Files
pytorch/test/test_prims.py
eellison fc872e98f3 Infer prim tags from equivalent aten ones (#130367)
Take intersection of all the tags for corresponding aten op overloads. Previously, some of the rng ops not having tags caused issues with constant folding (they should get decomposed but thats a separate issue).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/130367
Approved by: https://github.com/ezyang
2024-07-11 20:53:52 +00:00

464 lines
17 KiB
Python

# Owner(s): ["module: decompositions"]
from functools import partial
from itertools import product
import unittest
import torch
from torch.testing import make_tensor
from torch.testing._internal.common_utils import (parametrize, run_tests, TestCase, TEST_SCIPY,
set_default_dtype)
from torch.testing._internal.common_device_type import (
instantiate_device_type_tests,
onlyCUDA,
dtypes,
OpDTypes,
)
from torch.testing._internal.common_methods_invocations import (
op_db,
)
from torch.testing._internal.common_device_type import (
ops,
)
from torch.testing._internal.logging_tensor import LoggingTensor, capture_logs, log_input
import torch._prims as prims
from torch._prims_common import CUDARngStateHelper
from torch._prims.executor import make_traced
import torch._refs as refs
if TEST_SCIPY:
import scipy.special
NVPRIM_ATEN_FALLBACK_WARNING = "fallback to aten executor"
GET_ISOLATED_GRAPHMODULE_ERROR = "get_isolated_graphmodule failed on decomposition"
class TestPrims(TestCase):
@onlyCUDA
@dtypes(torch.float32)
def test_broadcast_in_dim(self, device, dtype):
def _wrapper(a, b, broadcast_dimensions):
return prims.broadcast_in_dim(a, b.shape, broadcast_dimensions)
traced = make_traced(_wrapper)
make_arg = partial(make_tensor, device=device, dtype=dtype)
for executor in ('aten',):
fn = partial(traced, executor=executor)
# Same shape
shape = (5, 5)
a = make_arg(shape)
b = make_arg(shape, low=0.0, high=0.0)
result = fn(a, b, (0, 1))
self.assertEqual(result.shape, a.shape)
self.assertTrue(result.is_contiguous)
self.assertEqual(a, result)
# Error input: reordering dims
with self.assertRaises(Exception):
result = fn(a, b, (1, 0))
# Adding outermost dimensions
a = make_arg((5, 5))
b = make_arg((3, 3, 5, 5), low=0.0, high=0.0)
result = fn(a, b, (2, 3))
self.assertEqual(result.shape, b.shape)
self.assertEqual(a.broadcast_to(b.shape), result)
# Expands
a = make_arg((1, 5, 1))
b = make_arg((3, 5, 7), low=0.0, high=0.0)
result = fn(a, b, (0, 1, 2))
self.assertEqual(result.shape, b.shape)
self.assertEqual(a.expand_as(result), result)
# Unsqueezes
a = make_arg((1, 2, 3))
b = make_arg((1, 2, 1, 3), low=0.0, high=0.0)
result = fn(a, b, (0, 1, 3))
self.assertEqual(result.shape, b.shape)
self.assertEqual(a.unsqueeze(2), result)
@onlyCUDA
@dtypes(torch.float32)
def test_broadcast_in_dim_sum(self, device, dtype):
def _wrapper(a):
a_sum = prims.sum(a, [0, 1])
a_bc = prims.broadcast_in_dim(a_sum, [], [])
return a_bc
traced = make_traced(_wrapper)
make_arg = partial(make_tensor, device=device, dtype=dtype)
for executor in ('aten',):
fn = partial(traced, executor=executor)
shape = (5, 5)
a = make_arg(shape)
result = fn(a)
self.assertEqual(result.shape, ())
self.assertTrue(result.is_contiguous)
self.assertEqual(_wrapper(a), result)
@unittest.skipIf(not TEST_SCIPY, "SciPy not found")
@dtypes(torch.float64, torch.long)
def test_cbrt_prim(self, device, dtype):
make_arg = partial(make_tensor, device=device, dtype=dtype)
batches = [(), (1,), (2,), (0, 1), (1, 1), (2, 2)]
shapes = [(), (0,), (1,), (5,)]
# Sets the default dtype to NumPy's default dtype of double
with set_default_dtype(torch.double):
