mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Fixes #157720 ### What's in this PR? This PR improves the error handling in `torch.compile` for `ndarray.astype('O')` (or `object`). It now explicitly raises a `torch._dynamo.exc.Unsupported` exception with a clear explanation, instead of failing with a less intuitive error during fake tensor propagation. This is achieved by adding a check within `NumpyNdarrayVariable.call_method` for this specific `astype` pattern. A new test, `test_ndarray_astype_object_graph_break`, is also added to `test/test_numpy_interop.py` to verify this new behavior. ### Background Previously, attempting to `torch.compile` a function containing `ndarray.astype('O')` would result in a `TorchRuntimeError` wrapping a `TypeError: data type 'O' not understood`. This error message, originating deep within the tensor mechanism, was not very user-friendly and didn't clearly state *why* it was unsupported. This change makes the failure more explicit and provides a better user experience by giving a direct, actionable error message. **Old Behavior (Error Traceback):** ``` torch.dynamo.exc.TorchRuntimeError: Dynamo failed to run FX node with fake tensors: ... got TypeError("data type 'O' not understood") ``` **New Behavior (Error Message):** ``` torch.dynamo.exc.Unsupported: ndarray.astype(object) Explanation: ndarray.astype('O') or ndarray.astype(object) is not supported by torch.compile, as there is no equivalent to object type in torch. ``` ### Testing A new test has been added to `test_numpy_interop.py` which decorates a function containing `ndarray.astype("O")` with `torch.compile`. The test asserts that a `torch._dynamo.exc.Unsupported` exception is raised, confirming the new error handling works as expected. The test can be run with: `pytest test/test_numpy_interop.py -k test_ndarray_astype_object_graph_break` Pull Request resolved: https://github.com/pytorch/pytorch/pull/157810 Approved by: https://github.com/jansel
669 lines
25 KiB
Python
669 lines
25 KiB
Python
# mypy: ignore-errors
|
|
|
|
# Owner(s): ["module: numpy"]
|
|
|
|
import sys
|
|
from itertools import product
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
from torch.testing import make_tensor
|
|
from torch.testing._internal.common_device_type import (
|
|
dtypes,
|
|
instantiate_device_type_tests,
|
|
onlyCPU,
|
|
skipMeta,
|
|
)
|
|
from torch.testing._internal.common_dtype import all_types_and_complex_and
|
|
from torch.testing._internal.common_utils import run_tests, skipIfTorchDynamo, TestCase
|
|
|
|
|
|
# For testing handling NumPy objects and sending tensors to / accepting
|
|
# arrays from NumPy.
|
|
class TestNumPyInterop(TestCase):
|
|
# Note: the warning this tests for only appears once per program, so
|
|
# other instances of this warning should be addressed to avoid
|
|
# the tests depending on the order in which they're run.
|
|
@onlyCPU
|
|
def test_numpy_non_writeable(self, device):
|
|
arr = np.zeros(5)
|
|
arr.flags["WRITEABLE"] = False
|
|
self.assertWarns(UserWarning, lambda: torch.from_numpy(arr))
|
|
|
|
@onlyCPU
|
|
def test_numpy_unresizable(self, device) -> None:
|
|
x = np.zeros((2, 2))
|
|
y = torch.from_numpy(x) # noqa: F841
|
|
with self.assertRaises(ValueError):
|
|
x.resize((5, 5))
|
|
|
|
z = torch.randn(5, 5)
|
|
w = z.numpy()
|
|
with self.assertRaises(RuntimeError):
|
|
z.resize_(10, 10)
|
|
with self.assertRaises(ValueError):
|
|
w.resize((10, 10))
|
|
|
|
@onlyCPU
|
|
def test_to_numpy(self, device) -> None:
|
|
def get_castable_tensor(shape, dtype):
|
|
if dtype.is_floating_point:
|
|
dtype_info = torch.finfo(dtype)
