mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 13:44:15 +08:00
This is the cheap and cheerful implementation, which is only enabled on TORCH_SHOW_CPP_STACKTRACES, because it *eagerly* symbolizes immediately at exception throw time, even if the exception will end up getting caught. It would be better to do this lazily and only symbolize when we try to print the exception, but that requires a more involved refactor of c10::Error that I don't feel like doing. Compare the output before: ``` frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x95 (0x7fa21b99d975 in /data/users/ezyang/c/pytorch/torch/lib/libc10.so) frame #1: c10::TensorImpl::throw_cannot_call_with_symbolic(char const*) const + 0x8d (0x7fa21b951269 in /data/users/ezyang/c/pytorch/torch/lib/libc10.so) frame #2: c10::TensorImpl::sizes_custom() const + 0x9f (0x7fa21b9770df in /data/users/ezyang/c/pytorch/torch/lib/libc10.so) frame #3: at::meta::structured_mm::meta(at::Tensor const&, at::Tensor const&) + 0x31e (0x7fa20a202a8e in /data/users/ezyang/c/pytorch/torch/lib/libtorch_cpu.so) frame #4: <unknown function> + 0x29f34de (0x7fa20b5f34de in /data/users/ezyang/c/pytorch/torch/lib/libtorch_cpu.so) frame #5: <unknown function> + 0x2a1fd8e (0x7fa20b61fd8e in /data/users/ezyang/c/pytorch/torch/lib/libtorch_cpu.so) frame #6: <unknown function> + 0x6b907b (0x7fa2142b907b in /data/users/ezyang/c/pytorch/torch/lib/libtorch_python.so) frame #7: <unknown function> + 0x6b6175 (0x7fa2142b6175 in /data/users/ezyang/c/pytorch/torch/lib/libtorch_python.so) ``` and after: ``` #4 c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) from ??:0 #5 c10::TensorImpl::throw_cannot_call_with_symbolic(char const*) const from ??:0 #6 c10::TensorImpl::sizes_custom() const [clone .localalias] from TensorImpl.cpp:0 #7 at::meta::structured_mm::meta(at::Tensor const&, at::Tensor const&) from ??:0 #8 at::(anonymous namespace)::wrapper_Meta_mm_out_out(at::Tensor const&, at::Tensor const&, at::Tensor&) from RegisterMeta.cpp:0 #9 c10::impl::make_boxed_from_unboxed_functor<c10::impl::detail::WrapFunctionIntoFunctor_<c10::CompileTimeFunctionPointer<at::Tensor& (at::Tensor const&, at::Tensor const&, at::Tensor&), &at::(anonymous namespace)::wrapper_Meta_mm_out_out>, at::Tensor&, c10::guts::typelist::typelist<at::Tensor const&, at::Tensor const&, at::Tensor&> >, false>::call(c10::OperatorKernel*, c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) from RegisterMeta.cpp:0 ``` Signed-off-by: Edward Z. Yang <ezyang@meta.com> Pull Request resolved: https://github.com/pytorch/pytorch/pull/113207 Approved by: https://github.com/Skylion007
1876 lines
60 KiB
C++
1876 lines
60 KiB
C++
#include <c10/util/Optional.h>
|
|
#include <fmt/core.h>
|
|
#include <sys/types.h>
|
|
#include <torch/csrc/python_headers.h>
|
|
|
|
#ifndef _MSC_VER
|
|
#include <sys/socket.h>
|
|
#endif
|
|
|
|
#include <ATen/ATen.h>
|
|
#include <ATen/DLConvertor.h>
|
|
#include <ATen/ExpandUtils.h>
|
|
#include <ATen/LegacyVmapMode.h>
|
|
#include <ATen/LinalgBackend.h>
|
|
#include <ATen/Parallel.h>
|
|
#include <ATen/Utils.h>
|
|
#include <ATen/core/Vitals.h>
|
|
#include <ATen/dlpack.h>
|
|
#include <ATen/native/ConvUtils.h>
|
|
#include <ATen/native/ForeachUtils.h>
|
|
#include <c10/core/DispatchKeySet.h>
|
|
#include <c10/util/Backtrace.h>
|
|
#include <c10/util/Logging.h>
|
|
#include <c10/util/irange.h>
|
|
#include <libshm.h>
|
|
#include <pybind11/pybind11.h>
|
|
#include <pybind11/stl.h>
|
|
#include <torch/csrc/THConcat.h>
|
|
#include <torch/csrc/utils/pybind.h>
|
|
#include <cstdlib>
|
|
#include <iostream>
|
|
#include <unordered_map>
|
|
|
|
#include <ATen/ThreadLocalPythonObjects.h>
|
|
#include <torch/csrc/DataLoader.h>
|
|
#include <torch/csrc/Device.h>
|
|
#include <torch/csrc/Dtype.h>
|
|
#include <torch/csrc/DynamicTypes.h>
|
|
#include <torch/csrc/Generator.h>
|
|
#include <torch/csrc/Layout.h>
|
|
#include <torch/csrc/MemoryFormat.h>
|
|
#include <torch/csrc/QScheme.h>
|
|
#include <torch/csrc/Stream.h>
|
|
#include <torch/csrc/THP.h>
|
|
#include <torch/csrc/TypeInfo.h>
|
|
#include <torch/csrc/api/include/torch/python/init.h>
|
|
#include <torch/csrc/autograd/generated/python_return_types.h>
|
|
#include <torch/csrc/autograd/python_cpp_function.h>
|
|
#include <torch/csrc/autograd/python_enum_tag.h>
|
|
#include <torch/csrc/autograd/python_fft_functions.h>
|
|
#include <torch/csrc/autograd/python_function.h>
|
|
#include <torch/csrc/autograd/python_legacy_variable.h>
|
|
#include <torch/csrc/autograd/python_linalg_functions.h>
|
|
#include <torch/csrc/autograd/python_nested_functions.h>
|
|
#include <torch/csrc/autograd/python_nn_functions.h>
|
|
#include <torch/csrc/autograd/python_sparse_functions.h>
|
|
#include <torch/csrc/autograd/python_special_functions.h>
|
|
#include <torch/csrc/autograd/python_variable.h>
|
|
#include <torch/csrc/cpu/Module.h>
|
|
#include <torch/csrc/dynamo/init.h>
|
|
#include <torch/csrc/functorch/init.h>
|
|
#include <torch/csrc/jit/python/init.h>
|
|
#include <torch/csrc/jit/python/python_ir.h>
|
|
#include <torch/csrc/jit/python/python_tracer.h>
|
|
#include <torch/csrc/jit/serialization/pickler.h>
|
|
#include <torch/csrc/lazy/python/init.h>
|
|
#include <torch/csrc/monitor/python_init.h>
|
|
#include <torch/csrc/mps/Module.h>
|
|
#include <torch/csrc/multiprocessing/init.h>
|
|
#include <torch/csrc/onnx/init.h>
|
|
#include <torch/csrc/profiler/python/init.h>
|
|
#include <torch/csrc/tensor/python_tensor.h>
|
|
#include <torch/csrc/utils/disable_torch_function.h>
|
|
#include <torch/csrc/utils/init.h>
|
|
#include <torch/csrc/utils/pycfunction_helpers.h>
|
|
#include <torch/csrc/utils/python_arg_parser.h>
|
|
#include <torch/csrc/utils/python_compat.h>
|
|
#include <torch/csrc/utils/python_dispatch.h>
|
|
#include <torch/csrc/utils/python_strings.h>
|
|
#include <torch/csrc/utils/tensor_dtypes.h>
|
|
#include <torch/csrc/utils/tensor_layouts.h>
|
|
#include <torch/csrc/utils/tensor_memoryformats.h>
|
|
#include <torch/csrc/utils/tensor_new.h>
|
|
#include <torch/csrc/utils/tensor_numpy.h>
|
|
#include <torch/csrc/utils/tensor_qschemes.h>
|
|
#include <torch/csrc/utils/verbose.h>
|
|
|
|
#include <c10/util/Logging.h>
|
|
#include <torch/csrc/profiler/combined_traceback.h>
|
|
#include <sstream>
|
|
|
|
#ifdef USE_DISTRIBUTED
|
|
#ifdef USE_C10D
|
|
#include <torch/csrc/distributed/autograd/python_autograd.h>
|
|
#include <torch/csrc/distributed/c10d/c10d.h>
|
|
#include <torch/csrc/distributed/rpc/rpc.h>
|
|
#include <torch/csrc/distributed/rpc/testing/testing.h>
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(USE_VALGRIND)
|
|
#include <callgrind.h>
|
|
#endif
|
|
|
|
namespace py = pybind11;
|
|
|
|
PyObject* module;
|
|
|
|
THPGenerator* THPDefaultCPUGenerator = nullptr;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
static PyObject* THPModule_initNames(PyObject* self, PyObject* arg) {
|
|
static std::vector<std::string> names;
|
|
|
|
THPObjectPtr types(PySequence_Fast(arg, "expected a sequence"));
|
|
if (!types)
|
|
return nullptr;
|
|
|
|
// NOLINTNEXTLINE(bugprone-branch-clone)
|
|
auto num_classes = PySequence_Fast_GET_SIZE(types.get());
|
|
names.reserve(names.size() + num_classes);
|
|
for (Py_ssize_t i = 0; i < num_classes; i++) {
|
|
PyObject* obj = PySequence_Fast_GET_ITEM(types.get(), i);
|
|
THPUtils_assert(PyType_Check(obj), "expected a PyTypeObject");
|
|
PyTypeObject* type = (PyTypeObject*)obj;
|
|
|
|
THPObjectPtr module_name(PyObject_GetAttrString(obj, "__module__"));
|
|
if (!module_name)
|
|
return nullptr;
|
|
THPUtils_assert(
|
|
THPUtils_checkString(module_name.get()),
|
|
"expected __module__ to be a string");
|
|
std::string name = THPUtils_unpackString(module_name.get());
|
|
names.emplace_back(name + "." + type->tp_name);
|
|
type->tp_name = names.back().c_str();
|
|
}
|
|
Py_RETURN_NONE;
|
|
}
|
|
//
|
|
// Callback for python part. Used for additional initialization of python
|
|
// classes
|
|
static PyObject* THPModule_initExtension(
|
|
PyObject* _unused,
|
|
PyObject* shm_manager_path) {
|
|
HANDLE_TH_ERRORS
|
|
#if !defined(FBCODE_CAFFE2)
|
|
if (torch::get_cpp_stacktraces_enabled() && !torch::get_disable_addr2line()) {
|
|
c10::SetStackTraceFetcher([]() -> std::string {
|
|
auto tb = torch::CapturedTraceback::gather(false, false, true);
|
|
LOG(WARNING)
|
|
<< "symbolizing C++ stack trace for exception; if this hangs, rerun with TORCH_DISABLE_ADDR2LINE=1..."
