Files
pytorch/torch/csrc/utils/python_arg_parser.cpp
Pian Pawakapan 4c007073e6 [dynamic shapes] DynamicInts prototype (#162194)
Initial prototype for dynamic int inputs, allows users to run with `torch.compile(f)(DynamicInt(4))`, compiling dynamically and using the underlying hint at runtime.

Current behavior:
- Also works in eager (mostly by subclassing int), as scalar input to torch functions, or numpy/math/etc. For example, `x = DynamicInt(3); torch.randn(x); torch.add(y, z, alpha=x); np.arange(x)` all act as if x = 3.
- Behavior for arithmetic ops is to return new DynamicInts rather than static ints; `DynamicInt(3) * 2 = DynamicInt(6)`. This is via SymNode magic methods, but coverage might not be 100% - for example, I had to explicitly override floordiv to avoid int casting. This is not necessarily the case for non-magic method ops (e.g. `math.cos(x)`). The alternative here is to int cast on all operations, but I opted for this for dynamism propagation in non-compiled regions.
- Doesn't ban fullgraph=False; DynamicInt objects might be leaked back to the user, but I guess this is fine, because they can be casted to ints when needed?
- Dynamo only allocates one symbol per DynamicInt; specifying the same DynamicInt for multiple inputs leads to input deduplication, and a guard installed.
- We don't raise on int specialization (in allowlist/maybe_mark_dynamic style) - but an easy change if needed.
- DynamicInts as nn.Module attributes are handled.
- We don't guard on the DynamicInt id, e.g. users can do the following without recompiling (maybe we should guard?)
```python
x = DynamicInt(4)
f(x)
f(1)
f(DynamicInt(3))  # same as f(3)
```

Follow-up work:
- Specifying shape constraints, either at the int-level, e.g.
```python
DynamicInt(64, name="s0", constraints=["s0 % 32 == 0", "s0 <= 1024"]
```
or at the compilation level, e.g. something like
```python
s0 = DynamicInt(64, name="s0")
s1 = DynamicInt(128, name="s1")
with some_compiler_config.dynamic_int_constraints(["s1 == 2*s0", "s0 % 32 == 0"]):
    f(s0, s1)
```
This should subsume the need for specifying derived SymInts?
- SymFloat support - currently it seems backed floats are specialized by the tensorify float pass, and there's no handling in inductor.
- Propagating dynamism in tensor constructors, e.g. `x = DynamicInt(4); torch.randn(x)` could annotate `_dynamo_dynamic_indices`.

Differential Revision: D81698719

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162194
Approved by: https://github.com/bobrenjc93
2025-09-18 23:26:28 +00:00

1998 lines
64 KiB
C++

#include <torch/csrc/utils/python_arg_parser.h>
#include <torch/csrc/Exceptions.h>
#include <torch/csrc/Layout.h>
#include <torch/csrc/MemoryFormat.h>
#include <torch/csrc/autograd/python_variable.h>
#include <torch/csrc/utils/invalid_arguments.h>
#include <torch/csrc/utils/python_strings.h>
#include <torch/csrc/utils/python_torch_function_mode.h>
#include <torch/csrc/utils/torch_dispatch_mode.h>
#include <ATen/ATen.h>
#include <ATen/PythonTorchFunctionTLS.h>
#include <ATen/TracerMode.h>
#include <c10/util/irange.h>
#include <sstream>
#include <stdexcept>
#include <string>
#include <unordered_map>
#include <vector>
namespace torch {
static std::unordered_map<std::string, ParameterType> type_map = {
{"Tensor", ParameterType::TENSOR},
{"Scalar", ParameterType::SCALAR},
{"int64_t", ParameterType::INT64},
{"SymInt", ParameterType::SYM_INT},
{"double", ParameterType::DOUBLE},
{"complex", ParameterType::COMPLEX},
{"TensorList", ParameterType::TENSOR_LIST},