|
|
# can't directly use min and max, because for double, max - min
|
|
# is greater than double range and sampling always gives inf.
|
|
low = max(dtype_info.min, -1e10)
|
|
high = min(dtype_info.max, 1e10)
|
|
t = torch.empty(shape, dtype=torch.float64).uniform_(low, high)
|
|
else:
|
|
# can't directly use min and max, because for int64_t, max - min
|
|
# is greater than int64_t range and triggers UB.
|
|
low = max(torch.iinfo(dtype).min, int(-1e10))
|
|
high = min(torch.iinfo(dtype).max, int(1e10))
|
|
t = torch.empty(shape, dtype=torch.int64).random_(low, high)
|
|
return t.to(dtype)
|
|
|
|
dtypes = [
|
|
torch.uint8,
|
|
torch.int8,
|
|
torch.short,
|
|
torch.int,
|
|
torch.half,
|
|
torch.float,
|
|
torch.double,
|
|
torch.long,
|
|
]
|
|
|
|
for dtp in dtypes:
|
|
# 1D
|
|
sz = 10
|
|
x = get_castable_tensor(sz, dtp)
|
|
y = x.numpy()
|
|
for i in range(sz):
|
|
self.assertEqual(x[i], y[i])
|
|
|
|
# 1D > 0 storage offset
|
|
xm = get_castable_tensor(sz * 2, dtp)
|
|
x = xm.narrow(0, sz - 1, sz)
|
|
self.assertTrue(x.storage_offset() > 0)
|
|
y = x.numpy()
|
|
for i in range(sz):
|
|
self.assertEqual(x[i], y[i])
|
|
|
|
def check2d(x, y):
|
|
for i in range(sz1):
|
|
for j in range(sz2):
|
|
self.assertEqual(x[i][j], y[i][j])
|
|
|
|
# empty
|
|
x = torch.tensor([]).to(dtp)
|
|
y = x.numpy()
|
|
self.assertEqual(y.size, 0)
|
|
|
|
# contiguous 2D
|
|
sz1 = 3
|
|
sz2 = 5
|
|
x = get_castable_tensor((sz1, sz2), dtp)
|
|
y = x.numpy()
|
|
check2d(x, y)
|
|
self.assertTrue(y.flags["C_CONTIGUOUS"])
|
|
|
|
# with storage offset
|
|
xm = get_castable_tensor((sz1 * 2, sz2), dtp)
|
|
x = xm.narrow(0, sz1 - 1, sz1)
|
|
y = x.numpy()
|
|
self.assertTrue(x.storage_offset() > 0)
|
|
check2d(x, y)
|
|
self.assertTrue(y.flags["C_CONTIGUOUS"])
|
|
|
|
# non-contiguous 2D
|
|
x = get_castable_tensor((sz2, sz1), dtp).t()
|
|
y = x.numpy()
|
|
check2d(x, y)
|
|
self.assertFalse(y.flags["C_CONTIGUOUS"])
|
|
|
|
# with storage offset
|
|
xm = get_castable_tensor((sz2 * 2, sz1), dtp)
|
|
x = xm.narrow(0, sz2 - 1, sz2).t()
|
|
y = x.numpy()
|
|
self.assertTrue(x.storage_offset() > 0)
|
|
check2d(x, y)
|
|
|
|
# non-contiguous 2D with holes
|
|
xm = get_castable_tensor((sz2 * 2, sz1 * 2), dtp)
|
|
x = xm.narrow(0, sz2 - 1, sz2).narrow(1, sz1 - 1, sz1).t()
|
|
y = x.numpy()
|
|
self.assertTrue(x.storage_offset() > 0)
|
|
check2d(x, y)
|
|
|
|
if dtp != torch.half:
|
|
# check writeable
|
|
x = get_castable_tensor((3, 4), dtp)
|
|
y = x.numpy()
|
|
self.assertTrue(y.flags.writeable)
|
|
y[0][1] = 3
|
|
self.assertTrue(x[0][1] == 3)
|
|
y = x.t().numpy()
|
|
self.assertTrue(y.flags.writeable)
|
|
y[0][1] = 3
|
|
self.assertTrue(x[0][1] == 3)
|
|
|
|
def test_to_numpy_bool(self, device) -> None:
|
|
x = torch.tensor([True, False], dtype=torch.bool)
|
|
