Files
pytorch/torch/_inductor/codegen/cpp_utils.py
sanchitintel f951fcd1d7 Inductor-CPU WoQ int8 GEMM micro-kernel with scale epilogue (#131887)
## Summary

As part of #125683, this PR modifies existing CPU GEMM cpp template & micro-kernel template to enable int8 WoQ GEMM auto-tuning with AVX2, AVX512 & AMX ISAs (the latter is only available on Xeon 4th generation & beyond).

WoQ GEMM takes FP16/BF16 activations, int8 weights, and scale of the same dtype as activations.
The operation is equivalent to `torch.nn.functional.linear(x, w.to(x.dtype)) * scale`, which is essentially what the ATen op `torch.ops.aten._weight_int8pack_mm` currently does (except that weights are not cached by it). Weights will be considered constant & cached, so this implementation is suitable for inference, and not QAT. `scale` is supported as a `mul` epilogue.

Only BF16 activations have been supported in this PR because for FP16 & FP32, weight is dequantized during constant-folding pass of freezing, and then after auto-tuning, performance with a large `M` dimension may be better than either torch.ops.aten._weight_int8pack_mm, or the WoQ micro-kernel support introduced in this PR, which dequantizes `w` within the micro-kernel.
While even BF16 activations with a large `M` dimension may benefit from dequantizing `w` beforehand, for now, they would  use WoQ support in GEMM templates for auto-tuning, and then a subsequent PR would add logic for deciding whether or not to dequantize weights beforehand.

### Performance
#### AMX
Op-level speedup due to AMX micro-kernel (selected during auto-tuning) on 32 physical cores of Intel(R) Xeon(R) Platinum 8468H (of Xeon 4th generation series, codenamed Sapphire Rapids) vs. ATen kernel `torch.ops.aten._weight_int8pack_mm`. Intel OpenMP & tcmalloc were preloaded.

In a few cases with an odd `K`, the implementation being added in this PR may not perform as well as the ATen kernel, which is unrelated to this PR, though, since `test_linear_amx` also exhibits similar datapoints. In those cases, the AMX micro-kernel might be slower than AVX512 micro-kernel, so if such sets of shapes are used for auto-tuning, either the AVX512 micro-kernel implementation, or the ATen kernel would be chosen instead.

Benchmarked with unit-tests.

Tabular data at https://gist.github.com/sanchitintel/294811a86c8ff6b867c668ae2107c405?permalink_comment_id=5142442#gistcomment-5142442

The AVX512 micro-kernel was disabled to collect data for AMX micro-kernel.

#### AVX2/AVX512 micro-kernels

Tabular data at at https://gist.github.com/sanchitintel/52b5fa9c66f791be19e48e2aa6423dc4?permalink_comment_id=5142437#gistcomment-5142437

### Follow-up
1. int4 WoQ GEMM micro-kernel will also be added in a separate PR.