{"c10::List<::std::optional<Tensor>>", ParameterType::TENSOR_LIST},
{"IntArrayRef", ParameterType::INT_LIST},
{"SymIntArrayRef", ParameterType::SYM_INT_LIST},
{"ArrayRef<double>", ParameterType::FLOAT_LIST},
{"Generator", ParameterType::GENERATOR},
{"bool", ParameterType::BOOL},
{"Storage", ParameterType::STORAGE},
{"PyObject*", ParameterType::PYOBJECT},
{"ScalarType", ParameterType::SCALARTYPE},
{"Layout", ParameterType::LAYOUT},
{"MemoryFormat", ParameterType::MEMORY_FORMAT},
{"QScheme", ParameterType::QSCHEME},
{"Device", ParameterType::DEVICE},
{"DeviceIndex", ParameterType::INT64},
{"Stream", ParameterType::STREAM},
{"std::string", ParameterType::STRING},
{"c10::string_view", ParameterType::STRING},
{"std::string_view", ParameterType::STRING},
{"::std::string_view", ParameterType::STRING},
{"Dimname", ParameterType::DIMNAME},
{"DimnameList", ParameterType::DIMNAME_LIST},
{"ScalarList", ParameterType::SCALAR_LIST},
{"DispatchKeySet", ParameterType::DISPATCH_KEY_SET},
};
// Default arg name translations for compatibility with NumPy.
//
// Example:
// ```python
// t = torch.randn(10,10)
// torch.sum(a=t, axis=0, keepdim=True)
// ```
//
// A vector is necessary, because we might need to try multiple values.
// In particular, NumPy sometimes uses "x" and sometimes "a" for the main input
// tensor. Rather than annotate each function separately with whether it should
// take "x" or "a", just try both.
//
// TODO: Allow individual functions to specify non-default translations:
// For example, `torch.pow` should translate "exponent" to "x2".
static const std::unordered_map<std::string, std::vector<std::string>>
numpy_compatibility_arg_names = {
{"dim", {"axis"}},
{"keepdim", {"keepdims"}},
{"input", {"x", "a", "x1"}},
{"other", {"x2"}},
};
// TODO: remove this. This is a temporary list of functions that allow Python
// numbers to bind to Tensors. Some binary ops have separate Tensor and Scalar
// overloads and binding to the Tensor overload with a number of a different
// type will trigger a type error.
//
// If you modify this, you will need to adjust the blocklist in
// tools/pyi/gen_pyi.py (and add hardcoded signatures for these
// functions.)
bool should_allow_numbers_as_tensors(const std::string& name) {
static std::unordered_set<std::string> allowed = {
"add",
"add_",
"add_out",
"div",
"div_",
"div_out",
"divide",
"divide_",
"divide_out", // alias of div
"mul",
"mul_",
"mul_out",
"multiply",
"multiply_",
"multiply_out", // alias of mul
"sub",
"sub_",
"sub_out",
"subtract",
"subtract_",
"subtract_out", // alias of sub
"true_divide",
"true_divide_",
"true_divide_out",
"to",
"_to_copy",
"copy_",
"copy",
"floor_divide",
"floor_divide_",
"floor_divide_out",
"_conj"}; // _conj needed because mul.Tensor backward calls it
return allowed.find(name) != allowed.end();
}
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
FunctionParameter::FunctionParameter(const std::string& fmt, bool keyword_only)
: optional(false),
allow_none(false),
keyword_only(keyword_only),
size(0),
default_scalar(0) {
auto space = fmt.find(' ');
TORCH_CHECK(
space != std::string::npos, "FunctionParameter(): missing type: " + fmt);
auto type_str = fmt.substr(0, space);
auto question = type_str.find('?');
if (question != std::string::npos) {
allow_none = true;
type_str = type_str.substr(0, question);
}
// Parse and remove brackets from type_str
auto bracket = type_str.find('[');
if (bracket != std::string::npos) {
auto size_str =
type_str.substr(bracket + 1, type_str.length() - bracket - 2);
size = atoi(size_str.c_str());
type_str = type_str.substr(0, bracket);