# Tested here, as this OP is not currently exposed or tested in ATen
for b, s in product(batches, shapes):
x = make_arg(b + s)
y = prims.cbrt(x)
x_np = x.cpu().numpy()
y_np = scipy.special.cbrt(x_np)
self.assertEqual(y, y_np, exact_device=False)
@dtypes(torch.float32)
def test_collapse(self, device, dtype):
t = torch.rand(2, 2, 2)
dim_ranges = [(0, 0), (0, 1), (1, 2), (0, 2)]
expected_shapes = [(2, 2, 2), (4, 2), (2, 4), (8,)]
for (start, end), shape in zip(dim_ranges, expected_shapes):
expect = t.reshape(shape)
copy = prims.collapse(t, start, end)
self.assertEqual(copy, expect)
self.assertFalse(copy._is_view())
view = prims.collapse_view(t, start, end)
self.assertEqual(view, expect)
self.assertTrue(view._is_view())
t_discontig = t.transpose(0, 1)
with self.assertRaises(ValueError, msg="no such view exists"):
view = prims.collapse_view(t_discontig, 0, 2)
copy = prims.collapse(t_discontig, 0, 1)
self.assertEqual(copy, t_discontig.reshape(4, 2))
error_dims = [(-1, 1), (0, 3), (1, -1)]
for start, end in error_dims:
for fn in [prims.collapse, prims.collapse_view]:
with self.assertRaises(AssertionError):
fn(t, start, end)
def test_aten_overload_to_prims(self, device):
# This test is to ensure that the torch.ops.aten calls are replaced with refs
from torch.fx.experimental.proxy_tensor import make_fx
from torch._prims.context import TorchRefsMode
a = torch.randn(3, 3, device=device)
def func(a):
return torch.ops.aten.sigmoid.default(torch.ops.aten.digamma.default(a))
with TorchRefsMode():
gm = make_fx(func)(a)
# Check that all call_function nodes are prims
call_function_nodes = list(filter(lambda n: n.op == "call_function", gm.graph.nodes))
all_prims_namespace = all(
node.target.name().startswith("prims") for node in call_function_nodes
)
self.assertTrue(all_prims_namespace)
@onlyCUDA
@dtypes(torch.float32)
@parametrize("correction", [0, 1])
def test_var(self, device, dtype, correction):
def _wrapper(a):
return prims.var(a, [0, 1], correction=correction)
traced = make_traced(_wrapper)
make_arg = partial(make_tensor, device=device, dtype=dtype)
for executor in ('aten',):
fn = partial(traced, executor=executor)
shape = (5, 5)
a = make_arg(shape)
result = fn(a)
self.assertEqual(result.shape, ())
self.assertTrue(result.is_contiguous)
self.assertEqual(_wrapper(a), result)
@dtypes(torch.float32)
def test_memory_format_strides(self, device, dtype):
shapes = (
(),
(0,),
(1,),
(5),
(1, 0),
(1, 1),
(3, 7),
(3, 0, 2),
(1, 1, 2),
(4, 1, 1),
(7, 8, 9),
)
channels_last_shapes = (
(0, 0, 0, 0),
(1, 0, 3, 0),
(0, 2, 3, 5),
(2, 2, 2, 0),
(5, 4, 3, 2),
(8, 8, 7, 2),
(9, 1, 3, 1),
(4, 5, 8, 7)
)
channels_last_3d_shapes = (
(0, 8, 7, 9, 2),
(5, 0, 7, 9, 2),
(5, 0, 7, 9, 0),
(5, 8, 7, 9, 2),
(5, 1, 7, 9, 2),
(5, 1, 7, 9, 1),
)
pairs = (
(shapes, torch.contiguous_format),
(channels_last_shapes, torch.contiguous_format),
(channels_last_3d_shapes, torch.contiguous_format),
(channels_last_shapes, torch.channels_last),
(channels_last_3d_shapes, torch.channels_last_3d),
)
for shapes, memory_format in pairs:
for shape in shapes:
# tests empty
expected = torch.empty(shape, device=device, dtype=dtype, memory_format=memory_format)
actual = refs.empty(shape, device=device, dtype=dtype, memory_format=memory_format)
self.assertEqual(expected.stride(), actual.stride())
# tests clone
a = torch.testing.make_tensor(shape, device=device, dtype=dtype)
expected = torch.clone(a, memory_format=memory_format)
actual = torch.clone(a, memory_format=memory_format)
