mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
See strategy at PythonOpRegistrationTrampoline.cpp for the big picture. Along the way, I made OperatorHandle support == and hashing, and slightly changed the low level python_dispatch impl API to disallow empty strings for dispatch key, which had the knock on effect of requiring us to explicitly make sure we pass in CompositeImplicitAutograd if we would have passed in "" (I didn't apply this to the rest of the file because I'm lazy.) Test strategy is we delete the logic for preventing Python op registrations in torch from being skipped in a torchdeploy context and show CI still works. Signed-off-by: Edward Z. Yang <ezyang@fb.com> Pull Request resolved: https://github.com/pytorch/pytorch/pull/87162 Approved by: https://github.com/anjali411, https://github.com/bdhirsh
1036 lines
39 KiB
Python
1036 lines
39 KiB
Python
|
|
r"""
|
|
The torch package contains data structures for multi-dimensional
|
|
tensors and defines mathematical operations over these tensors.
|
|
Additionally, it provides many utilities for efficient serialization of
|
|
Tensors and arbitrary types, and other useful utilities.
|
|
|
|
It has a CUDA counterpart, that enables you to run your tensor computations
|
|
on an NVIDIA GPU with compute capability >= 3.0.
|
|
"""
|
|
|
|
import os
|
|
import sys
|
|
import platform
|
|
import textwrap
|
|
import ctypes
|
|
import inspect
|
|
if sys.version_info < (3,):
|
|
raise Exception("Python 2 has reached end-of-life and is no longer supported by PyTorch.")
|
|
|
|
from ._utils import _import_dotted_name, classproperty
|
|
from ._utils_internal import get_file_path, prepare_multiprocessing_environment, \
|
|
USE_RTLD_GLOBAL_WITH_LIBTORCH, USE_GLOBAL_DEPS
|
|
# TODO(torch_deploy) figure out how to freeze version.py in fbcode build
|
|
if sys.executable == 'torch_deploy':
|
|
__version__ = "torch-deploy-1.8"
|
|
else:
|
|
from .torch_version import __version__ as __version__
|
|
|
|
from ._six import string_classes as _string_classes
|
|
|
|
from typing import Set, Type, TYPE_CHECKING, Union, Callable, Any
|
|
import builtins
|
|
|
|
__all__ = [
|
|
'typename', 'is_tensor', 'is_storage', 'set_default_tensor_type',
|
|
'set_rng_state', 'get_rng_state', 'manual_seed', 'initial_seed', 'seed',
|
|
'save', 'load', 'set_printoptions', 'chunk', 'split', 'stack', 'matmul',
|
|
'no_grad', 'enable_grad', 'rand', 'randn', 'inference_mode',
|
|
'DoubleStorage', 'FloatStorage', 'LongStorage', 'IntStorage',
|
|
'ShortStorage', 'CharStorage', 'ByteStorage', 'BoolStorage',
|
|
'TypedStorage', 'UntypedStorage',
|
|
'DoubleTensor', 'FloatTensor', 'LongTensor', 'IntTensor',
|
|
'ShortTensor', 'CharTensor', 'ByteTensor', 'BoolTensor', 'Tensor',
|
|
'lobpcg', 'use_deterministic_algorithms',
|
|
'are_deterministic_algorithms_enabled',
|
|
'is_deterministic_algorithms_warn_only_enabled',
|
|
'set_deterministic_debug_mode', 'get_deterministic_debug_mode',
|
|
'set_float32_matmul_precision', 'get_float32_matmul_precision',
|
|
'set_warn_always', 'is_warn_always_enabled', 'SymInt', 'SymFloat',
|
|
]
|
|
|
|
################################################################################
|
|
# Load the extension module
|
|
################################################################################
|
|
|
|
if sys.platform == 'win32':
|
|
pfiles_path = os.getenv('ProgramFiles', 'C:\\Program Files')
|
|
py_dll_path = os.path.join(sys.exec_prefix, 'Library', 'bin')
|
|
th_dll_path = os.path.join(os.path.dirname(__file__), 'lib')
|
|
|
|
# When users create a virtualenv that inherits the base environment,
|
|
# we will need to add the corresponding library directory into
|
|
# DLL search directories. Otherwise, it will rely on `PATH` which
|
|
# is dependent on user settings.
|
|
if sys.exec_prefix != sys.base_exec_prefix:
|
|
base_py_dll_path = os.path.join(sys.base_exec_prefix, 'Library', 'bin')
|
|
else:
|
|
base_py_dll_path = ''
|
|
|
|
dll_paths = list(filter(os.path.exists, [th_dll_path, py_dll_path, base_py_dll_path]))
|
|
|
|
if all([not os.path.exists(os.path.join(p, 'nvToolsExt64_1.dll')) for p in dll_paths]):
|
|
nvtoolsext_dll_path = os.path.join(
|
|
os.getenv('NVTOOLSEXT_PATH', os.path.join(pfiles_path, 'NVIDIA Corporation', 'NvToolsExt')), 'bin', 'x64')
|
|
else:
|
|
nvtoolsext_dll_path = ''
|
|
|
|
from .version import cuda as cuda_version
|
|
import glob
|
|
if cuda_version and all([not glob.glob(os.path.join(p, 'cudart64*.dll')) for p in dll_paths]):
|
|
cuda_version_1 = cuda_version.replace('.', '_')
|
|
cuda_path_var = 'CUDA_PATH_V' + cuda_version_1
|
|
default_path = os.path.join(pfiles_path, 'NVIDIA GPU Computing Toolkit', 'CUDA', 'v' + cuda_version)
|
|
cuda_path = os.path.join(os.getenv(cuda_path_var, default_path), 'bin')
|
|
else:
|
|
cuda_path = ''
|
|
|
|
dll_paths.extend(filter(os.path.exists, [nvtoolsext_dll_path, cuda_path]))
|
|
|
|
kernel32 = ctypes.WinDLL('kernel32.dll', use_last_error=True)
|
|
with_load_library_flags = hasattr(kernel32, 'AddDllDirectory')
|
|
prev_error_mode = kernel32.SetErrorMode(0x0001)
|
|
|
|
kernel32.LoadLibraryW.restype = ctypes.c_void_p
|
|
if with_load_library_flags:
|
|
kernel32.AddDllDirectory.restype = ctypes.c_void_p
|
|
kernel32.LoadLibraryExW.restype = ctypes.c_void_p
|
|
|
|
for dll_path in dll_paths:
|
|
if sys.version_info >= (3, 8):
|
|
os.add_dll_directory(dll_path)
|
|
elif with_load_library_flags:
|
|
res = kernel32.AddDllDirectory(dll_path)
|
|
if res is None:
|
|
err = ctypes.WinError(ctypes.get_last_error())
|
|
err.strerror += f' Error adding "{dll_path}" to the DLL directories.'
