mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
See strategy at PythonOpRegistrationTrampoline.cpp for the big picture. Along the way, I made OperatorHandle support == and hashing, and slightly changed the low level python_dispatch impl API to disallow empty strings for dispatch key, which had the knock on effect of requiring us to explicitly make sure we pass in CompositeImplicitAutograd if we would have passed in "" (I didn't apply this to the rest of the file because I'm lazy.) Test strategy is we delete the logic for preventing Python op registrations in torch from being skipped in a torchdeploy context and show CI still works. Signed-off-by: Edward Z. Yang <ezyang@fb.com> Pull Request resolved: https://github.com/pytorch/pytorch/pull/87162 Approved by: https://github.com/anjali411, https://github.com/bdhirsh
8435 lines
367 KiB
Python
8435 lines
367 KiB
Python
# -*- coding: utf-8 -*-
|
|
# Owner(s): ["module: tests"]
|
|
|
|
import torch
|
|
import torch.utils.data
|
|
import numpy as np
|
|
|
|
import contextlib
|
|
import gc
|
|
import io
|
|
import inspect
|
|
import itertools
|
|
import math
|
|
import random
|
|
import re
|
|
import copy
|
|
import os
|
|
import tempfile
|
|
import unittest
|
|
import warnings
|
|
import types
|
|
import pickle
|
|
import textwrap
|
|
import subprocess
|
|
import weakref
|
|
import sys
|
|
from torch._six import inf, nan, string_classes
|
|
from itertools import product, combinations, permutations
|
|
from functools import partial
|
|
from torch import multiprocessing as mp
|
|
from torch.testing import make_tensor
|
|
from torch.testing._internal.common_utils import (
|
|
TestCase, TEST_WITH_ROCM, run_tests,
|
|
IS_WINDOWS, IS_FILESYSTEM_UTF8_ENCODING, NO_MULTIPROCESSING_SPAWN,
|
|
IS_SANDCASTLE, IS_FBCODE, IS_REMOTE_GPU, load_tests, slowTest,
|
|
TEST_WITH_CROSSREF, skipIfTorchDynamo,
|
|
skipCUDAMemoryLeakCheckIf, BytesIOContext,
|
|
skipIfRocm, skipIfNoSciPy, TemporaryFileName, TemporaryDirectoryName,
|
|
wrapDeterministicFlagAPITest, DeterministicGuard, CudaSyncGuard,
|
|
skipIfNotRegistered, bytes_to_scalar, parametrize, skipIfMps, noncontiguous_like)
|
|
from multiprocessing.reduction import ForkingPickler
|
|
from torch.testing._internal.common_device_type import (
|
|
expectedFailureMeta,
|
|
expectedFailureXLA,
|
|
instantiate_device_type_tests,
|
|
onlyCUDA, onlyCPU,
|
|
dtypes, dtypesIfCUDA, dtypesIfCPU, deviceCountAtLeast,
|
|
skipMeta,
|
|
PYTORCH_CUDA_MEMCHECK, largeTensorTest, onlyNativeDeviceTypes,
|
|
get_all_device_types, skipXLA)
|
|
from typing import Tuple
|
|
import torch.backends.quantized
|
|
import torch.testing._internal.data
|
|
from torch.testing._internal.common_cuda import (
|
|
tf32_on_and_off, tf32_is_not_fp32, TEST_CUDNN)
|
|
from torch.testing._internal.common_dtype import (
|
|
floating_types_and, get_all_math_dtypes, all_types_and_complex_and, complex_types,
|
|
all_types_and, floating_types, floating_and_complex_types,
|
|
)
|
|
|
|
# Protects against includes accidentally setting the default dtype
|
|
assert torch.get_default_dtype() is torch.float32
|
|
|
|
# load_tests from torch.testing._internal.common_utils is used to automatically filter tests for
|
|
# sharding on sandcastle. This line silences flake warnings
|
|
load_tests = load_tests
|
|
|
|
AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32()
|
|
|
|
@contextlib.contextmanager
|
|
def torch_vital_set(value):
|
|
stash = None
|
|
if 'TORCH_VITAL' in os.environ:
|
|
stash = os.environ['TORCH_VITAL']
|
|
os.environ['TORCH_VITAL'] = value
|
|
try:
|
|
yield
|
|
finally:
|
|
if stash:
|
|
os.environ['TORCH_VITAL'] = stash
|
|
else:
|
|
del os.environ['TORCH_VITAL']
|
|
|
|
# Tests Vital Signs for Torch
|
|
# FIXME: document or deprecate whatever this is
|
|
class TestBasicVitalSigns(TestCase):
|
|
def test_basic_vitals(self):
|
|
with torch_vital_set(''):
|
|
self.assertFalse(torch.vitals_enabled())
|
|
with torch_vital_set('ON'):
|
|
self.assertTrue(torch.vitals_enabled())
|
|
|
|
def test_basic_vitals_read_write(self):
|
|
with torch_vital_set('ON'):
|
|
self.assertTrue(torch.vitals_enabled())
|
|
# This tests the code path of setting a vital
|
|
self.assertTrue(torch.set_vital('Dataloader', 'basic_unit_test', 'TEST_VALUE_STRING'))
|
|
self.assertIn('TEST_VALUE_STRING', torch.read_vitals())
|
|
self.assertIn('CUDA.used', torch.read_vitals())
|
|
|
|
def test_dataloader_vitals(self):
|
|
with torch_vital_set('ON'):
|
|
inps = torch.arange(10 * 5, dtype=torch.float32).view(10, 5)
|
|
tgts = torch.arange(10 * 5, dtype=torch.float32).view(10, 5)
|
|
dataset = torch.utils.data.TensorDataset(inps, tgts)
|
|
loader = torch.utils.data.DataLoader(dataset, batch_size=2)
|
|
self.assertIn('Dataloader.enabled\t\t True', torch.read_vitals())
|
|
|
|
# FIXME: document or deprecate whatever this is
|
|
class TestVitalSignsCuda(TestCase):
|
|
@onlyCUDA
|
|
def test_cuda_vitals_gpu_only(self, device):
|
|
with torch_vital_set('ON'):
|
|
self.assertIn('CUDA.used\t\t true', torch.read_vitals())
|
|
|
|
|
|
class TestTorchDeviceType(TestCase):
|
|
exact_dtype = True
|
|
|
|
# TODO: move all tensor creation to common ops
|
|
def _rand_shape(self, dim, min_size, max_size):
|
|
shape = []
|
|
for i in range(dim):
|
|
shape.append(random.randint(min_size, max_size))
|
|
return tuple(shape)
|
|
|
|
# Validates that mathematical constants are defined properly, as required by
|
|
# the Python Array API (https://data-apis.org/array-api/latest/API_specification/constants.html)
|
|
@onlyCPU
|
|
def test_constants(self, device):
|
|
self.assertIsInstance(torch.e, float)
|
|
self.assertEqual(torch.e, math.e, atol=0, rtol=0)
|
|
|
|
self.assertIsInstance(torch.pi, float)
|
|
self.assertEqual(torch.pi, math.pi, atol=0, rtol=0)
|
|
|
|
self.assertIsInstance(torch.nan, float)
|
|
self.assertEqual(torch.nan, math.nan, equal_nan=True)
|
|
|
|
self.assertIsInstance(torch.inf, float)
|
|
self.assertEqual(torch.inf, math.inf)
|
|
|
|
@onlyNativeDeviceTypes
|
|
@dtypes(torch.int8, torch.uint8, torch.int16, torch.int32, torch.int64,
|
|
torch.bool, torch.float32, torch.complex64, torch.float64,
|
|
torch.complex128)
|
|
def test_bytes_to_scalar(self, device, dtype):
|
|
def rand_byte():
|
|
if dtype == torch.bool:
|
|
return torch.randint(0, 2, ()).item()
|
|
else:
|
|
return torch.randint(0, 256, ()).item()
|
|
|
|
element_size = torch._utils._element_size(dtype)
|
|
|
|
for i in range(10):
|
|
bytes_list = [rand_byte() for _ in range(element_size)]
|
|
scalar = bytes_to_scalar(bytes_list, dtype, device)
|
|
self.assertEqual(scalar.storage().untyped().tolist(), bytes_list)
|
|
|
|
@dtypes(torch.int8, torch.uint8, torch.int16, torch.int32, torch.int64,
|
|
torch.bool, torch.float32, torch.complex64, torch.float64,
|
|
torch.complex128)
|
|
def test_storage(self, device, dtype):
|
|
v = make_tensor((3, 5), dtype=dtype, device=device, low=-9, high=9)
|
|
self.assertEqual(v.storage()[0], v[0][0])
|
|
self.assertEqual(v.storage()[14], v[2][4])
|
|
v_s = v.storage()
|
|
|
|
for el_num in range(v.numel()):
|
|
dim0 = el_num // v.size(1)
|
|
dim1 = el_num % v.size(1)
|
|
self.assertEqual(
|
|
v_s[el_num],
|
|
v[dim0][dim1])
|
|
|
|
v_s_byte = v.storage().untyped()
|
|
el_size = v.element_size()
|
|
|
|
for el_num in range(v.numel()):
|
|
start = el_num * el_size
|
|
end = start + el_size
|
|
dim0 = el_num // v.size(1)
|
|
dim1 = el_num % v.size(1)
|
|
self.assertEqual(
|
|
bytes_to_scalar(v_s_byte[start:end], dtype, device),
|
|
v[dim0][dim1])
|
|
|
|
@onlyNativeDeviceTypes
|
|
@dtypes(torch.int8, torch.uint8, torch.int16, torch.int32, torch.int64,
|
|
torch.bool, torch.float32, torch.complex64, torch.float64,
|
|
torch.complex128, torch.quint8, torch.qint8, torch.qint32,
|
|
torch.quint4x2)
|
|
def test_storage_setitem(self, device, dtype):
|
|
# Skip quantized dtypes for CUDA, since they're not supported
|
|
if torch.device(device).type == 'cuda':
|
|
if dtype in [torch.quint8, torch.qint8, torch.qint32, torch.quint4x2]:
|
|
return
|
|
|
|
storage_type_name = torch.storage._dtype_to_storage_type_map()[dtype]
|
|
if torch.device(device).type == 'cuda':
|
|
storage_type = eval('torch.cuda.' + storage_type_name)
|
|
else:
|
|
storage_type = eval('torch.' + storage_type_name)
|
|
|
|
N = 10
|
|
|
|
s = storage_type(N)
|
|
s[:] = 0
|
|
l = [0] * N
|
|
self.assertEqual(s, storage_type(l))
|
|
|
|
for i in range(N):
|
|
s[i] = i
|
|
l[i] = i
|
|
|
|
self.assertEqual(s, storage_type(l))
|
|
|
|
l[2:7] = [1] * 5
|
|
s[2:7] = 1
|
|
self.assertEqual(s, storage_type(l))
|
|
|
|
@onlyNativeDeviceTypes
|
|
@dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
|
|
def test_tensor_storage_type(self, device, dtype):
|
|
a = make_tensor((10,), dtype=dtype, device=device, low=-9, high=9)
|
|
|
|
module = torch.cuda if (torch.device(device).type == 'cuda') else torch
|
|
expected_storage_type = getattr(module, torch.storage._dtype_to_storage_type_map()[dtype])
|
|
|
|
self.assertEqual(a.storage_type(), expected_storage_type)
|
|
|
|
@onlyNativeDeviceTypes
|
|
@dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
|
|
def test_tensor_from_storage(self, device, dtype):
|
|
a = make_tensor((4, 5, 3), dtype=dtype, device=device, low=-9, high=9)
|
|
a_s = a.storage()
|
|
b = torch.tensor(a_s, device=device, dtype=dtype).reshape(a.size())
|
|
self.assertEqual(a, b)
|
|
c = torch.tensor(a_s.untyped(), device=device, dtype=dtype).reshape(a.size())
|
|
self.assertEqual(a, c)
|
|
|
|
for error_dtype in all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16):
|
|
if error_dtype == dtype:
|
|
continue
|
|
with self.assertRaisesRegex(RuntimeError, r'Expected a Storage of type'):
|
|
error_storage = a.to(error_dtype).storage()
|
|
torch.tensor(error_storage, device=device, dtype=dtype)
|
|
|
|
@onlyNativeDeviceTypes
|
|
@dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
|
|
def test_set_storage(self, device, dtype):
|
|
a = make_tensor((4, 5, 3), dtype=dtype, device=device, low=-9, high=9)
|
|
a_s = a.storage()
|
|
b = torch.tensor([], device=device, dtype=dtype).set_(a_s).reshape(a.size())
|
|
self.assertEqual(a, b)
|
|
c = torch.tensor([], device=device, dtype=dtype).set_(a_s.untyped()).reshape(a.size())
|
|
self.assertEqual(a, c)
|
|
|
|
for error_dtype in all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16):
|
|
if error_dtype == dtype:
|
|
continue
|
|
with self.assertRaisesRegex(RuntimeError, r'Expected a Storage of type'):
|
|
error_storage = a.to(error_dtype).storage()
|
|
b = torch.tensor([], device=device, dtype=dtype).set_(error_storage)
|
|
|
|
def _check_storage_meta(self, s, s_check):
|
|
self.assertTrue(
|
|
isinstance(s, (torch.UntypedStorage, torch.TypedStorage)) and
|
|
isinstance(s_check, type(s)),
|
|
(
|
|
's and s_check must both be one of UntypedStorage or '
|
|
'TypedStorage, but got'
|
|
f' {type(s).__name__} and {type(s_check).__name__}'))
|
|
|
|
self.assertEqual(s.device.type, 'meta')
|
|
self.assertEqual(s.nbytes(), s_check.nbytes())
|
|
self.assertEqual(s.size(), s_check.size())
|
|
self.assertEqual(s.data_ptr(), 0)
|
|
|
|
with self.assertRaisesRegex(NotImplementedError, r'Not available'):
|
|
s[0]
|
|
|
|
if isinstance(s, torch.TypedStorage):
|
|
self.assertEqual(s.dtype, s_check.dtype)
|
|
self._check_storage_meta(s.untyped(), s_check.untyped())
|
|
|
|
@onlyNativeDeviceTypes
|
|
@dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
|
|
def test_typed_storage_meta(self, device, dtype):
|
|
args_list = [
|
|
[],
|
|
[0],
|
|
[100],
|
|
[[1, 2, 3, 4, 5, 6]],
|
|
]
|
|
for args in args_list:
|
|
s_check = torch.TypedStorage(*args, dtype=dtype, device=device)
|
|
s = torch.TypedStorage(*args, dtype=dtype, device='meta')
|
|
self._check_storage_meta(s, s_check)
|
|
|
|
@onlyNativeDeviceTypes
|
|
def test_untyped_storage_meta(self, device):
|
|
args_list = [
|
|
[],
|
|
[0],
|
|
[100],
|
|
[[1, 2, 3, 4, 5, 6]],
|
|
]
|
|
for args in args_list:
|
|
s_check = torch.UntypedStorage(*args, device=device)
|
|
s = torch.UntypedStorage(*args, device='meta')
|
|
self._check_storage_meta(s, s_check)
|
|
|
|
@onlyNativeDeviceTypes
|
|
@dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
|
|
def test_storage_meta_from_tensor(self, device, dtype):
|
|
t_check = make_tensor((4, 5, 3), dtype=dtype, device=device, low=-9, high=9)
|
|
t = t_check.to('meta')
|
|
|
|
s_check = t_check.storage()
|
|
s = t.storage()
|
|
self._check_storage_meta(s, s_check)
|
|
|
|
@onlyCPU
|
|
@dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
|
|
def test_storage_meta_errors(self, device, dtype):
|
|
s0 = torch.TypedStorage([1, 2, 3, 4], device='meta', dtype=dtype)
|
|
|
|
with self.assertRaisesRegex(NotImplementedError, r'Cannot copy out'):
|
|
s0.cpu()
|
|
|
|
with self.assertRaisesRegex(RuntimeError, r'only available on CPU'):
|
|
s0._share_fd_cpu_()
|
|
|
|
with self.assertRaisesRegex(RuntimeError, r'only available on CPU'):
|
|
s0._share_filename_cpu_()
|
|
|
|
if torch.cuda.is_available():
|
|
with self.assertRaisesRegex(NotImplementedError, r'Cannot copy out'):
|
|
s0.cuda()
|
|
|
|
with self.assertRaisesRegex(RuntimeError, r'only available on CUDA'):
|
|
s0._share_cuda_()
|
|
|
|
with self.assertRaisesRegex(NotImplementedError, r'Cannot copy out'):
|
|
s0.pin_memory()
|
|
|
|
with self.assertRaisesRegex(RuntimeError, r'got unexpected device type'):
|
|
s0.resize_(10)
|
|
|
|
with self.assertRaisesRegex(RuntimeError, r'only available on CPU'):
|
|
s0.share_memory_()
|
|
|
|
with self.assertRaisesRegex(NotImplementedError, r'Not available'):
|
|
s0.tolist()
|
|
|
|
with tempfile.NamedTemporaryFile() as f:
|
|
with self.assertRaisesRegex(RuntimeError, r'Device not recognized'):
|
|
s0._write_file(f, True, True, s0.element_size())
|
|
|
|
for device in ['cpu', 'cuda'] if torch.cuda.is_available() else ['cpu']:
|
|
s1 = torch.TypedStorage([1, 2, 3, 4], device=device, dtype=dtype)
|
|
|
|
with self.assertRaisesRegex(NotImplementedError, r'Cannot copy out'):
|
|
s1.copy_(s0)
|
|
|
|
@onlyCUDA
|
|
def test_module_share_memory(self):
|
|
# Test fix for issue #80733
|
|
# See https://github.com/pytorch/pytorch/issues/80733
|
|
model = torch.nn.Linear(3, 1)
|
|
model_cuda = model.to('cuda')
|
|
model.share_memory()
|
|
|
|
@dtypes(torch.float32, torch.complex64)
|
|
def test_deepcopy(self, device, dtype):
|
|
from copy import deepcopy
|
|
a = torch.randn(5, 5, dtype=dtype, device=device)
|
|
b = torch.randn(5, 5, dtype=dtype, device=device)
|
|
c = a.view(25)
|
|
q = [a, [a.storage(), b.storage()], b, c]
|
|
w = deepcopy(q)
|
|
self.assertEqual(w[0], q[0], atol=0, rtol=0)
|
|
self.assertEqual(w[1][0], q[1][0], atol=0, rtol=0)
|
|
self.assertEqual(w[1][1], q[1][1], atol=0, rtol=0)
|
|
self.assertEqual(w[1], q[1], atol=0, rtol=0)
|
|
self.assertEqual(w[2], q[2], atol=0, rtol=0)
|
|
|
|
# Check that deepcopy preserves sharing
|
|
w[0].add_(1)
|
|
for i in range(a.numel()):
|
|
self.assertEqual(w[1][0][i], q[1][0][i] + 1)
|
|
self.assertEqual(w[3], c + 1)
|
|
w[2].sub_(1)
|
|
for i in range(a.numel()):
|
|
self.assertEqual(w[1][1][i], q[1][1][i] - 1)
|
|
|
|
# Check that deepcopy preserves attributes
|
|
a.foo = 3
|
|
self.assertEqual(deepcopy(a).foo, 3)
|
|
|
|
@dtypes(torch.float32, torch.complex64)
|
|
def test_deepcopy_scalar(self, device, dtype):
|
|
from copy import deepcopy
|
|
a = torch.tensor(5, dtype=dtype, device=device)
|
|
self.assertEqual(a.size(), deepcopy(a).size())
|
|
self.assertEqual(a, deepcopy(a))
|
|
|
|
def check_internal_mem_overlap(self, inplace_op, num_inputs,
|
|
dtype, device,
|
|
expected_failure=False):
|
|
if isinstance(inplace_op, str):
|
|
inplace_op = getattr(torch.Tensor, inplace_op)
|
|
input = torch.randn(1, dtype=dtype, device=device).expand(3, 3)
|
|
inputs = [input] + [torch.randn_like(input)
|
|
for i in range(num_inputs - 1)]
|
|
if not expected_failure:
|
|
with self.assertRaisesRegex(RuntimeError, 'single memory location'):
|
|
inplace_op(*inputs)
|
|
else:
|
|
with self.assertRaises(AssertionError):
|
|
with self.assertRaisesRegex(RuntimeError, 'single memory location'):
|
|
inplace_op(*inputs)
|
|
|
|
def unary_check_input_output_mem_overlap(self, data, sz, op,
|
|
expected_failure=False):
|
|
|
|
def _test(op, output, input):
|
|
output_exp = torch.empty_like(output)
|
|
op(input, out=output_exp)
|
|
self.assertEqual(op(input, out=output), output_exp, msg=op.__name__)
|
|
|
|
# output is identical to input:
|
|
_test(op, output=data[0:sz], input=data[0:sz])
|
|
# output and input are independent:
|
|
_test(op, output=data[0:sz], input=data[sz:2 * sz])
|
|
# output partially overlaps with input:
|
|
if not expected_failure:
|
|
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
|
|
_test(op, data[0:sz], data[1:sz + 1])
|
|
else:
|
|
with self.assertRaises(AssertionError):
|
|
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
|
|
_test(op, data[0:sz], data[1:sz + 1])
|
|
# output is transpose of input:
|
|
length = int(math.sqrt(sz))
|
|
input = data[:length**2].view([length, length])
|
|
out = input.t()
|
|
if not expected_failure:
|
|
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
|
|
_test(op, out, input)
|
|
else:
|
|
with self.assertRaises(AssertionError):
|
|
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
|
|
_test(op, out, input)
|
|
|
|
def ternary_check_input_output_mem_overlap(self, op, device,
|
|
expected_failure=False):
|
|
sz = 9
|
|
data = torch.randn(2 * sz, device=device)
|
|
other1 = torch.randn(sz, device=device)
|
|
other2 = torch.randn(sz, device=device)
|
|
|
|
self.unary_check_input_output_mem_overlap(
|
|
data, sz, lambda input, out:
|
|
op(input, other1.view(input.shape), other2.view(input.shape), out=out),
|
|
expected_failure=expected_failure)
|
|
|
|
self.unary_check_input_output_mem_overlap(
|
|
data, sz, lambda input, out:
|
|
op(other1.view(input.shape), input, other2.view(input.shape), out=out),
|
|
expected_failure=expected_failure)
|
|
|
|
self.unary_check_input_output_mem_overlap(
|
|
data, sz, lambda input, out:
|
|
op(other1.view(input.shape), other2.view(input.shape), input, out=out),
|
|
expected_failure=expected_failure)
|
|
|
|
def _select_broadcastable_dims(self, dims_full=None):
|
|
# select full dimensionality
|
|
if dims_full is None:
|
|
dims_full = []
|
|
ndims = random.randint(1, 4)
|
|
dims_full = [random.randint(1, 8) for _ in range(ndims)]
|
|
else:
|
|
ndims = len(dims_full)
|
|
|
|
# select actual dimensions for ops:
|
|
# larger: full ndims, individual sizes may be reduced
|
|
# smaller: possibly reduced ndims, sizes may be reduced
|
|
smaller_ndims = random.randint(1, ndims)
|
|
dims_small = []
|
|
dims_large = []
|
|
for i in range(ndims - 1, -1, -1):
|
|
j = random.randint(1, 3)
|
|
if j == 1: # no reduced singleton dimension
|
|
ds = dims_full[i]
|
|
dl = dims_full[i]
|
|
elif j == 2: # larger may have reduced singleton dimension
|
|
ds = dims_full[i]
|
|
dl = 1 if len(dims_small) < smaller_ndims else dims_full[i]
|
|
elif j == 3: # smaller may have reduced singleton dimension
|
|
ds = 1
|
|
dl = dims_full[i]
|
|
dims_large = [dl] + dims_large
|
|
if len(dims_small) < smaller_ndims:
|
|
dims_small = [ds] + dims_small
|
|
return (dims_small, dims_large, dims_full)
|
|
|
|
# collected tests of ops that used scalar_check in Declarations.cwrap for
|
|
# correctness
|
|
def test_scalar_check(self, device):
|
|
zero_d = torch.randn((), device=device)
|
|
one_d = torch.randn((1,), device=device)
|
|
|
|
# remainder
|
|
self.assertEqual((), torch.remainder(zero_d, zero_d).shape)
|
|
self.assertEqual((), torch.remainder(zero_d, 2).shape)
|
|
self.assertEqual((1,), torch.remainder(zero_d, one_d).shape)
|
|
self.assertEqual((1,), torch.remainder(one_d, zero_d).shape)
|
|
|
|
# fmod
|
|
self.assertEqual((), torch.fmod(zero_d, zero_d).shape)
|
|
self.assertEqual((), torch.fmod(zero_d, 2).shape)
|
|
self.assertEqual((1,), torch.fmod(zero_d, one_d).shape)
|
|
self.assertEqual((1,), torch.fmod(one_d, zero_d).shape)
|
|
|
|
# exp, cos, cosh, tan, atan, tanh, erf, erfc, reciprocal
|
|
self.assertEqual((), torch.exp(zero_d).shape)
|
|
self.assertEqual((), torch.cos(zero_d).shape)
|
|
self.assertEqual((), torch.cosh(zero_d).shape)
|
|
self.assertEqual((), torch.tan(zero_d).shape)
|
|
self.assertEqual((), torch.atan(zero_d).shape)
|
|
self.assertEqual((), torch.acosh(zero_d).shape)
|
|
self.assertEqual((), torch.asinh(zero_d).shape)
|
|
self.assertEqual((), torch.atanh(zero_d).shape)
|
|
self.assertEqual((), torch.tanh(zero_d).shape)
|
|
self.assertEqual((), torch.erf(zero_d).shape)
|
|
self.assertEqual((), torch.erfc(zero_d).shape)
|
|
self.assertEqual((), torch.reciprocal(zero_d).shape)
|
|
self.assertEqual((1,), torch.exp(one_d).shape)
|
|
self.assertEqual((1,), torch.cos(one_d).shape)
|
|
self.assertEqual((1,), torch.cosh(one_d).shape)
|
|
self.assertEqual((1,), torch.tan(one_d).shape)
|
|
self.assertEqual((1,), torch.atan(one_d).shape)
|
|
self.assertEqual((1,), torch.acosh(one_d).shape)
|
|
self.assertEqual((1,), torch.asinh(one_d).shape)
|
|
self.assertEqual((1,), torch.atanh(one_d).shape)
|
|
self.assertEqual((1,), torch.tanh(one_d).shape)
|
|
self.assertEqual((1,), torch.erf(one_d).shape)
|
|
self.assertEqual((1,), torch.erfc(one_d).shape)
|
|
self.assertEqual((1,), torch.reciprocal(one_d).shape)
|
|
|
|
# clamp
|
|
self.assertEqual((), torch.clamp(zero_d, min=0, max=1).shape)
|
|
self.assertEqual((), torch.clamp(zero_d, min=0).shape)
|
|
self.assertEqual((), torch.clamp(zero_d, max=1).shape)
|
|
self.assertEqual((1,), torch.clamp(one_d, min=0, max=1).shape)
|
|
self.assertEqual((1,), torch.clamp(one_d, min=0).shape)
|
|
self.assertEqual((1,), torch.clamp(one_d, max=1).shape)
|
|
|
|
# cumsum, cumprod, cummax, cummin
|
|
self.assertEqual((), torch.logcumsumexp(zero_d, 0).shape)
|
|
self.assertEqual((), torch.cumsum(zero_d, 0).shape)
|
|
self.assertEqual((), torch.cumprod(zero_d, 0).shape)
|
|
self.assertEqual((), torch.cummax(zero_d, 0)[0].shape)
|
|
self.assertEqual((), torch.cummin(zero_d, 0)[0].shape)
|
|
|
|
# sort, topk
|
|
self.assertEqual([(), ()], [x.shape for x in torch.sort(zero_d, 0, False)])
|
|
self.assertEqual([(), ()], [x.shape for x in torch.sort(zero_d, 0, True)])
|
|
self.assertEqual([(), ()], [x.shape for x in torch.topk(zero_d, 1, 0, False)])
|
|
self.assertEqual([(), ()], [x.shape for x in torch.topk(zero_d, 1, 0, True)])
|
|
|
|
# max, min
|
|
self.assertEqual((), torch.max(zero_d, zero_d).shape)
|
|
self.assertEqual((1,), torch.max(one_d, zero_d).shape)
|
|
self.assertEqual((1,), torch.max(zero_d, one_d).shape)
|
|
self.assertEqual((), torch.min(zero_d, zero_d).shape)
|
|
self.assertEqual((1,), torch.min(one_d, zero_d).shape)
|
|
self.assertEqual((1,), torch.min(zero_d, one_d).shape)
|
|
|
|
zero_d_int = torch.tensor(1, device=device)
|
|
one_d_int = torch.tensor([1], device=device)
|
|
|
|
# lshift, rshift
|
|
self.assertEqual((), (zero_d_int >> zero_d_int).shape)
|
|
self.assertEqual((), (zero_d_int >> 1).shape)
|
|
self.assertEqual((1,), (one_d_int >> zero_d_int).shape)
|
|
self.assertEqual((1,), (zero_d_int >> one_d_int).shape)
|
|
self.assertEqual((1,), (one_d_int >> 1).shape)
|
|
|
|
self.assertEqual((), (zero_d_int << zero_d_int).shape)
|
|
self.assertEqual((), (zero_d_int << 1).shape)
|
|
self.assertEqual((1,), (one_d_int << zero_d_int).shape)
|
|
self.assertEqual((1,), (zero_d_int << one_d_int).shape)
|
|
self.assertEqual((1,), (one_d_int << 1).shape)
|
|
|
|
# or
|
|
self.assertEqual((), (zero_d_int | zero_d_int).shape)
|
|
self.assertEqual((), (zero_d_int | 1).shape)
|
|
self.assertEqual((1,), (one_d_int | zero_d_int).shape)
|
|
self.assertEqual((1,), (zero_d_int | one_d_int).shape)
|
|
self.assertEqual((1,), (one_d_int | 1).shape)
|
|
|
|
# and
|
|
self.assertEqual((), (zero_d_int & zero_d_int).shape)
|
|
self.assertEqual((), (zero_d_int & 1).shape)
|
|
self.assertEqual((1,), (one_d_int & zero_d_int).shape)
|
|
self.assertEqual((1,), (zero_d_int & one_d_int).shape)
|
|
self.assertEqual((1,), (one_d_int & 1).shape)
|
|
|
|
# clone
|
|
self.assertEqual((), zero_d.clone().shape)
|
|
|
|
zero_d_bool = torch.tensor(True, device=device)
|
|
one_d_bool = torch.tensor([True], device=device)
|
|
|
|
# masked_select
|
|
self.assertEqual((1,), torch.masked_select(zero_d_bool, zero_d_bool).shape)
|
|
self.assertEqual((1,), torch.masked_select(zero_d_bool, one_d_bool).shape)
|
|
self.assertEqual((1,), torch.masked_select(one_d_bool, zero_d_bool).shape)
|
|
|
|
zero_d_uint8 = torch.tensor(1, dtype=torch.uint8, device=device)
|
|
one_d_uint8 = torch.tensor([1], dtype=torch.uint8, device=device)
|
|
|
|
with warnings.catch_warnings():
|
|
warnings.simplefilter("ignore")
|
|
self.assertEqual((1,), torch.masked_select(zero_d_uint8, zero_d_uint8).shape)
|
|
self.assertEqual((1,), torch.masked_select(zero_d_uint8, one_d_uint8).shape)
|
|
self.assertEqual((1,), torch.masked_select(one_d_uint8, zero_d_uint8).shape)
|
|
|
|
# mode
|
|
self.assertEqual([(), ()], [x.shape for x in torch.mode(zero_d, dim=0, keepdim=True)])
|
|
self.assertEqual([(), ()], [x.shape for x in torch.mode(zero_d, dim=0, keepdim=False)])
|
|
self.assertEqual([(1,), (1,)], [x.shape for x in torch.mode(one_d, dim=0, keepdim=True)])
|
|
self.assertEqual([(), ()], [x.shape for x in torch.mode(one_d, dim=0, keepdim=False)])
|
|
|
|
# max
|
|
self.assertEqual([(), ()], [x.shape for x in torch.max(zero_d, dim=0, keepdim=True)])
|
|
self.assertEqual([(), ()], [x.shape for x in torch.max(zero_d, dim=0, keepdim=False)])
|
|
self.assertEqual([(1,), (1,)], [x.shape for x in torch.max(one_d, dim=0, keepdim=True)])
|
|
self.assertEqual([(), ()], [x.shape for x in torch.max(one_d, dim=0, keepdim=False)])
|
|
|
|
# amax
|
|
self.assertEqual((), torch.amax(zero_d, dim=0, keepdim=True).shape)
|
|
self.assertEqual((), torch.amax(zero_d, dim=0, keepdim=False).shape)
|
|
self.assertEqual((1,), torch.amax(one_d, dim=0, keepdim=True).shape)
|
|
self.assertEqual((), torch.amax(one_d, dim=0, keepdim=False).shape)
|
|
|
|
# min
|
|
self.assertEqual([(), ()], [x.shape for x in torch.min(zero_d, dim=0, keepdim=True)])
|
|
self.assertEqual([(), ()], [x.shape for x in torch.min(zero_d, dim=0, keepdim=False)])
|
|
self.assertEqual([(1,), (1,)], [x.shape for x in torch.min(one_d, dim=0, keepdim=True)])
|
|
self.assertEqual([(), ()], [x.shape for x in torch.min(one_d, dim=0, keepdim=False)])
|
|
|
|
# amin
|
|
self.assertEqual((), torch.amin(zero_d, dim=0, keepdim=True).shape)
|
|
self.assertEqual((), torch.amin(zero_d, dim=0, keepdim=False).shape)
|
|
self.assertEqual((1,), torch.amin(one_d, dim=0, keepdim=True).shape)
|
|
self.assertEqual((), torch.amin(one_d, dim=0, keepdim=False).shape)
|
|
|
|
# set_
|
|
zero_d_clone = zero_d.clone()
|
|
one_d_clone = one_d.clone()
|
|
self.assertEqual((), zero_d_clone.set_(one_d.storage(), 0, (), ()).shape)
|
|
self.assertEqual((1,), zero_d_clone.set_(one_d.storage(), 0, (1,), (1,)).shape)
|
|
self.assertEqual((), one_d_clone.set_(one_d.storage(), 0, (), ()).shape)
|
|
self.assertEqual((1,), one_d_clone.set_(one_d.storage(), 0, (1,), (1,)).shape)
|
|
|
|
self.assertEqual((), zero_d.clone().set_(zero_d).shape)
|
|
self.assertEqual((), one_d.clone().set_(zero_d).shape)
|
|
self.assertEqual((1,), zero_d.clone().set_(one_d).shape)
|
|
self.assertEqual((1,), one_d.clone().set_(one_d).shape)
|
|
|
|
# take
|
|
self.assertEqual((), torch.randn((2, 3), device=device).take(zero_d_int).shape)
|
|
self.assertEqual((1,), torch.randn((2, 3), device=device).take(one_d_int).shape)
|
|
|
|
# gather
|
|
self.assertEqual((), torch.gather(zero_d, 0, torch.zeros((), dtype=torch.int64, device=device)).shape)
|
|
self.assertEqual((1,), torch.gather(zero_d, 0, torch.zeros((1,), dtype=torch.int64, device=device)).shape)
|
|
self.assertEqual((), torch.gather(one_d, 0, torch.zeros((), dtype=torch.int64, device=device)).shape)
|
|
self.assertEqual((1,), torch.gather(one_d, 0, torch.zeros((1,), dtype=torch.int64, device=device)).shape)
|
|
|
|
# normal
|
|
# std must be >= 0
|
|
zero_d_ge_0 = torch.rand((), device=device)
|
|
# documentation says out shape matches shape of mean
|
|
self.assertEqual((), torch.normal(zero_d, zero_d_ge_0).shape)
|
|
self.assertEqual((1,), torch.normal(one_d, zero_d_ge_0).shape)
|
|
self.assertEqual((), torch.normal(1, zero_d_ge_0).shape)
|
|
self.assertEqual((), torch.normal(zero_d, 1).shape)
|
|
self.assertEqual((1,), torch.normal(one_d, 1).shape)
|
|
# TODO: this behavior differs on CPU and GPU, see https://github.com/pytorch/pytorch/issues/30480.
|
|
# self.assertEqual((), torch.normal(zero_d, one_d).shape)
|
|
# self.assertEqual((), torch.normal(1, one_d).shape)
|
|
|
|
# convolutions. Yes, we are testing nn.functional here; seems justified
|
|
# given its similar to the other tests
|
|
w = torch.randn(2, 1, 3, 3, device=device).div_(2).requires_grad_()
|
|
self.assertRaises(RuntimeError, lambda: torch.nn.functional.conv2d(zero_d, w, groups=1))
|
|
self.assertRaises(RuntimeError, lambda: torch.nn.functional.conv2d(zero_d, w, groups=2))
|
|
|
|
# nll_loss -- verify input can't be 0-dimensional.
|
|
self.assertRaises(ValueError, lambda: torch.nn.functional.nll_loss(zero_d, zero_d, reduction='none'))
|
|
self.assertRaises(ValueError, lambda: torch.nn.functional.nll_loss(zero_d, one_d, reduction='none'))
|
|
# verify output is 0-dimensional when reduction != 'none'
|
|
for (input, target) in ((torch.randn(1, 1, device=device), torch.tensor([0], device=device)),
|
|
(torch.randn(1, 1, 1, 1, device=device), torch.tensor([[[0]]], device=device))):
|
|
self.assertEqual((), torch.nn.functional.nll_loss(input, target, reduction='mean').shape)
|
|
self.assertEqual((), torch.nn.functional.nll_loss(input, target, reduction='sum').shape)
|
|
|
|
# multilabel_margin_loss
|
|
for input in (zero_d, one_d, torch.randn(1, 1, device=device)):
|
|
for target in (torch.tensor(0, device=device), torch.tensor([0], device=device), torch.tensor([[0]], device=device)):
|
|
if (input.dim() <= 1 and target.dim() <= 1) or (input.dim() == 2 and target.dim() == 2):
|
|
output_shape = (target.shape[0],) if target.dim() == 2 else ()
|
|
self.assertEqual(output_shape,
|
|
torch.nn.functional.multilabel_margin_loss(input, target, reduction='none').shape)
|
|
self.assertEqual((), torch.nn.functional.multilabel_margin_loss(input, target, reduction='mean').shape)
|
|
self.assertEqual((), torch.nn.functional.multilabel_margin_loss(input, target, reduction='sum').shape)
|
|
else:
|
|
self.assertRaises(RuntimeError,
|
|
lambda: torch.nn.functional.multilabel_margin_loss(input, target, reduction='none'))
|
|
self.assertRaises(RuntimeError,
|
|
lambda: torch.nn.functional.multilabel_margin_loss(input, target, reduction='mean'))
|
|
self.assertRaises(RuntimeError,
|
|
lambda: torch.nn.functional.multilabel_margin_loss(input, target, reduction='sum'))
|
|
|
|
# multi_margin_loss
|
|
for input in (zero_d, one_d, torch.randn(1, 1, device=device)):
|
|
for target in (torch.tensor(0, device=device), torch.tensor([0], device=device)):
|
|
self.assertEqual(target.shape, torch.nn.functional.multi_margin_loss(input, target, reduction='none').shape)
|
|
self.assertEqual((), torch.nn.functional.multi_margin_loss(input, target, reduction='mean').shape)
|
|
self.assertEqual((), torch.nn.functional.multi_margin_loss(input, target, reduction='sum').shape)
|
|
|
|
# Uses mismatched arange out size to trigger a warning
|
|
@skipIfTorchDynamo("Not a suitable test for TorchDynamo")
|
|
@unittest.skipIf(TEST_WITH_CROSSREF, "crossref perturbs line numbering")
|
|
def test_cpp_warnings_have_python_context(self, device):
|
|
# Creates long string in advance to avoid a too-long Python line
|
|
s = ".+Triggered internally at.+RangeFactories.+"
|
|
|
|
def cpp_warn_fn():
|
|
out = torch.empty((5,))
|
|
torch.arange(0, 3, out=out)
|
|
return out
|
|
|
|
# Checks eager-mode cpp warning
|
|
with warnings.catch_warnings(record=True) as w:
|
|
cpp_warn_fn()
|
|
frameinfo = inspect.getframeinfo(inspect.currentframe())
|
|
warning = w[0]
|
|
|
|
# Checks for cpp context in the warning message
|
|
escaped_warning_message = str(warning.message).encode('unicode_escape')
|
|
self.assertTrue(re.search(s, repr(escaped_warning_message), re.IGNORECASE) is not None)
|
|
|
|
# Checks the Python features of the warning
|
|
# Note: the eager mode warning refers to the line in the function
|
|
# that throws the warning.
|
|
self.assertEqual(frameinfo.lineno - 6, warning.lineno)
|
|
self.assertEqual(len(w), 1)
|
|
|
|
# Checks jitted cpp warning
|
|
with warnings.catch_warnings(record=True) as w:
|
|
scripted_cpp_warn_fn = torch.jit.script(cpp_warn_fn)
|
|
scripted_cpp_warn_fn()
|
|
warning = w[0]
|
|
|
|
# Checks for cpp context in the warning message
|
|
escaped_warning_message = str(warning.message).encode('unicode_escape')
|
|
self.assertTrue(re.search(s, repr(escaped_warning_message), re.IGNORECASE) is not None)
|
|
|
|
# Checks the Python features of the warning
|
|
# Note: the jitted warning's lineno refers to the call to the jitted
|
|
# function, which in our test suite has a layer of indirection
|
|
# that makes checking the Python lineno fragile
|
|
self.assertEqual(len(w), 1)
|
|
|
|
# Checks jitted Python warning
|
|
def warn_fn():
|
|
warnings.warn("Warning!")
|
|
|
|
# The jit mimics an eager-mode Python warning in this case
|
|
with warnings.catch_warnings(record=True) as w:
|
|
scripted_warn_fn = torch.jit.script(warn_fn)
|
|
scripted_warn_fn()
|
|
frameinfo = inspect.getframeinfo(inspect.currentframe())
|
|
warning = w[0]
|
|
|
|
self.assertTrue(re.search('Warning!', str(warning.message)) is not None)
|
|
|
|
# Checks the Python features of the warning
|
|
self.assertEqual(frameinfo.lineno - 6, warning.lineno)
|
|
self.assertEqual(len(w), 1)
|
|
|
|
# FIXME: move to test_testing
|
|
@onlyCPU
|
|
def test_warn_always_caught(self, device):
|
|
# Check that we can catch a TORCH_WARN_ONCE warning twice
|
|
# since assertWarnsOnceRegex uses set_warn_always(True) which changes
|
|
# TORCH_WARN_ONCE to TORCH_WARN
|
|
a = np.arange(10)
|
|
a.flags.writeable = False
|
|
with self.assertWarnsOnceRegex(UserWarning, '.*non-writable.*'):
|
|
torch.from_numpy(a)
|
|
|
|
# OK, got it once, now try again
|
|
with self.assertWarnsOnceRegex(UserWarning, '.*non-writable.*'):
|
|
torch.from_numpy(a)
|
|
|
|
# Make sure emitting two warnings will pass the assertWarnsOnceRegex
|
|
# context manager
|
|
with self.assertWarnsOnceRegex(UserWarning, '.*non-writable.*'):
|
|
torch.from_numpy(a)
|
|
torch.from_numpy(a)
|
|
|
|
@onlyNativeDeviceTypes
|
|
def test_complex_half_experimental_warning(self, device):
|
|
msg = 'ComplexHalf support is experimental'
|
|
with self.assertWarnsOnceRegex(UserWarning, msg):
|
|
t = torch.randn(3, dtype=torch.chalf, device=device)
|
|
|
|
with self.assertWarnsOnceRegex(UserWarning, msg):
|
|
torch.rand(3, dtype=torch.chalf, device=device)
|
|
|
|
with self.assertWarnsOnceRegex(UserWarning, msg):
|
|
torch.empty(3, dtype=torch.chalf, device=device)
|
|
|
|
with self.assertWarnsOnceRegex(UserWarning, msg):
|
|
torch.ones(3, dtype=torch.chalf, device=device)
|
|
|
|
with self.assertWarnsOnceRegex(UserWarning, msg):
|
|
torch.zeros(3, dtype=torch.chalf, device=device)
|
|
|
|
with self.assertWarnsOnceRegex(UserWarning, msg):
|
|
torch.randn_like(t)
|
|
|
|
with self.assertWarnsOnceRegex(UserWarning, msg):
|
|
torch.rand_like(t)
|
|
|
|
with self.assertWarnsOnceRegex(UserWarning, msg):
|
|
torch.empty_like(t)
|
|
|
|
with self.assertWarnsOnceRegex(UserWarning, msg):
|
|
torch.ones_like(t)
|
|
|
|
with self.assertWarnsOnceRegex(UserWarning, msg):
|
|
torch.zeros_like(t)
|
|
|
|
with self.assertWarnsOnceRegex(UserWarning, msg):
|
|
# t + 1 allocates a new tensor for result using empty
|
|
t + 1
|
|
|
|
# TODO: this test should be in test_nn.py
|
|
def test_conv_transposed_backward_agnostic_to_memory_format(self, device):
|
|
in_channels = 64
|
|
out_channels = 128
|
|
scale_factor = 8
|
|
batch_size = 8
|
|
length = 16
|
|
|
|
conv = torch.nn.ConvTranspose1d(
|
|
in_channels, out_channels, kernel_size=scale_factor * 2, stride=scale_factor).to(device)
|
|
layer_norm = torch.nn.LayerNorm(out_channels).to(device)
|
|
|
|
input_ = torch.randn(batch_size, in_channels, length).to(device).contiguous()
|
|
input_ = conv(input_).contiguous()
|
|
input_ = layer_norm(input_.transpose(1, 2).contiguous()).contiguous()
|
|
input_.sum().backward()
|
|
|
|
# 3d
|
|
conv = torch.nn.ConvTranspose3d(3, 3, kernel_size=3).to(device)
|
|
input = torch.randn(batch_size, 3, length, length, length, device=device)
|
|
out = conv(input)
|
|
out.backward(torch.ones_like(out).transpose(-2, -1))
|
|
|
|
# TODO: this test should be in test_nn.py
|
|
@onlyCUDA
|
|
@largeTensorTest('12GB')
|
|
def test_conv_transposed_large(self, device):
|
|
# ConvTranspose3d works for large input tensors (gh-32866)
|
|
in_channels = 64
|
|
out_channels = 128
|
|
kernel_size = 5
|
|
|
|
conv = torch.nn.ConvTranspose3d(
|
|
in_channels, out_channels, kernel_size=kernel_size,
|
|
stride=2, padding=2, output_padding=1).to(device)
|
|
|
|
x = torch.rand([1, 64, 8, 128, 172]).to(device)
|
|
y = conv(x)
|
|
|
|
def test_is_set_to(self, device):
|
|
t1 = torch.empty(3, 4, 9, 10, device=device)
|
|
t2 = torch.empty(3, 4, 9, 10, device=device)
|
|
t3 = torch.tensor([], device=device).set_(t1)
|
|
t4 = t3.clone().resize_(12, 90)
|
|
self.assertFalse(t1.is_set_to(t2))
|
|
self.assertTrue(t1.is_set_to(t3))
|
|
self.assertTrue(t3.is_set_to(t1), "is_set_to should be symmetric")
|
|
self.assertFalse(t1.is_set_to(t4))
|
|
self.assertFalse(torch.tensor([]).is_set_to(torch.tensor([])),
|
|
"Tensors with no storages should not appear to be set "
|
|
"to each other")
|
|
|
|
t1 = torch.tensor([True, True], dtype=torch.bool, device=device)
|
|
t2 = torch.tensor([0], dtype=torch.bool, device=device).set_(t1)
|
|
self.assertTrue(t1.is_set_to(t2))
|
|
|
|
# test that sizes must match
|
|
t1 = torch.empty([2, 3, 4], device=device)
|
|
t2 = t1.view(4, 3, 2)
|
|
self.assertFalse(t1.is_set_to(t2))
|
|
self.assertFalse(t2.is_set_to(t1))