self.assertEqual(x.dtype, torch.bool)
|
|
|
|
y = x.numpy()
|
|
self.assertEqual(y.dtype, np.bool_)
|
|
for i in range(len(x)):
|
|
self.assertEqual(x[i], y[i])
|
|
|
|
x = torch.tensor([True], dtype=torch.bool)
|
|
self.assertEqual(x.dtype, torch.bool)
|
|
|
|
y = x.numpy()
|
|
self.assertEqual(y.dtype, np.bool_)
|
|
self.assertEqual(x[0], y[0])
|
|
|
|
@skipIfTorchDynamo("conj bit not implemented in TensorVariable yet")
|
|
def test_to_numpy_force_argument(self, device) -> None:
|
|
for force in [False, True]:
|
|
for requires_grad in [False, True]:
|
|
for sparse in [False, True]:
|
|
for conj in [False, True]:
|
|
data = [[1 + 2j, -2 + 3j], [-1 - 2j, 3 - 2j]]
|
|
x = torch.tensor(
|
|
data, requires_grad=requires_grad, device=device
|
|
)
|
|
y = x
|
|
if sparse:
|
|
if requires_grad:
|
|
continue
|
|
x = x.to_sparse()
|
|
if conj:
|
|
x = x.conj()
|
|
y = x.resolve_conj()
|
|
expect_error = (
|
|
requires_grad or sparse or conj or not device == "cpu"
|
|
)
|
|
error_msg = r"Use (t|T)ensor\..*(\.numpy\(\))?"
|
|
if not force and expect_error:
|
|
self.assertRaisesRegex(
|
|
(RuntimeError, TypeError), error_msg, lambda: x.numpy()
|
|
)
|
|
self.assertRaisesRegex(
|
|
(RuntimeError, TypeError),
|
|
error_msg,
|
|
lambda: x.numpy(force=False),
|
|
)
|
|
elif force and sparse:
|
|
self.assertRaisesRegex(
|
|
TypeError, error_msg, lambda: x.numpy(force=True)
|
|
)
|
|
else:
|
|
self.assertEqual(x.numpy(force=force), y)
|
|
|
|
def test_from_numpy(self, device) -> None:
|
|
dtypes = [
|
|
np.double,
|
|
np.float64,
|
|
np.float16,
|
|
np.complex64,
|
|
np.complex128,
|
|
np.int64,
|
|
np.int32,
|
|
np.int16,
|
|
np.int8,
|
|
np.uint8,
|
|
np.longlong,
|
|
np.bool_,
|
|
]
|
|
complex_dtypes = [
|
|
np.complex64,
|
|
np.complex128,
|
|
]
|
|
|
|
for dtype in dtypes:
|
|
array = np.array([1, 2, 3, 4], dtype=dtype)
|
|
tensor_from_array = torch.from_numpy(array)
|
|
# TODO: change to tensor equality check once HalfTensor
|
|
# implements `==`
|
|
for i in range(len(array)):
|
|
self.assertEqual(tensor_from_array[i], array[i])
|
|
# ufunc 'remainder' not supported for complex dtypes
|
|
if dtype not in complex_dtypes:
|
|
# This is a special test case for Windows
|
|
# https://github.com/pytorch/pytorch/issues/22615
|
|
array2 = array % 2
|
|
tensor_from_array2 = torch.from_numpy(array2)
|
|
for i in range(len(array2)):
|
|
self.assertEqual(tensor_from_array2[i], array2[i])
|
|
|
|
# Test unsupported type
|
|
array = np.array(["foo", "bar"], dtype=np.dtype(np.str_))
|
|
with self.assertRaises(TypeError):
|
|
tensor_from_array = torch.from_numpy(array)
|
|
|
|
# check storage offset
|
|
x = np.linspace(1, 125, 125)
|
|
x.shape = (5, 5, 5)
|
|
x = x[1]
|
|
expected = torch.arange(1, 126, dtype=torch.float64).view(5, 5, 5)[1]
|
|
