Files
pytorch/test/dynamo/test_autograd_function.py
Erxin Shang 6ea8376f84 Enable XPU for test_autograd_function.py (#160309)
# Description
Fixes #114850, we will port dynamo tests to Intel GPU
We could enable Intel GPU with following methods and try the best to keep the original code styles:

# Changes
1. Get device type from get_devtype() method.
2. Replace the requires_cuda_and_triton with requires_gpu.
3. Add HAS_XPU_AND_TRITON into the scope.

# Notify

Pull Request resolved: https://github.com/pytorch/pytorch/pull/160309
Approved by: https://github.com/guangyey, https://github.com/ezyang
2025-08-13 06:38:34 +00:00

1551 lines
50 KiB
Python

# Owner(s): ["module: dynamo"]
# flake8: noqa: B950
import copy
import math
from dataclasses import dataclass
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
from torch.testing._internal.triton_utils import HAS_GPU, requires_gpu
device_type = (
acc.type if (acc := torch.accelerator.current_accelerator(True)) else "cpu"
)
if HAS_GPU:
import triton
from torch.testing._internal.triton_utils import add_kernel
class CustomFunc1(torch.autograd.Function):
@staticmethod
def forward(ctx, foo):
return foo + foo
@staticmethod
def backward(ctx, grad_output):
return grad_output
class CustomFunc3(torch.autograd.Function):
# Test there is graph break in forward function
@staticmethod
def forward(ctx, foo):
result = foo + foo
torch._dynamo.graph_break()
result = result + foo
ctx.save_for_backward(result)
return result
@staticmethod
def backward(ctx, grad_output):
(result,) = ctx.saved_tensors
return grad_output * math.sqrt(result.numel())
class Module1(torch.nn.Module):
def forward(self, foo):
return CustomFunc1().apply(foo)
class Module2(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.fn = CustomFunc1.apply
def forward(self, foo):
return self.fn(foo)
class Module3(torch.nn.Module):
def forward(self, foo):
return CustomFunc1().apply(foo)
class Module4(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.fn = CustomFunc1.apply
def forward(self, foo):
return self.fn(foo)
class Module5(torch.nn.Module):
def forward(self, foo):
return CustomFunc3().apply(foo)
class Module6(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.fn = CustomFunc3.apply
def forward(self, foo):
return self.fn(foo)
class LinearFunction(torch.autograd.Function):
# Note that forward, setup_context, and backward are @staticmethods
@staticmethod
def forward(input, weight, bias):
output = input.mm(weight.t())
if bias is not None:
output += bias.unsqueeze(0).expand_as(output)
return output
@staticmethod
# inputs is a Tuple of all of the inputs passed to forward.
# output is the output of the forward().
def setup_context(ctx, inputs, output):
input, weight, bias = inputs
ctx.save_for_backward(input, weight, bias)
# This function has only a single output, so it gets only one gradient
@staticmethod
def backward(ctx, grad_output):
input, weight, bias = ctx.saved_tensors
grad_input = grad_weight = grad_bias = None
if ctx.needs_input_grad[0]:
grad_input = grad_output.mm(weight)
if ctx.needs_input_grad[1]:
grad_weight = grad_output.t().mm(input)
if bias is not None and ctx.needs_input_grad[2]:
grad_bias = grad_output.sum(0)
return grad_input, grad_weight, grad_bias
class ModuleLinear(torch.nn.Module):
def forward(self, input, weight, bias=None):
return LinearFunction.apply(input, weight, bias)
class MaterializingGradFunction(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
ctx.set_materialize_grads(False)
return x.clone(), x.clone()
@staticmethod
def backward(ctx, grad_out1, grad_out2):
return grad_out1, grad_out2
class MaterializingGradModule(torch.nn.Module):
def forward(self, x):
return MaterializingGradFunction.apply(x)
class CustomFuncBwdPrintGraphBreak(torch.autograd.Function):
@staticmethod
def forward(ctx, foo):
return torch.add(foo, foo)
@staticmethod
def backward(ctx, grad_output):
print("graph break!")
return grad_output
class CustomFuncBwdPrintModule(torch.nn.Module):
def forward(self, x):
return CustomFuncBwdPrintGraphBreak.apply(x)
class CustomFuncStrideBwd(torch.autograd.Function):
@staticmethod
def forward(ctx, foo):
return torch.add(foo, foo)
@staticmethod
def backward(ctx, grad_output):
return grad_output * grad_output.stride()[-1]
class CustomFuncStrideModule(torch.nn.Module):
def forward(self, x):
return CustomFuncStrideBwd.apply(x)
class CustomFuncSaveForBwd(torch.autograd.Function):
@staticmethod
def forward(ctx, foo):
result = foo + foo
result = result + foo
ctx.save_for_backward(result)
return result
@staticmethod
def backward(ctx, grad_output):
(result,) = ctx.saved_tensors
return grad_output * math.sqrt(result.numel())
class SaveForBwdModule(torch.nn.Module):
def forward(self, foo):
return CustomFuncSaveForBwd().apply(foo)
class ContextSaveAndMark(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
with torch.no_grad():
ctx.save_for_backward(x)
ctx.mark_non_differentiable(x)
return x
@staticmethod
def backward(ctx, grad_output):
return grad_output
class ContextMarkAndSave(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
with torch.no_grad():
ctx.mark_non_differentiable(x)
ctx.save_for_backward(x)
return x
@staticmethod
def backward(ctx, grad_output):
return grad_output
class ModuleWithGradFunc(torch.nn.Module):
def __init__(self, func):
super().__init__()
self.f = func.apply
def forward(self, x):
return self.f(x)
class AutogradFunctionTests(torch._dynamo.test_case.TestCase):
# Sound behaviors, tested for working capture
def test_autograd_function_equivalence(self):
for grad in [True, False]:
for i in range(1, 5):