|
|
|
|
# test that legacy empty size behavior used to be respected (i.e. all
|
|
# empty tensors were logically collapsed to size [0]).
|
|
t1 = torch.empty([2, 5, 0], device=device)
|
|
t2 = t1.view([0])
|
|
self.assertFalse(t1.is_set_to(t2))
|
|
self.assertFalse(t2.is_set_to(t1))
|
|
|
|
# See https://github.com/pytorch/pytorch/issues/72650
|
|
@skipIfMps
|
|
@skipMeta
|
|
@parametrize(
|
|
"fn",
|
|
[
|
|
"dist", "atan2", "pow", "lerp", "add", "sub", "mul", "div", "fmod", "remainder", "eq", "ge", "gt", "le",
|
|
"lt", "max", "min", "ne", "addcdiv", "addcmul", "masked_scatter", "masked_select", "masked_fill", "map",
|
|
"map2", "copy",
|
|
],
|
|
)
|
|
def test_broadcast(self, fn, device):
|
|
# functions with three tensor arguments
|
|
fns_3_args = {"map2"}
|
|
fns_value_kwarg = {"addcdiv", "addcmul"}
|
|
|
|
(dims_small, dims_large, dims_full) = self._select_broadcastable_dims()
|
|
full1d = torch.randn(*dims_full, device=device).flatten().float()
|
|
small = torch.randn(*dims_small, device=device).float()
|
|
large = torch.randn(*dims_large, device=device).float()
|
|
small_expanded = small.expand(*dims_full)
|
|
large_expanded = large.expand(*dims_full)
|
|
small2 = None
|
|
small2_expanded = None
|
|
if fn in fns_3_args or fn in fns_value_kwarg:
|
|
# create another smaller tensor
|
|
(dims_small2, _, _) = self._select_broadcastable_dims(dims_full)
|
|
small2 = torch.randn(*dims_small2, device=device).float()
|
|
small2_expanded = small2.expand(*dims_full)
|
|
|
|
if small.is_cuda and fn in ['map', 'map2']:
|
|
# map and map2 are not implementd on CUDA tensors
|
|
return
|
|
|
|
if hasattr(large_expanded, fn):
|
|
# run through tensor versions of functions
|
|
# and verify fully expanded inputs give same results
|
|
expanded = {large: large_expanded, small: small_expanded, small2: small2_expanded}
|
|
|
|
def tensorfn(myfn, t1, t2):
|
|
if fn == "lerp":
|
|
return myfn(t1, 0.5)
|
|
elif fn == "masked_select":
|
|
return myfn(t1 < 0)
|
|
elif fn == "masked_scatter":
|
|
return myfn(t1 < 0.5, full1d)
|
|
elif fn == "masked_fill":
|
|
return myfn(t1 < 0.5, 1.0)
|
|
elif fn in fns_3_args:
|
|
return myfn(1, t1, t2)
|
|
elif fn in fns_value_kwarg:
|
|
return myfn(t1, t2, value=1)
|
|
else:
|
|
return myfn(t1)
|
|
|
|
# test various orders
|
|
for first, second, third in [(large, small, small2), (small, large, small2),
|
|
(small2, small, large), (small2, large, small)]:
|
|
if first is None:
|
|
break # ignore last iter when small2 is None
|
|
method_expanded = getattr(expanded[first], fn)
|
|
method = getattr(first, fn)
|
|
r1 = tensorfn(method_expanded, expanded[second], expanded[third])
|
|
r2 = tensorfn(method, second, third)
|
|
self.assertEqual(r1, r2)
|
|
|
|
# now for torch. versions of functions
|
|
if hasattr(torch, fn):
|
|
fntorch = getattr(torch, fn)
|
|
expanded = {large: large_expanded, small: small_expanded, small2: small2_expanded}
|
|
|
|
def torchfn(t1, t2, t3):
|
|
if fn == "lerp":
|
|
return fntorch(t1, t2, 0.5)
|
|
elif fn == "masked_select":
|
|
return fntorch(t1, t2 < 0)
|
|
elif fn == "masked_scatter":
|
|
return fntorch(t1, t2 < 0.5, full1d)
|
|
elif fn == "masked_fill":
|
|
return fntorch(t1, t2 < 0.5, 1.0)
|
|
elif fn in fns_3_args:
|
|
return fntorch(t1, 1.0, t2, t3)
|
|
elif fn in fns_value_kwarg:
|
|
return fntorch(t1, t2, t3, value=1.0)
|
|
else:
|
|
return fntorch(t1, t2)
|
|
|
|
# test various orders
|
|
for first, second, third in [(large, small, small2), (small, large, small2),
|
|
(small2, small, large), (small2, large, small)]:
|
|
if first is None:
|
|
break # ignore last iter when small2 is None
|
|
r1 = torchfn(expanded[first], expanded[second], expanded[third])
|
|
r2 = torchfn(first, second, third)
|
|
self.assertEqual(r1, r2)
|
|
|
|
# now for in place functions
|
|
# in-place tensor is not broadcastable; test only guaranteed
|
|
# to work by broadcasting other argument(s)
|
|
if not hasattr(large_expanded, fn + "_"):
|
|
return
|
|
|
|
# need to clone largeExpanded so we can reuse, since functions are in-place
|
|
large_expanded_clone = large_expanded.clone()
|
|
|
|
def tensorfn_inplace(t0, t1, t2=None):
|
|
t0_fn = getattr(t0, fn + "_")
|
|
if fn == "lerp":
|
|
return t0_fn(t1, 0.5)
|
|
elif fn == "masked_scatter":
|
|
return t0_fn(t1 < 0.5, full1d)
|
|
elif fn == "masked_fill":
|
|
return t0_fn(t1 < 0.5, 1.0)
|
|
elif fn == "map":
|
|
return t0_fn(t1, lambda x, y: x + y)
|
|
elif fn == "map2":
|
|
return t0_fn(t1, t2, lambda x, y, z: x + y + z)
|
|
elif fn in fns_3_args:
|
|
return t0_fn(1.0, t1, t2)
|
|
elif fn in fns_value_kwarg:
|
|
return t0_fn(t1, t2, value=1.0)
|
|
else:
|
|
return t0_fn(t1)
|
|
# in-place pointwise operations don't actually work if the in-place
|
|
# tensor is 0-strided (numpy has the same issue)
|
|
if (0 not in large_expanded.stride() and 0 not in large_expanded_clone.stride()):
|
|
r1 = tensorfn_inplace(large_expanded, small_expanded, small2_expanded)
|
|
r2 = tensorfn_inplace(large_expanded_clone, small, small2)
|
|
self.assertEqual(r1, r2)
|
|
|
|
def broadcastable(t0, t1, t2=None):
|
|
try:
|
|
t1.expand_as(t0)
|
|
if t2 is not None:
|
|
t2.expand_as(t0)
|
|
except RuntimeError:
|
|
return False
|
|
return True
|
|
|
|
def _test_in_place_broadcastable(t0, t1, t2=None):
|
|
if not broadcastable(t0, t1, t2):
|
|
same_size = t0.numel() == t1.numel() and (t0.numel() == t2.numel() if t2 is not None else True)
|
|
if not same_size:
|
|
self.assertRaises(RuntimeError, lambda: tensorfn_inplace(t0, t1, t2))
|
|
else:
|
|
tensorfn_inplace(t0, t1, t2)
|
|
|
|
if fn not in fns_3_args and fn not in fns_value_kwarg:
|
|
_test_in_place_broadcastable(small, large_expanded)
|
|
_test_in_place_broadcastable(small, large)
|
|
else:
|
|
_test_in_place_broadcastable(small2, small_expanded, large_expanded)
|
|
_test_in_place_broadcastable(small2, small, large)
|
|
|
|
@unittest.skipIf(IS_FBCODE and IS_REMOTE_GPU, "cublas runtime error")
|
|
@onlyCUDA
|
|
@wrapDeterministicFlagAPITest
|
|
def test_cublas_config_nondeterministic_alert(self, device):
|
|
test_cases = [
|
|
# (function, (tensor sizes))
|
|
('mm', ((2, 2), (2, 2),)),
|
|
('mv', ((2, 2), (2,),)),
|
|
('bmm', ((1, 2, 2), (1, 2, 2),))]
|
|
|
|
test_configs = [
|
|
# (CuBLAS workspace config, is deterministic)
|
|
('garbage', False),
|
|
(None, False),
|
|
(':4096:8', True),
|
|
(':16:8', True)]
|
|
|
|
cublas_var_name = 'CUBLAS_WORKSPACE_CONFIG'
|
|
is_cuda10_2_or_higher = (
|
|
(torch.version.cuda is not None)
|
|
and ([int(x) for x in torch.version.cuda.split(".")] >= [10, 2]))
|
|
|
|
def test_case_info(fn_name, config):
|
|
return f'function "{fn_name}" with config "{"" if config is None else config}"'
|
|
|
|
# Create processes to test each combination of test cases and config settings
|
|
processes = []
|
|
for fn_name, arg_sizes in test_cases:
|
|
for config, is_config_deterministic in test_configs:
|
|
env = os.environ.copy()
|
|
if config is None:
|
|
if env.get(cublas_var_name) is not None:
|
|
del env[cublas_var_name]
|
|
else:
|
|
env[cublas_var_name] = config
|
|
should_throw_error = is_cuda10_2_or_higher and not is_config_deterministic
|
|
script = f"""
|
|
import torch
|
|
torch.use_deterministic_algorithms(True)
|
|
fn = torch.{fn_name}
|
|
arg_sizes = {arg_sizes}
|
|
device = '{device}'
|
|
should_throw_error = {should_throw_error}
|
|
args = []
|
|
for arg_size in arg_sizes:
|
|
args.append(torch.randn(*arg_size, device=device))
|
|
try:
|
|
fn(*args)
|
|
except RuntimeError as e:
|
|
if not should_throw_error:
|
|
raise RuntimeError('Did not expect any error to be raised')
|
|
elif 'Deterministic behavior was enabled with either' not in str(e):
|
|
raise RuntimeError('Expected a CuBLAS nondeterministic error, but got a different error')
|
|
else:
|
|
if should_throw_error:
|
|
raise RuntimeError('Expected a CuBLAS nondeterministic error, but it was not raised')
|
|
|
|
"""
|
|
try:
|
|
subprocess.check_output(
|
|
[sys.executable, '-c', script],
|
|
stderr=subprocess.STDOUT,
|
|
# On Windows, opening the subprocess with the default CWD makes `import torch`
|
|
# fail, so just set CWD to this script's directory
|
|
cwd=os.path.dirname(os.path.realpath(__file__)),
|
|
env=env)
|
|
except subprocess.CalledProcessError as e:
|
|
self.fail(msg=(
|
|
f'Subprocess exception while attempting to run {test_case_info(fn_name, config)}:\n'
|
|
+ e.output.decode("utf-8")))
|
|
|
|
# FIXME: update OpInfos to support "nondeterministic samples" and port these tests
|
|
# to that architecture
|
|
@skipIfMps
|
|
def test_nondeterministic_alert_AvgPool3d(self, device):
|
|
module = torch.nn.AvgPool3d(3)
|
|
input = torch.randn(2, 3, 3, 3, requires_grad=True, device=device)
|
|
res = module(input)
|
|
grad = torch.ones_like(res)
|
|
|
|
self.check_nondeterministic_alert(
|
|
lambda: res.backward(grad, retain_graph=True),
|
|
'avg_pool3d_backward_cuda',
|
|
torch.device(device).type == 'cuda')
|
|
|
|
@skipIfMps
|
|
def test_nondeterministic_alert_AdaptiveAvgPool2d(self, device):
|
|
module = torch.nn.AdaptiveAvgPool2d(3)
|
|
input = torch.randn(2, 3, 3, requires_grad=True, device=device)
|
|
res = module(input)
|
|
grad = torch.ones_like(res)
|
|
|
|
self.check_nondeterministic_alert(
|
|
lambda: res.backward(grad, retain_graph=True),
|
|
'adaptive_avg_pool2d_backward_cuda',
|
|
torch.device(device).type == 'cuda')
|
|
|
|
@skipIfMps
|
|
def test_nondeterministic_alert_AdaptiveAvgPool3d(self, device):
|
|
module = torch.nn.AdaptiveAvgPool3d(3)
|
|
input = torch.randn(2, 3, 3, 3, requires_grad=True, device=device)
|
|
res = module(input)
|
|
grad = torch.ones_like(res)
|
|
|
|
self.check_nondeterministic_alert(
|
|
lambda: res.backward(grad, retain_graph=True),
|
|
'adaptive_avg_pool3d_backward_cuda',
|
|
torch.device(device).type == 'cuda')
|
|
|
|
@skipIfMps
|
|
def test_nondeterministic_alert_MaxPool3d(self, device):
|
|
module = torch.nn.MaxPool3d(3)
|
|
input = torch.randn(2, 3, 3, 3, requires_grad=True, device=device)
|
|
res = module(input)
|
|
grad = torch.ones_like(res)
|
|
|
|
self.check_nondeterministic_alert(
|
|
lambda: res.backward(grad, retain_graph=True),
|
|
'max_pool3d_with_indices_backward_cuda',
|
|
torch.device(device).type == 'cuda')
|
|
|
|
@skipIfMps
|
|
def test_nondeterministic_alert_AdaptiveMaxPool2d(self, device):
|
|
module = torch.nn.AdaptiveMaxPool2d(3)
|
|
input = torch.randn(2, 3, 3, requires_grad=True, device=device)
|
|
res = module(input)
|
|
grad = torch.ones_like(res)
|
|
|
|
self.check_nondeterministic_alert(
|
|
lambda: res.backward(grad, retain_graph=True),
|
|
'adaptive_max_pool2d_backward_cuda',
|
|
torch.device(device).type == 'cuda')
|
|
|
|
@skipIfMps
|
|
def test_nondeterministic_alert_FractionalMaxPool2d(self, device):
|
|
module = torch.nn.FractionalMaxPool2d(2, output_ratio=0.5)
|
|
input = torch.randn(2, 3, 3, 3, requires_grad=True, device=device)
|
|
res = module(input)
|
|
grad = torch.ones_like(res)
|
|
|
|
self.check_nondeterministic_alert(
|
|
lambda: res.backward(grad, retain_graph=True),
|
|
'fractional_max_pool2d_backward_cuda',
|
|
torch.device(device).type == 'cuda')
|
|
|
|
@skipIfMps
|
|
def test_nondeterministic_alert_FractionalMaxPool3d(self, device):
|
|
module = torch.nn.FractionalMaxPool3d(2, output_ratio=0.5)
|
|
input = torch.randn(2, 3, 3, 3, 3, requires_grad=True, device=device)
|
|
res = module(input)
|
|
grad = torch.ones_like(res)
|
|
|
|
self.check_nondeterministic_alert(
|
|
lambda: res.backward(grad, retain_graph=True),
|
|
'fractional_max_pool3d_backward_cuda',
|
|
torch.device(device).type == 'cuda')
|
|
|
|
@dtypes(*floating_types_and(torch.half))
|
|
@onlyNativeDeviceTypes
|
|
def test_nondeterministic_alert_MaxUnpool1d(self, device, dtype):
|
|
if dtype == torch.half and torch.device(device).type == 'cpu':
|
|
self.skipTest('float16 not implemented on CPU')
|
|
|
|
module = torch.nn.MaxUnpool1d(3, 1)
|
|
input = torch.randn(1, 1, 7, dtype=dtype, device=device)
|
|
indices = torch.zeros_like(input, dtype=torch.long, device=device)
|
|
|
|
self.check_nondeterministic_alert(
|
|
lambda: module(input, indices),
|
|
'max_unpooling2d_forward_out')
|
|
|
|
@dtypes(*floating_types_and(torch.half))
|
|
@onlyNativeDeviceTypes
|
|
def test_nondeterministic_alert_MaxUnpool2d(self, device, dtype):
|
|
if dtype == torch.half and torch.device(device).type == 'cpu':
|
|
self.skipTest('float16 not implemented on CPU')
|
|
|
|
module = torch.nn.MaxUnpool2d(3, 1)
|
|
input = torch.randn(1, 1, 7, 7, dtype=dtype, device=device)
|
|
indices = torch.zeros_like(input, dtype=torch.long, device=device)
|
|
|
|
self.check_nondeterministic_alert(
|
|
lambda: module(input, indices),
|
|
'max_unpooling2d_forward_out')
|
|
|
|
@dtypes(*floating_types_and(torch.half))
|
|
@onlyNativeDeviceTypes
|
|
def test_nondeterministic_alert_MaxUnpool3d(self, device, dtype):
|
|
if dtype == torch.half and torch.device(device).type == 'cpu':
|
|
self.skipTest('float16 not implemented on CPU')
|
|
|
|
module = torch.nn.MaxUnpool3d(3, 1)
|
|
input = torch.randn(1, 1, 7, 7, 7, dtype=dtype, device=device)
|
|
indices = torch.zeros_like(input, dtype=torch.long, device=device)
|
|
|
|
self.check_nondeterministic_alert(
|
|
lambda: module(input, indices),
|
|
'max_unpooling3d_forward_out')
|
|
|
|
@skipIfMps
|
|
def test_nondeterministic_alert_interpolate_linear(self, device):
|
|
input = torch.randn(1, 2, 4, device=device, requires_grad=True)
|
|
res = torch.nn.functional.interpolate(
|
|
input,
|
|
size=12,
|
|
mode='linear',
|
|
align_corners=False)
|
|
grad = torch.ones_like(res)
|
|
|
|
self.check_nondeterministic_alert(
|
|
lambda: res.backward(grad),
|
|
'upsample_linear1d_backward_out_cuda',
|
|
torch.device(device).type == 'cuda')
|
|
|
|
def test_nondeterministic_alert_interpolate_bilinear(self, device):
|
|
input = torch.randn(1, 2, 4, 4, device=device, requires_grad=True)
|
|
res = torch.nn.functional.interpolate(
|
|
input,
|
|
size=12,
|
|
mode='bilinear',
|
|
align_corners=False)
|
|
grad = torch.ones_like(res)
|
|
|
|
self.check_nondeterministic_alert(
|
|
lambda: res.backward(grad),
|
|
'upsample_bilinear2d_backward_out_cuda',
|
|
torch.device(device).type == 'cuda')
|
|
|
|
@skipIfMps
|
|
def test_nondeterministic_alert_interpolate_bicubic(self, device):
|
|
input = torch.randn(1, 2, 4, 4, device=device, requires_grad=True)
|
|
res = torch.nn.functional.interpolate(
|
|
input,
|
|
size=12,
|
|
mode='bicubic',
|
|
align_corners=False)
|
|
grad = torch.ones_like(res)
|
|
|
|
self.check_nondeterministic_alert(
|
|
lambda: res.backward(grad),
|
|
'upsample_bicubic2d_backward_out_cuda',
|
|
torch.device(device).type == 'cuda')
|
|
|
|
@skipIfMps
|
|
def test_nondeterministic_alert_interpolate_trilinear(self, device):
|
|
input = torch.randn(1, 2, 4, 4, 4, device=device, requires_grad=True)
|
|
res = torch.nn.functional.interpolate(
|
|
input,
|
|
size=12,
|
|
mode='trilinear',
|
|
align_corners=False)
|
|
grad = torch.ones_like(res)
|
|
|
|
self.check_nondeterministic_alert(
|
|
lambda: res.backward(grad),
|
|
'upsample_trilinear3d_backward_out_cuda',
|
|
torch.device(device).type == 'cuda')
|
|
|
|
@skipIfMps
|
|
def test_nondeterministic_alert_ReflectionPad1d(self, device):
|
|
module = torch.nn.ReflectionPad1d((1, 2))
|
|
input = torch.randn(2, 3, 8, device=device, requires_grad=True)
|
|
res = module(input)
|
|
grad = torch.ones_like(res)
|
|
|
|
self.check_nondeterministic_alert(
|
|
lambda: res.backward(grad, retain_graph=True),
|
|
'reflection_pad1d_backward_out_cuda',
|
|
torch.device(device).type == 'cuda')
|
|
|
|
def test_nondeterministic_alert_ReflectionPad2d(self, device):
|
|
module = torch.nn.ReflectionPad2d((1, 2, 3, 4))
|
|
input = torch.randn(2, 3, 8, 8, device=device, requires_grad=True)
|
|
res = module(input)
|
|
grad = torch.ones_like(res)
|
|
|
|
self.check_nondeterministic_alert(
|
|
lambda: res.backward(grad, retain_graph=True),
|
|
'reflection_pad2d_backward_cuda',
|
|
torch.device(device).type == 'cuda')
|
|
|
|
@skipIfMps
|
|
def test_nondeterministic_alert_ReflectionPad3d(self, device):
|
|
module = torch.nn.ReflectionPad3d((1, 2, 3, 4, 5, 6))
|
|
input = torch.randn(2, 3, 8, 8, 8, device=device, requires_grad=True)
|
|
res = module(input)
|
|
grad = torch.ones_like(res)
|
|
|
|
self.check_nondeterministic_alert(
|
|
lambda: res.backward(grad, retain_graph=True),
|
|
'reflection_pad3d_backward_out_cuda',
|
|
torch.device(device).type == 'cuda')
|
|
|
|
@skipIfMps
|
|
def test_nondeterministic_alert_ReplicationPad1d(self, device):
|
|
module = torch.nn.ReplicationPad1d((1, 2))
|
|
input = torch.randn(2, 3, 4, device=device, requires_grad=True)
|
|
res = module(input)
|
|
grad = torch.ones_like(res)
|
|
|
|
self.check_nondeterministic_alert(
|
|
lambda: res.backward(grad, retain_graph=True),
|
|
'replication_pad1d_backward_cuda',
|
|
torch.device(device).type == 'cuda')
|
|
|
|
def test_nondeterministic_alert_ReplicationPad2d(self, device):
|
|
module = torch.nn.ReplicationPad2d((1, 2, 3, 4))
|
|
input = torch.randn(2, 3, 4, 4, device=device, requires_grad=True)
|
|
res = module(input)
|
|
grad = torch.ones_like(res)
|
|
|
|
self.check_nondeterministic_alert(
|
|
lambda: res.backward(grad, retain_graph=True),
|
|
'replication_pad2d_backward_cuda',
|
|
torch.device(device).type == 'cuda')
|
|
|
|
@skipIfMps
|
|
def test_nondeterministic_alert_ReplicationPad3d(self, device):
|
|
module = torch.nn.ReplicationPad3d((1, 2, 3, 4, 5, 6))
|
|
input = torch.randn(2, 3, 4, 4, 4, device=device, requires_grad=True)
|
|
res = module(input)
|
|
grad = torch.ones_like(res)
|
|
|
|
self.check_nondeterministic_alert(
|
|
lambda: res.backward(grad, retain_graph=True),
|
|
'replication_pad3d_backward_cuda',
|
|
torch.device(device).type == 'cuda')
|
|
|
|
def test_nondeterministic_alert_NLLLoss(self, device):
|
|
module = torch.nn.NLLLoss()
|
|
input = torch.randn(2, 3, 5, 5, device=device)
|
|
target = torch.rand(2, 5, 5, device=device).mul(3).floor().long()
|
|
|
|
|
|
self.check_nondeterministic_alert(
|
|
lambda: module(input, target),
|
|
'nll_loss2d_forward_out_cuda_template',
|
|
torch.device(device).type == 'cuda')
|
|
|
|
def test_nondeterministic_alert_CTCLoss(self, device):
|
|
module = torch.nn.CTCLoss()
|
|
input = torch.randn(50, 3, 15, device=device, requires_grad=True)
|
|
target = torch.randint(0, 14, (3, 30), device=device)
|
|
input_lengths = [50, 50, 50]
|
|
target_lengths = [30, 25, 20]
|
|
res = module(input, target, input_lengths, target_lengths)
|
|
grad = torch.ones_like(res)
|
|
|
|
self.check_nondeterministic_alert(
|
|
lambda: res.backward(grad, retain_graph=True),
|
|
'ctc_loss_backward_gpu',
|
|
torch.device(device).type == 'cuda')
|
|
|
|
def test_nondeterministic_alert_EmbeddingBag_max(self, device):
|
|
module = torch.nn.EmbeddingBag(
|
|
4, 3, None, 2., False, 'max',
|
|
_weight=torch.randn(4, 3, device=device, requires_grad=True))
|
|
input = torch.randint(0, 3, (4, 3), device=device)
|
|
res = module(input)
|
|
grad = torch.ones_like(res)
|
|
|
|
self.check_nondeterministic_alert(
|
|
lambda: res.backward(grad, retain_graph=True),
|
|
'embedding_bag_backward_cuda_max',
|
|
torch.device(device).type == 'cuda')
|
|
|
|
@dtypes(*all_types_and_complex_and(torch.bool))
|
|
def test_nondeterministic_alert_cumsum(self, device, dtype):
|
|
input = make_tensor((10,), dtype=dtype, device=device, low=-9, high=9)
|
|
should_alert = torch.device(device).type == 'cuda' and (dtype.is_floating_point or dtype.is_complex)
|
|
|
|
for op_call in [torch.Tensor.cumsum, torch.cumsum]:
|
|
self.check_nondeterministic_alert(
|
|
lambda: op_call(input, 0),
|
|
'cumsum_cuda_kernel',
|
|
should_alert)
|
|
|
|
@expectedFailureMeta # expected a non-determinitic error, but it was not raised
|
|
@onlyNativeDeviceTypes
|
|
def test_nondeterministic_alert_put(self, device):
|
|
a = torch.randn(10, device=device)
|
|
indices = torch.tensor([0, 0], device=device)
|
|
values = torch.tensor([0., 1.], device=device)
|
|
|
|
for op_call in [torch.Tensor.put, torch.Tensor.put_]:
|
|
self.check_nondeterministic_alert(
|
|
lambda: op_call(a, indices, values, accumulate=False),
|
|
'put_')
|
|
|
|
def test_nondeterministic_alert_put_accumulate(self, device):
|
|
a = torch.randn(10, device=device)
|
|
indices = torch.tensor([0, 0], device=device)
|
|
values = torch.tensor([0., 1.], device=device)
|
|
|
|
for op_call in [torch.Tensor.put, torch.Tensor.put_]:
|
|
self.check_nondeterministic_alert(
|
|
lambda: op_call(a, indices, values, accumulate=True),
|
|
'put_',
|
|
torch.device(device).type == 'cuda')
|
|
|
|
@skipIfMps
|
|
def test_nondeterministic_alert_histc(self, device):
|
|
a = torch.tensor([], device=device)
|
|
for op_call in [torch.histc, torch.Tensor.histc]:
|
|
self.check_nondeterministic_alert(
|
|
lambda: op_call(a, min=0, max=3),
|
|
'_histc_cuda',
|
|
torch.device(device).type == 'cuda')
|
|
|
|
@skipIfMps
|
|
def test_nondeterministic_alert_bincount(self, device):
|
|
a = torch.tensor([], device=device, dtype=torch.long)
|
|
for op_call in [torch.bincount, torch.Tensor.bincount]:
|
|
self.check_nondeterministic_alert(
|
|
lambda: op_call(a),
|
|
'_bincount_cuda',
|
|
torch.device(device).type == 'cuda')
|
|
|
|
# Ensures that kthvalue throws nondeterministic alerts in the correct cases
|
|
@dtypes(torch.double)
|
|
def test_nondeterministic_alert_kthvalue(self, device, dtype):
|
|
def test_func(call_type):
|
|
S = 10
|
|
k = 5
|
|
a = torch.randn(S, device=device)
|
|
if call_type == 'function':
|
|
torch.kthvalue(a, k)
|
|
elif call_type == 'method':
|
|
a.kthvalue(k)
|
|
elif call_type == 'out':
|
|
values = torch.empty_like(a)
|
|
indices = torch.empty((), device=device, dtype=torch.long)
|
|
torch.kthvalue(a, k, out=(values, indices))
|
|
else:
|
|
self.fail(f"'{call_type}' is not a valid call type")
|
|
|
|
for call_type in ['function', 'method', 'out']:
|
|
self.check_nondeterministic_alert(
|
|
lambda: test_func('function'),
|
|
'kthvalue CUDA',
|
|
torch.device(device).type == 'cuda')
|
|
|
|
@skipIfMps
|
|
def test_nondeterministic_alert_grid_sample_2d(self, device):
|
|
input = torch.empty(1, 1, 2, 2, device=device, requires_grad=True)
|
|
grid = torch.empty(1, 1, 1, 2, device=device)
|
|
res = torch.nn.functional.grid_sample(input, grid, align_corners=False)
|
|
grad = torch.ones_like(res)
|
|
|
|
self.check_nondeterministic_alert(
|
|
lambda: res.backward(grad, retain_graph=True),
|
|
'grid_sampler_2d_backward_cuda',
|
|
torch.device(device).type == 'cuda')
|
|
|
|
@skipIfMps
|
|
def test_nondeterministic_alert_grid_sample_3d(self, device):
|
|
input = torch.empty(1, 1, 2, 2, 2, device=device, requires_grad=True)
|
|
grid = torch.empty(1, 1, 1, 2, 3, device=device)
|
|
res = torch.nn.functional.grid_sample(input, grid, align_corners=False)
|
|
grad = torch.ones_like(res)
|
|
|
|
self.check_nondeterministic_alert(
|
|
lambda: res.backward(grad, retain_graph=True),
|
|
'grid_sampler_3d_backward_cuda',
|
|
torch.device(device).type == 'cuda')
|
|
|
|
def test_invalid_shapes_grid_sampler(self, device):
|
|
make_arg = partial(
|
|
make_tensor, device=device, dtype=torch.float64, requires_grad=True)
|
|
|
|
inputs = (
|
|
# input, grid
|
|
((5, 5, 5, 5, 5,), (1, 1, 1, 4, 4,)), # 3d
|
|
((5, 5, 5, 5,), (1, 1, 4, 4,)), # 2d
|
|
)
|
|
|
|
interpolation_mode = 0
|
|
padding_mode = 0
|
|
align_corners = True
|
|
|
|
err = "expected grid and input to have same batch size"
|
|
|
|
for input, grid in inputs:
|
|
input = make_arg(input)
|
|
grid = make_arg(grid, low=-1, high=1)
|
|
|
|
# Wrapper for the 2d, 3d, and cuDNN functions listed below.
|
|
with self.assertRaisesRegex(RuntimeError, err):
|
|
torch.grid_sampler(
|
|
input, grid, interpolation_mode, padding_mode,
|
|
align_corners)
|
|
|
|
# Expects 2d input.
|
|
with self.assertRaisesRegex(RuntimeError, err):
|
|
torch.grid_sampler_2d(
|
|
input, grid, interpolation_mode, padding_mode,
|
|
align_corners)
|
|
|
|
# Expects 3d input.
|
|
with self.assertRaisesRegex(RuntimeError, err):
|
|
torch.grid_sampler_3d(
|
|
input, grid, interpolation_mode, padding_mode,
|
|
align_corners)
|
|
|
|
# Expects 2d input.
|
|
with self.assertRaisesRegex(RuntimeError, err):
|
|
torch._grid_sampler_2d_cpu_fallback(
|
|
input, grid, interpolation_mode, padding_mode,
|
|
align_corners)
|
|
|
|
# Expects 2d input, on CUDA.
|
|
# Doesn't work on CPU and ROCm.
|
|
if device != 'cpu' and TEST_CUDNN and not TEST_WITH_ROCM:
|
|
with self.assertRaisesRegex(RuntimeError, err):
|
|
torch.cudnn_grid_sampler(input, grid)
|
|
|
|
def test_dist(self, device):
|
|
def run_test(x, y):
|
|
for p in [0, 1, 2, 3, 4, inf, -inf]:
|
|
dist_xy = torch.dist(x, y, p)
|
|
dist_xy_norm = torch.norm(x - y, p)
|
|
self.assertEqual(dist_xy, dist_xy_norm)
|
|
|
|
run_test(torch.randn(5, device=device), torch.randn(5, device=device))
|
|
|
|
x = torch.zeros(3, device=device)
|
|
y = torch.zeros(3, device=device)
|
|
y[1] = 1.
|
|
run_test(x, y)
|
|
|
|
# Ensures that median throws nondeterministic alerts in the correct cases
|
|
@dtypes(torch.double)
|
|
def test_nondeterministic_alert_median(self, device, dtype):
|
|
def test_func(call_type):
|
|
S = 10
|
|
a = torch.randn(S, device=device)
|
|
if call_type == 'function':
|
|
torch.median(a)
|
|
elif call_type == 'function with indices':
|
|
torch.median(a, 0)
|
|
elif call_type == 'method':
|
|
a.median()
|
|
elif call_type == 'method with indices':
|
|
a.median(0)
|
|
elif call_type == 'out with indices':
|
|
result = torch.empty_like(a)
|
|
indices = torch.empty((), dtype=torch.long, device=device)
|
|
torch.median(a, 0, out=(result, indices))
|
|
else:
|
|
self.fail(f"'{call_type}' is not a valid call type")
|
|
|
|
def test_func_expect_error(call_type, should_error):
|
|
self.check_nondeterministic_alert(
|
|
lambda: test_func(call_type),
|
|
'median CUDA with indices output',
|
|
should_error)
|
|
|
|
is_cuda = torch.device(device).type == 'cuda'
|
|
|
|
test_func_expect_error('function', False)
|
|
test_func_expect_error('function with indices', is_cuda)
|
|
test_func_expect_error('method', False)
|
|
test_func_expect_error('method with indices', is_cuda)
|
|
test_func_expect_error('out with indices', is_cuda)
|
|
|
|
# FIXME: move to test_scatter_gather_ops
|
|
def _test_gather_backward_one_dim(self, device, deterministic: bool = False) -> None:
|
|
with DeterministicGuard(deterministic):
|
|
m = random.randint(2000, 3000)
|
|
elems = random.randint(10 * m, 20 * m)
|
|
dim = 0
|
|
src = torch.randn(m, device=device, requires_grad=True)
|
|
idx = torch.randint(m, (elems,), device=device)
|
|
res = torch.gather(src, dim, idx)
|
|
weight = torch.rand_like(res, device=device) * 10 ** 6
|
|
res.backward(weight)
|
|
assert src.grad is not None
|
|
grad = src.grad.detach().clone()
|
|
|
|
if torch.device(device).type == 'cuda':
|
|
for _ in range(2):
|
|
src.grad.data.zero_()
|
|
res = torch.gather(src, dim, idx)
|
|
res.backward(weight)
|
|
self.assertEqual(src.grad, grad, atol=0, rtol=0)
|
|
else:
|
|
expected = torch.zeros_like(src, device=device)
|
|
for i in range(elems):
|
|
expected[idx[i]] += weight[i]
|
|
self.assertEqual(grad, expected, atol=0, rtol=0)
|
|
|
|
# FIXME: move to test_scatter_gather_ops
|
|
@onlyNativeDeviceTypes
|
|
def test_gather_backward_deterministic_path(self, device) -> None:
|
|
self._test_gather_backward_one_dim(device, True)
|
|
|
|
# FIXME: move to test_scatter_gather_ops
|
|
@onlyCPU
|
|
def test_gather_backward_one_dim(self, device) -> None:
|
|
self._test_gather_backward_one_dim(device, False)
|
|
|
|
# FIXME: move to test_scatter_gather_ops
|
|
@onlyNativeDeviceTypes
|
|
def test_scatter_add_one_dim_deterministic(self, device) -> None:
|
|
with DeterministicGuard(True):
|
|
m = random.randint(20, 30)
|
|
elems = random.randint(2000 * m, 3000 * m)
|
|
dim = 0
|
|
src = torch.randn(elems, device=device)
|
|
idx = torch.randint(m, (elems,), device=device)
|
|
|
|
x = torch.zeros(m, device=device)
|
|
res = x.scatter_add(dim, idx, src)
|
|
|
|
expected = torch.zeros(m, device=device)
|
|
for i in range(elems):
|
|
expected[idx[i]] += src[i]
|
|
|
|
self.assertEqual(res, expected, atol=0, rtol=0)
|
|
|
|
# FIXME: move to test_scatter_gather_ops
|
|
@onlyNativeDeviceTypes
|
|
def test_scatter_zero_size_index(self, device) -> None:
|
|
null_index = torch.zeros((0, 4), dtype=torch.int64)
|
|
null_arr = torch.zeros((0, 4))
|
|
original = torch.arange(4, dtype=torch.float32)
|
|
result = original.scatter(0, null_index, null_arr)
|
|
self.assertEqual(result, original, atol=0, rtol=0)
|
|
|
|
@onlyCUDA
|
|
def test_sync_warning(self, device):
|
|
|
|
def _sync_raises_helper(f, level):
|
|
with CudaSyncGuard(level):
|
|
if level == 1:
|
|
with self.assertWarnsRegex(UserWarning, "called a synchronizing "):
|
|
f()
|
|
elif level == 2:
|
|
with self.assertRaisesRegex(RuntimeError, "called a synchronizing "):
|
|
f()
|
|
|
|
def _no_sync_helper(f, level):
|
|
with CudaSyncGuard(level):
|
|
f()
|
|
|
|
def _ind_put_fn(x, ind, val):
|
|
x[ind] = val
|
|
return x
|
|
|
|
def _ind_get_fn(x, ind):
|
|
return x[ind]
|
|
|
|
def _cond_fn(x):
|
|
if x: # taking boolean value of a tensor synchronizes
|
|
return x
|
|
else:
|
|
return 2 * x
|
|
|
|
# prepare inputs for subsequent ops
|
|
size = 4
|
|
x = torch.rand(size, device=device)
|
|
y = torch.rand((), device=device)
|
|
ind = torch.randint(size, (3,), device=device)
|
|
ind_cpu = ind.cpu()
|
|
repeats = torch.full((1,), 2, device=device)
|
|
mask = torch.randint(2, (size,), device=device, dtype=bool)
|
|
expect_no_sync = (lambda: _ind_put_fn(x, mask, 1.),
|
|
lambda: _ind_put_fn(x, ind, y),
|
|
lambda: _ind_get_fn(x, ind),
|
|
lambda: torch.nn.functional.one_hot(ind, num_classes=size),
|
|
lambda: torch.randperm(20000, device=device),
|
|
lambda: torch.repeat_interleave(x, 2, output_size=2 * size),
|
|
lambda: torch.repeat_interleave(x, repeats, output_size=2 * size),
|
|
lambda: torch.any(y))
|
|
expect_sync = (lambda: _ind_put_fn(x, mask, y),
|
|
lambda: _ind_put_fn(x, ind_cpu, y),
|
|
lambda: _ind_get_fn(x, mask),
|
|
lambda: _ind_get_fn(x, ind_cpu),
|
|
lambda: x.nonzero(),
|
|
lambda: _cond_fn(y),
|
|
lambda: torch.nn.functional.one_hot(ind),
|
|
lambda: torch.repeat_interleave(x, 2),
|
|
lambda: torch.repeat_interleave(x, repeats))
|
|
for f, level in product(expect_no_sync, (1, 2)):
|
|
_no_sync_helper(f, level)
|
|
for f, level in product(expect_sync, (1, 2)):
|
|
_sync_raises_helper(f, level)
|
|
|
|
|
|
@dtypes(*floating_types_and(torch.half, torch.bfloat16))
|
|
@skipIfMps
|
|
def test_log_normal(self, device, dtype):
|
|
a = torch.tensor([10], dtype=dtype, device=device).log_normal_()
|
|
self.assertEqual(a.dtype, dtype)
|
|
self.assertEqual(a.size(), torch.Size([1]))
|
|
|
|
@dtypes(*all_types_and(torch.half, torch.bfloat16))
|
|
@skipIfMps
|
|
def test_geometric(self, device, dtype):
|
|
a = torch.tensor([10], dtype=dtype, device=device).geometric_(0.5)
|
|
self.assertEqual(a.dtype, dtype)
|
|
self.assertEqual(a.size(), torch.Size([1]))
|
|
|
|
@skipIfMps
|
|
def test_repeat_interleave(self, device):
|
|
y = torch.tensor([[1, 2], [3, 4]], device=device)
|
|
# exercise single argument function signature
|
|
temp = y.repeat_interleave(2)
|
|
self.assertEqual(torch.Size([8]), temp.size())
|
|
|
|
for dtype in [torch.int, torch.long]:
|
|
lengths = torch.tensor([1, 2], dtype=dtype, device=device)
|
|
output_size = torch.sum(lengths)
|
|
a = torch.repeat_interleave(
|
|
y,
|
|
lengths,
|
|
dim=0,
|
|
)
|
|
self.assertEqual(a.dtype, y.dtype)
|
|
self.assertEqual(a.size(), torch.Size([3, 2]))
|
|
|
|
a_with_output = torch.repeat_interleave(
|
|
y,
|
|
lengths,
|
|
dim=0,
|
|
output_size=output_size,
|
|
)
|
|
self.assertEqual(a_with_output.dtype, y.dtype)
|
|
self.assertEqual(a_with_output.size(), torch.Size([3, 2]))
|
|
|
|
@dtypes(*floating_types())
|
|
@dtypesIfCPU(*floating_types_and(torch.bfloat16))
|
|
@dtypesIfCUDA(*floating_types_and(torch.half))
|
|
def test_bernoulli_p(self, device, dtype):
|
|
for trivial_p in ([0, 1], [1, 0, 1, 1, 0, 1]):
|
|
x = torch.tensor(trivial_p, dtype=dtype, device=device)
|
|
self.assertEqual(x.bernoulli().tolist(), trivial_p)
|
|
|
|
def isBinary(t):
|
|
return torch.ne(t, 0).mul_(torch.ne(t, 1)).sum().item() == 0
|
|
|
|
p = torch.rand(5, 5, dtype=dtype, device=device)
|
|
self.assertTrue(isBinary(p.bernoulli()))
|
|
|
|
p = torch.rand(5, dtype=dtype, device=device).expand(5, 5)
|
|
self.assertTrue(isBinary(p.bernoulli()))
|
|
|
|
p = torch.rand(5, 5, dtype=dtype, device=device)
|
|
torch.bernoulli(torch.rand_like(p), out=p)
|
|
self.assertTrue(isBinary(p))
|
|
|
|
# RngUniform not implemented for Integral type in XLA test
|
|
@dtypes(*floating_types())
|
|
@dtypesIfCPU(*all_types_and(torch.bool))
|
|
@dtypesIfCUDA(*all_types_and(torch.bool, torch.half))
|
|
def test_bernoulli_self(self, device, dtype):
|
|
|
|
def isBinary(t):
|
|
return torch.ne(t, 0).mul_(torch.ne(t, 1)).sum().item() == 0
|
|
|
|
t = torch.empty(10, 10, dtype=dtype, device=device)
|
|
|
|
t.fill_(2)
|
|
t.bernoulli_(0.5)
|
|
self.assertTrue(isBinary(t))
|
|
|
|
for p_dtype in floating_types_and(*[torch.half] if device.startswith('cuda') else []):
|
|
p = torch.rand(10, dtype=p_dtype, device=device).expand(10, 10)
|
|
t.fill_(2)
|
|
t.bernoulli_(p)
|
|
self.assertTrue(isBinary(t))
|
|
|
|
t.fill_(2)
|
|
torch.bernoulli(torch.rand_like(t, dtype=p_dtype), out=t)
|
|
self.assertTrue(isBinary(t))
|
|
|
|
t.fill_(2)
|
|
t.bernoulli_(torch.rand_like(t, dtype=p_dtype))
|
|
self.assertTrue(isBinary(t))
|
|
|
|
@slowTest
|
|
@dtypes(*floating_types())
|
|
@dtypesIfCUDA(*floating_types_and(torch.half))
|
|
def test_bernoulli_edge_cases(self, device, dtype):
|
|
# Need to draw a lot of samples to cover every random floating point number.
|
|
a = torch.zeros(10000, 10000, dtype=dtype, device=device) # probability of drawing "1" is 0
|
|
num_ones = (torch.bernoulli(a) == 1).sum()
|
|
self.assertEqual(num_ones, 0)
|
|
|
|
b = torch.ones(10000, 10000, dtype=dtype, device=device) # probability of drawing "1" is 1
|
|
num_zeros = (torch.bernoulli(b) == 0).sum()
|
|
self.assertEqual(num_zeros, 0)
|
|
|
|
@dtypes(*floating_types_and(torch.half, torch.bfloat16))
|
|
@skipIfMps
|
|
def test_exponential(self, device, dtype):
|
|
a = torch.tensor([10], dtype=dtype, device=device).exponential_(0.5)
|
|
self.assertEqual(a.dtype, dtype)
|
|
self.assertEqual(a.size(), torch.Size([1]))
|
|
|
|
# Tests extremal behavior
|
|
tests = ((-0, float('inf')), (0, float('inf')), (float('inf'), 0))
|
|
for test in tests:
|
|
t = torch.empty((1,), device=device, dtype=dtype).exponential_(test[0])
|
|
self.assertTrue(t.item() == test[1])
|
|
|
|
# Tests that negative lambda fails
|
|
with self.assertRaises(RuntimeError):
|
|
torch.empty((1,), device=device, dtype=dtype).exponential_(-0.5)
|
|
|
|
@onlyCUDA
|
|
@dtypes(torch.half, torch.float)
|
|
def test_exponential_no_zero(self, device, dtype):
|
|
# naively, 0 in exponential can be generated with probability 2^-24
|
|
# so we need more samples to check if it's not generated
|
|
# instead of doing one
|
|
# don't test CPU, that would be a long test
|
|
x = torch.empty(50000000, device=device, dtype=dtype).exponential_()
|
|
self.assertTrue(x.min() > 0)
|
|
|
|
def _generate_correlation_tensors(self, device, dtype):
|
|
yield make_tensor((0, 0), dtype=dtype, device=device)
|
|
yield make_tensor((1, 0), dtype=dtype, device=device)
|
|
yield make_tensor((0, 1), dtype=dtype, device=device)
|
|
yield make_tensor((2,), dtype=dtype, device=device)
|
|
yield make_tensor((2, 1), dtype=dtype, device=device)
|
|
yield make_tensor((2, 2), dtype=dtype, device=device)
|
|
yield make_tensor((2, 3), dtype=dtype, device=device)
|
|
yield make_tensor((5, 10), dtype=dtype, device=device)
|
|
yield make_tensor((5, 10), dtype=dtype, device=device, noncontiguous=True)
|
|
if dtype != torch.int:
|
|
yield torch.tensor([0, -2, nan, 10.2, inf], dtype=dtype, device=device)
|
|
|
|
@onlyNativeDeviceTypes
|
|
@dtypes(torch.int, torch.float, torch.cfloat)
|
|
def test_corrcoef(self, device, dtype):
|
|
for x in self._generate_correlation_tensors(device, dtype):
|
|
res = torch.corrcoef(x)
|
|
ref = np.corrcoef(x.cpu().numpy())
|
|
self.assertEqual(res, ref, exact_dtype=False)
|
|
|
|
@dtypes(torch.int, torch.float, torch.cfloat)
|
|
def test_cov(self, device, dtype):
|
|
def check(t, correction=1, fweights=None, aweights=None):
|
|
res = torch.cov(t, correction=correction, fweights=fweights, aweights=aweights)
|
|
t = t.cpu().numpy()
|
|
fweights = fweights.cpu().numpy() if fweights is not None else None
|
|
aweights = aweights.cpu().numpy() if aweights is not None else None
|
|
ref = np.cov(t, ddof=correction, fweights=fweights, aweights=aweights)
|
|
self.assertEqual(res, ref, atol=1e-05, rtol=1e-05, exact_dtype=False)
|
|
|
|
for x in self._generate_correlation_tensors(device, dtype):
|
|
check(x)
|
|
num_observations = x.numel() if x.ndim < 2 else x.size(1)
|
|
if num_observations > 0:
|
|
fweights = torch.randint(1, 10, (num_observations,), device=device)
|
|
aweights = make_tensor((num_observations,), dtype=torch.float, device=device, low=1)
|
|
for correction, fw, aw in product([0, 1, 2], [None, fweights], [None, aweights]):
|
|
check(x, correction, fweights, aweights)
|
|
|
|
@skipIfNoSciPy
|
|
@dtypes(*floating_types_and(torch.half, torch.bfloat16))
|
|
def test_uniform_kstest(self, device, dtype):
|
|
from scipy import stats
|
|
size = 1000
|
|
for from_ in [-42, 0, 4.2]:
|
|
for to_ in [-4.2, 0, 42]:
|
|
if to_ > from_:
|
|
t = torch.empty(size, dtype=dtype, device=device).uniform_(from_, to_)
|
|
res = stats.kstest(t.cpu().to(torch.double), 'uniform', args=(from_, (to_ - from_)))
|
|
self.assertTrue(res.statistic < 0.1)
|
|
|
|
@skipIfNoSciPy
|
|
@dtypes(*floating_types_and(torch.half))
|
|
@dtypesIfCUDA(*floating_types_and(torch.half, torch.bfloat16))
|
|
def test_normal_kstest(self, device, dtype):
|
|
from scipy import stats
|
|
size = 1000
|
|
for mean in [-10, 0, 50]:
|
|
for std in [1, 5, 10]:
|
|
t = torch.empty(size, dtype=dtype, device=device).normal_(mean=mean, std=std)
|
|
res = stats.kstest(t.cpu().to(torch.double), 'norm', args=(mean, std))
|
|
self.assertTrue(res.statistic < 0.1)
|
|
|
|
@skipIfMps
|
|
@skipIfNoSciPy
|
|
@dtypes(*floating_types_and(torch.half, torch.bfloat16))
|
|
def test_lognormal_kstest(self, device, dtype):
|
|
from scipy import stats
|
|
size = 1000
|
|
for mean in [-3, 0, 7]:
|
|
for std in [1, 5, 7]:
|
|
t = torch.empty(size, dtype=dtype, device=device).log_normal_(mean=mean, std=std)
|
|
res = stats.kstest(t.cpu().to(torch.double), 'lognorm', args=(std, 0, math.exp(mean)))
|
|
if dtype == torch.half:
|
|
self.assertTrue(res.statistic < 0.3)
|
|
else:
|
|
self.assertTrue(res.statistic < 0.1)
|
|
|
|
@skipIfMps
|
|
@skipIfNoSciPy
|
|
@dtypes(*floating_types_and(torch.half, torch.bfloat16))
|
|
def test_exponential_kstest(self, device, dtype):
|
|
from scipy import stats
|
|
size = 1000
|
|
for lambd in [0.5, 1.0, 5.0]:
|
|
t = torch.empty(size, dtype=dtype, device=device).exponential_(lambd=lambd)
|
|
res = stats.kstest(t.cpu().to(torch.double), 'expon', args=(0, 1 / lambd,))
|
|
self.assertTrue(res.statistic < 0.1)
|
|
|
|
@skipIfMps
|
|
@skipIfNoSciPy
|
|
@dtypes(*floating_types_and(torch.half, torch.bfloat16))
|
|
def test_cauchy_kstest(self, device, dtype):
|
|
from scipy import stats
|
|
size = 1000
|
|
for median in [-10, 0, 50]:
|
|
for sigma in [0.5, 1.0, 10.0]:
|
|
t = torch.empty(size, dtype=dtype, device=device).cauchy_(median=median, sigma=sigma)
|
|
res = stats.kstest(t.cpu().to(torch.double), 'cauchy', args=(median, sigma))
|
|
self.assertTrue(res.statistic < 0.1)
|
|
|
|
@slowTest
|
|
@onlyCUDA
|
|
@dtypes(torch.bfloat16, torch.float32)
|
|
def test_cauchy_no_inf(self, device, dtype):
|
|
# torch.float16 will have `inf` because of its smaller range.
|
|
for _ in range((2**16) * 2):
|
|
x = torch.empty((2**16), dtype=dtype, device=device)
|
|
x.cauchy_()
|
|
self.assertFalse(x.isinf().sum())
|
|
|
|
@skipIfMps
|
|
@skipIfNoSciPy
|
|
@dtypes(*all_types_and(torch.half, torch.bfloat16))
|
|
def test_geometric_kstest(self, device, dtype):
|
|
from scipy import stats
|
|
size = 1000
|
|
for p in [0.2, 0.5, 0.8]:
|
|
t = torch.empty(size, dtype=dtype, device=device).geometric_(p=p)
|
|
actual = np.histogram(t.cpu().to(torch.double), np.arange(1, 100))[0]
|
|
expected = stats.geom(p).pmf(np.arange(1, 99)) * size
|
|
res = stats.chisquare(actual, expected)
|
|
self.assertEqual(res.pvalue, 1.0, atol=0.1, rtol=0)
|
|
|
|
# FIXME: find test suite for pdist and cdist
|
|
def test_pairwise_distance_empty(self, device):
|
|
shape = (2, 0)
|
|
x = torch.randn(shape, device=device)
|
|
y = torch.randn(shape, device=device)
|
|
|
|
self.assertEqual(torch.zeros(2, device=device), torch.pairwise_distance(x, y))
|
|
self.assertEqual(torch.zeros((2, 1), device=device), torch.pairwise_distance(x, y, keepdim=True))
|
|
|
|
shape = (0, 2)
|
|
x = torch.randn(shape, device=device)
|
|
y = torch.randn(shape, device=device)
|
|
self.assertEqual(torch.zeros(0, device=device), torch.pairwise_distance(x, y))
|
|
self.assertEqual(torch.zeros((0, 1), device=device), torch.pairwise_distance(x, y, keepdim=True))
|
|
|
|
def test_pdist_empty(self, device):
|
|
shape = (0, 2)
|
|
x = torch.randn(shape, device=device)
|
|
self.assertEqual(torch.empty(0, device=device), torch.pdist(x))
|
|
|
|
shape = (1, 2)
|
|
x = torch.randn(shape, device=device)
|
|
self.assertEqual(torch.empty(0, device=device), torch.pdist(x))
|
|
|
|
shape = (3, 0)
|
|
x = torch.randn(shape, device=device)
|
|
self.assertEqual(torch.zeros(3, device=device), torch.pdist(x))
|
|
|
|
def test_cdist_empty(self, device):
|
|
x = torch.randn((0, 5), device=device)
|
|
y = torch.randn((4, 5), device=device)
|
|
self.assertEqual(torch.empty(0, 4, device=device), torch.cdist(x, y))
|
|
|
|
x = torch.randn((2, 5), device=device)
|
|
y = torch.randn((0, 5), device=device)
|
|
self.assertEqual(torch.empty(2, 0, device=device), torch.cdist(x, y))
|
|
|
|
x = torch.randn((2, 0), device=device)
|
|
y = torch.randn((3, 0), device=device)
|
|
self.assertEqual(torch.zeros(2, 3, device=device), torch.cdist(x, y))
|
|
|
|
x = torch.randn((2, 0), device=device)
|
|
y = torch.randn((0, 0), device=device)
|
|
self.assertEqual(torch.empty(2, 0, device=device), torch.cdist(x, y))
|
|
|
|
def _brute_cdist(self, x, y, p=2):
|
|
r1 = x.shape[-2]
|
|
r2 = y.shape[-2]
|
|
if r1 == 0 or r2 == 0:
|
|
return torch.empty(r1, r2, device=x.device)
|
|
return torch.norm(x[..., None, :] - y[..., None, :, :], p=p, dim=-1)
|
|
|
|
@skipIfMps
|
|
def test_cdist_norm(self, device):
|
|
for r1 in [3, 4, 5, 6]:
|
|
for m in [2, 3, 4, 10]:
|
|
for r2 in [4, 6, 7, 8]:
|
|
for p in [0, 1, 2, 3, 1.5, 2.5, float('inf')]:
|
|
x = torch.randn(r1, m, device=device)
|
|
y = torch.randn(r2, m, device=device)
|
|
if p == 2:
|
|
for cm in ['use_mm_for_euclid_dist', 'donot_use_mm_for_euclid_dist']:
|
|
actual = torch.cdist(x, y, p=2, compute_mode=cm)
|
|
expected = self._brute_cdist(x, y, p=2)
|
|
self.assertEqual(expected, actual, rtol=0, atol=0.02)
|
|
else:
|
|
actual = torch.cdist(x, y, p=p)
|
|
expected = self._brute_cdist(x, y, p=p)
|
|
self.assertEqual(expected, actual)
|
|
|
|
@skipIfMps
|
|
def test_cdist_norm_batch(self, device):
|
|
for r1 in [3, 4, 5, 6]:
|
|
for m in [2, 3, 4, 10]:
|
|
for r2 in [4, 6, 7, 8]:
|
|
for p in [0, 1, 2, 3, 1.5, 2.5, float('inf')]:
|
|
x = torch.randn(2, 3, 6, r1, m, device=device)
|
|
y = torch.randn(2, 3, 6, r2, m, device=device)
|
|
if p == 2:
|
|
for cm in ['use_mm_for_euclid_dist', 'donot_use_mm_for_euclid_dist']:
|
|
actual = torch.cdist(x, y, p=2, compute_mode=cm)
|
|
expected = self._brute_cdist(x, y, p=2)
|
|
self.assertEqual(expected, actual, rtol=0, atol=0.02)
|
|
else:
|
|
actual = torch.cdist(x, y, p=p)
|
|
expected = self._brute_cdist(x, y, p=p)
|
|
self.assertEqual(expected, actual)
|
|
|
|
@onlyCUDA
|
|
def test_cdist_cuda_backward(self, device):
|
|
for l1 in [1, 511, 513]:
|
|
for l2 in [1, 511, 513]:
|
|
for p in [0, 1, 2, 3, 1.5, 2.5, float('inf')]:
|
|
x1 = torch.randn(4, l1, 32, device=device, requires_grad=True)
|
|
x2 = x1.clone().detach_().requires_grad_()
|
|
y1 = torch.randn(4, l2, 32, device=device, requires_grad=True)
|
|
y2 = y1.clone().detach_().requires_grad_()
|
|
if p == 2:
|
|
for cm in ['use_mm_for_euclid_dist', 'donot_use_mm_for_euclid_dist']:
|
|
z1 = torch.cdist(x1, y1, p=2, compute_mode=cm).mean()
|
|
z2 = self._brute_cdist(x2, y2, p=2).mean()
|
|
z1.backward()
|
|
z2.backward()
|
|
self.assertEqual(x1.grad, x2.grad, rtol=0, atol=0.001)
|
|
self.assertEqual(y1.grad, y2.grad, rtol=0, atol=0.001)
|
|
else:
|
|
z1 = torch.cdist(x1, y1, p=p).mean()
|
|
z2 = self._brute_cdist(x2, y2, p=p).mean()
|
|
self.assertEqual(x1.grad, x2.grad, rtol=0, atol=0.001)
|
|
self.assertEqual(y1.grad, y2.grad, rtol=0, atol=0.001)
|
|
|
|
@tf32_on_and_off(0.005)
|
|
def test_cdist_large(self, device):
|
|
for cm in ['use_mm_for_euclid_dist_if_necessary', 'use_mm_for_euclid_dist', 'donot_use_mm_for_euclid_dist']:
|
|
x = torch.randn(1000, 10, device=device)
|
|
y = torch.randn(1000, 10, device=device)
|
|
actual = torch.cdist(x, y, p=2, compute_mode=cm)
|
|
expected = self._brute_cdist(x, y, p=2)
|
|
self.assertEqual(expected, actual)
|
|
|
|
@slowTest
|
|
@tf32_on_and_off(0.01)
|
|
def test_cdist_large_batch(self, device):
|
|
for cm in ['use_mm_for_euclid_dist_if_necessary', 'use_mm_for_euclid_dist', 'donot_use_mm_for_euclid_dist']:
|
|
x = torch.randn(4, 3, 1000, 10, device=device)
|
|
y = torch.randn(4, 3, 1000, 10, device=device)
|
|
actual = torch.cdist(x, y, p=2, compute_mode=cm)
|
|
expected = self._brute_cdist(x, y, p=2)
|
|
self.assertEqual(expected, actual)
|
|
|
|
@tf32_on_and_off(0.005)
|
|
def test_cdist_non_contiguous(self, device):
|
|
for cm in ['use_mm_for_euclid_dist', 'donot_use_mm_for_euclid_dist']:
|
|
x = torch.randn(5, 7, device=device).mT
|
|
y = torch.randn(5, 3, device=device).mT
|
|
actual = torch.cdist(x, y, p=2, compute_mode=cm)
|
|
expected = self._brute_cdist(x, y, p=2)
|
|
self.assertFalse(x.is_contiguous())
|
|
self.assertFalse(y.is_contiguous())
|
|
self.assertEqual(expected, actual)
|
|
|
|
x = torch.randn(7, 5, device=device)
|
|
y = torch.randn(5, 3, device=device).t()
|
|
actual = torch.cdist(x, y, p=2, compute_mode=cm)
|
|
expected = self._brute_cdist(x, y, p=2)
|
|
self.assertTrue(x.is_contiguous())
|
|
self.assertFalse(y.is_contiguous())
|
|
self.assertEqual(expected, actual)
|
|
|
|
x = torch.randn(5, 7, device=device).t()
|
|
y = torch.randn(3, 5, device=device)
|
|
actual = torch.cdist(x, y, p=2, compute_mode=cm)
|
|
expected = self._brute_cdist(x, y, p=2)
|
|
self.assertFalse(x.is_contiguous())
|
|
self.assertTrue(y.is_contiguous())
|
|
self.assertEqual(expected, actual)
|
|
|
|
@tf32_on_and_off()
|
|
def test_cdist_non_contiguous_batch(self, device):
|
|
for cm in ['use_mm_for_euclid_dist', 'donot_use_mm_for_euclid_dist']:
|
|
x = torch.randn(4, 3, 2, 5, 7, device=device).mT
|
|
y = torch.randn(4, 3, 2, 5, 3, device=device).mT
|
|
actual = torch.cdist(x, y, p=2, compute_mode=cm)
|
|
expected = self._brute_cdist(x, y, p=2)
|
|
self.assertFalse(x.is_contiguous())
|
|
self.assertFalse(y.is_contiguous())
|
|
self.assertEqual(expected, actual)
|
|
|
|
x = torch.randn(7, 2, 7, 5, device=device)
|
|
y = torch.randn(7, 2, 5, 3, device=device).mT
|
|
actual = torch.cdist(x, y, p=2, compute_mode=cm)
|
|
expected = self._brute_cdist(x, y, p=2)
|
|
self.assertTrue(x.is_contiguous())
|
|
self.assertFalse(y.is_contiguous())
|
|
self.assertEqual(expected, actual)
|
|
|
|
x = torch.randn(4, 5, 7, device=device).mT
|
|
y = torch.randn(4, 3, 5, device=device)
|
|
actual = torch.cdist(x, y, p=2, compute_mode=cm)
|
|
expected = self._brute_cdist(x, y, p=2)
|
|
self.assertFalse(x.is_contiguous())
|
|
self.assertTrue(y.is_contiguous())
|
|
self.assertEqual(expected, actual)