|
|
raise err
|
|
|
|
try:
|
|
ctypes.CDLL('vcruntime140.dll')
|
|
ctypes.CDLL('msvcp140.dll')
|
|
ctypes.CDLL('vcruntime140_1.dll')
|
|
except OSError:
|
|
print('''Microsoft Visual C++ Redistributable is not installed, this may lead to the DLL load failure.
|
|
It can be downloaded at https://aka.ms/vs/16/release/vc_redist.x64.exe''')
|
|
|
|
dlls = glob.glob(os.path.join(th_dll_path, '*.dll'))
|
|
path_patched = False
|
|
for dll in dlls:
|
|
is_loaded = False
|
|
if with_load_library_flags:
|
|
res = kernel32.LoadLibraryExW(dll, None, 0x00001100)
|
|
last_error = ctypes.get_last_error()
|
|
if res is None and last_error != 126:
|
|
err = ctypes.WinError(last_error)
|
|
err.strerror += f' Error loading "{dll}" or one of its dependencies.'
|
|
raise err
|
|
elif res is not None:
|
|
is_loaded = True
|
|
if not is_loaded:
|
|
if not path_patched:
|
|
os.environ['PATH'] = ';'.join(dll_paths + [os.environ['PATH']])
|
|
path_patched = True
|
|
res = kernel32.LoadLibraryW(dll)
|
|
if res is None:
|
|
err = ctypes.WinError(ctypes.get_last_error())
|
|
err.strerror += f' Error loading "{dll}" or one of its dependencies.'
|
|
raise err
|
|
|
|
kernel32.SetErrorMode(prev_error_mode)
|
|
|
|
|
|
# See Note [Global dependencies]
|
|
def _load_global_deps():
|
|
if platform.system() == 'Windows' or sys.executable == 'torch_deploy':
|
|
return
|
|
|
|
lib_name = 'libtorch_global_deps' + ('.dylib' if platform.system() == 'Darwin' else '.so')
|
|
here = os.path.abspath(__file__)
|
|
lib_path = os.path.join(os.path.dirname(here), 'lib', lib_name)
|
|
|
|
ctypes.CDLL(lib_path, mode=ctypes.RTLD_GLOBAL)
|
|
|
|
|
|
if (USE_RTLD_GLOBAL_WITH_LIBTORCH or os.getenv('TORCH_USE_RTLD_GLOBAL')) and \
|
|
platform.system() != 'Windows':
|
|
# Do it the hard way. You might want to load libtorch with RTLD_GLOBAL in a
|
|
# few circumstances:
|
|
#
|
|
# 1. You're in a build environment (e.g., fbcode) where
|
|
# libtorch_global_deps is not available, but you still need
|
|
# to get mkl to link in with RTLD_GLOBAL or it will just
|
|
# not work.
|
|
#
|
|
# 2. You're trying to run PyTorch under UBSAN and you need
|
|
# to ensure that only one copy of libtorch is loaded, so
|
|
# vptr checks work properly
|
|
#
|
|
# If you're using this setting, you must verify that all the libraries
|
|
# you load consistently use the same libstdc++, or you may have
|
|
# mysterious segfaults.
|
|
#
|
|
old_flags = sys.getdlopenflags()
|
|
sys.setdlopenflags(os.RTLD_GLOBAL | os.RTLD_LAZY)
|
|
from torch._C import * # noqa: F403
|
|
sys.setdlopenflags(old_flags)
|
|
del old_flags
|
|
|
|
else:
|
|
# Easy way. You want this most of the time, because it will prevent
|
|
# C++ symbols from libtorch clobbering C++ symbols from other
|
|
# libraries, leading to mysterious segfaults.
|
|
#
|
|
# If building in an environment where libtorch_global_deps isn't available
|
|
# like parts of fbsource, but where RTLD_GLOBAL causes segfaults, you will
|
|
# want USE_RTLD_GLOBAL_WITH_LIBTORCH = False and USE_GLOBAL_DEPS = False
|
|
#
|
|
# See Note [Global dependencies]
|
|
if USE_GLOBAL_DEPS:
|
|
_load_global_deps()
|
|
from torch._C import * # noqa: F403
|
|
|
|
# Appease the type checker; ordinarily this binding is inserted by the
|
|
# torch._C module initialization code in C
|
|
if TYPE_CHECKING:
|
|
import torch._C as _C
|
|
|
|
class SymInt:
|
|
"""
|
|
Like an int (including magic methods), but redirects all operations on the
|
|
wrapped node. This is used in particular to symbolically record operations
|
|
in the symbolic shape workflow.
|
|
"""
|
|
|
|
def __init__(self, node):
|
|
from torch.fx.experimental.symbolic_shapes import SymNode
|
|
assert isinstance(node, SymNode)
|
|
# This field MUST be named node; C++ binding code assumes that this
|
|
# class has a field named node that stores SymNode
|
|
self.node = node
|
|
|
|
def __bool__(self):
|
|
return self.node.bool_()
|
|
|
|
def __int__(self):
|
|
return self.node.int_()
|
|
|
|
# Magic methods installed by torch.fx.experimental.symbolic_shapes
|
|
|
|
def __sym_float__(self):
|
|
...
