aten = False
|
|
ns_opname = opname
|
|
else:
|
|
aten = kwargs.pop("aten", False)
|
|
ns = "aten" if aten else "onnx"
|
|
ns_opname = ns + "::" + opname
|
|
n = g.create(ns_opname, args, outputs)
|
|
for k, v in sorted(kwargs.items()):
|
|
# TODO: enable inplace in aten exporting mode.
|
|
if k == "inplace":
|
|
continue
|
|
_add_attribute(n, k, v, aten=aten)
|
|
return n
|
|
|
|
|
|
def _graph_op(g, opname, *raw_args, **kwargs):
|
|
r"""
|
|
Create an ONNX operator 'opname', taking 'args' as inputs and attributes
|
|
'kwargs'; returning the node representing the single output of this operator
|
|
(see the `outputs` keyword argument for multi-return nodes).
|
|
|
|
The set of operators and the inputs/attributes they take
|
|
is documented at https://github.com/onnx/onnx/blob/master/docs/Operators.md
|
|
|
|
This function is monkey-patched onto Graph.
|
|
|
|
Arguments:
|
|
opname (string): The ONNX operator name, e.g., `Abs` or `Add`.
|
|
args (Node...): The inputs to the operator; usually provided
|
|
as arguments to the `symbolic` definition.
|
|
kwargs: The attributes of the ONNX operator, with keys named
|
|
according to the following convention: `alpha_f` indicates
|
|
the `alpha` attribute with type `f`. The valid type specifiers are
|
|
`f` (float), `i` (int), `s` (string) or `t` (Tensor). An attribute
|
|
specified with type float accepts either a single float, or a
|
|
list of floats (e.g., you would say `dims_i` for a `dims` attribute
|
|
that takes a list of integers).
|
|
outputs (int, optional): The number of outputs this operator returns;
|
|
by default an operator is assumed to return a single output.
|
|
If `outputs` is greater than one, this functions returns a tuple
|
|
of output `Node`, representing each output of the ONNX operator
|
|
in positional.
|
|
"""
|
|
outputs = kwargs.pop('outputs', 1)
|
|
|
|
# Filter out None attributes, this can be convenient client side because
|
|
# now they can pass through None attributes, and have them not show up
|
|
kwargs = dict((k, v) for k, v in kwargs.items() if v is not None)
|
|
|
|
def const_if_tensor(arg):
|
|
if arg is None:
|
|
return arg
|
|
elif isinstance(arg, torch._C.Value):
|
|
return arg
|
|
else:
|
|
return g.op("Constant", value_z=arg)
|
|
|
|
args = list(const_if_tensor(arg) for arg in raw_args)
|
|
n = g.insertNode(_newNode(g, opname, outputs, *args, **kwargs))
|
|
if outputs == 1:
|
|
return n.output()
|
|
return tuple(o for o in n.outputs())
|
|
|
|
|
|
# Note [Export inplace]
|
|
# ~~~~~~~~~~~~~~~~~~~~~
|
|
# In abstract, it would be better for us to export inplace annotations,
|
|
# than to not export them, since it is useful information that can
|
|
# help the target of an ONNX export export more efficiently. However,
|
|
# ONNX doesn't currently formalize inplace. Fortunately, it's sound to drop
|
|
# inplace annotations, but we are losing information this way.
|
|
|
|
|
|
def _run_symbolic_function(g, n, inputs, env, operator_export_type=OperatorExportTypes.ONNX):
|
|
# NB: Returning None means the node gets cloned as is into
|
|
# the new graph
|
|
try:
|
|
import torch.onnx.symbolic
|
|
|
|
# See Note [Export inplace]
|
|
# TODO: I think this is not necessary anymore
|
|
if n.kind().endswith('_'):
|
|
ns_op_name = n.kind()[:-1]
|
|
else:
|
|
ns_op_name = n.kind()
|
|
ns, op_name = ns_op_name.split("::")
|
|
|
|
if ns == "onnx":
|
|
# Use the original node directly
|
|
return None
|
|
|
|
elif ns == "aten":
|
|
is_exportable_aten_op = hasattr(torch.onnx.symbolic, op_name)
|
|
is_onnx_aten_export = operator_export_type == OperatorExportTypes.ONNX_ATEN
|
|
is_aten_fallback_export = operator_export_type == OperatorExportTypes.ONNX_ATEN_FALLBACK
|
|
if is_onnx_aten_export or (not is_exportable_aten_op and is_aten_fallback_export):
|
|
# Direct ATen export requested
|
|
attrs = {k + "_" + n.kindOf(k)[0]: n[k] for k in n.attributeNames()}
|
|
outputs = n.outputsSize()
|
|
attrs["outputs"] = outputs
|
|
return _graph_at(g, op_name, *inputs, aten=True, **attrs)
|
|
|
|
else:
|
|
# Export it regularly
|