self.assertEqual(torch.from_numpy(x), expected)
|
|
|
|
# check noncontiguous
|
|
x = np.linspace(1, 25, 25)
|
|
x.shape = (5, 5)
|
|
expected = torch.arange(1, 26, dtype=torch.float64).view(5, 5).t()
|
|
self.assertEqual(torch.from_numpy(x.T), expected)
|
|
|
|
# check noncontiguous with holes
|
|
x = np.linspace(1, 125, 125)
|
|
x.shape = (5, 5, 5)
|
|
x = x[:, 1]
|
|
expected = torch.arange(1, 126, dtype=torch.float64).view(5, 5, 5)[:, 1]
|
|
self.assertEqual(torch.from_numpy(x), expected)
|
|
|
|
# check zero dimensional
|
|
x = np.zeros((0, 2))
|
|
self.assertEqual(torch.from_numpy(x).shape, (0, 2))
|
|
x = np.zeros((2, 0))
|
|
self.assertEqual(torch.from_numpy(x).shape, (2, 0))
|
|
|
|
# check ill-sized strides raise exception
|
|
x = np.array([3.0, 5.0, 8.0])
|
|
x.strides = (3,)
|
|
self.assertRaises(ValueError, lambda: torch.from_numpy(x))
|
|
|
|
@skipIfTorchDynamo("No need to test invalid dtypes that should fail by design.")
|
|
def test_from_numpy_no_leak_on_invalid_dtype(self):
|
|
# This used to leak memory as the `from_numpy` call raised an exception and didn't decref the temporary
|
|
# object. See https://github.com/pytorch/pytorch/issues/121138
|
|
x = np.array(b"value")
|
|
for _ in range(1000):
|
|
try:
|
|
torch.from_numpy(x)
|
|
except TypeError:
|
|
pass
|
|
self.assertTrue(sys.getrefcount(x) == 2)
|
|
|
|
@skipIfTorchDynamo("No need to test invalid dtypes that should fail by design.")
|
|
@onlyCPU
|
|
def test_from_numpy_zero_element_type(self):
|
|
# This tests that dtype check happens before strides check
|
|
# which results in div-by-zero on-x86
|
|
x = np.ndarray((3, 3), dtype=str)
|
|
self.assertRaises(TypeError, lambda: torch.from_numpy(x))
|
|
|
|
@skipMeta
|
|
def test_from_list_of_ndarray_warning(self, device):
|
|
warning_msg = (
|
|
r"Creating a tensor from a list of numpy.ndarrays is extremely slow"
|
|
)
|
|
with self.assertWarnsOnceRegex(UserWarning, warning_msg):
|
|
torch.tensor([np.array([0]), np.array([1])], device=device)
|
|
|
|
def test_ctor_with_invalid_numpy_array_sequence(self, device):
|
|
# Invalid list of numpy array
|
|
with self.assertRaisesRegex(ValueError, "expected sequence of length"):
|
|
torch.tensor(
|
|
[np.random.random(size=(3, 3)), np.random.random(size=(3, 0))],
|
|
device=device,
|
|
)
|
|
|
|
# Invalid list of list of numpy array
|
|
with self.assertRaisesRegex(ValueError, "expected sequence of length"):
|
|
torch.tensor(
|
|
[[np.random.random(size=(3, 3)), np.random.random(size=(3, 2))]],
|
|
device=device,
|
|
)
|
|
|
|
with self.assertRaisesRegex(ValueError, "expected sequence of length"):
|
|
torch.tensor(
|
|
[
|
|
[np.random.random(size=(3, 3)), np.random.random(size=(3, 3))],
|
|
[np.random.random(size=(3, 3)), np.random.random(size=(3, 2))],
|
|
],
|
|
device=device,
|
|
)