|
|
|
|
def __repr__(self):
|
|
return self.node.str()
|
|
|
|
# For BC; direct access of node is OK too
|
|
def get_pyobj(self):
|
|
return self.node
|
|
|
|
class SymFloat:
|
|
"""
|
|
Like an float (including magic methods), but redirects all operations on the
|
|
wrapped node. This is used in particular to symbolically record operations
|
|
in the symbolic shape workflow.
|
|
"""
|
|
|
|
def __init__(self, node):
|
|
from torch.fx.experimental.symbolic_shapes import SymNode
|
|
assert isinstance(node, SymNode)
|
|
# This field MUST be named node; C++ binding code assumes that this
|
|
# class has a field named node that stores SymNode
|
|
self.node = node
|
|
|
|
def __bool__(self):
|
|
return self.node.bool_()
|
|
|
|
# Magic methods installed by torch.fx.experimental.symbolic_shapes
|
|
|
|
def __sym_int__(self):
|
|
...
|
|
|
|
def __repr__(self):
|
|
return self.node.str()
|
|
|
|
# For BC; direct access of node is OK too
|
|
def get_pyobj(self):
|
|
return self.node
|
|
|
|
# Check to see if we can load C extensions, and if not provide some guidance
|
|
# on what the problem might be.
|
|
try:
|
|
# _initExtension is chosen (arbitrarily) as a sentinel.
|
|
from torch._C import _initExtension
|
|
except ImportError:
|
|
import torch._C as _C_for_compiled_check
|
|
|
|
# The __file__ check only works for Python 3.7 and above.
|
|
if sys.version_info >= (3, 7) and _C_for_compiled_check.__file__ is None:
|
|
raise ImportError(textwrap.dedent('''
|
|
Failed to load PyTorch C extensions:
|
|
It appears that PyTorch has loaded the `torch/_C` folder
|
|
of the PyTorch repository rather than the C extensions which
|
|
are expected in the `torch._C` namespace. This can occur when
|
|
using the `install` workflow. e.g.
|
|
$ python setup.py install && python -c "import torch"
|
|
|
|
This error can generally be solved using the `develop` workflow
|
|
$ python setup.py develop && python -c "import torch" # This should succeed
|
|
or by running Python from a different directory.
|
|
''').strip()) from None
|
|
raise # If __file__ is not None the cause is unknown, so just re-raise.
|
|
|
|
for name in dir(_C):
|
|
if name[0] != '_' and not name.endswith('Base'):
|
|
__all__.append(name)
|
|
obj = getattr(_C, name)
|
|
if (isinstance(obj, Callable) or inspect.isclass(obj)): # type: ignore[arg-type]
|
|
if (obj.__module__ != 'torch'):
|
|
# TODO: fix their module from C++ side
|
|
if name not in ['DisableTorchFunction', 'Generator']:
|
|
obj.__module__ = 'torch'
|
|
|
|
if not TYPE_CHECKING:
|
|
# issue 38137 and python issue 43367. Submodules of a C extension are
|
|
# non-standard, and attributes of those submodules cannot be pickled since
|
|
# pickle expect to be able to import them as "from _C.sub import attr"
|
|
# which fails with "_C is not a package
|
|
for attr in dir(_C):
|
|
candidate = getattr(_C, attr)
|
|
if type(candidate) is type(_C):
|
|
# submodule
|
|
if f'torch._C.{attr}' not in sys.modules:
|
|
sys.modules[f'torch._C.{attr}'] = candidate
|
|
|
|
|
|
################################################################################
|
|
# Define basic utilities
|
|
################################################################################
|
|
|
|
|
|
def typename(o):
|
|
if isinstance(o, torch.Tensor):
|
|
return o.type()
|
|
|
|
module = ''
|
|
class_name = ''
|
|
if hasattr(o, '__module__') and o.__module__ != 'builtins' \
|
|
and o.__module__ != '__builtin__' and o.__module__ is not None:
|
|
module = o.__module__ + '.'
|
|
|
|
if hasattr(o, '__qualname__'):
|
|
class_name = o.__qualname__
|
|
elif hasattr(o, '__name__'):
|
|
class_name = o.__name__
|
|
else:
|
|
class_name = o.__class__.__name__
|
|
|
|
return module + class_name
|
|
|
|
|
|
def is_tensor(obj):
|
|
r"""Returns True if `obj` is a PyTorch tensor.
|
|
|
|
Note that this function is simply doing ``isinstance(obj, Tensor)``.
|
|
Using that ``isinstance`` check is better for typechecking with mypy,
|
|
and more explicit - so it's recommended to use that instead of
|
|
``is_tensor``.
|
|
|
|
Args:
|
|
obj (Object): Object to test
|
|
Example::
|
|
|
|
>>> x=torch.tensor([1,2,3])
|
|
>>> torch.is_tensor(x)
|
|
True
|
|
|
|
"""
|
|
return isinstance(obj, torch.Tensor)
|
|
|
|
|
|
def is_storage(obj):
|
|
r"""Returns True if `obj` is a PyTorch storage object.
|
|
|
|
Args:
|
|
obj (Object): Object to test
|
|
"""
|
|
return type(obj) in _storage_classes
|
|
|
|
|
|
def set_default_tensor_type(t):
|
|
r"""Sets the default ``torch.Tensor`` type to floating point tensor type
|
|
``t``. This type will also be used as default floating point type for
|
|
type inference in :func:`torch.tensor`.
|
|
|
|
The default floating point tensor type is initially ``torch.FloatTensor``.
|
|
|
|
Args:
|
|
t (type or string): the floating point tensor type or its name
|
|
|
|
Example::
|
|
|
|
>>> # xdoctest: +SKIP("Other tests may have changed the default type. Can we reset it?")