|
|
|
|
# Maybe merge into OpInfo?
|
|
def test_cdist_euclidean_large(self, device):
|
|
def _test_euclidean_large_cdist(sizex, sizey=None):
|
|
if sizey is None:
|
|
sizey = sizex
|
|
x = torch.randn(sizex, device=device, dtype=torch.float)
|
|
y = torch.randn(sizey, device=device, dtype=torch.float)
|
|
eps = 1e-6
|
|
# to avoid extremum
|
|
x = x - (((x - y) < eps).float() * 2 * eps)
|
|
x.requires_grad = True
|
|
y.requires_grad = True
|
|
dist = torch.cdist(x, y, p=2)
|
|
# Do a backward pass to check that it is valid for large
|
|
# matrices
|
|
loss = dist.sum()
|
|
loss.backward()
|
|
|
|
_test_euclidean_large_cdist((2000, 5))
|
|
|
|
# Ensure that cdist backward with p<1 does not produce NaNs
|
|
@skipIfMps
|
|
def test_cdist_grad_p_lt_1_no_nan(self, device):
|
|
for p in [0.99, 0.7, 0.5, 0.1, 0.01]:
|
|
x = torch.randn(1, 2, device=device)
|
|
y = x.clone().detach() + torch.tensor([[1., 0.]], device=device)
|
|
x.requires_grad = True
|
|
y.requires_grad = True
|
|
result = torch.cdist(x, y, p=p)
|
|
result.backward(torch.ones_like(result))
|
|
self.assertFalse(torch.isnan(x.grad).any())
|
|
self.assertFalse(torch.isnan(y.grad).any())
|
|
|
|
def test_cdist_same_inputs(self, device):
|
|
# Test to detect issues in cdist gradient calculation
|
|
# When the distances are 0
|
|
sizex = (1, 27, 32)
|
|
for p in [0, 1, 2, 3, 1.5, 2.5, float('inf')]:
|
|
x = torch.randn(sizex, device=device, dtype=torch.float)
|
|
dist_grad = torch.randn((1, 27, 27), device=device, dtype=torch.float)
|
|
y = x.clone()
|
|
eps = 1e-6
|
|
x.requires_grad = True
|
|
d = torch.cdist(x, y)
|
|
d.backward(dist_grad)
|
|
# Check that the backward passs does not contain invalid
|
|
# values such as nan or inf
|
|
assert torch.isfinite(x.grad).all()
|
|
|
|
@skipIfMps
|
|
def test_cumsum(self, device):
|
|
x = torch.rand(100, 100, device=device)
|
|
res1 = torch.cumsum(x, 1)
|
|
res2 = torch.tensor([]).to(device)
|
|
torch.cumsum(x, 1, out=res2)
|
|
self.assertEqual(res1, res2)
|
|
x.cumsum_(1)
|
|
self.assertEqual(res1, x)
|
|
|
|
a = torch.tensor([[True, False, True],
|
|
[False, False, False],
|
|
[True, True, True]], device=device)
|
|
b = a.byte()
|
|
aRes = torch.cumsum(a, 0)
|
|
bRes = torch.cumsum(b, 0)
|
|
self.assertEqual(aRes, bRes)
|
|
self.assertEqual(aRes, torch.tensor([[1, 0, 1],
|
|
[1, 0, 1],
|
|
[2, 1, 2]]))
|
|
|
|
aRes = torch.cumsum(a, 1)
|
|
bRes = torch.cumsum(b, 1)
|
|
self.assertEqual(aRes, bRes)
|
|
self.assertEqual(aRes, torch.tensor([[1, 1, 2],
|
|
[0, 0, 0],
|
|
[1, 2, 3]]))
|
|
|
|
# Check that cummulative sum over a zero length dimension doesn't crash on backprop.
|
|
# Also check that cumsum over other dimensions in a tensor with a zero-length
|
|
# dimensiuon also works
|
|
# Also include a basic suite of similar tests for other bases cases.
|
|
shapes = [[2, 0], [2, 1, 4], [0, 2, 3], [1], [5]]
|
|
for shape in shapes:
|
|
for dim in range(len(shape)):
|
|
raw_tensor = torch.zeros(*shape, requires_grad=True)
|
|
integrated = raw_tensor.cumsum(dim=dim)
|
|
# Check that backward does not crash
|
|
integrated.sum().backward()
|
|
# Check that output maintained correct shape
|
|
self.assertEqual(raw_tensor.shape, raw_tensor.grad.shape)
|
|
|
|
# Check a scalar example
|
|
raw_tensor = torch.tensor(3., requires_grad=True)
|
|
integrated = raw_tensor.cumsum(dim=-1)
|
|
self.assertEqual(raw_tensor, integrated)
|
|
# Check that backward does not crash
|
|
integrated.sum().backward()
|
|
# Check that output maintained correct shape
|
|
self.assertEqual(raw_tensor.shape, raw_tensor.grad.shape)
|
|
|
|
@skipIfMps
|
|
def test_cumprod(self, device):
|
|
x = torch.rand(100, 100, device=device)
|
|
res1 = torch.cumprod(x, 1)
|
|
res2 = torch.tensor([]).to(device)
|
|
torch.cumprod(x, 1, out=res2)
|
|
self.assertEqual(res1, res2)
|
|
x.cumprod_(1)
|
|
self.assertEqual(res1, x)
|
|
|
|
a = torch.tensor([[True, False, True],
|
|
[False, False, False],
|
|
[True, True, True]], dtype=torch.bool, device=device)
|
|
b = a.byte()
|
|
aRes = torch.cumprod(a, 0)
|
|
bRes = torch.cumprod(b, 0)
|
|
self.assertEqual(aRes, bRes)
|
|
self.assertEqual(aRes, torch.tensor([[1, 0, 1],
|
|
[0, 0, 0],
|
|
[0, 0, 0]]))
|
|
|
|
aRes = torch.cumprod(a, 1)
|
|
bRes = torch.cumprod(b, 1)
|
|
self.assertEqual(aRes, bRes)
|
|
self.assertEqual(aRes, torch.tensor([[1, 0, 0],
|
|
[0, 0, 0],
|
|
[1, 1, 1]]))
|
|
|
|
# Check that cummulative prod over a zero length dimension doesn't crash on backprop.
|
|
# Also check that cumprod over other dimensions in a tensor with a zero-length
|
|
# dimensiuon also works
|
|
# Also include a basic suite of similar tests for other bases cases.
|
|
shapes = [[2, 0], [2, 1, 4], [0, 2, 3], [1], [5]]
|
|
for shape in shapes:
|
|
for dim in range(len(shape)):
|
|
raw_tensor = torch.zeros(*shape, requires_grad=True)
|
|
integrated = raw_tensor.cumprod(dim=dim)
|
|
# Check that backward does not crash
|
|
integrated.sum().backward()
|
|
# Check that output maintained correct shape
|
|
self.assertEqual(raw_tensor.shape, raw_tensor.grad.shape)
|
|
|
|
# Check a scalar example
|
|
raw_tensor = torch.tensor(3., requires_grad=True)
|
|
integrated = raw_tensor.cumprod(dim=-1)
|
|
self.assertEqual(raw_tensor, integrated)
|
|
# Check that backward does not crash
|
|
integrated.sum().backward()
|
|
# Check that output maintained correct shape
|
|
self.assertEqual(raw_tensor.shape, raw_tensor.grad.shape)
|
|
|
|
@skipIfMps
|
|
def test_cummax_cummin(self, device):
|
|
def test_ops(op, string_of_function_name, expected_output1, expected_output2):
|
|
x = torch.rand(100, 100, device=device)
|
|
out1 = op(x, 1)
|
|
res2 = torch.empty(0, device=device)
|
|
indices2 = torch.empty(0, dtype=torch.int64, device=device)
|
|
op(x, 1, out=(res2, indices2))
|
|
self.assertEqual(out1[0], res2)
|
|
self.assertEqual(out1[1], indices2)
|
|
|
|
a = torch.tensor([[True, False, True],
|
|
[False, False, False],
|
|
[True, True, True]], dtype=torch.bool, device=device)
|
|
b = a.byte()
|
|
aRes = op(a, 0)
|
|
bRes = op(b, 0)
|
|
self.assertEqual(aRes[0], bRes[0].bool())
|
|
self.assertEqual(aRes[0], expected_output1.bool())
|
|
|
|
# test inf and nan input
|
|
x = torch.tensor([4, inf, 1.5, -inf, 0, nan, 1])
|
|
xRes = op(x, 0)[0]
|
|
self.assertEqual(xRes, expected_output2)
|
|
|
|
# op shouldn't support values, indices with a dtype, device type or layout
|
|
# different from that of input tensor
|
|
t = torch.randn(10)
|
|
values = torch.empty(0, dtype=torch.int16)
|
|
indices = torch.empty(0, dtype=torch.int64)
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
'expected scalar_type Float but found Short'):
|
|
op(t, 0, out=(values, indices))
|
|
|
|
# Check that op over a zero length dimension doesn't crash on backprop.
|
|
# Also check that op over other dimensions in a tensor with a zero-length
|
|
# dimension also works
|
|
# Also include a basic suite of similar tests for other bases cases.
|
|
shapes = [[2, 0], [2, 1, 4], [0, 2, 3], [1], [5]]
|
|
for shape in shapes:
|
|
for dim in range(len(shape)):
|
|
raw_tensor = torch.zeros(*shape, requires_grad=True)
|
|
integrated = getattr(raw_tensor, string_of_function_name)(dim=dim)
|
|
# Check that backward does not crash
|
|
integrated[0].sum().backward()
|
|
# Check that output maintained correct shape
|
|
self.assertEqual(raw_tensor.shape, raw_tensor.grad.shape)
|
|
|
|
# Check a scalar example
|
|
raw_tensor = torch.tensor(3., requires_grad=True)
|
|
integrated = getattr(raw_tensor, string_of_function_name)(dim=-1)
|
|
# Check that backward does not crash
|
|
integrated[0].sum().backward()
|
|
# Check that output maintained correct shape
|
|
self.assertEqual(raw_tensor.shape, raw_tensor.grad.shape)
|
|
|
|
expected_out = torch.tensor([4, inf, inf, inf, inf, nan, nan])
|
|
test_ops(torch.cummax, "cummax", torch.tensor([[1, 0, 1],
|
|
[1, 0, 1],
|
|
[1, 1, 1]]), expected_out)
|
|
|
|
expected_out = torch.tensor([4, 4, 1.5, -inf, -inf, nan, nan])
|
|
test_ops(torch.cummin, "cummin", torch.tensor([[1, 0, 1],
|
|
[0, 0, 0],
|
|
[0, 0, 0]]), expected_out)
|
|
|
|
@skipIfMps
|
|
def test_logcumsumexp(self, device):
|
|
def logcumsumexp(a, axis):
|
|
return torch.cumsum(a.exp(), axis=axis).log_()
|
|
|
|
axis = -1
|
|
a = torch.randn(100, 100, device=device)
|
|
|
|
actual = a.logcumsumexp(axis)
|
|
expected = logcumsumexp(a, axis)
|
|
self.assertEqual(a.dtype, actual.dtype)
|
|
self.assertEqual(expected.shape, actual.shape)
|
|
self.assertEqual(expected, actual)
|
|
|
|
# check -inf and nan handling
|
|
x = torch.tensor([-float('inf'), -float('inf'), 1.0, 1.0, float('inf'),
|
|
float('inf'), float('nan'), 1.0, 1.0], device=device)
|
|
x2d = x.unsqueeze(0).expand(2, -1)
|
|
|
|
for inp in (x, x2d):
|
|
actual = inp.logcumsumexp(axis)
|
|
expected = logcumsumexp(inp, axis)
|
|
self.assertEqual(expected, actual)
|
|
|
|
# Check that out is actually inplace
|
|
b = torch.randn(5, 2, device=device)
|
|
inplace_out = torch.zeros(5, 2, device=device)
|
|
|
|
expected = logcumsumexp(b, axis)
|
|
torch.logcumsumexp(b, axis=axis, out=inplace_out)
|
|
|
|
self.assertEqual(inplace_out, expected)
|
|
|
|
# Check input and inplace_output type mismatch
|
|
b = torch.randn(5, 2, device=device, dtype=torch.float64)
|
|
inplace_out = torch.zeros(5, 2, device=device, dtype=torch.float32)
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
'expected scalar_type Double but found Float'):
|
|
torch.logcumsumexp(b, axis, out=inplace_out)
|
|
|
|
def _test_diff_numpy(self, t, dims=None):
|
|
# Helper for test_diff to compare with NumPy reference implementation
|
|
def to_np(t):
|
|
if t.dtype == torch.bfloat16:
|
|
return t.to(dtype=torch.float, device="cpu").numpy()
|
|
else:
|
|
return t.cpu().numpy()
|
|
|
|
for dim in dims if dims else range(t.dim()):
|
|
prepend = t.narrow(dim, 0, 1)
|
|
append = t.narrow(dim, 0, 1)
|
|
np_t = to_np(t)
|
|
|
|
# test when no prepend and append
|
|
for n in range(t.size(dim)):
|
|
actual = torch.diff(t, dim=dim, n=n)
|
|
expected = torch.from_numpy(np.diff(np_t, axis=dim, n=n))
|
|
self.assertEqual(actual, expected.to(t.dtype))
|
|
|
|
# test when prepend and append's size along dim is 1
|
|
for n in range(1, t.size(dim) + 4):
|
|
actual = torch.diff(t, dim=dim, n=n, prepend=prepend, append=append)
|
|
expected = torch.from_numpy(np.diff(np_t, axis=dim, n=n, prepend=to_np(prepend), append=to_np(append)))
|
|
self.assertEqual(actual, expected.to(t.dtype))
|
|
|
|
# test when prepend and append's size along dim != 1
|
|
for n in range(1, t.size(dim) * 3):
|
|
actual = torch.diff(t, dim=dim, n=n, prepend=t, append=t)
|
|
expected = torch.from_numpy(np.diff(np_t, axis=dim, n=n, prepend=np_t, append=np_t))
|
|
self.assertEqual(actual, expected.to(t.dtype))
|
|
|
|
# All tensors appear contiguous on XLA
|
|
@onlyNativeDeviceTypes
|
|
@dtypes(*all_types_and_complex_and(torch.half, torch.bool))
|
|
def test_diff_noncontig(self, device, dtype):
|
|
shapes = (
|
|
(1,),
|
|
(1, 5),
|
|
(3, 5),
|
|
(1, 5, 1),
|
|
(2, 3, 5))
|
|
|
|
for shape in shapes:
|
|
contig = make_tensor(shape, dtype=dtype, device=device, low=-9, high=9)
|
|
|
|
non_contig = torch.empty(shape + (2, 2), device=device, dtype=dtype)[..., 0]
|
|
non_contig = non_contig.select(-1, -1)
|
|
non_contig.copy_(contig)
|
|
self.assertTrue(not non_contig.is_contiguous() or shape == (1,))
|
|
|
|
self._test_diff_numpy(non_contig)
|
|
|
|
# RngNormal not implemented for type f16 for XLA
|
|
@dtypes(*all_types_and_complex_and(torch.bool))
|
|
@dtypesIfCPU(*all_types_and_complex_and(torch.half, torch.bool))
|
|
@dtypesIfCUDA(*all_types_and_complex_and(torch.half, torch.bool))
|
|
def test_diff(self, device, dtype):
|
|
shapes = (
|
|
(1,),
|
|
(1, 5),
|
|
(3, 5),
|
|
(1, 5, 1),
|
|
(2, 3, 5))
|
|
|
|
for shape in shapes:
|
|
contig = make_tensor(shape, dtype=dtype, device=device, low=-9, high=9)
|
|
self._test_diff_numpy(contig)
|
|
|
|
t = torch.ones(2, 3)
|
|
|
|
with self.assertRaisesRegex(
|
|
RuntimeError, 'diff expects prepend or append to be the same dimension as input'):
|
|
invalid_prepend = torch.tensor([1, 2, 3], device=device, dtype=dtype)
|
|
t.diff(dim=0, prepend=invalid_prepend)
|
|
|
|
with self.assertRaisesRegex(
|
|
RuntimeError, 'diff expects the shape of tensor to prepend or append to match that of input'):
|
|
invalid_prepend = torch.tensor([[0, 1]], device=device, dtype=dtype)
|
|
t.diff(dim=0, prepend=invalid_prepend)
|
|
|
|
with self.assertRaisesRegex(
|
|
RuntimeError, 'diff expects input to be at least one-dimensional'):
|
|
scalar = torch.tensor(2, device=device, dtype=dtype)
|
|
torch.diff(scalar)
|
|
|
|
# if the given input arg is not a list, it returns a list of single element: [arg]
|
|
def _wrap_to_list(self, input_array):
|
|
return input_array if isinstance(input_array, list) else [input_array]
|
|
|
|
# To ensure inf, -inf, and nan values do not cause divergence between Numpy and PyTorch.
|
|
# There are two types of possible divergence:
|
|
# 1. When we compute a,b both real numbers and has very small absolute values (i.e. very near to 0.0)
|
|
# then, result of a/b be inf, -inf and nan, and this cause divergence.
|
|
# 2. When we are dividing complex numbers by zero. For example, when a = torch.tensor(3+5j) we have
|
|
# a/0 to be equal to nan + nan*j in PyTorch and inf + inf*j in Numpy.
|
|
def _inf_nan_preprocess(self, actual, expected):
|
|
for i in range(len(expected)):
|
|
expected[i] = np.nan_to_num(expected[i], nan=nan, posinf=nan, neginf=nan)
|
|
# nan_to_num is not defined for complex tensors in PyTorch.
|
|
if actual[i].dtype == torch.complex64 :
|
|
actual[i].real = torch.nan_to_num(actual[i].real, nan=nan, posinf=nan, neginf=nan)
|
|
actual[i].imag = torch.nan_to_num(actual[i].imag, nan=nan, posinf=nan, neginf=nan)
|
|
else:
|
|
actual[i] = torch.nan_to_num(actual[i], nan=nan, posinf=nan, neginf=nan)
|
|
|
|
return actual, expected
|
|
|
|
@onlyNativeDeviceTypes
|
|
@dtypes(torch.long, torch.float32, torch.complex64)
|
|
def test_gradient_all(self, device, dtype):
|
|
def create_scalar(shape):
|
|
return make_tensor((1,), device='cpu', dtype=dtype, low=1.).item()
|
|
|
|
def create_list(shape):
|
|
return make_tensor((len(shape),), device='cpu', dtype=dtype, low=1.).tolist()
|
|
|
|
def create_coordinate_tensors(shape):
|
|
tensor_list = []
|
|
for i in range(len(shape)):
|
|
tensor_list.append(make_tensor((shape[i],), device=device, dtype=dtype))
|
|
return tensor_list
|
|
|
|
def filter_shape(shape, dim):
|
|
filtered_shape = []
|
|
for i in range(len(dim)):
|
|
filtered_shape.append(shape[dim[i]])
|
|
return filtered_shape
|
|
|
|
# shape, dims format
|
|
test_cases = (
|
|
((5,), (0,)),
|
|
((4, 4), (0, 1)),
|
|
((3, 3, 3), (-1, 0)),
|
|
((4, 4, 4), (2,)),
|
|
((4, 4, 4), (0, 1)),
|
|
((4, 4, 4, 3), (0, 2, 3)),
|
|
((4, 5, 3, 4, 3), (1, 2)),
|
|
((4, 3, 6, 5, 3), (2, 4)),
|
|
((4, 3, 3, 5, 3), (0, 1, 2, 3, 4)),
|
|
((1, 3, 3), (1, 2)),
|
|
((1, 5), (1,)),
|
|
)
|
|
|
|
for case, contig, edge_order, space_fn in product(test_cases, [True, False], [1, 2],
|
|
(create_scalar, create_list, create_coordinate_tensors)):
|
|
shape, dims = case
|
|
# filter shape by dims before passing filtered shape to create_* functions
|
|
filtered_shape = filter_shape(shape, dims)
|
|
|
|
spacing = space_fn(filtered_shape)
|
|
t = make_tensor(shape, device=device, dtype=dtype, noncontiguous=not contig)
|
|
t_np = t.cpu().numpy()
|
|
|
|
actual = torch.gradient(t, spacing=spacing, dim=dims, edge_order=edge_order)
|
|
if space_fn == create_coordinate_tensors and spacing[0].device != 'cpu':
|
|
spacing = [space.cpu().detach().numpy() for space in spacing]
|
|
expected = np.gradient(t_np, *self._wrap_to_list(spacing), axis=dims, edge_order=edge_order)
|
|
actual, expected = self._inf_nan_preprocess(list(actual), self._wrap_to_list(expected))
|
|
self.assertEqual(actual, expected, equal_nan=True, atol=1e-4, rtol=0, exact_dtype=False)
|
|
|
|
@onlyNativeDeviceTypes
|
|
@dtypes(torch.long, torch.float32, torch.complex64)
|
|
def test_gradient_extreme_cases(self, device, dtype):
|
|
# Test behaviour for inf and nan values
|
|
actual = torch.gradient(torch.tensor([2, -2, inf, inf, -inf, -inf, inf, 3, -inf, 2, nan, nan, 3, inf, nan]))
|
|
expected = np.gradient(np.array([2, -2, inf, inf, -inf, -inf, inf, 3, -inf, 2, nan, nan, 3, inf, nan]))
|
|
self.assertEqual(actual, self._wrap_to_list(expected), exact_dtype=False)
|
|
|
|
# Test behaviour in very big tensors
|
|
large_size = 100000
|
|
t = make_tensor((large_size,), dtype=dtype, device=device)
|
|
t_np = t.cpu().numpy()
|
|
coordinates_np = list(np.random.randn(large_size))
|
|
coordinates = [torch.tensor(coordinates_np, device=device)]
|
|
actual = torch.gradient(t, spacing=coordinates, dim=0, edge_order=1)
|
|
expected = [np.gradient(t_np, coordinates_np, axis=0, edge_order=1)]
|
|
self.assertEqual(actual, expected, exact_dtype=False)
|
|
|
|
actual = torch.gradient(t, spacing=coordinates, dim=0, edge_order=2)
|
|
expected = [np.gradient(t_np, coordinates_np, axis=0, edge_order=2)]
|
|
self.assertEqual(actual, expected, exact_dtype=False)
|
|
|
|
@onlyNativeDeviceTypes
|
|
def test_gradient_type_promotion(self, device):
|
|
inputs = (
|
|
make_tensor((4, 4), device=device, dtype=torch.float32),
|
|
make_tensor((4, 4), device=device, dtype=torch.complex64),
|
|
make_tensor((4, 4), device=device, dtype=torch.int64),
|
|
)
|
|
|
|
spacing = (
|
|
make_tensor((1,), device='cpu', dtype=torch.float32).item(),
|
|
make_tensor((1,), device='cpu', dtype=torch.int64).item(),
|
|
make_tensor((1,), device='cpu', dtype=torch.complex64).item(),
|
|
make_tensor((2,), device='cpu', dtype=torch.float32, low=0.1).tolist(),
|
|
make_tensor((2,), device='cpu', dtype=torch.int64, low=1).tolist(),
|
|
make_tensor((2,), device='cpu', dtype=torch.complex64).tolist(),
|
|
[make_tensor((4,), device=device, dtype=torch.float32),
|
|
make_tensor((4,), device=device, dtype=torch.float32)],
|
|
[make_tensor((4,), device=device, dtype=torch.int64),
|
|
make_tensor((4,), device=device, dtype=torch.int64)],
|
|
[make_tensor((4,), device=device, dtype=torch.complex64),
|
|
make_tensor((4,), device=device, dtype=torch.complex64)],
|
|
)
|
|
|
|
for input, spacing_or_coord, edge_order in product(inputs, spacing, [1, 2]):
|
|
input_np = input.cpu().numpy()
|
|
input_np = input.cpu().numpy()
|
|
actual = torch.gradient(input, spacing=spacing_or_coord, dim=(0, 1), edge_order=edge_order)
|
|
spacing_or_coord_wrapped = self._wrap_to_list(spacing_or_coord)
|
|
spacing_or_coord_np = []
|
|
if torch.is_tensor(spacing_or_coord_wrapped[0]) and torch.device(spacing_or_coord_wrapped[0].device).type != 'cpu':
|
|
for i in range(len(spacing_or_coord_wrapped)):
|
|
spacing_or_coord_np.append(spacing_or_coord_wrapped[i].detach().clone().cpu().numpy())
|
|
else:
|
|
spacing_or_coord_np = spacing_or_coord_wrapped
|
|
expected = np.gradient(input_np, *spacing_or_coord_np, axis=(0, 1), edge_order=edge_order)
|
|
if actual[0].dtype == torch.complex64 and input.dtype != torch.complex64:
|
|
for i in range(len(actual)):
|
|
self.assertEqual(actual[i].real, expected[i].real, exact_dtype=False)
|
|
# Type promotion fails on Numpy when spacing is given as complex number and input is given as real.
|
|
# Result is given just as real number and all the imaginary parts to be equal to zero.
|
|
self.assertEqual(expected[i].imag, torch.zeros(actual[i].shape), exact_dtype=False)
|
|
else:
|
|
actual, expected = self._inf_nan_preprocess(list(actual), expected)
|
|
self.assertEqual(actual, expected, equal_nan=True, exact_dtype=False)
|
|
|
|
def _test_large_cum_fn_helper(self, x, fn):
|
|
x_cpu = x.cpu().float()
|
|
expected = fn(x_cpu)
|
|
actual = fn(x).cpu().float()
|
|
self.assertEqual(expected, actual.cpu().float())
|
|
|
|
@unittest.skipIf(IS_FBCODE and IS_REMOTE_GPU, "sandcastle OOM with current tpx gpu/re configuration")
|
|
@onlyCUDA
|
|
@dtypes(torch.half) # only small dtype not to get oom
|
|
def test_large_cumsum(self, device, dtype):
|
|
# initialization to avoid overflow and half caveats
|
|
x = torch.empty(2**30 + 200, device=device, dtype=dtype)
|
|
x[::3] = -3
|
|
x[1::3] = 2
|
|
x[2::3] = 1
|
|
self._test_large_cum_fn_helper(x, lambda x: torch.cumsum(x, 0))
|
|
|
|
@onlyCUDA
|
|
@dtypes(torch.half) # only small dtype not to get oom
|
|
def test_large_cumprod(self, device, dtype):
|
|
# initialization to avoid overflow and half caveats
|
|
x = torch.empty(2**30 + 200, device=device, dtype=dtype)
|
|
x[::3] = 8
|
|
x[1::3] = .25
|
|
x[2::3] = .5
|
|
self._test_large_cum_fn_helper(x, lambda x: torch.cumprod(x, 0))
|
|
|
|
@skipIfTorchDynamo("Torchdynamo fails with unknown reason")
|
|
@skipIfMps
|
|
def test_discontiguous_out_cumsum(self, device):
|
|
x = torch.randn(4, 8, device=device)
|
|
y = torch.empty(4, 16, device=device)[:, ::2]
|
|
out = torch.cumsum(x, 0)
|
|
torch.cumsum(x, 0, out=y)
|
|
self.assertFalse(y.is_contiguous())
|
|
self.assertEqual(out, y, atol=0., rtol=0.)
|
|
|
|
def _test_cumminmax_helper(self, x, fn, expected_val, expected_ind):
|
|
val, ind = fn(x, -1)
|
|
self.assertEqual(val, expected_val, atol=0, rtol=0)
|
|
self.assertEqual(ind, expected_ind, atol=0, rtol=0)
|
|
out_val = torch.empty_like(val).t().contiguous().t()
|
|
out_ind = torch.empty_like(ind).t().contiguous().t()
|
|
fn(x, -1, out=(out_val, out_ind))
|
|
self.assertFalse(out_val.is_contiguous())
|
|
self.assertFalse(out_ind.is_contiguous())
|
|
self.assertEqual(out_val, expected_val, atol=0, rtol=0)
|
|
self.assertEqual(out_ind, expected_ind, atol=0, rtol=0)
|
|
|
|
@skipIfMps
|
|
def test_cummax_discontiguous(self, device):
|
|
x = torch.tensor([[0, 1, 2, 3, 2, 1], [4, 5, 6, 5, 6, 7]], device=device, dtype=torch.float).t().contiguous().t()
|
|
expected_val = torch.tensor([[0, 1, 2, 3, 3, 3], [4, 5, 6, 6, 6, 7]], device=device, dtype=torch.float)
|
|
expected_ind = torch.tensor([[0, 1, 2, 3, 3, 3], [0, 1, 2, 2, 4, 5]], device=device, dtype=torch.long)
|
|
self._test_cumminmax_helper(x, torch.cummax, expected_val, expected_ind)
|
|
|
|
@skipIfMps
|
|
def test_cummin_discontiguous(self, device):
|
|
x = torch.tensor([[3, 2, 1, 0, 1, 2], [7, 6, 5, 4, 5, 2]], device=device, dtype=torch.float).t().contiguous().t()
|
|
expected_val = torch.tensor([[3, 2, 1, 0, 0, 0], [7, 6, 5, 4, 4, 2]], device=device, dtype=torch.float)
|
|
expected_ind = torch.tensor([[0, 1, 2, 3, 3, 3], [0, 1, 2, 3, 3, 5]], device=device, dtype=torch.long)
|
|
self._test_cumminmax_helper(x, torch.cummin, expected_val, expected_ind)
|
|
|
|
def test_bool_tensor_value_change(self, device):
|
|
x = torch.tensor([True, False], dtype=torch.bool, device=device)
|
|
x[0] = False
|
|
x[1] = True
|
|
self.assertEqual(x, torch.tensor([False, True], dtype=torch.bool, device=device))
|
|
|
|
# FIXME: move to shape ops test suite
|
|
def test_unfold_all_devices_and_dtypes(self, device):
|
|
for dt in all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16):
|
|
|
|
if dt == torch.bool:
|
|
x = torch.empty((0, 1, 3, 0), dtype=dt, device=device)
|
|
self.assertEqual((0, 1, 1, 0, 3), x.unfold(2, 3, 2).shape)
|
|
else:
|
|
x = torch.empty((0, 1, 3, 0), dtype=dt, device=device)
|
|
self.assertEqual((0, 1, 1, 0, 3), x.unfold(2, 3, 2).shape)
|
|
|
|
# FIXME: move to shape ops test suite
|
|
def test_unfold_scalars(self, device):
|
|
x = torch.tensor(0.5, device=device)
|
|
# unfold on a 0-dimensional tensor should always return a 1-d dimensional
|
|
# tensor of shape [size] (i.e., the second parameter to unfold)
|
|
|
|
self.assertEqual(torch.empty(0, device=device), x.unfold(0, 0, 1))
|
|
self.assertEqual(torch.empty(0, device=device), x.unfold(0, 0, 2))
|
|
self.assertEqual(torch.tensor([0.5], device=device), x.unfold(0, 1, 1))
|
|
|
|
# FIXME: move to data movement test suite
|
|
def test_copy_all_dtypes_and_devices(self, device):
|
|
from copy import copy
|
|
for dt in all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16):
|
|
x = torch.tensor([1, 2, 3, 4], dtype=dt, device=device)
|
|
x_clone = x.clone()
|
|
y = copy(x)
|
|
y.fill_(1)
|
|
# copy is a shallow copy, only copies the tensor view,
|
|
# not the data
|
|
self.assertEqual(x, y)
|
|
|
|
@onlyCPU
|
|
def test_bfloat16_float_copy(self, device):
|
|
for shape in [(20, 7), (249, 137), (1029, 917), (1, 7, 19, 17), (3, 77, 1091)]:
|
|
input = torch.randn(shape, dtype=torch.float, device=device)
|
|
out1 = input.to(torch.bfloat16)
|
|
self.assertEqual(input, out1, atol=0, rtol=1e-2, exact_dtype=False)
|
|
out2 = out1.to(torch.float)
|
|
self.assertEqual(out2, out1, atol=0, rtol=0, exact_dtype=False)
|
|
|
|
input_s = input[..., ::2, :]
|
|
out1 = input_s.to(torch.bfloat16)
|
|
self.assertEqual(input_s, out1, atol=0, rtol=1e-2, exact_dtype=False)
|
|
out2 = out1.to(torch.float)
|
|
self.assertEqual(out2, out1, atol=0, rtol=0, exact_dtype=False)
|
|
|
|
# FIXME: move to data movement test suite
|
|
@onlyNativeDeviceTypes
|
|
def test_copy_math_view(self, device):
|
|
for dst_dtype, src_dtype in [
|
|
(torch.float32, torch.float32),
|
|
(torch.float64, torch.float32),
|
|
(torch.int64, torch.int32),
|
|
(torch.complex128, torch.complex64),
|
|
]:
|
|
src = make_tensor((100,), dtype=src_dtype, device=device)
|
|
dst = torch.empty(100, dtype=dst_dtype, device=device)
|
|
|
|
dst.copy_(src)
|
|
self.assertEqual(dst, src, exact_dtype=False)
|
|
|
|
dst.copy_(src._neg_view())
|
|
self.assertEqual(dst, src.neg(), exact_dtype=False)
|
|
|
|
dst._neg_view().copy_(torch._neg_view(src))
|
|
self.assertEqual(dst, src, exact_dtype=False)
|
|
|
|
dst._neg_view().copy_(src)
|
|
self.assertEqual(dst, src.neg(), exact_dtype=False)
|
|
|
|
for dst_dtype, src_dtype in [
|
|
(torch.complex64, torch.complex64),
|
|
(torch.complex128, torch.complex64),
|
|
]:
|
|
src = make_tensor((100,), dtype=src_dtype, device=device)
|
|
dst = torch.empty(100, dtype=dst_dtype, device=device)
|
|
|
|
dst.conj().copy_(src)
|
|
self.assertEqual(dst, src.conj_physical(), exact_dtype=False)
|
|
|
|
dst.conj().copy_(src._neg_view())
|
|
self.assertEqual(dst, src.neg().conj_physical(), exact_dtype=False)
|
|
|
|
# FIXME: move to data movement test suite
|
|
@onlyNativeDeviceTypes
|
|
@dtypes(torch.int64, torch.float32, torch.complex64)
|
|
def test_copy_transpose_math_view(self, device, dtype):
|
|
src = make_tensor((100, 100), dtype=dtype, device=device).transpose(0, 1)
|
|
dst = torch.empty((100, 100), dtype=dtype, device=device)
|
|
|
|
dst._neg_view().copy_(src)
|
|
self.assertEqual(dst, -src)
|
|
dst._neg_view().copy_(src._neg_view())
|
|
self.assertEqual(dst, src)
|
|
dst.copy_(src._neg_view())
|
|
self.assertEqual(dst, -src)
|
|
|
|
if dtype.is_complex:
|
|
dst.conj().copy_(src)
|
|
self.assertEqual(dst, src.conj_physical())
|
|
dst.conj().copy_(src.conj())
|
|
self.assertEqual(dst, src)
|
|
dst.copy_(src.conj())
|
|
self.assertEqual(dst, src.conj_physical())
|
|
|
|
def test_clone_all_dtypes_and_devices(self, device):
|
|
for dt in all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16):
|
|
x = torch.tensor((1, 1), dtype=dt, device=device)
|
|
y = x.clone()
|
|
self.assertEqual(x, y)
|
|
|
|
def test_clone_zero_stride_dim(self, device):
|
|
# stride zero, size 1 axis, not contiguous
|
|
x = torch.randn(10)
|
|
y = x.as_strided([2, 1, 5], [1, 0, 2])
|
|
self.assertEqual(y, y.clone())
|
|
|
|
def test_clone_not_memory_dense(self):
|
|
# github issue: https://github.com/pytorch/pytorch/issues/64176
|
|
x = torch.randn(10, 8).t()[::2, ::2]
|
|
y = x.clone()
|
|
# should retain permutation after densification
|
|
self.assertTrue(y.stride() == (1, 4))
|
|
|
|
# FIXME: move to elementwise ternary test suite
|
|
@dtypesIfCUDA(*set(get_all_math_dtypes('cuda')))
|
|
@dtypes(*set(get_all_math_dtypes('cpu')))
|
|
def test_addcmul(self, device, dtype):
|
|
# Returns floating or integral scalar corresponding to dtype
|
|
def _number(floating, integer, dtype):
|
|
if dtype in [torch.half, torch.float, torch.double, torch.bfloat16]:
|
|
return floating
|
|
elif dtype in [torch.cfloat, torch.cdouble]:
|
|
return floating * (1 + 1j)
|
|
else:
|
|
return integer
|
|
|
|
def rand_tensor(size, dtype, device):
|
|
if dtype.is_floating_point or dtype.is_complex:
|
|
return torch.rand(size=size, dtype=dtype, device=device)
|
|
if dtype == torch.uint8:
|
|
return torch.randint(1, 5, size=size, dtype=dtype, device=device)
|
|
else:
|
|
return torch.randint(-5, 5, size=size, dtype=dtype, device=device)
|
|
|
|
a = rand_tensor((2, 2), dtype=dtype, device=device)
|
|
b = rand_tensor((2, 2), dtype=dtype, device=device)
|
|
c = rand_tensor((2, 2), dtype=dtype, device=device)
|
|
|
|
alpha = _number(0.5, 3, dtype)
|
|
|
|
actual = torch.addcmul(a, b, c, value=alpha)
|
|
expected = a + alpha * b * c
|
|
|
|
self.assertEqual(expected, actual)
|
|
|
|
with self.assertWarnsOnceRegex(
|
|
UserWarning, "This overload of addcmul is deprecated"):
|
|
self.assertEqual(actual, torch.addcmul(a, alpha, b, c))
|
|
|
|
if self.device_type == 'cuda' and dtype == torch.half:
|
|
a = torch.tensor([60000.0], device=device, dtype=dtype)
|
|
b = torch.tensor([60000.0], device=device, dtype=dtype)
|
|
c = torch.tensor([2.0], device=device, dtype=dtype)
|
|
out = torch.addcmul(a, b, c, value=-1)
|
|
self.assertTrue(not (out.isnan() or out.isinf()))
|
|
|
|
# FIXME: move to shape ops test suite
|
|
def test_narrow_empty(self, device):
|
|
x = torch.randn(2, 3, 4, device=device)
|
|
for d in range(x.dim()):
|
|
y = x.narrow(d, x.size(d), 0)
|
|
sz = list(x.size())
|
|
sz[d] = 0
|
|
self.assertEqual(sz, y.size())
|
|
|
|
# FIXME: move to indexing test suite
|
|
@parametrize("reduce", ['prod', 'amin', 'amax', 'mean'])
|
|
@dtypes(*all_types_and(torch.half, torch.bfloat16))
|
|
def test_index_reduce(self, device, dtype, reduce):
|
|
size = (3, 4, 5)
|
|
index_dtypes = [torch.int, torch.long]
|
|
include_selfs = [True, False]
|
|
amin_init = float('inf') if dtype.is_floating_point else torch.iinfo(dtype).max
|
|
amax_init = -float('inf') if dtype.is_floating_point else torch.iinfo(dtype).min
|
|
reduction_init = {'prod': 1, 'mean': 0, 'amin': amin_init, 'amax': amax_init}
|
|
|
|
for dest_noncontig, src_noncontig, index_noncontig in product([True, False], repeat=3):
|
|
for idx_dtype, include_self in product(index_dtypes, include_selfs):
|
|
for dim in range(len(size)):
|
|
num_src = np.random.randint(10)
|
|
num_dest = size[dim]
|
|
dest = make_tensor(size, device=device, dtype=dtype, noncontiguous=dest_noncontig)
|
|
src_size = size[:dim] + (num_src,) + size[dim + 1:]
|
|
src = make_tensor(src_size, device=device, dtype=dtype, noncontiguous=src_noncontig)
|
|
idx = torch.testing.make_tensor(
|
|
num_src, low=0, high=num_dest, dtype=idx_dtype, device=device, noncontiguous=index_noncontig
|
|
)
|
|
expected = dest.clone()
|
|
dest.index_reduce_(dim, idx, src, reduce, include_self=include_self)
|
|
# fill rows in idx with reduction inits if include_self=False
|
|
if (not include_self):
|
|
expected.index_fill_(dim, idx.long(), reduction_init[reduce])
|
|
expected = expected.transpose(0, dim)
|
|
src = src.transpose(0, dim)
|
|
for i in range(num_src):
|
|
if reduce == 'prod':
|
|
expected[idx[i]] *= src[i]
|
|
elif reduce == 'amin':
|
|
torch.minimum(expected[idx[i]], src[i], out=expected[idx[i]])
|
|
elif reduce == 'amax':
|
|
torch.maximum(expected[idx[i]], src[i], out=expected[idx[i]])
|
|
else:
|
|
expected[idx[i]] += src[i]
|
|
if reduce == 'mean':
|
|
counts = torch.ones_like(expected) if include_self else torch.zeros_like(expected)
|
|
counts.index_add_(0, idx, torch.ones_like(src))
|
|
counts.masked_fill_(counts == 0, 1)
|
|
if (dtype.is_floating_point):
|
|
expected.div_(counts)
|
|
else:
|
|
expected.div_(counts, rounding_mode="floor")
|
|
expected = expected.transpose(0, dim)
|
|
|
|
self.assertEqual(dest, expected)
|
|
|
|
# FIXME: move to test indexing
|
|
@dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
|
|
def test_index_copy(self, device, dtype):
|
|
# We just test for num_copy <= num_dest, as otherwise there are repeated indices
|
|
# and the behavior is undefined
|
|
num_copy, num_dest = 3, 5
|
|
|
|
def make_arg(batch_sizes, n, dim, contig):
|
|
size_arg = batch_sizes[:dim] + (n,) + batch_sizes[dim:]
|
|
return make_tensor(size_arg, dtype=dtype, device=device, low=None, high=None, noncontiguous=not contig)
|
|
|
|
def ref_index_copy(tgt, dim, idx, src):
|
|
for i in range(idx.size(0)):
|
|
idx_dest = dim * (slice(None),) + (idx[i],)
|
|
idx_src = dim * (slice(None),) + (i,)
|
|
tgt[idx_dest] = src[idx_src]
|
|
|
|
# More thorough testing as in index_add
|
|
for dest_contig, src_contig, index_contig in product([True, False], repeat=3):
|
|
for other_sizes in ((), (4, 5)):
|
|
for dim in range(len(other_sizes)):
|
|
dest = make_arg(other_sizes, num_dest, dim, dest_contig)
|
|
src = make_arg(other_sizes, num_copy, dim, src_contig)
|
|
idx = torch.randperm(num_dest, dtype=torch.int64, device=device)[:num_copy]
|
|
if not index_contig:
|
|
idx = torch.repeat_interleave(idx, 2, dim=-1)
|
|
idx = idx[..., ::2]
|
|
dest2 = dest.clone()
|
|
dest.index_copy_(dim, idx, src)
|
|
ref_index_copy(dest2, dim, idx, src)
|
|
self.assertEqual(dest, dest2)
|
|
|
|
# FIXME: move to test indexing
|
|
# onlyNativeDeviceTypes due to an XLA error:
|
|
# https://github.com/pytorch/pytorch/issues/53256
|
|
@onlyNativeDeviceTypes
|
|
@dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
|
|
def test_index_copy_scalars(self, device, dtype):
|
|
# Create the 8 possible combinations of scalar sizes for target / index / source
|
|
scalars = ((make_tensor(size_t, dtype=dtype, device=device, low=None, high=None),
|
|
make_tensor(size_i, dtype=torch.int64, device=device, low=0, high=1),
|
|
make_tensor(size_s, dtype=dtype, device=device, low=None, high=None))
|
|
for size_t, size_i, size_s in product([(), (1,)], repeat=3))
|
|
for target, idx, source in scalars:
|
|
target.index_copy_(0, idx, source)
|
|
self.assertEqual(target.item(), source.item())
|
|
|
|
# FIXME: move to test indexing
|
|
@onlyCPU
|
|
def test_errors_index_copy(self, device):
|
|
# We do not test the GPU as the CUDA_ASSERT would break the CUDA context
|
|
idx_dim = 8
|
|
tgt_dim = 5
|
|
batch_dim = 3
|
|
|
|
# Too large of an index
|
|
a = torch.randn(batch_dim, tgt_dim, device=device)
|
|
idx = torch.full((idx_dim,), tgt_dim, device=device)
|
|
c = torch.zeros(batch_dim, idx_dim, device=device)
|
|
with self.assertRaises(IndexError):
|
|
a.index_copy_(1, idx, c)
|
|
|
|
# Too small (negative indices)
|
|
idx = torch.full((idx_dim,), -1, device=device)
|
|
with self.assertRaises(IndexError):
|
|
a.index_copy_(1, idx, c)
|
|
|
|
# Too small (very negative indices) - they should be unsupported even
|
|
# when support for negative indices is implemented for index_copy_
|
|
idx = torch.full((idx_dim,), -tgt_dim - 1, device=device)
|
|
with self.assertRaises(IndexError):
|
|
a.index_copy_(1, idx, c)
|
|
|
|
def _prepare_data_for_index_copy_and_add_deterministic(
|
|
self, dim: int, device: torch.device
|
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
assert (dim >= 0 and dim < 3)
|
|
a = [5, 4, 3]
|
|
a[dim] = 2000
|
|
x = torch.zeros(a, device=device)
|
|
b = a.copy()
|
|
elems = a[dim] * 20
|
|
b[dim] = elems
|
|
src = torch.rand(b, device=device)
|
|
index = torch.randint(a[dim], (elems,), device=device)
|
|
return (x, index, src)
|
|
|
|
# FIXME: move to test indexing
|
|
@onlyNativeDeviceTypes
|
|
def test_index_copy_deterministic(self, device: torch.device) -> None:
|
|
for dim in range(3):
|
|
x, index, src = self._prepare_data_for_index_copy_and_add_deterministic(dim, device)
|
|
with DeterministicGuard(True):
|
|
y0 = torch.index_copy(x, dim, index, src)
|
|
|
|
x0 = x.clone().detach()
|
|
index_list = index.tolist()
|
|
for i in range(len(index_list)):
|
|
if dim == 0:
|
|
x0[index_list[i], :, :] = src[i, :, :]
|
|
elif dim == 1:
|
|
x0[:, index_list[i], :] = src[:, i, :]
|
|
elif dim == 2:
|
|
x0[:, :, index_list[i]] = src[:, :, i]
|
|
|
|
self.assertEqual(x0, y0, atol=0, rtol=0)
|
|
|
|
# FIXME: move to test indexing
|
|
@onlyNativeDeviceTypes
|
|
def test_index_add_deterministic(self, device: torch.device) -> None:
|
|
for dim in range(3):
|
|
x, index, src = self._prepare_data_for_index_copy_and_add_deterministic(dim, device)
|
|
alpha = random.random() + 1
|
|
# on CPU it should be deterministic regardless of the deterministic mode
|
|
with DeterministicGuard(True):
|
|
y0 = torch.index_add(x, dim, index, src, alpha=alpha)
|
|
for _ in range(3):
|
|
y = torch.index_add(x, dim, index, src, alpha=alpha)
|
|
self.assertEqual(y, y0, atol=0, rtol=0)
|
|
|
|
with DeterministicGuard(False):
|
|
for _ in range(3):
|
|
y_nd = torch.index_add(x, dim, index, src, alpha=alpha)
|
|
self.assertEqual(y_nd, y0, atol=1e-3, rtol=1e-5)
|
|
|
|
# FIXME: find a test suite for the put operator
|
|
@onlyNativeDeviceTypes
|
|
def test_index_put_non_accumulate_deterministic(self, device) -> None:
|
|
with DeterministicGuard(True):
|
|
for i in range(3):
|
|
m = random.randint(10, 20)
|
|
elems = random.randint(20000, 30000)
|
|
values = torch.rand(elems, device=device)
|
|
indices = torch.randint(m, (elems,), device=device)
|
|
input = torch.rand(m, device=device)
|
|
output = input.index_put((indices,), values, accumulate=False)
|
|
|
|
input_list = input.tolist()
|
|
indices_list = indices.tolist()
|
|
values_list = values.tolist()
|
|
for i, v in zip(indices_list, values_list):
|
|
input_list[i] = v
|
|
|
|
self.assertEqual(output, input_list)
|
|
|
|
# FIXME: move to test indexing
|
|
@dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
|
|
@skipIfMps
|
|
def test_index_fill(self, device, dtype):
|
|
x = torch.tensor([[1, 2], [4, 5]], dtype=dtype, device=device)
|
|
index = torch.tensor([0], device=device)
|
|
x.index_fill_(1, index, 0)
|
|
self.assertEqual(x, torch.tensor([[0, 2], [0, 5]], dtype=dtype, device=device))
|
|
if not x.is_complex() and not device == "meta":
|
|
with self.assertRaisesRegex(RuntimeError, r"Scalar"):
|
|
x.index_fill_(1, index, 1 + 1j)
|
|
# Make sure that the result stays 0-dim while applied to
|
|
# a 0-dim input
|
|
x = torch.tensor(1, dtype=dtype, device=device)
|
|
self.assertEqual(0, x.index_fill(0, index, -1).dim())
|
|
self.assertEqual(0, x.index_fill_(0, index, -1).dim())
|
|
|
|
# FIXME: move to test indexing
|
|
# The test fails for zero-dimensional tensors on XLA
|
|
@onlyNativeDeviceTypes
|
|
@dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
|
|
def test_index_select(self, device, dtype):
|
|
num_src, num_out = 3, 5
|
|
|
|
def make_arg(batch_sizes, n, dim, contig):
|
|
size_arg = batch_sizes[:dim] + (n,) + batch_sizes[dim:]
|
|
return make_tensor(size_arg, dtype=dtype, device=device, low=None, high=None, noncontiguous=not contig)
|
|
|
|
def ref_index_select(src, dim, idx):
|
|
# bfloat16 is just used on GPU, so it's not supported on numpy
|
|
if dtype == torch.bfloat16:
|
|
src = src.float()
|
|
out = torch.from_numpy(np.take(src.cpu().numpy(), idx.cpu().numpy(), axis=dim))
|
|
if dtype == torch.bfloat16:
|
|
out = out.to(device=device, dtype=dtype)
|
|
return out
|
|
|
|
for src_contig, idx_contig in product([True, False], repeat=2):
|
|
for other_sizes in ((), (4, 5)):
|
|
for dim in range(len(other_sizes)):
|
|
src = make_arg(other_sizes, num_src, dim, src_contig)
|
|
idx = make_tensor(
|
|
(num_out,), dtype=torch.int64, device=device, low=0, high=num_src, noncontiguous=not idx_contig
|
|
)
|
|
out = torch.index_select(src, dim, idx)
|
|
out2 = ref_index_select(src, dim, idx)
|
|
self.assertEqual(out, out2)
|
|
|
|
for idx_type in (torch.int32, torch.int64):
|
|
other_sizes = (3, 2)
|
|
dim = 1
|
|
src = make_arg(other_sizes, num_src, dim, True)
|
|
idx = make_tensor((num_out,), dtype=idx_type, device=device, low=0, high=num_src, noncontiguous=False)
|
|
out = torch.index_select(src, dim, idx)
|
|
out2 = ref_index_select(src, dim, idx)
|
|
self.assertEqual(out, out2)
|
|
|
|
# Create the 4 possible combinations of scalar sizes for index / source
|
|
scalars = ((make_tensor(size_s, dtype=dtype, device=device),
|
|
torch.zeros(size_i, dtype=torch.int64, device=device))
|
|
for size_s, size_i in product([(), (1,)], repeat=2))
|
|
for source, idx in scalars:
|
|
out = source.index_select(0, idx)
|
|
self.assertEqual(out.item(), source.item())
|
|
|
|
# FIXME: find a test suite for the take operator
|
|
@dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
|
|
def test_take(self, device, dtype):
|
|
idx_size = (4,)
|
|
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype)
|
|
make_idx = partial(make_tensor, low=0, device=device, dtype=torch.int64)
|
|
|
|
def ref_take(src, idx):
|
|
if dtype == torch.bfloat16:
|
|
src = src.half()
|
|
src = src.cpu().numpy()
|
|
idx = idx.cpu().numpy()
|
|
out = torch.from_numpy(np.take(src, idx)).to(device=device, dtype=dtype)
|
|
return out
|
|
|
|
for src_contig, idx_contig, idx_reshape in product([True, False], repeat=3):
|
|
for src_size in ((5,), (4, 5)):
|
|
src = make_arg(src_size, noncontiguous=not src_contig)
|
|
idx = make_idx(idx_size, high=src.numel(), noncontiguous=not idx_contig)
|
|
if idx_reshape:
|
|
idx = idx.reshape(2, 2)
|
|
out = torch.take(src, idx)
|
|
out2 = ref_take(src, idx)
|
|
self.assertEqual(out, out2)
|
|
|
|
# Create the 4 possible combinations of scalar sizes for source / index
|
|
for size_s, size_i in product([(), (1,)], repeat=2):
|
|
source = make_arg(size_s)
|
|
idx = make_idx(size_i, high=1)
|
|
out = source.take(idx)
|
|
self.assertEqual(out.item(), source.item())
|
|
|
|
# FIXME: find a test suite for the put operator
|
|
# The bool instance does not work on GPU. See
|
|
# https://github.com/pytorch/pytorch/issues/54317
|
|
@dtypes(*all_types_and_complex_and(torch.half, torch.bfloat16))
|
|
def test_put(self, device, dtype):
|
|
src_size = (4,)
|
|
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype)
|
|
make_idx = partial(make_tensor, low=0, device=device, dtype=torch.int64)
|
|
|
|
def ref_put(dst, idx, src, accumulate):
|
|
new_dst = dst.clone(memory_format=torch.contiguous_format).view(-1)
|
|
new_idx = idx.contiguous().view(-1)
|
|
new_src = src.contiguous().view(-1)
|
|
method = new_dst.index_add_ if accumulate else new_dst.index_copy_
|
|
return method(0, new_idx, new_src).view_as(dst)
|
|
|
|
for dst_contig, src_contig, idx_contig, idx_reshape, accumulate in product([True, False], repeat=5):
|
|
for dst_size in ((5,), (4, 5)):
|
|
dst = make_arg(dst_size, noncontiguous=not dst_contig)
|
|
src = make_arg(src_size, noncontiguous=not src_contig)
|
|
|
|
# If accumulate=True, `put_` should be deterministic regardless of the inputs on CPU
|
|
# On CUDA it may not be, but the test has enough tolerance to account for this
|
|
if accumulate:
|
|
idx = make_idx(src_size, high=dst.numel())
|
|
else:
|
|
idx = torch.randperm(dst.numel(), dtype=torch.int64, device=device)[:src_size[0]]
|
|
if not idx_contig:
|
|
idx = torch.repeat_interleave(idx, 2, dim=-1)[..., ::2]
|
|
if idx_reshape:
|
|
idx = idx.reshape(2, 2)
|
|
out = torch.put(dst, idx, src, accumulate)
|
|
# out-place
|
|
reference = ref_put(dst, idx, src, accumulate)
|
|
self.assertEqual(out, reference)
|
|
|
|
# in-place
|
|
dst.put_(idx, src, accumulate)
|
|
self.assertEqual(dst, reference)
|
|
|
|
|
|
# Create the 8 possible combinations of scalar sizes for target / index / source
|
|
scalars = ((make_arg(size_t),
|
|
make_idx(size_i, high=1),
|
|
make_arg(size_s))
|
|
for size_t, size_i, size_s in product([(), (1,)], repeat=3))
|
|
for (dest, idx, source), accumulate in product(scalars, [True, False]):
|
|
dest_init = dest.clone()
|
|
# out-place
|
|
out = torch.put(dest, idx, source, accumulate=accumulate)
|
|
# in-place
|
|
dest1 = dest.clone()
|
|
dest1.put_(idx, source, accumulate=accumulate)
|
|
for d in [out, dest1]:
|
|
if accumulate:
|
|
self.assertEqual(d.item(), (dest_init + source).item())
|
|
else:
|
|
self.assertEqual(d.item(), source.item())
|
|
|
|
# Empty case
|
|
dest = make_arg((3, 2))
|
|
reference = dest.clone()
|
|
idx = make_idx((0,), high=1)
|
|
source = make_arg((0,))
|
|
for accumulate in [True, False]:
|
|
out = torch.put(dest, idx, source, accumulate=accumulate)
|
|
self.assertEqual(out, reference)
|
|
dest.put_(idx, source, accumulate=accumulate)
|
|
self.assertEqual(dest, reference)
|
|
|
|
# FIXME: find a test suite for the put operator
|
|
# The bool instance does not work on GPU. See
|
|
# https://github.com/pytorch/pytorch/issues/54317
|
|
@dtypes(*all_types_and_complex_and(torch.half, torch.bfloat16))
|
|
def test_put_accumulate(self, device, dtype):
|
|
# Test for parallel adds with accumulate == True
|
|
low_precision = dtype == torch.half or dtype == torch.bfloat16
|
|
# Less numbers to avoid overflow with low_precision
|
|
# Grainsize is 3000 for the for_loop to be parallized on CPU
|
|
sizes = ((100,)) if low_precision else ((200,), (3002,))
|
|
# Bfloat16 has a particularly bad performance here
|
|
# This operation is nondeterministic on GPU, so we are generous with the rtol
|
|
rtol, atol = (1e-1, 1e-2) if low_precision else (1e-3, 1e-4)
|
|
|
|
make_arg = partial(make_tensor, low=-2, high=3, device=device, dtype=dtype)
|
|
# Dump everything into the 0-th position
|
|
make_idx = partial(torch.zeros, device=device, dtype=torch.int64)
|
|
args = ((make_idx(size), make_arg(size)) for size in sizes)
|
|
|
|
for idx, source in args:
|
|
orig = make_arg((1,))
|
|
out = orig.put(idx, source, accumulate=True)
|
|
self.assertEqual(out, orig + source.sum(), rtol=rtol, atol=atol)
|
|
|
|
# FIXME: find a test suite for the take operator
|
|
@skipIfMps
|
|
def test_take_empty(self, device):
|
|
for input_shape in [(0,), (0, 1, 2, 0), (1, 2, 3)]:
|
|
for indices_shape in [(0,), (0, 1, 2, 0)]:
|
|
input = torch.empty(input_shape, device=device)
|
|
indices = torch.empty(indices_shape, dtype=torch.int64, device=device)
|
|
self.assertEqual(indices, torch.take(input, indices), exact_dtype=False)
|
|
|
|
# FIXME: find a test suite for the put operator
|
|
def test_put_empty(self, device):
|
|
for dst_shape in [(0,), (0, 1, 2, 0), (1, 2, 3)]:
|
|
for indices_shape in [(0,), (0, 1, 2, 0)]:
|
|
for accumulate in [False, True]:
|
|
dst = torch.randn(dst_shape, device=device)
|
|
indices = torch.empty(indices_shape, dtype=torch.int64, device=device)
|
|
src = torch.randn(indices_shape, device=device)
|
|
self.assertEqual(dst, dst.put_(indices, src, accumulate=accumulate))
|
|
|
|
# FIXME: port to test_scatter_gather_ops.py
|
|
def scatter_allow_reduce(self, device, dtype, reduceop):
|
|
device_type = torch.device(device).type
|
|
return device_type != 'cuda' or (reduceop == 'multiply' and dtype.is_floating_point)
|
|
|
|
@dtypes(*floating_and_complex_types())
|
|
@dtypesIfCPU(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
|
|
@dtypesIfCUDA(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
|
|
def test_scatter_reduce_operations_to_large_input(self, device, dtype):
|
|
index = torch.tensor([[1], [2]], device=device, dtype=torch.long)
|
|
test_data = [
|
|
(torch.zeros(4, 4, device=device, dtype=dtype),
|
|
torch.ones(2, 2, device=device, dtype=dtype),
|
|
torch.tensor([[0, 0, 0, 0],
|
|
[1, 0, 0, 0],
|
|
[1, 0, 0, 0],
|
|
[0, 0, 0, 0]],
|
|
device=device, dtype=dtype), "add"),
|
|
(torch.tensor([2], device=device, dtype=dtype).repeat(4, 4),
|
|
torch.tensor([6], device=device, dtype=dtype).repeat(2, 2),
|
|
torch.tensor([[2, 2, 2, 2],
|
|
[12, 2, 2, 2],
|
|
[12, 2, 2, 2],
|
|
[2, 2, 2, 2]], device=device, dtype=dtype), "multiply"),
|
|
]
|
|
|
|
for input, src, result, operation in test_data:
|
|
if not self.scatter_allow_reduce(device, dtype, operation):
|
|
continue
|
|
input.scatter_(0, index, src, reduce=operation)
|
|
self.assertEqual(input, result)
|
|
|
|
@dtypes(*floating_and_complex_types())
|
|
@dtypesIfCPU(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
|
|
@dtypesIfCUDA(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
|
|
def test_scatter_reduce_scalar(self, device, dtype):
|
|
index = torch.tensor([[1], [2]], device=device, dtype=torch.long)
|
|
test_data = [
|
|
(torch.zeros(4, 4, device=device, dtype=dtype), 1,
|
|
torch.tensor([[0, 0, 0, 0],
|
|
[1, 0, 0, 0],
|
|
[1, 0, 0, 0],
|
|
[0, 0, 0, 0]],
|
|
device=device, dtype=dtype), "add"),
|
|
(torch.tensor([2], device=device, dtype=dtype).repeat(4, 4), 2,
|
|
torch.tensor([[2, 2, 2, 2],
|
|
[4, 2, 2, 2],
|
|
[4, 2, 2, 2],
|
|
[2, 2, 2, 2]], device=device, dtype=dtype), "multiply"),
|
|
]
|
|
|
|
for input, src, result, operation in test_data:
|
|
if not self.scatter_allow_reduce(device, dtype, operation):
|
|
continue
|
|
input.scatter_(0, index, src, reduce=operation)
|
|
self.assertEqual(input, result)
