Files
pytorch/test/test_sympy_utils.py
Edward Z. Yang fb696ef3aa Complete revamp of float/promotion sympy handling (#126905)
At a high level, the idea behind this PR is:

* Make it clearer what the promotion and int/float rules for various Sympy operations are. Operators that previously were polymorphic over int/float are now split into separate operators for clarity. We never do mixed int/float addition/multiplication etc in sympy, instead, we always promote to the appropriate operator. (However, equality is currently not done correctly.)
* Enforce strict typing on ValueRanges: if you have a ValueRange for a float, the lower and upper MUST be floats, and so forth for integers.

The story begins in **torch/utils/_sympy/functions.py**. Here, I make some changes to how we represent certain operations in sympy expressions:

* FloorDiv now only supports integer inputs; to do float floor division, do a truediv and then a trunc. Additionally, we remove the divide out addition by gcd optimization, because sympy gcd is over fields and is willing to generate rationals (but rationals are bad for ValueRange strict typing).
* ModularIndexing, LShift, RShift now assert they are given integer inputs.
* Mod only supports integer inputs; eventually we will support FloatMod (left for later work, when we build out Sympy support for floating operations). Unfortunately, I couldn't assert integer inputs here, because of a bad interaction with sympy's inequality solver that is used by the offline solver
* TrueDiv is split into FloatTrueDiv and IntTrueDiv. This allows for us to eventually generate accurate code for Python semantics IntTrueDiv, which is written in a special way to preserve precision when the inputs are >= 2**53 beyond what first coercing the integer to floats and then doing true division.
* Trunc is split to TruncToFloat and TruncToInt.
* Round is updated to return a float, not an int, making it consistent with the round op handler in Inductor. To get Python-style conversion to int, we call TruncToInt on the result.
* RoundDecimal updated to consistently only ever return a float
* Add ToFloat for explicit coercion to float (required so we can enforce strict ValueRanges typing)

In **torch/__init__.py**, we modify SymInt and SymFloat to appropriately call into new bindings that route to these refined sympy operations.  Also, we modify `torch.sym_min` and `torch.sym_max` to have promotion semantics (if one argument is a float, the return result is always a float), making them inconsistent with builtins.min/max, but possible to do type analysis without runtime information.

We also need to introduce some new op handlers in **torch/_inductor/ops_handler.py**:

* `to_int` for truncation to int64, directly corresponding to TruncToInt; this can be implemented by trunc and dtype, but with a dedicated handler it is more convenient for roundtripping in Sympy
* `int_truediv` for Python-style integer true division, which has higher precision than casting to floats and then running `truediv`

These changes have consequences. First, we need to make some administrative changes:

* Actually wire up these Sympy functions from SymInt/SymFloat in **torch/fx/experimental/sym_node.py**, including the new promotion rules (promote2)
* Add support for new Sympy functions in **torch/utils/_sympy/interp.py**, **torch/utils/_sympy/reference.py**
  * In particular, in torch.utils._sympy.reference, we have a strong preference to NOT do nontrivial compute, instead, everything in ops handler should map to a singular sympy function
  * TODO: I chose to roundtrip mod back to our Mod function, but I think I'm going to have to deal with the C/Python inconsistency this to fix tests here
* Add printer support for the Sympy functions in **torch/_inductor/codegen/common.py**, **torch/_inductor/codegen/cpp_utils.py**, **torch/_inductor/codegen/triton.py**. `int_truediv` and mixed precision equality is currently not implemented soundly, so we will lose precision in codegen for large values. TODO: The additions here are not exhaustive yet
* Update ValueRanges logic to use new sympy functions in **torch/utils/_sympy/value_ranges.py**. In general, we prefer to use the new Sympy function rather than try to roll things by hand, which is what was done previously for many VR analysis functions.