|
|
>>> torch.tensor([1.2, 3]).dtype # initial default for floating point is torch.float32
|
|
torch.float32
|
|
>>> torch.set_default_tensor_type(torch.DoubleTensor)
|
|
>>> torch.tensor([1.2, 3]).dtype # a new floating point tensor
|
|
torch.float64
|
|
|
|
"""
|
|
if isinstance(t, _string_classes):
|
|
t = _import_dotted_name(t)
|
|
_C._set_default_tensor_type(t)
|
|
|
|
|
|
def set_default_dtype(d):
|
|
r"""
|
|
|
|
Sets the default floating point dtype to :attr:`d`. Supports torch.float32
|
|
and torch.float64 as inputs. Other dtypes may be accepted without complaint
|
|
but are not supported and are unlikely to work as expected.
|
|
|
|
When PyTorch is initialized its default floating point dtype is torch.float32,
|
|
and the intent of set_default_dtype(torch.float64) is to facilitate NumPy-like
|
|
type inference. The default floating point dtype is used to:
|
|
|
|
1. Implicitly determine the default complex dtype. When the default floating point
|
|
type is float32 the default complex dtype is complex64, and when the default
|
|
floating point type is float64 the default complex type is complex128.
|
|
2. Infer the dtype for tensors constructed using Python floats or complex Python
|
|
numbers. See examples below.
|
|
3. Determine the result of type promotion between bool and integer tensors and
|
|
Python floats and complex Python numbers.
|
|
|
|
Args:
|
|
d (:class:`torch.dtype`): the floating point dtype to make the default.
|
|
Either torch.float32 or torch.float64.
|
|
|
|
Example:
|
|
>>> # xdoctest: +SKIP("Other tests may have changed the default type. Can we reset it?")
|
|
>>> # initial default for floating point is torch.float32
|
|
>>> # Python floats are interpreted as float32
|
|
>>> torch.tensor([1.2, 3]).dtype
|
|
torch.float32
|
|
>>> # initial default for floating point is torch.complex64
|
|
>>> # Complex Python numbers are interpreted as complex64
|
|
>>> torch.tensor([1.2, 3j]).dtype
|
|
torch.complex64
|
|
|
|
>>> torch.set_default_dtype(torch.float64)
|
|
|
|
>>> # Python floats are now interpreted as float64
|
|
>>> torch.tensor([1.2, 3]).dtype # a new floating point tensor
|
|
torch.float64
|
|
>>> # Complex Python numbers are now interpreted as complex128
|
|
>>> torch.tensor([1.2, 3j]).dtype # a new complex tensor
|
|
torch.complex128
|
|
|
|
"""
|
|
_C._set_default_dtype(d)
|
|
|
|
def use_deterministic_algorithms(mode, *, warn_only=False):
|
|
r""" Sets whether PyTorch operations must use "deterministic"
|
|
algorithms. That is, algorithms which, given the same input, and when
|
|
run on the same software and hardware, always produce the same output.
|
|
When enabled, operations will use deterministic algorithms when available,
|
|
and if only nondeterministic algorithms are available they will throw a
|
|
:class:`RuntimeError` when called.
|
|
|
|
.. note:: This setting alone is not always enough to make an application
|
|
reproducible. Refer to :ref:`reproducibility` for more information.
|
|
|
|
.. note:: :func:`torch.set_deterministic_debug_mode` offers an alternative
|
|
interface for this feature.
|
|
|
|
The following normally-nondeterministic operations will act
|
|
deterministically when ``mode=True``:
|
|
|
|
* :class:`torch.nn.Conv1d` when called on CUDA tensor
|
|
* :class:`torch.nn.Conv2d` when called on CUDA tensor
|
|
* :class:`torch.nn.Conv3d` when called on CUDA tensor
|
|
* :class:`torch.nn.ConvTranspose1d` when called on CUDA tensor
|
|
* :class:`torch.nn.ConvTranspose2d` when called on CUDA tensor
|
|
* :class:`torch.nn.ConvTranspose3d` when called on CUDA tensor
|
|
* :func:`torch.bmm` when called on sparse-dense CUDA tensors
|
|
* :func:`torch.Tensor.__getitem__` when attempting to differentiate a CPU tensor
|
|
and the index is a list of tensors
|
|
* :func:`torch.Tensor.index_put` with ``accumulate=False``
|
|
* :func:`torch.Tensor.index_put` with ``accumulate=True`` when called on a CPU
|
|
tensor
|
|
* :func:`torch.Tensor.put_` with ``accumulate=True`` when called on a CPU
|
|
tensor
|
|
* :func:`torch.Tensor.scatter_add_` when called on a CUDA tensor
|
|
* :func:`torch.gather` when called on a CUDA tensor that requires grad
|
|
* :func:`torch.index_add` when called on CUDA tensor
|
|
* :func:`torch.index_select` when attempting to differentiate a CUDA tensor
|
|
* :func:`torch.repeat_interleave` when attempting to differentiate a CUDA tensor
|
|
* :func:`torch.Tensor.index_copy` when called on a CPU or CUDA tensor
|
|
|
|
The following normally-nondeterministic operations will throw a
|
|
:class:`RuntimeError` when ``mode=True``:
|
|
|
|
* :class:`torch.nn.AvgPool3d` when attempting to differentiate a CUDA tensor
|
|
* :class:`torch.nn.AdaptiveAvgPool2d` when attempting to differentiate a CUDA tensor
|
|
* :class:`torch.nn.AdaptiveAvgPool3d` when attempting to differentiate a CUDA tensor
|
|
* :class:`torch.nn.MaxPool3d` when attempting to differentiate a CUDA tensor
|
|
* :class:`torch.nn.AdaptiveMaxPool2d` when attempting to differentiate a CUDA tensor
|
|