|
|
|
|
# FIXME: port to test_scatter_gather_ops.py
|
|
# TODO: remove this after scatter_add_ is deprecated.
|
|
def test_scatter_add_non_unique_index(self, device):
|
|
height = 2
|
|
width = 65536
|
|
input = torch.ones(height, width, device=device)
|
|
index = torch.zeros(height, width, dtype=torch.long, device=device)
|
|
src = torch.ones(height, width, device=device)
|
|
input.scatter_add_(0, index, src)
|
|
|
|
self.assertEqual(input,
|
|
torch.tensor([[3], [1]], device=device,
|
|
dtype=torch.float32).repeat(1, width))
|
|
|
|
@dtypes(*floating_and_complex_types())
|
|
@dtypesIfCPU(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
|
|
@dtypesIfCUDA(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
|
|
def test_scatter_reduce_non_unique_index(self, device, dtype):
|
|
height = 2
|
|
width = 2
|
|
index = torch.zeros(height, width, dtype=torch.long, device=device)
|
|
test_data = [
|
|
(torch.ones(height, width, device=device, dtype=dtype),
|
|
torch.ones(height, width, device=device, dtype=dtype),
|
|
torch.tensor([[3], [1]], device=device, dtype=dtype).repeat(1, width), "add"),
|
|
(torch.tensor([2], device=device, dtype=dtype).repeat(height, width),
|
|
torch.tensor([2], device=device, dtype=dtype).repeat(height, width),
|
|
torch.tensor([[8], [2]], device=device,
|
|
dtype=dtype).repeat(1, width), "multiply"),
|
|
]
|
|
|
|
for input, src, result, operation in test_data:
|
|
if not self.scatter_allow_reduce(device, dtype, operation):
|
|
continue
|
|
input.scatter_(0, index, src, reduce=operation)
|
|
self.assertEqual(input, result, msg=f"result: {result} input: {input} method: {str(operation)}")
|
|
|
|
@onlyCUDA
|
|
@dtypes(*complex_types())
|
|
def test_scatter_reduce_multiply_unsupported_dtypes(self, device, dtype):
|
|
height = 2
|
|
width = 2
|
|
index = torch.zeros(height, width, dtype=torch.long, device=device)
|
|
input = torch.ones(height, width, device=device, dtype=dtype)
|
|
src = torch.ones(height, width, device=device, dtype=dtype)
|
|
with self.assertRaises(RuntimeError):
|
|
input.scatter_(0, index, src, reduce="multiply")
|
|
|
|
# FIXME: port to test_scatter_gather_ops.py
|
|
def test_scatter_to_large_input(self, device):
|
|
input = torch.zeros(4, 4, device=device)
|
|
src = torch.ones(2, 2, device=device)
|
|
index = torch.tensor([[1], [2]], device=device, dtype=torch.long)
|
|
input.scatter_(0, index, src)
|
|
self.assertEqual(input, torch.tensor([[0, 0, 0, 0],
|
|
[1, 0, 0, 0],
|
|
[1, 0, 0, 0],
|
|
[0, 0, 0, 0]], device=device, dtype=torch.float32))
|
|
|
|
# FIXME: port to test_scatter_gather_ops.py
|
|
def test_scatter_add_to_large_input(self, device):
|
|
input = torch.zeros(4, 4, device=device)
|
|
src = torch.ones(2, 2, device=device)
|
|
index = torch.tensor([[1], [2]], device=device, dtype=torch.long)
|
|
input.scatter_add_(0, index, src)
|
|
self.assertEqual(input, torch.tensor([[0, 0, 0, 0],
|
|
[1, 0, 0, 0],
|
|
[1, 0, 0, 0],
|
|
[0, 0, 0, 0]], device=device, dtype=torch.float32))
|
|
|
|
# FIXME: port to test_scatter_gather_ops.py
|
|
def test_scatter_bool(self, device):
|
|
x = torch.tensor([[True, True, True], [True, True, True]], device=device)
|
|
res = torch.zeros(3, 3, dtype=torch.bool, device=device)
|
|
res = res.scatter_(0, torch.tensor([[0, 1, 2], [0, 1, 2]], device=device), x)
|
|
self.assertEqual(res, torch.tensor([[True, False, False],
|
|
[False, True, False],
|
|
[False, False, True]], device=device))
|
|
|
|
# FIXME: port to test_scatter_gather_ops.py
|
|
def test_scatter_add_bool(self, device):
|
|
x = torch.tensor([[True, True, True, True, True], [True, True, True, True, True]], device=device)
|
|
res = torch.zeros(3, 5, dtype=torch.bool, device=device)
|
|
res = res.scatter_add_(0, torch.tensor([[0, 1, 2, 0, 0], [2, 0, 0, 1, 2]], device=device), x)
|
|
self.assertEqual(res, torch.tensor([[True, True, True, True, True],
|
|
[False, True, False, True, False],
|
|
[True, False, True, False, True]], device=device))
|
|
|
|
# FIXME: find a test suite for the masked scatter operator
|
|
@onlyNativeDeviceTypes
|
|
@dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
|
|
def test_masked_scatter(self, device, dtype):
|
|
dt = dtype
|
|
with warnings.catch_warnings(record=True) as w:
|
|
warnings.simplefilter("always")
|
|
for maskType in [torch.uint8, torch.bool]:
|
|
num_copy, num_dest = 3, 10
|
|
dest = torch.tensor([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], dtype=dt, device=device)
|
|
dest2 = dest.clone()
|
|
dest_ones = dest.clone()
|
|
dest_ones_expected = dest.clone()
|
|
src = torch.tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0], dtype=dt, device=device)
|
|
src_ones = torch.tensor([1, 1, 1, 1, 1, 1, 1, 1, 1, 1], dtype=dt, device=device)
|
|
mask = torch.tensor((0, 0, 0, 0, 1, 0, 1, 0, 1, 0), dtype=maskType, device=device)
|
|
|
|
if dt == torch.bool:
|
|
# torch.bool is a special case and is being tested
|
|
# in a separate test
|
|
return
|
|
|
|
dest.masked_scatter_(mask, src)
|
|
j = 0
|
|
for i in range(num_dest):
|
|
if mask[i]:
|
|
dest2[i] = src[j]
|
|
dest_ones_expected[i] = src_ones[j]
|
|
j += 1
|
|
self.assertEqual(dest, dest2, atol=0, rtol=0)
|
|
|
|
dest_ones.masked_scatter_(mask, src_ones)
|
|
self.assertEqual(dest_ones, dest_ones_expected, atol=0, rtol=0)
|
|
|
|
# Bound checking in CUDA is done inside a kernel
|
|
# in order to avoid synchronization, but this means
|
|
# we can not clear the failures. So there is no way
|
|
# to test it then recover.
|
|
if self.device_type != 'cuda':
|
|
# make src smaller. this should fail
|
|
src = torch.zeros(num_copy - 1, dtype=dt, device=device)
|
|
with self.assertRaises(RuntimeError):
|
|
dest.masked_scatter_(mask, src)
|
|
|
|
# empty tensor
|
|
dest = torch.empty((5, 0, 5), dtype=dt, device=device)
|
|
mask = torch.ones_like(dest, dtype=maskType, device=device)
|
|
src = torch.empty((0,), dtype=dt, device=device)
|
|
dest.masked_scatter_(mask, src)
|
|
|
|
dest = torch.empty((5, 0, 5), dtype=dt, device=device)
|
|
mask = torch.ones((5, 1, 5), dtype=maskType, device=device)
|
|
src = torch.empty((0,), dtype=dt, device=device)
|
|
dest.masked_scatter_(mask, src)
|
|
|
|
if self.device_type != 'cuda':
|
|
self.assertEqual(len(w), 5)
|
|
else:
|
|
self.assertEqual(len(w), 4)
|
|
|
|
warn = 'masked_scatter_ received a mask with dtype torch.uint8,'
|
|
for wi in w:
|
|
self.assertEqual(str(wi.message)[0:55], str(warn))
|
|
|
|
# FIXME: find a test suite for the masked scatter operator
|
|
@skipIfMps
|
|
def test_masked_scatter_bool_tensor(self, device):
|
|
src = torch.tensor([True, True, True], device=device)
|
|
dst = torch.tensor([False, False, False], device=device)
|
|
mask = torch.tensor([False, True, False], device=device)
|
|
|
|
dst.masked_scatter_(mask, src)
|
|
self.assertEqual(dst, torch.tensor([False, True, False], device=device))
|
|
|
|
mask = torch.tensor([True, False, True], device=device)
|
|
dst = dst.masked_scatter(mask, src)
|
|
self.assertEqual(dst, torch.tensor([True, True, True], device=device))
|
|
|
|
# FIXME: find a test suite for the masked scatter operator
|
|
# test_scatter_gather_ops or test_masked_ops?
|
|
@onlyCUDA
|
|
@largeTensorTest('30GB')
|
|
def test_masked_scatter_large_tensor(self, device):
|
|
t_cpu = torch.empty(2**31 + 1, dtype=torch.bool).random_()
|
|
t = t_cpu.to(device)
|
|
result_cpu = t_cpu.masked_scatter(t_cpu, t_cpu)
|
|
result = t.masked_scatter(t, t)
|
|
self.assertEqual(result, result_cpu)
|
|
|
|
# FIXME: find a test suite for the masked select operator
|
|
@dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
|
|
def test_masked_select(self, device, dtype):
|
|
if device == 'cpu':
|
|
warn = 'masked_select received a mask with dtype torch.uint8,'
|
|
else:
|
|
warn = 'indexing with dtype torch.uint8 is now deprecated, pl'
|
|
for maskType in [torch.uint8, torch.bool]:
|
|
num_src = 10
|
|
src = torch.tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0], dtype=dtype, device=device)
|
|
mask = torch.randint(2, (num_src,), device=device, dtype=maskType)
|
|
|
|
with warnings.catch_warnings(record=True) as w:
|
|
dst = src.masked_select(mask)
|
|
if maskType is torch.uint8:
|
|
self.assertEqual(len(w), 1)
|
|
self.assertEqual(str(w[0].message)[0:53], str(warn))
|
|
dst2 = []
|
|
for i in range(num_src):
|
|
if mask[i]:
|
|
dst2 += [src[i]]
|
|
self.assertEqual(dst, torch.tensor(dst2), atol=0, rtol=0)
|
|
|
|
dst3 = torch.empty(0, device=device, dtype=dtype)
|
|
torch.masked_select(src, mask, out=dst3)
|
|
self.assertEqual(dst3, torch.tensor(dst2, dtype=dst3.dtype), atol=0, rtol=0)
|
|
|
|
# Since half on CPU is not supported, need to skip the remaining test cases
|
|
if dtype == torch.half and torch.device(device).type == 'cpu':
|
|
return
|
|
|
|
# Ensure that masks are expanded to match tensor properly
|
|
a = torch.rand(100, 100, device=device).mul(100).to(dtype)
|
|
mask_first_el_each_row = torch.zeros(100, device=device, dtype=torch.bool)
|
|
mask_first_el_each_row[0] = True
|
|
a_masked = a.masked_select(mask_first_el_each_row)
|
|
self.assertEqual(a_masked, a[:, 0])
|
|
|
|
mask_first_row = torch.zeros(100, 1, device=device, dtype=torch.bool)
|
|
mask_first_row[0][0] = True
|
|
a_masked = a.masked_select(mask_first_row)
|
|
self.assertEqual(a_masked, a[0, :])
|
|
|
|
# Ensure that tensor is expanded to match mask properly
|
|
a = torch.rand(100, device=device).mul(100).to(dtype)
|
|
mask_copy_3_times = torch.tensor([[True], [True], [False], [True]], device=device)
|
|
a_masked = a.masked_select(mask_copy_3_times)
|
|
self.assertEqual(a_masked, a.unsqueeze(0).expand(3, 100).flatten())
|
|
|
|
# FIXME: find a test suite for the masked select operator
|
|
def test_masked_select_discontiguous(self, device):
|
|
for size in (10, 200):
|
|
vals = torch.rand(size, size, device=device)
|
|
mask = torch.full((size, size), False, dtype=torch.bool, device=device)
|
|
mask[:, ::2] = True
|
|
vals_list = (vals, vals.t())
|
|
mask_list = (mask, mask.t())
|
|
out_dc = torch.empty(size * size, device=device)[::2]
|
|
for v, m in product(vals_list, mask_list):
|
|
if m.is_contiguous():
|
|
expected = v[:, ::2].clone().reshape((-1, ))
|
|
else:
|
|
expected = v[::2].clone().reshape((-1, ))
|
|
out = torch.masked_select(v, m)
|
|
self.assertEqual(out, expected, atol=0, rtol=0)
|
|
torch.masked_select(v, m, out=out_dc)
|
|
self.assertEqual(out_dc, expected, atol=0, rtol=0)
|
|
|
|
# FIXME: find a test suite for the masked fill operator
|
|
@dtypes(*product(all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16), (torch.uint8, torch.bool)))
|
|
def test_masked_fill(self, device, dtypes):
|
|
dtype = dtypes[0]
|
|
mask_dtype = dtypes[1]
|
|
with warnings.catch_warnings(record=True) as w:
|
|
warnings.simplefilter("always")
|
|
|
|
num_dest = 10
|
|
dst = torch.zeros(num_dest, dtype=dtype)
|
|
mask = torch.randint(2, (num_dest,), dtype=mask_dtype)
|
|
val = random.random()
|
|
dst2 = dst.clone()
|
|
|
|
dst.masked_fill_(mask, val)
|
|
for i in range(num_dest):
|
|
if mask[i]:
|
|
dst2[i] = val
|
|
self.assertEqual(dst, dst2, atol=0, rtol=0)
|
|
|
|
# test non-contiguous case
|
|
dst = ((torch.randn(num_dest, num_dest, num_dest) * 10).to(dtype)).permute((2, 0, 1))
|
|
dst2 = dst.contiguous()
|
|
if dtype.is_complex:
|
|
mask = dst.abs() > 0
|
|
else:
|
|
mask = dst > 0
|
|
self.assertTrue(not dst.is_contiguous())
|
|
self.assertTrue(dst2.is_contiguous())
|
|
dst.masked_fill_(mask.to(mask_dtype), val)
|
|
dst2.masked_fill_(mask.to(mask_dtype), val)
|
|
self.assertEqual(dst, dst2, atol=0, rtol=0)
|
|
|
|
if mask_dtype == torch.uint8:
|
|
self.assertEqual(len(w), 3)
|
|
|
|
warn = 'masked_fill_ received a mask with dtype torch.uint8,'
|
|
for wi in w:
|
|
self.assertEqual(str(wi.message)[0:52], str(warn))
|
|
else:
|
|
self.assertEqual(len(w), 0)
|
|
|
|
# FIXME: find a test suite for the masked fill operator
|
|
def test_masked_fill_bool_tensor(self, device):
|
|
dst = torch.tensor([True, False, True], device=device)
|
|
mask = torch.tensor([False, True, False], device=device)
|
|
|
|
dst.masked_fill_(mask, True)
|
|
self.assertEqual(dst, torch.tensor([True, True, True], device=device))
|
|
|
|
dst = dst.masked_fill(mask, False)
|
|
self.assertEqual(dst, torch.tensor([True, False, True], device=device))
|
|
|
|
def test_tensor_shape_empty(self, device):
|
|
x = torch.randn((0, 1, 3, 0), device=device)
|
|
# flatten
|
|
self.assertEqual((0,), torch.flatten(x, 0, 3).shape)
|
|
self.assertEqual((0, 0), torch.flatten(x, 0, 2).shape)
|
|
self.assertEqual((0, 3, 0), torch.flatten(x, 1, 2).shape)
|
|
|
|
# squeeze, unsqueeze
|
|
self.assertEqual((0, 1, 1, 3, 0), torch.unsqueeze(x, 1).shape)
|
|
self.assertEqual((0, 3, 0), torch.squeeze(x, 1).shape)
|
|
self.assertEqual((0, 3, 0), torch.squeeze(x).shape)
|
|
|
|
# transpose, t
|
|
self.assertEqual((0, 0, 3, 1), torch.transpose(x, 1, 3).shape)
|
|
y = torch.randn((5, 0), device=device)
|
|
self.assertEqual((0, 5), y.t().shape)
|
|
|
|
# select
|
|
self.assertEqual((0, 1, 0), torch.select(x, 2, 2).shape)
|
|
|
|
# repeat, permute
|
|
self.assertEqual((9, 0, 5, 6, 0), x.repeat(9, 7, 5, 2, 3).shape)
|
|
self.assertEqual((3, 0, 0, 1), x.permute(2, 3, 0, 1).shape)
|
|
|
|
# diagonal, diagflat
|
|
self.assertEqual((0,), torch.diagonal(torch.randn((5, 0), device=device)).shape)
|
|
self.assertEqual((0,), torch.diagonal(torch.randn((0, 5), device=device)).shape)
|
|
# off the end offsets are valid
|
|
self.assertEqual((0,), torch.diagonal(torch.randn((5, 0), device=device), offset=1).shape)
|
|
self.assertEqual((0,), torch.diagonal(torch.randn((0, 5), device=device), offset=1).shape)
|
|
# check non-zero sized offsets off the end
|
|
self.assertEqual((5, 6, 0), torch.diagonal(torch.randn((3, 4, 5, 6), device=device), offset=45252).shape)
|
|
self.assertEqual((5, 6, 0), torch.diagonal(torch.randn((3, 4, 5, 6), device=device), offset=-45252).shape)
|
|
|
|
self.assertEqual((0, 0), torch.diagflat(torch.tensor([], device=device)).shape)
|
|
self.assertEqual(torch.zeros(1, 1), torch.diagflat(torch.tensor([], device=device), offset=1))
|
|
self.assertEqual((0, 0), torch.diagflat(torch.tensor([[]], device=device)).shape)
|
|
self.assertEqual(torch.zeros(1, 1), torch.diagflat(torch.tensor([[]], device=device), offset=1))
|
|
|
|
# stack, split, chunk
|
|
self.assertEqual((4, 0, 1, 3, 0), torch.stack((x, x, x, x)).shape)
|
|
self.assertEqual([(0, 1, 3, 0)],
|
|
[z.shape for z in torch.chunk(x, 1, dim=0)])
|
|
|
|
self.assertEqual([(0, 1, 3, 0), ] * 3, [z.shape for z in torch.chunk(x, 3, dim=0)])
|
|
self.assertEqual([(0, 1, 1, 0), ] * 3, [z.shape for z in torch.chunk(x, 3, dim=2)])
|
|
|
|
# NOTE: split_with_sizes behaves differently than NumPy in that it
|
|
# takes sizes rather than offsets
|
|
self.assertEqual([(0, 1, 0, 0), (0, 1, 1, 0), (0, 1, 2, 0)],
|
|
[z.shape for z in torch.split(x, (0, 1, 2), dim=2)])
|
|
|
|
self.assertRaises(RuntimeError, lambda: torch.split(x, 0, dim=1))
|
|
# This is strange because the split size is larger than the dim size, but consistent with
|
|
# how split handles that case generally (when no 0s are involved).
|
|
self.assertEqual([(0, 1, 3, 0)], [z.shape for z in torch.split(x, 1, dim=0)])
|
|
self.assertEqual([(0, 1, 3, 0)], [z.shape for z in torch.split(x, 0, dim=0)])
|
|
|
|
# functions that operate over a dimension but don't reduce.
|
|
def test_dim_function_empty(self, device):
|
|
shape = (0, 1, 2, 0)
|
|
x = torch.randn(shape, device=device)
|
|
|
|
# size stride
|
|
self.assertEqual(0, x.size(3))
|
|
self.assertEqual(2, x.size(2))
|
|
self.assertEqual(2, x.stride(0))
|
|
self.assertEqual(1, x.stride(2))
|
|
|
|
self.assertEqual(x, torch.nn.functional.glu(x, 0))
|
|
self.assertEqual((0, 1, 1, 0), torch.nn.functional.glu(x, 2).shape)
|
|
|
|
# softmax, logsoftmax
|
|
self.assertEqual(x, torch.nn.functional.softmax(x, 0))
|
|
self.assertEqual(x, torch.nn.functional.softmax(x, 2))
|
|
self.assertEqual(x, torch.nn.functional.softmax(x, 3))
|
|
|
|
self.assertEqual(x, torch.nn.functional.log_softmax(x, 0))
|
|
self.assertEqual(x, torch.nn.functional.log_softmax(x, 2))
|
|
self.assertEqual(x, torch.nn.functional.log_softmax(x, 3))
|
|
|
|
# cumsum, cumprod, cummax, cummin
|
|
self.assertEqual(shape, torch.cumsum(x, 0).shape)
|
|
self.assertEqual(shape, torch.cumsum(x, 2).shape)
|
|
self.assertEqual(shape, torch.cumprod(x, 0).shape)
|
|
self.assertEqual(shape, torch.cumprod(x, 2).shape)
|
|
self.assertEqual(shape, torch.cummax(x, 0)[0].shape)
|
|
self.assertEqual(shape, torch.cummax(x, 2)[0].shape)
|
|
self.assertEqual(shape, torch.cummin(x, 0)[0].shape)
|
|
self.assertEqual(shape, torch.cummin(x, 2)[0].shape)
|
|
self.assertEqual(shape, torch.logcumsumexp(x, 0).shape)
|
|
self.assertEqual(shape, torch.logcumsumexp(x, 2).shape)
|
|
|
|
# flip
|
|
self.assertEqual(x, x.flip(0))
|
|
self.assertEqual(x, x.flip(2))
|
|
|
|
# roll
|
|
self.assertEqual(x, x.roll(0, 1).roll(0, -1))
|
|
self.assertEqual(x, x.roll(1, x.size(1)))
|
|
self.assertEqual(x, x.roll(1))
|
|
self.assertEqual(x, x.roll((1, 1), (3, 1)))
|
|
|
|
# unbind
|
|
self.assertEqual((), x.unbind(0))
|
|
self.assertEqual((torch.empty((0, 1, 0), device=device), torch.empty((0, 1, 0), device=device)),
|
|
x.unbind(2))
|
|
|
|
# cross
|
|
y = torch.randn((0, 1, 3, 0), device=device)
|
|
self.assertEqual(y.shape, torch.cross(y, y).shape)
|
|
|
|
# renorm
|
|
self.assertEqual(shape, torch.renorm(x, 1, 0, 5).shape)
|
|
self.assertEqual(shape, torch.renorm(x, 1, 2, 5).shape)
|
|
|
|
# sort
|
|
self.assertEqual([shape, shape], [z.shape for z in torch.sort(x, dim=0)])
|
|
self.assertEqual([shape, shape], [z.shape for z in torch.sort(x, dim=2)])
|
|
|
|
# topk
|
|
self.assertEqual([shape, shape], [z.shape for z in torch.topk(x, 0, dim=0)])
|
|
self.assertEqual([(0, 1, 1, 0), (0, 1, 1, 0)], [z.shape for z in torch.topk(x, 1, dim=2)])
|
|
|
|
y = torch.randn((2, 3, 4), device=device)
|
|
self.assertEqual([(2, 3, 0), (2, 3, 0)], [z.shape for z in torch.topk(y, 0)])
|
|
|
|
# gather
|
|
self.assertEqual(shape, torch.gather(x, 0, torch.empty(shape, dtype=torch.int64, device=device)).shape)
|
|
self.assertEqual(shape, torch.gather(x, 2, torch.empty(shape, dtype=torch.int64, device=device)).shape)
|
|
larger_shape = torch.empty((0, 1, 3, 0), dtype=torch.int64, device=device)
|
|
self.assertEqual(larger_shape.shape, torch.gather(x, 2, larger_shape).shape)
|
|
smaller_shape = torch.empty((0, 1, 0, 0), dtype=torch.int64, device=device)
|
|
self.assertEqual(smaller_shape.shape, torch.gather(x, 2, smaller_shape).shape)
|
|
y = torch.randn((2, 3, 4), device=device)
|
|
self.assertEqual((0, 3, 4),
|
|
torch.gather(y, 0, torch.empty((0, 3, 4), dtype=torch.int64, device=device)).shape)
|
|
|
|
# scatter, scatter_add
|
|
for dim in [0, 2]:
|
|
y = torch.randn(shape, device=device)
|
|
y_src = torch.randn(shape, device=device)
|
|
ind = torch.empty(shape, dtype=torch.int64, device=device)
|
|
self.assertEqual(shape, y.scatter_(dim, ind, y_src).shape)
|
|
self.assertEqual(shape, y.scatter_add_(dim, ind, y_src).shape)
|
|
|
|
z = torch.randn((2, 3, 4), device=device)
|
|
z_src = torch.randn((2, 3, 4), device=device)
|
|
self.assertEqual(z, z.scatter_(2, torch.empty((2, 3, 0), dtype=torch.int64, device=device), z_src))
|
|
self.assertEqual(z, z.scatter_add_(2, torch.empty((2, 3, 0), dtype=torch.int64, device=device), z_src))
|
|
|
|
# index_fill, index_copy, index_add
|
|
c = x.clone()
|
|
c_clone = c.clone()
|
|
ind_empty = torch.tensor([], dtype=torch.int64, device=device)
|
|
ind_01 = torch.tensor([0, 1], dtype=torch.int64, device=device)
|
|
self.assertEqual(c_clone, c.index_fill_(0, ind_empty, -1))
|
|
self.assertEqual(c_clone, c.index_fill_(2, ind_empty, -1))
|
|
self.assertEqual(c_clone, c.index_fill_(2, ind_01, -1))
|
|
self.assertEqual(c_clone, c.index_copy_(0, ind_empty, torch.empty((0, 1, 2, 0), device=device)))
|
|
self.assertEqual(c_clone, c.index_copy_(2, ind_empty, torch.empty((0, 1, 0, 0), device=device)))
|
|
self.assertEqual(c_clone, c.index_copy_(2, ind_01, torch.empty((0, 1, 2, 0), device=device)))
|
|
self.assertEqual(c_clone, c.index_add_(0, ind_empty, torch.empty((0, 1, 2, 0), device=device)))
|
|
self.assertEqual(c_clone, c.index_add_(2, ind_empty, torch.empty((0, 1, 0, 0), device=device)))
|
|
self.assertEqual(c_clone, c.index_add_(2, ind_01, torch.empty((0, 1, 2, 0), device=device)))
|
|
|
|
c = torch.randn((0, 1, 2), device=device)
|
|
c_clone = c.clone()
|
|
self.assertEqual(c_clone, c.index_fill_(0, ind_empty, -1))
|
|
self.assertEqual(c_clone, c.index_copy_(0, ind_empty, torch.empty((0, 1, 2), device=device)))
|
|
self.assertEqual(c_clone, c.index_add_(0, ind_empty, torch.empty((0, 1, 2), device=device)))
|
|
self.assertEqual(c_clone, c.index_fill_(0, ind_empty, -1))
|
|
self.assertEqual(c_clone, c.index_copy_(0, ind_empty, torch.empty((0, 1, 2), device=device)))
|
|
self.assertEqual(c_clone, c.index_add_(0, ind_empty, torch.empty((0, 1, 2), device=device)))
|
|
|
|
# index fill/copy/add non-empty
|
|
z = torch.randn((2, 3, 4), device=device)
|
|
self.assertEqual(z, z.index_fill_(0, ind_empty, -1))
|
|
z = torch.randn((2, 3, 4), device=device)
|
|
self.assertEqual(z, z.index_copy_(0, ind_empty, torch.empty((0, 3, 4), device=device)))
|
|
z = torch.randn((2, 3, 4), device=device)
|
|
self.assertEqual(z, z.index_add_(0, ind_empty, torch.empty((0, 3, 4), device=device)))
|
|
|
|
# index_select
|
|
self.assertEqual(x, x.index_select(0, ind_empty))
|
|
self.assertEqual((0, 1, 0, 0), x.index_select(2, ind_empty).shape)
|
|
self.assertEqual(x, x.index_select(2, ind_01))
|
|
z = torch.randn((2, 3, 4), device=device) # non-empty
|
|
self.assertEqual((0, 3, 4), z.index_select(0, ind_empty).shape)
|
|
c = torch.randn((0, 1, 2), device=device)
|
|
self.assertEqual(c, c.index_select(0, ind_empty))
|
|
c = torch.randn((0, 1, 2), device=device)
|
|
self.assertEqual(c, c.index_select(0, ind_empty))
|
|
w = torch.randn((0, 3), device=device)
|
|
self.assertEqual((0, 2), w.index_select(1, ind_01).shape)
|
|
w = torch.randn((3, 0), device=device)
|
|
self.assertEqual((2, 0), w.index_select(0, ind_01).shape)
|
|
ind_01_int32 = torch.tensor([0, 1], dtype=torch.int32, device=device)
|
|
self.assertEqual((2, 0), w.index_select(0, ind_01_int32).shape)
|
|
if device == 'cpu':
|
|
w = torch.randn((0, 3), device=device)
|
|
with self.assertRaisesRegex(RuntimeError, "self indexing axis dim should be positive"):
|
|
torch.index_select(w, 0, ind_01)
|
|
ind_05 = torch.tensor([0, 5], dtype=torch.int64, device=device)
|
|
with self.assertRaisesRegex(RuntimeError, "INDICES element is out of DATA bounds"):
|
|
torch.index_select(w, 1, ind_05)
|
|
|
|
# FIXME: find a test suite for the pdist operator
|
|
@unittest.skipIf(IS_FBCODE and IS_REMOTE_GPU, "sandcastle OOM with current tpx gpu/re configuration")
|
|
@skipIfRocm
|
|
@onlyCUDA
|
|
@largeTensorTest('10GB', device='cpu')
|
|
@largeTensorTest('5GB', device='cuda')
|
|
def test_pdist_norm_large(self, device):
|
|
# use dim0>=46342 for forward, see:
|
|
# https://github.com/pytorch/pytorch/issues/30583
|
|
# Compare output using GPU with the CPU implementation
|
|
x = torch.randn(50000, 1, dtype=torch.float32) # 50k * 4 bytes = 200 KB
|
|
# Will require 1249975000 float32s
|
|
expected_cpu = torch.pdist(x, p=2) # ~1250M * 4 bytes = 5 GB on CPU
|
|
actual_gpu = torch.pdist(x.to(device), p=2) # 5 GB on GPU
|
|
self.assertEqual(expected_cpu, actual_gpu.cpu()) # Another 5 GB on CPU
|
|
|
|
# FIXME: move to elementwise ternary test suite
|
|
@onlyNativeDeviceTypes
|
|
@dtypesIfCUDA(*set(get_all_math_dtypes('cuda')))
|
|
@dtypes(*set(get_all_math_dtypes('cpu')))
|
|
def test_addcdiv(self, device, dtype):
|
|
# Returns floating or integral scalar corresponding to dtype
|
|
def _number(floating, integer, dtype):
|
|
if dtype in [torch.half, torch.float, torch.double, torch.bfloat16]:
|
|
return floating
|
|
elif dtype in [torch.cfloat, torch.cdouble]:
|
|
return floating * (1 + 1j)
|
|
else:
|
|
return integer
|
|
|
|
def non_zero_rand(size, dtype, device):
|
|
if dtype.is_floating_point or dtype.is_complex:
|
|
a = torch.rand(size=size, dtype=dtype, device=device)
|
|
elif dtype == torch.uint8:
|
|
a = torch.randint(1, 5, size=size, dtype=dtype, device=device)
|
|
else:
|
|
a = torch.randint(-5, 5, size=size, dtype=dtype, device=device)
|
|
return a + (a == 0).to(dtype)
|
|
|
|
def _test_addcdiv():
|
|
a = non_zero_rand((2, 2), dtype=dtype, device=device)
|
|
b = non_zero_rand((2, 2), dtype=dtype, device=device)
|
|
c = non_zero_rand((2, 2), dtype=dtype, device=device)
|
|
alpha = _number(0.5, 3, dtype)
|
|
|
|
expected = a + (alpha * b) / c
|
|
actual = torch.addcdiv(a, b, c, value=alpha)
|
|
self.assertEqual(expected, actual)
|
|
|
|
with self.assertWarnsOnceRegex(
|
|
UserWarning, "This overload of addcdiv is deprecated"):
|
|
self.assertEqual(actual, torch.addcdiv(a, alpha, b, c))
|
|
|
|
if not (dtype.is_floating_point or dtype.is_complex):
|
|
# Integer division with addcdiv is prohibited
|
|
with self.assertRaises(RuntimeError):
|
|
_test_addcdiv()
|
|
else:
|
|
_test_addcdiv()
|
|
|
|
if self.device_type == 'cuda' and dtype == torch.half:
|
|
a = torch.tensor([60000.0], device=device, dtype=dtype)
|
|
b = torch.tensor([60000.0], device=device, dtype=dtype)
|
|
c = torch.tensor([1.0], device=device, dtype=dtype)
|
|
out = torch.addcmul(a, b, c, value=-2)
|
|
self.assertTrue(not (out.isnan() or out.isinf()))
|
|
|
|
def test_nullary_op_mem_overlap(self, device):
|
|
ops = (
|
|
("random_", ()),
|
|
("uniform_", ()),
|
|
("cauchy_", ()),
|
|
("log_normal_", ()),
|
|
("exponential_", ()),
|
|
("geometric_", (0.5,)),
|
|
("normal_", ()),
|
|
)
|
|
|
|
x = torch.rand((1, 3)).expand((3, 3))
|
|
for op, args in ops:
|
|
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
|
|
getattr(x, op)(*args)
|
|
|
|
# FIXME: move to an elementwise ternary test suite and make this an OpInfo test
|
|
@dtypes(torch.double)
|
|
def test_ternary_op_mem_overlap(self, device, dtype):
|
|
ops = [
|
|
("addcmul", True, True, 'cpu'),
|
|
("addcmul", True, True, 'cuda'),
|
|
("addcdiv", True, True, 'cpu'),
|
|
("addcdiv", True, True, 'cuda'),
|
|
("lerp", True, True, 'cpu'),
|
|
("lerp", True, True, 'cuda')
|
|
]
|
|
|
|
for (fn, has_input_output_mem_overlap_check,
|
|
has_internal_mem_overlap_check, dev) in ops:
|
|
if dev != device:
|
|
continue
|
|
out_op = getattr(torch, fn)
|
|
inplace_op = getattr(torch.Tensor, fn + '_')
|
|
self.check_internal_mem_overlap(
|
|
inplace_op, 3, dtype, device,
|
|
expected_failure=not has_internal_mem_overlap_check)
|
|
self.ternary_check_input_output_mem_overlap(out_op, dev,
|
|
expected_failure=not has_input_output_mem_overlap_check)
|
|
|
|
@expectedFailureMeta # RuntimeError not raised
|
|
@dtypes(torch.double)
|
|
@onlyNativeDeviceTypes
|
|
def test_copy_mem_overlap(self, device, dtype):
|
|
self.check_internal_mem_overlap(
|
|
torch.Tensor.copy_, num_inputs=2, dtype=dtype, device=device)
|
|
sz = 9
|
|
doubles = torch.randn(2 * sz, dtype=dtype, device=device)
|
|
self.unary_check_input_output_mem_overlap(
|
|
doubles, sz, lambda input, out: out.copy_(input))
|
|
|
|
# FIXME: convert to ErrorInputs
|
|
# (but have to extend ErrorInputs to handle inplace-only errors!)
|
|
@onlyNativeDeviceTypes
|
|
def test_index_add_mem_overlap(self, device):
|
|
x = torch.rand((1,), device=device).expand((6,))
|
|
y = torch.rand((6,), device=device)
|
|
ind = torch.tensor([2, 1, 0], device=device)
|
|
value = torch.rand((3,), device=device)
|
|
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
|
|
x.index_add_(0, ind, value)
|
|
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
|
|
y.index_add_(0, ind, y[:3])
|
|
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
|
|
ind.index_add_(0, ind, ind.clone())
|
|
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
|
|
ind.index_add_(0, ind.clone(), ind)
|
|
|
|
# FIXME: convert to ErrorInputs
|
|
# (but have to extend ErrorInputs to handle inplace-only errors!)
|
|
@onlyNativeDeviceTypes
|
|
def test_index_copy_mem_overlap(self, device):
|
|
x = torch.rand((1,), device=device).expand((6,))
|
|
y = torch.rand((6,), device=device)
|
|
ind = torch.tensor([2, 1, 0], device=device)
|
|
value = torch.rand((3,), device=device)
|
|
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
|
|
x.index_copy_(0, ind, value)
|
|
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
|
|
y.index_copy_(0, ind, y[:3])
|
|
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
|
|
ind.index_copy_(0, ind, ind.clone())
|
|
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
|
|
ind.index_copy_(0, ind.clone(), ind)
|
|
|
|
# FIXME: convert to ErrorInputs
|
|
# (but have to extend ErrorInputs to handle inplace-only errors!)
|
|
@expectedFailureMeta # Warning not triggered
|
|
@onlyNativeDeviceTypes
|
|
def test_index_fill_mem_overlap(self, device):
|
|
x = torch.rand((1,), device=device).expand((6,))
|
|
y = torch.rand((6,), device=device)
|
|
ind = torch.tensor([2, 1, 0], device=device)
|
|
value = torch.rand((3,), device=device)
|
|
|
|
with self.assertWarnsRegex(UserWarning, "index_fill_ on expanded tensors"):
|
|
x.index_fill_(0, ind, 1.0)
|
|
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
|
|
ind.index_fill_(0, ind, 0)
|
|
|
|
# FIXME: convert to ErrorInputs
|
|
@expectedFailureMeta # RuntimeError not raised
|
|
@onlyNativeDeviceTypes
|
|
def test_shift_mem_overlap(self, device):
|
|
x = torch.rand(3, device=device)
|
|
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
|
|
x[:-1] <<= x[1:]
|
|
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
|
|
x[:-1] >>= x[1:]
|
|
|
|
# FIXME: convert to ErrorInputs
|
|
# (but have to extend ErrorInputs to handle inplace-only errors)
|
|
@expectedFailureMeta # RuntimeError not raised
|
|
@onlyNativeDeviceTypes
|
|
def test_bernoulli_mem_overlap(self, device):
|
|
x = torch.rand((1,), device=device).expand((6,))
|
|
|
|
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
|
|
x.bernoulli_()
|
|
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
|
|
x.bernoulli_(p=0.1)
|
|
p = torch.rand(6, device=device)
|
|
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
|
|
x.bernoulli_(p=p)
|
|
|
|
# FIXME: convert to ErrorInputs
|
|
# (but have to extend ErrorInputs to handle inplace-only errors!)
|
|
@expectedFailureMeta # RuntimeError not raised
|
|
@onlyNativeDeviceTypes
|
|
def test_put_mem_overlap(self, device):
|
|
x = torch.rand((1,), device=device).expand((6,))
|
|
y = torch.rand((6,), device=device)
|
|
ind = torch.tensor([2, 1, 0], device=device)
|
|
value = torch.rand((3,), device=device)
|
|
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
|
|
x.put_(ind, value)
|
|
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
|
|
y.put_(ind[0], y[0])
|
|
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
|
|
ind.put_(ind, ind)
|
|
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
|
|
y.put_(ind, y[:3])
|
|
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
|
|
ind.put_(ind, ind.clone())
|
|
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
|
|
ind.put_(ind.clone(), ind)
|
|
|
|
# FIXME: convert to ErrorInputs
|
|
# (but have to extend ErrorInputs to handle inplace-only errors!)
|
|
@expectedFailureMeta # UserWarning not triggered
|
|
@onlyNativeDeviceTypes
|
|
def test_index_put_mem_overlap(self, device):
|
|
x = torch.rand((1,), device=device).expand((6,))
|
|
y = torch.rand((6,), device=device)
|
|
ind = torch.tensor([2, 1, 0], device=device)
|
|
value = torch.rand((3,), device=device)
|
|
with self.assertWarnsRegex(UserWarning, 'expanded tensors'):
|
|
x.index_put_((ind,), value)
|
|
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
|
|
y.index_put_((ind,), y[0])
|
|
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
|
|
ind.index_put_((ind,), ind)
|
|
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
|
|
y.index_put_((ind,), y[:3])
|
|
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
|
|
ind.index_put_((ind,), ind.clone())
|
|
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
|
|
ind.index_put_((ind.clone(),), ind)
|
|
|
|
# FIXME: convert to ErrorInputs
|
|
# (but have to extend ErrorInputs to handle inplace-only errors!)
|
|
@expectedFailureMeta # UserWarning not triggered
|
|
@onlyNativeDeviceTypes
|
|
def test_masked_fill_mem_overlap(self, device):
|
|
x = torch.rand((1,), device=device).expand((6,))
|
|
mask = torch.tensor([True, False, True, True, False, False], device=device)
|
|
with self.assertWarnsRegex(UserWarning, 'expanded tensors'):
|
|
x.masked_fill_(mask, 0.)