In **torch/fx/experimental/symbolic_shapes.py** we need to make some symbolic reasoning adjustments:

* Avoid generation of rational subexpressions by removing simplification of `x // y` into `floor(x / y)`. This simplification then triggers an addition simplification rule `(x + y) / c --> x / c + y / c` which is bad because x / c is a rational number now
* `_assert_bound_is_rational` is no more, we no longer generate rational bounds
* Don't intersect non-int value ranges with the `int_range`
* Support more sympy Functions for guard SYMPY_INTERP
* Assert the type of value range is consistent with the variable type

The new asserts uncovered necessary bug fixes:

* **torch/_inductor/codegen/cpp.py**, **torch/_inductor/select_algorithm.py**, **torch/_inductor/sizevars.py** - Ensure Wild/Symbol manually allocated in Inductor is marked `is_integer` so it's accepted to build expressions
* **torch/_inductor/utils.py** - make sure you actually pass in sympy.Expr to these functions
* **torch/_inductor/ir.py** - make_contiguous_strides_for takes int/SymInt, not sympy.Expr!
* **torch/export/dynamic_shapes.py** - don't use infinity to represent int ranges, instead use sys.maxsize - 1

Because of the removal of some symbolic reasoning that produced rationals, some of our symbolic reasoning has gotten worse and we are unable to simplify some guards. Check the TODO at **test/test_proxy_tensor.py**

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/126905
Approved by: https://github.com/xadupre, https://github.com/lezcano
2024-06-04 11:47:32 +00:00