* :class:`torch.nn.FractionalMaxPool2d` when attempting to differentiate a CUDA tensor
|
|
* :class:`torch.nn.FractionalMaxPool3d` when attempting to differentiate a CUDA tensor
|
|
* :class:`torch.nn.MaxUnpool1d`
|
|
* :class:`torch.nn.MaxUnpool2d`
|
|
* :class:`torch.nn.MaxUnpool3d`
|
|
* :func:`torch.nn.functional.interpolate` when attempting to differentiate a CUDA tensor
|
|
and one of the following modes is used:
|
|
|
|
- ``linear``
|
|
- ``bilinear``
|
|
- ``bicubic``
|
|
- ``trilinear``
|
|
|
|
* :class:`torch.nn.ReflectionPad1d` when attempting to differentiate a CUDA tensor
|
|
* :class:`torch.nn.ReflectionPad2d` when attempting to differentiate a CUDA tensor
|
|
* :class:`torch.nn.ReflectionPad3d` when attempting to differentiate a CUDA tensor
|
|
* :class:`torch.nn.ReplicationPad1d` when attempting to differentiate a CUDA tensor
|
|
* :class:`torch.nn.ReplicationPad2d` when attempting to differentiate a CUDA tensor
|
|
* :class:`torch.nn.ReplicationPad3d` when attempting to differentiate a CUDA tensor
|
|
* :class:`torch.nn.NLLLoss` when called on a CUDA tensor
|
|
* :class:`torch.nn.CTCLoss` when attempting to differentiate a CUDA tensor
|
|
* :class:`torch.nn.EmbeddingBag` when attempting to differentiate a CUDA tensor when
|
|
``mode='max'``
|
|
* :func:`torch.Tensor.put_` when ``accumulate=False``
|
|
* :func:`torch.Tensor.put_` when ``accumulate=True`` and called on a CUDA tensor
|
|
* :func:`torch.histc` when called on a CUDA tensor
|
|
* :func:`torch.bincount` when called on a CUDA tensor
|
|
* :func:`torch.kthvalue` with called on a CUDA tensor
|
|
* :func:`torch.median` with indices output when called on a CUDA tensor
|
|
* :func:`torch.nn.functional.grid_sample` when attempting to differentiate a CUDA tensor
|
|
* :func:`torch.cumsum` when called on a CUDA tensor when dtype is floating point or complex
|
|
|
|
A handful of CUDA operations are nondeterministic if the CUDA version is
|
|
10.2 or greater, unless the environment variable ``CUBLAS_WORKSPACE_CONFIG=:4096:8``
|
|
or ``CUBLAS_WORKSPACE_CONFIG=:16:8`` is set. See the CUDA documentation for more
|
|
details: `<https://docs.nvidia.com/cuda/cublas/index.html#cublasApi_reproducibility>`_
|
|
If one of these environment variable configurations is not set, a :class:`RuntimeError`
|
|
will be raised from these operations when called with CUDA tensors:
|
|
|
|
* :func:`torch.mm`
|
|
* :func:`torch.mv`
|
|
* :func:`torch.bmm`
|
|
|
|
Note that deterministic operations tend to have worse performance than
|
|
nondeterministic operations.
|
|
|
|
.. note::
|
|
|
|
This flag does not detect or prevent nondeterministic behavior caused
|
|
by calling an inplace operation on a tensor with an internal memory
|
|
overlap or by giving such a tensor as the :attr:`out` argument for an
|
|
operation. In these cases, multiple writes of different data may target
|
|
a single memory location, and the order of writes is not guaranteed.
|
|
|
|
Args:
|
|
mode (:class:`bool`): If True, makes potentially nondeterministic
|
|
operations switch to a deterministic algorithm or throw a runtime
|
|
error. If False, allows nondeterministic operations.
|
|
|
|
Keyword args:
|
|
warn_only (:class:`bool`, optional): If True, operations that do not
|
|
have a deterministic implementation will throw a warning instead of
|
|
an error. Default: ``False``
|
|
|
|
Example::
|
|
|
|
>>> torch.use_deterministic_algorithms(True)
|
|
|
|
# Forward mode nondeterministic error
|
|
>>> # xdoctest: +SKIP
|
|
>>> torch.randn(10, device='cuda').kthvalue(0)
|
|
...
|
|
RuntimeError: kthvalue CUDA does not have a deterministic implementation...
|
|
|
|
# Backward mode nondeterministic error
|
|
>>> torch.nn.AvgPool3d(1)(torch.randn(3, 4, 5, 6, requires_grad=True).cuda()).sum().backward()
|
|
...
|
|
RuntimeError: avg_pool3d_backward_cuda does not have a deterministic implementation...
|
|
"""
|
|
_C._set_deterministic_algorithms(mode, warn_only=warn_only)
|
|
|
|
def are_deterministic_algorithms_enabled():
|
|
r"""Returns True if the global deterministic flag is turned on. Refer to
|
|
:func:`torch.use_deterministic_algorithms` documentation for more details.
|
|
"""
|
|
return _C._get_deterministic_algorithms()
|
|
|
|
def is_deterministic_algorithms_warn_only_enabled():
|
|
r"""Returns True if the global deterministic flag is set to warn only.
|
|
Refer to :func:`torch.use_deterministic_algorithms` documentation for more
|
|
details.
|
|
"""
|
|
return _C._get_deterministic_algorithms_warn_only()
|
|
|
|
def set_deterministic_debug_mode(debug_mode: Union[builtins.int, str]) -> None:
|
|
r"""Sets the debug mode for deterministic operations.
|
|
|
|
.. note:: This is an alternative interface for
|
|
:func:`torch.use_deterministic_algorithms`. Refer to that function's
|
|
documentation for details about affected operations.
|
|
|
|
Args:
|
|
debug_mode(str or int): If "default" or 0, don't error or warn on
|
|
nondeterministic operations. If "warn" or 1, warn on
|
|
nondeterministic operations. If "error" or 2, error on
|
|
nondeterministic operations.