|
|
<< std::endl;
|
|
auto s_tbs = torch::symbolize({tb.get()});
|
|
std::stringstream oss;
|
|
oss << "C++ CapturedTraceback:" << std::endl;
|
|
const auto& s_tb = s_tbs.tracebacks.at(0);
|
|
for (auto idx : c10::irange(s_tb.size())) {
|
|
// Skip the first few frames:
|
|
// #1 torch::CapturedTraceback::gather(bool, bool, bool)
|
|
// #2 THPModule_initExtension
|
|
// #3 THPModule_initExtension(_object*, _object*)::{lambda()#1}
|
|
if (idx <= 3) {
|
|
continue;
|
|
}
|
|
auto frame_id = s_tb[idx];
|
|
const auto& frame = s_tbs.all_frames.at(frame_id);
|
|
oss << "#" << idx << " " << frame.funcname << " from " << frame.filename
|
|
<< ":" << frame.lineno << std::endl;
|
|
}
|
|
return oss.str();
|
|
});
|
|
}
|
|
#endif
|
|
if (!THPUtils_checkString(shm_manager_path)) {
|
|
THPUtils_setError(
|
|
"initialization error - expected bytes/string object as shm_manager_path!");
|
|
return nullptr;
|
|
}
|
|
torch::utils::initializeLayouts();
|
|
torch::utils::initializeMemoryFormats();
|
|
torch::utils::initializeQSchemes();
|
|
torch::utils::initializeDtypes();
|
|
torch::tensors::initialize_python_bindings();
|
|
std::string path = THPUtils_unpackString(shm_manager_path);
|
|
libshm_init(path.c_str());
|
|
|
|
auto module = THPObjectPtr(PyImport_ImportModule("torch"));
|
|
if (!module)
|
|
throw python_error();
|
|
|
|
THPStorage_postInit(module);
|
|
THPAutograd_initFunctions();
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
// The idea behind these two functions is to make it easy to test if we are
|
|
// built with ASAN: they're designed not to crash if ASAN is not enabled, but
|
|
// to trigger ASAN if it is enabled. This lets us run a "canary" tests which
|
|
// checks if our build environment is misconfigured.
|
|
|
|
static PyObject* THPModule_crashIfCsrcASAN(PyObject* module, PyObject* arg) {
|
|
THPUtils_assert(
|
|
THPUtils_checkLong(arg),
|
|
"crash_if_csrc_asan expects an int, "
|
|
"but got %s",
|
|
THPUtils_typename(arg));
|
|
// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays, modernize-avoid-c-arrays)
|
|
volatile char x[3];
|
|
x[THPUtils_unpackInt(arg)] = 0;
|
|
// NOLINTNEXTLINE(clang-analyzer-core.CallAndMessage)
|
|
return THPUtils_packInt32(x[0]);
|
|
}
|
|
|
|
static PyObject* THPModule_crashIfCsrcUBSAN(PyObject* module, PyObject* arg) {
|
|
THPUtils_assert(
|
|
THPUtils_checkLong(arg),
|
|
"crash_if_csrc_ubsan expects an int, "
|
|
"but got %s",
|
|
THPUtils_typename(arg));
|
|
int32_t x = THPUtils_unpackInt(arg);
|
|
double y = 1.0 / x;
|
|
return THPUtils_packInt32((int)y);
|
|
}
|
|
|
|
static PyObject* THPModule_crashIfvptrUBSAN(PyObject* module, PyObject* noarg) {
|
|
// This code should work perfectly fine, as vtables are identical for Foo and
|
|
// Baz unless rtti and ubsan are enabled
|
|
struct Foo {
|
|
virtual int bar() = 0;
|
|
virtual ~Foo() = default;
|
|
};
|
|
struct Baz {
|
|
virtual int bar() {
|
|
return 17;
|
|
}
|
|
virtual ~Baz() = default;
|
|
};
|
|
Baz x{};
|
|
auto y = static_cast<Foo*>(static_cast<void*>(&x));
|
|
auto rc = y->bar();
|
|
return THPUtils_packInt32(rc);
|
|
}
|
|
|
|
static PyObject* THPModule_crashIfATenASAN(PyObject* module, PyObject* arg) {
|
|
THPUtils_assert(
|
|
THPUtils_checkLong(arg),
|
|
"crash_if_aten_asan expects an int, "
|
|
"but got %s",
|
|
THPUtils_typename(arg));
|
|
return THPUtils_packInt32(at::_crash_if_asan(THPUtils_unpackInt(arg)));
|
|
}
|
|
|
|
static PyObject* THPModule_crashIfDebugAssertsFail(
|
|
PyObject* module,
|
|
PyObject* arg) {
|
|
THPUtils_assert(
|
|
THPUtils_checkLong(arg),
|
|
"crash_if_debug_asserts_fail expects an int, "
|
|
"but got %s",
|
|
THPUtils_typename(arg));
|
|
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(
|
|
THPUtils_unpackInt(arg) != 424242,
|
|
"Expect anything but 424242 as an input for debug builds");
|
|
return THPUtils_packInt32(0);
|
|
}
|
|
|
|
static PyObject* THPModule_getNumThreads(PyObject* module, PyObject* noargs) {
|
|
return THPUtils_packInt32(at::get_num_threads());
|
|
}
|
|
|
|
static PyObject* THPModule_setNumThreads(PyObject* module, PyObject* arg) {
|
|
THPUtils_assert(
|
|
THPUtils_checkLong(arg),
|
|
"set_num_threads expects an int, "
|
|
"but got %s",
|
|
THPUtils_typename(arg));
|
|
int nthreads = (int)THPUtils_unpackLong(arg);
|
|
THPUtils_assert(nthreads > 0, "set_num_threads expects a positive integer");
|
|
at::set_num_threads(nthreads);
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
static PyObject* THPModule_getNumInteropThreads(
|
|
PyObject* module,
|
|
PyObject* noargs) {
|
|
return THPUtils_packInt32(at::get_num_interop_threads());
|
|
}
|
|
|
|
static PyObject* THPModule_setNumInteropThreads(
|
|
PyObject* module,
|
|
PyObject* arg) {
|
|
THPUtils_assert(
|
|
THPUtils_checkLong(arg),
|
|
"set_num_interop_threads expects an int, "
|
|
"but got %s",
|
|
THPUtils_typename(arg));
|
|
int nthreads = (int)THPUtils_unpackLong(arg);
|
|
THPUtils_assert(
|
|
nthreads > 0, "set_num_interop_threads expects a positive integer");
|
|
at::set_num_interop_threads(nthreads);
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
PyObject* THPModule_setDefaultTensorType(PyObject* _unused, PyObject* type) {
|
|
HANDLE_TH_ERRORS
|
|
torch::tensors::py_set_default_tensor_type(type);
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject* THPModule_setDefaultDtype(PyObject* _unused, PyObject* dtype) {
|
|
HANDLE_TH_ERRORS
|
|
torch::tensors::py_set_default_dtype(dtype);
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject* THPModule_addDocStr(PyObject* _unused, PyObject* args) {
|
|
// adds a __doc__ string to a function, similar to numpy's arr_add_docstring
|
|
static std::vector<std::string> all_docs;
|
|
PyObject* obj = nullptr;
|
|
PyObject* doc_obj = nullptr;
|
|
if (!PyArg_ParseTuple(args, "OO", &obj, &doc_obj)) {
|
|
return nullptr;
|
|
}
|
|
|
|
const char* doc_str = "<invalid string>";
|
|
if (THPUtils_checkString(doc_obj)) {
|
|
all_docs.push_back(THPUtils_unpackString(doc_obj));
|
|
doc_str = all_docs.back().c_str();
|
|
}
|
|
|
|
if (Py_TYPE(obj) == &PyCFunction_Type) {
|
|
PyCFunctionObject* f = (PyCFunctionObject*)obj;
|
|
if (f->m_ml->ml_doc) {
|
|
return PyErr_Format(
|
|
PyExc_RuntimeError,
|
|
"function '%s' already has a docstring",
|
|
f->m_ml->ml_name);
|
|
}
|
|
f->m_ml->ml_doc = doc_str;
|
|
} else if (strcmp(Py_TYPE(obj)->tp_name, "method_descriptor") == 0) {
|
|
PyMethodDescrObject* m = (PyMethodDescrObject*)obj;
|
|
if (m->d_method->ml_doc) {
|
|
return PyErr_Format(
|
|
PyExc_RuntimeError,
|
|
"method '%s' already has a docstring",
|
|
m->d_method->ml_name);
|
|
}
|
|
m->d_method->ml_doc = doc_str;
|
|
} else if (strcmp(Py_TYPE(obj)->tp_name, "getset_descriptor") == 0) {
|
|
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-cstyle-cast)
|
|
PyGetSetDescrObject* m = (PyGetSetDescrObject*)obj;
|
|
if (m->d_getset->doc) {
|
|
return PyErr_Format(
|
|
PyExc_RuntimeError,
|
|
"attribute '%s' already has a docstring",
|
|
m->d_getset->name);
|
|
}
|
|
m->d_getset->doc = doc_str;
|
|
} else if (Py_TYPE(obj) == &PyType_Type) {
|
|
PyTypeObject* t = (PyTypeObject*)obj;
|
|
if (t->tp_doc) {
|
|
return PyErr_Format(
|
|
PyExc_RuntimeError, "Type '%s' already has a docstring", t->tp_name);
|
|
}
|
|
t->tp_doc = doc_str;
|
|
} else {
|
|
return PyErr_Format(
|
|
PyExc_TypeError,
|
|
"don't know how to add docstring to type '%s'",
|
|
Py_TYPE(obj)->tp_name);
|
|
}
|
|
|
|
Py_INCREF(obj);
|
|
return obj;
|
|
}
|
|
|
|
PyObject* THPModule_inferSize(PyObject* _unused, PyObject* args) {
|
|
HANDLE_TH_ERRORS
|
|
Py_ssize_t num_args = args ? (Py_ssize_t)PyTuple_Size(args) : 0;
|
|
THPUtils_assert(num_args == 2, "expected exactly 2 arguments");
|
|
PyObject* arg1 = PyTuple_GET_ITEM(args, 0);
|
|
THPUtils_assert(THPSize_Check(arg1), "expected a torch.Size as argument 1");
|
|
PyObject* arg2 = PyTuple_GET_ITEM(args, 1);
|
|
THPUtils_assert(THPSize_Check(arg2), "expected a torch.Size as argument 2");
|
|
|
|
auto size1 = THPUtils_unpackLongs(arg1);
|
|
auto size2 = THPUtils_unpackLongs(arg2);
|
|
auto sizes = at::infer_size(size1, size2);
|
|
return THPSize_NewFromSizes(static_cast<int64_t>(sizes.size()), sizes.data());
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject* THPModule_setBackcompatBroadcastWarn(
|
|
PyObject* module,
|
|
PyObject* arg) {
|
|
THPUtils_assert(
|
|
PyBool_Check(arg),
|
|
"set_backcompat_broadcast_warn expects a bool, "
|
|
"but got %s",
|
|
THPUtils_typename(arg));
|
|
setBackCompatBroadcastWarn(arg == Py_True);
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
static PyObject* THPModule_getBackcompatBroadcastWarn(
|
|
PyObject* module,
|
|
PyObject* noargs) {
|
|
if (getBackCompatBroadcastWarn())
|
|
Py_RETURN_TRUE;
|
|
else
|
|
Py_RETURN_FALSE;
|
|
}
|
|
|
|
static PyObject* THPModule_setBackcompatKeepdimWarn(
|
|
PyObject* module,
|
|
PyObject* arg) {
|
|
THPUtils_assert(
|
|
PyBool_Check(arg),
|
|
"set_backcompat_keepdim_warn expects a bool, "
|
|
"but got %s",
|
|
THPUtils_typename(arg));
|
|
setBackCompatKeepdimWarn(arg == Py_True);
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
static PyObject* THPModule_getBackcompatKeepdimWarn(
|
|
PyObject* module,
|
|
PyObject* noargs) {
|
|
if (getBackCompatKeepdimWarn())
|
|
Py_RETURN_TRUE;
|
|
else
|
|
Py_RETURN_FALSE;
|
|
}
|
|
|
|
PyObject* THPModule_hasDistributed(PyObject* _unused, PyObject* noargs) {
|
|
#ifdef USE_DISTRIBUTED
|
|
Py_RETURN_TRUE;
|
|
#else
|
|
Py_RETURN_FALSE;
|
|
#endif
|
|
}
|
|
|
|
static PyObject* THPModule_showConfig(PyObject* module, PyObject* noargs) {
|
|
HANDLE_TH_ERRORS
|
|
return THPUtils_packString(at::show_config());
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject* THPModule_cxxFlags(PyObject* module, PyObject* noargs) {
|
|
HANDLE_TH_ERRORS
|
|
return THPUtils_packString(at::get_cxx_flags());
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject* THPModule_parallelInfo(PyObject* module, PyObject* noargs) {
|
|
HANDLE_TH_ERRORS
|
|
return THPUtils_packString(at::get_parallel_info());
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject* THPModule_getCpuCapability(
|
|
PyObject* module,
|
|
PyObject* noargs) {
|
|
HANDLE_TH_ERRORS
|
|
return THPUtils_packString(at::get_cpu_capability());
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
void DLPack_Capsule_Destructor(PyObject* data) {
|
|
if (C10_LIKELY(!PyCapsule_IsValid(data, "dltensor"))) {
|
|
// early out, see DLPack spec: if a consuming library sets the capsule
|
|
// name to something else, they own it and we don't need to do anything
|
|
return;
|
|
}
|
|
HANDLE_TH_ERRORS
|
|
// Causes overheads for validity checks again, but this case is rare
|
|
// since consuming libraries should rename the capsule according to spec.