}
auto name_str = fmt.substr(space + 1);
auto it = type_map.find(type_str);
TORCH_CHECK(
it != type_map.end(),
"FunctionParameter(): invalid type string: " + type_str);
type_ = it->second;
auto eq = name_str.find('=');
if (eq != std::string::npos) {
name = name_str.substr(0, eq);
optional = true;
set_default_str(name_str.substr(eq + 1));
} else {
name = name_str;
}
python_name = THPUtils_internString(name);
auto np_compat_it = numpy_compatibility_arg_names.find(name);
if (np_compat_it != numpy_compatibility_arg_names.end()) {
for (const auto& str : np_compat_it->second) {
numpy_python_names.push_back(THPUtils_internString(str));
}
}
}
auto handle_torch_function_getter(
THPVariable* self,
const std::string& property_name) -> PyObject* {
py::object torch_api = PyObject_FastGetAttrString(
THPVariableClass, (char*)property_name.c_str());
std::string module_name = "torch.Tensor." + property_name;
return handle_torch_function(
(PyObject*)self,
"__get__",
nullptr,
nullptr,
torch_api.ptr(),
module_name);
}
auto handle_torch_function_setter(
THPVariable* self,
const std::string& property_name,
PyObject* value) -> int {
py::object torch_api = PyObject_FastGetAttrString(
THPVariableClass, (char*)property_name.c_str());
std::string module_name = "torch.Tensor." + property_name;
if (value != nullptr) {
py::tuple args_ = py::make_tuple(py::handle(value));
handle_torch_function(
(PyObject*)self,
"__set__",
args_.ptr(),
nullptr,
torch_api.ptr(),
module_name);
} else {
handle_torch_function(
(PyObject*)self,
"__delete__",
nullptr,
nullptr,
torch_api.ptr(),
module_name);
}
return 0;
}
// Combines self and args into one tuple.
static auto combine_self_args(PyObject* self, PyObject* args) -> py::tuple {
if (args == nullptr) {
return py::make_tuple(py::handle(self));
} else if (self == nullptr) {
return py::reinterpret_borrow<py::tuple>(args);
}
auto py_args = py::reinterpret_borrow<py::tuple>(args);
size_t n = py_args.size();
auto args_ = py::tuple(n + 1);
args_[0] = py::handle(self);
for (const auto i : c10::irange(n)) {
args_[i + 1] = py_args[i];
}
return args_;
}
auto handle_torch_function(
PyObject* self,
const std::string& func_name,
PyObject* args,
PyObject* kwargs,
PyObject* torch_api,
const std::string& module_name) -> PyObject* {
py::object torch_api_function =
PyObject_FastGetAttrString(torch_api, (char*)func_name.c_str());
TORCH_INTERNAL_ASSERT(
torch_api_function.ptr() != nullptr, "torch API function must exist");
py::tuple args_ = combine_self_args(self, args);
return handle_torch_function_no_python_arg_parser(
{self},
args_.ptr(),
kwargs,
func_name.c_str(),
torch_api_function.ptr(),
module_name.c_str(),
TorchFunctionName::TorchFunction);
}
// Note: [Overloaded args]
// An overloaded arg may be one of the following:
// - an instance of an object that has a __torch_function__ method
// - an instance of an object that has a __torch_dispatch__ classmethod
// - a class type that has a __torch_dispatch__ classmethod
//
// This function returns the type of the arg (if the arg is an instance),
// otherwise, it returns the arg.
static PyObject* get_type_of_overloaded_arg(PyObject* obj_or_type) {
if (PyType_Check(obj_or_type)) {
return obj_or_type;
}
return (PyObject*)Py_TYPE(obj_or_type);
}
static py::object maybe_get_registered_torch_dispatch_rule(
PyObject* torch_api_function,
const py::object& torch_dispatch_object) {
// This is a static object, so we must leak the Python object
// "release()" is used here to preserve 1 refcount on the
// object, preventing it from ever being de-allocated by CPython.
