mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Pull Request resolved: https://github.com/pytorch/pytorch/pull/136964 Approved by: https://github.com/justinchuby, https://github.com/albanD
146 lines
4.7 KiB
Python
146 lines
4.7 KiB
Python
# Owner(s): ["oncall: jit"]
|
|
|
|
import os
|
|
import unittest
|
|
|
|
import torch
|
|
import torch._lazy
|
|
import torch._lazy.config
|
|
import torch._lazy.ir_cache
|
|
import torch._lazy.metrics as metrics
|
|
import torch._lazy.ts_backend
|
|
from torch.testing._internal.common_utils import IS_WINDOWS, run_tests, TestCase
|
|
|
|
|
|
torch._lazy.ts_backend.init()
|
|
torch._lazy.config.set_reuse_ir(True)
|
|
|
|
|
|
def get_test_device():
|
|
return "cuda" if "LTC_TS_CUDA" in os.environ else "cpu"
|
|
|
|
|
|
@unittest.skipIf(IS_WINDOWS, "To be fixed")
|
|
class TestLazyReuseIr(TestCase):
|
|
def testAdd(self):
|
|
device = get_test_device()
|
|
x = torch.randn(2, 3, 4, device=device)
|
|
y = torch.randn(2, 3, 4, device=device)
|
|
z = torch.zeros(2, 3, 4, device=device)
|
|
|
|
device = "lazy"
|
|
x_lazy = x.detach().clone().to(device=device)
|
|
y_lazy = y.detach().clone().to(device=device)
|
|
z_lazy = z.detach().clone().to(device=device)
|
|
|
|
for _ in range(10):
|
|
z += x + y
|
|
|
|
for _ in range(10):
|
|
z_lazy += x_lazy + y_lazy
|
|
torch._lazy.mark_step()
|
|
|
|
torch.testing.assert_close(z.cpu(), z_lazy.cpu())
|
|
assert metrics.counter_value("IrNodeReused_torch::lazy::AddTensor") >= 14
|
|
metrics.reset()
|
|
torch._lazy.ir_cache.reset()
|
|
|
|
def testAddSub(self):
|
|
device = get_test_device()
|
|
x = torch.randn(2, 3, 4, device=device)
|
|
y = torch.randn(2, 3, 4, device=device)
|
|
z = torch.zeros(2, 3, 4, device=device)
|
|
|
|
device = "lazy"
|
|
x_lazy = x.detach().clone().to(device=device)
|
|
y_lazy = y.detach().clone().to(device=device)
|
|
z_lazy = z.detach().clone().to(device=device)
|
|
|
|
for i in range(10):
|
|
if i < 5:
|
|
z += x + y
|
|
else:
|
|
z += x - y
|
|
|
|
for i in range(10):
|
|
if i < 5:
|
|
z_lazy += x_lazy + y_lazy
|
|
else:
|
|
z_lazy += x_lazy - y_lazy
|
|
torch._lazy.mark_step()
|
|
|
|
torch.testing.assert_close(z.cpu(), z_lazy.cpu())
|
|
assert metrics.counter_value("IrNodeReused_torch::lazy::AddTensor") >= 8
|
|
metrics.reset()
|
|
torch._lazy.ir_cache.reset()
|
|
|
|
def testAddSubFallback(self):
|
|
torch._lazy.config.set_force_fallback("aten::sub")
|
|
device = get_test_device()
|
|
x = torch.randn(2, 3, 4, device=device)
|
|
y = torch.randn(2, 3, 4, device=device)
|
|
z = torch.zeros(2, 3, 4, device=device)
|
|
|
|
device = "lazy"
|
|
x_lazy = x.detach().clone().to(device=device)
|
|
y_lazy = y.detach().clone().to(device=device)
|
|
z_lazy = z.detach().clone().to(device=device)
|
|
|
|
for i in range(10):
|
|
if i < 5:
|
|
z += x + y
|
|
else:
|
|
z += x - y
|
|
|
|
for i in range(10):
|
|
if i < 5:
|
|
z_lazy += x_lazy + y_lazy
|
|
else:
|
|
z_lazy += x_lazy - y_lazy
|
|
torch._lazy.mark_step()
|
|
|
|
torch.testing.assert_close(z.cpu(), z_lazy.cpu())
|
|
assert metrics.counter_value("IrNodeReused_torch::lazy::AddTensor") >= 8
|
|
metrics.reset()
|
|
torch._lazy.ir_cache.reset()
|
|
torch._lazy.config.set_force_fallback("")
|
|
|
|
def testBatchNorm(self):
|
|
device = get_test_device()
|
|
x = torch.randn(16, 3, 224, 224, device=device)
|
|
weight = torch.randn(3, device=device)
|
|
bias = torch.randn(3, device=device)
|
|
|
|
for _ in range(10):
|
|
# BatchNorm2d does extra checks on dimensions which SymInts don't support yet
|
|
# so we call `torch.ops.aten.native_batch_norm` to bypass the checks.
|
|
z, _, _ = torch.ops.aten.native_batch_norm(
|
|
x, weight, bias, None, None, True, 0.1, 1e-5
|
|
)
|
|
z_legit, _, _ = torch.ops.aten._native_batch_norm_legit(
|
|
x, weight, bias, True, 0.1, 1e-5
|
|
)
|
|
|
|
device = "lazy"
|
|
x_lazy = x.detach().clone().to(device=device)
|
|
weight_lazy = weight.detach().clone().to(device=device)
|
|
bias_lazy = bias.detach().clone().to(device=device)
|
|
for _ in range(10):
|
|
z_lazy, _, _ = torch.ops.aten.native_batch_norm(
|
|
x_lazy, weight_lazy, bias_lazy, None, None, True, 0.1, 1e-5
|
|
)
|
|
z_legit_lazy, _, _ = torch.ops.aten._native_batch_norm_legit(
|
|
x_lazy, weight_lazy, bias_lazy, True, 0.1, 1e-5
|
|
)
|
|
torch._lazy.mark_step()
|
|
|
|
torch.testing.assert_close(z.cpu(), z_lazy.cpu())
|
|
torch.testing.assert_close(z_legit.cpu(), z_legit_lazy.cpu())
|
|
assert metrics.counter_value("IrNodeReused_torch::lazy::NativeBatchNorm") >= 7
|
|
metrics.reset()
|
|
torch._lazy.ir_cache.reset()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
run_tests()
|