2. A subsequent PR would add logic for deciding whether or not to dequantize weights beforehand.

E2E perf measurement should be done with #131310.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131887
Approved by: https://github.com/jgong5, https://github.com/leslie-fang-intel, https://github.com/jansel
2024-08-14 03:14:45 +00:00

853 lines
29 KiB
Python

# mypy: allow-untyped-defs
import contextlib
import copy
import functools
import math
import sys
from collections import namedtuple
from typing import Any, Callable, Dict, List, Optional, Set, Tuple
from unittest.mock import patch
import sympy
import torch
from torch.utils._sympy.symbol import symbol_is_type, SymT
from torch.utils._sympy.value_ranges import ValueRanges
from .. import ir
from ..utils import IndentedBuffer, sympy_index_symbol_with_prefix, sympy_subs
from ..virtualized import ops, OpsValue, V
from .common import (
CSEVariable,
deduce_output_dtype_by_name,
ExprPrinter,
Kernel,
KernelArgs,
OptimizationContext,
)
DTYPE_TO_CPP = {
torch.float32: "float",
torch.float64: "double",
torch.float16: "half",
torch.int64: "int64_t",
torch.int32: "int32_t",
torch.int16: "int16_t",
torch.int8: "int8_t",
torch.uint64: "uint64_t",
torch.uint32: "uint32_t",
torch.uint16: "uint16_t",
torch.uint8: "uint8_t",
torch.bool: "bool",
torch.bfloat16: "bfloat16",
torch.complex64: "c10::complex<float>",
torch.float8_e4m3fn: "float8_e4m3fn",
torch.float8_e5m2: "float8_e5m2",
}
DTYPE_TO_ATEN = {
torch.float32: "at::kFloat",
torch.float64: "at::kDouble",
torch.float16: "at::kHalf",
torch.int64: "at::kLong",
torch.int32: "at::kInt",
torch.int16: "at::kShort",
torch.int8: "at::kChar",
torch.uint64: "at::kUInt64",
torch.uint32: "at::kUInt32",
torch.uint16: "at::kUInt16",
torch.uint8: "at::kByte",
torch.uint32: "at::kUInt32",
torch.uint64: "at::kUInt64",
torch.bool: "at::kBool",
torch.bfloat16: "at::kBFloat16",
torch.complex32: "at::kComplexHalf",
torch.complex64: "at::kComplexFloat",
torch.complex128: "at::kComplexDouble",
torch.float8_e4m3fn: "at::kFloat8_e4m3fn",
torch.float8_e5m2: "at::kFloat8_e5m2",
torch.float8_e4m3fnuz: "at::kFloat8_e4m3fnuz",
torch.float8_e5m2fnuz: "at::kFloat8_e5m2fnuz",
}
DEVICE_TO_ATEN = {
"cpu": "at::kCPU",
"cuda": "at::kCUDA",
}
LAYOUT_TO_ATEN = {
torch.strided: "at::kStrided",
torch._mkldnn: "at::kMkldnn", # type: ignore[attr-defined]
}
_IS_WINDOWS = sys.platform == "win32"
INDEX_TYPE = "int64_t" if _IS_WINDOWS else "long"
GemmBlocking = namedtuple("GemmBlocking", ["block_m", "block_n", "block_k"])
def get_promote_dtype(args):
return (
functools.reduce(
torch.promote_types, # type: ignore[arg-type]
[n.dtype for n in args if isinstance(n, CppCSEVariable)],
)
if all(n.dtype is not None for n in args if isinstance(n, CppCSEVariable))
else None # not enough info to calculate the promote dtype
)
def promote_args(new_args):
def promote_arg(arg, promote_type):
if (
isinstance(arg, CppCSEVariable)
and arg.dtype
and promote_type
and arg.dtype != promote_type
):
arg = ops.to_dtype(arg, promote_type)
arg = arg.value if isinstance(arg, OpsValue) else arg
arg.dtype = promote_type
return arg
promote_type = get_promote_dtype(new_args)
promote_fn = functools.partial(
promote_arg,
promote_type=promote_type,
)
if (
all(
new_arg.dtype is not None
for new_arg in new_args
if isinstance(new_arg, CppCSEVariable)
)
and promote_type
):
new_args = list(map(promote_fn, new_args))
return new_args
def get_opt_ctx(node: torch.fx.Node) -> OptimizationContext:
return node.meta.get(OptimizationContext.key, None)
def get_current_node_opt_ctx() -> OptimizationContext:
assert V.interpreter.current_node
return get_opt_ctx(V.interpreter.current_node)
def deduce_dtype_for_cpp_cse_variable(name, *args, **kwargs):
if (
output_dtype := deduce_output_dtype_by_name(
name,
*args,
**kwargs,
)
) is not None:
return output_dtype
elif name == "masked":