687 lines
23 KiB
Python

# Owner(s): ["oncall: pt2"]
import itertools
import sys
import sympy
from typing import Callable, List, Tuple, Type
from torch.testing._internal.common_device_type import skipIf
from torch.testing._internal.common_utils import (
TEST_Z3,
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
from torch.utils._sympy.functions import FloorDiv
from torch.utils._sympy.solve import INEQUALITY_TYPES, mirror_rel_op, try_solve
from torch.utils._sympy.value_ranges import ValueRangeAnalysis, ValueRanges
from torch.utils._sympy.reference import ReferenceAnalysis, PythonReferenceAnalysis
from torch.utils._sympy.interp import sympy_interp
from torch.utils._sympy.singleton_int import SingletonInt
from sympy.core.relational import is_ge, is_le, is_gt, is_lt
import functools
import torch.fx as fx
UNARY_OPS = [
"reciprocal",
"square",
"abs",
"neg",
"exp",
"log",
"sqrt",
"floor",
"ceil",
]
BINARY_OPS = [
"truediv", "floordiv",
# "truncdiv", # TODO
# NB: pow is float_pow
"add", "mul", "sub", "pow", "pow_by_natural", "minimum", "maximum", "mod"
]
UNARY_BOOL_OPS = ["not_"]
BINARY_BOOL_OPS = ["or_", "and_"]
COMPARE_OPS = ["eq", "ne", "lt", "gt", "le", "ge"]
# a mix of constants, powers of two, primes
CONSTANTS = [
-1,
0,
1,
2,
3,
4,
5,
8,
16,
32,
64,
100,
101,
2**24,
2**32,
2**37 - 1,
sys.maxsize - 1,
sys.maxsize,
]
# less constants for N^2 situations
LESS_CONSTANTS = [-1, 0, 1, 2, 100]
# SymPy relational types.
RELATIONAL_TYPES = [sympy.Eq, sympy.Ne, sympy.Gt, sympy.Ge, sympy.Lt, sympy.Le]
def valid_unary(fn, v):
if fn == "log" and v <= 0:
return False
elif fn == "reciprocal" and v == 0:
return False
elif fn == "sqrt" and v < 0:
return False
return True
def valid_binary(fn, a, b):
if fn == "pow" and (
# sympy will expand to x*x*... for integral b; don't do it if it's big
b > 4
# no imaginary numbers
or a <= 0
# 0**0 is undefined
or (a == b == 0)
):
return False
elif fn == "pow_by_natural" and (
# sympy will expand to x*x*... for integral b; don't do it if it's big
b > 4
or b < 0
or (a == b == 0)
):
return False
elif fn == "mod" and (a < 0 or b <= 0):
return False
elif (fn in ["div", "truediv", "floordiv"]) and b == 0:
return False
return True
def generate_range(vals):
for a1, a2 in itertools.product(vals, repeat=2):
if a1 in [sympy.true, sympy.false]:
if a1 == sympy.true and a2 == sympy.false:
continue
else:
if a1 > a2:
continue
# ranges that only admit infinite values are not interesting
if a1 == sympy.oo or a2 == -sympy.oo:
continue
yield ValueRanges(a1, a2)
class TestValueRanges(TestCase):
@parametrize("fn", UNARY_OPS)
@parametrize("dtype", ("int", "float"))
def test_unary_ref(self, fn, dtype):
dtype = {"int": sympy.Integer, "float": sympy.Float}[dtype]
for v in CONSTANTS:
if not valid_unary(fn, v):
continue
with self.subTest(v=v):
v = dtype(v)
ref_r = getattr(ReferenceAnalysis, fn)(v)
r = getattr(ValueRangeAnalysis, fn)(v)
self.assertEqual(r.lower.is_integer, r.upper.is_integer)
self.assertEqual(r.lower, r.upper)
self.assertEqual(ref_r.is_integer, r.upper.is_integer)
self.assertEqual(ref_r, r.lower)
def test_pow_half(self):
ValueRangeAnalysis.pow(ValueRanges.unknown(), ValueRanges.wrap(0.5))
@parametrize("fn", BINARY_OPS)
@parametrize("dtype", ("int", "float"))
def test_binary_ref(self, fn, dtype):
to_dtype = {"int": sympy.Integer, "float": sympy.Float}
# Don't test float on int only methods
if dtype == "float" and fn in ["pow_by_natural", "mod"]:
return
dtype = to_dtype[dtype]
for a, b in itertools.product(CONSTANTS, repeat=2):
if not valid_binary(fn, a, b):
continue
a = dtype(a)
