mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 13:44:15 +08:00
Summary: There was an overload for `torch::from_blob` missing that allowed passing strides. ezyang soumith Pull Request resolved: https://github.com/pytorch/pytorch/pull/13982 Differential Revision: D13108089 Pulled By: goldsborough fbshipit-source-id: b87594ec0bf55b35d106b4438bc18b2ce9fc8f71
281 lines
9.0 KiB
C++
281 lines
9.0 KiB
C++
#include <gtest/gtest.h>
|
|
|
|
#include <torch/types.h>
|
|
|
|
#include <ATen/ATen.h>
|
|
|
|
#include <cmath>
|
|
#include <cstddef>
|
|
#include <vector>
|
|
|
|
template <typename T>
|
|
bool exactly_equal(at::Tensor left, T right) {
|
|
return at::_local_scalar(left).to<T>() == right;
|
|
}
|
|
|
|
template <typename T>
|
|
bool almost_equal(at::Tensor left, T right, T tolerance = 1e-4) {
|
|
return std::abs(at::_local_scalar(left).to<T>() - right) < tolerance;
|
|
}
|
|
|
|
#define REQUIRE_TENSOR_OPTIONS(device_, index_, type_, layout_) \
|
|
ASSERT_TRUE( \
|
|
tensor.device().type() == at::Device((device_), (index_)).type()); \
|
|
ASSERT_TRUE( \
|
|
tensor.device().index() == at::Device((device_), (index_)).index()); \
|
|
ASSERT_EQ(tensor.dtype(), (type_)); \
|
|
ASSERT_TRUE(tensor.layout() == (layout_))
|
|
|
|
TEST(TensorTest, ToDtype) {
|
|
auto tensor = at::empty({3, 4});
|
|
REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kFloat, at::kStrided);
|
|
|
|
tensor = tensor.to(at::kInt);
|
|
REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kInt, at::kStrided);
|
|
|
|
tensor = tensor.to(at::kChar);
|
|
REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kChar, at::kStrided);
|
|
|
|
tensor = tensor.to(at::kDouble);
|
|
REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kDouble, at::kStrided);
|
|
|
|
tensor = tensor.to(at::TensorOptions(at::kInt));
|
|
REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kInt, at::kStrided);
|
|
|
|
tensor = tensor.to(at::TensorOptions(at::kChar));
|
|
REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kChar, at::kStrided);
|
|
|
|
tensor = tensor.to(at::TensorOptions(at::kDouble));
|
|
REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kDouble, at::kStrided);
|
|
}
|
|
|
|
TEST(TensorTest, ToTensorAndTensorAttributes) {
|
|
auto tensor = at::empty({3, 4});
|
|
REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kFloat, at::kStrided);
|
|
|
|
auto other = at::empty({3, 4}, at::kInt);
|
|
tensor = tensor.to(other);
|
|
REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kInt, at::kStrided);
|
|
|
|
other = at::empty({3, 4}, at::kDouble);
|
|
tensor = tensor.to(other.dtype());
|
|
REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kDouble, at::kStrided);
|
|
tensor = tensor.to(other.device());
|
|
REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kDouble, at::kStrided);
|
|
|
|
other = at::empty({3, 4}, at::kLong);
|
|
tensor = tensor.to(other.device(), other.dtype());
|
|
REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kLong, at::kStrided);
|
|
|
|
other = at::empty({3, 4}, at::kInt);
|
|
tensor = tensor.to(other.options());
|
|
REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kInt, at::kStrided);
|
|
}
|
|
|
|
// Not currently supported.