# <TODO> Leslie: perhaps we can also deduce the masked dtype by
# inputs' CppCseVariable like other. Let's check it if any
# unexpected failures.
assert (
hasattr(V.interpreter, "current_node")
and V.interpreter.current_node.target.startswith("masked_subblock")
and get_current_node_opt_ctx() is not None
)
return get_current_node_opt_ctx().dtype
else:
# deduce output dtype by inputs' dtype
assert all(
arg.dtype is not None for arg in args if isinstance(arg, CppCSEVariable)
)
return functools.reduce(
torch.promote_types, # type: ignore[arg-type]
[arg.dtype for arg in args if isinstance(arg, CppCSEVariable)],
)
class CppCSEVariable(CSEVariable):
def __init__(self, name, bounds: ValueRanges[Any]) -> None:
super().__init__(name, bounds)
self.is_vec = False
self.dtype: Optional[torch.dtype] = None
self.dependent_itervars: Set[sympy.Symbol] = set()
def __repr__(self) -> str:
return (
f"CppCSEVariable(name: {self.name}, bounds: {self.bounds}, is_vec: {self.is_vec}, dtype: {self.dtype}, "
f"dependent_itervars: {self.dependent_itervars})"
)
def update_on_args(self, name, args, kwargs):
if name == "load":
# args[2] is index
self._set_dependent_itervars(args[2])
else:
# propagate relevant itervars and is_vec from args
self.dependent_itervars.update(
*[
arg.dependent_itervars
for arg in args
if isinstance(arg, CppCSEVariable)
]
)
if name == "index_expr":
self._set_dependent_itervars(args[0])
if any(arg.is_vec for arg in args if isinstance(arg, CppCSEVariable)):
self.is_vec = True
# NOTE [Deduce dtype of CppCSEVariable at runtime]
self.dtype = deduce_dtype_for_cpp_cse_variable(name, *args, **kwargs)
assert self.dtype is not None
def _set_dependent_itervars(self, index: sympy.Expr):
"""
Set the relevant itervars for this variable based on the `index` expression.
This includes the itervars directly used in the `index` as well as relevant itervars
of other cse variables used in the `index`.
"""
for s in index.free_symbols:
if s in V.kernel.itervars:
self.dependent_itervars.add(s) # type: ignore[arg-type]
elif s.name in V.kernel.cse.varname_map: # type: ignore[attr-defined]
self.dependent_itervars.update(
V.kernel.cse.varname_map[s.name].dependent_itervars # type: ignore[attr-defined]
)
def depends_on(self, itervar: sympy.Symbol):
return itervar in self.dependent_itervars
class CppPrinter(ExprPrinter):
def _print_Integer(self, expr):
return f"{int(expr)}LL" if _IS_WINDOWS else f"{int(expr)}L"
def _print_Where(self, expr):
c = self.paren(self.doprint(expr.args[0]))
p = self.paren(self.doprint(expr.args[1]))
q = self.paren(self.doprint(expr.args[2]))
return f"{c} ? {p} : {q}"
def _print_ModularIndexing(self, expr):
x, div, mod = expr.args
x = self.paren(self.doprint(x))
if div != 1:
div = self.paren(self.doprint(div))
if expr.is_integer:
x = f"c10::div_floor_integer({x}, {div})"
else:
x = f"c10::div_floor_floating(static_cast<double>({x}), static_cast<double>({div}))"
mod = self.paren(self.doprint(mod))
return f"static_cast<{INDEX_TYPE}>({x}) % static_cast<{INDEX_TYPE}>({mod})"
def _print_FloorDiv(self, expr):
x, div = expr.args
x = self.paren(self.doprint(x))
div = self.paren(self.doprint(div))
if expr.is_integer:
return f"c10::div_floor_integer({x}, {div})"
return f"c10::div_floor_floating(static_cast<double>({x}), static_cast<double>({div}))"
def _print_floor(self, expr):
assert len(expr.args) == 1
r = f"std::floor({self._print(expr.args[0])})"
return f"static_cast<{INDEX_TYPE}>({r})" if expr.is_integer else r
def _print_FloorToInt(self, expr):
assert len(expr.args) == 1
r = f"std::floor({self._print(expr.args[0])})"
return f"static_cast<{INDEX_TYPE}>({r})" if expr.is_integer else r
def _print_TruncToInt(self, expr):
assert len(expr.args) == 1
r = f"std::trunc({self._print(expr.args[0])})"
return f"static_cast<{INDEX_TYPE}>({r})"
def _print_TruncToFloat(self, expr):
assert len(expr.args) == 1
return f"std::trunc({self._print(expr.args[0])})"
def _print_ToFloat(self, expr):
assert len(expr.args) == 1
return f"static_cast<double>({self._print(expr.args[0])})"