|
|
|
|
# expected shape is `[1, 2, 3]`, hence we try to iterate over 0-D array
|
|
# leading to type error : not a sequence.
|
|
with self.assertRaisesRegex(TypeError, "not a sequence"):
|
|
torch.tensor(
|
|
[[np.random.random(size=(3)), np.random.random()]], device=device
|
|
)
|
|
|
|
# list of list or numpy array.
|
|
with self.assertRaisesRegex(ValueError, "expected sequence of length"):
|
|
torch.tensor([[1, 2, 3], np.random.random(size=(2,))], device=device)
|
|
|
|
@onlyCPU
|
|
def test_ctor_with_numpy_scalar_ctor(self, device) -> None:
|
|
dtypes = [
|
|
np.double,
|
|
np.float64,
|
|
np.float16,
|
|
np.int64,
|
|
np.int32,
|
|
np.int16,
|
|
np.uint8,
|
|
np.bool_,
|
|
]
|
|
for dtype in dtypes:
|
|
self.assertEqual(dtype(42), torch.tensor(dtype(42)).item())
|
|
|
|
@onlyCPU
|
|
def test_numpy_index(self, device):
|
|
i = np.array([0, 1, 2], dtype=np.int32)
|
|
x = torch.randn(5, 5)
|
|
for idx in i:
|
|
self.assertFalse(isinstance(idx, int))
|
|
self.assertEqual(x[idx], x[int(idx)])
|
|
|
|
@onlyCPU
|
|
def test_numpy_index_multi(self, device):
|
|
for dim_sz in [2, 8, 16, 32]:
|
|
i = np.zeros((dim_sz, dim_sz, dim_sz), dtype=np.int32)
|
|
i[: dim_sz // 2, :, :] = 1
|
|
x = torch.randn(dim_sz, dim_sz, dim_sz)
|
|
self.assertTrue(x[i == 1].numel() == np.sum(i))
|
|
|
|
@onlyCPU
|
|
def test_numpy_array_interface(self, device):
|
|
types = [
|
|
torch.DoubleTensor,
|
|
torch.FloatTensor,
|
|
torch.HalfTensor,
|
|
torch.LongTensor,
|
|
torch.IntTensor,
|
|
torch.ShortTensor,
|
|
torch.ByteTensor,
|
|
]
|
|
dtypes = [
|
|
np.float64,
|
|
np.float32,
|
|
np.float16,
|
|
np.int64,
|
|
np.int32,
|
|
np.int16,
|
|
np.uint8,
|
|
]
|
|
for tp, dtype in zip(types, dtypes):
|
|
# Only concrete class can be given where "Type[number[_64Bit]]" is expected
|
|
if np.dtype(dtype).kind == "u": # type: ignore[misc]
|
|
# .type expects a XxxTensor, which have no type hints on
|
|
# purpose, so ignore during mypy type checking
|
|
x = torch.tensor([1, 2, 3, 4]).type(tp) # type: ignore[call-overload]
|
|
array = np.array([1, 2, 3, 4], dtype=dtype)
|
|
else:
|
|
x = torch.tensor([1, -2, 3, -4]).type(tp) # type: ignore[call-overload]
|
|
array = np.array([1, -2, 3, -4], dtype=dtype)
|
|
|
|
# Test __array__ w/o dtype argument
|
|
asarray = np.asarray(x)
|
|
self.assertIsInstance(asarray, np.ndarray)
|
|
self.assertEqual(asarray.dtype, dtype)
|
|
for i in range(len(x)):
|
|
self.assertEqual(asarray[i], x[i])
|
|
|
|
# Test __array_wrap__, same dtype
|
|
abs_x = np.abs(x)
|
|
abs_array = np.abs(array)
|
|
self.assertIsInstance(abs_x, tp)
|
|
for i in range(len(x)):
|
|
self.assertEqual(abs_x[i], abs_array[i])
|
|
|
|
# Test __array__ with dtype argument
|
|
for dtype in dtypes:
|
|
x = torch.IntTensor([1, -2, 3, -4])
|
|
asarray = np.asarray(x, dtype=dtype)
|
|