#if IS_PYBIND_2_13_PLUS
PYBIND11_CONSTINIT static py::gil_safe_call_once_and_store<py::object>
storage;
py::object find_torch_dispatch_rule =
storage
.call_once_and_store_result([]() -> py::object {
return py::module_::import("torch._library.simple_registry")
.attr("find_torch_dispatch_rule");
})
.get_stored();
#else
static const py::handle find_torch_dispatch_rule =
py::object(py::module_::import("torch._library.simple_registry")
.attr("find_torch_dispatch_rule"))
.release();
#endif
auto result = find_torch_dispatch_rule(
py::reinterpret_borrow<py::object>(torch_api_function),
py::type::handle_of(torch_dispatch_object));
return result;
}
// NB: Invariant: if you run this function, you MUST test if the returned
// py::object is nullptr, as this will occur WITHOUT error condition being set.
// And if an error happens, this function is responsible for throwing a C++
// error.
static py::object dispatch_on_subclass(
PyObject* args,
PyObject* kwargs,
at::ArrayRef<PyObject*> overloaded_args,
py::tuple py_types,
PyObject* torch_api_function,
bool is_torch_function,
const char* torch_function_name_str,
std::optional<c10::impl::TorchDispatchModeKey> maybe_mode_key =
std::nullopt) {
py::object ret;
for (auto& arg : overloaded_args) {
py::object torch_function =
PyObject_FastGetAttrString(arg, torch_function_name_str);
if (!torch_function) {
TORCH_INTERNAL_ASSERT(0);
}
if (torch_function.ptr() == torch::disabled_torch_dispatch_impl()) {
// During __torch_dispatch__, don't dispatch on args with a disabled
// torch_dispatch. This code runs before infra modes, so we need to make
// sure that infra modes can run first. (In theory, maybe we can rearrange
// things so that infra modes are *always* attempted first, and just
// return NotImplemented when there are any user subclasses. Maybe that
// would fix this problem?)
continue;
}
// See https://github.com/pytorch/pytorch/issues/63767
if (is_torch_function &&
PyObject_FastGetAttrString(torch_function.ptr(), "__self__")
.is(py::handle(arg)) &&
torch_function.ptr() != torch::disabled_torch_function_impl()) {
TORCH_WARN_ONCE(
"Defining your `",
torch_function_name_str,
"` as a plain method is deprecated ",
"and will be an error in future, please define it as a classmethod.");
}
if (!is_torch_function) {
auto maybe_torch_dispatch_rule = maybe_get_registered_torch_dispatch_rule(
torch_api_function, py::reinterpret_borrow<py::object>(arg));
if (!maybe_torch_dispatch_rule.is_none()) {
torch_function = maybe_torch_dispatch_rule;
auto py_arg = py::reinterpret_borrow<py::object>(arg);
ret = py::reinterpret_steal<py::object>(PyObject_CallFunctionObjArgs(
torch_function.ptr(),
py::type::handle_of(py_arg).ptr(),
torch_api_function,
py_types.ptr(),
args,
kwargs,
NULL));
if (ret.ptr() == nullptr) {
throw python_error();
}
if (ret.ptr() != Py_NotImplemented) {
break;
}
}
}
ret = py::reinterpret_steal<py::object>(PyObject_CallFunctionObjArgs(
torch_function.ptr(),
torch_api_function,
py_types.ptr(),
args,
kwargs,
NULL));
if (ret.ptr() == nullptr) {
throw python_error();
}
if (ret.ptr() != Py_NotImplemented) {
// Return the reference to the result. This also covers the case where
// ret is NULL and __torch_function__/__torch_dispatch raised an
// exception, which we throw below
break;
}
}
// NB: PyErr_Occurred is NOT set here, this means NO dispatch happened
return ret;
}
static std::tuple<py::object, py::object> dispatch_on_mode(
PyObject* args,
PyObject* kwargs,
py::tuple py_types,
PyObject* torch_api_function,
bool is_torch_function,
const char* torch_function_name_str) {
// Disable mode on the inside; this makes for a more user-friendly
// experience if you try to, e.g., print your tensors.