|
|
"""
|
|
|
|
# NOTE: builtins.int is used here because int in this scope resolves
|
|
# to torch.int
|
|
if not isinstance(debug_mode, (builtins.int, str)):
|
|
raise TypeError(f'debug_mode must be str or int, but got {type(debug_mode)}')
|
|
|
|
if isinstance(debug_mode, str):
|
|
if debug_mode == 'default':
|
|
debug_mode = 0
|
|
elif debug_mode == 'warn':
|
|
debug_mode = 1
|
|
elif debug_mode == 'error':
|
|
debug_mode = 2
|
|
else:
|
|
raise RuntimeError(
|
|
'invalid value of debug_mode, expected one of `default`, '
|
|
f'`warn`, `error`, but got {debug_mode}')
|
|
|
|
if debug_mode == 0:
|
|
_C._set_deterministic_algorithms(False)
|
|
elif debug_mode == 1:
|
|
_C._set_deterministic_algorithms(True, warn_only=True)
|
|
elif debug_mode == 2:
|
|
_C._set_deterministic_algorithms(True)
|
|
else:
|
|
raise RuntimeError(
|
|
'invalid value of debug_mode, expected 0, 1, or 2, '
|
|
f'but got {debug_mode}')
|
|
|
|
def get_deterministic_debug_mode() -> builtins.int:
|
|
r"""Returns the current value of the debug mode for deterministic
|
|
operations. Refer to :func:`torch.set_deterministic_debug_mode`
|
|
documentation for more details.
|
|
"""
|
|
|
|
if _C._get_deterministic_algorithms():
|
|
if _C._get_deterministic_algorithms_warn_only():
|
|
return 1
|
|
else:
|
|
return 2
|
|
else:
|
|
return 0
|
|
|
|
def get_float32_matmul_precision() -> builtins.str:
|
|
r"""Returns the current value of float32 matrix multiplication precision. Refer to
|
|
:func:`torch.set_float32_matmul_precision` documentation for more details.
|
|
"""
|
|
return _C._get_float32_matmul_precision()
|
|
|
|
def set_float32_matmul_precision(precision):
|
|
r"""Sets the internal precision of float32 matrix multiplications.
|
|
|
|
Running float32 matrix multiplications in lower precision may significantly increase
|
|
performance, and in some programs the loss of precision has a negligible impact.
|
|
|
|
Supports three settings:
|
|
|
|
* "highest", float32 matrix multiplications use the float32 datatype for
|
|
internal computations.
|
|
* "high", float32 matrix multiplications use the TensorFloat32 or bfloat16_3x
|
|
datatypes for internal computations, if fast matrix multiplication algorithms
|
|
using those datatypes internally are available. Otherwise float32
|
|
matrix multiplications are computed as if the precision is "highest".
|
|
* "medium", float32 matrix multiplications use the bfloat16 datatype for
|
|
internal computations, if a fast matrix multiplication algorithm
|
|
using that datatype internally is available. Otherwise float32
|
|
matrix multiplications are computed as if the precision is "high".
|
|
|
|
.. note::
|
|
|
|
This does not change the output dtype of float32 matrix multiplications,
|
|
it controls how the internal computation of the matrix multiplication is performed.
|
|
|
|
.. note::
|
|
|
|
This does not change the precision of convolution operations. Other flags,
|
|
like `torch.backends.cudnn.allow_tf32`, may control the precision of convolution
|
|
operations.
|
|
|
|
.. note::
|
|
|
|
This flag currently only affects one native device type: CUDA.
|
|
If "high" or "medium" are set then the TensorFloat32 datatype will be used
|
|
when computing float32 matrix multiplications, equivalent to setting
|
|
`torch.backends.cuda.matmul.allow_tf32 = True`. When "highest" (the default)
|
|
is set then the float32 datatype is used for internal computations, equivalent
|
|
to setting `torch.backends.cuda.matmul.allow_tf32 = False`.
|
|
|
|
Args:
|
|
precision(str): can be set to "highest" (default), "high", or "medium" (see above).
|
|
|
|
"""
|
|
_C._set_float32_matmul_precision(precision)
|
|
|
|
def set_warn_always(b):
|
|
r"""When this flag is False (default) then some PyTorch warnings may only
|
|
appear once per process. This helps avoid excessive warning information.
|
|
Setting it to True causes these warnings to always appear, which may be
|
|
helpful when debugging.
|
|
|
|
Args:
|
|
b (:class:`bool`): If True, force warnings to always be emitted
|
|
If False, set to the default behaviour
|
|
"""
|
|
_C._set_warnAlways(b)
|
|
|
|
def is_warn_always_enabled():
|
|
r"""Returns True if the global warn_always flag is turned on. Refer to
|
|
:func:`torch.set_warn_always` documentation for more details.
|
|
"""
|
|
return _C._get_warnAlways()
