mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
This PR is part of a series attempting to re-submit https://github.com/pytorch/pytorch/pull/134592 as smaller PRs. In jit tests: - Add and use a common raise_on_run_directly method for when a user runs a test file directly which should not be run this way. Print the file which the user should have run. - Raise a RuntimeError on tests which have been disabled (not run) Pull Request resolved: https://github.com/pytorch/pytorch/pull/154725 Approved by: https://github.com/clee2000
354 lines
11 KiB
Python
354 lines
11 KiB
Python
# Owner(s): ["oncall: jit"]
|
|
|
|
import os
|
|
import sys
|
|
import warnings
|
|
from typing import Any, Dict, List, Optional, Tuple
|
|
|
|
import torch
|
|
|
|
|
|
# Make the helper files in test/ importable
|
|
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
|
|
sys.path.append(pytorch_test_dir)
|
|
from torch.testing._internal.common_utils import raise_on_run_directly
|
|
from torch.testing._internal.jit_utils import JitTestCase
|
|
|
|
|
|
# Tests for torch.jit.isinstance
|
|
class TestIsinstance(JitTestCase):
|
|
def test_int(self):
|
|
def int_test(x: Any):
|
|
assert torch.jit.isinstance(x, int)
|
|
assert not torch.jit.isinstance(x, float)
|
|
|
|
x = 1
|
|
self.checkScript(int_test, (x,))
|
|
|
|
def test_float(self):
|
|
def float_test(x: Any):
|
|
assert torch.jit.isinstance(x, float)
|
|
assert not torch.jit.isinstance(x, int)
|
|
|
|
x = 1.0
|
|
self.checkScript(float_test, (x,))
|
|
|
|
def test_bool(self):
|
|
def bool_test(x: Any):
|
|
assert torch.jit.isinstance(x, bool)
|
|
assert not torch.jit.isinstance(x, float)
|
|
|
|
x = False
|
|
self.checkScript(bool_test, (x,))
|
|
|
|
def test_list(self):
|
|
def list_str_test(x: Any):
|
|
assert torch.jit.isinstance(x, List[str])
|
|
assert not torch.jit.isinstance(x, List[int])
|
|
assert not torch.jit.isinstance(x, Tuple[int])
|
|
|
|
x = ["1", "2", "3"]
|
|
self.checkScript(list_str_test, (x,))
|
|
|
|
def test_list_tensor(self):
|
|
def list_tensor_test(x: Any):
|
|
assert torch.jit.isinstance(x, List[torch.Tensor])
|
|
assert not torch.jit.isinstance(x, Tuple[int])
|
|
|
|
x = [torch.tensor([1]), torch.tensor([2]), torch.tensor([3])]
|
|
self.checkScript(list_tensor_test, (x,))
|
|
|
|
def test_dict(self):
|
|
def dict_str_int_test(x: Any):
|
|
assert torch.jit.isinstance(x, Dict[str, int])
|
|
assert not torch.jit.isinstance(x, Dict[int, str])
|
|
assert not torch.jit.isinstance(x, Dict[str, str])
|
|
|
|
x = {"a": 1, "b": 2}
|
|
self.checkScript(dict_str_int_test, (x,))
|
|
|
|
def test_dict_tensor(self):
|
|
def dict_int_tensor_test(x: Any):
|
|
assert torch.jit.isinstance(x, Dict[int, torch.Tensor])
|
|
|
|
x = {2: torch.tensor([2])}
|
|
self.checkScript(dict_int_tensor_test, (x,))
|
|
|
|
def test_tuple(self):
|
|
def tuple_test(x: Any):
|
|
assert torch.jit.isinstance(x, Tuple[str, int, str])
|
|
assert not torch.jit.isinstance(x, Tuple[int, str, str])
|
|
assert not torch.jit.isinstance(x, Tuple[str])
|
|
|
|
x = ("a", 1, "b")
|
|
self.checkScript(tuple_test, (x,))
|
|
|
|
def test_tuple_tensor(self):
|
|
def tuple_tensor_test(x: Any):
|
|
assert torch.jit.isinstance(x, Tuple[torch.Tensor, torch.Tensor])
|
|
|
|
x = (torch.tensor([1]), torch.tensor([[2], [3]]))
|
|
self.checkScript(tuple_tensor_test, (x,))
|
|
|
|
def test_optional(self):
|
|
def optional_test(x: Any):
|
|
assert torch.jit.isinstance(x, Optional[torch.Tensor])
|
|
assert not torch.jit.isinstance(x, Optional[str])
|
|
|
|
x = torch.ones(3, 3)
|
|
self.checkScript(optional_test, (x,))
|
|
|
|
def test_optional_none(self):
