mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
This PR removes unnecessary "static" for C++ functions and variables in anonymous namespace as detected by clang-tidy. This enhances code readability. The related rules are planed to be enabled in follow-up PRs. Pull Request resolved: https://github.com/pytorch/pytorch/pull/165035 Approved by: https://github.com/Skylion007
218 lines
6.6 KiB
C++
218 lines
6.6 KiB
C++
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
|
|
#include <ATen/core/Tensor.h>
|
|
#include <ATen/Dispatch.h>
|
|
#include <ATen/TensorUtils.h>
|
|
|
|
#include <ATen/native/im2col.h>
|
|
#include <ATen/native/im2col_shape_check.h>
|
|
#include <c10/util/irange.h>
|
|
|
|
#ifndef AT_PER_OPERATOR_HEADERS
|
|
#include <ATen/Functions.h>
|
|
#include <ATen/NativeFunctions.h>
|
|
#else
|
|
#include <ATen/ops/col2im_native.h>
|
|
#include <ATen/ops/empty_like.h>
|
|
#include <ATen/ops/im2col_native.h>
|
|
#endif
|
|
|
|
// Note [im2col/col2im output padding]
|
|
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
// Our implementations of im2col and col2im take both the input height/width as
|
|
// well as a seemingly redundant output height/width. In principle, you could
|
|
// compute the output height/width by using the convolution shape formulas. So,
|
|
// what's up with that?
|
|
//
|
|
// The trouble arises when one runs the backward of a transposed convolution
|
|
// with output_padding >= stride. (BTW, output_padding is known as adj inside
|
|
// THNN.) Let's consider a simple case where we have kernel=2, dilation=2,
|
|
// stride=1, output_padding=1 for a 4x4 input:
|
|
//
|
|
// Input: X
|
|
//
|
|
// Output: X.X.
|
|
// ....
|
|
// X.X.
|
|
// ....
|
|
//
|
|
// If we compute backwards of output with a standard convolution on the output
|
|
// with the same parameters, we would end up with a 2x2 grad_input (because you
|
|
// can slide the stencil over to the right once and down once). But that is all
|
|
// out-of-bounds if you're computing backwards for a 1x1 input.
|
|
//
|
|
// "Now Edward," you might say, "the real problem is that you set output_padding
|
|
// >= stride, surely an error should have been raised in this case." To
|
|
// understand why it is useful to handle this case, we have to understand how we
|
|
// compute the weight gradient of a convolution. Suppose we have a convolution
|
|
// with kernel=2, stride=2 on a 5x5 input. Let us see all the contributions of
|
|
// weight[0][0] (which we have labeled w) in the output:
|
|
//
|
|
// Input: a.b.. Weight: w.
|
|
// ..... ..
|
|
// c.d..
|
|
// .....
|
|
// .....
|
|
//
|
|
// Output: [ aw+... bw+... ]
|
|
// [ cw+... dw+... ]
|
|
//
|
|
// From this diagram, it easy to see that we can compute the weight gradient
|
|
// by performing a *dilated* convolution between the input and the
|
|
// output gradients with kernel=2, dilation=2, stride=1. But there's a rub: if
|
|
// we do a dilated convolution directly, we'll end up with a 3x3 weight
|
|
// gradient, when we clearly wanted a 2x2. So how do we avoid going out
|
|
// of bounds? We could add a notion of 'output_padding' for non-transposed
|
|
// convolution, but another simple and effective fix is to just accept
|
|
// the desired output size directly, and compute only within those bounds.