b = dtype(b)
with self.subTest(a=a, b=b):
r = getattr(ValueRangeAnalysis, fn)(a, b)
if r == ValueRanges.unknown():
continue
ref_r = getattr(ReferenceAnalysis, fn)(a, b)
self.assertEqual(r.lower.is_integer, r.upper.is_integer)
self.assertEqual(ref_r.is_integer, r.upper.is_integer)
self.assertEqual(r.lower, r.upper)
self.assertEqual(ref_r, r.lower)
def test_mul_zero_unknown(self):
self.assertEqual(
ValueRangeAnalysis.mul(ValueRanges.wrap(0), ValueRanges.unknown()),
ValueRanges.wrap(0),
)
@parametrize("fn", UNARY_BOOL_OPS)
def test_unary_bool_ref_range(self, fn):
vals = [sympy.false, sympy.true]
for a in generate_range(vals):
with self.subTest(a=a):
ref_r = getattr(ValueRangeAnalysis, fn)(a)
unique = set()
for a0 in vals:
if a0 not in a:
continue
with self.subTest(a0=a0):
r = getattr(ReferenceAnalysis, fn)(a0)
self.assertIn(r, ref_r)
unique.add(r)
if ref_r.lower == ref_r.upper:
self.assertEqual(len(unique), 1)
else:
self.assertEqual(len(unique), 2)
@parametrize("fn", BINARY_BOOL_OPS)
def test_binary_bool_ref_range(self, fn):
vals = [sympy.false, sympy.true]
for a, b in itertools.product(generate_range(vals), repeat=2):
with self.subTest(a=a, b=b):
ref_r = getattr(ValueRangeAnalysis, fn)(a, b)
unique = set()
for a0, b0 in itertools.product(vals, repeat=2):
if a0 not in a or b0 not in b:
continue
with self.subTest(a0=a0, b0=b0):
r = getattr(ReferenceAnalysis, fn)(a0, b0)
self.assertIn(r, ref_r)
unique.add(r)
if ref_r.lower == ref_r.upper:
self.assertEqual(len(unique), 1)
else:
self.assertEqual(len(unique), 2)
@parametrize("fn", UNARY_OPS)
def test_unary_ref_range(self, fn):
# TODO: bring back sympy.oo testing for float unary fns
vals = CONSTANTS
for a in generate_range(vals):
with self.subTest(a=a):
ref_r = getattr(ValueRangeAnalysis, fn)(a)
for a0 in CONSTANTS:
if a0 not in a:
continue
if not valid_unary(fn, a0):
continue
with self.subTest(a0=a0):
r = getattr(ReferenceAnalysis, fn)(sympy.Integer(a0))
self.assertIn(r, ref_r)
# This takes about 4s for all the variants
@parametrize("fn", BINARY_OPS + COMPARE_OPS)
def test_binary_ref_range(self, fn):
# TODO: bring back sympy.oo testing for float unary fns
vals = LESS_CONSTANTS
for a, b in itertools.product(generate_range(vals), repeat=2):
# don't attempt pow on exponents that are too large (but oo is OK)
if fn == "pow" and b.upper > 4 and b.upper != sympy.oo:
continue
with self.subTest(a=a, b=b):
for a0, b0 in itertools.product(LESS_CONSTANTS, repeat=2):
if a0 not in a or b0 not in b:
continue
if not valid_binary(fn, a0, b0):
continue
with self.subTest(a0=a0, b0=b0):
ref_r = getattr(ValueRangeAnalysis, fn)(a, b)
r = getattr(ReferenceAnalysis, fn)(
sympy.Integer(a0), sympy.Integer(b0)
)
if r.is_finite:
self.assertIn(r, ref_r)
class TestSympyInterp(TestCase):
@parametrize("fn", UNARY_OPS + BINARY_OPS + UNARY_BOOL_OPS + BINARY_BOOL_OPS + COMPARE_OPS)
def test_interp(self, fn):
# SymPy does not implement truncation for Expressions
if fn in ("div", "truncdiv", "minimum", "maximum", "mod"):
return
is_integer = None
if fn == "pow_by_natural":
is_integer = True
x = sympy.Dummy('x', integer=is_integer)
y = sympy.Dummy('y', integer=is_integer)
vals = CONSTANTS
if fn in {*UNARY_BOOL_OPS, *BINARY_BOOL_OPS}:
vals = [True, False]
arity = 1
if fn in {*BINARY_OPS, *BINARY_BOOL_OPS, *COMPARE_OPS}:
arity = 2
symbols = [x]
if arity == 2:
symbols = [x, y]
for args in itertools.product(vals, repeat=arity):
if arity == 1 and not valid_unary(fn, *args):
continue
elif arity == 2 and not valid_binary(fn, *args):
continue
with self.subTest(args=args):
sargs = [sympy.sympify(a) for a in args]
