Files
pytorch/torch/export/_unlift.py
Tugsbayasgalan Manlaibaatar f96020c246 Fix unlift to unblock training IR + run_decomp on aliasing constants (#137162)
When we populate unlifted graph module, we actually only "unlift" constant tensor inputs which is problematic because export de-duplicates aliasing constants. As a result, we only register one constant instead of two constants. This PR fixes that by querying ep.constants table instead of ep.graph_signature.lifted_tensor_constants.

Differential Revision: [D63743111](https://our.internmc.facebook.com/intern/diff/D63743111)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137162
Approved by: https://github.com/pianpwk
2024-10-03 17:28:53 +00:00

374 lines
13 KiB
Python

# mypy: allow-untyped-defs
import copy
import warnings
from itertools import chain
from typing import Any, Dict, List, Optional, Tuple
import torch
import torch.utils._pytree as pytree
from torch._export.utils import _check_input_constraints_for_graph
from torch.export.unflatten import _assign_attr, _AttrKind
from torch.fx.graph import _PyTreeCodeGen, _PyTreeInfo
from ._remove_effect_tokens_pass import _remove_effect_tokens
from .exported_program import (
ExportedProgram,
ExportGraphSignature,
InputKind,
OutputKind,
)
@torch._dynamo.disable
def _check_input_constraints_pre_hook(self, *args, **kwargs):
flat_args_with_path, received_spec = pytree.tree_flatten_with_path(args)
if received_spec != self._in_spec:
raise ValueError( # noqa: B904
"Trying to flatten user inputs with exported input tree spec: \n"
f"{self._in_spec}\n"
"but actually got inputs with tree spec of: \n"
f"{received_spec}"
)
return _check_input_constraints_for_graph(
[node for node in self.graph.nodes if node.op == "placeholder"],
flat_args_with_path,
self.range_constraints,
)
def _unlift_inputs_as_getattr(
gm: torch.fx.GraphModule,
lifted_inputs: List[Optional[str]],
) -> Tuple[Dict[str, torch.fx.Node], Dict[str, torch.fx.Node]]:
"""
Unlift inputs referring to params/buffers/constants as getattr nodes in the
graph
"""
unlifted_name_to_node = {}
input_name_to_node = {}
placeholder_nodes = [node for node in gm.graph.nodes if node.op == "placeholder"]
assert len(lifted_inputs) == len(placeholder_nodes)
for input_node, lifted_node in zip(placeholder_nodes, lifted_inputs):
if lifted_node is None:
input_name_to_node[input_node.name] = input_node
else:
with gm.graph.inserting_after(input_node):
getattr_node = gm.graph.get_attr(lifted_node)
input_node.replace_all_uses_with(getattr_node)
metadata = input_node.meta
gm.graph.erase_node(input_node)
getattr_node.meta = metadata
unlifted_name_to_node[lifted_node] = getattr_node
return unlifted_name_to_node, input_name_to_node
def _insert_copy_for_mutations(
gm: torch.fx.GraphModule,
mutated_outputs: List[Optional[str]],
unlifted_name_to_node: Dict[str, torch.fx.Node],
input_name_to_node: Dict[str, torch.fx.Node],
) -> None:
"""
Find the all the buffers and inputs that were mutated and insert copy_
operators to reflect mutations.