self.assertEqual(expected.stride(), actual.stride())
# tests contiguous
a = torch.testing.make_tensor(shape, device=device, dtype=dtype, noncontiguous=True)
expected = a.contiguous(memory_format=memory_format)
actual = refs.contiguous(a, memory_format=memory_format)
self.assertEqual(expected.stride(), actual.stride())
@dtypes(torch.float32)
def test_reshape_view_method(self, device, dtype):
make_arg = partial(make_tensor, device=device, dtype=dtype)
a = make_arg((5, 5))
new_shape = 1, 5, 1, 5
result_eager = a.reshape(*new_shape)
result_refs = refs.reshape(a, *new_shape)
self.assertEqual(result_eager, result_refs)
result_eager = a.view(*new_shape)
result_refs = refs.view(a, *new_shape)
self.assertEqual(result_eager, result_refs)
@onlyCUDA
@dtypes(torch.float32)
def test_philox_rand(self, device, dtype):
sizes = (1000, 1000000) # offsets of 4 and 8
repeats = 2 # Checks multiple rand calls results with multiple philox_rand calls
for size in sizes:
torch.cuda.manual_seed(123)
references = []
results = []
rng_states = []
for _ in range(repeats):
rng_states.append(CUDARngStateHelper.get_torch_state_as_tuple())
references.append(torch.rand(size, device=device, dtype=dtype))
torch.cuda.manual_seed(123)
for idx in range(repeats):
seed, offset = rng_states[idx]
result, _ = torch.ops.rngprims.philox_rand((size,),
seed=seed,
offset=offset,
stride=None,
device=device,
dtype=dtype)
results.append(result)
for a, b in zip(references, results):
self.assertEqual(a, b)
@dtypes(torch.float32)
def test_functional_rng_wrappers(self, device, dtype):
torch.manual_seed(123)
ref1 = torch.rand(10, device=device, dtype=dtype)
ref2 = torch.rand(10, device=device, dtype=dtype)
torch.manual_seed(123)
rng_state1, res1 = torch._prims.rng_prims.run_and_save_rng_state(torch.rand, 10, device=device, dtype=dtype)
rng_state2, res2 = torch._prims.rng_prims.run_and_save_rng_state(torch.rand, 10, device=device, dtype=dtype)
res3 = torch._prims.rng_prims.run_with_rng_state(rng_state1, torch.rand, 10, device=device, dtype=dtype)
res4 = torch._prims.rng_prims.run_with_rng_state(rng_state2, torch.rand, 10, device=device, dtype=dtype)
self.assertEqual(ref1, res1)
self.assertEqual(ref2, res2)
self.assertEqual(ref1, res3)
self.assertEqual(ref2, res4)
class TestPrimsBasic(TestCase):
def test_torch_ops(self):
r = make_tensor((2,), device='cpu', dtype=torch.float)
self.assertEqual(torch.ops.prims.sin(r), torch.sin(r))
r = LoggingTensor(r)
with capture_logs() as logs:
log_input("input", r)
prims.sin(r)
self.assertExpectedInline('\n'.join(logs), """\
$0: f32[2] = input('input')
$1: f32[2] = torch._ops.prims.sin.default($0)""")
def test_mul_complex(self):
prims.mul(torch.randn(2), 1 + 1j)
def test_check_deprecation_warning(self):
with self.assertWarnsRegex(FutureWarning, 'will be removed in the future'):
torch._prims_common.check(True, lambda: 'message')
instantiate_device_type_tests(TestPrims, globals())
class TestRefs(TestCase):
@dtypes(torch.float32)
def test_constant_pad_nd_memory_format(self, device, dtype):
# Test memory format is preserved in unambiguous cases
for mf, ndim in (
(torch.channels_last, 4),
(torch.contiguous_format, 4),
(torch.channels_last_3d, 5),
(torch.contiguous_format, 5),
):
a = torch.zeros([2] * ndim).to(memory_format=mf)
res = refs.constant_pad_nd(a, pad=[1] * (2 * ndim))
self.assertTrue(res.is_contiguous(memory_format=mf))
# Ambiguous cases
# is_channels_last_ and is_contiguous_, results in channels_last output
a = torch.empty_strided((2, 1, 2, 2), stride=(4, 1, 2, 1))
self.assertTrue(a.is_contiguous(memory_format=torch.channels_last))