torch._dynamo.reset()
model = globals()[f"Module{i}"]()
opt_model = torch.compile(model, backend="eager")
self.assertTrue(
torch.allclose(
opt_model(torch.ones(2, 3, requires_grad=grad)),
torch.tensor([2.0], requires_grad=grad),
)
)
def test_autograd_function_has_graph_break(self):
for grad in [True, False]:
x = torch.randn(10, requires_grad=grad)
for model in [Module5(), Module6()]:
torch._dynamo.reset()
cnts = torch._dynamo.testing.CompileCounter()
opt_model = torch.compile(model, backend=cnts)
for _ in range(3):
ref = model(x)
res = opt_model(x)
self.assertTrue(torch.allclose(ref, res))
self.assertEqual(cnts.frame_count, 2)
def test_linear_setup_context(self):
model = ModuleLinear()
opt_model = torch.compile(model, backend="eager", fullgraph=True)
input = torch.randn(2, 2, dtype=torch.double, requires_grad=True)
weight = torch.randn(3, 2, dtype=torch.double, requires_grad=True)
eager_result = model(input, weight)
optim_result = opt_model(input, weight)
self.assertEqual(optim_result, eager_result)
def test_materialize_grad(self):
model = MaterializingGradModule()
opt_model = torch.compile(model, backend="eager")
x = torch.randn(2, 2, dtype=torch.double, requires_grad=True)
optim_result = opt_model(x)
eager_result = model(x)
self.assertEqual(optim_result, eager_result)
def test_print_in_bwd(self):
model = CustomFuncBwdPrintModule()
opt_model = torch.compile(model, backend="eager", fullgraph=True)
x = torch.randn(2, 2, dtype=torch.double, requires_grad=True)
with self.assertRaisesRegex(
torch._dynamo.exc.Unsupported,
"Dynamo does not know how to trace builtin operator `print`",
):
opt_model(x)
def test_stride_in_bwd(self):
torch._dynamo.utils.counters.clear()
cnt = torch._dynamo.testing.CompileCounter()
model = CustomFuncStrideModule()
opt_model = torch.compile(backend=cnt, fullgraph=True)(model)
x1 = torch.randn(2, 2, dtype=torch.double, requires_grad=True)
x2 = copy.deepcopy(x1)
ref = model(x1)
ref.backward(x1.clone().detach())
res = opt_model(x2)
res.backward(x2.clone().detach())
self.assertEqual(ref, res)
self.assertEqual(x1.grad, x2.grad)
self.assertEqual(cnt.frame_count, 1)
def test_enum_arg(self):
from enum import Enum
class SomeEnum(Enum):
A = 0
B = 1
class Foo(torch.autograd.Function):
@staticmethod
def forward(ctx, x, e):
if e is SomeEnum.A:
return x.sin()
else:
return x.cos()
@staticmethod
def backward(ctx, g):
return g
@torch.compile(backend="eager", fullgraph=True)
def f(x, enum):
output = Foo.apply(
x,
enum,
)
return output
x = torch.tensor([[1.0, 2, 3], [4, 5, 6]], requires_grad=True)
y = f(x, SomeEnum.A)
self.assertEqual(y, x.sin())
def test_save_for_bwd(self):
model = SaveForBwdModule()
opt_model = torch.compile(model, backend="eager", fullgraph=True)
x = torch.randn(2, 2, dtype=torch.double, requires_grad=True)
opt_model(x)
def test_allow_in_graph(self):
torch._dynamo.utils.counters.clear()
cnt = torch._dynamo.testing.CompileCounter()
@torch._dynamo.allow_in_graph
class AllowInGraphFunc(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
torch._dynamo.graph_break()
ctx.x0 = x.size(0)
return x * 2
@staticmethod
def backward(ctx, grad_out):
return grad_out * ctx.x0
@torch.compile(backend=cnt, fullgraph=True)
def fn(x):
return AllowInGraphFunc.apply(x)
x = torch.rand(2, 3, requires_grad=True)
result = fn(x)
self.assertEqual(result, AllowInGraphFunc.apply(x))
self.assertEqual(cnt.frame_count, 1)
def test_once_differentiable(self):
from torch.autograd.function import once_differentiable
torch._dynamo.utils.counters.clear()
cnt = torch._dynamo.testing.CompileCounter()
class ScaleGradient(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
return x
@staticmethod
@once_differentiable
def backward(ctx, grad):
return grad * 0.5
@torch.compile(backend=cnt, fullgraph=True)
def fn(x):
return ScaleGradient.apply(x)
x = torch.randn(3, requires_grad=True)
result = fn(x)
self.assertEqual(result, ScaleGradient.apply(x))
self.assertEqual(cnt.frame_count, 1)
def test_classmethod(self):
class Shake(torch.autograd.Function):
@classmethod
def forward(cls, ctx, foo):
return foo + foo
@classmethod
def backward(cls, ctx, grad_output):
return grad_output
def f(x):
return Shake.apply(x)
x = torch.randn(4, 4, 4, 4, requires_grad=True)
opt_m = torch.compile(backend="eager")(f)
opt_m(x)
def test_function_context_save_and_mark(self):
mod = ModuleWithGradFunc(ContextSaveAndMark)
args, kwargs = ([torch.rand([1])], {})
before = mod(*args, **kwargs)
torch._dynamo.reset()
compiled_model = torch.compile(mod, backend="eager")
after = compiled_model(*args, **kwargs)
self.assertEqual(before, after)
def test_function_context_mark_and_save(self):
mod = ModuleWithGradFunc(ContextMarkAndSave)
args, kwargs = ([torch.rand([1])], {})
before = mod(*args, **kwargs)
torch._dynamo.reset()
compiled_model = torch.compile(mod, backend="eager")
after = compiled_model(*args, **kwargs)
self.assertEqual(before, after)
def test_multi_output(self):
torch._dynamo.utils.counters.clear()
cnt = torch._dynamo.testing.CompileCounter()
class Foo(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
return x.clone(), x.clone()
@staticmethod
def backward(ctx, grad1, grad2):
return grad1 + grad2
@torch.compile(backend=cnt, fullgraph=True)
def f(x):
return Foo.apply(x)
x = torch.randn(3, requires_grad=True)
result = f(x)
self.assertEqual(result, Foo.apply(x))
self.assertEqual(cnt.frame_count, 1)
def test_data_in_bwd(self):
class Foo(torch.autograd.Function):
@staticmethod
def forward(ctx, input_tensor):
ctx.save_for_backward(input_tensor)
return input_tensor * 3
@staticmethod
def backward(ctx, grad_output):