|
|
|
|
################################################################################
|
|
# Define numeric constants
|
|
################################################################################
|
|
|
|
# For Python Array API (https://data-apis.org/array-api/latest/API_specification/constants.html) and
|
|
# NumPy consistency (https://numpy.org/devdocs/reference/constants.html)
|
|
from math import e , nan , inf , pi
|
|
__all__.extend(['e', 'pi', 'nan', 'inf'])
|
|
|
|
################################################################################
|
|
# Define Storage and Tensor classes
|
|
################################################################################
|
|
|
|
from ._tensor import Tensor
|
|
from .storage import _StorageBase, TypedStorage, _LegacyStorage, UntypedStorage
|
|
|
|
# NOTE: New <type>Storage classes should never be added. When adding a new
|
|
# dtype, use torch.storage.TypedStorage directly.
|
|
|
|
class ByteStorage(_LegacyStorage):
|
|
@classproperty
|
|
def dtype(self):
|
|
return torch.uint8
|
|
|
|
class DoubleStorage(_LegacyStorage):
|
|
@classproperty
|
|
def dtype(self):
|
|
return torch.double
|
|
|
|
class FloatStorage(_LegacyStorage):
|
|
@classproperty
|
|
def dtype(self):
|
|
return torch.float
|
|
|
|
class HalfStorage(_LegacyStorage):
|
|
@classproperty
|
|
def dtype(self):
|
|
return torch.half
|
|
|
|
class LongStorage(_LegacyStorage):
|
|
@classproperty
|
|
def dtype(self):
|
|
return torch.long
|
|
|
|
class IntStorage(_LegacyStorage):
|
|
@classproperty
|
|
def dtype(self):
|
|
return torch.int
|
|
|
|
class ShortStorage(_LegacyStorage):
|
|
@classproperty
|
|
def dtype(self):
|
|
return torch.short
|
|
|
|
class CharStorage(_LegacyStorage):
|
|
@classproperty
|
|
def dtype(self):
|
|
return torch.int8
|
|
|
|
class BoolStorage(_LegacyStorage):
|
|
@classproperty
|
|
def dtype(self):
|
|
return torch.bool
|
|
|
|
class BFloat16Storage(_LegacyStorage):
|
|
@classproperty
|
|
def dtype(self):
|
|
return torch.bfloat16
|
|
|
|
class ComplexDoubleStorage(_LegacyStorage):
|
|
@classproperty
|
|
def dtype(self):
|
|
return torch.cdouble
|
|
|
|
class ComplexFloatStorage(_LegacyStorage):
|
|
@classproperty
|
|
def dtype(self):
|
|
return torch.cfloat
|
|
|
|
class QUInt8Storage(_LegacyStorage):
|
|
@classproperty
|
|
def dtype(self):
|
|
return torch.quint8
|
|
|
|
class QInt8Storage(_LegacyStorage):
|
|
@classproperty
|
|
def dtype(self):
|
|
return torch.qint8
|
|
|
|
class QInt32Storage(_LegacyStorage):
|
|
@classproperty
|
|
def dtype(self):
|
|
return torch.qint32
|
|
|
|
class QUInt4x2Storage(_LegacyStorage):
|
|
@classproperty
|
|
def dtype(self):
|
|
return torch.quint4x2
|
|
|
|
class QUInt2x4Storage(_LegacyStorage):
|
|
@classproperty
|
|
def dtype(self):
|
|
return torch.quint2x4
|
|
|
|
_storage_classes = {
|
|
UntypedStorage, DoubleStorage, FloatStorage, LongStorage, IntStorage,
|
|
ShortStorage, CharStorage, ByteStorage, HalfStorage, BoolStorage,
|
|
QUInt8Storage, QInt8Storage, QInt32Storage, BFloat16Storage,
|
|
ComplexFloatStorage, ComplexDoubleStorage, QUInt4x2Storage, QUInt2x4Storage,
|
|
TypedStorage
|
|
}
|
|
|
|
# The _tensor_classes set is initialized by the call to _C._initialize_tensor_type_bindings()
|
|
_tensor_classes: Set[Type] = set()
|
|
|
|
# If you edit these imports, please update torch/__init__.py.in as well
|
|
from .random import set_rng_state, get_rng_state, manual_seed, initial_seed, seed
|
|
from .serialization import save, load
|
|
from ._tensor_str import set_printoptions
|
|
|
|
################################################################################
|
|
# Initialize extension
|
|
################################################################################
|
|
|
|
def manager_path():
|
|
if platform.system() == 'Windows' or sys.executable == 'torch_deploy':
|
|
return b""
|
|
path = get_file_path('torch', 'bin', 'torch_shm_manager')
|
|
prepare_multiprocessing_environment(get_file_path('torch'))
|
|
if not os.path.exists(path):
|
|
raise RuntimeError("Unable to find torch_shm_manager at " + path)
|
|
return path.encode('utf-8')
|
|
|
|
from torch.amp import autocast
|
|
|
|
# Shared memory manager needs to know the exact location of manager executable
|
|
_C._initExtension(manager_path())
|
|
del manager_path
|
|
|
|
# Appease the type checker: it can't deal with direct setting of globals().
|
|
# Note that we will see "too many" functions when reexporting this way; there
|
|
# is not a good way to fix this problem. Perhaps, try to redesign VariableFunctions
|
|
# so that this import is good enough
|
|
if TYPE_CHECKING:
|
|
# Some type signatures pulled in from _VariableFunctions here clash with
|
|
# signatures already imported. For now these clashes are ignored; see
|
|
# PR #43339 for details.
|
|
from torch._C._VariableFunctions import * # type: ignore[misc] # noqa: F403
|
|
|
|
# Ops not to be exposed in `torch` namespace,
|
|
# mostly helper ops.
|
|
PRIVATE_OPS = (
|
|
'unique_dim',
|
|
)
|
|
|
|
for name in dir(_C._VariableFunctions):
|
|
if name.startswith('__') or name in PRIVATE_OPS:
|
|
continue
|
|
obj = getattr(_C._VariableFunctions, name)
|
|
obj.__module__ = 'torch'
|
|
globals()[name] = obj
|
|
if not name.startswith("_"):
|
|
__all__.append(name)
|
|
|
|
################################################################################
|
|
# Import interface functions defined in Python
|
|
################################################################################
|
|
|
|
# needs to be after the above ATen bindings so we can overwrite from Python side
|
|
from .functional import * # noqa: F403
|
|
|
|
|
|
################################################################################
|
|
# Remove unnecessary members
|
|
################################################################################
|
|
|
|
del _StorageBase
|
|
del _LegacyStorage
|
|
|
|
################################################################################
|
|
# Define _assert
|
|
################################################################################
|
|
|
|
# needs to be before the submodule imports to avoid circular dependencies
|
|
def _assert(condition, message):
|
|
r"""A wrapper around Python's assert which is symbolically traceable.