|
|
// TEST(TensorTest, ToLayout) {
|
|
// auto tensor = at::empty({3, 4});
|
|
// REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kFloat, at::kStrided);
|
|
//
|
|
// tensor = tensor.to(at::kSparse);
|
|
// REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kFloat, at::kSparse);
|
|
//
|
|
// tensor = tensor.to(at::kStrided);
|
|
// REQUIRE_TENSOR_OPTIONS(at::kCPU, -1, at::kFloat, at::kStrided);
|
|
// }
|
|
|
|
TEST(TensorTest, ToOptionsWithRequiresGrad) {
|
|
{
|
|
// Respects requires_grad
|
|
auto tensor = torch::empty({3, 4}, at::requires_grad());
|
|
ASSERT_TRUE(tensor.requires_grad());
|
|
|
|
tensor = tensor.to(at::kDouble);
|
|
ASSERT_TRUE(tensor.requires_grad());
|
|
|
|
// Throws if requires_grad is set in TensorOptions
|
|
ASSERT_THROW(
|
|
tensor.to(at::TensorOptions().requires_grad(true)), c10::Error);
|
|
ASSERT_THROW(
|
|
tensor.to(at::TensorOptions().requires_grad(false)), c10::Error);
|
|
}
|
|
{
|
|
auto tensor = torch::empty({3, 4});
|
|
ASSERT_FALSE(tensor.requires_grad());
|
|
|
|
// Respects requires_grad
|
|
tensor = tensor.to(at::kDouble);
|
|
ASSERT_FALSE(tensor.requires_grad());
|
|
|
|
// Throws if requires_grad is set in TensorOptions
|
|
ASSERT_THROW(
|
|
tensor.to(at::TensorOptions().requires_grad(true)), c10::Error);
|
|
ASSERT_THROW(
|
|
tensor.to(at::TensorOptions().requires_grad(false)), c10::Error);
|
|
}
|
|
}
|
|
|
|
TEST(TensorTest, ToDoesNotCopyWhenOptionsAreAllTheSame) {
|
|
{
|
|
auto tensor = at::empty({3, 4}, at::kFloat);
|
|
auto hopefully_not_copy = tensor.to(at::kFloat);
|
|
ASSERT_EQ(hopefully_not_copy.data<float>(), tensor.data<float>());
|
|
}
|
|
{
|
|
auto tensor = at::empty({3, 4}, at::kFloat);
|
|
auto hopefully_not_copy = tensor.to(tensor.options());
|
|
ASSERT_EQ(hopefully_not_copy.data<float>(), tensor.data<float>());
|
|
}
|
|
{
|
|
auto tensor = at::empty({3, 4}, at::kFloat);
|
|
auto hopefully_not_copy = tensor.to(tensor.dtype());
|
|
ASSERT_EQ(hopefully_not_copy.data<float>(), tensor.data<float>());
|
|
}
|
|
{
|
|
auto tensor = at::empty({3, 4}, at::kFloat);
|
|
auto hopefully_not_copy = tensor.to(tensor.device());
|
|
ASSERT_EQ(hopefully_not_copy.data<float>(), tensor.data<float>());
|
|
}
|
|
{
|
|
auto tensor = at::empty({3, 4}, at::kFloat);
|
|
auto hopefully_not_copy = tensor.to(tensor);
|
|
ASSERT_EQ(hopefully_not_copy.data<float>(), tensor.data<float>());
|
|
}
|
|
}
|
|
|
|
TEST(TensorTest, ContainsCorrectValueForSingleValue) {
|
|
auto tensor = at::tensor(123);
|
|
ASSERT_EQ(tensor.numel(), 1);
|
|
ASSERT_EQ(tensor.dtype(), at::kInt);
|
|
ASSERT_EQ(tensor[0].item<int32_t>(), 123);
|
|
|
|
tensor = at::tensor(123.456f);
|
|
ASSERT_EQ(tensor.numel(), 1);
|
|
ASSERT_EQ(tensor.dtype(), at::kFloat);
|
|
ASSERT_TRUE(almost_equal(tensor[0], 123.456f));
|
|
|
|
tensor = at::tensor(123.456);
|
|
ASSERT_EQ(tensor.numel(), 1);
|
|
ASSERT_EQ(tensor.dtype(), at::kDouble);
|
|
ASSERT_TRUE(almost_equal(tensor[0], 123.456));
|
|
}
|
|
|
|
TEST(TensorTest, ContainsCorrectValuesForManyValues) {
|
|
auto tensor = at::tensor({1, 2, 3});
|
|
ASSERT_EQ(tensor.numel(), 3);
|
|
ASSERT_EQ(tensor.dtype(), at::kInt);
|
|
ASSERT_TRUE(exactly_equal(tensor[0], 1));
|
|
ASSERT_TRUE(exactly_equal(tensor[1], 2));
|
|
ASSERT_TRUE(exactly_equal(tensor[2], 3));
|
|
|
|
tensor = at::tensor({1.5, 2.25, 3.125});
|
|
ASSERT_EQ(tensor.numel(), 3);
|
|
ASSERT_EQ(tensor.dtype(), at::kDouble);
|
|
ASSERT_TRUE(almost_equal(tensor[0], 1.5));
|
|
ASSERT_TRUE(almost_equal(tensor[1], 2.25));
|
|
ASSERT_TRUE(almost_equal(tensor[2], 3.125));