(input_tensor,) = ctx.saved_tensors
# Modify gradient using .data (Dangerous: Breaks autograd tracking!)
modified_grad = grad_output.clone()
modified_grad.data[input_tensor.data < 0] = (
0 # Zero-out gradients for negative inputs
)
return modified_grad * 3
@torch.compile(backend="aot_eager", fullgraph=True)
def fn(x):
return Foo.apply(x)
x = torch.tensor([-2.0, 1.0, 3.0], requires_grad=True)
res = fn(x)
self.assertEqual(res, Foo.apply(x))
res.sum().backward()
self.assertEqual(x.grad, torch.tensor([0.0, 3.0, 3.0]))
def test_requires_grad_in_bwd(self):
class Foo(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
ctx.save_for_backward(x)
return torch.sin(x + 1)
@staticmethod
def backward(ctx, grad_output):
(x,) = ctx.saved_tensors
if grad_output.requires_grad:
return grad_output * torch.sin(
x + 1
) # Wrong gradient, we should never get here.
else:
return grad_output * torch.cos(x + 1)
@torch.compile(backend="aot_eager", fullgraph=True)
def fn(x):
return Foo.apply(x)
x = torch.tensor([1.0, 3.0], requires_grad=True)
res = fn(x)
self.assertEqual(res, Foo.apply(x))
res.sum().backward()
self.assertEqual(x.grad, torch.cos(x + 1))
def test_amp_custom_fwd_bwd(self):
torch._dynamo.utils.counters.clear()
cnt = torch._dynamo.testing.CompileCounter()
class MyMM(torch.autograd.Function):
@staticmethod
@torch.amp.custom_fwd(device_type=device_type)
def forward(ctx, a, b):
ctx.save_for_backward(a, b)
return a.mm(b)
@staticmethod
@torch.amp.custom_bwd(device_type=device_type)
def backward(ctx, grad):
a, b = ctx.saved_tensors
return grad.mm(b.t()), a.t().mm(grad)
@torch.compile(backend=cnt, fullgraph=True)
def fn(a, b):
return MyMM.apply(a, b)
a = torch.randn([64, 64], dtype=torch.float32, requires_grad=True)
grad = a.clone()
res = fn(a, a)
res.backward(grad)
self.assertEqual(res, MyMM.apply(a, a))
self.assertEqual(cnt.frame_count, 1)
def test_set_materialize_grads_no_graph_break(self):
class MulY(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
ctx.set_materialize_grads(True)
return x * 3
@staticmethod
def backward(ctx, grad_out):
return grad_out * 3
@torch.compile(backend="eager", fullgraph=True)
def f(x):
return MulY.apply(x)
x = torch.tensor(2.0, requires_grad=True)
result = f(x)
result.sum().backward()
self.assertEqual(result, MulY.apply(x))
self.assertEqual(x.grad, 3.0)
def test_user_defined_object_as_input(self):
cnt = torch._dynamo.testing.CompileCounterWithBackend("aot_eager")
@dataclass
class Weird:
x: int
b: torch.Tensor
c: torch.Tensor
class Foo(torch.autograd.Function):
@staticmethod
def forward(ctx, x: torch.Tensor, weird: Weird, z: torch.Tensor):
ctx.save_for_backward(weird.b, weird.c)
return weird.b * weird.c * x.clone()
@staticmethod
def backward(ctx, grad):
b, c = ctx.saved_tensors
return grad * b * c, None, grad * 2
@torch.compile(backend=cnt, fullgraph=True)
def f(x, weird, z):
return Foo.apply(x, weird, z)
x = torch.tensor(2.0, requires_grad=True)
weird = Weird(1.2, torch.tensor(2.5, requires_grad=True), torch.tensor(3.5))
z = torch.tensor(3.0, requires_grad=True)
result = f(x, weird, z)
result.sum().backward()
self.assertEqual(result, Foo.apply(x, weird, z))
self.assertEqual(x.grad, 2.5 * 3.5)
self.assertEqual(z.grad, 2.0)
self.assertEqual(weird.b.grad, None)
