Files
pytorch/test/jit/test_module_apis.py
Anthony Barbier bf7e290854 Add __main__ guards to jit tests (#154725)
This PR is part of a series attempting to re-submit https://github.com/pytorch/pytorch/pull/134592 as smaller PRs.

In jit tests:

- Add and use a common raise_on_run_directly method for when a user runs a test file directly which should not be run this way. Print the file which the user should have run.
- Raise a RuntimeError on tests which have been disabled (not run)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/154725
Approved by: https://github.com/clee2000
2025-06-16 10:28:45 +00:00

142 lines
4.9 KiB
Python

# Owner(s): ["oncall: jit"]
import os
import sys
from typing import Any, Dict, List
import torch
from torch.testing._internal.common_utils import raise_on_run_directly
from torch.testing._internal.jit_utils import JitTestCase
# Make the helper files in test/ importable
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
sys.path.append(pytorch_test_dir)
class TestModuleAPIs(JitTestCase):
def test_default_state_dict_methods(self):
"""Tests that default state dict methods are automatically available"""
class DefaultStateDictModule(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv = torch.nn.Conv2d(6, 16, 5)
self.fc = torch.nn.Linear(16 * 5 * 5, 120)
def forward(self, x):
x = self.conv(x)
x = self.fc(x)
return x
m1 = torch.jit.script(DefaultStateDictModule())
m2 = torch.jit.script(DefaultStateDictModule())
state_dict = m1.state_dict()
m2.load_state_dict(state_dict)
def test_customized_state_dict_methods(self):
"""Tests that customized state dict methods are in effect"""
class CustomStateDictModule(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv = torch.nn.Conv2d(6, 16, 5)
self.fc = torch.nn.Linear(16 * 5 * 5, 120)
self.customized_save_state_dict_called: bool = False
self.customized_load_state_dict_called: bool = False
def forward(self, x):
x = self.conv(x)
x = self.fc(x)
return x
@torch.jit.export
def _save_to_state_dict(
self, destination: Dict[str, torch.Tensor], prefix: str, keep_vars: bool
):
self.customized_save_state_dict_called = True
return {"dummy": torch.ones(1)}
@torch.jit.export
def _load_from_state_dict(
self,
state_dict: Dict[str, torch.Tensor],
prefix: str,
local_metadata: Any,
strict: bool,
missing_keys: List[str],
unexpected_keys: List[str],
error_msgs: List[str],
):
self.customized_load_state_dict_called = True
return
m1 = torch.jit.script(CustomStateDictModule())
self.assertFalse(m1.customized_save_state_dict_called)
state_dict = m1.state_dict()
self.assertTrue(m1.customized_save_state_dict_called)
m2 = torch.jit.script(CustomStateDictModule())
self.assertFalse(m2.customized_load_state_dict_called)
m2.load_state_dict(state_dict)
self.assertTrue(m2.customized_load_state_dict_called)
def test_submodule_customized_state_dict_methods(self):
"""Tests that customized state dict methods on submodules are in effect"""
class CustomStateDictModule(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv = torch.nn.Conv2d(6, 16, 5)
self.fc = torch.nn.Linear(16 * 5 * 5, 120)
self.customized_save_state_dict_called: bool = False
self.customized_load_state_dict_called: bool = False
def forward(self, x):
x = self.conv(x)
x = self.fc(x)
return x
@torch.jit.export
def _save_to_state_dict(
self, destination: Dict[str, torch.Tensor], prefix: str, keep_vars: bool
):
self.customized_save_state_dict_called = True
return {"dummy": torch.ones(1)}
@torch.jit.export
def _load_from_state_dict(
self,
state_dict: Dict[str, torch.Tensor],
prefix: str,
local_metadata: Any,
strict: bool,
missing_keys: List[str],
unexpected_keys: List[str],
error_msgs: List[str],
):
self.customized_load_state_dict_called = True
return
class ParentModule(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.sub = CustomStateDictModule()
def forward(self, x):
return self.sub(x)
m1 = torch.jit.script(ParentModule())
self.assertFalse(m1.sub.customized_save_state_dict_called)
state_dict = m1.state_dict()
self.assertTrue(m1.sub.customized_save_state_dict_called)
m2 = torch.jit.script(ParentModule())
self.assertFalse(m2.sub.customized_load_state_dict_called)
m2.load_state_dict(state_dict)
self.assertTrue(m2.sub.customized_load_state_dict_called)
if __name__ == "__main__":
raise_on_run_directly("test/test_jit.py")