# TODO: This is wrong if one of the inputs is negative. This is hard to
# tickle though, as the inputs are typically positive (and if we can prove
# they are positive, we will have used Mod instead, for which this codegen
# is right).
def _print_PythonMod(self, expr):
return " % ".join(map(self.paren, map(self._print, expr.args)))
def _print_CMod(self, expr):
return " % ".join(map(self.paren, map(self._print, expr.args)))
def _print_IntTrueDiv(self, expr):
lhs, rhs = expr.args
# TODO: This is only accurate up to 2**53
return f"static_cast<double>({self._print(lhs)}) / static_cast<double>({self._print(rhs)})"
# TODO: PowByNatural: we need to implement our own int-int pow. Do NOT
# use std::pow, that operates on floats
def _print_PowByNatural(self, expr):
raise NotImplementedError(
f"_print_PowByNatural not implemented for {type(self)}"
)
def _print_FloatTrueDiv(self, expr):
lhs, rhs = expr.args
return f"{self.paren(self._print(lhs))} / {self.paren(self._print(rhs))}"
def _print_FloatPow(self, expr):
base, exp = expr.args
return f"std::pow({self._print(base)}, {self._print(exp)})"
def _print_Pow(self, expr):
# Uses float constants to perform FP div
base, exp = expr.args
base = self._print(base)
if exp == 0.5 or exp == -0.5:
return f"std::sqrt({base})" if exp == 0.5 else f"1.0/std::sqrt({base})"
if exp.is_integer:
exp = int(exp)
if exp > 0:
r = "*".join([self.paren(base)] * exp)
elif exp < 0:
r = "1.0/" + self.paren("*".join([self.paren(base)] * abs(exp)))
else: # exp == 0
r = "1.0"
return f"static_cast<{INDEX_TYPE}>({r})" if expr.is_integer else r
else:
# TODO: float vs double
return f"std::pow({base}, {float(exp)})"
def _print_Rational(self, expr):
# Uses float constants to perform FP div
if expr.q == 1:
r = f"{expr.p}"
else:
r = f"{expr.p}.0/{expr.q}.0"
return f"static_cast<{INDEX_TYPE}>({r})" if expr.is_integer else r
def _print_ceiling(self, expr):
assert len(expr.args) == 1
r = f"std::ceil({self._print(expr.args[0])})"
return f"static_cast<{INDEX_TYPE}>({r})" if expr.is_integer else r
def _print_CeilToInt(self, expr):
assert len(expr.args) == 1
r = f"std::ceil({self._print(expr.args[0])})"
return f"static_cast<{INDEX_TYPE}>({r})" if expr.is_integer else r
def _print_Min(self, expr):
args = [self._print(a) for a in expr.args]
if len(args) == 2:
return f"std::min({args[0]}, {args[1]})"
else:
# Initializer list overload
il = "{" + ", ".join(args) + "}"
return f"std::min({il})"
def _print_Max(self, expr):
args = [self._print(a) for a in expr.args]
if len(args) == 2:
return f"std::max({args[0]}, {args[1]})"
else:
# Initializer list overload
il = "{" + ", ".join(args) + "}"
return f"std::max({il})"
def _print_Abs(self, expr):
assert len(expr.args) == 1
return f"std::abs({self._print(expr.args[0])})"
def _print_OpaqueUnaryFn_cos(self, expr):
assert len(expr.args) == 1
return f"std::cos({self._print(expr.args[0])})"
def _print_OpaqueUnaryFn_cosh(self, expr):
assert len(expr.args) == 1
return f"std::cosh({self._print(expr.args[0])})"
def _print_OpaqueUnaryFn_acos(self, expr):
assert len(expr.args) == 1