# check Dynamo captured graph is correct!
actual_graph = torch._dynamo.testing.normalize_gm(
cnt.graphs[0].print_readable(print_output=False)
)
self.assertExpectedInline(
actual_graph,
"""\
class GraphModule(torch.nn.Module):
def forward(self, L_x_: "f32[]", L_z_: "f32[]", L_weird_b: "f32[]", L_weird_c: "f32[]"):
l_x_ = L_x_
l_z_ = L_z_
l_weird_b = L_weird_b
l_weird_c = L_weird_c
fwd_body_0 = self.fwd_body_0
bwd_body_0 = self.bwd_body_0
autograd_function_apply: "f32[]" = torch.ops.higher_order.autograd_function_apply(fwd_body_0, bwd_body_0, l_x_, l_z_, l_weird_b, l_weird_c, args_tensor_mask = [True, False, True], non_differentiable_idx = []); fwd_body_0 = bwd_body_0 = l_x_ = l_z_ = l_weird_b = l_weird_c = None
return (autograd_function_apply,)
class fwd_body_0(torch.nn.Module):
def forward(self, ctx : torch.autograd.function.Function, x: "f32[]", z: "f32[]", l_weird_b: "f32[]", l_weird_c: "f32[]"):
_set_grad_enabled = torch._C._set_grad_enabled(False); _set_grad_enabled = None
mul: "f32[]" = l_weird_b * l_weird_c
clone: "f32[]" = x.clone(); x = None
mul_1: "f32[]" = mul * clone; mul = clone = None
_set_grad_enabled_1 = torch._C._set_grad_enabled(True); _set_grad_enabled_1 = None
return (mul_1, [l_weird_b, l_weird_c])
class bwd_body_0(torch.nn.Module):
def forward(self, ctx : torch.autograd.function.Function, grad: "f32[]", l_weird_b: "f32[]", l_weird_c: "f32[]"):
_set_grad_enabled = torch._C._set_grad_enabled(False); _set_grad_enabled = None
mul: "f32[]" = grad * l_weird_b; l_weird_b = None
mul_1: "f32[]" = mul * l_weird_c; mul = l_weird_c = None
mul_2: "f32[]" = grad * 2; grad = None
_set_grad_enabled_1 = torch._C._set_grad_enabled(True); _set_grad_enabled_1 = None
return (mul_1, mul_2)
""",
)
def test_tensor_list_as_input(self):
class Foo(torch.autograd.Function):
@staticmethod
def forward(ctx, x, tl):
ctx.save_for_backward(tl[0], tl[1])
return x.clone() * (tl[0] + tl[1])
@staticmethod
def backward(ctx, grad):
tl0, tl1 = ctx.saved_tensors
return grad * (tl0 + tl1), None
@torch.compile(backend="aot_eager", fullgraph=True)
def f(x, tl):
return Foo.apply(x, tl)
x = torch.tensor(2.0, requires_grad=True)
tl = [
torch.tensor(3.0, requires_grad=True),
torch.tensor(4.0, requires_grad=True),
]
result = f(x, tl)
result.sum().backward()
self.assertEqual(result, Foo.apply(x, tl))
self.assertEqual(x.grad, 7.0)
self.assertEqual(tl[0].grad, None)
self.assertEqual(tl[1].grad, None)
def test_multiple_different_non_tensor_inputs(self):
@dataclass
class Weird:
x: int
b: torch.Tensor
c: torch.Tensor
class Foo(torch.autograd.Function):
@staticmethod
def forward(ctx, x, weird, z, tl):
ctx.save_for_backward(weird.b, weird.c, tl[0], tl[1])
return x.clone() * weird.b * weird.c * tl[0]
@staticmethod
def backward(ctx, grad):
b, c, tl0, _ = ctx.saved_tensors
return grad * b * c * tl0, None, grad * 2, None
@torch.compile(backend="aot_eager", fullgraph=True)
def f(x, weird, z, tl):
return Foo.apply(x, weird, z, tl)
x = torch.tensor(2.0, requires_grad=True)
weird = Weird(
1.2,
torch.tensor(2.5, requires_grad=True),
torch.tensor(3.5, requires_grad=True),
)
z = torch.tensor(3.0, requires_grad=True)
tl = [
torch.tensor(0.5, requires_grad=True),
torch.tensor(0.6, requires_grad=True),
]
result = f(x, weird, z, tl)
result.sum().backward()
self.assertEqual(result, Foo.apply(x, weird, z, tl))
self.assertEqual(x.grad, 2.5 * 3.5 * 0.5)
self.assertEqual(z.grad, 2.0)
self.assertEqual(weird.b.grad, None)
self.assertEqual(weird.c.grad, None)
self.assertEqual(tl[0].grad, None)
self.assertEqual(tl[1].grad, None)
def test_backward_returns_none_for_tensor_input(self):
class Foo(torch.autograd.Function):
@staticmethod
def forward(ctx, x, y):
ctx.save_for_backward(y)
return x.clone() * y
@staticmethod
def backward(ctx, grad):
(y,) = ctx.saved_tensors
return grad * y, None
@torch.compile(backend="aot_eager", fullgraph=True)
def f(x, y):
return Foo.apply(x, y)
x = torch.tensor(2.0, requires_grad=True)
y = torch.tensor(3.0, requires_grad=True)
result = f(x, y)
result.sum().backward()
self.assertEqual(result, Foo.apply(x, y))
self.assertEqual(x.grad, 3.0)
self.assertEqual(y.grad, None)
def test_function_with_bound_free_variable(self):
class LowerBound(torch.autograd.Function):
@staticmethod
def forward(ctx, inputs, bound):
ctx.save_for_backward(inputs, inputs.new_ones(1) * bound)
return inputs.clamp(min=bound)
@staticmethod
def backward(ctx, grad_output):
inputs, bound = ctx.saved_tensors
return (inputs >= bound) * grad_output, None
class MyMod(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.gamma = torch.nn.Parameter(torch.rand([4, 128, 32, 32]))
def forward(self, x):
gamma = LowerBound.apply(self.gamma, 1)
return x + gamma
mod = MyMod()
args, kwargs = ([torch.rand([4, 128, 32, 32])], {})
before = mod(*args, **kwargs)
compiled_model = torch.compile(mod, backend="eager")
after = compiled_model(*args, **kwargs)
self.assertEqual(before, after)
def test_forward_returns_constant(self):
class Foo(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
return x, [1, 2, 3] # Tensor and list of integers
@staticmethod
def backward(ctx, grad_output1, grad_output2):
return grad_output1
@torch.compile(backend="aot_eager", fullgraph=True)
def f(x):
return Foo.apply(x)
x = torch.tensor(2.0, requires_grad=True)
result = f(x)
result[0].sum().backward()
self.assertEqual(result, Foo.apply(x))
