mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Partially addresses #123062 Ran lintrunner on - test/_test_bazel.py - test/ao - test/autograd test/backends test/benchmark_uitls test/conftest.py test/bottleneck_test test/cpp Pull Request resolved: https://github.com/pytorch/pytorch/pull/123369 Approved by: https://github.com/huydhn
75 lines
2.0 KiB
Python
75 lines
2.0 KiB
Python
"""Script to generate baseline values from PyTorch initialization algorithms"""
|
|
|
|
import sys
|
|
|
|
import torch
|
|
|
|
HEADER = """
|
|
#include <torch/types.h>
|
|
|
|
#include <vector>
|
|
|
|
namespace expected_parameters {
|
|
"""
|
|
|
|
FOOTER = "} // namespace expected_parameters"
|
|
|
|
PARAMETERS = "inline std::vector<std::vector<torch::Tensor>> {}() {{"
|
|
|
|
INITIALIZERS = {
|
|
"Xavier_Uniform": lambda w: torch.nn.init.xavier_uniform(w),
|
|
"Xavier_Normal": lambda w: torch.nn.init.xavier_normal(w),
|
|
"Kaiming_Normal": lambda w: torch.nn.init.kaiming_normal(w),
|
|
"Kaiming_Uniform": lambda w: torch.nn.init.kaiming_uniform(w),
|
|
}
|
|
|
|
|
|
def emit(initializer_parameter_map):
|
|
# Don't write generated with an @ in front, else this file is recognized as generated.
|
|
print("// @{} from {}".format("generated", __file__))
|
|
print(HEADER)
|
|
for initializer_name, weights in initializer_parameter_map.items():
|
|
print(PARAMETERS.format(initializer_name))
|
|
print(" return {")
|
|
for sample in weights:
|
|
print(" {")
|
|
for parameter in sample:
|
|
parameter_values = "{{{}}}".format(", ".join(map(str, parameter)))
|
|
print(f" torch::tensor({parameter_values}),")
|
|
print(" },")
|
|
print(" };")
|
|
print("}\n")
|
|
print(FOOTER)
|
|
|
|
|
|
def run(initializer):
|
|
torch.manual_seed(0)
|
|
|
|
layer1 = torch.nn.Linear(7, 15)
|
|
INITIALIZERS[initializer](layer1.weight)
|
|
|
|
layer2 = torch.nn.Linear(15, 15)
|
|
INITIALIZERS[initializer](layer2.weight)
|
|
|
|
layer3 = torch.nn.Linear(15, 2)
|
|
INITIALIZERS[initializer](layer3.weight)
|
|
|
|
weight1 = layer1.weight.data.numpy()
|
|
weight2 = layer2.weight.data.numpy()
|
|
weight3 = layer3.weight.data.numpy()
|
|
|
|
return [weight1, weight2, weight3]
|
|
|
|
|
|
def main():
|
|
initializer_parameter_map = {}
|
|
for initializer in INITIALIZERS.keys():
|
|
sys.stderr.write(f"Evaluating {initializer} ...\n")
|
|
initializer_parameter_map[initializer] = run(initializer)
|
|
|
|
emit(initializer_parameter_map)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|