return f"std::acos({self._print(expr.args[0])})"
def _print_OpaqueUnaryFn_sin(self, expr):
assert len(expr.args) == 1
return f"std::sin({self._print(expr.args[0])})"
def _print_OpaqueUnaryFn_sinh(self, expr):
assert len(expr.args) == 1
return f"std::sinh({self._print(expr.args[0])})"
def _print_OpaqueUnaryFn_asin(self, expr):
assert len(expr.args) == 1
return f"std::asin({self._print(expr.args[0])})"
def _print_OpaqueUnaryFn_tan(self, expr):
assert len(expr.args) == 1
return f"std::tan({self._print(expr.args[0])})"
def _print_OpaqueUnaryFn_tanh(self, expr):
assert len(expr.args) == 1
return f"std::tanh({self._print(expr.args[0])})"
def _print_OpaqueUnaryFn_atan(self, expr):
assert len(expr.args) == 1
return f"std::atan({self._print(expr.args[0])})"
def _print_OpaqueUnaryFn_sqrt(self, expr):
return f"std::sqrt({self._print(expr.args[0])})"
def _print_RoundToInt(self, expr):
assert len(expr.args) == 1
# TODO: dispatch to llrint depending on index type
return f"std::lrint({self._print(expr.args[0])})"
def _print_RoundDecimal(self, expr):
assert len(expr.args) == 2
number, ndigits = expr.args
if number.is_integer:
# ndigits < 0 should have been filtered by the sympy function
assert ndigits < 0
raise ValueError(
f"For integer inputs, only non-negative ndigits are currently supported, but got {ndigits}."
)
return f"static_cast<double>(std::nearbyint(1e{ndigits} * {self.paren(self._print(number))}) * 1e{-ndigits})"
def _print_BooleanTrue(self, expr):
return "true"
def _print_BooleanFalse(self, expr):
return "false"
# A function to print, useful for printing sympy symbols.
cexpr = CppPrinter().doprint
def cexpr_index(index):
return f"static_cast<{INDEX_TYPE}>({cexpr(index)})"
def value_to_cpp(value, cpp_type):
if value == float("-inf"):
return f"-std::numeric_limits<{cpp_type}>::infinity()"
elif value == float("inf"):
return f"std::numeric_limits<{cpp_type}>::infinity()"
elif isinstance(value, bool):
return f"static_cast<{cpp_type}>({str(value).lower()})"
elif math.isnan(value):
return f"std::numeric_limits<{cpp_type}>::quiet_NaN()"
else:
return f"static_cast<{cpp_type}>({repr(value)})"
def rewrite_index_for_function(
localize_buffer_handler: "LocalizeBufferHandler",
index: sympy.Expr,
global_buf_name: str,
):
# Local buffer at the inner dimensions
snode = V.graph.scheduler.name_to_buf[global_buf_name].defining_op
local_buf = localize_buffer_handler.global_to_local[global_buf_name]
scheduler_nodes = snode.get_nodes()
_, (group, reduction_group) = max(
scheduler_nodes, key=lambda x: int(x.is_reduction())
).group
call_ranges = tuple(group) + tuple(reduction_group)
indices_to_keep = [
f"x{len(call_ranges) - (idx + 1)}"
for idx in range(len(local_buf.get_layout().size))
]
sorted_symbols = sorted(index.free_symbols, key=lambda s: s.name) # type: ignore[attr-defined]
replacements = {}
for x in sorted_symbols:
if x.name.startswith("x") and x.name not in indices_to_keep: # type: ignore[attr-defined]
# Only keep index used by local buffer
replacements[x] = sympy.core.numbers.Zero()
index = sympy_subs(index, replacements) # type: ignore[arg-type]