"""
output_node = None
for node in gm.graph.nodes:
if node.op == "output":
output_node = node
break
assert output_node is not None
outputs = pytree.tree_flatten(output_node.args)[0]
assert len(outputs) == len(mutated_outputs)
user_output_nodes = []
return_nodes_to_copy = {}
for return_node, mutated_node_name in zip(outputs, mutated_outputs):
if mutated_node_name is None:
user_output_nodes.append(return_node)
continue
if mutated_node_name in unlifted_name_to_node:
mutated_node = unlifted_name_to_node[mutated_node_name]
elif mutated_node_name in input_name_to_node:
mutated_node = input_name_to_node[mutated_node_name]
else:
raise RuntimeError(
f"Could not find {mutated_node_name} in either buffer or input nodes"
)
with gm.graph.inserting_before(output_node):
copy_node = gm.graph.call_function(
torch.ops.aten.copy_.default, (mutated_node, return_node)
)
return_nodes_to_copy[return_node] = copy_node
output_args = [
return_nodes_to_copy[node] if node in return_nodes_to_copy else node
for node in user_output_nodes
]
with gm.graph.inserting_before(output_node):
# Only return user outputs
new_output = gm.graph.output(tuple(output_args))
new_output.meta.update(output_node.meta)
output_node.replace_all_uses_with(new_output)
gm.graph.erase_node(output_node)
def _get_codegen(
in_spec: pytree.TreeSpec,
out_spec: Optional[pytree.TreeSpec],
forward_arg_names: Optional[List[str]] = None,
) -> _PyTreeCodeGen:
"""
Create the codegen for the graph module based on the in/out specs
"""
if forward_arg_names:
names = forward_arg_names
else:
if (
in_spec.type == tuple
and in_spec.num_children == 2
and in_spec.children_specs[0].type == tuple
and in_spec.children_specs[1].type == dict
):
# if in_spec contains the args (tuple) and kwargs (dict)
names = [f"arg_{i}" for i in range(in_spec.children_specs[0].num_children)]
# add kwarg names
names.extend(in_spec.children_specs[1].context)
else:
names = [f"arg_{i}" for i in range(in_spec.num_children)]
return _PyTreeCodeGen(
_PyTreeInfo(
names,
in_spec,
out_spec,
)
)
def _unlift(
gm: torch.fx.GraphModule,
lifted_inputs: List[Optional[str]],
mutated_outputs: List[Optional[str]],
in_spec: pytree.TreeSpec,
out_spec: Optional[pytree.TreeSpec],
state_dict: Dict[str, Any],
constants: Dict[str, Any],
forward_arg_names: Optional[List[str]] = None,
):
"""
Args:
lifted_inputs: A list matching the graph module's input nodes. For
an input node that is referring to a lifted parameter/buffer, this
list will contain the fqn the corresponding attribute. Otherwise, this
list will contain None. This is used to unlift the lifted parameters as
get_attr nodes.
mutated_outputs: A list matching the graph module's output nodes. For
an output node that is referring to a mutated buffer or user input, this
list will contain the name of the corresponding buffer or user input
that needs to be mutated. Otherwise, this list will contain None. This
is used to re-insert an inplace copy_ operator to copy the mutated
values back to the original node.
"""
unlifted_name_to_node, input_name_to_node = _unlift_inputs_as_getattr(
gm, lifted_inputs
)
_insert_copy_for_mutations(
gm, mutated_outputs, unlifted_name_to_node, input_name_to_node
)
gm.graph._codegen = _get_codegen(in_spec, out_spec, forward_arg_names)
gm.graph.lint()
gm.recompile()
return gm
def _register_attrs_to_new_gm(
new_gm: torch.fx.GraphModule,
graph_signature: ExportGraphSignature,
state_dict: Dict[str, Any],
constants: Dict[str, Any],
) -> None:
non_persistent_buffers = set(graph_signature.non_persistent_buffers)
for name in graph_signature.buffers:
if name in non_persistent_buffers:
persistent = False
value = constants[name]
else:
persistent = True
value = state_dict[name]
_assign_attr(
value, new_gm, name, attr_kind=_AttrKind.BUFFER, persistent=persistent
)
for name in graph_signature.parameters:
value = state_dict[name]
_assign_attr(
value,
new_gm,
name,
attr_kind=_AttrKind.PARAMETER,
)
# Technically this doesn't account for the aliased multiple constants but
# it is ok because we have a seperate pass later in the stack that populates
# the final gm.
for name in chain(
graph_signature.lifted_custom_objs, graph_signature.lifted_tensor_constants
):
value = constants[name]
_assign_attr(
value,
new_gm,
name,
attr_kind=_AttrKind.CONSTANT,
)
class _StatefulGraphModuleFactory(type):
"""
Metaclass that ensures a private constructor for _StatefulGraphModule
"""
def __call__(cls, *args, **kwargs):
raise TypeError(
f"{cls.__module__}.{cls.__qualname__} has no public constructor. "
)
def _create(cls, root, graph, range_constraints=None):
return super().__call__(
root,
graph,
range_constraints=range_constraints,
)
class _StatefulGraphModule(torch.fx.GraphModule, metaclass=_StatefulGraphModuleFactory):
def __init__(self, root, graph, range_constraints=None):
super().__init__(root, graph)