self.assertEqual(asarray.dtype, dtype)
|
|
# Only concrete class can be given where "Type[number[_64Bit]]" is expected
|
|
if np.dtype(dtype).kind == "u": # type: ignore[misc]
|
|
wrapped_x = np.array([1, -2, 3, -4]).astype(dtype)
|
|
for i in range(len(x)):
|
|
self.assertEqual(asarray[i], wrapped_x[i])
|
|
else:
|
|
for i in range(len(x)):
|
|
self.assertEqual(asarray[i], x[i])
|
|
|
|
# Test some math functions with float types
|
|
float_types = [torch.DoubleTensor, torch.FloatTensor]
|
|
float_dtypes = [np.float64, np.float32]
|
|
for tp, dtype in zip(float_types, float_dtypes):
|
|
x = torch.tensor([1, 2, 3, 4]).type(tp) # type: ignore[call-overload]
|
|
array = np.array([1, 2, 3, 4], dtype=dtype)
|
|
for func in ["sin", "sqrt", "ceil"]:
|
|
ufunc = getattr(np, func)
|
|
res_x = ufunc(x)
|
|
res_array = ufunc(array)
|
|
self.assertIsInstance(res_x, tp)
|
|
for i in range(len(x)):
|
|
self.assertEqual(res_x[i], res_array[i])
|
|
|
|
# Test functions with boolean return value
|
|
for tp, dtype in zip(types, dtypes):
|
|
x = torch.tensor([1, 2, 3, 4]).type(tp) # type: ignore[call-overload]
|
|
array = np.array([1, 2, 3, 4], dtype=dtype)
|
|
geq2_x = np.greater_equal(x, 2)
|
|
geq2_array = np.greater_equal(array, 2).astype("uint8")
|
|
self.assertIsInstance(geq2_x, torch.ByteTensor)
|
|
for i in range(len(x)):
|
|
self.assertEqual(geq2_x[i], geq2_array[i])
|
|
|
|
@onlyCPU
|
|
def test_multiplication_numpy_scalar(self, device) -> None:
|
|
for np_dtype in [
|
|
np.float32,
|
|
np.float64,
|
|
np.int32,
|
|
np.int64,
|
|
np.int16,
|
|
np.uint8,
|
|
]:
|
|
for t_dtype in [torch.float, torch.double]:
|
|
# mypy raises an error when np.floatXY(2.0) is called
|
|
# even though this is valid code
|
|
np_sc = np_dtype(2.0) # type: ignore[abstract, arg-type]
|
|
t = torch.ones(2, requires_grad=True, dtype=t_dtype)
|
|
r1 = t * np_sc
|
|
self.assertIsInstance(r1, torch.Tensor)
|
|
self.assertTrue(r1.dtype == t_dtype)
|
|
self.assertTrue(r1.requires_grad)
|
|
r2 = np_sc * t
|
|
self.assertIsInstance(r2, torch.Tensor)
|
|
self.assertTrue(r2.dtype == t_dtype)
|
|
self.assertTrue(r2.requires_grad)
|
|
|
|
@onlyCPU
|
|
@skipIfTorchDynamo()
|
|
def test_parse_numpy_int_overflow(self, device):
|
|
# assertRaises uses a try-except which dynamo has issues with
|
|
# Only concrete class can be given where "Type[number[_64Bit]]" is expected
|
|
if np.__version__ > "2":
|
|
self.assertRaisesRegex(
|
|
OverflowError,
|
|
"out of bounds",
|
|
lambda: torch.mean(torch.randn(1, 1), np.uint64(-1)),
|
|
) # type: ignore[call-overload]
|
|
else:
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"(Overflow|an integer is required)",
|
|
lambda: torch.mean(torch.randn(1, 1), np.uint64(-1)),
|
|
) # type: ignore[call-overload]
|
|
|
|
@onlyCPU
|
|
def test_parse_numpy_int(self, device):
|
|