|
|
def optional_test_none(x: Any):
|
|
assert torch.jit.isinstance(x, Optional[torch.Tensor])
|
|
# assert torch.jit.isinstance(x, Optional[str])
|
|
# TODO: above line in eager will evaluate to True while in
|
|
# the TS interpreter will evaluate to False as the
|
|
# first torch.jit.isinstance refines the 'None' type
|
|
|
|
x = None
|
|
self.checkScript(optional_test_none, (x,))
|
|
|
|
def test_list_nested(self):
|
|
def list_nested(x: Any):
|
|
assert torch.jit.isinstance(x, List[Dict[str, int]])
|
|
assert not torch.jit.isinstance(x, List[List[str]])
|
|
|
|
x = [{"a": 1, "b": 2}, {"aa": 11, "bb": 22}]
|
|
self.checkScript(list_nested, (x,))
|
|
|
|
def test_dict_nested(self):
|
|
def dict_nested(x: Any):
|
|
assert torch.jit.isinstance(x, Dict[str, Tuple[str, str, str]])
|
|
assert not torch.jit.isinstance(x, Dict[str, Tuple[int, int, int]])
|
|
|
|
x = {"a": ("aa", "aa", "aa"), "b": ("bb", "bb", "bb")}
|
|
self.checkScript(dict_nested, (x,))
|
|
|
|
def test_tuple_nested(self):
|
|
def tuple_nested(x: Any):
|
|
assert torch.jit.isinstance(
|
|
x, Tuple[Dict[str, Tuple[str, str, str]], List[bool], Optional[str]]
|
|
)
|
|
assert not torch.jit.isinstance(x, Dict[str, Tuple[int, int, int]])
|
|
assert not torch.jit.isinstance(x, Tuple[str])
|
|
assert not torch.jit.isinstance(x, Tuple[List[bool], List[str], List[int]])
|
|
|
|
x = (
|
|
{"a": ("aa", "aa", "aa"), "b": ("bb", "bb", "bb")},
|
|
[True, False, True],
|
|
None,
|
|
)
|
|
self.checkScript(tuple_nested, (x,))
|
|
|
|
def test_optional_nested(self):
|
|
def optional_nested(x: Any):
|
|
assert torch.jit.isinstance(x, Optional[List[str]])
|
|
|
|
x = ["a", "b", "c"]
|
|
self.checkScript(optional_nested, (x,))
|
|
|
|
def test_list_tensor_type_true(self):
|
|
def list_tensor_type_true(x: Any):
|
|
assert torch.jit.isinstance(x, List[torch.Tensor])
|
|
|
|
x = [torch.rand(3, 3), torch.rand(4, 3)]
|
|
self.checkScript(list_tensor_type_true, (x,))
|
|
|
|
def test_tensor_type_false(self):
|
|
def list_tensor_type_false(x: Any):
|
|
assert not torch.jit.isinstance(x, List[torch.Tensor])
|
|
|
|
x = [1, 2, 3]
|
|
self.checkScript(list_tensor_type_false, (x,))
|
|
|
|
def test_in_if(self):
|
|
def list_in_if(x: Any):
|
|
if torch.jit.isinstance(x, List[int]):
|
|
assert True
|
|
if torch.jit.isinstance(x, List[str]):
|
|
assert not True
|
|
|
|
x = [1, 2, 3]
|
|
self.checkScript(list_in_if, (x,))
|
|
|
|
def test_if_else(self):
|
|
def list_in_if_else(x: Any):
|
|
if torch.jit.isinstance(x, Tuple[str, str, str]):
|
|
assert True
|
|
else:
|
|
assert not True
|
|
|
|
x = ("a", "b", "c")
|
|
self.checkScript(list_in_if_else, (x,))
|
|
|
|
def test_in_while_loop(self):
|
|
def list_in_while_loop(x: Any):
|
|
count = 0
|
|
while torch.jit.isinstance(x, List[Dict[str, int]]) and count <= 0:
|
|
count = count + 1
|
|
assert count == 1
|
|
|
|
x = [{"a": 1, "b": 2}, {"aa": 11, "bb": 22}]
|
|
self.checkScript(list_in_while_loop, (x,))
|
|
|
|
def test_type_refinement(self):
|
|
def type_refinement(obj: Any):
|
|
hit = False
|
|
if torch.jit.isinstance(obj, List[torch.Tensor]):
|
|
hit = not hit
|
|
for el in obj:
|
|
# perform some tensor operation
|
|
y = el.clamp(0, 0.5) # noqa: F841
|
|
if torch.jit.isinstance(obj, Dict[str, str]):
|
|
hit = not hit
|
|
str_cat = ""
|
|
for val in obj.values():
|
|
str_cat = str_cat + val
|
|
assert "111222" == str_cat
|
|
assert hit
|
|
|
|
x = [torch.rand(3, 3), torch.rand(4, 3)]
|
|
self.checkScript(type_refinement, (x,))
|
|
x = {"1": "111", "2": "222"}
|
|
self.checkScript(type_refinement, (x,))
|
|
|
|
def test_list_no_contained_type(self):
|
|