|
|
|
|
fill_val = torch.tensor(0., device=device)
|
|
with self.assertWarnsRegex(UserWarning, 'expanded tensors'):
|
|
x.masked_fill_(mask, fill_val)
|
|
|
|
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
|
|
mask[1:].masked_fill_(mask[:-1], False)
|
|
|
|
# FIXME: convert to ErrorInputs
|
|
# (but have to extend ErrorInputs to handle inplace-only errors!)
|
|
@expectedFailureMeta # RuntimeError not raised
|
|
@onlyNativeDeviceTypes
|
|
def test_masked_scatter_mem_overlap(self, device):
|
|
x = torch.rand((1,), device=device).expand((6,))
|
|
src = torch.rand((3,), device=device)
|
|
mask = torch.tensor([True, False, True, True, False, False], device=device)
|
|
|
|
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
|
|
x.masked_scatter_(mask, src)
|
|
|
|
# FIXME: convert to ErrorInputs
|
|
# (but have to extend ErrorInputs to handle inplace-only errors!)
|
|
@onlyNativeDeviceTypes
|
|
def test_scatter_mem_overlap(self, device):
|
|
x = torch.rand((1,), device=device).expand((6,))
|
|
src = torch.rand((3,), device=device)
|
|
ind = torch.tensor([2, 1, 0], device=device, dtype=torch.int64)
|
|
|
|
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
|
|
x.scatter_(0, ind, src)
|
|
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
|
|
src.scatter_(0, ind, src)
|
|
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
|
|
ind.scatter_(0, ind, ind.clone())
|
|
|
|
# FIXME: move to test distributions
|
|
@onlyCUDA
|
|
def test_multinomial_device_constrain(self, device):
|
|
x = torch.empty(0, device="cpu")
|
|
y = torch.empty(0, device=device)
|
|
self.assertRaisesRegex(
|
|
RuntimeError, "Expected all tensors to be on the same device",
|
|
lambda: torch.multinomial(x, 2, out=y))
|
|
|
|
# FIXME: move to test distributions
|
|
@deviceCountAtLeast(2)
|
|
@onlyCUDA
|
|
def test_multinomial_gpu_device_constrain(self, devices):
|
|
x = torch.empty(0, device=devices[0])
|
|
y = torch.empty(0, device=devices[1])
|
|
self.assertRaisesRegex(
|
|
RuntimeError, "Expected all tensors to be on the same device",
|
|
lambda: torch.multinomial(x, 2, out=y))
|
|
|
|
# FIXME: convert this to an automated OpInfo test
|
|
@deviceCountAtLeast(2)
|
|
@onlyCUDA
|
|
def test_device_guard(self, devices):
|
|
# verify that all operators with `device_guard: False` behave properly with multiple devices.
|
|
# TODO: if we had operator introspection we could figure out this set of operators automatically...
|
|
x = torch.randn((1, 2, 3), device=devices[1])
|
|
y = torch.zeros((1, 3, 2), device=devices[1])
|
|
scalar = torch.tensor(5, device=devices[1])
|
|
|
|
# property ops
|
|
torch.cudnn_is_acceptable(x)
|
|
x.is_distributed()
|
|
x.is_floating_point()
|
|
x.is_complex()
|
|
x.is_same_size(y)
|
|
x.is_signed()
|
|
x.size(0)
|
|
x.stride(0)
|
|
x.numel()
|
|
x.is_set_to(y)
|
|
x.data_ptr()
|
|
scalar.is_nonzero()
|
|
|
|
# sparse property ops
|
|
y[0][1] = 5
|
|
y_sparse = y.to_sparse()
|
|
y_sparse.sparse_dim()
|
|
y_sparse._dimI()
|
|
y_sparse.dense_dim()
|
|
y_sparse._dimV()
|
|
y_sparse._nnz()
|
|
y_sparse.is_coalesced()
|
|
y_sparse._indices()
|
|
y_sparse._values()
|
|
y_sparse.indices()
|
|
y_sparse.values()
|
|
|
|
# in-place ops
|
|
def inplace():
|
|
return torch.randn((1, 2, 3), device=devices[1])
|
|
inplace().as_strided_(y.size(), y.stride())
|
|
inplace().resize_(y.size())
|
|
inplace().squeeze_()
|
|
inplace().squeeze_(0)
|
|
inplace().unsqueeze_(2)
|
|
inplace().transpose_(1, 2)
|
|
inplace().squeeze_().t_()
|
|
inplace().set_(x.storage())
|
|
inplace().set_(x.storage(), x.storage_offset(), x.size(), x.stride())
|
|
inplace().set_(x)
|
|
inplace().set_()
|
|
y_sparse._coalesced_(True)
|
|
|
|
# shape modification
|
|
x.as_strided(y.size(), y.stride())
|
|
x.expand((5, 2, 3))
|
|
x.expand_as(x)
|
|
x.sum_to_size((1,))
|
|
torch.broadcast_tensors(x , x)
|
|
x.reshape((1, 3, 2))
|
|
x.reshape_as(y)
|
|
x.squeeze()
|
|
x.squeeze(0)
|
|
x.squeeze().t()
|
|
x.transpose(1, 2)
|
|
x.unsqueeze(2)
|
|
x.view((1, 3, 2))
|
|
x.view_as(y)
|
|
|
|
# chunk, split, etc.
|
|
x.chunk(2, dim=1)
|
|
x.split(1, dim=2)
|
|
x.split_with_sizes([1, 2], dim=2)
|
|
x.unfold(dimension=2, size=1, step=1)
|
|
|
|
x.narrow(1, 1, 1)
|
|
x.select(1, 1)
|
|
torch.isnan(x)
|
|
|
|
torch.empty((1, 3, 2), out=y)
|
|
torch.empty_like(x)
|
|
torch.empty_like(x, dtype=torch.int64)
|
|
|
|
# to
|
|
x.to(x)
|
|
x.to(y)
|
|
x.to(x, copy=True)
|
|
|
|
def test_is_signed(self, device):
|
|
self.assertEqual(torch.IntTensor(5).to(device).is_signed(), True)
|
|
self.assertEqual(torch.ByteTensor(5).to(device).is_signed(), False)
|
|
self.assertEqual(torch.CharTensor(5).to(device).is_signed(), True)
|
|
self.assertEqual(torch.FloatTensor(5).to(device).is_signed(), True)
|
|
self.assertEqual(torch.HalfTensor(10).to(device).is_signed(), True)
|
|
|
|
# Note - reports a leak of 512 bytes on CUDA device 1
|
|
@deviceCountAtLeast(2)
|
|
@skipCUDAMemoryLeakCheckIf(True)
|
|
@onlyCUDA
|
|
def test_tensor_set_errors_multigpu(self, devices):
|
|
f_cuda0 = torch.randn((2, 3), dtype=torch.float32, device=devices[0])
|
|
f_cuda1 = torch.randn((2, 3), dtype=torch.float32, device=devices[1])
|
|
|
|
self.assertRaises(RuntimeError, lambda: f_cuda0.set_(f_cuda1.storage()))
|
|
self.assertRaises(RuntimeError,
|
|
lambda: f_cuda0.set_(f_cuda1.storage(), 0, f_cuda1.size(), f_cuda1.stride()))
|
|
self.assertRaises(RuntimeError, lambda: f_cuda0.set_(f_cuda1))
|
|
|
|
# FIXME: move to test_serialization
|
|
@onlyCUDA
|
|
@deviceCountAtLeast(1) # Note: Tests works with one but prefers more devices
|
|
def test_serialization(self, devices):
|
|
def _test_serialization(filecontext_lambda):
|
|
t0 = torch.cuda.FloatTensor(5).fill_(1)
|
|
with torch.cuda.device(devices[-1]):
|
|
tn = torch.cuda.FloatTensor(3).fill_(2)
|
|
torch.cuda.set_device(devices[0])
|
|
b = (t0, tn)
|
|
with filecontext_lambda() as f:
|
|
torch.save(b, f)
|
|
f.seek(0)
|
|
c = torch.load(f)
|
|
self.assertEqual(b, c, atol=0, rtol=0)
|
|
u0, un = c
|
|
self.assertEqual(str(u0.device), devices[0])
|
|
self.assertEqual(str(un.device), devices[-1])
|
|
|
|
_test_serialization(tempfile.NamedTemporaryFile)
|
|
_test_serialization(BytesIOContext)
|
|
|
|
# FIXME: move memory format tests to their own test class/suite
|
|
def test_memory_format_preserved_after_permute(self, device):
|
|
x = torch.randn(4, 3, 8, 8, device=device)
|
|
nhwc = x.contiguous(memory_format=torch.channels_last)
|
|
y = nhwc.permute(0, 1, 3, 2).permute(0, 1, 3, 2)
|
|
self.assertTrue(y.is_contiguous(memory_format=torch.channels_last))
|
|
|
|
x = torch.randn(4, 3, 8, 8, 8, device=device)
|
|
ndhwc = x.contiguous(memory_format=torch.channels_last_3d)
|
|
y = ndhwc.permute(0, 1, 4, 3, 2).permute(0, 1, 4, 3, 2)
|
|
self.assertTrue(y.is_contiguous(memory_format=torch.channels_last_3d))
|
|
|
|
def test_memory_format_propagation_rules(self, device):
|
|
|
|
contiguous = torch.rand(10, 3, 5, 5, device=device)
|
|
cl = torch.rand(10, 3, 5, 5, device=device).contiguous(memory_format=torch.channels_last)
|
|
ambiguous = torch.rand(10, 3, 1, 1, device=device).contiguous(memory_format=torch.channels_last)
|
|
self.assertTrue(ambiguous.is_contiguous(memory_format=torch.channels_last))
|
|
self.assertTrue(ambiguous.is_contiguous(memory_format=torch.contiguous_format))
|
|
bias = torch.rand(1, 1, 1, 1, device=device).contiguous(memory_format=torch.channels_last)
|
|
|
|
def _test_propagation_rules(self, contiguous, cl, ambiguous, bias):
|
|
options = ((ambiguous, contiguous, torch.contiguous_format),
|
|
(ambiguous, cl, torch.channels_last),
|
|
(contiguous, ambiguous, torch.contiguous_format),
|
|
(contiguous, cl, torch.contiguous_format),
|
|
(cl, ambiguous, torch.channels_last),
|
|
(cl, contiguous, torch.channels_last),
|
|
(bias, cl, torch.channels_last),
|
|
(cl, bias, torch.channels_last),)
|
|
|
|
for a, b, mf in options:
|
|
result = a + b
|
|
self.assertTrue(result.is_contiguous(memory_format=mf))
|
|
|
|
_test_propagation_rules(self, contiguous, cl, ambiguous, bias)
|
|
|
|
cl = cl.to(memory_format=torch.channels_last)
|
|
ambiguous = ambiguous.to(memory_format=torch.channels_last)
|
|
bias = bias.to(memory_format=torch.channels_last)
|
|
|
|
_test_propagation_rules(self, contiguous, cl, ambiguous, bias)
|
|
|
|
# test cases when strides matter in ambiguous tensors
|
|
for mf in (torch.channels_last, torch.contiguous_format):
|
|
ambiguous = torch.rand(10, 3, 1, 1, device=device).to(memory_format=mf)
|
|
bias = torch.rand(3, 1, 1, device=device)
|
|
result = ambiguous + bias
|
|
self.assertEqual(ambiguous.stride(), result.stride())
|
|
result = bias + ambiguous
|
|
self.assertEqual(ambiguous.stride(), result.stride())
|
|
result = ambiguous * 5
|
|
self.assertEqual(ambiguous.stride(), result.stride())
|
|
|
|
@skipIfMps
|
|
def test_memory_format_empty_like(self, device):
|
|
def test_helper(x, memory_format):
|
|
xc = x.contiguous(memory_format=memory_format)
|
|
|
|
like = torch.empty_like(xc, memory_format=torch.preserve_format)
|
|
self.assertFalse(like.is_contiguous())
|
|
self.assertTrue(like.is_contiguous(memory_format=memory_format))
|
|
|
|
like_x = torch.empty_like(x, memory_format=torch.preserve_format)
|
|
self.assertTrue(like_x.is_contiguous())
|
|
self.assertFalse(like_x.is_contiguous(memory_format=memory_format))
|
|
|
|
like = torch.empty_like(x, memory_format=memory_format)
|
|
self.assertFalse(like.is_contiguous())
|
|
self.assertTrue(like.is_contiguous(memory_format=memory_format))
|
|
|
|
like = torch.empty_like(xc, memory_format=torch.contiguous_format)
|
|
self.assertTrue(like.is_contiguous())
|
|
self.assertFalse(like.is_contiguous(memory_format=memory_format))
|
|
|
|
like = torch.empty_like(xc)
|
|
self.assertFalse(like.is_contiguous())
|
|
self.assertTrue(like.is_contiguous(memory_format=memory_format))
|
|
|
|
sparse = x.to_sparse()
|
|
with self.assertRaises(RuntimeError):
|
|
z = torch.empty_like(sparse, memory_format=torch.preserve_format)
|
|
|
|
test_helper(torch.randn(4, 3, 8, 8, device=device), torch.channels_last)
|
|
test_helper(torch.randn(4, 3, 8, 8, 8, device=device), torch.channels_last_3d)
|
|
|
|
def test_memory_format_consistency(self, device):
|
|
x = torch.randn(10, 3, 1, 1, device=device)
|
|
x_rep = x.as_strided(x.size(), x.stride())
|
|
self.assertEqual(x.size(), x_rep.size())
|
|
self.assertEqual(x.stride(), x_rep.stride())
|
|
self.assertEqual(x.is_contiguous(), x_rep.is_contiguous())
|
|
self.assertEqual(x.is_contiguous(memory_format=torch.channels_last), x_rep.is_contiguous(memory_format=torch.channels_last))
|
|
self.assertEqual(
|
|
x.is_contiguous(memory_format=torch.channels_last_3d), x_rep.is_contiguous(memory_format=torch.channels_last_3d))
|
|
|
|
# FIXME: make this a elementwise unary and elementwise binary OpInfo test
|
|
def test_memory_format_operators(self, device):
|
|
def _chunk_op(x, y):
|
|
x1, x2 = x.chunk(2, dim=1)
|
|
return x1 + x2
|
|
|
|
def _unsqueeze_op_add(x, y):
|
|
return x[0].unsqueeze(0) + 3
|
|
|
|
def _unsqueeze_op_clone(x, y):
|
|
return x[0].unsqueeze(0).clone()
|
|
|
|
def _test_helper(x, y, bias, memory_format):
|
|
return_contig_fns = [
|
|
lambda x, y: y + x,
|
|
lambda x, y: y * x,
|
|
lambda x, y: y.addcdiv(x, y, value=2),
|
|
lambda x, y: y.addcmul(x, y, value=2),
|
|
]
|
|
bias_fns = [
|
|
lambda x, b: x + b,
|
|
lambda x, b: b + x,
|
|
]
|
|
fns = [
|
|
lambda x, y: x.clone(),
|
|
lambda x, y: x + 3,
|
|
lambda x, y: 3 * x,
|
|
lambda x, y: x + y,
|
|
lambda x, y: x * y,
|
|
lambda x, y: abs(x),
|
|
lambda x, y: x.abs(),
|
|
lambda x, y: x.abs_(),
|
|
lambda x, y: x.acos(),
|
|
lambda x, y: x.acos_(),
|
|
lambda x, y: x.add(y, alpha=3),
|
|
lambda x, y: x.add_(y, alpha=3),
|
|
lambda x, y: x.addcdiv(y, y, value=2),
|
|
lambda x, y: x.addcdiv_(y, y, value=2),
|
|
lambda x, y: x.addcmul(y, y, value=2),
|
|
lambda x, y: x.addcmul_(y, y, value=2),
|
|
lambda x, y: x.acosh(),
|
|
lambda x, y: x.acosh_(),
|
|
lambda x, y: x.asinh(),
|
|
lambda x, y: x.asinh_(),
|
|
lambda x, y: x.atanh(),
|
|
lambda x, y: x.atanh_(),
|
|
lambda x, y: x.asin(),
|
|
lambda x, y: x.asin_(),
|
|
lambda x, y: x.atan(),
|
|
lambda x, y: x.atan2(y),
|
|
lambda x, y: x.atan2_(y),
|
|
lambda x, y: x.ceil(),
|
|
lambda x, y: x.ceil_(),
|
|
lambda x, y: x.clamp(-1, 1),
|
|
lambda x, y: x.cos(),
|
|
lambda x, y: x.cosh(),
|
|
lambda x, y: x.div(0.5),
|
|
lambda x, y: x.div_(0.5),
|
|
lambda x, y: x.div(y),
|
|
lambda x, y: x.div_(y),
|
|
lambda x, y: x.digamma(),
|
|
lambda x, y: x.digamma_(),
|
|
lambda x, y: x.erf(),
|
|
lambda x, y: x.erfc(),
|
|
lambda x, y: x.erfinv(),
|
|
lambda x, y: x.erfinv_(),
|
|
lambda x, y: x.exp(),
|
|
lambda x, y: x.expm1(),
|
|
lambda x, y: x.expm1_(),
|
|
lambda x, y: x.floor(),
|
|
lambda x, y: x.floor_(),
|
|
lambda x, y: x.fmod(2),
|
|
lambda x, y: x.frac(),
|
|
lambda x, y: x.hypot(y),
|
|
lambda x, y: x.hypot_(y),
|
|
lambda x, y: x.i0(),
|
|
lambda x, y: x.i0_(),
|
|
lambda x, y: x.lerp(y, 0.5),
|
|
lambda x, y: x.log(),
|
|
lambda x, y: x.log_(),
|
|
lambda x, y: x.log10(),
|
|
lambda x, y: x.log10_(),
|
|
lambda x, y: x.log1p(),
|
|
lambda x, y: x.log1p_(),
|
|
lambda x, y: x.log2(),
|
|
lambda x, y: x.log2_(),
|
|
lambda x, y: x.mul(3),
|
|
lambda x, y: x.mul_(3),
|
|
lambda x, y: x.neg(),
|
|
lambda x, y: x.neg_(),
|
|
lambda x, y: x.pow(3),
|
|
lambda x, y: x.pow_(3),
|
|
lambda x, y: x.pow(0.0),
|
|
lambda x, y: x.pow(1.0),
|
|
lambda x, y: x.reciprocal(),
|
|
lambda x, y: x.remainder(2),
|
|
lambda x, y: x.round(),
|
|
lambda x, y: x.round_(),
|
|
lambda x, y: x.rsqrt(),
|
|
lambda x, y: x.rsqrt_(),
|
|
lambda x, y: x.sigmoid(),
|
|
lambda x, y: x.sigmoid_(),
|
|
lambda x, y: x.logit(),
|
|
lambda x, y: x.logit_(),
|
|
lambda x, y: x.logit(1e-6),
|
|
lambda x, y: x.logit_(1e-6),
|
|
lambda x, y: x.sign(),
|
|
lambda x, y: x.sign_(),
|
|
lambda x, y: x.sgn(),
|
|
lambda x, y: x.sgn_(),
|
|
lambda x, y: x.sin(),
|
|
lambda x, y: x.sin_(),
|
|
lambda x, y: x.sinh(),
|
|
lambda x, y: x.sinh_(),
|
|
lambda x, y: x.sqrt(),
|
|
lambda x, y: x.sqrt_(),
|
|
lambda x, y: x.tan(),
|
|
lambda x, y: x.tanh(),
|
|
lambda x, y: x.trunc(),
|
|
lambda x, y: x.trunc_(),
|
|
_chunk_op,
|
|
_unsqueeze_op_add,
|
|
_unsqueeze_op_clone,
|
|
]
|
|
x_c = x.contiguous()
|
|
y_c = y.contiguous()
|
|
b_c = bias.contiguous()
|
|
for fn in fns:
|
|
is_inplace = '_(' in inspect.getsource(fn)
|
|
x_clone = x.clone() if is_inplace else x
|
|
x_c_clone = x_c.clone() if is_inplace else x_c
|
|
result_c = fn(x_c_clone, y_c)
|
|
result = fn(x_clone, y)
|
|
self.assertEqual(result, result_c, "Failed for '{}'".format(inspect.getsource(fn).strip()))
|
|
self.assertTrue(
|
|
result.is_contiguous(memory_format=memory_format),
|
|
"result of the '{}' is not in '{}' format".format(inspect.getsource(fn).strip(), memory_format))
|
|
|
|
for fn in bias_fns:
|
|
result_c = fn(x_c, b_c)
|
|
result = fn(x, bias)
|
|
self.assertEqual(result, result_c, "Failed for '{}'".format(inspect.getsource(fn).strip()))
|
|
self.assertTrue(
|
|
result.is_contiguous(memory_format=memory_format),
|
|
"result of the '{}' is not in '{}' format".format(inspect.getsource(fn).strip(), memory_format))
|
|
|
|
for fn in return_contig_fns:
|
|
result_c = fn(x_c, y_c)
|
|
result = fn(x, y)
|
|
self.assertEqual(result, result_c, "Failed for '{}'".format(inspect.getsource(fn).strip()))
|
|
self.assertTrue(
|
|
result.is_contiguous(memory_format=torch.contiguous_format),
|
|
"result of the '{}' is not in '{}' format".format(inspect.getsource(fn).strip(), torch.contiguous_format))
|
|
|
|
_test_helper(
|
|
torch.randn((4, 3, 8, 8), device=device).contiguous(memory_format=torch.channels_last),
|
|
abs(torch.randn((4, 3, 8, 8), device=device)) + 1,
|
|
torch.randn((1, 3, 1, 1), device=device).contiguous(memory_format=torch.channels_last),
|
|
torch.channels_last)
|
|
_test_helper(
|
|
torch.randn((4, 3, 8, 8, 8), device=device).contiguous(memory_format=torch.channels_last_3d),
|
|
abs(torch.randn((4, 3, 8, 8, 8), device=device)) + 1,
|
|
torch.randn((1, 3, 1, 1, 1), device=device).contiguous(memory_format=torch.channels_last_3d),
|
|
torch.channels_last_3d)
|
|
|
|
# FIXME: make this a elementwise unary and elementwise binary OpInfo test
|
|
@skipIfTorchDynamo("Torchdynamo fails with unknown reason")
|
|
def test_strides_propagation(self, device):
|
|
def _test_helper(x, op, unary=False):
|
|
def compare_strides(s1, s2, div):
|
|
sdiv = [s // div for s in s1]
|
|
self.assertEqual(sdiv, s2)
|
|
|
|
dim = x.dim()
|
|
# we produce memory dense outputs, so when input is strided on the last dimension
|
|
# we need to divide by that dimension stride to compare input and result strides
|
|
div = x.stride(-1)
|
|
for p in permutations(range(dim)):
|
|
xp = x.permute(p)
|
|
if not unary:
|
|
y = torch.randn(xp.size(-1), device=x.device, dtype=x.dtype)
|
|
for inputs in ((xp, xp), (xp, y), (y, xp)):
|
|
res = op(*inputs)
|
|
compare_strides(xp.stride(), res.stride(), div)
|
|
self.assertEqual(xp.size(), res.size())
|
|
out = torch.empty(0, device=xp.device, dtype=res.dtype)
|
|
res = op(*inputs, out=out)
|
|
compare_strides(xp.stride(), res.stride(), div)
|
|
self.assertEqual(xp.size(), res.size())
|
|
else:
|
|
res = op(xp)
|
|
compare_strides(xp.stride(), res.stride(), div)
|
|
self.assertEqual(xp.size(), res.size())
|
|
out = torch.empty(0, device=xp.device, dtype=res.dtype)
|
|
res = op(xp, out=out)
|
|
compare_strides(xp.stride(), res.stride(), div)
|
|
self.assertEqual(xp.size(), res.size())
|
|
|
|
# torch.eq by default calls TensorIterator with defined output, torch.add with undefined
|
|
binary_ops = (torch.eq, torch.add)
|
|
unary_ops = (torch.exp,)
|
|
# memory dense, sliced and ambiguous sliced (ambiguous dense loses permutation information)
|
|
xs = (torch.randn(2, 3, 4, device=device), torch.randn(2, 3, 8, device=device)[:, :, ::2],
|
|
torch.randn(1, 1, 4, 12, device=device)[:, :, :, ::2])
|
|
for op in binary_ops:
|
|
for x in xs:
|
|
_test_helper(x, op)
|
|
for op in unary_ops:
|
|
for x in xs:
|
|
_test_helper(x, op, unary=True)
|
|
|
|
@onlyCUDA
|
|
@unittest.skipIf(PYTORCH_CUDA_MEMCHECK, "is_pinned uses failure to detect pointer property")
|
|
def test_pin_memory_from_constructor(self, device):
|
|
def _get_like(t, **kwargs):
|
|
return [
|
|
torch.rand_like(t, **kwargs),
|
|
torch.randn_like(t, **kwargs),
|
|
torch.empty_like(t, **kwargs),
|
|
torch.full_like(t, 4, **kwargs),
|
|
torch.zeros_like(t, **kwargs),
|
|
torch.ones_like(t, **kwargs),
|
|
]
|
|
|
|
def _get_tensors(**kwargs):
|
|
return [
|
|
torch.tensor([10, 11], **kwargs),
|
|
torch.randn(3, 5, **kwargs),
|
|
torch.rand(3, **kwargs),
|
|
# torch.randint(3, 5, **kwargs), // unsupported
|
|
torch.zeros(3, **kwargs),
|
|
torch.randperm(3, **kwargs),
|
|
torch.empty(6, **kwargs),
|
|
torch.ones(6, **kwargs),
|
|
torch.eye(6, **kwargs),
|
|
torch.arange(3, 5, **kwargs)]
|
|
|
|
pinned_tensors = _get_tensors(pin_memory=True) + _get_like(torch.empty(5, dtype=torch.float64), pin_memory=True)
|
|
for x in pinned_tensors:
|
|
self.assertTrue(x.is_pinned())
|
|
|
|
tensors = _get_tensors() + _get_like(torch.empty(5, dtype=torch.float64, pin_memory=True))
|
|
for x in tensors:
|
|
self.assertFalse(x.is_pinned())
|
|
|
|
@deviceCountAtLeast(1)
|
|
@onlyCUDA
|
|
def test_storage_all_devices(self, devices):
|
|
for device in devices:
|
|
t = torch.tensor((), device=device)
|
|
self.assertEqual(t.dtype, t.storage().dtype)
|
|
|
|
# FIXME: move to test distributions
|
|
@skipIfMps
|
|
@dtypesIfCUDA(torch.float, torch.double, torch.half)
|
|
@dtypes(torch.float, torch.double)
|
|
def test_multinomial(self, device, dtype):
|
|
def make_prob_dist(shape, is_contiguous):
|
|
if is_contiguous:
|
|
if dtype == torch.half:
|
|
return torch.zeros(shape, device=device).uniform_().to(dtype=torch.half)
|
|
return torch.zeros(shape, device=device, dtype=dtype).uniform_()
|
|
elif len(shape) == 1:
|
|
if dtype == torch.half:
|
|
return torch.zeros((shape + [5]), device=device).uniform_().to(dtype=torch.half)[:, 2]
|
|
return torch.zeros((shape + [5]), device=device, dtype=dtype).uniform_()[:, 2]
|
|
else:
|
|
# num dim = 2
|
|
new_shape = [2, shape[1], 7, 1, shape[0], 1, 10]
|
|
if dtype == torch.half:
|
|
prob_dist = torch.zeros(new_shape, device=device).uniform_().to(dtype=torch.half)
|
|
else:
|
|
prob_dist = torch.zeros(new_shape, device=device, dtype=dtype).uniform_()
|
|
prob_dist = prob_dist.transpose(1, 4)
|
|
prob_dist = prob_dist[1, :, 5, 0, :, 0, 4]
|
|
assert not prob_dist.is_contiguous() # sanity check
|
|
return prob_dist
|
|
|
|
for is_contiguous in (True, False):
|
|
# with replacement
|
|
n_row = 3
|
|
for n_col in range(4, 5 + 1):
|
|
prob_dist = make_prob_dist([n_row, n_col], is_contiguous)
|
|
# indices that shouldn't be sampled (<0 means none)
|
|
zero_prob_indices = torch.LongTensor(n_row).random_(-2, n_col).tolist()
|
|
for i, j in enumerate(zero_prob_indices):
|
|
if j >= 0:
|
|
prob_dist[i, j] = 0
|
|
n_sample = n_col * 3
|
|
sample_indices = torch.multinomial(prob_dist, n_sample, True)
|
|
self.assertEqual(prob_dist.dim(), 2)
|
|
self.assertEqual(sample_indices.size(1), n_sample)
|
|
for i in range(n_row):
|
|
zero_prob_idx = zero_prob_indices[i]
|
|
if zero_prob_idx < 0:
|
|
continue
|
|
for j in range(n_sample):
|
|
self.assertNotEqual(sample_indices[i, j], zero_prob_idx,
|
|
msg="sampled an index with zero probability")
|
|
|
|
# without replacement
|
|
n_row = 3
|
|
for n_col in range(2, 10 + 1, 2):
|
|
prob_dist = make_prob_dist([n_row, n_col], is_contiguous)
|
|
# indices that shouldn't be sampled (<0 means none)
|
|
zero_prob_indices = torch.LongTensor(n_row).random_(-1, n_col).tolist()
|
|
for i, j in enumerate(zero_prob_indices):
|
|
if j >= 0:
|
|
prob_dist[i, j] = 0
|
|
n_sample = max(1, n_col - 2)
|
|
sample_indices = torch.multinomial(prob_dist, n_sample, False)
|
|
self.assertEqual(prob_dist.dim(), 2)
|
|
self.assertEqual(sample_indices.size(1), n_sample)
|
|
for i in range(n_row):
|
|
row_samples = {}
|
|
zero_prob_idx = zero_prob_indices[i]
|
|
for j in range(n_sample):
|
|
sample_idx = sample_indices[i, j]
|
|
if zero_prob_idx >= 0:
|
|
self.assertNotEqual(sample_idx, zero_prob_idx,
|
|
msg="sampled an index with zero probability")
|
|
self.assertNotIn(sample_idx, row_samples, "sampled an index twice")
|
|
row_samples[sample_idx] = True
|
|
|
|
# vector
|
|
n_col = 4
|
|
prob_dist = make_prob_dist([n_col], is_contiguous).fill_(1)
|
|
zero_prob_idx = 1 # index that shouldn't be sampled
|
|
prob_dist[zero_prob_idx] = 0
|
|
n_sample = 20
|
|
sample_indices = torch.multinomial(prob_dist, n_sample, True)
|
|
for sample_index in sample_indices:
|
|
self.assertNotEqual(sample_index, zero_prob_idx, msg="sampled an index with zero probability")
|
|
s_dim = sample_indices.dim()
|
|
self.assertEqual(sample_indices.dim(), 1, msg="wrong number of dimensions")
|
|
self.assertEqual(prob_dist.dim(), 1, msg="wrong number of prob_dist dimensions")
|
|
self.assertEqual(sample_indices.size(0), n_sample, msg="wrong number of samples")
|
|
|
|
# CUDA misalignment issue (#46702)
|
|
n_row, n_col = 2, 3
|
|
prob_dist = make_prob_dist([n_row, n_col], True)
|
|
n_sample = 1
|
|
sample_indices = torch.multinomial(prob_dist, n_sample, True)
|
|
self.assertEqual(sample_indices.dim(), 2, msg="wrong number of dimensions")
|
|
self.assertEqual(sample_indices.size(1), n_sample, msg="wrong number of samples")
|
|
|
|
# FIXME: move to test distributions
|
|
@onlyCUDA
|
|
@dtypes(torch.float, torch.double, torch.half)
|
|
def test_multinomial_deterministic(self, device, dtype):
|
|
gen = torch.Generator(device=device)
|
|
|
|
trials = 5
|
|
seed = 0
|
|
prob_dist = torch.rand(10000, 1000, device=device, dtype=dtype)
|
|
n_sample = 1
|
|
|
|
for i in range(trials):
|
|
gen.manual_seed(seed)
|
|
samples_1 = torch.multinomial(prob_dist, n_sample, True, generator=gen)
|
|
|
|
gen.manual_seed(seed)
|
|
samples_2 = torch.multinomial(prob_dist, n_sample, True, generator=gen)
|
|
|
|
self.assertEqual(samples_1, samples_2)
|
|
self.assertEqual(samples_1.dim(), 2, msg="wrong number of dimensions")
|
|
self.assertEqual(samples_1.size(1), n_sample, msg="wrong number of samples")
|
|
|
|
# FIXME: move to test distributions
|
|
@slowTest
|
|
@dtypes(torch.float)
|
|
def test_multinomial_rng_state_advance(self, device, dtype):
|
|
corpus_size = 100000
|
|
freqs = torch.ones(corpus_size, dtype=torch.float, device=device)
|
|
n_sample = 100
|
|
samples1 = torch.multinomial(freqs, n_sample, replacement=True)
|
|
samples2 = torch.multinomial(freqs, n_sample, replacement=True)
|
|
samples = torch.cat([samples1, samples2])
|
|
# expect no more than 1 repeating elements generated in 2 attempts
|
|
# the probability of at least element being repeated is surprisingly large, 18%
|
|
self.assertLessEqual(2 * n_sample - samples.unique().size(0), 2)
|
|
samples1 = torch.multinomial(freqs, n_sample, replacement=False)
|
|
samples2 = torch.multinomial(freqs, n_sample, replacement=False)
|
|
samples = torch.cat([samples1, samples2])
|
|
# expect no more than 1 repeating elements generated in 2 attempts
|
|
self.assertLessEqual(2 * n_sample - samples.unique().size(0), 1)
|
|
|
|
def _test_memory_format_transformations(self, device, input_generator_fn, transformation_fn,
|
|
memory_format, compare_data=True, default_is_preserve=False):
|
|
|
|
assert(memory_format == torch.channels_last or memory_format == torch.channels_last_3d)
|
|
|
|
# xc is a channels last tensor
|
|
xc = input_generator_fn(device)
|
|
# xc is not memory dense, but looks like channels last
|
|
if memory_format == torch.channels_last:
|
|
xc = xc[..., ::2, ::2]
|
|
else:
|
|
xc = xc[..., ::2, ::2, ::2]
|
|
|
|
clone = transformation_fn(xc, memory_format=torch.preserve_format)
|
|
self.assertFalse(clone.is_contiguous())
|
|
self.assertTrue(clone.is_contiguous(memory_format=memory_format))
|
|
self.assertFalse(xc.is_contiguous())
|
|
self.assertFalse(xc.is_contiguous(memory_format=memory_format))
|
|
if compare_data:
|
|
self.assertEqual(xc, clone.to(xc))
|
|
|
|
xc = input_generator_fn(device)
|
|
clone = transformation_fn(xc, memory_format=torch.contiguous_format)
|
|
self.assertTrue(clone.is_contiguous())
|
|
self.assertFalse(clone.is_contiguous(memory_format=memory_format))
|
|
if compare_data:
|
|
self.assertEqual(xc, clone.to(xc))
|
|
|
|
xc = input_generator_fn(device)
|
|
clone = transformation_fn(xc)
|
|
|
|
if default_is_preserve:
|
|
self.assertFalse(clone.is_contiguous())
|
|
self.assertTrue(clone.is_contiguous(memory_format=memory_format))
|
|
else:
|
|
self.assertTrue(clone.is_contiguous())
|
|
self.assertFalse(clone.is_contiguous(memory_format=memory_format))
|
|
if compare_data:
|
|
self.assertEqual(xc, clone.to(xc))
|
|
|
|
x = torch.randn((3, 4, 5, 6, 7, 8, 9), device=device)
|
|
for _ in range(10):
|
|
permutation = list(range(len(x.shape)))
|
|
random.shuffle(permutation)
|
|
x = x.permute(permutation)
|
|
self.assertEqual(x.stride(), transformation_fn(x, memory_format=torch.preserve_format).stride())
|
|
|
|
def test_memory_format_to(self, device):
|
|
def get_generator(memory_format, shape):
|
|
def input_generator_fn(device):
|
|
return torch.randn(shape, device=device, dtype=torch.float32).contiguous(memory_format=memory_format)
|
|
return input_generator_fn
|
|
|
|
def transformation_fn(tensor, **kwargs):
|
|
return tensor.to(dtype=torch.float64, **kwargs)
|
|
|
|
formats_shapes = (
|
|
(torch.channels_last, (4, 3, 8, 8)),
|
|
(torch.channels_last_3d, (4, 3, 8, 8, 8)))
|
|
|
|
for mf, shape in formats_shapes:
|
|
self._test_memory_format_transformations(
|
|
device, get_generator(mf, shape), transformation_fn, mf, default_is_preserve=True)
|
|
|
|
def test_memory_format_type(self, device):
|
|
def get_generator(memory_format, shape):
|
|
def input_generator_fn(device):
|
|
return torch.randn(shape, device=device, dtype=torch.float32).contiguous(memory_format=memory_format)
|
|
return input_generator_fn
|
|
|
|
def transformation_fn(tensor, **kwargs):
|
|
return tensor.to(torch.float64, **kwargs)
|
|
|
|
formats_shapes = (
|
|
(torch.channels_last, (4, 3, 8, 8)),
|
|
(torch.channels_last_3d, (4, 3, 8, 8, 8)))
|
|
|
|
for mf, shape in formats_shapes:
|
|
self._test_memory_format_transformations(
|
|
device, get_generator(mf, shape), transformation_fn, mf, default_is_preserve=True)
|
|
|
|
def test_memory_format_clone(self, device):
|
|
def get_generator(memory_format, shape):
|
|
def input_generator_fn(device):
|
|
return torch.randn(shape, device=device, dtype=torch.float32).contiguous(memory_format=memory_format)
|
|
return input_generator_fn
|
|
|
|
def transformation_fn(tensor, **kwargs):
|
|
return tensor.clone(**kwargs)
|
|
|
|
formats_shapes = (
|
|
(torch.channels_last, (4, 3, 8, 8)),
|
|
(torch.channels_last_3d, (4, 3, 8, 8, 8)))
|
|
|
|
for mf, shape in formats_shapes:
|
|
self._test_memory_format_transformations(
|
|
device, get_generator(mf, shape), transformation_fn, mf, True, default_is_preserve=True)
|
|
|
|
def test_memory_format_factory_like_functions_preserve(self, device):
|
|
def get_generator(memory_format, shape):
|
|
def input_generator_fn(device):
|
|
return torch.randn(shape, device=device, dtype=torch.float32).contiguous(memory_format=memory_format)
|
|
return input_generator_fn
|
|
|
|
transformation_fns = [
|
|
lambda t, **kwargs: torch.zeros_like(t, **kwargs),
|
|
lambda t, **kwargs: torch.ones_like(t, **kwargs),
|
|
lambda t, **kwargs: torch.randint_like(t, 10, 100, **kwargs),
|
|
lambda t, **kwargs: torch.randint_like(t, 100, **kwargs),
|
|
lambda t, **kwargs: torch.randn_like(t, **kwargs),
|
|
lambda t, **kwargs: torch.rand_like(t, **kwargs),
|
|
lambda t, **kwargs: torch.full_like(t, 7, **kwargs),
|
|
lambda t, **kwargs: torch.empty_like(t, **kwargs)]
|
|
|
|
formats_shapes = (
|
|
(torch.channels_last, (4, 3, 8, 8)),
|
|
(torch.channels_last_3d, (4, 3, 8, 8, 8)))
|
|
|
|
for mf, shape, in formats_shapes:
|
|
for transformation_fn in transformation_fns:
|
|
self._test_memory_format_transformations(
|
|
device, get_generator(mf, shape), transformation_fn, mf, compare_data=False, default_is_preserve=True)
|
|
|
|
def test_memory_format_type_shortcuts(self, device):
|
|
def get_generator(memory_format, shape, dtype):
|
|
def input_generator_fn(device):
|
|
return torch.randn(shape, device=device, dtype=dtype).clamp(0, 1) \
|
|
.round().contiguous(memory_format=memory_format)
|
|
return input_generator_fn
|
|
|
|
|
|
def get_fn(fn_name):
|
|
def transformation_fn(tensor, **kwargs):
|
|
fn = getattr(tensor, fn_name)
|
|
return fn(**kwargs)
|
|
return transformation_fn
|
|
|
|
shortcuts = ['byte', 'char', 'double', 'bool', 'half', 'int', 'long', 'short']
|
|
if device == 'cpu':
|
|
shortcuts += ['bfloat16']
|
|
|
|
formats_shapes = (
|
|
(torch.channels_last, (4, 3, 8, 8)),
|
|
(torch.channels_last_3d, (4, 3, 8, 8, 8)))
|
|
|
|
for mf, shape in formats_shapes:
|
|
for fn_name in shortcuts:
|
|
self._test_memory_format_transformations(
|
|
device, get_generator(mf, shape, torch.float32), get_fn(fn_name), mf, default_is_preserve=True)
|
|
|
|
# Test 'float' separately to avoid float->float no-op.
|
|
for mf, shape in formats_shapes:
|
|
self._test_memory_format_transformations(
|
|
device, get_generator(mf, shape, torch.float64), get_fn('float'), mf, default_is_preserve=True)
|
|
|
|
@onlyCUDA
|
|
def test_memory_format_cpu_and_cuda_ops(self, device):
|
|
def get_generator(memory_format, shape):
|
|
def input_generator_fn(device):
|
|
return torch.randn(shape, device=device, dtype=torch.float32).contiguous(memory_format=memory_format)
|
|
return input_generator_fn
|
|
|
|
def transformation_cpu_fn(tensor, **kwargs):
|
|
return tensor.cpu(**kwargs)
|
|
|
|
def transformation_cuda_fn(tensor, **kwargs):
|
|
return tensor.cuda(**kwargs)
|
|
|
|
formats_shapes = (
|
|
(torch.channels_last, (4, 3, 8, 8)),
|
|
(torch.channels_last_3d, (4, 3, 8, 8, 8)))
|
|
|
|
for mf, shape in formats_shapes:
|
|
self._test_memory_format_transformations(
|
|
'cuda', get_generator(mf, shape), transformation_cpu_fn, mf, default_is_preserve=True)
|
|
self._test_memory_format_transformations(
|
|
'cpu', get_generator(mf, shape), transformation_cuda_fn, mf, default_is_preserve=True)
|
|
|
|
# FIXME: move to test_serialization
|
|
def test_pickle_gradscaler(self, device):
|
|
# This test is not in test_cuda.py because it should pass in 3 cases:
|
|
# 1. cuda is not available.
|
|
# 2. cuda is available but device is not cuda.
|
|
# 3. cuda is available and device is cuda.
|
|
# In case 1, a and b disable themselves on construction and shouldn't try to pickle workhorse attributes.
|
|
# In case 2, a and b are enabled. Workhorse attributes participate in pickling, but none are lazy-inited
|
|
# to cuda Tensors, because I don't want to do cuda things if device is not cuda.
|
|
# In case 3, a and b are enabled and we may also try lazy-initing _scale to a cuda tensor.
|
|
device = torch.device(device)
|
|
try_lazy_inits = (True, False) if device.type == "cuda" else (False,)
|
|
for lazy_init_scale in try_lazy_inits:
|
|
a = torch.cuda.amp.GradScaler(init_scale=3., growth_factor=4., backoff_factor=.5, growth_interval=2)
|
|
self.assertTrue(not a.is_enabled() if torch.cuda.amp.common.amp_definitely_not_available() else a.is_enabled())
|
|
if lazy_init_scale:
|
|
# Dummy a.scale() call lazy-inits a._scale Tensor.
|
|
a.scale(torch.tensor([4.0], dtype=torch.float32, device=device))
|
|
self.assertTrue(isinstance(a._scale, torch.cuda.FloatTensor))
|
|
# The following three lines should work whether or not cuda is available.
|
|
serialized = pickle.dumps(a)
|
|
b = pickle.loads(serialized)
|
|
self.assertEqual(b.is_enabled(), a.is_enabled())
|
|
if a.is_enabled():
|
|
self.assertEqual(b.get_scale(), 3.)
|
|
self.assertEqual(b.get_growth_factor(), 4.)
|
|
self.assertEqual(b.get_backoff_factor(), .5)
|
|
self.assertEqual(b.get_growth_interval(), 2)
|
|
self.assertEqual(b._init_growth_tracker, 0)
|
|
# supplies a dummy key to test the defaultdict's default_factory
|
|
self.assertEqual(b._per_optimizer_states["fdsa"],
|
|
torch.cuda.amp.grad_scaler._refresh_per_optimizer_state())
|
|
if lazy_init_scale:
|
|
self.assertEqual(b.scale(torch.tensor([4.0], dtype=torch.float32, device=device)), 12.0)
|
|
|
|
# FIXME: move to test distributions
|
|
def _test_multinomial_empty(self, device, replacement, num_samples):
|
|
probs = torch.ones(0, 3, device=device)
|
|
expected = torch.empty(0, num_samples, dtype=torch.int64)
|
|
out = torch.multinomial(probs, num_samples=num_samples, replacement=replacement)
|
|
self.assertEqual(out, expected)
|
|
|
|
# FIXME: move to test distributions
|
|
def test_multinomial_empty_w_replacement(self, device):
|
|
self._test_multinomial_empty(device, True, 1)
|
|
self._test_multinomial_empty(device, True, 2)
|
|
|
|
# FIXME: move to test distributions
|
|
def test_multinomial_empty_wo_replacement(self, device):
|
|
self._test_multinomial_empty(device, False, 1)
|
|
self._test_multinomial_empty(device, False, 2)
|
|
|
|
@dtypesIfCUDA(torch.float, torch.double, torch.half)
|
|
@dtypesIfCPU(torch.float, torch.double, torch.bfloat16)
|
|
@dtypes(torch.float, torch.double)
|
|
def test_multinomial_cpu(self, device, dtype):
|
|
def make_prob_dist(shape, is_contiguous):
|
|
if is_contiguous:
|
|
if dtype == torch.half or dtype == torch.bfloat16:
|
|
return torch.zeros(shape, device=device).uniform_().to(dtype=dtype)
|
|
return torch.zeros(shape, device=device, dtype=dtype).uniform_()
|
|
elif len(shape) == 1:
|
|
if dtype == torch.half or dtype == torch.bfloat16:
|
|
return torch.zeros((shape + [5]), device=device).uniform_().to(dtype=dtype)[:, 2]
|
|
return torch.zeros((shape + [5]), device=device, dtype=dtype).uniform_()[:, 2]
|
|
else:
|
|
# num dim = 2
|
|
new_shape = [2, shape[1], 7, 1, shape[0], 1, 10]
|
|
if dtype == torch.half or dtype == torch.bfloat16:
|
|
prob_dist = torch.zeros(new_shape, device=device).uniform_().to(dtype=dtype)
|
|
else:
|
|
prob_dist = torch.zeros(new_shape, device=device, dtype=dtype).uniform_()
|
|
prob_dist = prob_dist.transpose(1, 4)
|
|
prob_dist = prob_dist[1, :, 5, 0, :, 0, 4]
|
|
assert not prob_dist.is_contiguous() # sanity check
|
|
return prob_dist
|
|
|
|
# FIXME: move to elementwise ternary test suite
|
|
# As the test fails with Runtime Error not raised on XLA
|
|
@onlyNativeDeviceTypes
|
|
def test_where_scalar_handcrafted_values(self, device):
|
|
# Tests ScalarxScalar, ScalarxTensor and TensorxScalar
|
|
# variant of `where` against NumPy version with
|
|
# handcrafted values.
|
|
condition_shape = (5, 5)
|
|
dtypes = (
|
|
torch.bool, torch.uint8, torch.int8, torch.int16, torch.int64,
|
|
torch.float16, torch.float32, torch.float64,
|
|
torch.complex64, torch.complex128,
|
|
)
|
|
shapes = ((), (5,), (1, 5),)
|
|
|
|
with torch.no_grad():
|
|
tensors = (torch.empty(shape, dtype=dtype, device=device).fill_(17)
|
|
for shape, dtype in product(shapes, dtypes))
|
|
|
|
# Use different values for `x` and `y`
|
|
# as they are the output values which are compared.
|
|
x_vals = (True, 3, 7.0, 1 + 0.5j)
|
|
y_vals = itertools.chain((False, 4, 8.0, 2 + 0.5j), tensors)
|
|
for x in x_vals:
|
|
for y in y_vals:
|
|
condition = torch.empty(*condition_shape, dtype=torch.bool, device=device).bernoulli_()
|
|
common_dtype = torch.result_type(x, y)
|
|
|
|
def check_equal(condition, x, y):
|
|
condition_np = condition.cpu().numpy()
|
|
x_np = x.cpu().numpy() if isinstance(x, torch.Tensor) else x
|
|
y_np = y.cpu().numpy() if isinstance(y, torch.Tensor) else y
|
|
|
|
# NumPy aggressively promotes to double, hence cast to output to correct dtype
|
|
expected = torch.from_numpy(np.where(condition_np, x_np, y_np)).to(common_dtype)
|
|
result = torch.where(condition, x, y)
|
|
self.assertEqual(expected, result)
|
|
|
|
check_equal(condition, x, y)
|
|
check_equal(condition, y, x)
|
|
if self.device_type == "cuda":
|
|
check_equal(condition, torch.tensor(x), y)
|
|
check_equal(condition, y, torch.tensor(x))
|
|
if not isinstance(y, torch.Tensor):
|
|
check_equal(condition, torch.tensor(y), torch.tensor(x))
|
|
if isinstance(y, torch.Tensor) and y.ndim > 0:
|
|
check_equal(torch.tensor(True), x, y)
|
|
check_equal(torch.tensor(True), y, x)
|
|
|
|
|
|
def test_hook_remove(self, device):
|
|
# Reference: https://github.com/pytorch/pytorch/issues/58354
|
|
def _test_helper(remove_hook):
|
|
def install_hook(tensor):
|
|
handle = None
|
|
|
|
def hook(tensor):
|
|
if remove_hook:
|
|
handle.remove()
|
|
return torch.zeros_like(tensor)
|
|
handle = tensor.register_hook(hook)
|
|
|
|
t = torch.ones((1, 5), device=device, requires_grad=True)
|
|
install_hook(t)
|
|
|
|
# First call to backward
|
|
t.mean().backward()
|
|
self.assertEqual(t.grad, torch.zeros_like(t))
|
|
|
|
# Second call to backward
|
|
t.mean().backward()
|
|
if remove_hook:
|
|
# After removing the hook, make sure the usual gradient is returned
|
|
self.assertEqual(t.grad, 0.2 * torch.ones_like(t))
|
|
else:
|
|
self.assertEqual(t.grad, torch.zeros_like(t))
|
|
|
|
_test_helper(remove_hook=True)
|
|
_test_helper(remove_hook=False)
|
|
|
|
# FIXME: get PyTorch/XLA to run test_testing
|
|
# This test should ideally be in test_testing.py,
|
|
# but since pytorch/xla runs tests from test_torch.py, we have it here.
|
|
@skipXLA
|
|
def test_skip_xla(self, device):
|
|
if self.device_type == 'xla':
|
|
# Should not reach here!
|
|
self.assertTrue(False)
|
|
|
|
# FIXME: get PyTorch/XLA to run test_testing
|
|
# This test should ideally be in test_testing.py,
|
|
# but since pytorch/xla runs tests from test_torch.py, we have it here.
|
|
@expectedFailureXLA
|
|
def test_expected_failure_xla(self, device):
|
|
if self.device_type == 'xla':
|
|
self.assertTrue(False)
|
|
|
|
# FIXME: get PyTorch/XLA to run test_testing
|
|
# This test should ideally be in test_testing.py,
|
|
# but since pytorch/xla runs tests from test_torch.py, we have it here.
|
|
def test_assertRaisesRegex_ignore_msg_non_native_device(self, device):
|
|
# Verify that self.assertRaisesRegex only checks the Error and ignores
|
|
# message for non-native devices.
|
|
x = torch.randn((10, 3), device=device)
|
|
t = torch.empty(10, dtype=torch.int64, device=device).random_(0, 3)
|
|
invalid_weight = torch.randn(4, device=device)
|
|
msg = "weight tensor should be defined either for all 3 classes or no classes"
|
|
|
|
# XLA raises RuntimeError with a different message.
|
|
with self.assertRaisesRegex(RuntimeError, msg):
|
|
torch.nn.functional.nll_loss(x, t, weight=invalid_weight)
|
|
|
|
@dtypes(*all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16, torch.complex32))
|
|
def test_copy_(self, device, dtype):
|
|
def can_cast(src_dtype, dst_dtype):
|
|
# torch.can_cast(torch.int16, torch.uint8) returns True
|
|
# which isn't actually safe-cast.
|
|
# This function returns False in this case.
|
|
def is_unsigned_int(dtype):
|
|
return dtype is torch.uint8
|
|
|
|
if is_unsigned_int(dst_dtype):
|
|
return is_unsigned_int(src_dtype)
|
|
return torch.can_cast(src_dtype, dst_dtype)
|
|
|
|
def make_tensor_wrapper(shape, dtype):
|
|
if dtype is not torch.complex32:
|
|
# Make tensor does not support generating
|
|
# complex32 tensor
|
|
return make_tensor(shape, device=device, dtype=dtype)
|
|
return torch.randn(shape, device=device, dtype=dtype)
|
|
|
|
t = make_tensor_wrapper((50,), dtype)
|
|
src_dtypes = all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16, torch.complex32)
|
|
for src_dtype in src_dtypes:
|
|
src = make_tensor_wrapper((50,), dtype=src_dtype)
|
|
t.copy_(src)
|
|
dst = make_tensor_wrapper((50, ), dtype=src_dtype)
|
|
if can_cast(src_dtype, dtype):
|
|
rtol = None
|
|
atol = None
|
|
if dtype in (torch.half, torch.complex32):
|
|
rtol = 1e-3
|
|
atol = 1e-3
|
|
if dtype in (torch.bfloat16,):
|
|
rtol = 1e-2
|
|
atol = 1e-2
|
|
self.assertEqual(src, dst.copy_(t), rtol=rtol, atol=atol)
|
|
|
|
@dtypes(*all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16, torch.complex32))
|
|
def test_item(self, device, dtype):
|
|
t = torch.ones((), device=device, dtype=dtype)
|
|
self.assertEqual(1, t.item())