|
|
}
|
|
|
|
TEST(TensorTest, ContainsCorrectValuesForManyValuesVariable) {
|
|
auto tensor = torch::tensor({1, 2, 3});
|
|
ASSERT_TRUE(tensor.is_variable());
|
|
ASSERT_EQ(tensor.numel(), 3);
|
|
ASSERT_EQ(tensor.dtype(), at::kInt);
|
|
ASSERT_TRUE(exactly_equal(tensor[0], 1));
|
|
ASSERT_TRUE(exactly_equal(tensor[1], 2));
|
|
ASSERT_TRUE(exactly_equal(tensor[2], 3));
|
|
|
|
tensor = torch::tensor({1.5, 2.25, 3.125});
|
|
ASSERT_TRUE(tensor.is_variable());
|
|
ASSERT_EQ(tensor.numel(), 3);
|
|
ASSERT_EQ(tensor.dtype(), at::kDouble);
|
|
ASSERT_TRUE(almost_equal(tensor[0], 1.5));
|
|
ASSERT_TRUE(almost_equal(tensor[1], 2.25));
|
|
ASSERT_TRUE(almost_equal(tensor[2], 3.125));
|
|
}
|
|
|
|
TEST(TensorTest, ContainsCorrectValuesWhenConstructedFromVector) {
|
|
std::vector<int> v = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
|
|
auto tensor = at::tensor(v);
|
|
ASSERT_EQ(tensor.numel(), v.size());
|
|
ASSERT_EQ(tensor.dtype(), at::kInt);
|
|
for (size_t i = 0; i < v.size(); ++i) {
|
|
ASSERT_TRUE(exactly_equal(tensor[i], v.at(i)));
|
|
}
|
|
|
|
std::vector<double> w = {1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.8, 9.9, 10.0};
|
|
tensor = at::tensor(w);
|
|
ASSERT_EQ(tensor.numel(), w.size());
|
|
ASSERT_EQ(tensor.dtype(), at::kDouble);
|
|
for (size_t i = 0; i < w.size(); ++i) {
|
|
ASSERT_TRUE(almost_equal(tensor[i], w.at(i)));
|
|
}
|
|
}
|
|
|
|
TEST(TensorTest, UsesOptionsThatAreSupplied) {
|
|
auto tensor = at::tensor(123, dtype(at::kFloat)) + 0.5;
|
|
ASSERT_EQ(tensor.numel(), 1);
|
|
ASSERT_EQ(tensor.dtype(), at::kFloat);
|
|
ASSERT_TRUE(almost_equal(tensor[0], 123.5));
|
|
|
|
tensor = at::tensor({1.1, 2.2, 3.3}, dtype(at::kInt));
|
|
ASSERT_EQ(tensor.numel(), 3);
|
|
ASSERT_EQ(tensor.dtype(), at::kInt);
|
|
ASSERT_EQ(tensor.layout(), at::kStrided);
|
|
ASSERT_TRUE(exactly_equal(tensor[0], 1));
|
|
ASSERT_TRUE(exactly_equal(tensor[1], 2));
|
|
ASSERT_TRUE(exactly_equal(tensor[2], 3));
|
|
}
|
|
|
|
TEST(TensorTest, FromBlob) {
|
|
std::vector<double> v = {1.0, 2.0, 3.0};
|
|
auto tensor = torch::from_blob(
|
|
v.data(), v.size(), torch::dtype(torch::kFloat64).requires_grad(true));
|
|
ASSERT_TRUE(tensor.is_variable());
|
|
ASSERT_TRUE(tensor.requires_grad());
|
|
ASSERT_EQ(tensor.dtype(), torch::kFloat64);
|
|
ASSERT_EQ(tensor.numel(), 3);
|
|
ASSERT_EQ(tensor[0].item<double>(), 1);
|
|
ASSERT_EQ(tensor[1].item<double>(), 2);
|
|
ASSERT_EQ(tensor[2].item<double>(), 3);
|
|
}
|
|
|
|
TEST(TensorTest, FromBlobUsesDeleter) {
|
|
bool called = false;
|
|
{
|
|
std::vector<int32_t> v = {1, 2, 3};
|
|
auto tensor = torch::from_blob(
|
|
v.data(),
|
|
v.size(),
|
|
/*deleter=*/[&called](void* data) { called = true; },
|
|
torch::kInt32);
|
|
}
|
|
ASSERT_TRUE(called);
|
|
}
|
|
|
|
TEST(TensorTest, FromBlobWithStrides) {
|
|
// clang-format off
|
|
std::vector<int32_t> v = {
|
|
1, 2, 3,
|
|
4, 5, 6,
|
|
7, 8, 9
|
|
};
|
|
// clang-format on
|
|
auto tensor = torch::from_blob(
|
|
v.data(),
|
|
/*sizes=*/{3, 3},
|
|
/*strides=*/{1, 3},
|
|
torch::kInt32);
|
|
ASSERT_TRUE(tensor.is_variable());
|
|
ASSERT_EQ(tensor.dtype(), torch::kInt32);
|
|
ASSERT_EQ(tensor.numel(), 9);
|
|
const std::vector<int64_t> expected_strides = {1, 3};
|
|
ASSERT_EQ(tensor.strides(), expected_strides);
|
|
for (int64_t i = 0; i < tensor.size(0); ++i) {
|
|
for (int64_t j = 0; j < tensor.size(1); ++j) {
|
|
// NOTE: This is column major because the strides are swapped.
|
|
EXPECT_EQ(tensor[i][j].item<int32_t>(), 1 + (j * tensor.size(1)) + i);
|
|
}
|
|
}
|
|
}
|