|
|
// Note that this cannot set a python error (we checked validity above),
|
|
// so we don't need to handle python error state here.
|
|
DLManagedTensor* dlMTensor =
|
|
(DLManagedTensor*)PyCapsule_GetPointer(data, "dltensor");
|
|
// the dlMTensor has not been consumed, call deleter ourselves.
|
|
// DLPack spec mentions that deleter may be NULL, but deleter from
|
|
// `at::toDLPack` is never NULL, so no need for an additional check here.
|
|
dlMTensor->deleter(dlMTensor);
|
|
END_HANDLE_TH_ERRORS_RET()
|
|
}
|
|
|
|
PyObject* THPModule_toDLPack(PyObject* _unused, PyObject* data) {
|
|
HANDLE_TH_ERRORS
|
|
THPUtils_assert(THPVariable_Check(data), "data must be a Tensor");
|
|
DLManagedTensor* dlMTensor = at::toDLPack(THPVariable_Unpack(data));
|
|
return PyCapsule_New(dlMTensor, "dltensor", DLPack_Capsule_Destructor);
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject* THPModule_fromDLPack(PyObject* _unused, PyObject* data) {
|
|
using namespace torch::autograd;
|
|
HANDLE_TH_ERRORS
|
|
auto tensor = torch::utils::tensor_fromDLPack(data);
|
|
return THPVariable_Wrap(tensor);
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject* THModule_getCppBacktrace(PyObject* _unused, PyObject* args) {
|
|
HANDLE_TH_ERRORS
|
|
size_t frames_to_skip = 0;
|
|
size_t maximum_number_of_frames = 0;
|
|
if (!PyArg_ParseTuple(
|
|
args, "LL", &frames_to_skip, &maximum_number_of_frames)) {
|
|
return nullptr;
|
|
}
|
|
return THPUtils_packString(
|
|
c10::get_backtrace(frames_to_skip, maximum_number_of_frames, true));
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject* THModule_rename_privateuse1_backend(
|
|
PyObject* _unused,
|
|
PyObject* arg) {
|
|
HANDLE_TH_ERRORS
|
|
THPUtils_assert(
|
|
THPUtils_checkString(arg),
|
|
"_rename_privateuse1_backend expects a str, "
|
|
"but got %s",
|
|
THPUtils_typename(arg));
|
|
const std::string backend_name = THPUtils_unpackString(arg);
|
|
c10::register_privateuse1_backend(backend_name);
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject* THModule_get_privateuse1_backend_name(
|
|
PyObject* _unused,
|
|
PyObject* arg) {
|
|
HANDLE_TH_ERRORS
|
|
return THPUtils_packString(c10::get_privateuse1_backend());
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject* THPModule_setAllowTF32CuDNN(PyObject* _unused, PyObject* arg) {
|
|
THPUtils_assert(
|
|
PyBool_Check(arg),
|
|
"set_allow_tf32_cublas expects a bool, "
|
|
"but got %s",
|
|
THPUtils_typename(arg));
|
|
at::globalContext().setAllowTF32CuDNN(arg == Py_True);
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
PyObject* THPModule_allowTF32CuDNN(PyObject* _unused, PyObject* noargs) {
|
|
if (at::globalContext().allowTF32CuDNN())
|
|
Py_RETURN_TRUE;
|
|
else
|
|
Py_RETURN_FALSE;
|
|
}
|
|
|
|
PyObject* THPModule_setFloat32MatmulPrecision(
|
|
PyObject* _unused,
|
|
PyObject* arg) {
|
|
THPUtils_assert(
|
|
THPUtils_checkString(arg),
|
|
"set_float32_matmul_precision expects a str, "
|
|
"but got %s",
|
|
THPUtils_typename(arg));
|
|
std::string s = THPUtils_unpackString(arg);
|
|
at::globalContext().setFloat32MatmulPrecision(s);
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
PyObject* THPModule_float32MatmulPrecision(
|
|
PyObject* _unused,
|
|
PyObject* noargs) {
|
|
std::string s = "highest";
|
|
auto p = at::globalContext().float32MatmulPrecision();
|
|
if (p == at::Float32MatmulPrecision::HIGH) {
|
|
s = "high";
|
|
} else if (p == at::Float32MatmulPrecision::MEDIUM) {
|
|
s = "medium";
|
|
}
|
|
return THPUtils_packString(s);
|
|
}
|
|
PyObject* THPModule_setSDPUseFlash(PyObject* _unused, PyObject* arg) {
|
|
THPUtils_assert(
|
|
PyBool_Check(arg),
|
|
"set_sdp_use_math expects a bool, "
|
|
"but got %s",
|
|
THPUtils_typename(arg));
|
|
at::globalContext().setSDPUseFlash(arg == Py_True);
|
|
Py_RETURN_NONE;
|
|
}
|
|
PyObject* THPModule_userEnabledFlashSDP(PyObject* _unused, PyObject* noargs) {
|
|
if (at::globalContext().userEnabledFlashSDP())
|
|
Py_RETURN_TRUE;
|
|
else
|
|
Py_RETURN_FALSE;
|
|
}
|
|
PyObject* THPModule_setSDPUseMemEfficient(PyObject* _unused, PyObject* arg) {
|
|
THPUtils_assert(
|
|
PyBool_Check(arg),
|
|
"set_sdp_use_math expects a bool, "
|
|
"but got %s",
|
|
THPUtils_typename(arg));
|
|
at::globalContext().setSDPUseMemEfficient(arg == Py_True);
|
|
Py_RETURN_NONE;
|
|
}
|
|
PyObject* userEnabledMemEfficientSDP(PyObject* _unused, PyObject* noargs) {
|
|
if (at::globalContext().userEnabledMemEfficientSDP())
|
|
Py_RETURN_TRUE;
|
|
else
|
|
Py_RETURN_FALSE;
|
|
}
|
|
PyObject* THPModule_setSDPUseMath(PyObject* _unused, PyObject* arg) {
|
|
THPUtils_assert(
|
|
PyBool_Check(arg),
|
|
"set_sdp_use_math expects a bool, "
|
|
"but got %s",
|
|
THPUtils_typename(arg));
|
|
at::globalContext().setSDPUseMath(arg == Py_True);
|
|
Py_RETURN_NONE;
|
|
}
|
|
PyObject* THPModule_userEnabledMathSDP(PyObject* _unused, PyObject* noargs) {
|
|
if (at::globalContext().userEnabledMathSDP())
|
|
Py_RETURN_TRUE;
|
|
else
|
|
Py_RETURN_FALSE;
|
|
}
|
|
PyObject* THPModule_setUserEnabledCuDNN(PyObject* _unused, PyObject* arg) {
|
|
THPUtils_assert(
|
|
PyBool_Check(arg),
|
|
"set_enabled_cudnn expects a bool, "
|
|
"but got %s",
|
|
THPUtils_typename(arg));
|
|
at::globalContext().setUserEnabledCuDNN(arg == Py_True);
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
PyObject* THPModule_userEnabledCuDNN(PyObject* _unused, PyObject* noargs) {
|
|
if (at::globalContext().userEnabledCuDNN())
|
|
Py_RETURN_TRUE;
|
|
else
|
|
Py_RETURN_FALSE;
|
|
}
|
|
|
|
PyObject* THPModule_setUserEnabledMkldnn(PyObject* _unused, PyObject* arg) {
|
|
THPUtils_assert(
|
|
PyBool_Check(arg),
|
|
"set_enabled_mkldnn expects a bool, "
|
|
"but got %s",
|
|
THPUtils_typename(arg));
|
|
at::globalContext().setUserEnabledMkldnn(arg == Py_True);
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
PyObject* THPModule_userEnabledMkldnn(PyObject* _unused, PyObject* noargs) {
|
|
if (at::globalContext().userEnabledMkldnn())
|
|
Py_RETURN_TRUE;
|
|
else
|
|
Py_RETURN_FALSE;
|
|
}
|
|
|
|
PyObject* THPModule_setDeterministicCuDNN(PyObject* _unused, PyObject* arg) {
|
|
HANDLE_TH_ERRORS
|
|
THPUtils_assert(
|
|
PyBool_Check(arg),
|
|
"set_deterministic_cudnn expects a bool, "
|
|
"but got %s",
|
|
THPUtils_typename(arg));
|
|
at::globalContext().setDeterministicCuDNN(arg == Py_True);
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject* THPModule_deterministicCuDNN(PyObject* _unused, PyObject* noargs) {
|
|
if (at::globalContext().deterministicCuDNN())
|
|
Py_RETURN_TRUE;
|
|
else
|
|
Py_RETURN_FALSE;
|
|
}
|
|
|
|
PyObject* THPModule_setDeterministicAlgorithms(
|
|
PyObject* _unused,
|
|
PyObject* args,
|
|
PyObject* kwargs) {
|
|
HANDLE_TH_ERRORS
|
|
static torch::PythonArgParser parser(
|
|
{"_set_deterministic_algorithms(bool mode, *, bool warn_only=False)"});
|
|
torch::ParsedArgs<2> parsed_args{};
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
bool mode = r.toBool(0);
|
|
bool warn_only = r.toBool(1);
|
|
at::globalContext().setDeterministicAlgorithms(mode, warn_only);
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject* THPModule_deterministicAlgorithms(
|
|
PyObject* _unused,
|
|
PyObject* noargs) {
|
|
if (at::globalContext().deterministicAlgorithms()) {
|
|
Py_RETURN_TRUE;
|
|
}
|
|
Py_RETURN_FALSE;
|
|
}
|
|
|
|
PyObject* THPModule_deterministicAlgorithmsWarnOnly(
|
|
PyObject* _unused,
|
|
PyObject* noargs) {
|
|
if (at::globalContext().deterministicAlgorithmsWarnOnly()) {
|
|
Py_RETURN_TRUE;
|
|
}
|
|
Py_RETURN_FALSE;
|
|
}
|
|
|
|
PyObject* THPModule_setDeterministicFillUninitializedMemory(
|
|
PyObject* _unused,
|
|
PyObject* arg) {
|
|
HANDLE_TH_ERRORS
|
|
THPUtils_assert(
|
|
PyBool_Check(arg), "expected a bool, but got %s", THPUtils_typename(arg));
|
|
at::globalContext().setDeterministicFillUninitializedMemory(arg == Py_True);
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject* THPModule_deterministicFillUninitializedMemory(
|
|
PyObject* _unused,
|
|
PyObject* noargs) {
|
|
if (at::globalContext().deterministicFillUninitializedMemory())
|
|
Py_RETURN_TRUE;
|
|
else
|
|
Py_RETURN_FALSE;
|
|
}
|
|
|
|
PyObject* THPModule_setWarnAlways(PyObject* _unused, PyObject* arg) {
|
|
THPUtils_assert(
|
|
PyBool_Check(arg),
|
|
"setWarnOnlyOnce expects a bool, "
|
|
"but got %s",
|
|
THPUtils_typename(arg));
|
|
c10::WarningUtils::set_warnAlways(arg == Py_True);
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
PyObject* THPModule_warnAlways(PyObject* _unused, PyObject* noargs) {
|
|
if (c10::WarningUtils::get_warnAlways()) {
|
|
Py_RETURN_TRUE;
|
|
}
|
|
Py_RETURN_FALSE;
|
|
}
|
|
|
|
// Used only for testing C++ to Python warning translations.