|
|
|
|
|
|
# Tests that compare a device's computation with the (gold-standard) CPU's.
|
|
class TestDevicePrecision(TestCase):
|
|
exact_dtype = True
|
|
|
|
# FIXME: move to indexing test suite
|
|
@onlyCUDA
|
|
def test_index_add_bfloat16(self, device):
|
|
inp_tensor = torch.randn(5, 3, device='cpu').bfloat16()
|
|
t = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=torch.bfloat16, device='cpu')
|
|
index = torch.tensor([0, 4, 2], device='cpu')
|
|
out_cpu = inp_tensor.index_add(0, index, t)
|
|
|
|
inp_tensor = inp_tensor.to(device=device)
|
|
t = t.to(device=device)
|
|
index = index.to(device=device)
|
|
out_gpu = inp_tensor.index_add(0, index, t)
|
|
|
|
self.assertEqual(out_cpu, out_gpu, atol=1e-2, rtol=0)
|
|
|
|
# FIXME: move to serialization test suite
|
|
def test_device_serialization(self, device):
|
|
x = torch.randn(4, 4, device=device)
|
|
|
|
with tempfile.NamedTemporaryFile() as f:
|
|
torch.save(x, f)
|
|
f.seek(0)
|
|
x_copy = torch.load(f)
|
|
|
|
self.assertEqual(x_copy, x)
|
|
self.assertIs(type(x_copy), type(x))
|
|
self.assertEqual(x_copy.device, x.device)
|
|
|
|
# FIXME: move to serialization test suite
|
|
@deviceCountAtLeast(2)
|
|
def test_multidevice_serialization(self, devices):
|
|
x = [torch.randn(4, 4, device=devices[0]),
|
|
torch.randn(4, 4, device=devices[1])]
|
|
|
|
with tempfile.NamedTemporaryFile() as f:
|
|
torch.save(x, f)
|
|
f.seek(0)
|
|
x_copy = torch.load(f)
|
|
|
|
for original, cp in zip(x, x_copy):
|
|
self.assertEqual(cp, original)
|
|
self.assertIs(type(cp), type(original))
|
|
self.assertEqual(cp.device, original.device)
|
|
|
|
# FIXME: move to data movement test suite
|
|
@deviceCountAtLeast(1)
|
|
def test_copy_noncontig(self, devices):
|
|
def do_test(d0, d1):
|
|
x = torch.tensor([1.5, 2.5, 3.5, 4.5, 5.5, 6.5], device=d0)
|
|
y = torch.tensor([0, 0, 0, 0, 0, 0], device=d1)
|
|
self.assertNotEqual(x.dtype, y.dtype)
|
|
|
|
y[::2].copy_(x[::2])
|
|
self.assertEqual(y, [1, 0, 3, 0, 5, 0])
|
|
|
|
do_test('cpu', devices[0])
|
|
do_test(devices[0], 'cpu')
|
|
|
|
if len(devices) > 1:
|
|
do_test(devices[0], devices[1])
|
|
|
|
@deviceCountAtLeast(2)
|
|
def test_type_conversions_same_device(self, devices):
|
|
x = torch.randn(5, 5, device=devices[1])
|
|
self.assertEqual(x.int().device, torch.device(devices[1]))
|
|
self.assertEqual(x.type(torch.int).device, torch.device(devices[1]))
|
|
self.assertEqual(x.to(torch.int).device, torch.device(devices[1]))
|
|
|
|
@dtypesIfCUDA(torch.half, torch.float, torch.double,
|
|
torch.int8, torch.short, torch.int, torch.long,
|
|
torch.uint8)
|
|
@dtypes(torch.float, torch.double,
|
|
torch.int8, torch.short, torch.int, torch.long,
|
|
torch.uint8)
|
|
def test_from_sequence(self, device, dtype):
|
|
seq = [list(range(i * 4, i * 4 + 4)) for i in range(5)]
|
|
reference = torch.arange(0, 20).resize_(5, 4)
|
|
self.assertEqual(torch.tensor(seq, dtype=dtype, device=device), reference, exact_dtype=False)
|
|
|
|
# FIXME: moved to indexing test suite
|
|
@deviceCountAtLeast(1)
|
|
def test_advancedindex_mixed_cpu_devices(self, devices) -> None:
|
|
def test(x: torch.Tensor, ia: torch.Tensor, ib: torch.Tensor) -> None:
|
|
# test getitem
|
|
self.assertEqual(x[:, ia, None, ib, 0].cpu(),
|
|
x.cpu()[:, ia.cpu(), None, ib.cpu(), 0])
|
|
self.assertEqual(x[ia], x.cpu()[ia.cpu()])
|
|
# test setitem
|
|
x_clone1 = x.clone()
|
|
x_clone2 = x.clone()
|
|
first_shape = x[:, ia, None, ib, 0].shape
|
|
second_shape = x[ia].shape
|
|
x_clone1[:, ia, None, ib, 0] = torch.randn(first_shape).to(x_clone1)
|
|
x_clone2[ia] = torch.randn(second_shape).to(x_clone2)
|
|
|
|
cpu = torch.device('cpu')
|
|
for device in devices:
|
|
x = torch.randn(3, 4, 4, 4, 3)
|
|
ia = torch.tensor([0, 2, 1])
|
|
ib = torch.tensor([0, 2, 1])
|
|
|
|
# Index device tensor with cpu tensor
|
|
x = x.to(device)
|
|
ia = ia.to(cpu)
|
|
ib = ib.to(cpu)
|
|
test(x, ia, ib)
|
|
|
|
# Index device tensor with mixed cpu, device tensors
|
|
x = x.to(device)
|
|
ia = ia.to(cpu)
|
|
ib = ib.to(device)
|
|
test(x, ia, ib)
|
|
|
|
@deviceCountAtLeast(1)
|
|
def test_advancedindex_mixed_devices_error(self, devices) -> None:
|
|
def test(x: torch.Tensor, ia: torch.Tensor, ib: torch.Tensor) -> None:
|
|
# test getitem
|
|
with self.assertRaisesRegex(RuntimeError, fr"indices should be either .* \({x.device}\)"):
|
|
value = x[:, ia, None, ib, 0]
|
|
with self.assertRaisesRegex(RuntimeError, fr"indices should be either .* \({x.device}\)"):
|
|
value = x[ib]
|
|
|
|
cpu = torch.device('cpu')
|
|
for device in devices:
|
|
# Index cpu tensor with device tensor
|
|
x = torch.randn(3, 4, 4, 4, 3)
|
|
ia = torch.tensor([0, 2, 1]).to(device)
|
|
ib = torch.tensor([0, 2, 1]).to(device)
|
|
test(x, ia, ib)
|
|
|
|
# Index cpu tensor with mixed cpu, device tensors
|
|
x = x.to(cpu)
|
|
ia = ia.to(cpu)
|
|
ib = ib.to(device)
|
|
test(x, ia, ib)
|
|
|
|
if len(devices) > 1:
|
|
other_device = devices[0] if device == devices[1] else devices[1]
|
|
|
|
# Index device tensor with mixed cpu, device tensors on different devices
|
|
x = x.to(device)
|
|
ia = ia.to(cpu)
|
|
ib = ib.to(other_device)
|
|
test(x, ia, ib)
|
|
|
|
# FIXME: move to data movement test suite
|
|
def test_copy_broadcast(self, device) -> None:
|
|
x = torch.randn(10, 5)
|
|
y = torch.randn(5, device=device)
|
|
x.copy_(y)
|
|
self.assertEqual(x[3], y)
|
|
|
|
x = torch.randn(10, 5, device=device)
|
|
y = torch.randn(5)
|
|
x.copy_(y)
|
|
self.assertEqual(x[3], y)
|
|
|
|
# FIXME: move to an elementwise ternary test suite
|
|
@dtypes(torch.int64, torch.float32, torch.float64)
|
|
def test_clamp(self, device, dtype):
|
|
test_args = [
|
|
*product(
|
|
[(100, 50), (10, 64), (97,)], # shape
|
|
(True, False), # non-contiguous
|
|
)
|
|
]
|
|
|
|
for shape, noncontig in test_args:
|
|
x = make_tensor(shape, device=device, dtype=dtype,
|
|
noncontiguous=noncontig)
|
|
ub = make_tensor(shape, device=device, dtype=dtype,
|
|
noncontiguous=noncontig)
|
|
lb = make_tensor(shape, device=device, dtype=dtype,
|
|
noncontiguous=noncontig)
|
|
|
|
expect = x.max(lb).min(ub)
|
|
actual = x.clamp(lb, ub)
|
|
self.assertEqual(expect, actual)
|
|
|
|
expect = np.clip(x.cpu().numpy(), lb.cpu().numpy(), ub.cpu().numpy())
|
|
self.assertEqual(expect, actual)
|
|
|
|
expect = x.max(lb)
|
|
actual = x.clamp(min=lb)
|
|
self.assertEqual(expect, actual)
|
|
|
|
expect = x.min(ub)
|
|
actual = x.clamp(max=ub)
|
|
self.assertEqual(expect, actual)
|
|
|
|
# Test broadcasting min & max
|
|
expect = x.max(lb[0]).min(ub[..., :1])
|
|
actual = x.clamp(lb[0], ub[..., :1])
|
|
self.assertEqual(expect, actual)
|
|
|
|
# Test broadcasting x
|
|
expect = x[..., :1].max(lb).min(ub)
|
|
actual = x[..., :1].clamp(lb, ub)
|
|
self.assertEqual(expect, actual)
|
|
|
|
def test_cuda_device_idx(self, device):
|
|
x = torch.zeros(3, device=device)
|
|
y = torch._efficientzerotensor(3, device=device)
|
|
self.assertEqual(x.device, y.device)
|
|
|
|
# we implemented custom deallocation for subclasses, so it behooves
|
|
# us to make sure all of these bits work. We'll use __del__ to
|
|
# track if objects die or not
|
|
class Tracker:
|
|
def __init__(self, marker):
|
|
self.marker = marker
|
|
|
|
@staticmethod
|
|
def make():
|
|
marker = [False]
|
|
return marker, Tracker(marker)
|
|
|
|
def __del__(self):
|
|
self.marker[0] = True
|
|
|
|
@contextlib.contextmanager
|
|
def disable_gc():
|
|
if gc.isenabled():
|
|
try:
|
|
gc.disable()
|
|
yield
|
|
finally:
|
|
gc.enable()
|
|
else:
|
|
yield
|
|
|
|
class TestTorch(TestCase):
|
|
exact_dtype = True
|
|
|
|
def test_dir(self):
|
|
dir(torch)
|
|
|
|
def test_wildcard_import(self):
|
|
exec('from torch import *')
|
|
|
|
def test_newaxis_numpy_comparison(self):
|
|
def run_test(tensor, *idx):
|
|
npt = tensor.numpy()
|
|
self.assertEqual(tensor[idx], npt[idx])
|
|
|
|
# 1D Tensor Tests
|
|
x = torch.arange(0, 10)
|
|
cases = [
|
|
[None],
|
|
[None, None],
|
|
[Ellipsis, None],
|
|
[None, Ellipsis],
|
|
[2, None],
|
|
[None, 2],
|
|
[Ellipsis, None, 2],
|
|
[Ellipsis, 2, None],
|
|
[2, Ellipsis, None],
|
|
[2, None, Ellipsis],
|
|
[None, 2, Ellipsis],
|
|
[None, Ellipsis, 2],
|
|
]
|
|
|
|
for case in cases:
|
|
run_test(x, *case)
|
|
|
|
# 2D Tensor Tests
|
|
x = torch.arange(0, 12).view(3, 4)
|
|
cases = [
|
|
[None],
|
|
[None, None],
|
|
[None, None, None],
|
|
[Ellipsis, None],
|
|
[Ellipsis, None, None],
|
|
[None, Ellipsis],
|
|
[None, Ellipsis, None],
|
|
[None, None, Ellipsis],
|
|
[2, None],
|
|
[2, None, Ellipsis],
|
|
[2, Ellipsis, None],
|
|
[None, 2, Ellipsis],
|
|
[Ellipsis, 2, None],
|
|
[Ellipsis, None, 2],
|
|
[None, Ellipsis, 2],
|
|
[1, 2, None],
|
|
[1, 2, Ellipsis, None],
|
|
[1, Ellipsis, 2, None],
|
|
[Ellipsis, 1, None, 2],
|
|
[Ellipsis, 1, 2, None],
|
|
[1, None, 2, Ellipsis],
|
|
[None, 1, Ellipsis, 2],
|
|
[None, 1, 2, Ellipsis],
|
|
]
|
|
|
|
for case in cases:
|
|
run_test(x, *case)
|
|
|
|
def _consecutive(self, size, start=1):
|
|
sequence = torch.ones(torch.tensor(size).prod(0)).cumsum(0)
|
|
sequence.add_(start - 1)
|
|
return sequence.resize_(*size)
|
|
|
|
def test_newindex(self):
|
|
reference = self._consecutive((3, 3, 3))
|
|
# This relies on __index__() being correct - but we have separate tests for that
|
|
|
|
def checkPartialAssign(index):
|
|
reference = torch.zeros(3, 3, 3)
|
|
reference[index] = self._consecutive((3, 3, 3))[index]
|
|
self.assertEqual(reference[index], self._consecutive((3, 3, 3))[index], atol=0, rtol=0)
|
|
reference[index] = 0
|
|
self.assertEqual(reference, torch.zeros(3, 3, 3), atol=0, rtol=0)
|
|
|
|
checkPartialAssign(0)
|
|
checkPartialAssign(1)
|
|
checkPartialAssign(2)
|
|
checkPartialAssign((0, 1))
|
|
checkPartialAssign((1, 2))
|
|
checkPartialAssign((0, 2))
|
|
checkPartialAssign(torch.LongTensor((0, 2)))
|
|
|
|
with self.assertRaises(IndexError):
|
|
reference[1, 1, 1, 1] = 1
|
|
with self.assertRaises(IndexError):
|
|
reference[1, 1, 1, (1, 1)] = 1
|
|
with self.assertRaises(IndexError):
|
|
reference[3, 3, 3, 3, 3, 3, 3, 3] = 1
|
|
with self.assertRaises(IndexError):
|
|
reference[0.0] = 1
|
|
with self.assertRaises(TypeError):
|
|
reference[0.0:2.0] = 1
|
|
with self.assertRaises(IndexError):
|
|
reference[0.0, 0.0:2.0] = 1
|
|
with self.assertRaises(IndexError):
|
|
reference[0.0, :, 0.0:2.0] = 1
|
|
with self.assertRaises(IndexError):
|
|
reference[0.0, ..., 0.0:2.0] = 1
|
|
with self.assertRaises(IndexError):
|
|
reference[0.0, :, 0.0] = 1
|
|
|
|
# FIXME: move to indexing test suite
|
|
def test_index_add(self):
|
|
for device in get_all_device_types():
|
|
for dest_contig, src_contig, index_contig in product([True, False], repeat=3):
|
|
for other_sizes in ((), (4, 5)):
|
|
for dtype in [torch.int, torch.long]:
|
|
num_copy, num_dest = 3, 3
|
|
dest = torch.randn(num_dest, *other_sizes, device=device)
|
|
if not dest_contig:
|
|
dest = make_tensor(dest.shape, device=device, dtype=dest.dtype, noncontiguous=True)
|
|
src = torch.randn(num_copy, *other_sizes, device=device)
|
|
if not src_contig:
|
|
src = noncontiguous_like(src)
|
|
idx = torch.randperm(num_dest, dtype=dtype, device=device).narrow(0, 0, num_copy)
|
|
if not index_contig:
|
|
idx = noncontiguous_like(idx)
|
|
# index_add_ without alpha argument
|
|
dest2 = dest.clone()
|
|
dest.index_add_(0, idx, src)
|
|
for i in range(idx.size(0)):
|
|
dest2[idx[i]] += src[i]
|
|
self.assertEqual(dest, dest2)
|
|
# index_add_ with alpha argument
|
|
dest2 = dest.clone()
|
|
dest.index_add_(0, idx, src, alpha=2)
|
|
for i in range(idx.size(0)):
|
|
dest2[idx[i]] += src[i] * 2
|
|
self.assertEqual(dest, dest2)
|
|
|
|
# FIXME: resolve comment below and move this to indexing test suite
|
|
# add coverage for issue with atomic add that appeared only for
|
|
# specific dtypes on cuda:
|
|
# https://github.com/pytorch/pytorch/issues/29153
|
|
def test_index_add_all_dtypes(self):
|
|
for device in get_all_device_types():
|
|
for dtype in get_all_math_dtypes(device):
|
|
for idx_dtype in [torch.int, torch.long]:
|
|
size = [5, 5]
|
|
if dtype.is_floating_point or dtype.is_complex:
|
|
tensor = torch.rand(size, dtype=dtype, device=device)
|
|
elif dtype.is_signed:
|
|
tensor = torch.randint(-5, 15, size, dtype=dtype, device=device)
|
|
else:
|
|
tensor = torch.randint(0, 10, size, dtype=dtype, device=device)
|
|
|
|
# index_add calls atomicAdd on cuda.
|
|
zeros = torch.zeros(size, dtype=dtype, device=device)
|
|
|
|
added = zeros.index_add(0, torch.arange(0, size[0], dtype=idx_dtype, device=device), tensor)
|
|
self.assertEqual(added, tensor)
|
|
|
|
added = zeros.index_add(0, torch.arange(0, size[0], dtype=idx_dtype, device=device), tensor, alpha=-1)
|
|
self.assertEqual(added, -tensor)
|
|
|
|
# FIXME: move to shape ops test suite
|
|
def test_unflatten(self):
|
|
# test args: tensor, int, sizes
|
|
self.assertEqual(torch.tensor([]).unflatten(0, (0, 1)), torch.empty(0, 1))
|
|
self.assertEqual(torch.tensor([1]).unflatten(0, (1, 1)), torch.tensor([[1]]))
|
|
self.assertEqual(torch.tensor([1, 2, 3, 4]).unflatten(0, (2, 2)), torch.tensor([[1, 2], [3, 4]]))
|
|
self.assertEqual(torch.tensor([1, 2, 3, 4]).unflatten(0, [2, 2]), torch.tensor([[1, 2], [3, 4]]))
|
|
self.assertEqual(torch.tensor([1, 2, 3, 4]).unflatten(0, torch.Size([2, 2])), torch.tensor([[1, 2], [3, 4]]))
|
|
self.assertEqual(torch.ones(2, 10).unflatten(1, (5, 2)), torch.ones(2, 5, 2))
|
|
self.assertEqual(torch.tensor([1, 2, 3, 4]).unflatten(0, (-1, 2)),
|
|
torch.tensor([[1, 2], [3, 4]]))
|
|
self.assertEqual(torch.ones(2, 10).unflatten(1, (5, -1)),
|
|
torch.ones(2, 5, 2))
|
|
self.assertEqual(torch.ones(2, 10).unflatten(1, (-1,)),
|
|
torch.ones(2, 10))
|
|
self.assertEqual(torch.ones(2, 3 * 4 * 5 * 6).unflatten(1, (3, 4, -1, 6)),
|
|
torch.ones(2, 3, 4, 5, 6))
|
|
self.assertEqual(torch.ones(2, 0, 2).unflatten(1, (3, -1, 4, 5)),
|
|
torch.ones(2, 3, 0, 4, 5, 2))
|
|
|
|
# test invalid args: tensor, str, sizes
|
|
with self.assertRaisesRegex(TypeError, r"unflatten\(\): argument 'dim' \(position 1\) must be int, not str"):
|
|
torch.tensor([1]).unflatten('A', (1, 1))
|
|
|
|
# test invalid args: tensor, str, namedshape
|
|
with self.assertRaisesRegex(RuntimeError, r"Name 'A' not found in Tensor\[None\]."):
|
|
torch.ones(4).unflatten('A', (('A', 2), ('B', 2)))
|
|
|
|
# test other invalid arguments
|
|
with self.assertRaisesRegex(RuntimeError, r"sizes must be non-empty"):
|
|
torch.tensor([1]).unflatten(0, [])
|
|
with self.assertRaisesRegex(RuntimeError, r"Provided sizes \[2, 2\] don't multiply up to the size of dim 0 \(1\)"):
|
|
torch.tensor([1]).unflatten(0, [2, 2])
|
|
with self.assertRaisesRegex(IndexError, r"Dimension specified as 0 but tensor has no dimensions"):
|
|
torch.tensor(1).unflatten(0, [0])
|
|
with self.assertRaisesRegex(RuntimeError, r"only one dimension can be inferred"):
|
|
torch.randn(5, 10).unflatten(1, (-1, -1))
|
|
with self.assertRaisesRegex(RuntimeError,
|
|
r"Provided sizes \[-1, 4\] don't multiply up to the size of dim 1 \(10\)"):
|
|
torch.randn(5, 10).unflatten(1, (-1, 4))
|
|
with self.assertRaisesRegex(RuntimeError,
|
|
r"the unspecified dimension size -1 can be any value and is ambiguous"):
|
|
torch.randn(2, 0).unflatten(1, (2, -1, 0))
|
|
|
|
def test_structseq_repr(self):
|
|
a = torch.arange(250).reshape(5, 5, 10)
|
|
expected = """
|
|
torch.return_types.max(
|
|
values=tensor([[ 40, 41, 42, 43, 44, 45, 46, 47, 48, 49],
|
|
[ 90, 91, 92, 93, 94, 95, 96, 97, 98, 99],
|
|
[140, 141, 142, 143, 144, 145, 146, 147, 148, 149],
|
|
[190, 191, 192, 193, 194, 195, 196, 197, 198, 199],
|
|
[240, 241, 242, 243, 244, 245, 246, 247, 248, 249]]),
|
|
indices=tensor([[4, 4, 4, 4, 4, 4, 4, 4, 4, 4],
|
|
[4, 4, 4, 4, 4, 4, 4, 4, 4, 4],
|
|
[4, 4, 4, 4, 4, 4, 4, 4, 4, 4],
|
|
[4, 4, 4, 4, 4, 4, 4, 4, 4, 4],
|
|
[4, 4, 4, 4, 4, 4, 4, 4, 4, 4]]))"""
|
|
self.assertEqual(repr(a.max(1)), textwrap.dedent(expected).strip())
|
|
|
|
def test_is_same_size(self):
|
|
t1 = torch.empty(3, 4, 9, 10)
|
|
t2 = torch.empty(3, 4)
|
|
t3 = torch.empty(1, 9, 3, 3)
|
|
t4 = torch.empty(3, 4, 9, 10)
|
|
|
|
self.assertFalse(t1.is_same_size(t2))
|
|
self.assertFalse(t1.is_same_size(t3))
|
|
self.assertTrue(t1.is_same_size(t4))
|
|
|
|
nt1 = torch.nested.nested_tensor([torch.ones(2, 4), torch.ones(3, 4), torch.ones(5, 4)])
|
|
nt2 = torch.nested.nested_tensor([torch.ones(2, 4), torch.ones(2, 4), torch.ones(2, 4)])
|
|
nt3 = torch.nested.nested_tensor([torch.ones(2, 4, 5), torch.ones(2, 6, 5)])
|
|
nt4 = torch.nested.nested_tensor([torch.ones(2, 4), torch.ones(3, 4), torch.ones(5, 4)])
|
|
|
|
self.assertFalse(nt1.is_same_size(nt2))
|
|
self.assertFalse(nt1.is_same_size(nt3))
|
|
self.assertTrue(nt1.is_same_size(nt4))
|
|
with self.assertRaisesRegex(RuntimeError, "Expected both self and other to be nested tensors."):
|
|
t1.is_same_size(nt1)
|
|
|
|
with self.assertRaisesRegex(RuntimeError, "Expected both self and other to be nested tensors."):
|
|
nt1.is_same_size(t1)
|
|
|
|
def test_tensor_set(self):
|
|
t1 = torch.tensor([])
|
|
t2 = torch.empty(3, 4, 9, 10).uniform_()
|
|
t1.set_(t2)
|
|
self.assertEqual(t1.storage()._cdata, t2.storage()._cdata)
|
|
size = torch.Size([9, 3, 4, 10])
|
|
t1.set_(t2.storage(), 0, size)
|
|
self.assertEqual(t1.size(), size)
|
|
t1.set_(t2.storage(), 0, tuple(size))
|
|
self.assertEqual(t1.size(), size)
|
|
self.assertEqual(t1.stride(), (120, 40, 10, 1))
|
|
stride = (10, 360, 90, 1)
|
|
t1.set_(t2.storage(), 0, size, stride)
|
|
self.assertEqual(t1.stride(), stride)
|
|
t1.set_(t2.storage(), 0, size=size, stride=stride)
|
|
self.assertEqual(t1.size(), size)
|
|
self.assertEqual(t1.stride(), stride)
|
|
|
|
# test argument names
|
|
t1 = torch.tensor([])
|
|
# 1. case when source is tensor
|
|
t1.set_(source=t2)
|
|
self.assertEqual(t1.storage()._cdata, t2.storage()._cdata)
|
|
# 2. case when source is storage
|
|
t1.set_(source=t2.storage())
|
|
self.assertEqual(t1.storage()._cdata, t2.storage()._cdata)
|
|
# 3. case when source is storage, and other args also specified
|
|
t1.set_(source=t2.storage(), storage_offset=0, size=size, stride=stride)
|
|
self.assertEqual(t1.size(), size)
|
|
self.assertEqual(t1.stride(), stride)
|
|
|
|
t1 = torch.tensor([True, True], dtype=torch.bool)
|
|
t2 = torch.tensor([False, False], dtype=torch.bool)
|
|
t1.set_(t2)
|
|
self.assertEqual(t1.storage()._cdata, t2.storage()._cdata)
|
|
|
|
def test_tensor_set_errors(self):
|
|
f_cpu = torch.randn((2, 3), dtype=torch.float32)
|
|
d_cpu = torch.randn((2, 3), dtype=torch.float64)
|
|
|
|
# change dtype
|
|
self.assertRaises(RuntimeError, lambda: f_cpu.set_(d_cpu.storage()))
|
|
self.assertRaises(RuntimeError,
|
|
lambda: f_cpu.set_(d_cpu.storage(), 0, d_cpu.size(), d_cpu.stride()))
|
|
self.assertRaises(RuntimeError, lambda: f_cpu.set_(d_cpu))
|
|
|
|
# change device
|
|
if torch.cuda.is_available():
|
|
f_cuda = torch.randn((2, 3), dtype=torch.float32, device='cuda')
|
|
|
|
# cpu -> cuda
|
|
self.assertRaises(RuntimeError, lambda: f_cpu.set_(f_cuda.storage()))
|
|
self.assertRaises(RuntimeError,
|
|
lambda: f_cpu.set_(f_cuda.storage(), 0, f_cuda.size(), f_cuda.stride()))
|
|
self.assertRaises(RuntimeError, lambda: f_cpu.set_(f_cuda))
|
|
|
|
# cuda -> cpu
|
|
self.assertRaises(RuntimeError, lambda: f_cuda.set_(f_cpu.storage()))
|
|
self.assertRaises(RuntimeError,
|
|
lambda: f_cuda.set_(f_cpu.storage(), 0, f_cpu.size(), f_cpu.stride()))
|
|
self.assertRaises(RuntimeError, lambda: f_cuda.set_(f_cpu))
|
|
|
|
# FIXME: move this test test_testing.py (along with allclose testing)
|
|
# NOTE: test_equal will be deprecated in favor of torch.testing.assert_close
|
|
# once torch.testing is out of beta
|
|
def test_equal(self):
|
|
# Contiguous, 1D
|
|
t1 = torch.tensor((3., 4., 9., 10.))
|
|
t2 = t1.contiguous()
|
|
t3 = torch.tensor((1., 9., 3., 10.))
|
|
t4 = torch.tensor((3., 4., 9.))
|
|
t5 = torch.tensor([])
|
|
self.assertTrue(t1.equal(t2))
|
|
self.assertFalse(t1.equal(t3))
|
|
self.assertFalse(t1.equal(t4))
|
|
self.assertFalse(t1.equal(t5))
|
|
self.assertTrue(torch.equal(t1, t2))
|
|
self.assertFalse(torch.equal(t1, t3))
|
|
self.assertFalse(torch.equal(t1, t4))
|
|
self.assertFalse(torch.equal(t1, t5))
|
|
|
|
# Non contiguous, 2D
|
|
s = torch.tensor(((1, 2, 3, 4), (5, 6, 7, 8)))
|
|
s1 = s[:, 1:3]
|
|
s2 = s1.clone()
|
|
s3 = torch.tensor(((2, 3), (6, 7)))
|
|
s4 = torch.tensor(((0, 0), (0, 0)))
|
|
|
|
self.assertFalse(s1.is_contiguous())
|
|
self.assertTrue(s1.equal(s2))
|
|
self.assertTrue(s1.equal(s3))
|
|
self.assertFalse(s1.equal(s4))
|
|
self.assertTrue(torch.equal(s1, s2))
|
|
self.assertTrue(torch.equal(s1, s3))
|
|
self.assertFalse(torch.equal(s1, s4))
|
|
|
|
# Different dtypes
|
|
x = torch.tensor((1, 2, 3), dtype=torch.float)
|
|
y = torch.tensor((1, 2, 3), dtype=torch.int)
|
|
z = torch.tensor((1, -1), dtype=torch.int)
|
|
self.assertTrue(torch.equal(x, y))
|
|
self.assertFalse(torch.equal(z, x))
|
|
|
|
def test_element_size(self):
|
|
byte = torch.ByteStorage().element_size()
|
|
char = torch.CharStorage().element_size()
|
|
short = torch.ShortStorage().element_size()
|
|
int = torch.IntStorage().element_size()
|
|
long = torch.LongStorage().element_size()
|
|
float = torch.FloatStorage().element_size()
|
|
double = torch.DoubleStorage().element_size()
|
|
bool = torch.BoolStorage().element_size()
|
|
bfloat16 = torch.BFloat16Storage().element_size()
|
|
complexfloat = torch.ComplexFloatStorage().element_size()
|
|
complexdouble = torch.ComplexDoubleStorage().element_size()
|
|
|
|
self.assertEqual(byte, torch.ByteTensor().element_size())
|
|
self.assertEqual(char, torch.CharTensor().element_size())
|
|
self.assertEqual(short, torch.ShortTensor().element_size())
|
|
self.assertEqual(int, torch.IntTensor().element_size())
|
|
self.assertEqual(long, torch.LongTensor().element_size())
|
|
self.assertEqual(float, torch.FloatTensor().element_size())
|
|
self.assertEqual(double, torch.DoubleTensor().element_size())
|
|
self.assertEqual(bool, torch.BoolTensor().element_size())
|
|
self.assertEqual(bfloat16, torch.tensor([], dtype=torch.bfloat16).element_size())
|
|
self.assertEqual(complexfloat, torch.tensor([], dtype=torch.complex64).element_size())
|
|
self.assertEqual(complexdouble, torch.tensor([], dtype=torch.complex128).element_size())
|
|
|
|
self.assertGreater(byte, 0)
|
|
self.assertGreater(char, 0)
|
|
self.assertGreater(short, 0)
|
|
self.assertGreater(int, 0)
|
|
self.assertGreater(long, 0)
|
|
self.assertGreater(float, 0)
|
|
self.assertGreater(double, 0)
|
|
self.assertGreater(bool, 0)
|
|
self.assertGreater(bfloat16, 0)
|
|
self.assertGreater(complexfloat, 0)
|
|
self.assertGreater(complexdouble, 0)
|
|
|
|
# These tests are portable, not necessarily strict for your system.
|
|
self.assertEqual(byte, 1)
|
|
self.assertEqual(char, 1)
|
|
self.assertEqual(bool, 1)
|
|
self.assertGreaterEqual(short, 2)
|
|
self.assertGreaterEqual(int, 2)
|
|
self.assertGreaterEqual(int, short)
|
|
self.assertGreaterEqual(long, 4)
|
|
self.assertGreaterEqual(long, int)
|
|
self.assertGreaterEqual(double, float)
|
|
|
|
def test_permute(self):
|
|
orig = [1, 2, 3, 4, 5, 6, 7]
|
|
perm = torch.randperm(7).tolist()
|
|
x = torch.empty(*orig).fill_(0)
|
|
new = [i - 1 for i in x.permute(*perm).size()]
|
|
self.assertEqual(perm, new)
|
|
self.assertEqual(x.size(), orig)
|
|
|
|
@skipIfTorchDynamo("TorchDynamo fails with unknown reason")
|
|
def test_reversed(self):
|
|
val = torch.arange(0, 10)
|
|
self.assertEqual(reversed(val), torch.arange(9, -1, -1))
|
|
|
|
val = torch.arange(1, 10).view(3, 3)
|
|
self.assertEqual(reversed(val), torch.tensor([[7, 8, 9], [4, 5, 6], [1, 2, 3]]))
|
|
|
|
val = torch.tensor(42)
|
|
self.assertEqual(reversed(val), torch.tensor(42))
|
|
|
|
def test_contains(self):
|
|
x = torch.arange(0, 10)
|
|
self.assertEqual(4 in x, True)
|
|
self.assertEqual(12 in x, False)
|
|
|
|
x = torch.arange(1, 10).view(3, 3)
|
|
val = torch.arange(1, 4)
|
|
self.assertEqual(val in x, True)
|
|
val += 10
|
|
self.assertEqual(val in x, False)
|
|
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"Tensor.__contains__ only supports Tensor or scalar, but you passed in a {}.".format(type("foo")),
|
|
lambda: "foo" in x)
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"Tensor.__contains__ only supports Tensor or scalar, but you passed in a {}.".format(type([1, 2])),
|
|
lambda: [1, 2] in x)
|
|
|
|
def test_deepcopy_parameter(self):
|
|
from copy import deepcopy
|
|
l = torch.nn.Linear(10, 1)
|
|
s = l.state_dict(keep_vars=True)
|
|
self.assertEqual(torch.nn.Parameter, type(s['weight']))
|
|
self.assertEqual(torch.nn.Parameter, type(s['bias']))
|
|
|
|
s2 = deepcopy(s)
|
|
self.assertEqual(torch.nn.Parameter, type(s2['weight']))
|
|
self.assertEqual(torch.nn.Parameter, type(s2['bias']))
|
|
|
|
def test_pickle(self):
|
|
import pickle
|
|
a = torch.randn(5, 5)
|
|
serialized = pickle.dumps(a)
|
|
b = pickle.loads(serialized)
|
|
self.assertEqual(a, b)
|
|
|
|
@skipIfTorchDynamo("TorchDynamo fails with unknown reason")
|
|
def test_pickle_parameter(self):
|
|
import pickle
|
|
a = torch.nn.Parameter(torch.randn(5, 5))
|
|
serialized = pickle.dumps(a)
|
|
b = pickle.loads(serialized)
|
|
self.assertTrue(isinstance(b, torch.nn.Parameter))
|
|
self.assertEqual(a.requires_grad, b.requires_grad)
|
|
self.assertEqual(a, b)
|
|
|
|
@skipIfTorchDynamo("TorchDynamo fails with unknown reason")
|
|
def test_pickle_parameter_no_requires_grad(self):
|
|
import pickle
|
|
a = torch.nn.Parameter(torch.randn(5, 5), requires_grad=False)
|
|
serialized = pickle.dumps(a)
|
|
b = pickle.loads(serialized)
|
|
self.assertTrue(isinstance(b, torch.nn.Parameter))
|
|
self.assertEqual(a.requires_grad, b.requires_grad)
|
|
self.assertEqual(a, b)
|
|
|
|
def test_pickle_dtype(self):
|
|
t = torch.float32
|
|
serialized = pickle.dumps(t)
|
|
b = pickle.loads(serialized)
|
|
self.assertTrue(isinstance(b, torch.dtype))
|
|
self.assertEqual(id(b), id(t))
|
|
|
|
def test_pickle_size(self):
|
|
a = torch.rand(10).size()
|
|
serialized = pickle.dumps(a)
|
|
b = pickle.loads(serialized)
|
|
self.assertTrue(isinstance(b, torch.Size))
|
|
self.assertEqual(a, b)
|
|
|
|
def test_pickle_function(self):
|
|
# https://github.com/pytorch/pytorch/issues/37703
|
|
a = torch.tanh
|
|
serialized = pickle.dumps(a)
|
|
b = pickle.loads(serialized)
|
|
self.assertEqual(a, b)
|
|
|
|
def test_generator_cpu(self):
|
|
# test default generators are equal
|
|
self.assertEqual(torch.default_generator, torch.default_generator)
|
|
|
|
# tests Generator API
|
|
# manual_seed, seed, initial_seed, get_state, set_state
|
|
g1 = torch.Generator()
|
|
g2 = torch.Generator()
|
|
g1.manual_seed(12345)
|
|
g2.manual_seed(12345)
|
|
self.assertEqual(g1.initial_seed(), g2.initial_seed())
|
|
|
|
g1.seed()
|
|
g2.seed()
|
|
self.assertNotEqual(g1.initial_seed(), g2.initial_seed())
|
|
|
|
g1 = torch.Generator()
|
|
g2_state = g2.get_state()
|
|
g2_randn = torch.randn(1, generator=g2)
|
|
g1.set_state(g2_state)
|
|
g1_randn = torch.randn(1, generator=g1)
|
|
self.assertEqual(g1_randn, g2_randn)
|
|
|
|
default_state = torch.default_generator.get_state()
|
|
q = torch.empty(100)
|
|
g1_normal = q.normal_()
|
|
g2 = torch.Generator()
|
|
g2.set_state(default_state)
|
|
g2_normal = q.normal_(generator=g2)
|
|
self.assertEqual(g1_normal, g2_normal)
|
|
|
|
def test_invalid_generator_raises(self):
|
|
self.assertRaises(RuntimeError, lambda: torch.Generator('opengl'))
|
|
|
|
def _sobol_reference_samples(self, scramble: bool) -> torch.Tensor:
|
|
if not scramble:
|
|
# theoretical values from Joe Kuo 2010
|
|
return torch.tensor(
|
|
[
|
|
[0., 0.],
|
|
[0.5, 0.5],
|
|
[0.75, 0.25],
|
|
[0.25, 0.75],
|
|
[0.375, 0.375],
|
|
[0.875, 0.875],
|
|
[0.625, 0.125],
|
|
[0.125, 0.625],
|
|
],
|
|
)
|
|
else:
|
|
# theoretical values unknown: convergence properties checked
|
|
return torch.tensor(
|
|
[
|
|
[0.50860737, 0.29320504],
|
|
[0.07116939, 0.89594537],
|
|
[0.49354145, 0.11524881],
|
|
[0.93097717, 0.70244044],
|
|
[0.87266153, 0.23887917],
|
|
[0.31021884, 0.57600391],
|
|
[0.13687253, 0.42054182],
|
|
[0.69931293, 0.77336788],
|
|
],
|
|
)
|
|
|
|
def test_sobolengine_bounds(self, scramble: bool = False):
|
|
engine = torch.quasirandom.SobolEngine(100, scramble=scramble, seed=123456)
|
|
sample = engine.draw(512)
|
|
self.assertTrue(torch.all(sample >= 0))
|
|
self.assertTrue(torch.all(sample <= 1))
|
|
|
|
def test_sobolengine_bounds_scrambled(self):
|
|
self.test_sobolengine_bounds(scramble=True)
|
|
|
|
def test_sobolengine_draw(self, scramble: bool = False):
|
|
ref_sample = self._sobol_reference_samples(scramble=scramble)
|
|
engine = torch.quasirandom.SobolEngine(2, scramble=scramble, seed=123456)
|
|
sample = engine.draw(n=len(ref_sample))
|
|
self.assertEqual(sample, ref_sample)
|
|
self.assertEqual(engine.num_generated, len(ref_sample))
|
|
|
|
def test_sobolengine_draw_scrambled(self):
|
|
self.test_sobolengine_draw(scramble=True)
|
|
|
|
def test_sobolengine_first_point(self):
|
|
for dtype in (torch.float, torch.double):
|
|
engine = torch.quasirandom.SobolEngine(2, scramble=False)
|
|
sample = engine.draw(1, dtype=dtype)
|
|
self.assertTrue(torch.all(sample == 0))
|
|
self.assertEqual(sample.dtype, dtype)
|
|
for dtype in (torch.float, torch.double):
|
|
engine = torch.quasirandom.SobolEngine(2, scramble=True, seed=123456)
|
|
sample = engine.draw(1, dtype=dtype)
|
|
self.assertTrue(torch.all(sample != 0))
|
|
self.assertEqual(sample.dtype, dtype)
|
|
|
|
def test_sobolengine_continuing(self, scramble: bool = False):
|
|
ref_sample = self._sobol_reference_samples(scramble=scramble)
|
|
engine = torch.quasirandom.SobolEngine(2, scramble=scramble, seed=123456)
|
|
n_half = len(ref_sample) // 2
|
|
_ = engine.draw(n=n_half)
|
|
sample = engine.draw(n=n_half)
|
|
torch.testing.assert_close(sample, ref_sample[n_half:])
|
|
|
|
def test_sobolengine_continuing_scrambled(self):
|
|
self.test_sobolengine_continuing(scramble=True)
|
|
|
|
def test_sobolengine_reset(self, scramble: bool = False):
|
|
ref_sample = self._sobol_reference_samples(scramble=scramble)
|
|
engine = torch.quasirandom.SobolEngine(2, scramble=scramble, seed=123456)
|
|
_ = engine.draw(n=len(ref_sample) // 2)
|
|
engine.reset()
|
|
self.assertEqual(engine.num_generated, 0)
|
|
sample = engine.draw(n=len(ref_sample))
|
|
torch.testing.assert_close(sample, ref_sample)
|
|
|
|
def test_sobolengine_reset_scrambled(self):
|
|
self.test_sobolengine_reset(scramble=True)
|
|
|
|
def test_sobolengine_fast_forward(self, scramble: bool = False):
|
|
ref_sample = self._sobol_reference_samples(scramble=scramble)
|
|
engine = torch.quasirandom.SobolEngine(2, scramble=scramble, seed=123456)
|
|
engine.fast_forward(4)
|
|
sample = engine.draw(n=4)
|
|
torch.testing.assert_close(sample, ref_sample[4:])
|
|
# alternate fast forwarding with sampling
|
|
engine.reset()
|
|
even_draws = []
|
|
for i in range(8):
|
|
if i % 2 == 0:
|
|
even_draws.append(engine.draw())
|
|
else:
|
|
engine.fast_forward(1)
|
|
torch.testing.assert_close(
|
|
ref_sample[[i for i in range(8) if i % 2 == 0]],
|
|
torch.from_numpy(np.concatenate(even_draws)),
|
|
)
|
|
|
|
def test_sobolengine_fast_forward_scrambled(self):
|
|
self.test_sobolengine_fast_forward(scramble=True)
|
|
|
|
def test_sobolengine_distribution(self, scramble=False):
|
|
d = 50
|
|
engine = torch.quasirandom.SobolEngine(d, scramble=scramble, seed=123456)
|
|
sample = engine.draw(1024)
|
|
torch.testing.assert_close(
|
|
torch.mean(sample, dim=0), torch.full((d,), 0.5), atol=2, rtol=2
|
|
)
|
|
torch.testing.assert_close(
|
|
np.percentile(sample, 25, axis=0), np.repeat(0.25, d), atol=2, rtol=2
|
|
)
|
|
torch.testing.assert_close(
|
|
np.percentile(sample, 75, axis=0), np.repeat(0.75, d), atol=2, rtol=2
|
|
)
|
|
|
|
def test_sobolengine_distribution_scrambled(self):
|
|
self.test_sobolengine_distribution(scramble=True)
|
|
|
|
def test_sobolengine_draw_base2(self, scramble=False):
|
|
ref_sample = self._sobol_reference_samples(scramble=scramble)
|
|
engine = torch.quasirandom.SobolEngine(2, scramble=scramble, seed=123456)
|
|
sample = engine.draw_base2(2)
|
|
self.assertEqual(ref_sample[:4], sample)
|
|
# resampling still having N=2**n
|
|
sample = engine.draw_base2(2)
|
|
self.assertEqual(ref_sample[4:8], sample)
|
|
|
|
def test_sobolengine_draw_base2_scrambled(self):
|
|
self.test_sobolengine_draw_base2(scramble=True)
|
|
|
|
def test_sobolengine_raise(self):
|
|
maxdim = torch.quasirandom.SobolEngine.MAXDIM
|
|
with self.assertRaises(ValueError):
|
|
torch.quasirandom.SobolEngine(maxdim + 1)
|
|
|
|
def test_sobolengine_high_dim(self):
|
|
engine = torch.quasirandom.SobolEngine(1111, scramble=False, seed=123456)
|
|
samples1 = engine.draw()
|
|
vals1, counts1 = torch.unique(samples1, return_counts=True)
|
|
samples2 = engine.draw()
|
|
vals2, counts2 = torch.unique(samples2, return_counts=True)
|
|
self.assertEqual(vals1.item(), 0.0)
|
|
self.assertEqual(counts1.item(), 1111)
|
|
self.assertEqual(vals2.item(), 0.5)
|
|
self.assertEqual(counts1.item(), 1111)
|
|
|
|
def test_parsing_int64(self):
|
|
# accepts integer arguments
|
|
x = torch.cumsum(torch.ones(5, 5), 0)
|
|
self.assertEqual(x, torch.cumsum(torch.ones(5, 5), torch.tensor(0)))
|
|
# doesn't accept floating point variables
|
|
self.assertRaises(TypeError, lambda: torch.cumsum(torch.ones(5, 5), torch.tensor(0.)))