std::optional<torch::overrides::StashTorchFunctionModeGuard> tf_g;
std::optional<torch_dispatch_mode::StashTorchDispatchModeGuard> td_g;
py::object mode_obj;
// NB: We only really need keep the mode_obj live if the function call
// fails for error reporting, but whatever, Python refcounts are cheap
if (is_torch_function) {
tf_g.emplace();
mode_obj = py::reinterpret_borrow<py::object>(
tf_g->get_cur_mode()->ptr(getPyInterpreter()));
} else {
td_g.emplace();
mode_obj = py::reinterpret_borrow<py::object>(
td_g->get_cur_mode()->ptr(getPyInterpreter()));
}
py::object torch_function =
PyObject_FastGetAttrString(mode_obj.ptr(), torch_function_name_str);
if (!torch_function) {
TORCH_INTERNAL_ASSERT(0);
}
TORCH_INTERNAL_ASSERT(py_types.ptr() != nullptr);
TORCH_INTERNAL_ASSERT(args != nullptr);
TORCH_CHECK(
PyObject_FastGetAttrString(torch_function.ptr(), "__self__").is(mode_obj),
"Defining your mode's `",
torch_function_name_str,
"` as a classmethod is not supported, please make it a plain method");
if (!is_torch_function) {
auto maybe_torch_dispatch_rule =
maybe_get_registered_torch_dispatch_rule(torch_api_function, mode_obj);
if (!maybe_torch_dispatch_rule.is_none()) {
auto ret = py::reinterpret_steal<py::object>(PyObject_CallFunctionObjArgs(
maybe_torch_dispatch_rule.ptr(),
mode_obj.ptr(),
torch_api_function,
py_types.ptr(),
args,
kwargs,
NULL));
if (ret.ptr() == nullptr) {
throw python_error();
}
return std::make_tuple(ret, mode_obj);
}
}
// Blegh. This accidentally works in PyObject_CallFunctionObjArgs below
// because the nullptr terminates the argument list ick ick ick.
py::object ret;
if (kwargs == nullptr) {
ret = py::reinterpret_steal<py::object>(PyObject_CallMethod(
mode_obj.ptr(),
torch_function_name_str,
"OOO",
torch_api_function,
py_types.ptr(),
args));
} else {
ret = py::reinterpret_steal<py::object>(PyObject_CallMethod(
mode_obj.ptr(),
torch_function_name_str,
"OOOO",
torch_api_function,
py_types.ptr(),
args,
kwargs));
}
if (ret.ptr() == nullptr) {
throw python_error();
}
return std::make_tuple(ret, mode_obj);
}
// See Note: [Overloaded args] for what they hold
auto handle_torch_function_no_python_arg_parser(
at::ArrayRef<PyObject*> overloaded_args,
PyObject* args,
PyObject* kwargs,
const char* func_name,
PyObject* torch_api_function,
const char* module_name,
TorchFunctionName torch_function_name) -> PyObject* {
const char* torch_function_name_str = nullptr;
switch (torch_function_name) {
case TorchFunctionName::TorchFunction:
torch_function_name_str = "__torch_function__";
break;
case TorchFunctionName::TorchDispatch:
torch_function_name_str = "__torch_dispatch__";
break;
default:
TORCH_INTERNAL_ASSERT(0, static_cast<int>(torch_function_name));
}
// overloaded_args already all have unique types
// nb: modes don't go in the overloaded types list, as they are not
// necessarily types
std::vector<py::object> overloaded_types;
overloaded_types.reserve(overloaded_args.size());
for (auto& arg : overloaded_args) {
overloaded_types.push_back(
py::reinterpret_borrow<py::object>(get_type_of_overloaded_arg(arg)));
}
py::tuple py_types = py::cast(overloaded_types);
py::object ret;
py::object mode_obj;
// Step 1: Try to dispatch based on the mode stack, *ignoring* infra
// torch_dispatch modes.
