mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 12:54:11 +08:00
Pull Request resolved: https://github.com/pytorch/pytorch/pull/159732 Approved by: https://github.com/dcci ghstack dependencies: #159731
207 lines
6.8 KiB
Python
207 lines
6.8 KiB
Python
# Owner(s): ["module: mps"]
|
|
# Collection of op level benchmarks for MPS
|
|
# Useful as reference tool when migrating ops from MPS to Metal
|
|
import itertools
|
|
import timeit
|
|
import warnings
|
|
from typing import Optional
|
|
|
|
import torch
|
|
from torch.utils.benchmark import Compare, Measurement, Timer
|
|
|
|
|
|
def bench_unary_op(func, x, label) -> Measurement:
|
|
sync_cmd = "torch.mps.synchronize()" if "mps" in str(x.device) else ""
|
|
t = Timer(
|
|
stmt=f"f(x);{sync_cmd}",
|
|
globals={"f": func, "x": x},
|
|
language="python",
|
|
timer=timeit.default_timer,
|
|
sub_label=f"{func.__name__} ({str(x.dtype)})",
|
|
description=label,
|
|
env=torch.__version__,
|
|
)
|
|
return t.blocked_autorange()
|
|
|
|
|
|
def bench_binary_op(func, x, y, label) -> Measurement:
|
|
sync_cmd = "torch.mps.synchronize()" if "mps" in str(x.device) else ""
|
|
t = Timer(
|
|
stmt=f"f(x, y);{sync_cmd}",
|
|
globals={"f": func, "x": x, "y": y},
|
|
language="python",
|
|
timer=timeit.default_timer,
|
|
sub_label=f"{func.__name__} ({str(x.dtype)}, {str(y.dtype)})",
|
|
description=label,
|
|
env=torch.__version__,
|
|
)
|
|
return t.blocked_autorange()
|
|
|
|
|
|
def bench_unary(
|
|
unary_func, device: str = "mps", dtype: torch.dtype = torch.float32
|
|
) -> list[Measurement]:
|
|
x = torch.testing.make_tensor(1024, 1024, device=device, dtype=dtype)
|
|
x_s = torch.testing.make_tensor(1024, 2048, device=device, dtype=dtype)[::, ::2]
|
|
rc = []
|
|
rc.append(bench_unary_op(unary_func, x, "dense"))
|
|
rc.append(bench_unary_op(unary_func, x.t(), "transposed"))
|
|
rc.append(bench_unary_op(unary_func, x_s, "strided"))
|
|
rc.append(bench_unary_op(unary_func, x_s.t(), "strided + transposed"))
|
|
return rc
|
|
|
|
|
|
def bench_binary(
|
|
binary_func,
|
|
device: str = "mps",
|
|
dt_a: torch.dtype = torch.float32,
|
|
dt_b: Optional[torch.dtype] = None,
|
|
) -> list[Measurement]:
|
|
dt_b = dt_b if dt_b is not None else dt_a
|
|
x = torch.testing.make_tensor(1024, 1024, device=device, dtype=dt_a)
|
|
y = torch.testing.make_tensor(1024, 1024, device=device, dtype=dt_b)
|
|
s = torch.testing.make_tensor((), device=device, dtype=dt_b)
|
|
rc = []
|
|
rc.append(bench_binary_op(binary_func, x, y, "dense-dense"))
|
|
rc.append(bench_binary_op(binary_func, x.t(), y.t(), "transp-transp"))
|
|
rc.append(bench_binary_op(binary_func, x, y.t(), "dense-transp"))
|
|
rc.append(bench_binary_op(binary_func, x.t(), y, "transp-dense"))
|
|
rc.append(bench_binary_op(binary_func, x, s, "dense-scalar"))
|
|
rc.append(bench_binary_op(binary_func, x, y[0], "dense-bcast"))
|
|
return rc
|
|
|
|
|
|
def check_eager_vs_compile(rc_c, rc_e, func, dtype):
|
|
if not torch.allclose(rc_c, rc_e):
|
|
mdiff = (rc_c - rc_e).abs().max()
|
|
warnings.warn(
|
|
f"Eager and compile reduction do not match for {func.__name__} and {dtype} max_diff={mdiff}",
|
|
stacklevel=2,
|
|
)
|
|
|
|
|
|
def bench_reduction(
|
|
reduction_func, device: str = "mps", dtype: torch.dtype = torch.float32
|
|
) -> list[Measurement]:
|
|
rc = []
|
|
|
|
# Bench 2D with reduction over dim=0
|
|
def f(t):
|
|
return reduction_func(t, dim=0)
|
|
|
|
f.__name__ = reduction_func.__name__
|
|
f_c = torch.compile(f, dynamic=False, fullgraph=True)
|
|
|
|
for size in (512, 1024, 2048, 4096):