|
|
|
|
def test_parsing_double(self):
|
|
# accepts floating point and integer arguments
|
|
x = torch.randn(2, 3)
|
|
torch.isclose(x, x, 1, 1)
|
|
self.assertTrue(torch.isclose(x, x, 1, 1).all())
|
|
self.assertTrue(torch.isclose(x, x, 1.5, 1.).all())
|
|
# accepts floating point and integer tensors
|
|
self.assertTrue(torch.isclose(x, x, torch.tensor(1), torch.tensor(1)).all())
|
|
self.assertTrue(torch.isclose(x, x, torch.tensor(1.5), torch.tensor(1.)).all())
|
|
# doesn't accept variables with requires_grad
|
|
self.assertRaises(TypeError,
|
|
lambda: torch.isclose(x, x, torch.tensor(1.5), torch.tensor(1., requires_grad=True)).all())
|
|
|
|
def test_parsing_intlist(self):
|
|
# parse with integer variables
|
|
self.assertEqual(torch.Size([3, 4]), torch.ones((torch.tensor(3), torch.tensor(4))).shape)
|
|
self.assertEqual(torch.Size([3, 4]), torch.ones(torch.tensor(3), torch.tensor(4)).shape)
|
|
# parse with numpy integers
|
|
self.assertEqual(torch.Size([3, 4]), torch.ones((np.array(3), np.int64(4))).shape)
|
|
self.assertEqual(torch.Size([3, 4]), torch.ones(np.array(3), np.int64(4)).shape)
|
|
self.assertEqual(torch.Size([3, 4]), torch.ones((np.int64(3), np.array(4))).shape)
|
|
self.assertEqual(torch.Size([3, 4]), torch.ones(np.int64(3), np.array(4)).shape)
|
|
|
|
# fail parse with float variables
|
|
self.assertRaises(TypeError, lambda: torch.ones((torch.tensor(3.), torch.tensor(4))))
|
|
# fail parse with numpy floats
|
|
self.assertRaises(TypeError, lambda: torch.ones((np.float(3.), torch.tensor(4))))
|
|
self.assertRaises(TypeError, lambda: torch.ones((np.array(3.), torch.tensor(4))))
|
|
|
|
# fail parse with > 1 element variables
|
|
self.assertRaises(TypeError, lambda: torch.ones(torch.tensor(3, 3)))
|
|
self.assertRaises(TypeError, lambda: torch.ones((torch.tensor(3, 3))))
|
|
self.assertRaises(TypeError, lambda: torch.ones(np.array(3, 3)))
|
|
self.assertRaises(TypeError, lambda: torch.ones((np.array(3, 3))))
|
|
|
|
# fail parse with additional positional args after intlist arg
|
|
self.assertRaisesRegex(TypeError,
|
|
"received an invalid combination of arguments",
|
|
lambda: torch.LongTensor((6, 0), 1, 1, 0))
|
|
self.assertRaisesRegex(TypeError,
|
|
"missing 1 required positional arguments",
|
|
lambda: torch.tensor().new_zeros((5, 5), 0))
|
|
|
|
def test_from_buffer(self):
|
|
a = bytearray([1, 2, 3, 4])
|
|
self.assertEqual(torch.ByteStorage.from_buffer(a).tolist(), [1, 2, 3, 4])
|
|
shorts = torch.ShortStorage.from_buffer(a, 'big')
|
|
self.assertEqual(shorts.size(), 2)
|
|
self.assertEqual(shorts.tolist(), [258, 772])
|
|
ints = torch.IntStorage.from_buffer(a, 'little')
|
|
self.assertEqual(ints.size(), 1)
|
|
self.assertEqual(ints[0], 67305985)
|
|
f = bytearray([0x40, 0x10, 0x00, 0x00])
|
|
floats = torch.FloatStorage.from_buffer(f, 'big')
|
|
self.assertEqual(floats.size(), 1)
|
|
self.assertEqual(floats[0], 2.25)
|
|
|
|
f = bytearray([0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x10, 0x40])
|
|
bools = torch.BoolStorage.from_buffer(f, 'big')
|
|
self.assertEqual(bools.size(), 8)
|
|
self.assertEqual(bools.tolist(), [False, True, True, True, True, True, True, True])
|
|
self.assertEqual(bools.type(), 'torch.BoolStorage')
|
|
self.assertTrue(isinstance(bools, torch.BoolStorage))
|
|
|
|
f = bytearray(b'\x80\x02\x8a\nl\xfc\x9cF\xf9 j\xa8P\x19.\x80\x02M\xe9')
|
|
bools = torch.BoolStorage.from_buffer(f, 'big')
|
|
self.assertEqual(bools.size(), 19)
|
|
|
|
f = bytearray(b'\0x4A')
|
|
bools = torch.BoolStorage.from_buffer(f, 'big')
|
|
self.assertEqual(bools.size(), 4)
|
|
self.assertEqual(bools.tolist(), [False, True, True, True])
|
|
bytes = torch.ByteStorage.from_buffer(a)
|
|
self.assertEqual(bytes.nbytes(), 4)
|
|
self.assertEqual(bytes.tolist(), [1, 2, 3, 4])
|
|
self.assertTrue(isinstance(bytes, torch.ByteStorage))
|
|
|
|
def test_storage_error(self):
|
|
quantized_storages = [
|
|
torch.QInt32Storage,
|
|
torch.QInt8Storage,
|
|
torch.QUInt2x4Storage,
|
|
torch.QUInt4x2Storage,
|
|
torch.QUInt8Storage,
|
|
]
|
|
|
|
with self.assertRaisesRegex(RuntimeError, r"Only child classes of _LegacyStorage can be instantiated"):
|
|
torch.storage._LegacyStorage()
|
|
|
|
for storage_class in torch._storage_classes:
|
|
if storage_class in [torch.UntypedStorage, torch.TypedStorage]:
|
|
continue
|
|
|
|
device = 'cuda' if storage_class.__module__ == 'torch.cuda' else 'cpu'
|
|
dtype = storage_class.dtype
|
|
|
|
if device == 'cuda' and not torch.cuda.is_available():
|
|
continue
|
|
|
|
# Legacy <type>Storage constructor errors
|
|
with self.assertRaisesRegex(RuntimeError, r"'device' cannot be specified"):
|
|
storage_class(device='cpu')
|
|
|
|
with self.assertRaisesRegex(RuntimeError, r"'dtype' cannot be specified"):
|
|
storage_class(dtype=torch.float)
|
|
|
|
with self.assertRaisesRegex(TypeError, r"got an unexpected keyword"):
|
|
storage_class(sdlkjf=torch.float)
|
|
|
|
with self.assertRaisesRegex(RuntimeError, r"Too many positional arguments"):
|
|
storage_class(0, 0)
|
|
|
|
with self.assertRaisesRegex(TypeError, r"invalid data type"):
|
|
storage_class('string')
|
|
|
|
with self.assertRaisesRegex(TypeError, r"Argument type not recognized"):
|
|
storage_class(torch.tensor([]))
|
|
|
|
s = storage_class()
|
|
|
|
with self.assertRaisesRegex(RuntimeError, r"No positional arguments"):
|
|
storage_class(0, wrap_storage=s.untyped())
|
|
|
|
with self.assertRaisesRegex(TypeError, r"must be UntypedStorage"):
|
|
storage_class(wrap_storage=s)
|
|
|
|
if torch.cuda.is_available():
|
|
if storage_class in quantized_storages:
|
|
with self.assertRaisesRegex(RuntimeError, r"Cannot create CUDA storage with quantized dtype"):
|
|
s.cuda()
|
|
|
|
else:
|
|
|
|
if s.is_cuda:
|
|
s_other_device = s.cpu()
|
|
else:
|
|
s_other_device = s.cuda()
|
|
|
|
with self.assertRaisesRegex(RuntimeError, r"Device of 'wrap_storage' must be"):
|
|
storage_class(wrap_storage=s_other_device.untyped())
|
|
|
|
# TypedStorage constructor errors
|
|
with self.assertRaisesRegex(RuntimeError, r"No positional arguments"):
|
|
torch.TypedStorage(0, wrap_storage=s.untyped(), dtype=dtype)
|
|
|
|
with self.assertRaisesRegex(RuntimeError, r"Argument 'dtype' must be specified"):
|
|
torch.TypedStorage(wrap_storage=s.untyped())
|
|
|
|
with self.assertRaisesRegex(TypeError, r"Argument 'dtype' must be torch.dtype"):
|
|
torch.TypedStorage(wrap_storage=s.untyped(), dtype=0)
|
|
|
|
with self.assertRaisesRegex(RuntimeError, r"Argument 'device' should not be specified"):
|
|
torch.TypedStorage(wrap_storage=s.untyped(), dtype=dtype, device=device)
|
|
|
|
with self.assertRaisesRegex(TypeError, r"Argument 'wrap_storage' must be UntypedStorage"):
|
|
torch.TypedStorage(wrap_storage=s, dtype=dtype)
|
|
|
|
with self.assertRaisesRegex(RuntimeError, r"Storage device not recognized"):
|
|
torch.TypedStorage(dtype=dtype, device='xla')
|
|
|
|
if torch.cuda.is_available():
|
|
if storage_class in quantized_storages:
|
|
with self.assertRaisesRegex(RuntimeError, r"Cannot create CUDA storage with quantized dtype"):
|
|
torch.TypedStorage(dtype=dtype, device='cuda')
|
|
|
|
with self.assertRaisesRegex(TypeError, r"Argument type not recognized"):
|
|
torch.TypedStorage(torch.tensor([]), dtype=dtype, device=device)
|
|
|
|
with self.assertRaisesRegex(RuntimeError, r"Too many positional arguments"):
|
|
torch.TypedStorage(0, 0, dtype=dtype, device=device)
|
|
|
|
if isinstance(s, torch.TypedStorage):
|
|
s_other = torch.TypedStorage([1, 2, 3, 4], device=device, dtype=dtype)
|
|
|
|
with self.assertRaisesRegex(RuntimeError, r'cannot set item'):
|
|
s.fill_(s_other)
|
|
|
|
def test_storage_error_no_attribute(self):
|
|
storage_classes = [
|
|
torch.cuda.ByteStorage,
|
|
torch.cuda.FloatStorage,
|
|
]
|
|
for storage_class in storage_classes:
|
|
with self.assertRaisesRegex(RuntimeError, r'Not available for CUDA storage'):
|
|
storage_class.from_buffer()
|
|
|
|
with self.assertRaisesRegex(RuntimeError, r'Not available for CUDA storage'):
|
|
storage_class._new_with_weak_ptr()
|
|
|
|
with self.assertRaisesRegex(RuntimeError, r'Not available for CUDA storage'):
|
|
storage_class._new_shared_filename(0, 0, 0)
|
|
|
|
def test_storage_casts(self):
|
|
storage = torch.IntStorage([-1, 0, 1, 2, 3, 4])
|
|
self.assertEqual(storage.size(), 6)
|
|
self.assertEqual(storage.tolist(), [-1, 0, 1, 2, 3, 4])
|
|
self.assertEqual(storage.type(), 'torch.IntStorage')
|
|
self.assertIs(storage.dtype, torch.int32)
|
|
|
|
floatStorage = storage.float()
|
|
self.assertEqual(floatStorage.size(), 6)
|
|
self.assertEqual(floatStorage.tolist(), [-1, 0, 1, 2, 3, 4])
|
|
self.assertEqual(floatStorage.type(), 'torch.FloatStorage')
|
|
self.assertEqual(floatStorage.int().tolist(), [-1, 0, 1, 2, 3, 4])
|
|
self.assertIs(floatStorage.dtype, torch.float32)
|
|
|
|
halfStorage = storage.half()
|
|
self.assertEqual(halfStorage.size(), 6)
|
|
self.assertEqual(halfStorage.tolist(), [-1, 0, 1, 2, 3, 4])
|
|
self.assertEqual(halfStorage.type(), 'torch.HalfStorage')
|
|
self.assertEqual(halfStorage.int().tolist(), [-1, 0, 1, 2, 3, 4])
|
|
self.assertIs(halfStorage.dtype, torch.float16)
|
|
|
|
bfloat16Storage = storage.bfloat16()
|
|
self.assertEqual(bfloat16Storage.size(), 6)
|
|
self.assertEqual(bfloat16Storage.tolist(), [-1, 0, 1, 2, 3, 4])
|
|
self.assertEqual(bfloat16Storage.type(), 'torch.BFloat16Storage')
|
|
self.assertEqual(bfloat16Storage.int().tolist(), [-1, 0, 1, 2, 3, 4])
|
|
self.assertIs(bfloat16Storage.dtype, torch.bfloat16)
|
|
|
|
longStorage = storage.long()
|
|
self.assertEqual(longStorage.size(), 6)
|
|
self.assertEqual(longStorage.tolist(), [-1, 0, 1, 2, 3, 4])
|
|
self.assertEqual(longStorage.type(), 'torch.LongStorage')
|
|
self.assertEqual(longStorage.int().tolist(), [-1, 0, 1, 2, 3, 4])
|
|
self.assertIs(longStorage.dtype, torch.int64)
|
|
|
|
shortStorage = storage.short()
|
|
self.assertEqual(shortStorage.size(), 6)
|
|
self.assertEqual(shortStorage.tolist(), [-1, 0, 1, 2, 3, 4])
|
|
self.assertEqual(shortStorage.type(), 'torch.ShortStorage')
|
|
self.assertEqual(shortStorage.int().tolist(), [-1, 0, 1, 2, 3, 4])
|
|
self.assertIs(shortStorage.dtype, torch.int16)
|
|
|
|
doubleStorage = storage.double()
|
|
self.assertEqual(doubleStorage.size(), 6)
|
|
self.assertEqual(doubleStorage.tolist(), [-1.0, 0.0, 1.0, 2.0, 3.0, 4.0])
|
|
self.assertEqual(doubleStorage.type(), 'torch.DoubleStorage')
|
|
self.assertEqual(doubleStorage.int().tolist(), [-1, 0, 1, 2, 3, 4])
|
|
self.assertIs(doubleStorage.dtype, torch.float64)
|
|
|
|
charStorage = storage.char()
|
|
self.assertEqual(charStorage.size(), 6)
|
|
self.assertEqual(charStorage.tolist(), [-1.0, 0.0, 1.0, 2.0, 3.0, 4.0])
|
|
self.assertEqual(charStorage.type(), 'torch.CharStorage')
|
|
self.assertEqual(charStorage.int().tolist(), [-1, 0, 1, 2, 3, 4])
|
|
self.assertIs(charStorage.dtype, torch.int8)
|
|
|
|
byteStorage = storage.byte()
|
|
self.assertEqual(byteStorage.size(), 6)
|
|
self.assertEqual(byteStorage.tolist(), [255, 0, 1, 2, 3, 4])
|
|
self.assertEqual(byteStorage.type(), 'torch.ByteStorage')
|
|
self.assertEqual(byteStorage.int().tolist(), [255, 0, 1, 2, 3, 4])
|
|
self.assertIs(byteStorage.dtype, torch.uint8)
|
|
|
|
boolStorage = storage.bool()
|
|
self.assertEqual(boolStorage.size(), 6)
|
|
self.assertEqual(boolStorage.tolist(), [True, False, True, True, True, True])
|
|
self.assertEqual(boolStorage.type(), 'torch.BoolStorage')
|
|
self.assertEqual(boolStorage.int().tolist(), [1, 0, 1, 1, 1, 1])
|
|
self.assertIs(boolStorage.dtype, torch.bool)
|
|
|
|
complexfloat_storage = torch.ComplexFloatStorage([-1, 0, 1 + 2j, 2.5j, 3.5, 4 - 2j])
|
|
self.assertEqual(complexfloat_storage.size(), 6)
|
|
self.assertEqual(complexfloat_storage.tolist(), [-1, 0, 1 + 2j, 2.5j, 3.5, 4 - 2j])
|
|
self.assertEqual(complexfloat_storage.type(), 'torch.ComplexFloatStorage')
|
|
self.assertIs(complexfloat_storage.dtype, torch.complex64)
|
|
|
|
complexdouble_storage = complexfloat_storage.complex_double()
|
|
self.assertEqual(complexdouble_storage.size(), 6)
|
|
self.assertEqual(complexdouble_storage.tolist(), [-1, 0, 1 + 2j, 2.5j, 3.5, 4 - 2j])
|
|
self.assertEqual(complexdouble_storage.type(), 'torch.ComplexDoubleStorage')
|
|
self.assertIs(complexdouble_storage.dtype, torch.complex128)
|
|
|
|
def test_from_file(self):
|
|
def assert_with_filename(filename):
|
|
size = 10000
|
|
s1 = torch.FloatStorage.from_file(filename, True, size)
|
|
t1 = torch.FloatTensor(s1).copy_(torch.randn(size))
|
|
self.assertEqual(s1.data_ptr(), torch.FloatTensor(s1).data_ptr())
|
|
|
|
# check mapping
|
|
s2 = torch.FloatStorage.from_file(filename, True, size)
|
|
t2 = torch.FloatTensor(s2)
|
|
self.assertEqual(t1, t2, atol=0, rtol=0)
|
|
|
|
# check changes to t1 from t2
|
|
rnum = random.uniform(-1, 1)
|
|
t1.fill_(rnum)
|
|
self.assertEqual(t1, t2, atol=0, rtol=0)
|
|
|
|
# check changes to t2 from t1
|
|
rnum = random.uniform(-1, 1)
|
|
t2.fill_(rnum)
|
|
self.assertEqual(t1, t2, atol=0, rtol=0)
|
|
|
|
# release the tensors
|
|
del s1, t1, s2, t2
|
|
|
|
with TemporaryFileName() as fname:
|
|
assert_with_filename(fname)
|
|
|
|
if IS_FILESYSTEM_UTF8_ENCODING:
|
|
with TemporaryDirectoryName(suffix='中文') as dname, TemporaryFileName(dir=dname) as fname:
|
|
assert_with_filename(fname)
|
|
|
|
def test_torch_from_file(self):
|
|
def assert_with_filename(filename):
|
|
size = 10000
|
|
s1 = torch.from_file(filename, True, size, dtype=torch.float)
|
|
t1 = torch.FloatTensor(s1).copy_(torch.randn(size))
|
|
|
|
# check mapping
|
|
s2 = torch.from_file(filename, True, size, dtype=torch.float)
|
|
t2 = torch.FloatTensor(s2)
|
|
self.assertEqual(t1, t2, atol=0, rtol=0)
|
|
|
|
# check changes to t1 from t2
|
|
rnum = random.uniform(-1, 1)
|
|
t1.fill_(rnum)
|
|
self.assertEqual(t1, t2, atol=0, rtol=0)
|
|
|
|
# check changes to t2 from t1
|
|
rnum = random.uniform(-1, 1)
|
|
t2.fill_(rnum)
|
|
self.assertEqual(t1, t2, atol=0, rtol=0)
|
|
|
|
# release the tensors
|
|
del s1, t1, s2, t2
|
|
|
|
with TemporaryFileName() as fname:
|
|
assert_with_filename(fname)
|
|
|
|
if IS_FILESYSTEM_UTF8_ENCODING:
|
|
with TemporaryDirectoryName(suffix='中文') as dname, TemporaryFileName(dir=dname) as fname:
|
|
assert_with_filename(fname)
|
|
|
|
def test_print(self):
|
|
default_type = torch.tensor([]).type()
|
|
for t in torch._tensor_classes:
|
|
if t == torch.HalfTensor:
|
|
continue # HalfTensor does not support fill
|
|
if t.is_sparse:
|
|
continue
|
|
if t.is_cuda and not torch.cuda.is_available():
|
|
continue
|
|
obj = t(100, 100).fill_(1)
|
|
obj.__repr__()
|
|
str(obj)
|
|
# test half tensor
|
|
obj = torch.rand(100, 100, device='cpu').half()
|
|
obj.__repr__()
|
|
str(obj)
|
|
for t in torch._storage_classes:
|
|
if t == torch.BFloat16Storage:
|
|
continue # Fix once fill is enabled for bfloat16
|
|
if t.is_cuda and not torch.cuda.is_available():
|
|
continue
|
|
if t == torch.BoolStorage or t == torch.cuda.BoolStorage:
|
|
obj = t(100).fill_(True)
|
|
else:
|
|
obj = t(100).fill_(1)
|
|
obj.__repr__()
|
|
str(obj)
|
|
|
|
# test complex tensor
|
|
# complex tensor print uses two formatters, one for real values
|
|
# and the other for imag values. this is consistent with numpy
|
|
x = torch.tensor([2.3 + 4j, 7 + 6j])
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
self.assertExpectedInline(str(x), '''tensor([2.3000+4.j, 7.0000+6.j])''')
|
|
|
|
# test complex half tensor
|
|
x = torch.tensor([1.25 + 4j, -7. + 6j], dtype=torch.chalf)
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
self.assertExpectedInline(str(x), '''tensor([ 1.2500+4.j, -7.0000+6.j], dtype=torch.complex32)''')
|
|
|
|
# test scientific notation for complex tensors
|
|
x = torch.tensor([1e28 + 2j , -1e-28j])
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
self.assertExpectedInline(str(x), '''tensor([1.0000e+28+2.0000e+00j, -0.0000e+00-1.0000e-28j])''')
|
|
|
|
# test big integer
|
|
x = torch.tensor(2341234123412341)
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
self.assertExpectedInline(str(x), '''tensor(2341234123412341)''')
|
|
|
|
# test scientific notation
|
|
x = torch.tensor([1e28, 1e-28])
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
self.assertExpectedInline(str(x), '''tensor([1.0000e+28, 1.0000e-28])''')
|
|
|
|
# test scientific notation using set_printoptions
|
|
x = torch.tensor([1e2, 1e-2])
|
|
torch.set_printoptions(sci_mode=True)
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
self.assertExpectedInline(str(x), '''tensor([1.0000e+02, 1.0000e-02])''')
|
|
torch.set_printoptions(sci_mode=False)
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
self.assertExpectedInline(str(x), '''tensor([ 100.0000, 0.0100])''')
|
|
torch.set_printoptions(sci_mode=None) # reset to the default value
|
|
|
|
# test no leading space if all elements positive
|
|
x = torch.tensor([1, 2])
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
self.assertExpectedInline(str(x), '''tensor([1, 2])''')
|
|
|
|
# test for leading space if there are negative elements
|
|
x = torch.tensor([1, -2])
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
self.assertExpectedInline(str(x), '''tensor([ 1, -2])''')
|
|
|
|
# test inf and nan
|
|
x = torch.tensor([4, inf, 1.5, -inf, 0, nan, 1])
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
self.assertExpectedInline(str(x), '''tensor([4.0000, inf, 1.5000, -inf, 0.0000, nan, 1.0000])''')
|
|
|
|
y = torch.tensor([4, inf, complex(1.5, inf), complex(-inf, 4), 0, complex(nan, inf), complex(3, nan)])
|
|
self.assertEqual(y.__repr__(), str(y))
|
|
expected_str = '''\
|
|
tensor([4.0000+0.j, inf+0.j, 1.5000+infj, -inf+4.j, 0.0000+0.j, nan+infj,
|
|
3.0000+nanj])'''
|
|
self.assertExpectedInline(str(y), expected_str)
|
|
|
|
# test dtype
|
|
torch.set_default_dtype(torch.float)
|
|
x = torch.tensor([1e-324, 1e-323, 1e-322, 1e307, 1e308, 1e309], dtype=torch.float64)
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
expected_str = '''\
|
|
tensor([ 0.0000e+00, 9.8813e-324, 9.8813e-323, 1.0000e+307, 1.0000e+308,
|
|
inf], dtype=torch.float64)'''
|
|
self.assertExpectedInline(str(x), expected_str)
|
|
|
|
# test changing default dtype
|
|
torch.set_default_dtype(torch.float64)
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
expected_str = '''\
|
|
tensor([ 0.0000e+00, 9.8813e-324, 9.8813e-323, 1.0000e+307, 1.0000e+308,
|
|
inf])'''
|
|
self.assertExpectedInline(str(x), expected_str)
|
|
|
|
# test summary
|
|
x = torch.zeros(10000)
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
self.assertExpectedInline(str(x), '''tensor([0., 0., 0., ..., 0., 0., 0.])''')
|
|
|
|
# test internal summary function
|
|
x = torch.rand(1, 20, 5, 30)
|
|
summary = torch._tensor_str.get_summarized_data(x)
|
|
self.assertEqual(summary.shape, (1, 6, 5, 6))
|
|
first_and_last = [0, 1, 2, -3, -2, -1]
|
|
self.assertEqual(summary, x[:, first_and_last][..., first_and_last])
|
|
|
|
# test device
|
|
if torch.cuda.is_available():
|
|
x = torch.tensor([123], device='cuda:0')
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
self.assertExpectedInline(str(x), '''tensor([123], device='cuda:0')''')
|
|
|
|
# test changing default to cuda
|
|
torch.set_default_tensor_type(torch.cuda.FloatTensor)
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
self.assertExpectedInline(str(x), '''tensor([123])''')
|
|
|
|
# test printing a tensor on a different gpu than current one.
|
|
if torch.cuda.device_count() >= 2:
|
|
with torch.cuda.device(1):
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
self.assertExpectedInline(str(x), '''tensor([123], device='cuda:0')''')
|
|
|
|
# test printing cpu tensor when default device is cuda
|
|
y = torch.tensor([123], device='cpu')
|
|
self.assertEqual(y.__repr__(), str(y))
|
|
self.assertExpectedInline(str(y), '''tensor([123], device='cpu')''')
|
|
torch.set_default_tensor_type(default_type)
|
|
|
|
|
|
# test integral floats and requires_grad
|
|
x = torch.tensor([123.], requires_grad=True)
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
self.assertExpectedInline(str(x), '''tensor([123.], requires_grad=True)''')
|
|
|
|
# test non-contiguous print
|
|
# sliced tensor should have > PRINT_OPTS.threshold elements
|
|
x = torch.ones(100, 2, 2, 10)
|
|
y = x.as_strided(size=(100, 2, 10), stride=(2 * 2 * 10, 2 * 10, 1))
|
|
self.assertEqual(str(y), y.__repr__())
|
|
expected_str = '''\
|
|
tensor([[[1., 1., 1., ..., 1., 1., 1.],
|
|
[1., 1., 1., ..., 1., 1., 1.]],
|
|
|
|
[[1., 1., 1., ..., 1., 1., 1.],
|
|
[1., 1., 1., ..., 1., 1., 1.]],
|
|
|
|
[[1., 1., 1., ..., 1., 1., 1.],
|
|
[1., 1., 1., ..., 1., 1., 1.]],
|
|
|
|
...,
|
|
|
|
[[1., 1., 1., ..., 1., 1., 1.],
|
|
[1., 1., 1., ..., 1., 1., 1.]],
|
|
|
|
[[1., 1., 1., ..., 1., 1., 1.],
|
|
[1., 1., 1., ..., 1., 1., 1.]],
|
|
|
|
[[1., 1., 1., ..., 1., 1., 1.],
|
|
[1., 1., 1., ..., 1., 1., 1.]]])\
|
|
'''
|
|
|
|
self.assertExpectedInline(str(y), expected_str)
|
|
|
|
x = torch.ones(100, 2, 2, 10) * (1 + 1j)
|
|
y = x.as_strided(size=(100, 2, 10), stride=(2 * 2 * 10, 2 * 10, 1))
|
|
self.assertEqual(str(y), y.__repr__())
|
|
expected_str = '''\
|
|
tensor([[[1.+1.j, 1.+1.j, 1.+1.j, ..., 1.+1.j, 1.+1.j, 1.+1.j],
|
|
[1.+1.j, 1.+1.j, 1.+1.j, ..., 1.+1.j, 1.+1.j, 1.+1.j]],
|
|
|
|
[[1.+1.j, 1.+1.j, 1.+1.j, ..., 1.+1.j, 1.+1.j, 1.+1.j],
|
|
[1.+1.j, 1.+1.j, 1.+1.j, ..., 1.+1.j, 1.+1.j, 1.+1.j]],
|
|
|
|
[[1.+1.j, 1.+1.j, 1.+1.j, ..., 1.+1.j, 1.+1.j, 1.+1.j],
|
|
[1.+1.j, 1.+1.j, 1.+1.j, ..., 1.+1.j, 1.+1.j, 1.+1.j]],
|
|
|
|
...,
|
|
|
|
[[1.+1.j, 1.+1.j, 1.+1.j, ..., 1.+1.j, 1.+1.j, 1.+1.j],
|
|
[1.+1.j, 1.+1.j, 1.+1.j, ..., 1.+1.j, 1.+1.j, 1.+1.j]],
|
|
|
|
[[1.+1.j, 1.+1.j, 1.+1.j, ..., 1.+1.j, 1.+1.j, 1.+1.j],
|
|
[1.+1.j, 1.+1.j, 1.+1.j, ..., 1.+1.j, 1.+1.j, 1.+1.j]],
|
|
|
|
[[1.+1.j, 1.+1.j, 1.+1.j, ..., 1.+1.j, 1.+1.j, 1.+1.j],
|
|
[1.+1.j, 1.+1.j, 1.+1.j, ..., 1.+1.j, 1.+1.j, 1.+1.j]]])\
|
|
'''
|
|
self.assertExpectedInline(str(y), expected_str)
|
|
|
|
# test print 0-dim tensor: there's no 0-dim in Numpy, we match arrayprint style
|
|
x = torch.tensor(0.00002)
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
self.assertExpectedInline(str(x), '''tensor(2.0000e-05)''')
|
|
|
|
# test print boolean tensor
|
|
x = torch.tensor([True])
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
self.assertExpectedInline(str(x), '''tensor([True])''')
|
|
|
|
x = torch.tensor(True)
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
self.assertExpectedInline(str(x), '''tensor(True)''')
|
|
|
|
# [Numpy] test print float in sci_mode when min < 0.0001.
|
|
x = torch.tensor([0.00002])
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
self.assertExpectedInline(str(x), '''tensor([2.0000e-05])''')
|
|
|
|
# [Numpy] test print complex in sci_mode when real_min < 0.0001 and (or) imag_min < 0.0001.
|
|
x = torch.tensor([0.00002]) * (1 + 1j)
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
self.assertExpectedInline(str(x), '''tensor([2.0000e-05+2.0000e-05j])''')
|
|
|
|
# [Numpy] test print float in sci_mode when max > 1e8.
|
|
# TODO: Pytorch uses fixed precision to print, while Numpy uses dragon4_scientific
|
|
# to do automatic trimming and padding.
|
|
x = torch.tensor([123456789.])
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
self.assertExpectedInline(str(x), '''tensor([1.2346e+08])''')
|
|
|
|
# [Numpy] test print float in sci_mode when max / min > 1000.
|
|
x = torch.tensor([0.01, 11])
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
self.assertExpectedInline(str(x), '''tensor([1.0000e-02, 1.1000e+01])''')
|
|
|
|
# [Numpy] test print int max / min > 1000, no sci_mode
|
|
x = torch.tensor([1, 1010])
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
self.assertExpectedInline(str(x), '''tensor([ 1, 1010])''')
|
|
|
|
# [Numpy] test print int > 1e8, no sci_mode
|
|
x = torch.tensor([1000000000]) # 1e9
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
self.assertExpectedInline(str(x), '''tensor([1000000000])''')
|
|
|
|
# [Numpy] test printing float in int_mode
|
|
x = torch.tensor([1., 1000.])
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
self.assertExpectedInline(str(x), '''tensor([ 1., 1000.])''')
|
|
|
|
# [Numpy] test printing float in int_mode in sci format when max / min > 1000.
|
|
x = torch.tensor([1., 1010.])
|
|
self.assertEqual(x.__repr__(), str(x))
|
|
self.assertExpectedInline(str(x), '''tensor([1.0000e+00, 1.0100e+03])''')
|
|
|
|
def test_sizeof(self) -> None:
|
|
sizeof_empty = torch.randn(0).storage().__sizeof__()
|
|
sizeof_10 = torch.randn(10).storage().__sizeof__()
|
|
sizeof_100 = torch.randn(100).storage().__sizeof__()
|
|
self.assertEqual((sizeof_100 - sizeof_empty) // (sizeof_10 - sizeof_empty), 10)
|
|
self.assertEqual((sizeof_100 - sizeof_empty) % (sizeof_10 - sizeof_empty), 0)
|
|
|
|
sizeof_empty = torch.randn(0).to(torch.uint8).storage().__sizeof__()
|
|
sizeof_10 = torch.randn(10).to(torch.uint8).storage().__sizeof__()
|
|
sizeof_100 = torch.randn(100).to(torch.uint8).storage().__sizeof__()
|
|
self.assertEqual((sizeof_100 - sizeof_empty) // (sizeof_10 - sizeof_empty), 10)
|
|
self.assertEqual((sizeof_100 - sizeof_empty) % (sizeof_10 - sizeof_empty), 0)
|
|
|
|
def test_iter(self) -> None:
|
|
x = torch.randn(5, 5)
|
|
for i, sub in enumerate(x):
|
|
self.assertEqual(sub, x[i])
|
|
|
|
x = torch.tensor([])
|
|
self.assertEqual(list(x), [])
|
|
|
|
def test_new(self) -> None:
|
|
x = torch.autograd.Variable(torch.tensor([]))
|
|
y = torch.autograd.Variable(torch.randn(4, 4))
|
|
z = torch.autograd.Variable(torch.IntTensor([1, 2, 3]))
|
|
self.assertEqual(x.new().shape, [0])
|
|
self.assertEqual(x.new(), x)
|
|
self.assertEqual(x.new(1, 2).shape, [1, 2])
|
|
self.assertEqual(x.new(torch.Size([3, 4])).shape, [3, 4])
|
|
self.assertEqual(x.new([3, 4]).shape, [2])
|
|
self.assertEqual(x.new([3, 4]).tolist(), [3, 4])
|
|
self.assertEqual(x.new((3, 4)).tolist(), [3, 4])
|
|
self.assertEqual(x.new([np.int32(3), np.float64(4)]).tolist(), [3, 4])
|
|
self.assertEqual(x.new(np.array((3, 4))).tolist(), [3, 4])
|
|
self.assertEqual(x.new([z[2], z[0] + 3]).tolist(), [3, 4])
|
|
self.assertEqual(x.new(size=(3, 4)).shape, [3, 4])
|
|
self.assertEqual(x.new(()).shape, [0])
|
|
self.assertEqual(x.new(y.storage()).data_ptr(), y.data_ptr())
|
|
self.assertEqual(x.new(y).data_ptr(), y.data_ptr())
|
|
self.assertIsNot(x.new(y), y)
|
|
|
|
self.assertRaises(TypeError, lambda: x.new(z))
|
|
# TypeError would be better
|
|
self.assertRaises(RuntimeError, lambda: x.new(z.storage()))
|
|
|
|
@unittest.skipIf(PYTORCH_CUDA_MEMCHECK, "is_pinned uses failure to detect pointer property")
|
|
def test_pin_memory(self):
|
|
x = torch.randn(3, 5)
|
|
self.assertFalse(x.is_pinned())
|
|
if not torch.cuda.is_available():
|
|
self.assertRaises(RuntimeError, lambda: x.pin_memory())
|
|
else:
|
|
pinned = x.pin_memory()
|
|
self.assertTrue(pinned.is_pinned())
|
|
self.assertEqual(pinned, x)
|
|
self.assertNotEqual(pinned.data_ptr(), x.data_ptr())
|
|
# test that pin_memory on already pinned tensor has no effect
|
|
self.assertIs(pinned, pinned.pin_memory())
|
|
self.assertEqual(pinned.data_ptr(), pinned.pin_memory().data_ptr())
|
|
|
|
def test_error_msg_type_translation(self):
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
# message includes both Double and Long
|
|
'(?=.*Double)(?=.*Long)'):
|
|
|
|
# Calls model with a LongTensor input but DoubleTensor weights
|
|
input = torch.zeros(1, 1, 1, 6, dtype=torch.long)
|
|
weight = torch.nn.Parameter(torch.zeros(1, 1, 1, 3, dtype=torch.double))
|
|
model = torch.nn.Conv2d(1, 1, (1, 3), stride=1, padding=0, bias=False)
|
|
model.weight = weight
|
|
out = model(input)
|
|
|
|
def test_apply(self):
|
|
x = torch.arange(1, 6)
|
|
res = x.clone().apply_(lambda k: k + k)
|
|
self.assertEqual(res, x * 2)
|
|
self.assertRaises(TypeError, lambda: x.apply_(lambda k: "str"))
|
|
|
|
def test_map(self):
|
|
x = torch.autograd.Variable(torch.randn(3, 3))
|
|
y = torch.autograd.Variable(torch.randn(3))
|
|
res = x.clone()
|
|
res.map_(y, lambda a, b: a + b)
|
|
self.assertEqual(res, x + y)
|
|
self.assertRaisesRegex(TypeError, "not callable", lambda: res.map_(y, "str"))
|
|
|
|
def test_map2(self):
|
|
x = torch.autograd.Variable(torch.randn(3, 3))
|
|
y = torch.autograd.Variable(torch.randn(3))
|
|
z = torch.autograd.Variable(torch.randn(1, 3))
|
|
res = x.clone()
|
|
res.map2_(y, z, lambda a, b, c: a + b * c)
|
|
self.assertEqual(res, x + y * z)
|
|
z.requires_grad = True
|
|
self.assertRaisesRegex(
|
|
RuntimeError, "requires grad",
|
|
lambda: res.map2_(y, z, lambda a, b, c: a + b * c))
|
|
|
|
def test_Size(self):
|
|
x = torch.Size([1, 2, 3])
|
|
self.assertIsInstance(x, tuple)
|
|
self.assertEqual(x[0], 1)
|
|
self.assertEqual(x[1], 2)
|
|
self.assertEqual(x[2], 3)
|
|
self.assertEqual(len(x), 3)
|
|
self.assertRaises(TypeError, lambda: torch.Size(torch.ones(3)))
|
|
|
|
self.assertIsInstance(x * 2, torch.Size)
|
|
self.assertIsInstance(x[:-1], torch.Size)
|
|
self.assertIsInstance(x + x, torch.Size)
|
|
|
|
def test_Size_scalar(self):
|
|
three = torch.tensor(3)
|
|
two = torch.tensor(2)
|
|
x = torch.Size([0, 1, two, three, 4])
|
|
for i in range(1, 5):
|
|
self.assertEqual(x[i], i)
|
|
|
|
def test_Size_iter(self):
|
|
for sizes in [iter([1, 2, 3, 4, 5]), range(1, 6)]:
|
|
x = torch.Size(sizes)
|
|
for i in range(0, 5):
|
|
self.assertEqual(x[i], i + 1)
|
|
|
|
def test_t_not_2d_error(self):
|
|
self.assertRaises(RuntimeError, lambda: torch.randn(2, 3, 4).t())
|
|
self.assertRaises(RuntimeError, lambda: torch.randn(2, 3, 4).t_())
|
|
|
|
# skip this test for now as it affects all tests
|
|
@unittest.skipIf(True, "flush_denormal not supported")
|
|
def test_set_flush_denormal(self):
|
|
tiny_float = 1e-42
|
|
tiny_double = 1e-320
|
|
float_tensor = torch.FloatTensor([1.0, tiny_float])
|
|
double_tensor = torch.DoubleTensor([1.0, tiny_float, tiny_double])
|
|
|
|
self.assertEqual(float_tensor[0], 1.0, atol=0.0, rtol=0)
|
|
self.assertEqual(float_tensor[1], tiny_float, atol=tiny_float / 16, rtol=0)
|
|
self.assertEqual(double_tensor[0], 1.0, atol=0.0, rtol=0)
|
|
self.assertEqual(double_tensor[1], tiny_float, atol=0.0, rtol=0)
|
|
self.assertEqual(double_tensor[2], tiny_double, atol=0.0, rtol=0)
|
|
|
|
torch.set_flush_denormal(True)
|
|
self.assertEqual(float_tensor[0], 1.0, atol=0.0, rtol=0)
|
|
self.assertEqual(float_tensor[1], 0.0, atol=0.0, rtol=0) # tiny_float to zero
|
|
self.assertEqual(double_tensor[0], 1.0, atol=0.0, rtol=0)
|
|
# tiny_float is not converted to zero in double type
|
|
self.assertEqual(double_tensor[1], tiny_float, atol=0.0, rtol=0)
|
|
self.assertEqual(double_tensor[2], 0.0, atol=0.0, rtol=0) # tiny_double to zero
|
|
torch.set_flush_denormal(False)
|
|
|
|
def test_show_config(self):
|
|
# We can't usefully test the output; just make sure this doesn't crash
|
|
torch.__config__.show()
|
|
|
|
@unittest.skipIf(IS_FBCODE, "CXX_FLAGS is only for OSS build.")
|
|
def test_cxx_flags(self):
|
|
torch.__config__._cxx_flags()
|
|
|
|
def test_parallel_info(self):
|
|
torch.__config__.parallel_info()
|
|
|
|
@slowTest
|
|
def test_slow_test(self):
|
|
# Just a smoketest to make sure our slowTest decorator works.
|
|
pass
|
|
|
|
def test_is_nonzero(self):
|
|
with self.assertRaisesRegex(RuntimeError, "Boolean value of Tensor with no values is ambiguous"):
|
|
torch.tensor([]).is_nonzero()
|
|
with self.assertRaisesRegex(RuntimeError, "Boolean value of Tensor with more than one value is ambiguous"):
|
|
torch.tensor([0, 0]).is_nonzero()
|
|
self.assertFalse(torch.tensor(0).is_nonzero())
|
|
self.assertTrue(torch.tensor(1).is_nonzero())
|
|
self.assertFalse(torch.tensor([0]).is_nonzero())
|
|
self.assertTrue(torch.tensor([1]).is_nonzero())
|
|
self.assertFalse(torch.tensor([[0]]).is_nonzero())
|
|
self.assertTrue(torch.tensor([[1]]).is_nonzero())
|
|
self.assertTrue(torch.tensor(0.1).is_nonzero())
|
|
self.assertTrue(torch.tensor(-0.1).is_nonzero())
|
|
self.assertFalse(torch.tensor(0.0).is_nonzero())
|
|
self.assertTrue(torch.tensor(True).is_nonzero())
|
|
self.assertFalse(torch.tensor(False).is_nonzero())
|
|
self.assertFalse(torch.tensor(0 + 0j).is_nonzero())
|
|
self.assertTrue(torch.tensor(0 + 0.1j).is_nonzero())
|
|
|
|
def test_assert_async(self):
|
|
with self.assertRaisesRegex(RuntimeError, "Boolean value of Tensor with no values is ambiguous"):
|
|
torch._assert_async(torch.tensor([]))
|
|
with self.assertRaisesRegex(RuntimeError, "Boolean value of Tensor with more than one value is ambiguous"):
|
|
torch._assert_async(torch.tensor([0, 0]))
|
|
with self.assertRaisesRegex(RuntimeError, "Expected Tensor with single nonzero value, but got zero"):
|
|
torch._assert_async(torch.tensor(0))
|
|
torch._assert_async(torch.tensor(1))
|
|
torch._assert_async(torch.tensor(0.1))
|
|
torch._assert_async(torch.tensor(-0.1))
|
|
with self.assertRaisesRegex(RuntimeError, "Expected Tensor with single nonzero value, but got zero"):
|
|
torch._assert_async(torch.tensor(0.0))
|
|
torch._assert_async(torch.tensor(True))
|
|
with self.assertRaisesRegex(RuntimeError, "Expected Tensor with single nonzero value, but got zero"):
|
|
torch._assert_async(torch.tensor(False))
|
|
torch._assert_async(torch.tensor(0 + 0.1j))
|
|
with self.assertRaisesRegex(RuntimeError, "Expected Tensor with single nonzero value, but got zero"):
|
|
torch._assert_async(torch.tensor(0 + 0j))
|
|
|
|
# NB: we must not be built with CUDA; if we are built with CUDA but no CUDA
|
|
# is available, we get a different error.
|
|
@unittest.skipIf(torch.backends.cuda.is_built() or IS_SANDCASTLE, "CUDA is built, can't test CUDA not built error")
|
|
def test_cuda_not_built(self):
|
|
msg = "Torch not compiled with CUDA enabled"
|
|
self.assertRaisesRegex(AssertionError, msg, lambda: torch.cuda.current_device())
|
|
self.assertRaisesRegex(AssertionError, msg, lambda: torch.tensor([1], device="cuda"))
|
|
self.assertRaisesRegex(AssertionError, msg, lambda: torch.tensor([1]).cuda())
|
|
self.assertRaisesRegex(TypeError, msg, lambda: torch.cuda.FloatTensor())
|
|
self.assertRaisesRegex(TypeError, msg, lambda: torch.set_default_tensor_type(torch.cuda.FloatTensor))
|
|
self.assertRaisesRegex(AssertionError, msg, lambda: torch.tensor([1]).to(device="cuda"))
|
|
|
|
def test_has_internal_overlap(self):
|
|
OVERLAP_NO = 0
|
|
OVERLAP_YES = 1
|
|
OVERLAP_TOO_HARD = 2
|
|
|
|
# Check for contiguous tensors
|
|
a = torch.randn(3, 3)
|
|
self.assertEqual(torch._debug_has_internal_overlap(a), OVERLAP_NO)
|
|
|
|
# Checks for zero strides
|
|
b = torch.randn(1, 3)
|
|
b_expanded = b.expand(4, 3)
|
|
self.assertEqual(torch._debug_has_internal_overlap(b_expanded), OVERLAP_YES)
|
|
|
|
# Check for zero strided, size 1 axis, in non-contiguous storage (gh-33812)
|
|
c = torch.randn(10).as_strided([2, 1, 5], [1, 0, 2])
|
|
self.assertEqual(torch._debug_has_internal_overlap(c), OVERLAP_NO)
|
|
c = torch.randn(2, 1, 10)[::2].as_strided((2, 1, 5), (10, 0, 2))
|
|
self.assertEqual(torch._debug_has_internal_overlap(c), OVERLAP_TOO_HARD)
|
|
|
|
def test_allow_tensor_metadata_change(self):
|
|
a = torch.ones(2, 3)
|
|
# Metadata changes are allowed on view tensors that are created from detach().
|
|
|
|
@skipIfNotRegistered("LayerNorm", "Skipping as LayerNorm is not registered")
|
|
def test_c10_layer_norm(self):
|
|
# test that we can call c10 ops and they return a reasonable result
|
|
X = torch.rand(5, 5, dtype=torch.float)
|
|
weight = torch.rand(*X.size()[1:], dtype=torch.float)
|
|
bias = torch.rand(*X.size()[1:], dtype=torch.float)
|
|
epsilon = 1e-4
|
|
|
|
expected_norm = torch.nn.functional.layer_norm(
|
|
X, X.size()[1:], weight=weight, bias=bias, eps=epsilon)
|
|
actual_norm, actual_mean, actual_stdev = \
|
|
torch.ops._caffe2.LayerNorm(torch.tensor(X), torch.tensor(
|
|
weight), torch.tensor(bias), 1, epsilon, True)
|
|
torch.testing.assert_close(expected_norm, actual_norm)
|
|
|
|
def test_memory_format(self):
|
|
def test_helper(x, memory_format):
|
|
y = x.contiguous(memory_format=memory_format)
|
|
self.assertFalse(y.is_contiguous())
|
|
self.assertTrue(y.is_contiguous(memory_format=memory_format))
|
|
self.assertEqual(y, x)
|
|
|
|
test_helper(torch.randn(4, 3, 8, 8), torch.channels_last)
|
|
test_helper(torch.randn(4, 3, 8, 8, 8), torch.channels_last_3d)
|
|
|
|
def test_memory_format_contiguous_returns_same_tensor_if_already_satisfies(self):
|
|
def test_helper(x, memory_format):
|
|
alias = x.contiguous(memory_format=memory_format)
|
|
alias.fill_(7)
|
|
self.assertEqual(x, alias)
|
|
|
|
test_helper(torch.randn(4, 8, 8, 3).permute(0, 3, 1, 2), torch.channels_last)
|
|
test_helper(torch.randn(4, 8, 8, 8, 3).permute(0, 4, 1, 2, 3), torch.channels_last_3d)
|
|
|
|
def test_memory_format_empty(self):
|
|
def test_helper(dim1, dim2, memory_format):
|
|
with self.assertRaises(RuntimeError):
|
|
x = torch.empty(dim1, memory_format=memory_format)
|
|
x = torch.empty(dim2, memory_format=memory_format)
|
|
self.assertTrue(x.is_contiguous(memory_format=memory_format))
|
|
|
|
test_helper((3, 3), (3, 3, 3, 3), torch.channels_last)
|
|
test_helper((3, 3, 3), (3, 3, 3, 3, 3), torch.channels_last_3d)
|
|
|
|
def test_subclass_tensors(self):
|
|
# raise an error when trying to subclass FloatTensor
|
|
with self.assertRaisesRegex(TypeError, "type 'torch.FloatTensor' is not an acceptable base type"):
|
|
class Foo1(torch.FloatTensor):
|
|
pass
|
|
|
|
# but allow subclassing Tensor:
|
|
class Foo2(torch.Tensor):
|
|
def foo(self):
|
|
return 5
|
|
f = Foo2()
|
|
self.assertEqual(f.foo(), 5)
|
|
|
|
def test_ndim(self):
|
|
a = torch.randn(1, 2, 3)
|
|
self.assertEqual(3, a.ndim)
|
|
b = torch.randn(())
|
|
self.assertEqual(0, b.ndim)
|
|
c = torch.randn(1, 0)
|
|
self.assertEqual(2, c.ndim)
|
|
|
|
def test_fill_diagonal(self):
|
|
a1 = torch.randn(7, 3)
|
|
a2 = a1.clone()
|
|
v = 1
|
|
for i in range(3):
|
|
a2[i][i] = v
|
|
a1.fill_diagonal_(v)
|
|
self.assertEqual(a1, a2)
|
|
|
|
b1 = torch.randn(7, 3)
|
|
b2 = b1.clone()
|
|
for i in range(3):
|
|
b2[i][i] = v
|
|
b2[i + 4][i] = v
|
|
b1.fill_diagonal_(v, wrap=True)
|
|
self.assertEqual(b1, b2)
|
|
|
|
c1 = torch.rand(3, 3, 3)
|
|
c2 = c1.clone()
|
|
for i in range(3):
|
|
c2[i][i][i] = v
|
|
c1.fill_diagonal_(v)
|
|
self.assertEqual(c1, c2)
|
|
|
|
# non-contiguous tensor
|
|
d1 = torch.rand(3, 3, 3)[:, 1, ...]
|
|
d2 = d1.clone()
|
|
for i in range(3):
|
|
d2[i][i] = v
|
|
d1.fill_diagonal_(v)
|
|
self.assertEqual(d1, d2)
|
|
|
|
e1 = torch.rand(7, 3, 3)[:, 1, ...]
|
|
e2 = e1.clone()
|
|
for i in range(3):
|
|
e2[i][i] = v
|
|
e2[i + 4][i] = v
|
|
e1.fill_diagonal_(v, wrap=True)
|
|
self.assertEqual(e1, e2)
|
|
|
|
def test_setting_real_imag_to_a_number(self):
|
|
x = torch.randn(4, dtype=torch.cfloat)
|
|
x.real = 0
|
|
x.imag = 0
|
|
zeros = torch.zeros(4)
|
|
self.assertEqual(x.real, zeros)
|
|
self.assertEqual(x.imag, zeros)
|
|
|
|
def test_batch_norm_cpu_inference(self):
|
|
# input nchw in (2,1,1,1), (2,2,2,2)
|
|
inputs = [
|
|
torch.tensor([[[[-0.5000]]], [[[0.5000]]]]),
|
|
torch.tensor([
|
|
[
|
|
[[-0.5000, 0.5000], [-1.0000, 1.0000]],
|
|
[[-0.2500, -0.5000], [0.2500, 0.5000]]
|
|
],
|
|
[
|
|
[[0.1000, 1.0000], [1.0000, 0.1000]],
|
|
[[1.0000, 0.5000], [1.5000, -1.5000]]
|
|
]])]
|
|
# output nchw in (2,1,1,1), (2,2,2,2)
|
|
outputs = [
|
|
torch.tensor([
|
|
[[[-0.499997496604919433593750000]]],
|
|
[[[0.499997496604919433593750000]]]]),
|
|
torch.tensor([
|
|
[[[-0.499997496604919433593750000, 0.499997496604919433593750000],
|
|
[-0.999994993209838867187500000, 0.999994993209838867187500000]],
|
|
[[-0.249998748302459716796875000, -0.499997496604919433593750000],
|
|
[0.249998748302459716796875000, 0.499997496604919433593750000]]],
|
|
[[[0.099999502301216125488281250, 0.999994993209838867187500000],
|
|
[0.999994993209838867187500000, 0.099999502301216125488281250]],
|
|
[[0.999994993209838867187500000, 0.499997496604919433593750000],
|
|
[1.499992489814758300781250000, -1.499992489814758300781250000]]]])]
|
|
|
|
|
|
for i in range(len(inputs)):
|
|
for affine in [False, True]:
|
|
m = torch.nn.BatchNorm2d(inputs[i].size()[1], 1e-05, 0.1, affine=affine)
|
|
m.eval()
|
|
# contiguous case
|
|
input1 = inputs[i].contiguous()
|
|
output1 = m(input1)
|
|
# non-contiguous case
|
|
input2 = input1.permute(0, 1, 3, 2)
|
|
output2 = m(input2).permute(0, 1, 3, 2)
|
|
# channels last case
|
|
input3 = input1.contiguous(memory_format=torch.channels_last)
|
|
output3 = m(input3)
|
|
self.assertEqual(output3, outputs[i])
|
|
self.assertEqual(output3, output1)
|
|
self.assertEqual(output3, output2)
|
|
|
|
# FIXME: move these meta tests to their own test suite/class or
|
|
# distribute them among the appropriate test suites for their ops
|
|
def test_empty_meta(self):
|
|
x = torch.empty(2 ** 20, 2 ** 20, device='meta')
|
|
y = torch.empty(2 ** 20, device='meta')
|
|
z = x + y
|
|
self.assertEqual(z.size(), (2 ** 20, 2 ** 20))
|
|
self.assertRaises(RuntimeError, lambda: z[0][0].item())
|
|
|
|
def test_format_scalar_meta(self):
|
|
x = torch.empty((), device='meta')
|
|
self.assertEqual(format(x), repr(x))
|
|
|
|
def test_upsample_nearest1d_meta(self):
|
|
# TODO: this test should be triggered by test_nn.py but right
|
|
# now meta is not enabled (and even if it was, we are probably
|
|
# missing too many meta functions to get through the test unmolested)
|
|
|
|
# NB: Can't make the exponent too big, or it will overflow
|
|
# signed 64-bit integer
|
|
x = torch.empty(2 * 10 ** 8, 3, 2 * 10 ** 8, device='meta')
|
|
z = torch.nn.functional.interpolate(x, scale_factor=2)
|
|
self.assertEqual(z.size(), (2 * 10 ** 8, 3, 4 * 10 ** 8))
|
|
self.assertRaises(RuntimeError, lambda: z[0][0][0].item())
|
|
|
|
# TODO: the out tests cannot be triggered by test_nn.py because
|
|
# we don't actually do out= arguments for nn functions, so there
|
|
# is no public API by which to get the out version
|
|
|
|
# interpolate doesn't seem to support out=
|
|
# (not sure why passing None here doesn't work? How strange...)
|
|
z = torch.empty(0, device='meta')
|
|
torch._C._nn.upsample_nearest1d(x, (4 * 10 ** 8,), 2, out=z)
|
|
self.assertEqual(z.size(), (2 * 10 ** 8, 3, 4 * 10 ** 8))
|
|
self.assertRaises(RuntimeError, lambda: z[0][0][0].item())
|
|
|
|
def test_upsample_nearest2d_meta(self):
|
|
# TODO: the out tests cannot be triggered by test_nn.py because
|
|
# we don't actually do out= arguments for nn functions, so there
|
|
# is no public API by which to get the out version
|
|
|
|
# Make sure we don't clobber strides of out tensor. NB: this
|
|
# test must be done on 2d/3d, because 1d doesn't have any meaningful
|
|
# layout support
|
|
x = torch.empty(4, 3, 8, 8, device='meta')
|
|
out = torch.empty(4, 3, 16, 16, device='meta', memory_format=torch.channels_last)
|
|
torch._C._nn.upsample_nearest2d(x, (16, 16), out=out)
|
|
self.assertTrue(out.is_contiguous(memory_format=torch.channels_last))
|
|
|
|
x = torch.empty(4, 3, 8, 8, device='meta', memory_format=torch.channels_last)
|
|
out = torch.empty(4, 3, 16, 16, device='meta')
|
|
torch._C._nn.upsample_nearest2d(x, (16, 16), out=out)
|
|
self.assertTrue(out.is_contiguous())
|
|
|
|
# But if resize occurs, do clobber
|
|
x = torch.empty(4, 3, 8, 8, device='meta', memory_format=torch.channels_last)
|
|
out = torch.empty(0, device='meta')
|
|
torch._C._nn.upsample_nearest2d(x, (16, 16), out=out)
|
|
self.assertTrue(out.is_contiguous(memory_format=torch.channels_last))
|
|
|
|
# Complain if out dtype mismatch
|
|
x = torch.empty(4, 3, 8, 8, device='meta', dtype=torch.float)
|
|
out = torch.empty(4, 3, 16, 16, device='meta', dtype=torch.double)
|
|
self.assertExpectedRaisesInline(
|
|
RuntimeError, lambda: torch._C._nn.upsample_nearest2d(x, (16, 16), out=out),
|
|
"""Expected out tensor to have dtype float, but got double instead"""
|
|
)
|
|
|
|
# Complain if out device mismatch
|
|
x = torch.empty(0, 3, 8, 8, device='meta')
|
|
out = torch.empty(0, 3, 16, 16, device='cpu')
|
|
self.assertExpectedRaisesInline(
|
|
RuntimeError, lambda: torch._C._nn.upsample_nearest2d(x, (16, 16), out=out),
|
|
"""Expected out tensor to have device meta, but got cpu instead"""
|
|
)
|
|
|
|
def test_add_meta_scalar(self):
|
|
# From https://github.com/pytorch/pytorch/issues/53815
|
|
x = torch.empty(2, device='meta')
|
|
y = x + 2
|
|
self.assertEqual(y.size(), x.size())
|
|
|
|
def test_normal_shape(self):
|
|
warned = False
|
|
for device in get_all_device_types():
|
|
tensor1 = torch.rand(1, device=device)
|
|
tensor4 = torch.rand(4, device=device)
|
|
tensor120 = torch.rand(120, device=device)
|
|
tensor2145 = torch.rand(2, 1, 4, 5, device=device)
|
|
tensor2345 = torch.rand(2, 3, 4, 5, device=device)
|
|
tensor2345_non_contiguous = torch.rand(2, 4, 3, 5, device=device).permute(0, 2, 1, 3)
|
|
tensor2345_channels_last = tensor2345.contiguous(memory_format=torch.channels_last)
|
|
output2345 = torch.zeros(2, 3, 4, 5, device=device)
|
|
output345 = torch.zeros(3, 4, 5, device=device)
|
|
|
|
# inputs have same size
|
|
self.assertEqual(torch.normal(tensor2345, tensor2345).size(), (2, 3, 4, 5))
|
|
self.assertEqual(torch.normal(tensor2345_non_contiguous, tensor2345).size(), (2, 3, 4, 5))
|
|
self.assertEqual(torch.normal(tensor2345, tensor2345_channels_last).size(), (2, 3, 4, 5))
|
|
self.assertEqual(torch.normal(tensor2345_non_contiguous, tensor2345_channels_last).size(), (2, 3, 4, 5))
|
|
|
|
# scalar case
|
|
self.assertEqual(torch.normal(tensor2345, 2).size(), (2, 3, 4, 5))
|
|
self.assertEqual(torch.normal(2, tensor2345).size(), (2, 3, 4, 5))
|
|
|
|
# inputs are expandable tensors
|
|
self.assertEqual(torch.normal(tensor2345, tensor1).size(), (2, 3, 4, 5))
|
|
self.assertEqual(torch.normal(tensor2145, tensor2345).size(), (2, 3, 4, 5))
|
|
|
|
# inputs are non-expandable tensors, but they have same number of elements
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
r"The size of tensor a \(120\) must match the size of "
|
|
r"tensor b \(5\) at non-singleton dimension 3"):
|
|
self.assertEqual(torch.normal(tensor120, tensor2345).size(), (120,))
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
r"The size of tensor a \(5\) must match the size of "
|
|
r"tensor b \(120\) at non-singleton dimension 3"):
|
|
self.assertEqual(torch.normal(tensor2345, tensor120).size(), (2, 3, 4, 5))
|
|
|
|
# inputs are non-expandable tensors and they don't have same number of elements
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
r"The size of tensor a \(5\) must match the size of "
|
|
r"tensor b \(4\) at non-singleton dimension 3"):
|
|
torch.normal(tensor2345, tensor4)
|
|
|
|
# output and inputs are size compatible
|
|
self.assertEqual(torch.normal(tensor2345, tensor2345, out=output2345).size(), (2, 3, 4, 5))
|
|
|
|
# output and inputs are not size compatible
|
|
with self.assertWarnsRegex(
|
|
UserWarning,
|
|
"This behavior is deprecated, and in a future PyTorch "
|
|
"release outputs will not be resized unless they have "
|
|
"zero elements"):
|
|
self.assertEqual(torch.normal(tensor2345, tensor2145, out=output345).size(), (2, 3, 4, 5))
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
r"The size of tensor a \(5\) must match the size of "
|
|
r"tensor b \(120\) at non-singleton dimension 3"):
|
|
# inputs are not expandable, output size is not the same as mean
|
|
torch.normal(tensor2345, tensor120, out=output345)
|
|
|
|
def test_tensoriterator_output_setup(self):
|
|
# Test whether the output's memory layout is correct
|
|
def test_memory_layout(x, y, scale, zero_point, out):
|
|
self.assertEqual(x.dim(), 4)
|
|
self.assertEqual(x.size(), y.size())
|
|
self.assertEqual(y.size(), out.size())
|
|
|
|
shape = x.size()
|
|
for n in range(shape[0]):
|
|
for c in range(shape[1]):
|
|
for h in range(shape[2]):
|
|
for w in range(shape[3]):
|
|
if scale is not None and zero_point is not None:
|
|
self.assertEqual(
|
|
out[n][c][h][w],
|
|
torch.ops.quantized.add(x[n][c][h][w], y[n][c][h][w], scale, zero_point))
|
|
else:
|
|
self.assertEqual(out[n][c][h][w], x[n][c][h][w] + y[n][c][h][w])
|
|
|
|
xraw = torch.rand(2, 3, 4, 4)
|
|
yraw = torch.rand(2, 3, 4, 4)
|
|
qxraw = torch.quantize_per_tensor(xraw, 0.1, 5, torch.quint8)
|
|
qyraw = torch.quantize_per_tensor(yraw, 0.1, 5, torch.quint8)
|
|
|
|
# contiguous case fast setup
|
|
test_memory_layout(xraw, yraw, None, None, xraw + yraw)
|
|
test_memory_layout(qxraw, qyraw, 0.1, 5, torch.ops.quantized.add(qxraw, qyraw, 0.1, 5))
|
|
|
|
# channels last case fast setup
|
|
x = xraw.contiguous(memory_format=torch.channels_last)
|
|
y = yraw.contiguous(memory_format=torch.channels_last)
|
|
test_memory_layout(x, y, None, None, x + y)
|
|
qx = qxraw.contiguous(memory_format=torch.channels_last)
|
|
qy = qyraw.contiguous(memory_format=torch.channels_last)
|
|
test_memory_layout(qx, qy, 0.1, 5, torch.ops.quantized.add(qx, qy, 0.1, 5))
|
|
|
|
# non contiguous case fast setup (dense, non-overlapping, same shape and strides)
|
|
x = xraw.permute(0, 2, 3, 1)
|
|
y = yraw.permute(0, 2, 3, 1)
|
|
test_memory_layout(x, y, None, None, x + y)
|
|
qx = qxraw.permute(0, 2, 3, 1)
|
|
qy = qyraw.permute(0, 2, 3, 1)
|
|
test_memory_layout(qx, qy, 0.1, 5, torch.ops.quantized.add(qx, qy, 0.1, 5))
|
|
|
|
# non contiguous case fast setup (dense, non-overlapping)
|
|
# input tensors have same shape and strides
|
|
# output tensor have same shape as input tensors but different stride
|
|
# output tensor should preserve its strides in this case
|
|
x = xraw.permute(0, 2, 3, 1)
|
|
y = yraw.permute(0, 2, 3, 1)
|
|
out = torch.empty_like(xraw)
|
|
out = out.permute(0, 3, 2, 1)
|
|
expected_stride = out.stride()
|
|
test_memory_layout(x, y, None, None, torch.add(x, y, out=out))
|
|
self.assertEqual(expected_stride, out.stride())
|
|
|
|
# non contiguous case non fast setup
|
|
x = xraw.permute(0, 2, 3, 1)
|
|
y = yraw.permute(0, 3, 2, 1)
|
|
test_memory_layout(x, y, None, None, x + y)
|
|
qx = qxraw.permute(0, 2, 3, 1)
|
|
qy = qyraw.permute(0, 3, 2, 1)
|
|
test_memory_layout(qx, qy, 0.1, 5, torch.ops.quantized.add(qx, qy, 0.1, 5))
|
|
|
|
# Tests to make sure we still handle .data properly until it is removed
|
|
def test_dot_data_use(self):
|
|
# .data allows to change the Tensors types inplace, check that we still
|
|
# raise a nice error.
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
# message includes both Double and ComplexFloat
|
|
'(?=.*Double)(?=.*ComplexFloat)'):
|
|
|
|
# Calls model with a LongTensor input but DoubleTensor weights
|
|
input = torch.randn(1, 1, 1, 6, dtype=torch.double)
|
|
weight = torch.zeros(1, 1, 1, 3, dtype=torch.complex64)
|
|
model = torch.nn.Conv2d(1, 1, (1, 3), stride=1, padding=0, bias=False)
|
|
model.weight.data = weight
|
|
out = model(input)
|
|
|
|
def test_empty_storage_view(self):
|
|
# we should be able to "modify" slices of a 0-element
|
|
# array without an error being raised due to
|
|
# trying to resize its storage
|
|
t = torch.from_numpy(np.empty((0, 4)))
|
|
t[:, 1::2] *= 1
|
|
|
|
def test_has_storage(self):
|
|
self.assertIsNotNone(torch.tensor([]).storage())
|
|
self.assertIsNotNone(torch.empty(0).storage())
|
|
self.assertIsNotNone(torch.tensor([]).clone().storage())
|
|
self.assertIsNotNone(torch.tensor([0, 0, 0]).nonzero().storage())
|
|
self.assertIsNotNone(torch.tensor([]).new().storage())
|
|
|
|
# FIXME: Extend this test and put in a TensorProperties test class
|
|
def test_numel(self):
|
|
b = torch.ByteTensor(3, 100, 100)
|
|
self.assertEqual(b.nelement(), 3 * 100 * 100)
|
|
self.assertEqual(b.numel(), 3 * 100 * 100)
|
|
|
|
# Verifies that (deep)copies of dtypes are the same objects
|
|
def test_copy_dtypes(self):
|
|
for dtype in all_types_and_complex_and(torch.half, torch.bfloat16, torch.bool):
|
|
copied_dtype = copy.deepcopy(dtype)
|
|
self.assertIs(dtype, copied_dtype)
|
|
|
|
def test_dtype_is_signed(self):
|
|
for dtype in all_types_and_complex_and(torch.half, torch.bfloat16, torch.half):
|
|
self.assertEqual(dtype.is_signed, torch.is_signed(torch.tensor(0, dtype=dtype)))
|
|
|
|
self.assertRaisesRegex(RuntimeError, 'not supported for quantized', lambda: torch.quint8.is_signed)
|
|
self.assertRaisesRegex(RuntimeError, 'not supported for quantized', lambda: torch.qint8.is_signed)
|
|
self.assertRaisesRegex(RuntimeError, 'not supported for quantized', lambda: torch.qint32.is_signed)
|
|
|
|
# FIXME: Put the following random tests into their own test class or test suite
|
|
@skipIfTorchDynamo("requires https://github.com/pytorch/torchdynamo/pull/1098")
|
|
def test_RNGState(self):
|
|
state = torch.get_rng_state()
|
|
stateCloned = state.clone()
|
|
before = torch.rand(1000)
|
|
|
|
self.assertEqual(state.ne(stateCloned).long().sum(), 0, atol=0, rtol=0)
|
|
|
|
torch.set_rng_state(state)
|
|
after = torch.rand(1000)
|
|
self.assertEqual(before, after, atol=0, rtol=0)
|
|
|
|
@skipIfTorchDynamo("requires https://github.com/pytorch/torchdynamo/pull/1098")
|
|
def test_RNGStateAliasing(self):
|
|
# Fork the random number stream at this point
|
|
gen = torch.Generator()
|
|
gen.set_state(torch.get_rng_state())
|
|
self.assertEqual(gen.get_state(), torch.get_rng_state())
|
|
|
|
target_value = torch.rand(1000)
|
|
# Dramatically alter the internal state of the main generator
|
|
_ = torch.rand(100000)
|
|
forked_value = torch.rand(1000, generator=gen)
|
|
self.assertEqual(target_value, forked_value, atol=0, rtol=0, msg="RNG has not forked correctly.")
