mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157637 Approved by: https://github.com/yewentao256, https://github.com/albanD ghstack dependencies: #156605
235 lines
7.5 KiB
Python
235 lines
7.5 KiB
Python
# Owner(s): ["module: fx"]
|
|
|
|
import torch
|
|
import torch.fx as fx
|
|
from torch.fx.passes.infra.pass_base import PassBase, PassResult
|
|
from torch.fx.passes.infra.pass_manager import (
|
|
_topological_sort_passes,
|
|
pass_result_wrapper,
|
|
PassManager,
|
|
this_before_that_pass_constraint,
|
|
)
|
|
from torch.testing._internal.common_utils import raise_on_run_directly, TestCase
|
|
|
|
|
|
# Pass that uses PassBase and returns a PassResult (best scenario)
|
|
class ReplaceAddWithMulPass(PassBase):
|
|
def call(self, gm) -> PassResult:
|
|
modified = False
|
|
for node in gm.graph.nodes:
|
|
if node.op == "call_function" and node.target == torch.add:
|
|
node.target = torch.mul
|
|
modified = True
|
|
return PassResult(gm, modified)
|
|
|
|
|
|
# Pass that is a callable and returns a PassResult
|
|
def replace_mul_with_div_pass(gm) -> PassResult:
|
|
modified = False
|
|
for node in gm.graph.nodes:
|
|
if node.op == "call_function" and node.target == torch.mul:
|
|
node.target = torch.div
|
|
modified = True
|
|
return PassResult(gm, modified)
|
|
|
|
|
|
# Pass that is a PassBase and does not return a PassResult
|
|
# Need to wrap with pass_result_wrapper or else it will fail
|
|
class ReplaceDivWithSubPass(PassBase):
|
|
def call(self, gm) -> PassResult:
|
|
for node in gm.graph.nodes:
|
|
if node.op == "call_function" and node.target == torch.div:
|
|
node.target = torch.sub
|
|
|
|
|
|
# Pass that is a callable and does not return a PassResult
|
|
# Need to wrap with pass_result_wrapper or else it will fail
|
|
def replace_sub_with_add_pass(gm) -> PassResult:
|
|
for node in gm.graph.nodes:
|
|
if node.op == "call_function" and node.target == torch.sub:
|
|
node.target = torch.add
|
|
|
|
|
|
class AddModule(torch.nn.Module):
|
|
def forward(self, x):
|
|
y = torch.add(x, x)
|
|
z = torch.add(y, x)
|
|
return z
|
|
|
|
|
|
class TestPassManager(TestCase):
|
|
def test_pass_manager(self):
|
|
"""
|
|
Tests that the pass manager runs the passes correctly.
|
|
"""
|
|
|
|
m = AddModule()
|
|
traced_m = torch.fx.symbolic_trace(m)
|
|
pm = PassManager(
|
|
passes=[
|
|
ReplaceAddWithMulPass(),
|
|
replace_mul_with_div_pass,
|
|
pass_result_wrapper(ReplaceDivWithSubPass()),
|
|
pass_result_wrapper(replace_sub_with_add_pass),
|
|
],
|
|
steps=5,
|
|
)
|
|
|
|
pm.validate_constraints()
|
|
self.assertEqual(len(pm.passes), 4)
|
|
|
|
res = pm(traced_m)
|
|
modified_m = res.graph_module
|
|
assert isinstance(modified_m, fx.GraphModule)
|
|
|
|
# Check that all call_function nodes are divs
|
|
for node in modified_m.graph.nodes:
|
|
if node.op == "call_function":
|
|
self.assertEqual(node.target, torch.add)
|
|
|
|
def test_this_before_that_pass_constraint(self):
|
|
"""
|
|
Tests the construction of constraints
|
|
"""
|
|
passes = [lambda x: 2 * x for _ in range(10)]
|
|
pm = PassManager(passes)
|
|
|
|
# add unfulfillable constraint
|
|
pm.add_constraint(this_before_that_pass_constraint(passes[-1], passes[0]))
|
|
|
|
with self.assertRaises(RuntimeError):
|
|
pm.validate_constraints()
|
|
|
|
def test_pass_manager_checks(self):
|
|
"""
|
|
Tests that users can add in check functions correctly
|
|
"""
|
|
m = AddModule()
|
|
traced_m = fx.symbolic_trace(m)
|
|
pm = PassManager(passes=[ReplaceAddWithMulPass(), replace_mul_with_div_pass])
|
|
|
|
def check_div_target(graph_module):
|
|
for node in graph_module.graph.nodes:
|
|
if node.op == "call_function" and node.target != torch.div:
|
|
raise ValueError("Target should be div!")