|
|
x = torch.testing.make_tensor(size, size, device=device, dtype=dtype)
|
|
rc_c, rc_e = f(x), f_c(x)
|
|
rc_c, rc_e = (rc_c[0], rc_e[0]) if isinstance(rc_c, tuple) else (rc_c, rc_e)
|
|
check_eager_vs_compile(rc_c, rc_e, reduction_func, dtype)
|
|
rc.append(bench_unary_op(f, x, f"eager-{size}x{size}"))
|
|
rc.append(bench_unary_op(f_c, x, f"compile-{size}x{size}"))
|
|
return rc
|
|
|
|
|
|
def bench_scan(
|
|
scan_func,
|
|
device: str = "mps",
|
|
dtype: torch.dtype = torch.float32,
|
|
with_indices: bool = False,
|
|
) -> list[Measurement]:
|
|
rc = []
|
|
|
|
# Bench cumsum along different dimensions
|
|
for dim in [0, 1]:
|
|
|
|
def f(t):
|
|
return scan_func(t, dim=dim)
|
|
|
|
f_c = torch.compile(f, dynamic=False, fullgraph=True)
|
|
|
|
for size in (32, 128, 512, 1024):
|
|
f.__name__ = f"{scan_func.__name__}-dim{dim}-{size}x{size}"
|
|
f_c.__name__ = f.__name__
|
|
x = torch.testing.make_tensor(size, size, device=device, dtype=dtype)
|
|
rc_c, rc_e = f(x), f_c(x)
|
|
if with_indices:
|
|
check_eager_vs_compile(rc_c[0], rc_e[0], scan_func, dtype)
|
|
check_eager_vs_compile(rc_c[1], rc_e[1], scan_func, dtype)
|
|
else:
|
|
check_eager_vs_compile(rc_c, rc_e, scan_func, dtype)
|
|
rc.append(bench_unary_op(f, x, "eager"))
|
|
rc.append(bench_unary_op(f_c, x, "compile"))
|
|
|
|
# Bench 1D cumsum for different sizes
|
|
def f_1d(t):
|
|
return scan_func(t, dim=0)
|
|
|
|
f_1d_c = torch.compile(f_1d, dynamic=False, fullgraph=True)
|
|
|
|
for size in (100, 10000, 1000000):
|
|
f_1d.__name__ = f"{scan_func.__name__}-1d-{size}"
|
|
f_1d_c.__name__ = f_1d.__name__
|
|
x = torch.testing.make_tensor(size, device=device, dtype=dtype)
|
|
rc_c, rc_e = f_1d(x), f_1d_c(x)
|
|
if with_indices:
|
|
check_eager_vs_compile(rc_c[0], rc_e[0], scan_func, dtype)
|
|
check_eager_vs_compile(rc_c[1], rc_e[1], scan_func, dtype)
|
|
else:
|
|
check_eager_vs_compile(rc_c, rc_e, scan_func, dtype)
|
|
rc.append(bench_unary_op(f_1d, x, "eager"))
|
|
rc.append(bench_unary_op(f_1d_c, x, "compile"))
|
|
|
|
return rc
|
|
|
|
|
|
def main() -> None:
|
|
dtypes = [torch.float16, torch.float32, torch.bfloat16]
|
|
|
|
# Profile index ops
|
|
B = 11
|
|
rc = []
|
|
for dtype, N in itertools.product(
|
|
[torch.int8, torch.float16, torch.float32], [50, 100, 500, 1000, 2000]
|
|
):
|
|
x = torch.testing.make_tensor((B, N, N), device="mps", dtype=dtype)
|
|
y = torch.randint(0, B, (3,))
|
|
rc.append(bench_binary_op(torch.Tensor.__getitem__, x, y, f"{B}x{N}x{N}"))
|
|
Compare(rc).print()
|
|
|
|
# Profile unary ops
|
|
rc = []
|
|
for op, dtype in itertools.product([torch.sqrt, torch.sin], dtypes):
|
|
rc.extend(bench_unary(op, dtype=dtype))
|
|
Compare(rc).print()
|
|
|
|
# Profile reduction ops
|
|
rc = []
|
|
for op in [torch.sum, torch.max]:
|
|
rc.extend(bench_reduction(op))
|
|
Compare(rc).print()
|
|
|
|
# Profile scan ops (cumsum)
|
|
rc = []
|
|
for dtype in dtypes:
|
|
rc.extend(bench_scan(torch.cumsum, dtype=dtype))
|
|
Compare(rc).print()
|
|
|
|
# Profile scan with indices ops (cummin)
|
|
rc = []
|
|
for dtype in dtypes:
|
|
rc.extend(bench_scan(torch.cummin, dtype=dtype, with_indices=True))
|
|
Compare(rc).print()
|
|
|
|
# Profile binary ops
|
|
rc = []
|
|
ops = [torch.fmax, torch.add]
|
|
for op, dtype in itertools.product(ops, dtypes):
|
|
rc.extend(bench_binary(op, dt_a=dtype))
|
|
if dtype == torch.float32:
|
|
rc.extend(bench_binary(op, dt_b=torch.float16))
|
|
Compare(rc).print()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
torch._dynamo.config.cache_size_limit = 2**16
|
|
main()
|