|
|
//
|
|
//
|
|
// ALSO do vol2col
|
|
|
|
namespace at::native {
|
|
namespace {
|
|
|
|
void col2im_out_cpu_template(
|
|
Tensor& output,
|
|
const Tensor& input_,
|
|
IntArrayRef output_size,
|
|
IntArrayRef kernel_size,
|
|
IntArrayRef dilation,
|
|
IntArrayRef padding,
|
|
IntArrayRef stride) {
|
|
TORCH_CHECK(
|
|
output_size.size() == 2,
|
|
"It is expected output_size equals to 2, but got size ",
|
|
output_size.size());
|
|
|
|
TORCH_CHECK(
|
|
kernel_size.size() == 2,
|
|
"It is expected kernel_size equals to 2, but got size ",
|
|
kernel_size.size());
|
|
|
|
TORCH_CHECK(
|
|
dilation.size() == 2,
|
|
"It is expected dilation equals to 2, but got size ",
|
|
dilation.size());
|
|
|
|
TORCH_CHECK(
|
|
padding.size() == 2,
|
|
"It is expected padding equals to 2, but got size ",
|
|
padding.size());
|
|
|
|
TORCH_CHECK(
|
|
stride.size() == 2,
|
|
"It is expected stride equals to 2, but got size ",
|
|
stride.size());
|
|
|
|
int64_t output_height = output_size[0];
|
|
int64_t output_width = output_size[1];
|
|
int64_t kernel_height = kernel_size[0];
|
|
int64_t kernel_width = kernel_size[1];
|
|
int64_t dilation_height = dilation[0];
|
|
int64_t dilation_width = dilation[1];
|
|
int64_t pad_height = padding[0];
|
|
int64_t pad_width = padding[1];
|
|
int64_t stride_height = stride[0];
|
|
int64_t stride_width = stride[1];
|
|
|
|
col2im_shape_check(
|
|
input_,
|
|
Tensor(),
|
|
output_height,
|
|
output_width,
|
|
kernel_height,
|
|
kernel_width,
|
|
dilation_height,
|
|
dilation_width,
|
|
pad_height,
|
|
pad_width,
|
|
stride_height,
|
|
stride_width);
|
|
|
|
Tensor input = input_.contiguous();
|
|
|
|
bool batched_input = true;
|
|
if (input.dim() == 2) {
|
|
// Force batch
|
|
batched_input = false;
|
|
input = input.view({1, input.size(0), input.size(1)});
|
|
}
|
|
|
|
int64_t batch_size = input.size(0);
|
|
int64_t n_input_plane = input.size(1);
|
|
int64_t n_output_plane = n_input_plane / (kernel_width * kernel_height);
|
|
|
|
output.resize_({batch_size, n_output_plane, output_height, output_width});
|
|
|
|
AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES_AND3(kBFloat16, kHalf, kBool,
|
|
input.scalar_type(), "col2im_out_cpu", [&] {
|
|
Tensor input_n = Tensor();
|
|
Tensor output_n = Tensor();
|
|
|
|
int64_t height_col = (output_height + 2 * pad_height -
|
|
(dilation_height * (kernel_height - 1) + 1)) /
|
|
stride_height +
|
|
1;
|
|
int64_t width_col = (output_width + 2 * pad_width -
|
|
(dilation_width * (kernel_width - 1) + 1)) /
|
|
stride_width +
|
|
1;
|
|
|
|
for (const auto elt : c10::irange(batch_size)) {
|
|
input_n = input.select(0, elt);
|
|
output_n = output.select(0, elt);
|
|
|
|
col2im<scalar_t>(
|
|
input_n.const_data_ptr<scalar_t>(),
|
|
n_output_plane,
|
|
output_height,
|
|
output_width,
|
|
height_col,
|
|
width_col,
|
|
kernel_height,
|
|
kernel_width,
|
|
pad_height,
|
|
pad_width,
|
|
stride_height,
|
|
stride_width,
|
|
dilation_height,
|
|
dilation_width,
|
|
output_n.mutable_data_ptr<scalar_t>());
|
|
}
|
|
|
|
if (!batched_input) {
|
|
output.resize_({n_output_plane, output_height, output_width});
|
|
}
|
|
});
|
|
}
|
|
|
|
} // namespace
|
|
|
|
Tensor& col2im_out_cpu(const Tensor& input,
|
|
IntArrayRef output_size,
|
|
IntArrayRef kernel_size,
|
|
IntArrayRef dilation,
|
|
IntArrayRef padding,
|
|
IntArrayRef stride,
|
|
Tensor& output) {
|
|
col2im_out_cpu_template(
|
|
output, input, output_size, kernel_size, dilation, padding, stride);
|
|
return output;
|
|
}
|
|
|
|
Tensor col2im_cpu(
|
|
const Tensor& input,
|
|
IntArrayRef output_size,
|
|
IntArrayRef kernel_size,
|
|
IntArrayRef dilation,
|
|
IntArrayRef padding,
|
|
IntArrayRef stride) {
|
|
Tensor output = at::empty_like(input, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
|
|
|
|
col2im_out_cpu_template(
|
|
output, input, output_size, kernel_size, dilation, padding, stride);
|
|
return output;
|
|
}
|
|
|
|
} // namespace at::native
|