return index
def rewrite_index_for_nodes(
localize_buffer_handler: "LocalizeBufferHandler",
index: sympy.Expr,
global_buf_name: str,
):
used_vars = {s for s in index.free_symbols if symbol_is_type(s, SymT.INDEX)}
index_vars = []
local_buf = localize_buffer_handler.global_to_local[global_buf_name]
for i in range(len(local_buf.get_size())):
var = sympy_index_symbol_with_prefix(SymT.INDEX, i)
index_vars.append(var if var in used_vars else 0)
index = local_buf.layout.make_indexer()(index_vars)
return index
class LocalizeBufferHandler(V.WrapperHandler): # type: ignore[name-defined]
def __init__(
self,
inner,
global_to_local: Dict[str, ir.Buffer],
rewrite_index: Callable[["LocalizeBufferHandler", sympy.Expr, str], sympy.Expr],
) -> None:
super().__init__(inner)
self.global_to_local = global_to_local
self.rewrite_index = rewrite_index
def localize(self, name: str, index: sympy.Expr):
if self.global_to_local and name in self.global_to_local:
assert self.rewrite_index is not None
index = self.rewrite_index(self, index, name)
name = self.global_to_local[name].get_name()
return name, index
def load(self, name: str, index: sympy.Expr):
return self._inner.load(*self.localize(name, index))
def store(self, name, index, value, mode=None):
local_buffer_name, local_buffer_index = self.localize(name, index)
res = self._inner.store(local_buffer_name, local_buffer_index, value, mode)
if (
self.global_to_local
and name in self.global_to_local
and isinstance(V.kernel, Kernel)
):
# Remove name of local buffer from Kernel.store_buffer_names
# local_buffer_name is added to Kernel.store_buffer_names in Kernel.CSEProxy.store.
V.kernel.store_buffer_names.discard(local_buffer_name)
return res
def store_reduction(self, name, index, value):
return self._inner.store_reduction(*self.localize(name, index), value)
class LocalBufferContext:
"""
This class creates a context that helps to generate code involving Inductor IR with
function local buffers. These buffers are constructed during the codegen process and
are used to store intermediate results such as local accumulators. We do not want to
add them to `V.graph` since they are not global and we do not want to add them as
function arguments either. So we patch the codegen processes under this scope to support
these buffers without exposure to the outside world.
"""
def __init__(self, kernel_args: KernelArgs) -> None:
self.kernel_args = kernel_args
self.exit_stack = contextlib.ExitStack()
# map local buffer name to local buffer
self.local_buffers: Dict[str, ir.Buffer] = {}
# map global buffer name to global buffer
self.global_buffers: Dict[str, ir.Buffer] = {}
# map global buffer name to local buffer
self.global_to_local: Dict[str, ir.Buffer] = {}
def __enter__(self):
self.exit_stack.__enter__()
original_get_dtype = V.graph.get_dtype
def get_dtype(name):
if name in self.local_buffers:
return self.local_buffers[name].get_dtype()
return original_get_dtype(name)
self.exit_stack.enter_context(patch.object(V.graph, "get_dtype", get_dtype))