self.assertTrue(a.is_contiguous())
actual = refs.constant_pad_nd(a, pad=[1] * 8)
expect = torch.constant_pad_nd(a, pad=[1] * 8)
self.assertEqual(actual.stride(), expect.stride())
self.assertTrue(actual.is_contiguous(memory_format=torch.channels_last))
# is_channels_last_contiguous_ but not is_channels_last_, results in
# contiguous output
a = torch.empty_strided((2, 1, 2, 2), stride=(4, 4, 2, 1))
self.assertTrue(a.is_contiguous(memory_format=torch.channels_last))
self.assertTrue(a.is_contiguous())
actual = refs.constant_pad_nd(a, pad=[1] * 8)
expect = torch.constant_pad_nd(a, pad=[1] * 8)
self.assertEqual(actual.stride(), expect.stride())
self.assertTrue(actual.is_contiguous())
def test_unbind(self):
# If unbind returns empty tuple, it breaks some assumptions in some backward tests in test_ops.py.
# So can't put this test into common_methods_invocations.py.
a = torch.rand([3, 0, 4])
actual = refs.unbind(a, 1)
expect = torch.unbind(a, 1)
self.assertEqual(actual, expect)
def test_logspace_with_complex_input(self):
actual = refs.logspace(2, 10 + 5j, steps=5)
expect = torch.logspace(2, 10 + 5j, steps=5)
self.assertEqual(actual, expect)
def test_linspace_with_complex_input(self):
actual = refs.linspace(2, 10 + 5j, steps=5)
expect = torch.linspace(2, 10 + 5j, steps=5)
self.assertEqual(actual, expect)
# From https://github.com/pytorch/pytorch/issues/109558
def test_infinite_loop_from_py_dispatcher(self):
# enables prim decomps
with torch._dispatch.python.enable_python_dispatcher():
x = torch.ones(4)
y = x.to(device="meta")
def test_inferred_tags(self):
self.assertEqual(torch.ops.prims.normal.default.tags, (torch.Tag.nondeterministic_seeded, torch.Tag.pt2_compliant_tag))
instantiate_device_type_tests(TestRefs, globals())
class TestDecomp(TestCase):
@ops([op for op in op_db if op.supports_varargs], dtypes=OpDTypes.any_one)
def test_decomposition_method_vararg(self, device, dtype, op):
# some ops have vararg variants for the methods. this tests it.
# we don't have tests for varargs in OpInfo, so we need to
# improvise this a bit.
# The rule for general functions (the special cases being e.g. tensor
# creation functions taking shapes) is that things can be vararg
# if the method has only one argument of sequence type.
# e.g. permute can be called on a 3d tensor t as t.permute(0, 2, 1)
# as well as t.permute([0, 2, 1])
# when the signature in native_functions.yaml
# shows arguments Tensor self, IntList dims
# we might need to adjust things for the factory functions or
# have them do their own test
from torch.fx.experimental.proxy_tensor import make_fx
from torch._prims.context import TorchRefsMode
# filter out empty tuple as that cannot be the varargs
sample_inputs = (si for si in op.sample_inputs(device, dtype, requires_grad=False)
if (si.args[-1] if si.args else si.input))
# just run one test, we assume there is a suitable one in the tests
sample_input = next(sample_inputs)
all_args = (sample_input.input,) + sample_input.args
# in general, the methods take varargs and not (always?) the function
# variants, the exception to this rule are the factory functions
if op.is_factory_function:
fn = op.op
else:
fn = op.method_variant
with TorchRefsMode():
gm = make_fx(fn)(*all_args[:-1], *all_args[-1])
# in case we add random factory functions
torch.manual_seed(1)
res = gm(*all_args[:-1], *all_args[-1])
torch.manual_seed(1)
expected = fn(*all_args[:-1], *all_args[-1])
self.assertEqual(res, expected)
instantiate_device_type_tests(TestDecomp, globals())
if __name__ == "__main__":
run_tests()