# I pulled all of these test cases from test_autograd.py
# In the future, we should make the Dynamo test suite actually
# run on test_autograd.py (it's disabled right now) and delete these.
def test_smoke_from_test_autograd(self):
def mult1(x):
return x.prod(dim=-1).prod(dim=-1)
class Mult(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
y = mult1(x)
ctx.save_for_backward(x, y)
return y
@staticmethod
def backward(ctx, grad_output):
x, y = ctx.saved_tensors
return (grad_output * y)[:, None, None] / x
mult2 = Mult.apply
class Double(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
y = x**2
ctx.save_for_backward(x, y)
return y
@staticmethod
def backward(ctx, grad_output):
x, _ = ctx.saved_tensors
return grad_output * 2 * x
# this is equivalent, but uses the output of .forward() in .backward()
class Double2(Double):
@staticmethod
def backward(ctx, grad_output):
x, y = ctx.saved_tensors
return grad_output * 2 * y / x
double = Double.apply
double2 = Double2.apply
class Identity(torch.autograd.Function):
@staticmethod
def forward(ctx, a, b):
return a, a + b
@staticmethod
def backward(ctx, grad_a, grad_b):
return grad_a + grad_b, grad_b
class MyFunc2(torch.autograd.Function):
@staticmethod
def forward(ctx, inp):
return inp.clone()
@staticmethod
def backward(ctx, gO):
return torch.tensor(float("nan")).expand(10, 10)
def run_fn(a): # noqa: F841
out = MyFunc2.apply(a)
return out.sum()
class MyFn(torch.autograd.Function):
@staticmethod
def forward(ctx, inp):
return inp.view_as(inp)
@staticmethod
def backward(ctx, grad):
return grad
class MyAdder(torch.autograd.Function):
@staticmethod
def forward(ctx, a, b):
a.add_(b)
ctx.mark_dirty(a)
return a
@staticmethod
def backward(ctx, grad):
return grad, grad
class InplaceMul(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
result = x.mul_(2)
ctx.mark_dirty(result)
return result
@staticmethod
def backward(ctx, grad_output):
pass
@staticmethod
def jvp(ctx, x_t):
if jvp_err: # noqa: F821
return x_t
else:
return x_t.mul_(2)
class MyFn2(torch.autograd.Function):
@staticmethod
def forward(ctx, x, y):
return x + y, x
@staticmethod
def vjp(ctx, gO1, gO2):
return gO1 + gO2, gO1
@staticmethod
def jvp(ctx, x_t, y_t):
return x_t + y_t, fn(x_t) # noqa: F821
class MyFn3(torch.autograd.Function):
@staticmethod
def forward(ctx, inp, inplace):
view = inp.clone()[:3]
if inplace:
view += 2
return view
@staticmethod
def backward(ctx, grad):
return grad, None
def test():
x = torch.ones(2, 4, 4).requires_grad_()
mult2(x)
x = torch.tensor(2).double().requires_grad_()
double(x)
double2(x)
x = torch.randn(5, 5, requires_grad=True)
y = torch.randn(5, 5, requires_grad=True)
Identity.apply(x, y)
a = torch.rand(1, 2)
b = torch.rand(1, requires_grad=True)
MyFn.apply(a)
a = torch.ones(2, requires_grad=True)
b = torch.ones(2, requires_grad=True)
c = MyAdder.apply(a.clone(), b)
c.sum().backward()
z = torch.tensor(1.0, requires_grad=True)
x = z.clone()
y = InplaceMul.apply(x)
a = torch.tensor(1.0, dtype=torch.double, requires_grad=True)
b = torch.tensor(1.0, dtype=torch.double, requires_grad=True)
c = torch.tensor(1.0, dtype=torch.double)
d = torch.tensor(1.0, dtype=torch.double)
MyFn2.apply(a, b)
MyFn2.apply(c, d)
base = torch.rand(10, requires_grad=True)
MyFn3.apply(base, False)
test()
opt_test = torch.compile(test, backend="eager")
opt_test()
def test_tensor_subclass_intermediary_input(self):
class FooTensor(torch.Tensor):
@staticmethod
def __new__(cls, data, config, scale):
self = torch.Tensor._make_wrapper_subclass(
cls,
config[0],
strides=config[1],
storage_offset=config[2],
dtype=config[3],
layout=config[4],
requires_grad=config[5],
device=data.device,
)
self._data = data
self._config = config
self._scale = scale
return self
def __repr__(self):
return "FooTensor"
def __tensor_flatten__(self):
return ("_data",), (
self._config,
self._scale,
)
@staticmethod
def __tensor_unflatten__(tensors, metadatas, outer_size, outer_stride):
return FooTensor(tensors["_data"], metadatas[0], metadatas[1])
@classmethod
def __torch_dispatch__(cls, func, types, args, kwargs=None):
# handling clone and view is so dynamo fakefication passes, it's not
# intended to be handling user code
if func == torch.ops.aten.clone.default:
return FooTensor(
args[0]._data.clone(), args[0]._config, args[0]._scale
)
elif func == torch.ops.aten.view.default:
new_data = args[0]._data.view(*args[1:])
return FooTensor(new_data, args[0]._config, args[0]._scale)
raise NotImplementedError
class foo_autograd_fn(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
# access some data from `x`, where `x` is a tensor subclass
x2 = x._data + 1.0
# create and return a tensor subclass from within a torch.autograd.Function
x3 = FooTensor(x2, x._config, x._scale)
return x3._data
@staticmethod
def backward(ctx, g):
return g
x_ref = torch.randn(4, 4).requires_grad_(True)
x = copy.deepcopy(x_ref)