|
|
|
|
@skipIfTorchDynamo("requires https://github.com/pytorch/torchdynamo/pull/1098")
|
|
def test_RNG_after_pickle(self):
|
|
torch.random.manual_seed(100)
|
|
before = torch.rand(10)
|
|
|
|
torch.random.manual_seed(100)
|
|
buf = io.BytesIO()
|
|
tensor = torch.tensor([1, 2, 3])
|
|
ForkingPickler(buf, pickle.HIGHEST_PROTOCOL).dump(tensor)
|
|
after = torch.rand(10)
|
|
|
|
self.assertEqual(before, after, atol=0, rtol=0)
|
|
|
|
@skipIfTorchDynamo("requires https://github.com/pytorch/torchdynamo/pull/1098")
|
|
def test_boxMullerState(self):
|
|
torch.manual_seed(123)
|
|
odd_number = 101
|
|
seeded = torch.randn(odd_number)
|
|
state = torch.get_rng_state()
|
|
midstream = torch.randn(odd_number)
|
|
torch.set_rng_state(state)
|
|
repeat_midstream = torch.randn(odd_number)
|
|
torch.manual_seed(123)
|
|
reseeded = torch.randn(odd_number)
|
|
self.assertEqual(midstream, repeat_midstream, atol=0, rtol=0,
|
|
msg='get_rng_state/set_rng_state not generating same sequence of normally distributed numbers')
|
|
self.assertEqual(seeded, reseeded, atol=0, rtol=0,
|
|
msg='repeated calls to manual_seed not generating same sequence of normally distributed numbers')
|
|
|
|
@skipIfTorchDynamo("requires https://github.com/pytorch/torchdynamo/pull/1098")
|
|
def test_manual_seed(self):
|
|
rng_state = torch.get_rng_state()
|
|
torch.manual_seed(2)
|
|
x = torch.randn(100)
|
|
self.assertEqual(torch.initial_seed(), 2)
|
|
torch.manual_seed(2)
|
|
y = torch.randn(100)
|
|
self.assertEqual(x, y)
|
|
|
|
max_int64 = 0x7fff_ffff_ffff_ffff
|
|
min_int64 = -max_int64 - 1
|
|
max_uint64 = 0xffff_ffff_ffff_ffff
|
|
# Check all boundary cases of valid seed value inputs
|
|
test_cases = [
|
|
# (seed, expected_initial_seed)
|
|
# Positive seeds should be unchanged
|
|
(max_int64, max_int64),
|
|
(max_int64 + 1, max_int64 + 1),
|
|
(max_uint64, max_uint64),
|
|
(0, 0),
|
|
# Negative seeds wrap around starting from the largest seed value
|
|
(-1, max_uint64),
|
|
(min_int64, max_int64 + 1)
|
|
]
|
|
for seed, expected_initial_seed in test_cases:
|
|
torch.manual_seed(seed)
|
|
actual_initial_seed = torch.initial_seed()
|
|
msg = "expected initial_seed() = %x after calling manual_seed(%x), but got %x instead" % (
|
|
expected_initial_seed, seed, actual_initial_seed)
|
|
self.assertEqual(expected_initial_seed, actual_initial_seed, msg=msg)
|
|
for invalid_seed in [min_int64 - 1, max_uint64 + 1]:
|
|
with self.assertRaisesRegex(RuntimeError, r'Overflow when unpacking long'):
|
|
torch.manual_seed(invalid_seed)
|
|
|
|
torch.set_rng_state(rng_state)
|
|
|
|
# FIXME: Describe this test and port to the generic device framework in a more
|
|
# appropriate test suite for the copy operation
|
|
def test_copy_transpose(self):
|
|
x = torch.arange(100 * 100, dtype=torch.float).reshape(100, 100).t()
|
|
y = torch.empty(100, 100, dtype=torch.float)
|
|
y.copy_(x)
|
|
self.assertEqual(y[:, 0], range(100))
|
|
self.assertEqual(y[:, 40], range(4000, 4100))
|
|
|
|
y = torch.empty(100, 100, dtype=torch.double)
|
|
y.copy_(x)
|
|
self.assertEqual(y[:, 0], range(100))
|
|
self.assertEqual(y[:, 40], range(4000, 4100))
|
|
|
|
# Validates regression reported in https://github.com/pytorch/pytorch/issues/45269
|
|
x = torch.arange(100 * 100).reshape(100, 100).to(dtype=torch.cfloat).t()
|
|
y = torch.empty(100, 100, dtype=torch.cfloat)
|
|
y.copy_(x)
|
|
self.assertEqual(y[:, 0], range(100))
|
|
self.assertEqual(y[:, 40], range(4000, 4100))
|
|
|
|
x = torch.arange(100 * 100).reshape(100, 100).to(dtype=torch.complex32).t()
|
|
y = torch.empty(100, 100, dtype=torch.complex32)
|
|
y.copy_(x)
|
|
self.assertEqual(y[:, 0], range(100))
|
|
self.assertEqual(y[:, 40], range(4000, 4100))
|
|
|
|
# FIXME: Port to a more appropriate test suite
|
|
def test_copy_broadcast(self):
|
|
torch.zeros(5, 6).copy_(torch.zeros(6))
|
|
self.assertRaises(RuntimeError, lambda: torch.zeros(5, 6).copy_(torch.zeros(30)))
|
|
|
|
# FIXME: Port to a more appropriate test suite
|
|
def test_copy_many_to_one(self):
|
|
# Testing in-place copy where it attempt to write from many memory
|
|
# storage to a single storage would cause RuntimeError to be thrown
|
|
self.assertRaises(RuntimeError, lambda: torch.zeros(1, 6).expand(5, 6).copy_(torch.zeros(5, 6)))
|
|
|
|
# FIXME: Port to a more appropriate test suite
|
|
def _test_to_with_layout(self, layout):
|
|
def test_copy_behavior(t, non_blocking=False):
|
|
self.assertIs(t, t.to(t, non_blocking=non_blocking))
|
|
self.assertIs(t, t.to(t.dtype, non_blocking=non_blocking))
|
|
self.assertIs(t, t.to(torch.empty_like(t), non_blocking=non_blocking))
|
|
self.assertIsNot(t, t.to(t, non_blocking=non_blocking, copy=True))
|
|
self.assertIsNot(t, t.to(t.dtype, non_blocking=non_blocking, copy=True))
|
|
self.assertIsNot(t, t.to(torch.empty_like(t), non_blocking=non_blocking, copy=True))
|
|
|
|
devices = [t.device]
|
|
if t.device.type == 'cuda':
|
|
if t.device.index == -1:
|
|
devices.append('cuda:{}'.format(torch.cuda.current_device()))
|
|
elif t.device.index == torch.cuda.current_device():
|
|
devices.append('cuda')
|
|
for device in devices:
|
|
self.assertIs(t, t.to(device, non_blocking=non_blocking))
|
|
self.assertIs(t, t.to(device, t.dtype, non_blocking=non_blocking))
|
|
self.assertIsNot(t, t.to(device, non_blocking=non_blocking, copy=True))
|
|
self.assertIsNot(t, t.to(device, t.dtype, non_blocking=non_blocking, copy=True))
|
|
|
|
a = torch.tensor(5)
|
|
if layout == torch.sparse_csr:
|
|
a = torch.tensor([[0, 1, 2], [2, 0, 3]]).to_sparse_csr()
|
|
test_copy_behavior(a)
|
|
self.assertEqual(a.device, a.to('cpu').device)
|
|
self.assertEqual(a.device, a.to('cpu', dtype=torch.float32).device)
|
|
self.assertIs(torch.float32, a.to('cpu', dtype=torch.float32).dtype)
|
|
self.assertEqual(a.device, a.to(torch.float32).device)
|
|
self.assertIs(torch.float32, a.to(dtype=torch.float32).dtype)
|
|
|
|
def test_data_ptr(getter):
|
|
self.assertEqual(getter(a), getter(a.to('cpu')))
|
|
self.assertEqual(getter(a), getter(a.to(dtype=a.dtype, device=a.device, copy=False)))
|
|
self.assertEqual(getter(a), getter(a.to('cpu', copy=False)))
|
|
self.assertNotEqual(getter(a), getter(a.to('cpu', copy=True)))
|
|
if layout == torch.sparse_csr:
|
|
# TODO: compressed sparse tensors currently don't support data_ptr.
|
|
# Exercising failure will allow us to widen coverage of this test once it does.
|
|
with self.assertRaisesRegex(RuntimeError, "Cannot access data pointer of Tensor that doesn't have storage"):
|
|
a.data_ptr()
|
|
# While compressed sparse tensors don't have a concept of data_ptr
|
|
# the underlying tensors do. The implementation of to appropriately forwards
|
|
# the call to the components, which is what we're test here.
|
|
test_data_ptr(lambda a: a.values().data_ptr())
|
|
test_data_ptr(lambda a: a.crow_indices().data_ptr())
|
|
test_data_ptr(lambda a: a.col_indices().data_ptr())
|
|
else:
|
|
test_data_ptr(lambda a: a.data_ptr())
|
|
|
|
if torch.cuda.is_available():
|
|
for non_blocking in [True, False]:
|
|
for cuda in ['cuda', 'cuda:0' if torch.cuda.device_count() == 1 else 'cuda:1']:
|
|
b = torch.tensor(5., device=cuda)
|
|
test_copy_behavior(b, non_blocking)
|
|
self.assertEqual(b.device, b.to(cuda, non_blocking=non_blocking).device)
|
|
self.assertEqual(a.device, b.to('cpu', non_blocking=non_blocking).device)
|
|
self.assertEqual(b.device, a.to(cuda, non_blocking=non_blocking).device)
|
|
self.assertIs(torch.int32, b.to('cpu', dtype=torch.int32, non_blocking=non_blocking).dtype)
|
|
self.assertEqual(a.device, b.to('cpu', dtype=torch.int32, non_blocking=non_blocking).device)
|
|
self.assertIs(torch.int32, b.to(dtype=torch.int32).dtype)
|
|
self.assertEqual(b.device, b.to(dtype=torch.int32).device)
|
|
|
|
def test_to(self):
|
|
self._test_to_with_layout(torch.strided)
|
|
is_cuda10_2_or_higher = (
|
|
(torch.version.cuda is not None)
|
|
and ([int(x) for x in torch.version.cuda.split(".")] >= [10, 2]))
|
|
if is_cuda10_2_or_higher: # in cuda10_1 sparse_csr is beta
|
|
self._test_to_with_layout(torch.sparse_csr)
|
|
|
|
# FIXME: describe this test
|
|
def test_as_subclass(self):
|
|
class SubTensor(torch.Tensor):
|
|
member_var = object()
|
|
|
|
t0 = torch.tensor(0)
|
|
t1 = torch.tensor([1, 2])
|
|
t2 = torch.tensor([[3, 4], [5, 6]])
|
|
|
|
s0 = t0.as_subclass(SubTensor)
|
|
s1 = t1.as_subclass(SubTensor)
|
|
s2 = t2.as_subclass(SubTensor)
|
|
|
|
# Check that the correct type is returned.
|
|
self.assertTrue(type(s0) is SubTensor)
|
|
self.assertTrue(type(s1) is SubTensor)
|
|
self.assertTrue(type(s2) is SubTensor)
|
|
|
|
# Check that the data is equal.
|
|
self.assertEqual(t0, s0)
|
|
self.assertEqual(t1, s1)
|
|
self.assertEqual(t2, s2)
|
|
|
|
t0[()] = 1
|
|
t1[1] = 3
|
|
t2[1, 1] = 7
|
|
|
|
# Check that the data is equal even after modification.
|
|
self.assertEqual(t0, s0)
|
|
self.assertEqual(t1, s1)
|
|
self.assertEqual(t2, s2)
|
|
|
|
# Check that member variables are passed through.
|
|
self.assertTrue(s0.member_var is SubTensor.member_var)
|
|
self.assertTrue(s1.member_var is SubTensor.member_var)
|
|
self.assertTrue(s2.member_var is SubTensor.member_var)
|
|
|
|
# Test that autograd is propagated.
|
|
t = torch.tensor(5, dtype=torch.float32, requires_grad=True)
|
|
|
|
# Run a calculation on the tensor.
|
|
exp_t = torch.exp(t)
|
|
|
|
# Cast exp_t to a subclass.
|
|
exp_s = exp_t.as_subclass(SubTensor)
|
|
|
|
# Make sure that t.grad was initially None
|
|
self.assertTrue(t.grad is None)
|
|
|
|
# Run the autograd calculation.
|
|
exp_s.backward()
|
|
|
|
# Make sure autograd was propagated to the original tensor
|
|
# declared with requires_grad.
|
|
self.assertTrue(t.grad is not None)
|
|
|
|
# Make sure invalid subclasses raise nice errors
|
|
class BadSubTensor():
|
|
member_var = object()
|
|
|
|
err_msg = "Creating a Tensor subclass from a class that does not inherit from Tensor"
|
|
with self.assertRaisesRegex(RuntimeError, err_msg):
|
|
s0 = t0.as_subclass(BadSubTensor)
|
|
|
|
# FIXME: Port to a test suite that better fits slicing
|
|
def test_slice(self):
|
|
empty = torch.empty(0, 4)
|
|
x = torch.arange(0., 16).view(4, 4)
|
|
self.assertEqual(x[:], x)
|
|
self.assertEqual(x[:4], x)
|
|
# start and stop are clamped to the size of dim
|
|
self.assertEqual(x[:5], x)
|
|
# if start >= stop then the result is empty
|
|
self.assertEqual(x[2:1], empty)
|
|
self.assertEqual(x[2:2], empty)
|
|
# out of bounds is also empty
|
|
self.assertEqual(x[10:12], empty)
|
|
# additional correctness checks
|
|
self.assertEqual(x[:1].tolist(), [[0, 1, 2, 3]])
|
|
self.assertEqual(x[:-3].tolist(), [[0, 1, 2, 3]])
|
|
self.assertEqual(x[:, -2:3].tolist(), [[2], [6], [10], [14]])
|
|
self.assertEqual(x[0:-1:2].tolist(), [[0, 1, 2, 3], [8, 9, 10, 11]])
|
|
|
|
def test_type(self):
|
|
x = torch.randn(3, 3).double()
|
|
self.assertEqual(x.type('torch.FloatTensor').dtype, torch.float32)
|
|
self.assertEqual(x.type(torch.FloatTensor).dtype, torch.float32)
|
|
self.assertEqual(x.int().type(torch.Tensor).dtype, torch.get_default_dtype())
|
|
self.assertEqual(x.type(torch.int32).dtype, torch.int32)
|
|
|
|
# FIXME: port to a quantization test suite
|
|
def test_qengine(self):
|
|
qengines = torch.backends.quantized.supported_engines
|
|
original_qe = torch.backends.quantized.engine
|
|
for qe in qengines:
|
|
torch.backends.quantized.engine = qe
|
|
assert torch.backends.quantized.engine == qe, 'qengine not set successfully'
|
|
torch.backends.quantized.engine = original_qe
|
|
|
|
# FIXME: port to a distributed test suite -- also... how could this be OOMing on Windows CUDA?
|
|
@slowTest
|
|
@unittest.skipIf(NO_MULTIPROCESSING_SPAWN, "Disabled for environments that \
|
|
don't support multiprocessing with spawn start method")
|
|
@unittest.skipIf(IS_WINDOWS, 'FIXME: CUDA OOM error on Windows')
|
|
def test_multinomial_invalid_probs(self):
|
|
def _spawn_method(self, method, arg):
|
|
try:
|
|
mp.set_start_method('spawn')
|
|
except RuntimeError:
|
|
pass
|
|
with mp.Pool(1) as pool:
|
|
out: list = pool.map(method, [arg])
|
|
self.assertTrue(out[0])
|
|
|
|
def _test_multinomial_invalid_probs(probs):
|
|
try:
|
|
# n_sample = 1 is a special case, test n_sample=2 which is more general
|
|
torch.multinomial(probs.to('cpu'), 2)
|
|
return False # Should not be reached
|
|
except RuntimeError as e:
|
|
return 'probability tensor contains either `inf`, `nan` or element < 0' in str(e)
|
|
|
|
_spawn_method(_test_multinomial_invalid_probs, torch.tensor([1., -1., 1.]))
|
|
_spawn_method(_test_multinomial_invalid_probs, torch.tensor([1., inf, 1.]))
|
|
_spawn_method(_test_multinomial_invalid_probs, torch.tensor([1., -inf, 1.]))
|
|
_spawn_method(_test_multinomial_invalid_probs, torch.tensor([1., 1., nan]))
|
|
|
|
# FIXME: port to more appropriate test suite
|
|
def test_to_with_tensor(self):
|
|
a = torch.tensor(5)
|
|
self.assertEqual(a.device, a.to(a).device)
|
|
|
|
if torch.cuda.is_available():
|
|
for non_blocking in [True, False]:
|
|
for cuda in ['cuda', 'cuda:0' if torch.cuda.device_count() == 1 else 'cuda:1']:
|
|
b = torch.tensor(5., device=cuda)
|
|
self.assertEqual(b.device, b.to(b, non_blocking=non_blocking).device)
|
|
self.assertEqual(a.device, b.to(a, non_blocking=non_blocking).device)
|
|
self.assertEqual(b.device, a.to(b, non_blocking=non_blocking).device)
|
|
|
|
def test_device(self):
|
|
cpu = torch.device('cpu')
|
|
self.assertEqual('cpu', str(cpu))
|
|
self.assertEqual('cpu', cpu.type)
|
|
self.assertEqual(None, cpu.index)
|
|
|
|
cpu0 = torch.device('cpu:0')
|
|
self.assertEqual('cpu:0', str(cpu0))
|
|
self.assertEqual('cpu', cpu0.type)
|
|
self.assertEqual(0, cpu0.index)
|
|
|
|
cpu0 = torch.device('cpu', 0)
|
|
self.assertEqual('cpu:0', str(cpu0))
|
|
self.assertEqual('cpu', cpu0.type)
|
|
self.assertEqual(0, cpu0.index)
|
|
|
|
cuda = torch.device('cuda')
|
|
self.assertEqual('cuda', str(cuda))
|
|
self.assertEqual('cuda', cuda.type)
|
|
self.assertEqual(None, cuda.index)
|
|
|
|
cuda1 = torch.device('cuda:1')
|
|
self.assertEqual('cuda:1', str(cuda1))
|
|
self.assertEqual('cuda', cuda1.type)
|
|
self.assertEqual(1, cuda1.index)
|
|
|
|
cuda1 = torch.device('cuda', 1)
|
|
self.assertEqual('cuda:1', str(cuda1))
|
|
self.assertEqual('cuda', cuda1.type)
|
|
self.assertEqual(1, cuda1.index)
|
|
|
|
cuda90 = torch.device('cuda', 90)
|
|
self.assertEqual('cuda:90', str(cuda90))
|
|
self.assertEqual('cuda', cuda90.type)
|
|
self.assertEqual(90, cuda90.index)
|
|
|
|
self.assertRaises(RuntimeError, lambda: torch.device('cpu:-1'))
|
|
self.assertRaises(RuntimeError, lambda: torch.device('cuda:-1'))
|
|
self.assertRaises(RuntimeError, lambda: torch.device('cuda:2 '))
|
|
self.assertRaises(RuntimeError, lambda: torch.device('cuda: 2'))
|
|
self.assertRaises(RuntimeError, lambda: torch.device('cuda:2 2'))
|
|
self.assertRaises(RuntimeError, lambda: torch.device('cuda:2.'))
|
|
self.assertRaises(RuntimeError, lambda: torch.device('cuda:2?'))
|
|
self.assertRaises(RuntimeError, lambda: torch.device('cuda:?2'))
|
|
self.assertRaises(RuntimeError, lambda: torch.device('cuda:'))
|
|
self.assertRaises(RuntimeError, lambda: torch.device('cuda:2.232'))
|
|
self.assertRaises(RuntimeError, lambda: torch.device('cuda:2 cuda:3'))
|
|
self.assertRaises(RuntimeError, lambda: torch.device('cuda:2+cuda:3'))
|
|
self.assertRaises(RuntimeError, lambda: torch.device('cuda:2cuda:3'))
|
|
self.assertRaises(RuntimeError, lambda: torch.device(-1))
|
|
|
|
self.assertRaises(RuntimeError, lambda: torch.device('other'))
|
|
self.assertRaises(RuntimeError, lambda: torch.device('other:0'))
|
|
|
|
device_set = {'cpu', 'cpu:0', 'cuda', 'cuda:0', 'cuda:1', 'cuda:10', 'cuda:100'}
|
|
device_hash_set = set()
|
|
for device in list(device_set):
|
|
device_hash_set.add(hash(torch.device(device)))
|
|
self.assertEqual(len(device_set), len(device_hash_set))
|
|
|
|
def get_expected_device_repr(device):
|
|
if device.index is not None:
|
|
return "device(type='{type}', index={index})".format(
|
|
type=device.type, index=device.index)
|
|
|
|
return "device(type='{type}')".format(type=device.type)
|
|
|
|
for device in device_set:
|
|
dev = torch.device(device)
|
|
self.assertEqual(repr(dev), get_expected_device_repr(dev))
|
|
|
|
# Tests that the use_deterministic_flag can be set as expected
|
|
@wrapDeterministicFlagAPITest
|
|
def test_deterministic_flag(self):
|
|
for deterministic, warn_only in product([True, False], [True, False]):
|
|
torch.use_deterministic_algorithms(deterministic, warn_only=warn_only)
|
|
self.assertEqual(deterministic, torch.are_deterministic_algorithms_enabled())
|
|
self.assertEqual(warn_only, torch.is_deterministic_algorithms_warn_only_enabled())
|
|
|
|
if deterministic:
|
|
if warn_only:
|
|
debug_mode = 1
|
|
else:
|
|
debug_mode = 2
|
|
else:
|
|
debug_mode = 0
|
|
|
|
self.assertEqual(debug_mode, torch.get_deterministic_debug_mode())
|
|
|
|
for debug_mode in [0, 1, 2]:
|
|
torch.set_deterministic_debug_mode(debug_mode)
|
|
self.assertEqual(debug_mode, torch.get_deterministic_debug_mode())
|
|
deterministic = debug_mode in [1, 2]
|
|
warn_only = debug_mode == 1
|
|
|
|
self.assertEqual(deterministic, torch.are_deterministic_algorithms_enabled())
|
|
self.assertEqual(warn_only, torch.is_deterministic_algorithms_warn_only_enabled())
|
|
|
|
for debug_mode, debug_mode_str in [(0, 'default'), (1, 'warn'), (2, 'error')]:
|
|
torch.set_deterministic_debug_mode(debug_mode_str)
|
|
self.assertEqual(debug_mode, torch.get_deterministic_debug_mode())
|
|
|
|
with self.assertRaisesRegex(
|
|
TypeError,
|
|
r"_set_deterministic_algorithms\(\): argument 'mode' \(position 1\) must be bool, not int"):
|
|
torch.use_deterministic_algorithms(1)
|
|
|
|
with self.assertRaisesRegex(
|
|
TypeError,
|
|
r"_set_deterministic_algorithms\(\): argument 'warn_only' must be bool, not int"):
|
|
torch.use_deterministic_algorithms(False, warn_only=1)
|
|
|
|
def test_type_conversion_via_dtype_name(self):
|
|
x = torch.tensor([1])
|
|
self.assertEqual(x.byte().dtype, torch.uint8)
|
|
self.assertEqual(x.bool().dtype, torch.bool)
|
|
self.assertEqual(x.char().dtype, torch.int8)
|
|
self.assertEqual(x.double().dtype, torch.float64)
|
|
self.assertEqual(x.float().dtype, torch.float32)
|
|
self.assertEqual(x.half().dtype, torch.float16)
|
|
self.assertEqual(x.int().dtype, torch.int32)
|
|
self.assertEqual(x.bfloat16().dtype, torch.bfloat16)
|
|
cfloat = x.cfloat()
|
|
self.assertEqual(cfloat.dtype, torch.complex64)
|
|
self.assertEqual(cfloat.real, x.float())
|
|
self.assertEqual(cfloat.imag, torch.zeros_like(cfloat.imag))
|
|
cdouble = x.cdouble()
|
|
self.assertEqual(cdouble.dtype, torch.complex128)
|
|
self.assertEqual(cdouble.real, x.double())
|
|
self.assertEqual(cdouble.imag, torch.zeros_like(cdouble.imag))
|
|
chalf = x.chalf()
|
|
self.assertEqual(chalf.dtype, torch.complex32)
|
|
self.assertEqual(chalf.real, x.half())
|
|
self.assertEqual(chalf.imag, torch.zeros_like(chalf.imag))
|
|
|
|
def test_type_alias(self):
|
|
type_alias_map = {torch.float64: torch.double,
|
|
torch.float32: torch.float,
|
|
torch.int32: torch.int,
|
|
torch.int64: torch.long,
|
|
torch.int16: torch.short,
|
|
torch.float16: torch.half,
|
|
torch.complex32: torch.chalf,
|
|
torch.complex64: torch.cfloat}
|
|
for dtype, alias in type_alias_map.items():
|
|
self.assertIs(alias, dtype)
|
|
|
|
def test_doc_template(self) -> None:
|
|
"""
|
|
Test that all public API doc strings use the same standard template for
|
|
all common arguments such as tensor or dim
|
|
"""
|
|
from torch._torch_docs import __file__ as doc_file
|
|
from torch._torch_docs import multi_dim_common, single_dim_common, factory_common_args, factory_like_common_args
|
|
|
|
with open(doc_file, "r", encoding="utf-8") as f:
|
|
doc_strs = f.read()
|
|
|
|
matches = re.findall(
|
|
r'add_docstr\(([^,]+?),[^"\']*?(?:"""|\'\'\')(.*?)(?:"""|\'\'\')(?:\.|,?[^,\)]*?\))',
|
|
doc_strs,
|
|
re.MULTILINE | re.DOTALL,
|
|
)
|
|
self.assertTrue(matches)
|
|
|
|
for m in matches:
|
|
func = m[0].strip()
|
|
desc = m[1].strip()
|
|
|
|
for common_args in [multi_dim_common, single_dim_common, factory_common_args, factory_like_common_args]:
|
|
for k, v in common_args.items():
|
|
self.assertNotIn(v, desc, 'The argument description "{}" in {} can be '
|
|
'replaced by {{{}}}'.format(v, func, k))
|
|
|
|
def test_doc(self):
|
|
checked_types = (types.MethodType, types.FunctionType,
|
|
types.BuiltinFunctionType, types.BuiltinMethodType)
|
|
|
|
def _test_namespace(ns, *skips):
|
|
if isinstance(ns, object):
|
|
ns_name = ns.__class__.__name__
|
|
else:
|
|
ns_name = ns.__name__
|
|
skip_regexes = []
|
|
for r in skips:
|
|
if isinstance(r, string_classes):
|
|
skip_regexes.append(re.compile('^{}$'.format(re.escape(r))))
|
|
else:
|
|
skip_regexes.append(r)
|
|
|
|
for name in dir(ns):
|
|
if name.startswith('_'):
|
|
continue
|
|
if name in ['real', 'imag']:
|
|
y = torch.randn(1, dtype=torch.cfloat)
|
|
var = getattr(y, name)
|
|
elif name in ["H", "mT", "mH"]:
|
|
y = torch.randn(1, 1)
|
|
var = getattr(y, name)
|
|
else:
|
|
var = getattr(ns, name)
|
|
if not isinstance(var, checked_types):
|
|
continue
|
|
doc = var.__doc__
|
|
has_doc = doc is not None and len(doc.strip()) > 0
|
|
full_name = ns_name + '.' + name
|
|
if any(r.match(name) for r in skip_regexes):
|
|
self.assertFalse(has_doc,
|
|
'New docs have been added for {}, please remove '
|
|
'it from the skipped list in TestTorch.test_doc'.format(full_name))
|
|
else:
|
|
self.assertTrue(has_doc, '{} is missing documentation'.format(full_name))
|
|
|
|
# FIXME: All of the following should be marked as expected failures
|
|
# so that it is easier to tell when missing has been added.
|
|
# FIXME: fix all the skipped ones below!
|
|
test_namespace(torch.randn(1),
|
|
'as_strided_',
|
|
re.compile('^clamp_(min|max)_?$'),
|
|
'is_distributed',
|
|
'is_nonzero',
|
|
'is_same_size',
|
|
'log_softmax',
|
|
'map2_',
|
|
'new',
|
|
'reinforce',
|
|
'relu',
|
|
'relu_',
|
|
'prelu',
|
|
'resize',
|
|
'resize_as',
|
|
'softmax',
|
|
'split_with_sizes',
|
|
'unsafe_split_with_sizes',
|
|
'_autocast_to_fp16',
|
|
'_autocast_to_fp32',
|
|
)
|
|
|
|
test_namespace(torch.nn)
|
|
test_namespace(torch.nn.functional, 'assert_int_or_pair')
|
|
# TODO: add torch.* tests when we have proper namespacing on ATen functions
|
|
# test_namespace(torch)
|
|
|
|
# FIXME: deprecate torch.Tensor constructor
|
|
def test_tensor_ctor_scalar(self):
|
|
x = torch.Tensor(torch.tensor(1.0))
|
|
self.assertEqual(x, torch.tensor(1.0))
|
|
|
|
def test_deepcopy_gradient(self):
|
|
from copy import deepcopy
|
|
a = torch.zeros(10)
|
|
a.grad = torch.ones(10)
|
|
self.assertEqual(a.grad, deepcopy(a).grad)
|
|
s = torch.zeros(10).to_sparse()
|
|
s.grad = torch.ones(10).to_sparse()
|
|
self.assertEqual(s.grad, deepcopy(s).grad)
|
|
|
|
# ensure sharing is not broken
|
|
c = deepcopy([a, a.grad])
|
|
self.assertTrue(c[0].grad is c[1])
|
|
|
|
def test_tensor_base_init(self):
|
|
# Direct construction not OK
|
|
self.assertRaises(RuntimeError, lambda: torch._C._TensorBase())
|
|
|
|
# But construction of subclass is OK
|
|
class T(torch._C._TensorBase):
|
|
pass
|
|
|
|
T()
|
|
|
|
def test_tensor_base_new(self):
|
|
|
|
# OK to call super().__new__, see
|
|
# https://github.com/pytorch/pytorch/issues/57421
|
|
class TestTensor(torch._C._TensorBase):
|
|
@staticmethod
|
|
def __new__(cls, x, *args, **kwargs):
|
|
return super().__new__(cls, x, *args, **kwargs)
|
|
|
|
x = torch.ones(5)
|
|
test_tensor = TestTensor(x)
|
|
|
|
def test_pyobj_preserved(self):
|
|
x = torch.empty(2)
|
|
x.foo = 2 # put something on __dict__
|
|
y = torch.empty(2)
|
|
y.grad = x
|
|
del x # x is dead in Python
|
|
self.assertEqual(y.grad.foo, 2)
|
|
z = y.grad # it's live
|
|
del z # it's dead again
|
|
self.assertEqual(y.grad.foo, 2)
|
|
|
|
def test_subclass_preserved(self):
|
|
class MyTensor(torch.Tensor):
|
|
pass
|
|
|
|
x = MyTensor(torch.empty(2))
|
|
y = torch.empty(2)
|
|
y.grad = x
|
|
del x # x is dead in Python
|
|
self.assertEqual(type(y.grad), MyTensor)
|
|
z = y.grad # it's live
|
|
del z # it's dead again
|
|
self.assertEqual(type(y.grad), MyTensor)
|
|
|
|
def test_tensor_slot_dealloc(self):
|
|
|
|
class SlotTensor1(torch._C._TensorBase):
|
|
__slots__ = ['slot1']
|
|
|
|
class SlotTensor2(SlotTensor1):
|
|
__slots__ = ['slot2']
|
|
|
|
m1, t1 = Tracker.make()
|
|
m2, t2 = Tracker.make()
|
|
slot_tensor = SlotTensor2(torch.empty(2))
|
|
slot_tensor.slot1 = t1
|
|
slot_tensor.slot2 = t2
|
|
del t1
|
|
del t2
|
|
self.assertFalse(m1[0])
|
|
self.assertFalse(m2[0])
|
|
del slot_tensor
|
|
self.assertTrue(m1[0])
|
|
self.assertTrue(m2[0])
|
|
|
|
@skipIfTorchDynamo("Not a suitable test for TorchDynamo")
|
|
def test_tensor_dict_dealloc(self):
|
|
m, t = Tracker.make()
|
|
x = torch.empty(2)
|
|
x.arf = t
|
|
del t
|
|
self.assertFalse(m[0])
|
|
del x
|
|
self.assertTrue(m[0])
|
|
|
|
def test_tensor_finalizer_dealloc(self):
|
|
m = [False]
|
|
|
|
class FinalizerTensor(torch._C._TensorBase):
|
|
def __del__(self):
|
|
m[0] = True
|
|
|
|
fin_tensor = FinalizerTensor(torch.empty(2))
|
|
self.assertFalse(m[0])
|
|
del fin_tensor
|
|
self.assertTrue(m[0])
|
|
|
|
@skipIfTorchDynamo("Not a suitable test for TorchDynamo")
|
|
def test_tensor_weakref_dealloc(self):
|
|
|
|
x = torch.empty(2)
|
|
m = [False]
|
|
|
|
def cb(r):
|
|
m[0] = True
|
|
|
|
wref = weakref.ref(x, cb)
|
|
del x
|
|
self.assertTrue(m[0])
|
|
self.assertEqual(wref(), None)
|
|
|
|
@skipIfTorchDynamo("Not a suitable test for TorchDynamo")
|
|
def test_tensor_cycle_via_dict(self):
|
|
m1, t1 = Tracker.make()
|
|
x = torch.empty(2)
|
|
x._tracker = t1
|
|
del t1
|
|
|
|
m2, t2 = Tracker.make()
|
|
y = torch.empty(2)
|
|
y._tracker = t2
|
|
del t2
|
|
|
|
x._loop = y
|
|
y._loop = x
|
|
|
|
# C++ reference should keep the cycle live!
|
|
# This exercise THPVariable_subtype_traverse
|
|
# NB: Because z.grad is a reference done entirely in C++, cycles
|
|
# involving it directly are NOT broken by Python GC; you've
|
|
# set up a good old C++ reference cycle which we cannot safely
|
|
# break (because C++ references are allowed to be accessed
|
|
# multithreaded-ly) (TODO: except maybe if you can prove that
|
|
# only Python has access to the C++ object, in which case you can
|
|
# also prove that no multithreaded access occurs)
|
|
z = torch.empty(2)
|
|
z.grad = x
|
|
|
|
del x
|
|
del y
|
|
|
|
gc.collect()
|
|
self.assertFalse(m1[0])
|
|
self.assertFalse(m2[0])
|
|
|
|
with disable_gc():
|
|
del z
|
|
self.assertFalse(m1[0])
|
|
self.assertFalse(m2[0])
|
|
|
|
gc.collect()
|
|
self.assertTrue(m1[0])
|
|
self.assertTrue(m2[0])
|
|
|
|
def test_tensor_cycle_via_slots(self):
|
|
m1 = [False]
|
|
m2 = [False]
|
|
|
|
class SlotTensor1(torch._C._TensorBase):
|
|
__slots__ = ['slot1']
|
|
|
|
def __del__(self):
|
|
m1[0] = True
|
|
|
|
class SlotTensor2(SlotTensor1):
|
|
__slots__ = ['slot2']
|
|
|
|
def __del__(self):
|
|
m2[0] = True
|
|
|
|
x = SlotTensor1(torch.empty(2))
|
|
y = SlotTensor2(torch.empty(2))
|
|
|
|
x.slot1 = y
|
|
y.slot2 = x
|
|
|
|
del x
|
|
with disable_gc():
|
|
del y
|
|
self.assertFalse(m1[0])
|
|
self.assertFalse(m2[0])
|
|
|
|
gc.collect()
|
|
self.assertTrue(m1[0])
|
|
self.assertTrue(m2[0])
|
|
|
|
# FIXME: move to test_autograd?
|
|
@skipIfTorchDynamo("TorchDynamo does not work well with hooks")
|
|
def test_backward_hooks_traverse(self):
|
|
m1, t1 = Tracker.make()
|
|
m2, t2 = Tracker.make()
|
|
x = torch.empty(2, requires_grad=True)
|
|
x._tracker = t1
|
|
y = torch.empty(2, requires_grad=True)
|
|
y._tracker = t2
|
|
del t1
|
|
del t2
|
|
|
|
# this hits a special setter, it's not just a __dict__ entry
|
|
x._backward_hooks = y
|
|
y._backward_hooks = x
|
|
|
|
del x
|
|
with disable_gc():
|
|
del y
|
|
self.assertFalse(m1[0])
|
|
self.assertFalse(m2[0])
|
|
|
|
gc.collect()
|
|
|
|
self.assertTrue(m1[0])
|
|
self.assertTrue(m2[0])
|
|
|
|
@skipIfTorchDynamo("Not a suitable test for TorchDynamo")
|
|
def test_dead_weak_ref(self):
|
|
x = torch.empty(2)
|
|
w_x = weakref.ref(x)
|
|
y = torch.empty(2)
|
|
y.grad = x
|
|
del x
|
|
|
|
x = w_x()
|
|
# Ideally, x would keep the tensor live. But CPython doesn't
|
|
# provide enough hooks to do this. So it will go dead and x
|
|
# will transmute into an undefined tensor. Not great, but the
|
|
# best we can do.
|
|
del y
|
|
|
|
self.assertRaises(RuntimeError, lambda: x.sigmoid())
|
|
|
|
def test_resurrected_weak_ref(self):
|
|
x = torch.empty(2)
|
|
w_x = weakref.ref(x)
|
|
y = torch.empty(2)
|
|
y.grad = x
|
|
del x
|
|
|
|
x = w_x()
|
|
# Use this to manually fix weak references after dereferencing them
|
|
x._fix_weakref()
|
|
del y
|
|
x.sigmoid()
|
|
|
|
# FIXME: move to test_linalg
|
|
@torch.inference_mode()
|
|
def test_bmm_multithreaded(self):
|
|
device = 'cpu'
|
|
num_threads = torch.get_num_threads()
|
|
|
|
torch.set_num_threads(4)
|
|
batch_sizes = [1, 10]
|
|
M, N, O = 23, 8, 12
|
|
dtype = torch.float32
|
|
numpy_dtype = dtype
|
|
|
|
def invert_perm(p):
|
|
d = {x: i for i, x in enumerate(p)}
|
|
return (d[0], d[1], d[2])
|
|
|
|
def generate_inputs(num_batches):
|
|
# transposed tensors
|
|
for perm1, perm2 in itertools.product(itertools.permutations((0, 1, 2)), repeat=2):
|
|
b1 = make_tensor((num_batches, M, N), dtype=dtype, device=device, low=-1, high=1)
|
|
b2 = make_tensor((num_batches, N, O), dtype=dtype, device=device, low=-1, high=1)
|
|
b1 = b1.permute(perm1).contiguous().permute(invert_perm(perm1))
|
|
b2 = b2.permute(perm2).contiguous().permute(invert_perm(perm2))
|
|
yield b1, b2
|
|
# broadcasting tensors
|
|
for b1, b2, b3, b4, b5, b6 in itertools.product((True, False), repeat=6):
|
|
shape1 = (num_batches if b1 else 1, M if b2 else 1, N if b3 else 1)
|
|
shape2 = (num_batches if b4 else 1, N if b5 else 1, O if b6 else 1)
|
|
b1 = make_tensor(shape1, dtype=dtype, device=device, low=-1, high=1).expand(num_batches, M, N)
|
|
b2 = make_tensor(shape2, dtype=dtype, device=device, low=-1, high=1).expand(num_batches, N, O)
|
|
yield b1, b2
|
|
# zero-sized tensors
|
|
for z1, z2, z3, z4 in itertools.product((True, False), repeat=4):
|
|
shape1 = (num_batches if z1 else 0, M if z2 else 0, N if z3 else 0)
|
|
shape2 = (num_batches if z1 else 0, N if z3 else 0, O if z4 else 0)
|
|
b1 = torch.randn(shape1, dtype=dtype, device=device)
|
|
b2 = torch.randn(shape2, dtype=dtype, device=device)
|
|
yield b1, b2
|
|
|
|
try:
|
|
for num_batches in batch_sizes:
|
|
for (b1, b2), perm3 in itertools.product(generate_inputs(num_batches), itertools.permutations((0, 1, 2))):
|
|
res1 = torch.bmm(b1, b2)
|
|
res2 = torch.full((num_batches, M, O), math.nan, dtype=dtype, device=device) \
|
|
.permute(perm3).contiguous().permute(invert_perm(perm3))
|
|
torch.bmm(b1, b2, out=res2)
|
|
expect = torch.from_numpy(
|
|
b1.to(numpy_dtype).cpu().numpy() @ b2.to(numpy_dtype).cpu().numpy()).to(device=device, dtype=dtype)
|
|
self.assertEqual(expect, res1)
|
|
self.assertEqual(expect, res2)
|
|
finally:
|
|
torch.set_num_threads(num_threads)
|
|
|
|
def test_conj_neg_tolist(self):
|
|
x = torch.randn(2, dtype=torch.cfloat)
|
|
y1 = x.conj()
|
|
y1_expect = x.conj_physical()
|
|
y2 = y1.imag
|
|
self.assertEqual(y1, y1_expect.tolist())
|
|
self.assertEqual(y2, y1_expect.imag.tolist())
|
|
|
|
# The following block extends TestTorch with negative dim wrapping tests
|
|
# FIXME: replace these with OpInfo sample inputs or systemic OpInfo tests
|
|
# Functions to test negative dimension wrapping
|
|
METHOD = 1
|
|
INPLACE_METHOD = 2
|
|
FUNCTIONAL = 4
|
|
DIM_ARG = None
|
|
|
|
def make_neg_dim_test(name, tensor_arg, arg_constr, types, extra_dim=0):
|
|
def neg_dim_test(self):
|
|
if isinstance(tensor_arg, list):
|
|
assert METHOD not in types and INPLACE_METHOD not in types
|
|
x = [torch.randn(arg) for arg in tensor_arg]
|
|
ndim = len(tensor_arg[-1])
|
|
else:
|
|
x = torch.randn(*tensor_arg)
|
|
ndim = len(tensor_arg)
|
|
ndim += extra_dim
|
|
|
|
n_dim_to_test = sum(e is DIM_ARG for e in arg_constr())
|
|
|
|
for dims_val in combinations(range(ndim), n_dim_to_test):
|
|
arg = arg_constr()
|
|
arg_neg = copy.deepcopy(arg)
|
|
idx = 0
|
|
for i, v in enumerate(arg):
|
|
if v is DIM_ARG:
|
|
arg[i] = dims_val[idx]
|
|
arg_neg[i] = dims_val[idx] - ndim
|
|
idx += 1
|
|
|
|
if METHOD in types:
|
|
a = getattr(x, name)(*arg)
|
|
b = getattr(x, name)(*arg_neg)
|
|
self.assertEqual(a, b)
|
|
|
|
if INPLACE_METHOD in types:
|
|
a = x.clone()
|
|
getattr(a, name + '_')(*arg)
|
|
b = x.clone()
|
|
getattr(b, name + '_')(*arg_neg)
|
|
self.assertEqual(a, b)
|
|
|
|
if FUNCTIONAL in types:
|
|
a = getattr(torch, name)(x, *arg)
|
|
b = getattr(torch, name)(x, *arg_neg)
|
|
self.assertEqual(a, b)
|
|
|
|
return neg_dim_test
|
|
|
|
def idx_tensor(size, max_val):
|
|
return torch.LongTensor(*size).random_(0, max_val - 1)
|
|
|
|
def add_neg_dim_tests():
|
|
neg_dim_tests = [
|
|
('narrow', (10, 20, 30), lambda: [DIM_ARG, 0, 5], [METHOD]),
|
|
('transpose', (10, 20, 30), lambda: [DIM_ARG, DIM_ARG], [METHOD, INPLACE_METHOD, FUNCTIONAL]),
|
|
('size', (10, 20, 30), lambda: [DIM_ARG], [METHOD]),
|
|
('cat', [(2, 3, 4), (2, 3, 4)], lambda: [DIM_ARG], [FUNCTIONAL]),
|
|
('chunk', (10, 20, 30), lambda: [5, DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('gather', (10, 20), lambda: [DIM_ARG, idx_tensor((10, 20), 10)], [METHOD, FUNCTIONAL]),
|
|
('index_select', (10, 10), lambda: [DIM_ARG, idx_tensor((10,), 10)], [METHOD, FUNCTIONAL]),
|
|
('split', (10, 20), lambda: [5, DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('squeeze', (10, 1, 20, 1), lambda: [DIM_ARG], [METHOD, INPLACE_METHOD, FUNCTIONAL]),
|
|
('unbind', (2, 3, 4), lambda: [DIM_ARG], [FUNCTIONAL]),
|
|
('unsqueeze', (10, 20), lambda: [DIM_ARG], [METHOD, INPLACE_METHOD, FUNCTIONAL], 1),
|
|
('logcumsumexp', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('cumprod', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('cumsum', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('cummax', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('cummin', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('mean', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('median', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('nanmedian', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('mode', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('norm', (10, 20), lambda: [2, DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('prod', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('std', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('sum', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('var', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('kthvalue', (10, 20), lambda: [3, DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('max', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('min', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('sort', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('topk', (10, 20), lambda: [5, DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('renorm', (10, 20), lambda: [2, DIM_ARG, 1], [METHOD, INPLACE_METHOD, FUNCTIONAL]),
|
|
('index_add', (10, 10), lambda: [DIM_ARG, idx_tensor((10,), 10), torch.randn(10, 10)], [INPLACE_METHOD]),
|
|
('index_copy', (10, 10), lambda: [DIM_ARG, idx_tensor((10,), 10), torch.randn(10, 10)], [INPLACE_METHOD]),
|
|
('index_fill', (10, 10), lambda: [DIM_ARG, idx_tensor((10,), 10), 12], [INPLACE_METHOD]),
|
|
('scatter', (10, 10), lambda: [DIM_ARG, idx_tensor((10, 10), 10), torch.randn(10, 10)], [INPLACE_METHOD]),
|
|
('select', (10, 20), lambda: [DIM_ARG, 3], [METHOD]),
|
|
('unfold', (10, 20), lambda: [DIM_ARG, 5, 2], [METHOD]),
|
|
]
|
|
|
|
for decl in neg_dim_tests:
|
|
if len(decl) == 4:
|
|
name, tensor_arg, arg_constr, types = decl
|
|
extra_dim = 0
|
|
elif len(decl) == 5:
|
|
name, tensor_arg, arg_constr, types, extra_dim = decl
|
|
|
|
test_name = 'test_' + name + '_neg_dim'
|
|
|
|
assert not hasattr(TestTorch, test_name), "Duplicated test name: " + test_name
|
|
setattr(TestTorch, test_name, make_neg_dim_test(name, tensor_arg, arg_constr, types, extra_dim))
|
|
|
|
# TODO: these empy classes are temporarily instantiated for XLA compatibility
|
|
# once XLA updates their test suite it should be removed
|
|
class TestViewOps(TestCase):
|
|
pass
|
|
|
|
class TestTensorDeviceOps(TestCase):
|
|
pass
|
|
|
|
# Generates tests
|
|
# Note: test generation must be done at file scope, not within main, or
|
|
# pytest will fail.
|
|
add_neg_dim_tests()
|
|
instantiate_device_type_tests(TestViewOps, globals())
|
|
instantiate_device_type_tests(TestVitalSignsCuda, globals())
|
|
instantiate_device_type_tests(TestTensorDeviceOps, globals())
|
|
instantiate_device_type_tests(TestTorchDeviceType, globals())
|
|
instantiate_device_type_tests(TestDevicePrecision, globals(), except_for='cpu')
|
|
|
|
if __name__ == '__main__':
|
|
run_tests()
|