sympy_expr = getattr(ReferenceAnalysis, fn)(*symbols)
ref_r = getattr(ReferenceAnalysis, fn)(*sargs)
# Yes, I know this is a longwinded way of saying xreplace; the
# point is to test sympy_interp
r = sympy_interp(ReferenceAnalysis, dict(zip(symbols, sargs)), sympy_expr)
self.assertEqual(ref_r, r)
@parametrize("fn", UNARY_OPS + BINARY_OPS + UNARY_BOOL_OPS + BINARY_BOOL_OPS + COMPARE_OPS)
def test_python_interp_fx(self, fn):
# These never show up from symbolic_shapes
if fn in ("log", "exp"):
return
# Sympy does not support truncation on symbolic shapes
if fn in ("truncdiv", "mod"):
return
vals = CONSTANTS
if fn in {*UNARY_BOOL_OPS, *BINARY_BOOL_OPS}:
vals = [True, False]
arity = 1
if fn in {*BINARY_OPS, *BINARY_BOOL_OPS, *COMPARE_OPS}:
arity = 2
is_integer = None
if fn == "pow_by_natural":
is_integer = True
x = sympy.Dummy('x', integer=is_integer)
y = sympy.Dummy('y', integer=is_integer)
symbols = [x]
if arity == 2:
symbols = [x, y]
for args in itertools.product(vals, repeat=arity):
if arity == 1 and not valid_unary(fn, *args):
continue
elif arity == 2 and not valid_binary(fn, *args):
continue
if fn == "truncdiv" and args[1] == 0:
continue
elif fn in ("pow", "pow_by_natural") and (args[0] == 0 and args[1] <= 0):
continue
elif fn == "floordiv" and args[1] == 0:
continue
with self.subTest(args=args):
# Workaround mpf from symbol error
if fn == "minimum":
sympy_expr = sympy.Min(x, y)
elif fn == "maximum":
sympy_expr = sympy.Max(x, y)
else:
sympy_expr = getattr(ReferenceAnalysis, fn)(*symbols)
if arity == 1:
def trace_f(px):
return sympy_interp(PythonReferenceAnalysis, {x: px}, sympy_expr)
else:
def trace_f(px, py):
return sympy_interp(PythonReferenceAnalysis, {x: px, y: py}, sympy_expr)
gm = fx.symbolic_trace(trace_f)
self.assertEqual(
sympy_interp(PythonReferenceAnalysis, dict(zip(symbols, args)), sympy_expr),
gm(*args)
)
def type_name_fn(type: Type) -> str:
return type.__name__
def parametrize_relational_types(*types):
def wrapper(f: Callable):
return parametrize("op", types or RELATIONAL_TYPES, name_fn=type_name_fn)(f)
return wrapper
class TestSympySolve(TestCase):
def _create_integer_symbols(self) -> List[sympy.Symbol]:
return sympy.symbols("a b c", integer=True)
def test_give_up(self):
from sympy import Eq, Ne
a, b, c = self._create_integer_symbols()
cases = [
# Not a relational operation.
a + b,
# 'a' appears on both sides.
Eq(a, a + 1),
# 'a' doesn't appear on neither side.
Eq(b, c + 1),
# Result is a 'sympy.And'.
Eq(FloorDiv(a, b), c),
# Result is a 'sympy.Or'.
Ne(FloorDiv(a, b), c),
]
for case in cases:
e = try_solve(case, a)
self.assertEqual(e, None)
@parametrize_relational_types()
def test_noop(self, op):
a, b, _ = self._create_integer_symbols()
lhs, rhs = a, 42 * b
expr = op(lhs, rhs)
r = try_solve(expr, a)
self.assertNotEqual(r, None)
r_expr, r_rhs = r
self.assertEqual(r_expr, expr)
self.assertEqual(r_rhs, rhs)
@parametrize_relational_types()
def test_noop_rhs(self, op):
a, b, _ = self._create_integer_symbols()
lhs, rhs = 42 * b, a
mirror = mirror_rel_op(op)
self.assertNotEqual(mirror, None)
expr = op(lhs, rhs)
r = try_solve(expr, a)
self.assertNotEqual(r, None)
r_expr, r_rhs = r
self.assertEqual(r_expr, mirror(rhs, lhs))
self.assertEqual(r_rhs, lhs)
def _test_cases(self, cases: List[Tuple[sympy.Basic, sympy.Basic]], thing: sympy.Basic, op: Type[sympy.Rel], **kwargs):
for source, expected in cases:
r = try_solve(source, thing, **kwargs)
self.assertTrue(
(r is None and expected is None)
or (r is not None and expected is not None)
)
if r is not None:
r_expr, r_rhs = r