original_input = self.kernel_args.input
def input(name):
if name in self.local_buffers:
return name
return original_input(name)
self.exit_stack.enter_context(patch.object(self.kernel_args, "input", input))
original_output = self.kernel_args.output
def output(name):
if name in self.local_buffers:
return name
return original_output(name)
self.exit_stack.enter_context(patch.object(self.kernel_args, "output", output))
# Set current LocalBufferContext into V
self.exit_stack.enter_context(V.set_local_buffer_context(self))
return self
def __exit__(self, exc_type, exc_val, exc_tb):
self.local_buffers.clear()
self.exit_stack.__exit__(exc_type, exc_val, exc_tb)
def add_local_buffer(
self, local_buffer: ir.Buffer, global_buffers: Optional[List[ir.Buffer]] = None
):
assert local_buffer.get_name() not in self.local_buffers
self.local_buffers[local_buffer.get_name()] = local_buffer
if global_buffers:
for global_buffer in global_buffers:
global_buffer_name = global_buffer.get_name()
assert (
global_buffer_name not in self.global_buffers
and global_buffer_name not in self.global_to_local
)
self.global_buffers[global_buffer_name] = global_buffer
self.global_to_local[global_buffer_name] = local_buffer
V.graph.removed_buffers.add(global_buffer_name)
def localize_function(
self,
fn: Callable[..., Any],
rewrite_index: Callable[
["LocalizeBufferHandler", sympy.Expr, str], sympy.Expr
] = rewrite_index_for_function,
):
def inner(node, *index_vars):
with V.set_ops_handler(
LocalizeBufferHandler(
V.get_ops_handler(),
global_to_local=self.global_to_local,
rewrite_index=rewrite_index,
)
):
return fn(node, *index_vars)
return inner
def localize_nodes(
self,
nodes: List[ir.IRNode],
rewrite_index: Callable[
["LocalizeBufferHandler", sympy.Expr, str], sympy.Expr
] = rewrite_index_for_nodes,
) -> List[ir.IRNode]:
"""
Given `local_buf` and `global_buf` registered in current `LocalBufferContext`
though the method of `add_local_buffer`, localizes the `global_buf` to `local_buf`
for the given `nodes` and returns a new list of IR nodes that work on `local_buf`
instead of `global_buf`, i.e., all the loads and stores are redirected to
`local_buf`. This helps the fused loops to work on smaller-sized local buffers
for better data locality.
The the data access of `local_buf` is assumed to be contiguous with the
same order as the `global_buf`.
"""
assert len(nodes) > 0
def wrap_inner_fn_for_node(node: ir.IRNode):
loops = node.data if isinstance(node, ir.ComputedBuffer) else node
assert isinstance(loops, ir.Loops)
new_loops = copy.copy(loops)
if isinstance(node, ir.ComputedBuffer):
new_node = ir.ComputedBuffer(
node.get_name(), node.get_layout(), new_loops
)
else:
new_node = new_loops # type: ignore[assignment]
new_loops.inner_fn = self.localize_function(
new_loops.inner_fn,
rewrite_index,
)
return new_node
return [wrap_inner_fn_for_node(node) for node in nodes]
def unify_mask_base_type(
buffer: IndentedBuffer,
vars: Tuple[CSEVariable, ...],
dtype=torch.float,
):
"""
Given list of cse variables,
Cast each to new mask base dtype and return casted cse variable.