|
|
PyObject* THPModule_warn(PyObject* _unused, PyObject* noargs) {
|
|
HANDLE_TH_ERRORS
|
|
TORCH_WARN("Test message for TORCH_WARN");
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
// Used only for testing C++ to Python warning translations.
|
|
PyObject* THPModule_warnDeprecation(PyObject* _unused, PyObject* noargs) {
|
|
HANDLE_TH_ERRORS
|
|
TORCH_WARN_DEPRECATION("Test message for TORCH_WARN_DEPRECATION");
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject* THPModule_setBenchmarkCuDNN(PyObject* _unused, PyObject* arg) {
|
|
THPUtils_assert(
|
|
PyBool_Check(arg),
|
|
"set_benchmark_cudnn expects a bool, "
|
|
"but got %s",
|
|
THPUtils_typename(arg));
|
|
at::globalContext().setBenchmarkCuDNN(arg == Py_True);
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
PyObject* THPModule_benchmarkCuDNN(PyObject* _unused, PyObject* noargs) {
|
|
if (at::globalContext().benchmarkCuDNN()) {
|
|
Py_RETURN_TRUE;
|
|
}
|
|
Py_RETURN_FALSE;
|
|
}
|
|
|
|
PyObject* THPModule_setAllowTF32CuBLAS(PyObject* _unused, PyObject* arg) {
|
|
THPUtils_assert(
|
|
PyBool_Check(arg),
|
|
"set_allow_tf32_cublas expects a bool, "
|
|
"but got %s",
|
|
THPUtils_typename(arg));
|
|
at::globalContext().setAllowTF32CuBLAS(arg == Py_True);
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
PyObject* THPModule_allowTF32CuBLAS(PyObject* _unused, PyObject* noargs) {
|
|
if (at::globalContext().allowTF32CuBLAS()) {
|
|
Py_RETURN_TRUE;
|
|
}
|
|
Py_RETURN_FALSE;
|
|
}
|
|
|
|
PyObject* THPModule_setAllowFP16ReductionCuBLAS(
|
|
PyObject* _unused,
|
|
PyObject* arg) {
|
|
THPUtils_assert(
|
|
PyBool_Check(arg),
|
|
"set_allow_fp16_reduction_cublas expects a bool, "
|
|
"but got %s",
|
|
THPUtils_typename(arg));
|
|
at::globalContext().setAllowFP16ReductionCuBLAS(arg == Py_True);
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
PyObject* THPModule_allowFP16ReductionCuBLAS(
|
|
PyObject* _unused,
|
|
PyObject* noargs) {
|
|
if (at::globalContext().allowFP16ReductionCuBLAS()) {
|
|
Py_RETURN_TRUE;
|
|
}
|
|
Py_RETURN_FALSE;
|
|
}
|
|
|
|
PyObject* THPModule_setAllowBF16ReductionCuBLAS(
|
|
PyObject* _unused,
|
|
PyObject* arg) {
|
|
THPUtils_assert(
|
|
PyBool_Check(arg),
|
|
"set_allow_bf16_reduction_cublas expects a bool, "
|
|
"but got %s",
|
|
THPUtils_typename(arg));
|
|
at::globalContext().setAllowBF16ReductionCuBLAS(arg == Py_True);
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
PyObject* THPModule_allowBF16ReductionCuBLAS(
|
|
PyObject* _unused,
|
|
PyObject* noargs) {
|
|
if (at::globalContext().allowBF16ReductionCuBLAS()) {
|
|
Py_RETURN_TRUE;
|
|
}
|
|
Py_RETURN_FALSE;
|
|
}
|
|
|
|
PyObject* THPModule_setFlushDenormal(PyObject* _unused, PyObject* arg) {
|
|
THPUtils_assert(
|
|
PyBool_Check(arg),
|
|
"flush_denormal expects a bool, "
|
|
"but got %s",
|
|
THPUtils_typename(arg));
|
|
if (!at::globalContext().setFlushDenormal(arg == Py_True)) {
|
|
Py_RETURN_FALSE;
|
|
};
|
|
Py_RETURN_TRUE;
|
|
}
|
|
|
|
PyObject* THPModule_getDefaultDtype(PyObject* _unused, PyObject* arg) {
|
|
HANDLE_TH_ERRORS
|
|
auto scalar_type = torch::tensors::get_default_scalar_type();
|
|
auto dtype = (PyObject*)torch::getTHPDtype(scalar_type);
|
|
Py_INCREF(dtype);
|
|
return dtype;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject* THPModule_getDefaultDevice(PyObject* _unused, PyObject* arg) {
|
|
HANDLE_TH_ERRORS
|
|
return THPUtils_packString(c10::DeviceTypeName(
|
|
dispatchKeyToDeviceType(torch::tensors::get_default_dispatch_key()),
|
|
/*lower_case=*/true));
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject* THPModule_setQEngine(PyObject* /* unused */, PyObject* arg) {
|
|
THPUtils_assert(
|
|
THPUtils_checkLong(arg),
|
|
"set_qengine expects an int, "
|
|
"but got %s",
|
|
THPUtils_typename(arg));
|
|
HANDLE_TH_ERRORS
|
|
auto qengine = THPUtils_unpackLong(arg);
|
|
at::globalContext().setQEngine(static_cast<at::QEngine>(qengine));
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject* THPModule_qEngine(PyObject* _unused, PyObject* noargs) {
|
|
return THPUtils_packInt64(
|
|
static_cast<int64_t>(at::globalContext().qEngine()));
|
|
}
|
|
|
|
PyObject* THPModule_supportedQEngines(PyObject* _unused, PyObject* noargs) {
|
|
auto qengines = at::globalContext().supportedQEngines();
|
|
auto list =
|
|
THPObjectPtr(PyList_New(static_cast<Py_ssize_t>(qengines.size())));
|
|
if (!list)
|
|
return nullptr;
|
|
for (const auto i : c10::irange(qengines.size())) {
|
|
PyObject* i64 = THPUtils_packInt64(static_cast<int64_t>(qengines[i]));
|
|
if (!i64)
|
|
return nullptr;
|
|
PyList_SET_ITEM(list.get(), i, i64);
|
|
}
|
|
return list.release();
|
|
}
|
|
|
|
PyObject* THPModule_isEnabledXNNPACK(PyObject* _unused, PyObject* noargs) {
|
|
if (at::globalContext().isXNNPACKAvailable())
|
|
Py_RETURN_TRUE;
|
|
else
|
|
Py_RETURN_FALSE;
|
|
}
|
|
|
|
PyObject* THPModule_setCheckSparseTensorInvariants(
|
|
PyObject* _unused,
|
|
PyObject* arg) {
|
|
THPUtils_assert(
|
|
PyBool_Check(arg),
|
|
"set_check_sparse_tensor_invariants expects a bool, "
|
|
"but got %s",
|
|
THPUtils_typename(arg));
|
|
at::globalContext().setCheckSparseTensorInvariants(arg == Py_True);
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
PyObject* THPModule_checkSparseTensorInvariants(
|
|
PyObject* _unused,
|
|
PyObject* noargs) {
|
|
if (at::globalContext().checkSparseTensorInvariants())
|
|
Py_RETURN_TRUE;
|
|
else
|
|
Py_RETURN_FALSE;
|
|
}
|
|
|
|
PyObject* THPModule_willEngineExecuteNode(PyObject* _unused, PyObject* arg) {
|
|
HANDLE_TH_ERRORS
|
|
bool isTHPFunction = THPFunction_Check(arg);
|
|
bool isTHPCppFunction = torch::autograd::THPCppFunction_Check(arg);
|
|
THPUtils_assert(
|
|
isTHPFunction || isTHPCppFunction,
|
|
"_will_engine_execute_node expects an grad_fn, "
|
|
"but got %s",
|
|
THPUtils_typename(arg));
|
|
const auto exec_info = torch::autograd::get_current_graph_task_exec_info();
|
|
THPUtils_assert(
|
|
exec_info,
|
|
"_get_should_execute_nodes should only be called during the backward pass");
|
|
torch::autograd::Node* node = nullptr;
|
|
std::shared_ptr<torch::autograd::Node> node_sp;
|
|
if (isTHPFunction) {
|
|
node_sp = ((THPFunction*)arg)->cdata.lock();
|
|
node = node_sp.get();
|
|
} else {
|
|
node = ((torch::autograd::THPCppFunction*)arg)->cdata.get();
|
|
}
|
|
const auto nodes_in_graph =
|
|
torch::autograd::get_current_graph_task_nodes_in_graph();
|
|
bool ret = nodes_in_graph->find(node) != nodes_in_graph->end();
|
|
if (ret && !exec_info->empty()) {
|
|
auto it = exec_info->find(node);
|
|
if (it == exec_info->end() || !it->second.should_execute()) {
|
|
ret = false;
|
|
} else {
|
|
TORCH_CHECK(
|
|
!(node->topological_nr() == 0 && it->second.captures_),
|
|
"A leaf node was passed to _will_engine_execute_node but we are "
|
|
"currently running autograd.grad(). This is currently not supported.");
|
|
}
|
|
}
|
|
if (ret) {
|
|
Py_RETURN_TRUE;
|
|
} else {
|
|
Py_RETURN_FALSE;
|
|
}
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject* THPModule_getCurrentGraphTaskExecutionOrder(
|
|
PyObject* _unused,
|
|
PyObject* noargs) {
|
|
HANDLE_TH_ERRORS
|
|
std::vector<torch::autograd::Node*> nodes =
|
|