|
|
"""
|
|
from .overrides import has_torch_function, handle_torch_function
|
|
|
|
if type(condition) is not torch.Tensor and has_torch_function((condition,)):
|
|
return handle_torch_function(_assert, (condition,), condition, message)
|
|
assert condition, message
|
|
|
|
################################################################################
|
|
# Import most common subpackages
|
|
################################################################################
|
|
|
|
# Use the redundant form so that type checkers know that these are a part of
|
|
# the public API. The "regular" import lines are there solely for the runtime
|
|
# side effect of adding to the imported module's members for other users.
|
|
from torch import cuda as cuda
|
|
from torch import cpu as cpu
|
|
from torch import autograd as autograd
|
|
from torch.autograd import (
|
|
no_grad as no_grad,
|
|
enable_grad as enable_grad,
|
|
set_grad_enabled as set_grad_enabled,
|
|
inference_mode as inference_mode,
|
|
)
|
|
from torch import fft as fft
|
|
from torch import futures as futures
|
|
from torch import nested as nested
|
|
from torch import nn as nn
|
|
from torch.signal import windows as windows
|
|
from torch import optim as optim
|
|
import torch.optim._multi_tensor
|
|
from torch import multiprocessing as multiprocessing
|
|
from torch import sparse as sparse
|
|
from torch import special as special
|
|
import torch.utils.backcompat
|
|
from torch import onnx as onnx
|
|
from torch import jit as jit
|
|
from torch import linalg as linalg
|
|
from torch import hub as hub
|
|
from torch import random as random
|
|
from torch import distributions as distributions
|
|
from torch import testing as testing
|
|
import torch.backends.cuda
|
|
import torch.backends.mps
|
|
import torch.backends.cudnn
|
|
import torch.backends.mkl
|
|
import torch.backends.mkldnn
|
|
import torch.backends.openmp
|
|
import torch.backends.quantized
|
|
import torch.utils.data
|
|
from torch import __config__ as __config__
|
|
from torch import __future__ as __future__
|
|
from torch import profiler as profiler
|
|
|
|
# Quantized, sparse, AO, etc. should be last to get imported, as nothing
|
|
# is expected to depend on them.
|
|
from torch import ao as ao
|
|
# nn.quant* depends on ao -- so should be after those.
|
|
import torch.nn.quantizable
|
|
import torch.nn.quantized
|
|
import torch.nn.qat
|
|
import torch.nn.intrinsic
|
|
|
|
_C._init_names(list(torch._storage_classes))
|
|
|
|
# attach docstrings to torch and tensor functions
|
|
from . import _torch_docs, _tensor_docs, _storage_docs
|
|
del _torch_docs, _tensor_docs, _storage_docs
|
|
|
|
|
|
def compiled_with_cxx11_abi():
|
|
r"""Returns whether PyTorch was built with _GLIBCXX_USE_CXX11_ABI=1"""
|
|
return _C._GLIBCXX_USE_CXX11_ABI
|
|
|
|
|
|
# Import the ops "namespace"
|
|
from torch._ops import ops
|
|
from torch._classes import classes
|
|
|
|
# quantization depends on torch.fx
|
|
# Import quantization
|
|
from torch import quantization as quantization
|
|
|
|
# Import the quasi random sampler
|
|
from torch import quasirandom as quasirandom
|
|
|
|
# If you are seeing this, it means that this call site was not checked if
|
|
# the memory format could be preserved, and it was switched to old default
|
|
# behaviour of contiguous
|
|
legacy_contiguous_format = contiguous_format
|
|
|
|
# Register fork handler to initialize OpenMP in child processes (see gh-28389)
|
|
from torch.multiprocessing._atfork import register_after_fork
|
|
register_after_fork(torch.get_num_threads)
|
|
del register_after_fork
|
|
|
|
# Import tools that require fully imported torch (for applying
|
|
# torch.jit.script as a decorator, for instance):
|
|
from ._lobpcg import lobpcg as lobpcg
|
|
|
|
from ._vmap_internals import vmap as vmap
|
|
|
|
# These were previously defined in native_functions.yaml and appeared on the
|
|
# `torch` namespace, but we moved them to c10 dispatch to facilitate custom
|
|
# class usage. We add these lines here to preserve backward compatibility.
|
|
quantized_lstm = torch.ops.aten.quantized_lstm
|
|
quantized_gru = torch.ops.aten.quantized_gru
|
|
|
|
from torch.utils.dlpack import from_dlpack, to_dlpack
|
|
|
|
# Import experimental masked operations support. See
|
|
# [RFC-0016](https://github.com/pytorch/rfcs/pull/27) for more
|
|
# information.
|
|
from . import masked
|
|
|
|
# Import removed ops with error message about removal
|
|
from ._linalg_utils import ( # type: ignore[misc]
|
|
matrix_rank,
|
|
eig,
|
|
solve,
|
|
lstsq,
|
|
)
|
|
|
|
def _register_device_module(device_type, module):
|
|
r"""Register an external runtime module of the specific :attr:`device_type`
|
|
supported by torch.
|
|
|
|
After the :attr:`module` is registered correctly, the user can refer
|
|
the external runtime module as part of torch with attribute torch.xxx.
|
|
"""
|
|
# Make sure the device_type represent a supported device type for torch.
|
|
device_type = torch.device(device_type).type
|
|
m = sys.modules[__name__]
|
|
if hasattr(m, device_type):
|
|
raise RuntimeError("The runtime module of '{}' has already "
|
|
"been registered with '{}'".format(device_type, getattr(m, device_type)))
|
|
setattr(m, device_type, module)
|
|
torch_module_name = '.'.join([__name__, device_type])
|
|
sys.modules[torch_module_name] = module
|
|
|
|
# expose return_types
|
|
from . import return_types
|
|
from . import library
|
|
if not TYPE_CHECKING:
|
|
from . import _meta_registrations
|
|
|
|
# Enable CUDA Sanitizer
|
|
if 'TORCH_CUDA_SANITIZER' in os.environ:
|
|
import torch.cuda._sanitizer as csan
|
|
|
|
csan.enable_cuda_sanitizer()
|
|
|
|
# Populate magic methods on SymInt and SymFloat
|
|
import torch.fx.experimental.symbolic_shapes
|