"""
new_vars = (
V.kernel.cse.generate(
buffer,
f"{V.kernel._get_mask_cast(var, dtype)}",
)
for var in vars
)
return new_vars
def get_gemm_template_output_and_compute_dtype(input_dtype):
if input_dtype == torch.uint8:
return (torch.int32, torch.int32)
else:
return (torch.float32, torch.float32)
def create_epilogue_with_attr(input_buffer, attr, **kwargs):
input_loader = input_buffer.make_loader()
dtype = input_buffer.get_dtype()
if attr == "relu":
def inner_fn(index):
input = input_loader(index)
zero = ops.constant(0, dtype)
return ops.maximum(input, zero)
elif attr == "gelu":
assert "algorithm" in kwargs
if kwargs["algorithm"] == "none":
def inner_fn(index):
input = input_loader(index)
if dtype != torch.float:
input = ops.to_dtype(input, torch.float)
half = ops.constant(0.5, torch.float)
one = ops.constant(1.0, torch.float)
const = ops.constant(0.7071067811865476, torch.float)
result = input * half * (ops.erf(input * const) + one)
if dtype != torch.float:
result = ops.to_dtype(result, dtype)
return result
else:
assert kwargs["algorithm"] == "tanh"
def inner_fn(index):
input = input_loader(index)
if dtype != torch.float:
input = ops.to_dtype(input, torch.float)
half = ops.constant(0.5, torch.float)
one = ops.constant(1.0, torch.float)
const1 = ops.constant(0.7978845608028654, torch.float)
const2 = ops.constant(0.044715, torch.float)
result = (
half
* input
* (
one
+ ops.tanh(const1 * (input + const2 * input * input * input))
)
)
if dtype != torch.float:
result = ops.to_dtype(result, dtype)
return result
elif attr == "swish":
def inner_fn(index):
input = input_loader(index)
result = input * ops.sigmoid(input)
return result
elif attr == "sigmoid":
def inner_fn(index):
return ops.sigmoid(input_loader(index))
elif attr == "tanh":
def inner_fn(index):
return ops.tanh(input_loader(index))
elif attr == "hardswish" or attr == "hardsigmoid":
def hardsigmoid_float(input):
zero = ops.constant(0, torch.float)
six = ops.constant(6, torch.float)
three = ops.constant(3, torch.float)
one_over_six = ops.constant(0.16666666666666666, torch.float)
max = ops.maximum(input + three, zero)
min = ops.minimum(max, six)
return min * one_over_six
def inner_fn(index):
input = input_loader(index)
if dtype != torch.float:
input = ops.to_dtype(input, torch.float)
result = hardsigmoid_float(input)
if attr == "hardswish":
result = input * result
if dtype != torch.float:
result = ops.to_dtype(result, dtype)
return result
elif attr == "leaky_relu":
assert "scalars" in kwargs
assert len(kwargs["scalars"]) == 1
negative_slope = kwargs["scalars"][0]
def inner_fn(index):
input = input_loader(index)
if dtype != torch.float:
input = ops.to_dtype(input, torch.float)
zero = ops.constant(0, torch.float)
result = ops.where(
input > zero, input, input * ops.constant(negative_slope, torch.float)
)
if dtype != torch.float:
result = ops.to_dtype(result, dtype)
return result
elif attr == "hardtanh":
assert "scalars" in kwargs
assert len(kwargs["scalars"]) == 2
min_value = kwargs["scalars"][0]
max_value = kwargs["scalars"][1]
def inner_fn(index):
input = input_loader(index)
if dtype != torch.float:
input = ops.to_dtype(input, torch.float)
result = ops.minimum(
ops.maximum(input, ops.constant(min_value, torch.float)),
ops.constant(max_value, torch.float),
)
if dtype != torch.float:
result = ops.to_dtype(result, dtype)
return result
elif attr in ["add", "sub", "mul"]:
assert "other" in kwargs
other = kwargs["other"]
num_input_dims = len(input_buffer.get_size())
num_other_dims = len(other.get_size())
dims_diff = num_input_dims - num_other_dims
other_loader = other.make_loader()
def inner_fn(index):
op = getattr(ops, attr)
if dims_diff != 0:
return op(input_loader(index), other_loader(index[dims_diff:]))
else:
return op(input_loader(index), other_loader(index))
elif attr == "bias_add":
assert "other" in kwargs
assert "beta" in kwargs
assert "dtype" in kwargs
beta = kwargs["beta"]
other = kwargs["other"]
dtype = kwargs["dtype"]
bias_loader = other.make_loader()
def inner_fn(index):
bias = bias_loader(index)
input = input_loader(index)
if beta != 1:
result = ops.constant(beta, torch.float) * bias + input
else:
result = bias + input
return result
else:
raise ValueError(f"Unsupported epilogue attribute: {attr}")
return ir.Pointwise(
device=input_buffer.get_device(),
dtype=dtype,
inner_fn=inner_fn,
ranges=input_buffer.get_size(),
)