|
attrs = {k: n[k] for k in n.attributeNames()}
|
|
if not is_exportable_aten_op:
|
|
warnings.warn("ONNX export failed on ATen operator {} because torch.onnx.symbolic.{} does not exist"
|
|
.format(op_name, op_name))
|
|
return None
|
|
fn = getattr(torch.onnx.symbolic, op_name)
|
|
return fn(g, *inputs, **attrs)
|
|
|
|
elif ns == "prim":
|
|
if op_name == "Constant":
|
|
if n.kindOf("value") == "t":
|
|
return g.op("Constant", value_t=n["value"])
|
|
elif n.kindOf("value") == "is":
|
|
value = torch.stack([torch.tensor(v) for v in n["value"]]) if n["value"] else []
|
|
return g.op("Constant", value_t=value)
|
|
else:
|
|
raise RuntimeError("Unsupported prim::Constant kind: `{}`. Send a bug report.".format(
|
|
n.kindOf("value")))
|
|
elif op_name == "Undefined" or op_name == "None" or op_name == "ListConstruct":
|
|
# Undefined/None is not an ONNX operator; keep it as prim::Undefined/
|
|
# prim::None and let the exporter handle finally eliminating these
|
|
|
|
# For ListConstruct, it will be erased in the ONNX peephole pass
|
|
return None
|
|
elif op_name == 'Loop' or op_name == 'If':
|
|
new_op_outputs = g.op(op_name, *inputs, outputs=n.outputsSize())
|
|
new_node = new_op_outputs[0].node() if n.outputsSize() > 1 else new_op_outputs.node()
|
|
for b in n.blocks():
|
|
new_block = new_node.addBlock()
|
|
torch._C._jit_pass_onnx_block(b, new_block, operator_export_type, env)
|
|
return new_op_outputs
|
|
else:
|
|
symbolic_name = 'prim_' + op_name
|
|
symbolic_fn = getattr(torch.onnx.symbolic, symbolic_name, None)
|
|
if symbolic_fn is None:
|
|
warnings.warn("ONNX export failed on primitive operator {}; please report a bug".format(op_name))
|
|
return None
|
|
attrs = {k: n[k] for k in n.attributeNames()}
|
|
return symbolic_fn(g, *inputs, **attrs)
|
|
|
|
else:
|
|
warnings.warn("ONNX export failed on an operator with unrecognized namespace {}::{}; "
|
|
"please report a bug".format(ns, op_name))
|
|
return None
|
|
|
|
except TypeError as e:
|
|
# Handle the specific case where we didn't successfully dispatch.
|
|
# Otherwise, the backtrace will have the clues you need.
|
|
e.args = ("{} (occurred when translating {})".format(e.args[0], op_name), )
|
|
raise
|
|
|
|
|
|
# Generate an ONNX ATen op node.
|
|
def _graph_at(g, opname, *args, **kwargs):
|
|
return g.op("ATen", *args, operator_s=opname, **kwargs)
|
|
|
|
|
|
# This helper function can create either constant tensor or constant scalar.
|
|
# If dims is None or 0 or [0], generate a 0-d tensor (scalar).
|
|
#
|
|
# TODO: We might not need this anymore, since most scalars now show up
|
|
# as tensors
|
|
def _graph_constant(g, value, dims, type, *args, **kwargs):
|
|
assert isinstance(value, numbers.Number)
|
|
assert type is not None
|
|
isscalar = False
|
|
if dims is None or dims == 0 or set(dims) == set([0]):
|
|
dims = [1]
|
|
isscalar = True
|
|
type = type.lower()
|
|
if type == "char":
|
|
tensor = torch.CharTensor(*dims)
|
|
elif type == "short":
|
|
tensor = torch.ShortTensor(*dims)
|
|
elif type == "int":
|
|
tensor = torch.IntTensor(*dims)
|
|
elif type == "long":
|
|
tensor = torch.LongTensor(*dims)
|
|
elif type == "half":
|
|
tensor = torch.HalfTensor(*dims)
|
|
elif type == "float":
|
|
tensor = torch.FloatTensor(*dims)
|
|
elif type == "double":
|
|
tensor = torch.DoubleTensor(*dims)
|
|
else:
|
|
raise ValueError("Unknown type, type should be one of the following strings: "
|
|
"char, short, int, long, half, float, double")
|
|
tensor.fill_(value)
|
|
if isscalar:
|
|
return g.op("Constant", *args, value_z=tensor, **kwargs)
|
|
return g.op("Constant", *args, value_t=tensor, **kwargs)
|
|
|
|
|
|
def _node_getitem(self, k):
|
|
r"""
|
|
Accessor for attributes of a node which is polymorphic over
|
|
return type.
|
|
|
|
NB: This is monkey-patched onto Node.
|
|
"""
|
|
sel = self.kindOf(k)
|
|
return getattr(self, sel)(k)
|
|
|
|
|
|
torch._C.Graph.op = _graph_op
|
|
torch._C.Graph.at = _graph_at
|
|
torch._C.Graph.constant = _graph_constant
|
|
torch._C.Node.__getitem__ = _node_getitem
|