# https://github.com/pytorch/pytorch/issues/29252
|
|
for nptype in [np.int16, np.int8, np.uint8, np.int32, np.int64]:
|
|
scalar = 3
|
|
np_arr = np.array([scalar], dtype=nptype)
|
|
np_val = np_arr[0]
|
|
|
|
# np integral type can be treated as a python int in native functions with
|
|
# int parameters:
|
|
self.assertEqual(torch.ones(5).diag(scalar), torch.ones(5).diag(np_val))
|
|
self.assertEqual(
|
|
torch.ones([2, 2, 2, 2]).mean(scalar),
|
|
torch.ones([2, 2, 2, 2]).mean(np_val),
|
|
)
|
|
|
|
# numpy integral type parses like a python int in custom python bindings:
|
|
self.assertEqual(torch.Storage(np_val).size(), scalar) # type: ignore[attr-defined]
|
|
|
|
tensor = torch.tensor([2], dtype=torch.int)
|
|
tensor[0] = np_val
|
|
self.assertEqual(tensor[0], np_val)
|
|
|
|
# Original reported issue, np integral type parses to the correct
|
|
# PyTorch integral type when passed for a `Scalar` parameter in
|
|
# arithmetic operations:
|
|
t = torch.from_numpy(np_arr)
|
|
self.assertEqual((t + np_val).dtype, t.dtype)
|
|
self.assertEqual((np_val + t).dtype, t.dtype)
|
|
|
|
def test_has_storage_numpy(self, device):
|
|
for dtype in [np.float32, np.float64, np.int64, np.int32, np.int16, np.uint8]:
|
|
arr = np.array([1], dtype=dtype)
|
|
self.assertIsNotNone(
|
|
torch.tensor(arr, device=device, dtype=torch.float32).storage()
|
|
)
|
|
self.assertIsNotNone(
|
|
torch.tensor(arr, device=device, dtype=torch.double).storage()
|
|
)
|
|
self.assertIsNotNone(
|
|
torch.tensor(arr, device=device, dtype=torch.int).storage()
|
|
)
|
|
self.assertIsNotNone(
|
|
torch.tensor(arr, device=device, dtype=torch.long).storage()
|
|
)
|
|
self.assertIsNotNone(
|
|
torch.tensor(arr, device=device, dtype=torch.uint8).storage()
|
|
)
|
|
|
|
@dtypes(*all_types_and_complex_and(torch.half, torch.bfloat16, torch.bool))
|
|
def test_numpy_scalar_cmp(self, device, dtype):
|
|
if dtype.is_complex:
|
|
tensors = (
|
|
torch.tensor(complex(1, 3), dtype=dtype, device=device),
|
|
torch.tensor([complex(1, 3), 0, 2j], dtype=dtype, device=device),
|
|
torch.tensor(
|
|
[[complex(3, 1), 0], [-1j, 5]], dtype=dtype, device=device
|
|
),
|
|
)
|
|
else:
|
|
tensors = (
|
|
torch.tensor(3, dtype=dtype, device=device),
|
|
torch.tensor([1, 0, -3], dtype=dtype, device=device),
|
|
torch.tensor([[3, 0, -1], [3, 5, 4]], dtype=dtype, device=device),
|
|
)
|
|
|
|
for tensor in tensors:
|
|
if dtype == torch.bfloat16:
|
|
with self.assertRaises(TypeError):
|
|
np_array = tensor.cpu().numpy()
|
|
continue
|
|
|
|
np_array = tensor.cpu().numpy()
|
|
for t, a in product(
|
|
(tensor.flatten()[0], tensor.flatten()[0].item()),
|
|
(np_array.flatten()[0], np_array.flatten()[0].item()),
|
|
):
|
|
self.assertEqual(t, a)
|
|
if (
|
|
dtype == torch.complex64
|
|
and torch.is_tensor(t)
|
|
and type(a) == np.complex64
|
|
):