|
|
|
|
pm.add_checks(check_div_target)
|
|
|
|
with self.assertRaises(ValueError):
|
|
pm(traced_m)
|
|
|
|
def test_pass_manager_bad_checks(self):
|
|
"""
|
|
Checks that we error if we pass in a check function with the wrong parameters
|
|
"""
|
|
|
|
def check_bad_args(graph_module, i):
|
|
pass
|
|
|
|
pm = PassManager()
|
|
self.assertRaises(TypeError, pm.add_checks, check_bad_args)
|
|
|
|
def test_topological_sort(self):
|
|
"""
|
|
Tests that passes are correctly ordered based on constraints.
|
|
"""
|
|
|
|
def pass0(x):
|
|
return x
|
|
|
|
def pass1(x):
|
|
return x + 1
|
|
|
|
def pass2(x):
|
|
return x + 2
|
|
|
|
def pass3(x):
|
|
return x + 3
|
|
|
|
def pass4(x):
|
|
return x + 4
|
|
|
|
def pass5(x):
|
|
return x + 5
|
|
|
|
# Not passing any constraints should keep the original order
|
|
passes = [pass0, pass1, pass2, pass3, pass4, pass5]
|
|
sorted = _topological_sort_passes(passes, [])
|
|
self.assertEqual(sorted, passes)
|
|
|
|
# Graph that we are constructing:
|
|
# 5 ----> 0 <---- 4
|
|
# | |
|
|
# +-> 2 -> 3 -> 1 <-+
|
|
# Which has a possible topological order of: [4, 5, 0, 2, 3, 1]
|
|
passes = [pass0, pass1, pass2, pass3, pass4, pass5]
|
|
constraints = [
|
|
this_before_that_pass_constraint(pass5, pass0),
|
|
this_before_that_pass_constraint(pass5, pass2),
|
|
this_before_that_pass_constraint(pass4, pass0),
|
|
this_before_that_pass_constraint(pass4, pass1),
|
|
this_before_that_pass_constraint(pass2, pass3),
|
|
this_before_that_pass_constraint(pass3, pass1),
|
|
]
|
|
sorted = _topological_sort_passes(passes, constraints)
|
|
self.assertEqual(sorted, [pass4, pass5, pass0, pass2, pass3, pass1])
|
|
|
|
# Circular dependency should result in the circular_dep flag being set
|
|
passes = [pass0, pass1, pass2]
|
|
constraints = [
|
|
this_before_that_pass_constraint(passes[0], passes[1]),
|
|
this_before_that_pass_constraint(passes[1], passes[2]),
|
|
this_before_that_pass_constraint(passes[2], passes[0]),
|
|
]
|
|
with self.assertRaises(RuntimeError) as e:
|
|
_topological_sort_passes(passes, constraints)
|
|
expected_error_msg = (
|
|
f"Circular dependency detected within the following passes: {passes}"
|
|
)
|
|
self.assertEqual(e.exception.args[0], expected_error_msg)
|
|
|
|
def test_pass_manager_error(self):
|
|
"""
|
|
Tests error catching + debug
|
|
"""
|
|
|
|
def pass_fail(graph_module):
|
|
raise RuntimeError("bad")
|
|
|
|
m = AddModule()
|
|
traced_m = torch.fx.symbolic_trace(m)
|
|
pm = PassManager(
|
|
passes=[
|
|
ReplaceAddWithMulPass(),
|
|
replace_mul_with_div_pass,
|
|
ReplaceDivWithSubPass(),
|
|
pass_result_wrapper(replace_sub_with_add_pass),
|
|
],
|
|
)
|
|
|
|
# Comment out this line to see the actual error message
|
|
error_msg = (
|
|
"ReplaceDivWithSubPass.*ReplaceAddWithMulPass.*replace_mul_with_div_pass"
|
|
)
|
|
with self.assertRaisesRegex(Exception, error_msg):
|
|
pm(traced_m)
|
|
|
|
pm = PassManager(
|
|
passes=[
|
|
ReplaceAddWithMulPass(),
|
|
replace_mul_with_div_pass,
|
|
pass_result_wrapper(ReplaceDivWithSubPass()),
|
|
pass_result_wrapper(replace_sub_with_add_pass),
|
|
pass_fail,
|
|
],
|
|
)
|
|
|
|
# Comment out this line to see the actual error message
|
|
error_msg = "pass_fail.*ReplaceAddWithMulPass.*replace_mul_with_div_pass.*ReplaceDivWithSubPass.*replace_sub_with_add_pass"
|
|
with self.assertRaisesRegex(Exception, error_msg):
|
|
pm(traced_m)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
raise_on_run_directly("test/test_fx.py")
|