const bool is_torch_function =
torch_function_name == TorchFunctionName::TorchFunction;
const auto is_mode_active = [&]() {
return is_torch_function
? at::impl::torch_function_mode_enabled()
// Check if any *user* torch_dispatch modes are active (not including
// fake and proxy modes, which are special)
: c10::impl::dispatch_mode_enabled();
};
// Note [__torch_dispatch__ dispatching order]
// The high-level idea motivating the dispatching
// order below is that: (1) modes get higher dispatch precedence over
// subclasses (2) "user" modes/subclasses get higher dispatch precedence over
// "infra" modes/subclasses.
//
// To give a complete example: let's say we are running torch.compile, with
// the following "user" modes and subclasses:
// mode_stack: [ModeA]
// user_args: [MyWrapperSubclassB(torchTensor)]
// During tracing in AOTAutograd tracing, we use some additional infra modes
// and subclasses to perform tracing:
// FunctionalTensorMode, ProxyTorchDispatchMode, FakeTensorMode,
// FunctionalTensor, FakeTensor
// The modified mode stack and tracing arguments will look like this:
// mode_stack (user modes): [ModeA]
// mode_stack (infra modes): [
// FunctionalTensorMode, ProxyTorchDispatchMode, FakeTensorMode
// ]
// tracing_args: [
// MyWrapperSubclassB(FunctionalTensor(_to_functional_tensor(FakeTensor)))
// ]
// And the dispatching order that we want is as follows:
// (1) ModeA.__torch_dispatch__ (user modes highest)
// (2) MyWrapperSubclassB.__torch_dispatch__ (user subclasses next highest)
// (3) FunctionalTensorMode.__torch_dispatch__ (infra modes next highest)
// (4) ProxyTorchDispatchMode.__torch_dispatch__ (infra modes next highest)
// (5) FakeTensorMode.__torch_dispatch__ (infra modes next highest)
// (6) FakeTensor.__torch_fake_dispatch__ (infra subclasses next highest)
// Why does do FunctionalTensor and FakeTensor even need to be special-cased
// in the ordering?
// In theory we could remove their __torch_dispatch__, but both of these
// subclasses override sizes/strides metadata calls with __torch_dispatch__,
// which would mean a mode would be **required** to access their metadata.
if (is_mode_active()) {
// Step 1: Try to dispatch on any user TorchDispatchModes (including infra
// modes, which will always be at the bottom of the mode stack).
std::tie(ret, mode_obj) = dispatch_on_mode(
args,
kwargs,
py_types,
torch_api_function,
is_torch_function,
torch_function_name_str);
}
// Step 2: Try to dispatch based on any user subclasses,
// ignoring any subclasses that have a _mode_key field
// (corresponding to infra subclasses)
// Note: user subclasses should always run *before* infra modes like
// proxy/fake. This is handles by having proxy/fake modes return
// NotImplemented when they see a user subclass that they don't understand.
if (ret.ptr() == nullptr || ret.ptr() == Py_NotImplemented) {
auto curr_ret = dispatch_on_subclass(
args,
kwargs,
overloaded_args,
py_types,
torch_api_function,
is_torch_function,
torch_function_name_str);
if (curr_ret.ptr() != nullptr) {
ret = curr_ret;
}
}
if (ret.ptr() == nullptr) {
// We didn't successfully dispatch anything, this should be impossible
TORCH_INTERNAL_ASSERT(
0,
"dispatch_on_subclass called with NO overloaded args that actually triggered dispatch, "
"perhaps there is a divergence in how you detect torch function/dispatch and how overloaded args is "
"computed? overloaded_args = ",
overloaded_args,
", is_mode_active = ",
is_mode_active());
} else if (ret.ptr() == Py_NotImplemented) {
// all __torch_function__ implementations in overloaded_args
// returned NotImplemented, so we raise a TypeError.
std::stringstream ss;
ss << "Multiple dispatch failed for '";
if (module_name && func_name) {
ss << module_name << "." << func_name;
} else {
py::handle fn = torch_api_function;
ss << py::str(fn.attr("__module__")) << "."