torch::autograd::get_current_graph_task_execution_order();
|
|
TORCH_CHECK(
|
|
!nodes.empty(),
|
|
"_current_graph_task_execution_order should only be called during the backward pass");
|
|
auto list = THPObjectPtr(PyList_New(static_cast<Py_ssize_t>(nodes.size())));
|
|
if (!list)
|
|
return nullptr;
|
|
for (const auto i : c10::irange(nodes.size())) {
|
|
// This node is guaranteed to be alive since the backward is still running
|
|
PyObject* pyobj_node =
|
|
torch::autograd::functionToPyObject(nodes[i]->getptr());
|
|
PyList_SET_ITEM(list.get(), i, pyobj_node);
|
|
}
|
|
return list.release();
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject* THPModule_getCurrentGraphTaskId(PyObject* _unused, PyObject* noargs) {
|
|
HANDLE_TH_ERRORS
|
|
return THPUtils_packInt64(torch::autograd::get_current_graph_task_id());
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject* THPModule_getCurrentNode(PyObject* _unused, PyObject* noargs) {
|
|
HANDLE_TH_ERRORS
|
|
return torch::autograd::functionToPyObject(
|
|
torch::autograd::get_current_node());
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject* THPModule_setDefaultMobileCPUAllocator(
|
|
PyObject* _unused,
|
|
PyObject* noargs) {
|
|
HANDLE_TH_ERRORS
|
|
at::globalContext().setDefaultMobileCPUAllocator();
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject* THPModule_unsetDefaultMobileCPUAllocator(
|
|
PyObject* _unused,
|
|
PyObject* noargs) {
|
|
HANDLE_TH_ERRORS
|
|
at::globalContext().unsetDefaultMobileCPUAllocator();
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject* THPModule_vmapmode_increment_nesting(
|
|
PyObject* _unused,
|
|
PyObject* arg) {
|
|
HANDLE_TH_ERRORS
|
|
return THPUtils_packInt64(at::impl::VmapMode::increment_nesting());
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject* THPModule_vmapmode_decrement_nesting(
|
|
PyObject* _unused,
|
|
PyObject* arg) {
|
|
HANDLE_TH_ERRORS
|
|
return THPUtils_packInt64(at::impl::VmapMode::decrement_nesting());
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject* THPModule_set_display_vmap_fallback_warnings_mode(
|
|
PyObject* _unused,
|
|
PyObject* arg) {
|
|
HANDLE_TH_ERRORS
|
|
THPUtils_assert(
|
|
PyBool_Check(arg),
|
|
"enabled must be a bool, "
|
|
"but got %s",
|
|
THPUtils_typename(arg));
|
|
at::globalContext().setDisplayVmapFallbackWarnings(arg == Py_True);
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject* THPModule_are_vmap_fallback_warnings_enabled(
|
|
PyObject* _unused,
|
|
PyObject* arg) {
|
|
HANDLE_TH_ERRORS
|
|
if (at::globalContext().areVmapFallbackWarningsEnabled()) {
|
|
Py_RETURN_TRUE;
|
|
} else {
|
|
Py_RETURN_FALSE;
|
|
}
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyMethodDef TorchMethods[] = { // NOLINT
|
|
{"_initExtension", THPModule_initExtension, METH_O, nullptr},
|
|
{"_autograd_init", THPAutograd_initExtension, METH_NOARGS, nullptr},
|
|
{"_add_docstr", THPModule_addDocStr, METH_VARARGS, nullptr},
|
|
{"_init_names", THPModule_initNames, METH_O, nullptr},
|
|
{"_has_distributed", THPModule_hasDistributed, METH_NOARGS, nullptr},
|
|
{"_set_default_tensor_type",
|
|
THPModule_setDefaultTensorType,
|
|
METH_O,
|
|
nullptr},
|
|
{"_set_default_dtype", THPModule_setDefaultDtype, METH_O, nullptr},
|
|
{"_infer_size", THPModule_inferSize, METH_VARARGS, nullptr},
|
|
{"_crash_if_csrc_asan", THPModule_crashIfCsrcASAN, METH_O, nullptr},
|
|
{"_crash_if_csrc_ubsan", THPModule_crashIfCsrcUBSAN, METH_O, nullptr},
|
|
{"_crash_if_vptr_ubsan", THPModule_crashIfvptrUBSAN, METH_NOARGS, nullptr},
|
|
{"_crash_if_aten_asan", THPModule_crashIfATenASAN, METH_O, nullptr},
|
|
{"_crash_if_debug_asserts_fail",
|
|
THPModule_crashIfDebugAssertsFail,
|
|
METH_O,
|
|
nullptr},
|
|
{"_show_config", THPModule_showConfig, METH_NOARGS, nullptr},
|
|
{"_cxx_flags", THPModule_cxxFlags, METH_NOARGS, nullptr},
|
|
{"_parallel_info", THPModule_parallelInfo, METH_NOARGS, nullptr},
|
|
{"_get_cpu_capability", THPModule_getCpuCapability, METH_NOARGS, nullptr},
|
|
{"_set_backcompat_broadcast_warn",
|
|
THPModule_setBackcompatBroadcastWarn,
|
|
METH_O,
|
|
nullptr},
|
|
{"_get_backcompat_broadcast_warn",
|
|
THPModule_getBackcompatBroadcastWarn,
|
|
METH_NOARGS,
|
|
nullptr},
|
|
{"_set_backcompat_keepdim_warn",
|
|
THPModule_setBackcompatKeepdimWarn,
|
|
METH_O,
|
|
nullptr},
|
|
{"_get_backcompat_keepdim_warn",
|
|
THPModule_getBackcompatKeepdimWarn,
|
|
METH_NOARGS,
|
|
nullptr},
|
|
{"get_num_threads", THPModule_getNumThreads, METH_NOARGS, nullptr},
|
|
{"set_num_threads", THPModule_setNumThreads, METH_O, nullptr},
|
|
{"get_num_interop_threads",
|
|
THPModule_getNumInteropThreads,
|
|
METH_NOARGS,
|
|
nullptr},
|
|
{"set_num_interop_threads",
|
|
THPModule_setNumInteropThreads,
|
|
METH_O,
|
|
nullptr},
|
|
{"_get_flash_sdp_enabled",
|
|
THPModule_userEnabledFlashSDP,
|
|
METH_NOARGS,
|
|
nullptr},
|
|
{"_set_sdp_use_flash", THPModule_setSDPUseFlash, METH_O, nullptr},
|
|
{"_get_mem_efficient_sdp_enabled",
|
|
userEnabledMemEfficientSDP,
|
|
METH_NOARGS,
|
|
nullptr},
|
|
{"_set_sdp_use_mem_efficient",
|
|
THPModule_setSDPUseMemEfficient,
|
|
METH_O,
|
|
nullptr},
|
|
{"_get_math_sdp_enabled",
|
|
THPModule_userEnabledMathSDP,
|
|
METH_NOARGS,
|
|
nullptr},
|
|
{"_set_sdp_use_math", THPModule_setSDPUseMath, METH_O, nullptr},
|
|
{"_get_cudnn_enabled", THPModule_userEnabledCuDNN, METH_NOARGS, nullptr},
|
|
{"_set_cudnn_enabled", THPModule_setUserEnabledCuDNN, METH_O, nullptr},
|
|
{"_get_mkldnn_enabled", THPModule_userEnabledMkldnn, METH_NOARGS, nullptr},
|
|
{"_set_mkldnn_enabled", THPModule_setUserEnabledMkldnn, METH_O, nullptr},
|
|
{"_get_cudnn_allow_tf32", THPModule_allowTF32CuDNN, METH_NOARGS, nullptr},
|
|
{"_set_cudnn_allow_tf32", THPModule_setAllowTF32CuDNN, METH_O, nullptr},
|
|
{"_get_cudnn_benchmark", THPModule_benchmarkCuDNN, METH_NOARGS, nullptr},
|
|
{"_set_cudnn_benchmark", THPModule_setBenchmarkCuDNN, METH_O, nullptr},
|
|
{"_get_cudnn_deterministic",
|
|
THPModule_deterministicCuDNN,
|
|
METH_NOARGS,
|
|
nullptr},
|
|
{"_set_cudnn_deterministic",
|
|
THPModule_setDeterministicCuDNN,
|
|
METH_O,
|
|
nullptr},
|
|
{"_get_deterministic_algorithms",
|
|
THPModule_deterministicAlgorithms,
|
|
METH_NOARGS,
|
|
nullptr},
|
|
{"_get_deterministic_algorithms_warn_only",
|
|
THPModule_deterministicAlgorithmsWarnOnly,
|
|
METH_NOARGS,
|
|
nullptr},
|
|
{"_set_deterministic_algorithms",
|
|
castPyCFunctionWithKeywords(THPModule_setDeterministicAlgorithms),
|
|
METH_VARARGS | METH_KEYWORDS,
|
|
nullptr},
|
|
{"_get_deterministic_fill_uninitialized_memory",
|
|
THPModule_deterministicFillUninitializedMemory,
|
|
METH_NOARGS,
|
|
nullptr},
|
|
{"_set_deterministic_fill_uninitialized_memory",
|
|
THPModule_setDeterministicFillUninitializedMemory,
|
|
METH_O,
|
|
nullptr},
|
|
{"_get_warnAlways", THPModule_warnAlways, METH_NOARGS, nullptr},
|
|
{"_set_warnAlways", THPModule_setWarnAlways, METH_O, nullptr},
|
|
{"_warn", THPModule_warn, METH_NOARGS, nullptr},
|
|
{"_warn_deprecation", THPModule_warnDeprecation, METH_NOARGS, nullptr},
|
|
{"_get_cublas_allow_tf32", THPModule_allowTF32CuBLAS, METH_NOARGS, nullptr},
|
|
{"_set_cublas_allow_tf32", THPModule_setAllowTF32CuBLAS, METH_O, nullptr},