scale = torch.tensor(1.0)
# Weird that this is needed, but not having this breaks a lot of things
torch._dynamo.allow_in_graph(FooTensor)
def foo(x, scale):
config = (
x.size(),
x.stride(),
x.storage_offset(),
x.dtype,
x.layout,
x.requires_grad,
)
x = FooTensor(x, config, scale)
x = foo_autograd_fn.apply(x)
return x
y_ref = foo(x_ref, scale)
y_ref.sum().backward()
foo_opt = torch.compile(foo, backend="eager")
y = foo_opt(x, scale)
y.sum().backward()
self.assertEqual(y, y_ref)
self.assertEqual(x.grad, x_ref.grad)
def test_assert_is_contiguous_after_matmul(self):
class LinearFunction(torch.autograd.Function):
@staticmethod
def forward(ctx, x, weight):
ctx.save_for_backward(x, weight)
y = x.matmul(weight.t())
return y
@staticmethod
def backward(ctx, grad_output):
x, weight = ctx.saved_tensors
grad_x = grad_output.matmul(weight)
assert grad_x.is_contiguous()
grad_weight = grad_output.transpose(0, 1).matmul(x)
return grad_x, grad_weight
def fn(x, weight):
return LinearFunction.apply(x, weight)
x1 = torch.randn(5, 3, requires_grad=True)
x2 = copy.deepcopy(x1)
W1 = torch.randn(4, 3, requires_grad=True)
W2 = copy.deepcopy(W1)
y1 = fn(x1, W1)
y1.sum().backward()
cnts = torch._dynamo.testing.CompileCounter()
opt_fn = torch.compile(fn, backend=cnts)
y2 = opt_fn(x2, W2)
y2.sum().backward()
self.assertEqual(y1, y2)
self.assertEqual(x1.grad, x2.grad)
self.assertEqual(W1.grad, W2.grad)
self.assertEqual(cnts.frame_count, 1)
def test_assert_is_contiguous_on_grad_output_directly(self):
class LinearFunction(torch.autograd.Function):
@staticmethod
def forward(ctx, x, weight):
ctx.save_for_backward(x, weight)
y = x.matmul(weight.t())
return y
@staticmethod
def backward(ctx, grad_output):
assert grad_output.is_contiguous()
x, weight = ctx.saved_tensors
grad_x = grad_output.matmul(weight)
grad_weight = grad_output.transpose(0, 1).matmul(x)
return grad_x, grad_weight
def fn(x, weight):
return LinearFunction.apply(x, weight)
x1 = torch.randn(5, 3, requires_grad=True)
x2 = copy.deepcopy(x1)
W1 = torch.randn(4, 3, requires_grad=True)
W2 = copy.deepcopy(W1)
y1 = fn(x1, W1)
y1.backward(y1.clone().detach().requires_grad_(True))
cnt = torch._dynamo.testing.CompileCounterWithBackend("aot_eager")
opt_fn = torch.compile(fn, backend=cnt)
y2 = opt_fn(x2, W2)
y2.backward(y2.clone().detach().requires_grad_(True))
self.assertEqual(y1, y2)
self.assertEqual(x1.grad, x2.grad)
self.assertEqual(W1.grad, W2.grad)
# Check the inserted .contiguous() call is there!
actual_graph = torch._dynamo.testing.normalize_gm(
cnt.graphs[0].print_readable(print_output=False)
)
self.assertExpectedInline(
actual_graph,
"""\
class GraphModule(torch.nn.Module):
def forward(self, L_x_: "f32[5, 3]", L_weight_: "f32[4, 3]"):
l_x_ = L_x_
l_weight_ = L_weight_
fwd_body_0 = self.fwd_body_0
bwd_body_0 = self.bwd_body_0
autograd_function_apply: "f32[5, 4]" = torch.ops.higher_order.autograd_function_apply(fwd_body_0, bwd_body_0, l_x_, l_weight_, args_tensor_mask = [True, True], non_differentiable_idx = []); fwd_body_0 = bwd_body_0 = l_x_ = l_weight_ = None
return (autograd_function_apply,)
class fwd_body_0(torch.nn.Module):
def forward(self, ctx : torch.autograd.function.Function, x: "f32[5, 3]", weight: "f32[4, 3]"):
_set_grad_enabled = torch._C._set_grad_enabled(False); _set_grad_enabled = None
t: "f32[3, 4]" = weight.t()
y: "f32[5, 4]" = x.matmul(t); t = None
_set_grad_enabled_1 = torch._C._set_grad_enabled(True); _set_grad_enabled_1 = None
return (y, [weight, x])
class bwd_body_0(torch.nn.Module):
def forward(self, function_ctx : torch.autograd.function.Function, y: "f32[5, 4]", weight: "f32[4, 3]", x: "f32[5, 3]"):
_set_grad_enabled = torch._C._set_grad_enabled(False); _set_grad_enabled = None
contiguous: "f32[5, 4]" = y.contiguous(); y = None
grad_x: "f32[5, 3]" = contiguous.matmul(weight); weight = None
transpose: "f32[4, 5]" = contiguous.transpose(0, 1); contiguous = None
grad_weight: "f32[4, 3]" = transpose.matmul(x); transpose = x = None
_set_grad_enabled_1 = torch._C._set_grad_enabled(True); _set_grad_enabled_1 = None
return (grad_x, grad_weight)
""",
)
def test_smuggle_symint_issue_111031(self):
from torch.autograd import Function
class Foo(Function):
@staticmethod
def forward(ctx, x):
ctx.x0 = x.size(0)
return x * 2
@staticmethod
def backward(ctx, grad_out):
return grad_out * ctx.x0
cnts = torch._dynamo.testing.CompileCounter()
@torch.compile(backend=cnts, fullgraph=True, dynamic=True)
def foo(x):
return Foo.apply(x)
foo(torch.randn(2, requires_grad=True))
self.assertEqual(cnts.frame_count, 1)
def test_needs_input_grad(self):
cnt = torch._dynamo.testing.CompileCounter()
class NeedsInputGradFunc(torch.autograd.Function):
@staticmethod
def forward(ctx, foo):
result = foo + foo
ctx.save_for_backward(result)
return result
@staticmethod
@torch.compile(backend=cnt, fullgraph=True)
def backward(ctx, grad_output):