self.assertEqual(r_rhs, expected)
self.assertEqual(r_expr, op(thing, expected))
def test_addition(self):
from sympy import Eq
a, b, c = self._create_integer_symbols()
cases = [
(Eq(a + b, 0), -b),
(Eq(a + 5, b - 5), b - 10),
(Eq(a + c * b, 1), 1 - c * b),
]
self._test_cases(cases, a, Eq)
@parametrize_relational_types(sympy.Eq, sympy.Ne)
def test_multiplication_division(self, op):
a, b, c = self._create_integer_symbols()
cases = [
(op(a * b, 1), 1 / b),
(op(a * 5, b - 5), (b - 5) / 5),
(op(a * b, c), c / b),
]
self._test_cases(cases, a, op)
@parametrize_relational_types(*INEQUALITY_TYPES)
def test_multiplication_division_inequality(self, op):
a, b, _ = self._create_integer_symbols()
intneg = sympy.Symbol("neg", integer=True, negative=True)
intpos = sympy.Symbol("pos", integer=True, positive=True)
cases = [
# Divide/multiply both sides by positive number.
(op(a * intpos, 1), 1 / intpos),
(op(a / (5 * intpos), 1), 5 * intpos),
(op(a * 5, b - 5), (b - 5) / 5),
# 'b' is not strictly positive nor negative, so we can't
# divide/multiply both sides by 'b'.
(op(a * b, 1), None),
(op(a / b, 1), None),
(op(a * b * intpos, 1), None),
]
mirror_cases = [
# Divide/multiply both sides by negative number.
(op(a * intneg, 1), 1 / intneg),
(op(a / (5 * intneg), 1), 5 * intneg),
(op(a * -5, b - 5), -(b - 5) / 5),
]
mirror_op = mirror_rel_op(op)
assert mirror_op is not None
self._test_cases(cases, a, op)
self._test_cases(mirror_cases, a, mirror_op)
@parametrize_relational_types()
def test_floordiv(self, op):
from sympy import Eq, Ne, Gt, Ge, Lt, Le
a, b, c = sympy.symbols("a b c")
pos = sympy.Symbol("pos", positive=True)
integer = sympy.Symbol("integer", integer=True)
# (Eq(FloorDiv(a, pos), integer), And(Ge(a, integer * pos), Lt(a, (integer + 1) * pos))),
# (Eq(FloorDiv(a + 5, pos), integer), And(Ge(a, integer * pos), Lt(a, (integer + 1) * pos))),
# (Ne(FloorDiv(a, pos), integer), Or(Lt(a, integer * pos), Ge(a, (integer + 1) * pos))),
special_case = {
# 'FloorDiv' turns into 'And', which can't be simplified any further.
Eq: (Eq(FloorDiv(a, pos), integer), None),
# 'FloorDiv' turns into 'Or', which can't be simplified any further.
Ne: (Ne(FloorDiv(a, pos), integer), None),
Gt: (Gt(FloorDiv(a, pos), integer), (integer + 1) * pos),
Ge: (Ge(FloorDiv(a, pos), integer), integer * pos),
Lt: (Lt(FloorDiv(a, pos), integer), integer * pos),
Le: (Le(FloorDiv(a, pos), integer), (integer + 1) * pos),
}[op]
cases: List[Tuple[sympy.Basic, sympy.Basic]] = [
# 'b' is not strictly positive
(op(FloorDiv(a, b), integer), None),
# 'c' is not strictly positive
(op(FloorDiv(a, pos), c), None),
]
# The result might change after 'FloorDiv' transformation.
# Specifically:
# - [Ge, Gt] => Ge
# - [Le, Lt] => Lt
if op in (sympy.Gt, sympy.Ge):
r_op = sympy.Ge
elif op in (sympy.Lt, sympy.Le):
r_op = sympy.Lt
else:
r_op = op
self._test_cases([special_case, *cases], a, r_op)
self._test_cases([(special_case[0], None), *cases], a, r_op, floordiv_inequality=False)
def test_floordiv_eq_simplify(self):
from sympy import Eq, Lt, Le
a = sympy.Symbol("a", positive=True, integer=True)
def check(expr, expected):
r = try_solve(expr, a)
self.assertNotEqual(r, None)
r_expr, _ = r
self.assertEqual(r_expr, expected)
# (a + 10) // 3 == 3
# =====================================
# 3 * 3 <= a + 10 (always true)
# a + 10 < 4 * 3 (not sure)
check(Eq(FloorDiv(a + 10, 3), 3), Lt(a, (3 + 1) * 3 - 10))
# (a + 10) // 2 == 4
# =====================================
# 4 * 2 <= 10 - a (not sure)
# 10 - a < 5 * 2 (always true)
check(Eq(FloorDiv(10 - a, 2), 4), Le(a, -(4 * 2 - 10)))