|
|
{"_get_float32_matmul_precision",
|
|
THPModule_float32MatmulPrecision,
|
|
METH_NOARGS,
|
|
nullptr},
|
|
{"_set_float32_matmul_precision",
|
|
THPModule_setFloat32MatmulPrecision,
|
|
METH_O,
|
|
nullptr},
|
|
{"_get_cublas_allow_fp16_reduced_precision_reduction",
|
|
THPModule_allowFP16ReductionCuBLAS,
|
|
METH_NOARGS,
|
|
nullptr},
|
|
{"_set_cublas_allow_fp16_reduced_precision_reduction",
|
|
THPModule_setAllowFP16ReductionCuBLAS,
|
|
METH_O,
|
|
nullptr},
|
|
{"_get_cublas_allow_bf16_reduced_precision_reduction",
|
|
THPModule_allowBF16ReductionCuBLAS,
|
|
METH_NOARGS,
|
|
nullptr},
|
|
{"_set_cublas_allow_bf16_reduced_precision_reduction",
|
|
THPModule_setAllowBF16ReductionCuBLAS,
|
|
METH_O,
|
|
nullptr},
|
|
{"_vmapmode_increment_nesting",
|
|
THPModule_vmapmode_increment_nesting,
|
|
METH_NOARGS,
|
|
nullptr},
|
|
{"_vmapmode_decrement_nesting",
|
|
THPModule_vmapmode_decrement_nesting,
|
|
METH_NOARGS,
|
|
nullptr},
|
|
{"_debug_only_display_vmap_fallback_warnings",
|
|
THPModule_set_display_vmap_fallback_warnings_mode,
|
|
METH_O,
|
|
nullptr},
|
|
{"_debug_only_are_vmap_fallback_warnings_enabled",
|
|
THPModule_are_vmap_fallback_warnings_enabled,
|
|
METH_NOARGS,
|
|
nullptr},
|
|
{"_to_dlpack", THPModule_toDLPack, METH_O, nullptr},
|
|
{"_from_dlpack", THPModule_fromDLPack, METH_O, nullptr},
|
|
{"_get_cpp_backtrace", THModule_getCppBacktrace, METH_VARARGS, nullptr},
|
|
{"_rename_privateuse1_backend",
|
|
THModule_rename_privateuse1_backend,
|
|
METH_O,
|
|
nullptr},
|
|
{"_get_privateuse1_backend_name",
|
|
THModule_get_privateuse1_backend_name,
|
|
METH_NOARGS,
|
|
nullptr},
|
|
{"set_flush_denormal", THPModule_setFlushDenormal, METH_O, nullptr},
|
|
{"get_default_dtype", THPModule_getDefaultDtype, METH_NOARGS, nullptr},
|
|
{"_get_default_device", THPModule_getDefaultDevice, METH_NOARGS, nullptr},
|
|
{"_get_qengine", THPModule_qEngine, METH_NOARGS, nullptr},
|
|
{"_set_qengine", THPModule_setQEngine, METH_O, nullptr},
|
|
{"_supported_qengines", THPModule_supportedQEngines, METH_NOARGS, nullptr},
|
|
{"_is_xnnpack_enabled", THPModule_isEnabledXNNPACK, METH_NOARGS, nullptr},
|
|
{"_set_check_sparse_tensor_invariants",
|
|
THPModule_setCheckSparseTensorInvariants,
|
|
METH_O,
|
|
nullptr},
|
|
{"_check_sparse_tensor_invariants",
|
|
THPModule_checkSparseTensorInvariants,
|
|
METH_NOARGS,
|
|
nullptr},
|
|
{"_will_engine_execute_node",
|
|
THPModule_willEngineExecuteNode,
|
|
METH_O,
|
|
nullptr},
|
|
{"_current_graph_task_execution_order",
|
|
THPModule_getCurrentGraphTaskExecutionOrder,
|
|
METH_NOARGS,
|
|
nullptr},
|
|
{"_current_graph_task_id",
|
|
THPModule_getCurrentGraphTaskId,
|
|
METH_NOARGS,
|
|
nullptr},
|
|
{"_current_autograd_node", THPModule_getCurrentNode, METH_NOARGS, nullptr},
|
|
{"_set_default_mobile_cpu_allocator",
|
|
THPModule_setDefaultMobileCPUAllocator,
|
|
METH_NOARGS,
|
|
nullptr},
|
|
{"_unset_default_mobile_cpu_allocator",
|
|
THPModule_unsetDefaultMobileCPUAllocator,
|
|
METH_NOARGS,
|
|
nullptr},
|
|
{"_is_torch_function_enabled",
|
|
THPModule_isEnabledTorchFunction,
|
|
METH_NOARGS,
|
|
nullptr},
|
|
{"_disabled_torch_function_impl",
|
|
THPModule_disable_torch_function,
|
|
METH_VARARGS,
|
|
nullptr},
|
|
{"_disabled_torch_dispatch_impl",
|
|
THPModule_disable_torch_dispatch,
|
|
METH_VARARGS,
|
|
nullptr},
|
|
{"_has_torch_function", THPModule_has_torch_function, METH_O, nullptr},
|
|
{"_has_torch_function_unary",
|
|
THPModule_has_torch_function_unary,
|
|
METH_O,
|
|
nullptr},
|
|
{"_has_torch_function_variadic",
|
|
(PyCFunction)(void (*)())THPModule_has_torch_function_variadic,
|
|
METH_FASTCALL,
|
|
nullptr},
|
|
{nullptr, nullptr, 0, nullptr}};
|
|
|
|
void THCPStream_init(PyObject* module);
|
|
void THCPEvent_init(PyObject* module);
|
|
void THCPGraph_init(PyObject* module);
|
|
|
|
#ifdef USE_CUDA
|
|
PyMethodDef* THCPModule_methods();
|
|
namespace torch::cuda {
|
|
void initModule(PyObject* module);
|
|
} // namespace torch::cuda
|
|
#endif
|
|
|
|
#ifdef USE_ITT
|
|
namespace torch::profiler {
|
|
void initIttBindings(PyObject* module);
|
|
} // namespace torch::profiler
|
|
#endif
|
|
|
|
static std::vector<PyMethodDef> methods;
|
|
|
|
// In Python we can't use the trick of C10_LOG_API_USAGE_ONCE
|
|
// Guaranteed to be invoked from Python under GIL, no locking on map needed
|
|
static void LogAPIUsageOnceFromPython(const std::string& event) {
|
|
static std::unordered_set<std::string> seen;
|
|
if (!seen.count(event)) {
|
|
seen.insert(event);
|
|
c10::LogAPIUsage(event);
|
|
}
|
|
}
|
|
|
|
static void LogAPIUsageMetadataFromPython(
|
|
const std::string& event,
|
|
const std::map<std::string, std::string>& metadata_map) {
|
|
c10::LogAPIUsageMetadata(event, metadata_map);
|
|
}
|
|
|
|
// Weak reference to tensor, used to test a tensor isn't leaked
|
|
class WeakTensorRef {
|
|
c10::weak_intrusive_ptr<c10::TensorImpl> weakref_;
|
|
|
|
public:
|
|
WeakTensorRef(const at::Tensor& t) : weakref_(t.getIntrusivePtr()) {}
|
|
|
|
bool expired() {
|
|
return weakref_.expired();
|
|
}
|
|
};
|
|
|
|
extern "C" C10_EXPORT PyObject* initModule();
|
|
// separate decl and defn for msvc error C2491
|
|
PyObject* initModule() {
|
|
HANDLE_TH_ERRORS
|
|
|
|
c10::initLogging();
|
|
|
|
at::internal::lazy_init_num_threads();
|
|
|
|
C10_LOG_API_USAGE_ONCE("torch.python.import");
|
|
|
|
#define ASSERT_TRUE(cmd) \
|
|
if (!(cmd)) \
|
|
return nullptr
|
|
|
|
THPUtils_addPyMethodDefs(methods, TorchMethods);
|
|
THPUtils_addPyMethodDefs(methods, DataLoaderMethods);
|
|
THPUtils_addPyMethodDefs(methods, torch::autograd::python_functions());
|
|
THPUtils_addPyMethodDefs(methods, torch::multiprocessing::python_functions());
|
|
THPUtils_addPyMethodDefs(methods, torch::mps::python_functions());
|
|
#ifdef USE_CUDA
|
|
THPUtils_addPyMethodDefs(methods, THCPModule_methods());
|
|
#endif
|
|
#if defined(USE_DISTRIBUTED) && defined(USE_C10D)
|
|
THPUtils_addPyMethodDefs(
|
|
methods, torch::distributed::c10d::python_functions());
|
|
#ifndef _WIN32
|
|
THPUtils_addPyMethodDefs(
|
|
methods, torch::distributed::rpc::python_functions());
|
|
THPUtils_addPyMethodDefs(
|
|
methods, torch::distributed::autograd::python_functions());
|
|
THPUtils_addPyMethodDefs(
|
|
methods, torch::distributed::rpc::testing::python_functions());
|
|
#endif
|
|
#endif
|
|
|
|
static struct PyModuleDef torchmodule = {
|
|
PyModuleDef_HEAD_INIT, "torch._C", nullptr, -1, methods.data()};
|
|
module = PyModule_Create(&torchmodule);
|
|
ASSERT_TRUE(module);
|
|
ASSERT_TRUE(THPGenerator_init(module));
|
|
ASSERT_TRUE(THPException_init(module));
|
|
THPSize_init(module);
|
|
THPDtype_init(module);
|
|
THPDTypeInfo_init(module);
|
|
THPLayout_init(module);
|
|
THPMemoryFormat_init(module);
|
|
THPQScheme_init(module);
|
|
THPDevice_init(module);
|
|
THPStream_init(module);
|
|
ASSERT_TRUE(THPVariable_initModule(module));
|
|
ASSERT_TRUE(THPFunction_initModule(module));
|
|
ASSERT_TRUE(THPEngine_initModule(module));
|
|
// NOTE: We need to be able to access OperatorExportTypes from ONNX for use in
|
|
// the export side of JIT, so this ONNX init needs to appear before the JIT
|
|
// init.