(result,) = ctx.saved_tensors
if ctx.needs_input_grad[0]:
return grad_output * result.sin()
return None
x = torch.randn(10, requires_grad=True)
NeedsInputGradFunc.apply(x).sum().backward()
self.assertEqual(x.grad.shape, x.shape)
self.assertEqual(cnt.frame_count, 1)
self.assertEqual(cnt.op_count, 2)
def test_repeated_save_for_backward_calls(self):
from torch.autograd import Function
class Foo(Function):
@staticmethod
def forward(ctx, x, y):
ctx.save_for_backward(x)
ctx.save_for_backward(x, y)
return x * y
@staticmethod
def backward(ctx, grad_out):
x, y = ctx.saved_tensors
return grad_out * x, grad_out * y
cnts = torch._dynamo.testing.CompileCounter()
def foo(x, y):
return Foo.apply(x, y)
x_ref = torch.randn(2, requires_grad=True)
y_ref = torch.randn(2, requires_grad=True)
x_test = x_ref.detach().clone().requires_grad_()
y_test = y_ref.detach().clone().requires_grad_()
out_ref = foo(x_ref, y_ref)
out_ref.sum().backward()
out_test = torch.compile(foo, backend=cnts)(x_test, y_test)
out_test.sum().backward()
self.assertEqual(cnts.frame_count, 1)
self.assertEqual(out_ref, out_test)
self.assertEqual(x_ref.grad, x_test.grad)
self.assertEqual(y_ref.grad, y_test.grad)
def test_smuggle_tensor_and_complex_structures(self):
from torch.autograd import Function
class Foo(Function):
@staticmethod
def forward(ctx, x):
ctx.x0 = x
ctx.x1 = [1, 2, 3]
return x * 2
@staticmethod
def backward(ctx, grad_out):
x0mul = grad_out * ctx.x0
for i in ctx.x1:
x0mul = (x0mul * i) + x0mul
return x0mul
cnts = torch._dynamo.testing.CompileCounter()
@torch.compile(backend=cnts, fullgraph=True, dynamic=True)
def foo(x):
return Foo.apply(x)
foo(torch.randn(2, requires_grad=True))
self.assertEqual(cnts.frame_count, 1)
def test_mark_non_differentiable(self):
cnt = torch._dynamo.testing.CompileCounterWithBackend("aot_eager")
from torch.autograd import Function
class MyFunction(Function):
@staticmethod
def forward(ctx, x, y):
out1 = x.sin()
out2 = y * 2
ctx.mark_non_differentiable(out2)
return out1, out2
@staticmethod
def backward(ctx, grad1, grad2):
return grad1.cos(), grad2 * 0.0
@torch.compile(backend=cnt, fullgraph=True)
def fn(x, y):
return MyFunction.apply(x, y)
x = torch.tensor(10.0, requires_grad=True)
y = torch.tensor(20.0, requires_grad=True)
ref1, ref2 = MyFunction.apply(x, y)
res1, res2 = fn(x, y)
self.assertEqual(ref1, res1)
self.assertEqual(ref2, res2)
# Ensure out1 requires gradients, out2 does not.
self.assertTrue(ref1.requires_grad)
self.assertTrue(res1.requires_grad)
self.assertFalse(ref2.requires_grad)
self.assertFalse(res2.requires_grad)
res1.sum().backward()
# check Dynamo captured graph is correct!
actual_graph = torch._dynamo.testing.normalize_gm(
cnt.graphs[0].print_readable(print_output=False)
)
self.assertExpectedInline(
actual_graph,
"""\
class GraphModule(torch.nn.Module):
def forward(self, L_x_: "f32[]", L_y_: "f32[]"):
l_x_ = L_x_
l_y_ = L_y_
fwd_body_0 = self.fwd_body_0
bwd_body_0 = self.bwd_body_0
autograd_function_apply = torch.ops.higher_order.autograd_function_apply(fwd_body_0, bwd_body_0, l_x_, l_y_, args_tensor_mask = [True, True], non_differentiable_idx = [1]); fwd_body_0 = bwd_body_0 = l_x_ = l_y_ = None
getitem: "f32[]" = autograd_function_apply[0]
getitem_1: "f32[]" = autograd_function_apply[1]; autograd_function_apply = None
return (getitem, getitem_1)
class fwd_body_0(torch.nn.Module):
def forward(self, ctx : torch.autograd.function.Function, x: "f32[]", y: "f32[]"):
_set_grad_enabled = torch._C._set_grad_enabled(False); _set_grad_enabled = None
out1: "f32[]" = x.sin(); x = None
out2: "f32[]" = y * 2; y = None
_set_grad_enabled_1 = torch._C._set_grad_enabled(True); _set_grad_enabled_1 = None
return ((out1, out2), [])
class bwd_body_0(torch.nn.Module):
def forward(self, ctx : torch.autograd.function.Function, grad1: "f32[]", grad2: "f32[]"):
_set_grad_enabled = torch._C._set_grad_enabled(False); _set_grad_enabled = None
cos: "f32[]" = grad1.cos(); grad1 = None
mul: "f32[]" = grad2 * 0.0; grad2 = None
_set_grad_enabled_1 = torch._C._set_grad_enabled(True); _set_grad_enabled_1 = None
return (cos, mul)
""",
)
def test_mark_multi_output_non_differentiable(self):
from torch.autograd import Function
class MyFunction(Function):
@staticmethod
def forward(ctx, x, y, z):
out1 = x.sin()
out2 = y * 2
out3 = z + 3
ctx.mark_non_differentiable(out2, out3)
return out1, out2, out3
@staticmethod
def backward(ctx, grad1, grad2, grad3):
return grad1.cos(), grad2, grad3
@torch.compile(backend="aot_eager", fullgraph=True)
def fn(x, y, z):
return MyFunction.apply(x, y, z)
x = torch.tensor(10.0, requires_grad=True)
y = torch.tensor(20.0, requires_grad=True)
z = torch.tensor(30.0, requires_grad=True)
ref1, ref2, ref3 = MyFunction.apply(x, y, z)
res1, res2, res3 = fn(x, y, z)
self.assertEqual(ref1, res1)
self.assertEqual(ref2, res2)
self.assertEqual(ref3, res3)