@skipIf(not TEST_Z3, "Z3 not installed")
def test_z3_proof_floordiv_eq_simplify(self):
import z3
from sympy import Eq, Lt
a = sympy.Symbol("a", positive=True, integer=True)
a_ = z3.Int("a")
# (a + 10) // 3 == 3
# =====================================
# 3 * 3 <= a + 10 (always true)
# a + 10 < 4 * 3 (not sure)
solver = z3.SolverFor("QF_NRA")
# Add assertions for 'a_'.
solver.add(a_ > 0)
expr = Eq(FloorDiv(a + 10, 3), 3)
r_expr, _ = try_solve(expr, a)
# Check 'try_solve' really returns the 'expected' below.
expected = Lt(a, (3 + 1) * 3 - 10)
self.assertEqual(r_expr, expected)
# Check whether there is an integer 'a_' such that the
# equation below is satisfied.
solver.add(
# expr
(z3.ToInt((a_ + 10) / 3.0) == 3)
!=
# expected
(a_ < (3 + 1) * 3 - 10)
)
# Assert that there's no such an integer.
# i.e. the transformation is sound.
r = solver.check()
self.assertEqual(r, z3.unsat)
class TestSingletonInt(TestCase):
def test_basic(self):
j1 = SingletonInt(1, coeff=1)
j1_copy = SingletonInt(1, coeff=1)
j2 = SingletonInt(2, coeff=1)
j1x2 = SingletonInt(1, coeff=2)
def test_eq(a, b, expected):
self.assertEqual(sympy.Eq(a, b), expected)
self.assertEqual(sympy.Ne(b, a), not expected)
# eq, ne
test_eq(j1, j1, True)
test_eq(j1, j1_copy, True)
test_eq(j1, j2, False)
test_eq(j1, j1x2, False)
test_eq(j1, sympy.Integer(1), False)
test_eq(j1, sympy.Integer(3), False)
def test_ineq(a, b, expected, *, strict=True):
greater = (sympy.Gt, is_gt) if strict else (sympy.Ge, is_ge)
less = (sympy.Lt, is_lt) if strict else (sympy.Le, is_le)
if isinstance(expected, bool):
# expected is always True
for fn in greater:
self.assertEqual(fn(a, b), expected)
self.assertEqual(fn(b, a), not expected)
for fn in less:
self.assertEqual(fn(b, a), expected)
self.assertEqual(fn(a, b), not expected)
else:
for fn in greater:
with self.assertRaisesRegex(ValueError, expected):
fn(a, b)
for fn in less:
with self.assertRaisesRegex(ValueError, expected):
fn(b, a)
# ge, le, gt, lt
for strict in (True, False):
_test_ineq = functools.partial(test_ineq, strict=strict)
_test_ineq(j1, sympy.Integer(0), True)
_test_ineq(j1, sympy.Integer(3), "indeterminate")
_test_ineq(j1, j2, "indeterminate")
_test_ineq(j1x2, j1, True)
# Special cases for ge, le, gt, lt:
for ge in (sympy.Ge, is_ge):
self.assertTrue(ge(j1, j1))
self.assertTrue(ge(j1, sympy.Integer(2)))
with self.assertRaisesRegex(ValueError, "indeterminate"):
ge(sympy.Integer(2), j1)
for le in (sympy.Le, is_le):
self.assertTrue(le(j1, j1))
self.assertTrue(le(sympy.Integer(2), j1))
with self.assertRaisesRegex(ValueError, "indeterminate"):
le(j1, sympy.Integer(2))
for gt in (sympy.Gt, is_gt):
self.assertFalse(gt(j1, j1))
self.assertFalse(gt(sympy.Integer(2), j1))
# it is only known to be that j1 >= 2, j1 > 2 is indeterminate
with self.assertRaisesRegex(ValueError, "indeterminate"):
gt(j1, sympy.Integer(2))
for lt in (sympy.Lt, is_lt):
self.assertFalse(lt(j1, j1))
self.assertFalse(lt(j1, sympy.Integer(2)))
with self.assertRaisesRegex(ValueError, "indeterminate"):
lt(sympy.Integer(2), j1)
# mul
self.assertEqual(j1 * 2, j1x2)
# Unfortunately, this doesn't not automatically simplify to 2*j1
# since sympy.Mul doesn't trigger __mul__ unlike the above.
self.assertIsInstance(sympy.Mul(j1, 2), sympy.core.mul.Mul)
with self.assertRaisesRegex(ValueError, "cannot be multiplied"):
j1 * j2
self.assertEqual(j1.free_symbols, set())
instantiate_parametrized_tests(TestValueRanges)
instantiate_parametrized_tests(TestSympyInterp)
instantiate_parametrized_tests(TestSympySolve)
if __name__ == "__main__":
run_tests()