|
|
# TODO: Imaginary part is dropped in this case. Need fix.
|
|
# https://github.com/pytorch/pytorch/issues/43579
|
|
self.assertFalse(t == a)
|
|
else:
|
|
self.assertTrue(t == a)
|
|
|
|
@onlyCPU
|
|
@dtypes(*all_types_and_complex_and(torch.half, torch.bool))
|
|
def test___eq__(self, device, dtype):
|
|
a = make_tensor((5, 7), dtype=dtype, device=device, low=-9, high=9)
|
|
b = a.detach().clone()
|
|
b_np = b.numpy()
|
|
|
|
# Check all elements equal
|
|
res_check = torch.ones_like(a, dtype=torch.bool)
|
|
self.assertEqual(a == b_np, res_check)
|
|
self.assertEqual(b_np == a, res_check)
|
|
|
|
# Check one element unequal
|
|
if dtype == torch.bool:
|
|
b[1][3] = not b[1][3]
|
|
else:
|
|
b[1][3] += 1
|
|
res_check[1][3] = False
|
|
self.assertEqual(a == b_np, res_check)
|
|
self.assertEqual(b_np == a, res_check)
|
|
|
|
# Check random elements unequal
|
|
rand = torch.randint(0, 2, a.shape, dtype=torch.bool)
|
|
res_check = rand.logical_not()
|
|
b.copy_(a)
|
|
|
|
if dtype == torch.bool:
|
|
b[rand] = b[rand].logical_not()
|
|
else:
|
|
b[rand] += 1
|
|
|
|
self.assertEqual(a == b_np, res_check)
|
|
self.assertEqual(b_np == a, res_check)
|
|
|
|
# Check all elements unequal
|
|
if dtype == torch.bool:
|
|
b.copy_(a.logical_not())
|
|
else:
|
|
b.copy_(a + 1)
|
|
res_check.fill_(False)
|
|
self.assertEqual(a == b_np, res_check)
|
|
self.assertEqual(b_np == a, res_check)
|
|
|
|
@onlyCPU
|
|
def test_empty_tensors_interop(self, device):
|
|
x = torch.rand((), dtype=torch.float16)
|
|
y = torch.tensor(np.random.rand(0), dtype=torch.float16)
|
|
# Same can be achieved by running
|
|
# y = torch.empty_strided((0,), (0,), dtype=torch.float16)
|
|
|
|
# Regression test for https://github.com/pytorch/pytorch/issues/115068
|
|
self.assertEqual(torch.true_divide(x, y).shape, y.shape)
|
|
# Regression test for https://github.com/pytorch/pytorch/issues/115066
|
|
self.assertEqual(torch.mul(x, y).shape, y.shape)
|
|
# Regression test for https://github.com/pytorch/pytorch/issues/113037
|
|
self.assertEqual(torch.div(x, y, rounding_mode="floor").shape, y.shape)
|
|
|
|
def test_ndarray_astype_object_graph_break(self):
|
|
@torch.compile(backend="eager", fullgraph=True)
|
|
def f(xs):
|
|
xs.astype("O")
|
|
|
|
xs = np.array([1, 2])
|
|
with self.assertRaisesRegex(
|
|
torch._dynamo.exc.Unsupported, "ndarray.astype\\(object\\)"
|
|
):
|
|
f(xs)
|
|
|
|
def test_ndarray_astype_object_graph_break_2(self):
|
|
@torch.compile(backend="eager", fullgraph=True)
|
|
def f(xs):
|
|
xs.astype(object)
|
|
|
|
xs = np.array([1, 2])
|
|
with self.assertRaisesRegex(
|
|
torch._dynamo.exc.Unsupported, "ndarray.astype\\(object\\)"
|
|
):
|
|
f(xs)
|
|
|
|
|
|
instantiate_device_type_tests(TestNumPyInterop, globals())
|
|
|
|
if __name__ == "__main__":
|
|
run_tests()
|