# Need to fix up non-persistent buffers.
self.range_constraints = range_constraints or []
def _create_stateful_graph_module(
plain_graph_module: torch.fx.GraphModule,
range_constraints,
# TODO(suo) this should not be optional, but is since we still ahve
# capture_pre_autograd_graph grr
ep: Optional[ExportedProgram] = None,
):
stateful_gm = _StatefulGraphModule._create(
plain_graph_module,
plain_graph_module.graph,
range_constraints=range_constraints,
)
stateful_gm.register_forward_pre_hook(
_check_input_constraints_pre_hook, with_kwargs=True
)
if ep is None:
return stateful_gm
# Fix up lifted tensor constants.
# fx.GraphModule() constructor silently turns a constant attribute of plain_graph_module
# into a buffer in stateful_gm and creates an inconsistency with graph_signature.
# We fix this by de-registering these buffers in lifted_tensor_constants
# and call _assign_attr(attr_kind=CONSTANT) to register them as constants.
for constant_fqn in ep.graph_signature.lifted_tensor_constants:
# Sometimes, the constant can require gradient, this is probably a bug in user code,
# e.g. `self.const = torch.randn(2, 2, requires_grad=True)`.
# We call detach on the constant_val since they're tensor contants and we don't need to
# compute their gradients anyway.
# Users should properly register it as parameter if they want it to require gradient.
buffer = stateful_gm.get_buffer(constant_fqn)
if buffer.requires_grad:
warnings.warn(
f"A model attribute `{constant_fqn}` requires gradient. "
f"but it's not properly registered as a parameter. "
f"torch.export will detach it and treat it as a constant tensor "
f"but please register it as parameter instead."
)
buffer = buffer.detach()
*prefix, field = constant_fqn.rsplit(".")
submod = torch.fx.graph_module._get_attr_via_attr_list(stateful_gm, prefix)
delattr(submod, field)
_assign_attr(buffer, stateful_gm, constant_fqn, attr_kind=_AttrKind.CONSTANT)
# Constants are not preserved well when we create a new GraphModule unlike param/buffers
for const_name, value in ep.constants.items():
if not torch.fx.graph_module._has_attr(stateful_gm, const_name):
if isinstance(value, torch.Tensor):
_assign_attr(
value,
stateful_gm,
const_name,
attr_kind=_AttrKind.CONSTANT,
)
# Fix up non-persistent buffers. torch.fx does not distinguish between
# persistent and non-persistent buffers, so we must restore that distinction
# here.
for buffer in ep.graph_signature.non_persistent_buffers:
_assign_attr(
plain_graph_module.get_buffer(buffer),
stateful_gm,
buffer,
attr_kind=_AttrKind.BUFFER,
persistent=False,
)
return stateful_gm
def _unlift_exported_program_lifted_states(ep: ExportedProgram) -> torch.nn.Module:
ep = _remove_effect_tokens(ep)
new_gm = torch.fx.GraphModule(ep.graph_module, copy.deepcopy(ep.graph))
_register_attrs_to_new_gm(new_gm, ep.graph_signature, ep.state_dict, ep.constants)
forward_arg_names = ep.graph_module.meta.get("forward_arg_names")
lifted_inputs: List[Optional[str]] = [
(
in_spec.target
if in_spec.kind
in (
InputKind.BUFFER,
InputKind.CONSTANT_TENSOR,
InputKind.PARAMETER,
InputKind.CUSTOM_OBJ,
)
else None
)
for in_spec in ep.graph_signature.input_specs
]
mutated_outputs: List[Optional[str]] = [
(
out_spec.target
if out_spec.kind
in (OutputKind.BUFFER_MUTATION, OutputKind.USER_INPUT_MUTATION)
else None
)
for out_spec in ep.graph_signature.output_specs
]
new_gm = _unlift(
new_gm,
lifted_inputs,
mutated_outputs,
ep.call_spec.in_spec,
ep.call_spec.out_spec,
ep.state_dict,
ep.constants,
forward_arg_names=forward_arg_names,
)
unlift_gm = _create_stateful_graph_module(new_gm, ep.range_constraints, ep)
unlift_gm.meta.update(ep.graph_module.meta)
return unlift_gm