|
|
torch::onnx::initONNXBindings(module);
|
|
torch::autograd::initEnumTag(module);
|
|
torch::jit::initJITBindings(module);
|
|
torch::monitor::initMonitorBindings(module);
|
|
torch::impl::dispatch::initDispatchBindings(module);
|
|
torch::dynamo::initDynamoBindings(module);
|
|
torch::functorch::impl::initFuncTorchBindings(module);
|
|
torch::throughput_benchmark::initThroughputBenchmarkBindings(module);
|
|
torch::autograd::initReturnTypes(module);
|
|
torch::autograd::initNNFunctions(module);
|
|
torch::autograd::initFFTFunctions(module);
|
|
torch::autograd::initLinalgFunctions(module);
|
|
torch::autograd::initNestedFunctions(module);
|
|
torch::autograd::initSparseFunctions(module);
|
|
torch::autograd::initSpecialFunctions(module);
|
|
torch::autograd::init_legacy_variable(module);
|
|
torch::profiler::initPythonBindings(module);
|
|
torch::python::init_bindings(module);
|
|
torch::lazy::initLazyBindings(module);
|
|
#ifdef USE_ITT
|
|
torch::profiler::initIttBindings(module);
|
|
#endif
|
|
#ifdef USE_CUDA
|
|
torch::cuda::initModule(module);
|
|
#endif
|
|
torch::cpu::initModule(module);
|
|
torch::initVerboseBindings(module);
|
|
ASSERT_TRUE(THPStorage_init(module));
|
|
|
|
#ifdef USE_CUDA
|
|
// This will only initialise base classes and attach them to library namespace
|
|
// They won't be ready for real usage until importing cuda module, that will
|
|
// complete the process (but it defines Python classes before calling back
|
|
// into C, so these lines have to execute first)..
|
|
THCPStream_init(module);
|
|
THCPEvent_init(module);
|
|
THCPGraph_init(module);
|
|
#endif
|
|
|
|
auto set_module_attr =
|
|
[&](const char* name, PyObject* v, bool incref = true) {
|
|
// PyModule_AddObject steals reference
|
|
if (incref) {
|
|
Py_INCREF(v);
|
|
}
|
|
|
|
int ret = PyModule_AddObject(module, name, v);
|
|
if (ret != 0) {
|
|
Py_DECREF(v);
|
|
}
|
|
|
|
return ret == 0;
|
|
};
|
|
|
|
#if defined(USE_CUDNN) || defined(USE_ROCM)
|
|
PyObject* has_cudnn = Py_True;
|
|
#else
|
|
PyObject* has_cudnn = Py_False;
|
|
#endif
|
|
ASSERT_TRUE(set_module_attr("_has_cudnn", has_cudnn));
|
|
|
|
#if AT_MKL_ENABLED() || AT_POCKETFFT_ENABLED()
|
|
PyObject* has_spectral = Py_True;
|
|
#else
|
|
PyObject* has_spectral = Py_False;
|
|
#endif
|
|
ASSERT_TRUE(set_module_attr("has_spectral", has_spectral));
|
|
|
|
// force ATen to initialize because it handles
|
|
// setting up TH Errors so that they throw C++ exceptions
|
|
at::init();
|
|
|
|
// Automatically translate errors thrown from pybind11 functions
|
|
py::register_exception_translator([](std::exception_ptr e) { // NOLINT
|
|
try {
|
|
if (e) {
|
|
std::rethrow_exception(e);
|
|
}
|
|
}
|
|
CATCH_TH_ERRORS()
|
|
});
|
|
|
|
auto py_module = py::reinterpret_borrow<py::module>(module);
|
|
py_module.def("_demangle", &c10::demangle);
|
|
py_module.def("_log_api_usage_once", &LogAPIUsageOnceFromPython);
|
|
py_module.def("_log_api_usage_metadata", &LogAPIUsageMetadataFromPython);
|
|
|
|
py_module.def("vitals_enabled", &at::vitals::torchVitalEnabled);
|
|
py_module.def(
|
|
"set_vital",
|
|
[](const std::string& vital,
|
|
const std::string& attr,
|
|
const std::string& value) {
|
|
return at::vitals::VitalsAPI.setVital(vital, attr, value);
|
|
});
|
|
py_module.def(
|
|
"read_vitals", []() { return at::vitals::VitalsAPI.readVitals(); });
|
|
|
|
py_module.def(
|
|
"init_num_threads",
|
|
torch::wrap_pybind_function(at::init_num_threads),
|
|
R"(
|
|
init_num_threads()
|
|
|
|
Initializes the number of parallel threads used on the current thread.
|
|
|
|
Call this whenever a new thread is created in order to propagate values from
|
|
:func:`torch.set_num_threads` onto the new thread.
|
|
)");
|
|
|
|
ASSERT_TRUE(
|
|
set_module_attr("has_openmp", at::hasOpenMP() ? Py_True : Py_False));
|
|
ASSERT_TRUE(set_module_attr("has_mkl", at::hasMKL() ? Py_True : Py_False));
|
|
ASSERT_TRUE(
|
|
set_module_attr("has_lapack", at::hasLAPACK() ? Py_True : Py_False));
|
|
|
|
py_module.def("_valgrind_supported_platform", []() {
|
|
#if defined(USE_VALGRIND)
|
|
return true;
|
|
#else
|
|
return false;
|
|
#endif
|
|
});
|
|
|
|
py_module.def("_valgrind_toggle", []() {
|
|
#if defined(USE_VALGRIND)
|
|
CALLGRIND_TOGGLE_COLLECT;
|
|
#else
|
|
TORCH_CHECK(false, "Valgrind is not supported.");
|
|
#endif
|
|
});
|
|
|
|
py_module.def("_valgrind_toggle_and_dump_stats", []() {
|
|
#if defined(USE_VALGRIND)
|
|
// NB: If we don't toggle collect around dump stats, callgrind_annotate
|
|
// won't process the results correctly. Specifically,
|
|
// `callgrind_annotate --inclusive=no` will be almost completely empty.
|
|
CALLGRIND_TOGGLE_COLLECT;
|
|
CALLGRIND_DUMP_STATS;
|
|
#else
|
|
TORCH_CHECK(false, "Valgrind is not supported.");
|
|
#endif
|
|
});
|
|
|
|
py::class_<WeakTensorRef>(py_module, "_WeakTensorRef")
|
|
.def(py::init([](py::object tensor) {
|
|
return WeakTensorRef(THPVariable_Unpack(tensor.ptr()));
|
|
}))
|
|
.def("expired", &WeakTensorRef::expired);
|
|
|
|
py::enum_<at::native::ConvBackend>(py_module, "_ConvBackend")
|
|
.value("CudaDepthwise2d", at::native::ConvBackend::CudaDepthwise2d)
|
|
.value("CudaDepthwise3d", at::native::ConvBackend::CudaDepthwise3d)
|
|
.value("Cudnn", at::native::ConvBackend::Cudnn)
|
|
.value("CudnnTranspose", at::native::ConvBackend::CudnnTranspose)
|
|
.value("Empty", at::native::ConvBackend::Empty)
|
|
.value("Miopen", at::native::ConvBackend::Miopen)
|
|
.value("MiopenDepthwise", at::native::ConvBackend::MiopenDepthwise)
|
|
.value("MiopenTranspose", at::native::ConvBackend::MiopenTranspose)
|
|
.value("Mkldnn", at::native::ConvBackend::Mkldnn)
|
|
.value("MkldnnEmpty", at::native::ConvBackend::MkldnnEmpty)
|
|
.value("NnpackSpatial", at::native::ConvBackend::NnpackSpatial)
|
|
.value("Overrideable", at::native::ConvBackend::Overrideable)
|
|
.value("Slow2d", at::native::ConvBackend::Slow2d)
|
|
.value("Slow3d", at::native::ConvBackend::Slow3d)
|
|
.value("SlowDilated2d", at::native::ConvBackend::SlowDilated2d)
|
|
.value("SlowDilated3d", at::native::ConvBackend::SlowDilated3d)
|
|
.value("SlowTranspose2d", at::native::ConvBackend::SlowTranspose2d)
|
|
.value("SlowTranspose3d", at::native::ConvBackend::SlowTranspose3d)
|
|
.value(
|
|
"Winograd3x3Depthwise", at::native::ConvBackend::Winograd3x3Depthwise)
|
|
.value("Xnnpack2d", at::native::ConvBackend::Xnnpack2d)
|
|
.value("Mps", at::native::ConvBackend::Mps)
|
|
.value("MpsTranspose,", at::native::ConvBackend::MpsTranspose);
|
|
|
|
py_module.def(
|
|
"_select_conv_backend",
|
|
[](const at::Tensor& input,
|
|
const at::Tensor& weight,
|
|
const c10::optional<at::Tensor>& bias_opt,
|
|
at::SymIntArrayRef stride_,
|
|
at::SymIntArrayRef padding_,
|
|
at::SymIntArrayRef dilation_,
|
|
bool transposed_,
|
|
at::SymIntArrayRef output_padding_,
|
|
c10::SymInt groups_) {
|
|
return at::native::select_conv_backend(
|
|
input,
|
|
weight,
|
|
bias_opt,
|
|
stride_,
|
|
padding_,
|
|
dilation_,
|
|
transposed_,
|
|
output_padding_,
|
|
std::move(groups_),
|
|
c10::nullopt);
|
|
},
|
|
py::arg("input"),
|
|
py::arg("weight"),
|
|
py::arg("bias"),
|
|
py::arg("stride"),
|
|
py::arg("padding"),
|
|
py::arg("dilation"),
|
|
py::arg("transposed"),
|
|
py::arg("output_padding"),
|
|
py::arg("groups"));
|
|
|
|
// overload for bias_sizes_opt/backward TODO: figure out default value
|
|
py_module.def(
|
|
"_select_conv_backend",
|
|
[](const at::Tensor& input,
|
|
const at::Tensor& weight,
|
|
const c10::optional<at::Tensor>& bias,
|
|
at::SymIntArrayRef stride_,
|
|
at::SymIntArrayRef padding_,
|
|
at::SymIntArrayRef dilation_,
|
|
bool transposed_,
|
|
at::SymIntArrayRef output_padding_,
|
|
c10::SymInt groups_,
|
|
c10::optional<std::vector<c10::SymInt>> bias_sizes_opt) {
|
|
c10::OptionalArrayRef<c10::SymInt> ref = c10::nullopt;
|
|
if (bias_sizes_opt) {
|
|
ref = (*bias_sizes_opt);
|
|
}
|
|
return at::native::select_conv_backend(
|
|
input,
|
|
weight,
|
|
bias,
|
|
stride_,
|
|
padding_,
|
|
dilation_,
|
|
transposed_,
|
|
output_padding_,
|
|
std::move(groups_),
|
|
ref);
|
|
},
|
|
py::arg("input"),
|
|
py::arg("weight"),
|
|
py::arg("bias"),
|
|
py::arg("stride"),
|
|
py::arg("padding"),
|
|
py::arg("dilation"),
|
|
py::arg("transposed"),
|
|
py::arg("output_padding"),
|
|
py::arg("groups"),
|
|
py::arg("bias_sizes"));
|
|
|
|
py_module.def(
|
|
"_conv_determine_backend_memory_format",
|
|