def list_no_contained_type(x: Any):
|
|
assert torch.jit.isinstance(x, List)
|
|
|
|
x = ["1", "2", "3"]
|
|
|
|
err_msg = (
|
|
"Attempted to use List without a contained type. "
|
|
r"Please add a contained type, e.g. List\[int\]"
|
|
)
|
|
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
err_msg,
|
|
):
|
|
torch.jit.script(list_no_contained_type)
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
err_msg,
|
|
):
|
|
list_no_contained_type(x)
|
|
|
|
def test_tuple_no_contained_type(self):
|
|
def tuple_no_contained_type(x: Any):
|
|
assert torch.jit.isinstance(x, Tuple)
|
|
|
|
x = ("1", "2", "3")
|
|
|
|
err_msg = (
|
|
"Attempted to use Tuple without a contained type. "
|
|
r"Please add a contained type, e.g. Tuple\[int\]"
|
|
)
|
|
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
err_msg,
|
|
):
|
|
torch.jit.script(tuple_no_contained_type)
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
err_msg,
|
|
):
|
|
tuple_no_contained_type(x)
|
|
|
|
def test_optional_no_contained_type(self):
|
|
def optional_no_contained_type(x: Any):
|
|
assert torch.jit.isinstance(x, Optional)
|
|
|
|
x = ("1", "2", "3")
|
|
|
|
err_msg = (
|
|
"Attempted to use Optional without a contained type. "
|
|
r"Please add a contained type, e.g. Optional\[int\]"
|
|
)
|
|
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
err_msg,
|
|
):
|
|
torch.jit.script(optional_no_contained_type)
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
err_msg,
|
|
):
|
|
optional_no_contained_type(x)
|
|
|
|
def test_dict_no_contained_type(self):
|
|
def dict_no_contained_type(x: Any):
|
|
assert torch.jit.isinstance(x, Dict)
|
|
|
|
x = {"a": "aa"}
|
|
|
|
err_msg = (
|
|
"Attempted to use Dict without contained types. "
|
|
r"Please add contained type, e.g. Dict\[int, int\]"
|
|
)
|
|
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
err_msg,
|
|
):
|
|
torch.jit.script(dict_no_contained_type)
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
err_msg,
|
|
):
|
|
dict_no_contained_type(x)
|
|
|
|
def test_tuple_rhs(self):
|
|
def fn(x: Any):
|
|
assert torch.jit.isinstance(x, (int, List[str]))
|
|
assert not torch.jit.isinstance(x, (List[float], Tuple[int, str]))
|
|
assert not torch.jit.isinstance(x, (List[float], str))
|
|
|
|
self.checkScript(fn, (2,))
|
|
self.checkScript(fn, (["foo", "bar", "baz"],))
|
|
|
|
def test_nontuple_container_rhs_throws_in_eager(self):
|
|
def fn1(x: Any):
|
|
assert torch.jit.isinstance(x, [int, List[str]])
|
|
|
|
def fn2(x: Any):
|
|
assert not torch.jit.isinstance(x, {List[str], Tuple[int, str]})
|
|
|
|
err_highlight = "must be a type or a tuple of types"
|
|
|
|
with self.assertRaisesRegex(RuntimeError, err_highlight):
|
|
fn1(2)
|
|
|
|
with self.assertRaisesRegex(RuntimeError, err_highlight):
|
|
fn2(2)
|
|
|
|
def test_empty_container_throws_warning_in_eager(self):
|
|
def fn(x: Any):
|
|
torch.jit.isinstance(x, List[int])
|
|
|
|
with warnings.catch_warnings(record=True) as w:
|
|
x: List[int] = []
|
|
fn(x)
|
|
self.assertEqual(len(w), 1)
|
|
|
|
with warnings.catch_warnings(record=True) as w:
|
|
x: int = 2
|
|
fn(x)
|
|
self.assertEqual(len(w), 0)
|
|
|
|
def test_empty_container_special_cases(self):
|
|
# Should not throw "Boolean value of Tensor with no values is
|
|
# ambiguous" error
|
|
torch._jit_internal.check_empty_containers(torch.Tensor([]))
|
|
|
|
# Should not throw "Boolean value of Tensor with more than
|
|
# one value is ambiguous" error
|
|
torch._jit_internal.check_empty_containers(torch.rand(2, 3))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
raise_on_run_directly("test/test_jit.py")
|