# Ensure out1 requires gradients, out2 does not.
self.assertTrue(ref1.requires_grad)
self.assertTrue(res1.requires_grad)
self.assertFalse(ref2.requires_grad)
self.assertFalse(res2.requires_grad)
self.assertFalse(ref3.requires_grad)
self.assertFalse(res3.requires_grad)
res1.sum().backward()
def test_default_values(self):
from torch.autograd import Function
class Foo(Function):
@staticmethod
def forward(ctx, x, alpha=0.99):
return x
@staticmethod
def backward(ctx, grad_out):
return grad_out
@torch.compile
def foo(x):
return Foo.apply(x)
# Make sure guards for default values do not crash
foo(torch.randn(2))
foo(torch.randn(2, requires_grad=True))
def test_fwd_no_grad(self):
# autograd.Function.forward should be traced and called under no_grad mode.
# torch.exp with out=... arguments don't support automatic differentiation,
# so can't be traced/called under grad mode (throwing RuntimeError),
# therefore this unit test ensures fwd is under no_grad mode.
class Foo(torch.autograd.Function):
@staticmethod
def forward(ctx, inputs):
torch.exp(inputs, out=inputs)
return inputs
@staticmethod
def backward(ctx, grad_output):
return None
@torch.compile(backend="eager", fullgraph=True)
def f(x):
return Foo.apply(x)
x1 = torch.randn(2, 3, requires_grad=True)
x2 = x1.clone()
self.assertEqual(f(x1), Foo.apply(x2))
# https://github.com/pytorch/pytorch/issues/129963
def test_fwd_propogation_correctness(self):
class MyCube(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
result = x**3
dx = 3 * x**2
ctx.save_for_backward(x, dx)
return result, dx
@staticmethod
def backward(ctx, grad_output, grad_dx):
x, dx = ctx.saved_tensors
result = grad_output * dx + grad_dx * 6 * x
# Intentionally return a wrong value to test if the backward is triggered twice.
# Since if the first MyCube.apply returns values w/o requires_grad=True,
# this backward would be only triggered once (the first MyCube.apply call),
# as the second MyCube.apply is inlined by Dynamo and the corresponding backward
# would be generated by autograd engine.
return result * 0.5
@torch.compile(backend="eager", fullgraph=True)
def fn(x):
x, _ = MyCube.apply(x)
x, _ = MyCube.apply(x)
return x
inp = torch.ones(2, requires_grad=True)
out = fn(inp)
out.sum().backward()
self.assertEqual(out, inp**3)
self.assertEqual(inp.grad, torch.tensor([2.25, 2.25]))
def test_tuple_arg(self):
cnt = torch._dynamo.testing.CompileCounter()
class TupleArgFunc(torch.autograd.Function):
@staticmethod
def forward(ctx, x, shape):
ctx.save_for_backward(torch.randn(shape))
return x + 1
@staticmethod
def backward(ctx, grad_output):
(result,) = ctx.saved_tensors
return result, None
@torch.compile(backend=cnt, fullgraph=True)
def fn():
return TupleArgFunc.apply(x, shape)
shape = (10, 10)
x = torch.randn(shape, requires_grad=True)
out = fn()
out.sum().backward()
self.assertEqual(out, x + 1)
self.assertEqual(x.grad.shape, shape)
self.assertEqual(cnt.frame_count, 1)
self.assertEqual(cnt.op_count, 1)
@requires_gpu
def test_triton_kernel_basic(self):
class Add(torch.autograd.Function):
@staticmethod
def forward(ctx, x, y):
ctx.save_for_backward(x, y)
output = torch.zeros_like(x)
n_elements = output.numel()
grid = lambda meta: ( # noqa: E731
triton.cdiv(n_elements, meta["BLOCK_SIZE"]),
)
add_kernel[grid](x, y, output, n_elements, BLOCK_SIZE=16)
return output
@staticmethod
def backward(ctx, grad_output):
x, y = ctx.saved_tensors
return x * grad_output, y * grad_output
@torch.compile(fullgraph=True, backend="inductor")
def f(x, y):
z = Add.apply(x, y)
return z
x = torch.randn(10, device=device_type, requires_grad=True)
y = torch.randn(10, device=device_type, requires_grad=True)
z = f(x, y)
loss = z.sum()
loss.backward()
self.assertEqual(x + y, z)
@requires_gpu
def test_triton_kernel_multiple_out(self):
class Add(torch.autograd.Function):
@staticmethod
def forward(ctx, x, y):
ctx.save_for_backward(x, y)
ctx.t1 = x
ctx.t2 = y
output = torch.zeros_like(x)
n_elements = output.numel()
grid = lambda meta: ( # noqa: E731
triton.cdiv(n_elements, meta["BLOCK_SIZE"]),
)
add_kernel[grid](x, y, output, n_elements, BLOCK_SIZE=16)
return output, x
@staticmethod
def backward(ctx, grad_output, old_x):
x, y = ctx.saved_tensors
x1 = ctx.t1
y1 = ctx.t2
return old_x * x * x1 * grad_output, y * y1 * grad_output
@torch.compile(fullgraph=True, backend="inductor")
def f(x, y):
z = Add.apply(x, y)
return z
x = torch.randn(10, device=device_type, requires_grad=True)
y = torch.randn(10, device=device_type, requires_grad=True)
z, _ = f(x, y)
loss = z.sum()
loss.backward()
self.assertEqual(x + y, z)
if __name__ == "__main__":
from torch._dynamo.test_case import run_tests
run_tests()