at::native::_determine_backend_memory_format);
|
|
|
|
py::enum_<at::LinalgBackend>(py_module, "_LinalgBackend")
|
|
.value("Default", at::LinalgBackend::Default)
|
|
.value("Cusolver", at::LinalgBackend::Cusolver)
|
|
.value("Magma", at::LinalgBackend::Magma);
|
|
|
|
py_module.def("_set_linalg_preferred_backend", [](at::LinalgBackend b) {
|
|
at::globalContext().setLinalgPreferredBackend(b);
|
|
});
|
|
py_module.def("_get_linalg_preferred_backend", []() {
|
|
return at::globalContext().linalgPreferredBackend();
|
|
});
|
|
|
|
py_module.def(
|
|
"_construct_storage_from_data_pointer",
|
|
[](int64_t data_ptr, c10::Device device, size_t size_bytes) {
|
|
return c10::Storage(
|
|
c10::Storage::use_byte_size_t(),
|
|
size_bytes,
|
|
// NOLINTNEXTLINE(performance-no-int-to-ptr)
|
|
at::DataPtr(reinterpret_cast<void*>(data_ptr), device));
|
|
});
|
|
|
|
py_module.def(
|
|
"_stash_obj_in_tls", [](const std::string& key, py::handle arg) {
|
|
at::impl::ThreadLocalPythonObjects::get_state().set(
|
|
key,
|
|
std::make_shared<c10::SafePyObject>(arg.ptr(), getPyInterpreter()));
|
|
});
|
|
|
|
py_module.def("_get_obj_in_tls", [](const std::string& key) -> py::handle {
|
|
auto safe_pyobject =
|
|
at::impl::ThreadLocalPythonObjects::get_state().get(key);
|
|
auto obj = safe_pyobject->ptr(getPyInterpreter());
|
|
return py::handle(obj);
|
|
});
|
|
|
|
py_module.def("_is_key_in_tls", [](const std::string& key) -> bool {
|
|
return at::impl::ThreadLocalPythonObjects::get_state().contains(key);
|
|
});
|
|
|
|
#ifdef USE_CUDA
|
|
PyObject* has_cuda = Py_True;
|
|
#else
|
|
PyObject* has_cuda = Py_False;
|
|
#endif
|
|
|
|
#ifdef USE_MPS
|
|
PyObject* has_mps = Py_True;
|
|
#else
|
|
PyObject* has_mps = Py_False;
|
|
#endif
|
|
|
|
ASSERT_TRUE(set_module_attr("_has_cuda", has_cuda));
|
|
ASSERT_TRUE(set_module_attr("_has_mps", has_mps));
|
|
ASSERT_TRUE(
|
|
set_module_attr("_has_mkldnn", at::hasMKLDNN() ? Py_True : Py_False));
|
|
|
|
#ifdef _GLIBCXX_USE_CXX11_ABI
|
|
ASSERT_TRUE(set_module_attr(
|
|
"_GLIBCXX_USE_CXX11_ABI", _GLIBCXX_USE_CXX11_ABI ? Py_True : Py_False));
|
|
#else
|
|
ASSERT_TRUE(set_module_attr("_GLIBCXX_USE_CXX11_ABI", Py_False));
|
|
#endif
|
|
|
|
// See note [Pybind11 ABI constants]
|
|
#define SET_STR_DEFINE(name) \
|
|
ASSERT_TRUE(set_module_attr("_" #name, THPUtils_packString(name)))
|
|
|
|
#ifdef PYBIND11_COMPILER_TYPE
|
|
SET_STR_DEFINE(PYBIND11_COMPILER_TYPE);
|
|
#else
|
|
ASSERT_TRUE(
|
|
set_module_attr("_" C10_STRINGIZE(PYBIND11_COMPILER_TYPE), Py_None));
|
|
#endif
|
|
|
|
#ifdef PYBIND11_STDLIB
|
|
SET_STR_DEFINE(PYBIND11_STDLIB);
|
|
#else
|
|
ASSERT_TRUE(set_module_attr("_" C10_STRINGIZE(PYBIND11_STDLIB), Py_None));
|
|
#endif
|
|
|
|
#ifdef PYBIND11_BUILD_ABI
|
|
SET_STR_DEFINE(PYBIND11_BUILD_ABI);
|
|
#else
|
|
ASSERT_TRUE(set_module_attr("_" C10_STRINGIZE(PYBIND11_BUILD_ABI), Py_None));
|
|
#endif
|
|
#undef SET_STR_DEFINE
|
|
|
|
py_module.def(
|
|
"_set_conj", [](const at::Tensor& x, bool conj) { x._set_conj(conj); });
|
|
py_module.def(
|
|
"_set_neg", [](const at::Tensor& x, bool neg) { x._set_neg(neg); });
|
|
py_module.def("_get_tensor_metadata", &torch::jit::getTensorMetadata);
|
|
py_module.def(
|
|
"_set_tensor_metadata",
|
|
static_cast<void (*)(
|
|
const at::Tensor&, std::unordered_map<std::string, bool>)>(
|
|
torch::jit::setTensorMetadata));
|
|
py_module.def("_dispatch_key_set", [](const at::Tensor& x) {
|
|
return toString(x.key_set());
|
|
});
|
|
py_module.def(
|
|
"_has_storage", [](const at::Tensor& x) { return x.has_storage(); });
|
|
|
|
py_module.def("_set_meta_in_tls_dispatch_include", [](bool meta_in_tls) {
|
|
auto local_keyset = c10::impl::tls_local_dispatch_key_set();
|
|
c10::DispatchKeySet key_set({at::DispatchKey::Meta});
|
|
if (meta_in_tls) {
|
|
local_keyset.included_ = local_keyset.included_ | key_set;
|
|
} else {
|
|
local_keyset.included_ =
|
|
local_keyset.included_.remove_backend(c10::BackendComponent::MetaBit);
|
|
}
|
|
c10::impl::_force_tls_local_dispatch_key_set(local_keyset);
|
|
});
|
|
|
|
py_module.def("_meta_in_tls_dispatch_include", []() {
|
|
auto local_keyset = c10::impl::tls_local_dispatch_key_set();
|
|
return local_keyset.included_.has_backend(c10::BackendComponent::MetaBit);
|
|
});
|
|
|
|
py_module.def("_dump_local_tls_set", []() {
|
|
auto local_keyset = c10::impl::tls_local_dispatch_key_set();
|
|
std::cout << "Included: " << toString(local_keyset.included_) << "\n";
|
|
std::cout << "Excluded: " << toString(local_keyset.excluded_) << "\n";
|
|
});
|
|
|
|
py_module.def(
|
|
"_should_allow_numbers_as_tensors", [](const std::string& name) {
|
|
return torch::should_allow_numbers_as_tensors(name);
|
|
});
|
|
|
|
// FIXME(crcrpar): Better to have `at::ScalarType` get mapped to `torch.dtype`
|
|
// Currently I see the second item of the key is displayed as
|
|
// e.g. `torch._C._te.ScalarType at 0x7fcf318adab0`
|
|
// I thought adding an appropriate type_caster of `at::ScalarType` to
|
|
// torch/csrc/pybind.h` would solve this but it caused segmentation fault in
|
|
// my environment.
|
|
using _DeviceDtypeKey = std::pair<at::Device, std::string>;
|
|
// Custom hasher is necessary to make unordered_map compilable for Windows
|
|
// debug targets. As `at::native::ParamsHash` only works on structs with
|
|
// standard layout, but std::string isn't one in Visual C++ debug builds,
|
|
// which one can easily verify by running something like:
|
|
// #define _DEBUG
|
|
// #include <type_traits>
|
|
// #include <string>
|
|
// static_assert(std::is_standard_layout_v<std::string>, "Oh noes");
|
|
// If above condition is not met, VC++ raises a very cryptic compilation
|
|
// error. See
|
|
// https://github.com/pytorch/pytorch/pull/100007#discussion_r1227116292 for
|
|
// more detail
|
|
struct _DeviceDtypeHasher {
|
|
std::size_t operator()(const _DeviceDtypeKey& k) const noexcept {
|
|
static at::native::ParamsHash<at::Device> device_hasher;
|
|
static std::hash<std::string> string_hasher;
|
|
return device_hasher(k.first) ^ string_hasher(k.second);
|
|
}
|
|
};
|
|
using _FlatMap = std::unordered_map<
|
|
_DeviceDtypeKey,
|
|
at::native::TensorsAndIndicesT,
|
|
_DeviceDtypeHasher>;
|
|
py_module.def(
|
|
"_group_tensors_by_device_and_dtype",
|
|
[](const std::vector<std::vector<c10::optional<at::Tensor>>>&
|
|
nested_tensorlist,
|
|
const bool with_indices) {
|
|
_FlatMap map;
|
|
for (const auto& iter :
|
|
at::native::_group_tensors_by_first_tensors_device_and_dtype(
|
|
nested_tensorlist, with_indices)) {
|
|
const auto scalar_type_name =
|
|
torch::utils::getDtypeNames(iter.first.second).first;
|
|
map.insert({{iter.first.first, scalar_type_name}, iter.second});
|
|
}
|
|
return map;
|
|
});
|
|
|
|
const auto& defaultGenerator = at::detail::getDefaultCPUGenerator();
|
|
THPDefaultCPUGenerator =
|
|
(THPGenerator*)THPGenerator_initDefaultGenerator(defaultGenerator);
|
|
// This reference is meant to be given away, so no need to incref here.
|
|
ASSERT_TRUE(set_module_attr(
|
|
"default_generator",
|
|
(PyObject*)THPDefaultCPUGenerator,
|
|
/* incref= */ false));
|
|
ASSERT_TRUE(set_module_attr(
|
|
"DisableTorchFunctionSubclass",
|
|
(PyObject*)THPModule_DisableTorchFunctionSubclassType(),
|
|
/* incref= */ false));
|
|
ASSERT_TRUE(set_module_attr(
|
|
"DisableTorchFunction",
|
|
(PyObject*)THPModule_DisableTorchFunctionType(),
|
|
/* incref= */ false));
|
|
torch::set_disabled_torch_function_impl(
|
|
PyObject_GetAttrString(module, "_disabled_torch_function_impl"));
|
|
ASSERT_TRUE(torch::disabled_torch_function_impl() != nullptr);
|
|
torch::set_disabled_torch_dispatch_impl(
|
|
PyObject_GetAttrString(module, "_disabled_torch_dispatch_impl"));
|
|
ASSERT_TRUE(torch::disabled_torch_dispatch_impl() != nullptr);
|
|
return module;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
// Checks that the _C shared library isn't initialized multiple times. This
|
|
// can happen if the same csrc files are compiled into multiple shared
|
|
// libraries.
|
|
inline void pytorch_duplicate_guard() {
|
|
static int initialized = 0;
|
|
if (initialized) {
|
|
fmt::print(stderr, "pytorch: _C shared library re-initialized\n");
|
|
abort();
|
|
}
|
|
initialized = 1;
|
|
;
|
|
}
|
|
|
|
struct call_duplicate_guard {
|
|
call_duplicate_guard() {
|
|
pytorch_duplicate_guard();
|
|
}
|
|
};
|
|
|
|
static call_duplicate_guard _call_duplicate_guard;
|