<< py::str(fn.attr("__name__"));
}
ss << "'; all " << torch_function_name_str
<< " handlers returned NotImplemented:\n\n";
if (mode_obj) {
ss << " - mode object " << py::repr(mode_obj) << "\n";
}
for (auto& arg : overloaded_args) {
ss << " - tensor subclass " << py::repr(get_type_of_overloaded_arg(arg))
<< "\n";
}
ss << "\nFor more information, try re-running with TORCH_LOGS=not_implemented";
const std::string& tmp = ss.str();
PyErr_SetString(PyExc_TypeError, tmp.c_str());
throw python_error();
}
return ret.release().ptr();
}
auto handle_torch_function(
PythonArgs& r,
PyObject* self,
PyObject* args,
PyObject* kwargs,
PyObject* torch_api,
const char* module_name,
const char* func_name_override) -> PyObject* {
py::object torch_api_function = PyObject_FastGetAttrString(
torch_api,
(char*)(func_name_override ? func_name_override
: r.get_func_name().c_str()));
TORCH_INTERNAL_ASSERT(
torch_api_function.ptr() != nullptr, "torch API function must exist");
py::tuple args_ = combine_self_args(self, args);
return handle_torch_function_no_python_arg_parser(
r.overloaded_args,
args_.ptr(),
kwargs,
r.get_func_name().c_str(),
torch_api_function.ptr(),
module_name);
}
auto handle_torch_function(
PythonArgs& r,
PyObject* args,
PyObject* kwargs,
PyObject* torch_api,
const char* module_name,
const char* func_name_override) -> PyObject* {
return handle_torch_function(
r, nullptr, args, kwargs, torch_api, module_name, func_name_override);
}
auto handle_torch_function_indexing(
PyObject* self,
PyObject* index,
PyObject* val) -> PyObject* {
const char* func_name = (val == nullptr) ? "__getitem__" : "__setitem__";
py::object index_tup;
if (PyTuple_Check(index)) {
index_tup = py::reinterpret_borrow<py::object>(index);
} else {
index_tup = py::make_tuple(py::handle(index));
}
std::vector<PyObject*> overridable_args;
is_tensor_and_append_overloaded(self, &overridable_args);
auto size = PyTuple_GET_SIZE(index_tup.ptr());
for (auto i : c10::irange(size)) {
auto* obj = PyTuple_GetItem(index_tup.ptr(), i);
auto r = is_tensor_and_append_overloaded(obj, &overridable_args);
if (!r && PySequence_Check(obj)) {
auto inner_size = PySequence_Length(obj);
if (inner_size < 0) {
// PySequence_Length failed, but we continue as this is optional
// optimization
PyErr_Clear();
continue;
}
for (auto j : c10::irange(inner_size)) {
THPObjectPtr inner_obj(PySequence_GetItem(obj, j));
if (inner_obj.get()) {
is_tensor_and_append_overloaded(inner_obj.get(), &overridable_args);
}
}
}
}
if (val != nullptr) {
is_tensor_and_append_overloaded(val, &overridable_args);
}
py::object func =
PyObject_FastGetAttrString(THPVariableClass, (char*)func_name);
py::object args = (val == nullptr)
? py::make_tuple(py::handle(self), py::handle(index))
: py::make_tuple(py::handle(self), py::handle(index), py::handle(val));
return handle_torch_function_no_python_arg_parser(
overridable_args,
args.ptr(),
nullptr,
func_name,
func.ptr(),
"torch.Tensor");
}
/*
* obj has a __torch_function__ implementation and may either be a
* subclass of Tensor or a Tensor-like duck type. We may need to
* append this object to the overloaded_args vector, which tracks all
* of the arguments with distinct __torch_function__ implementations
* we've seen so far.
*
* If this is the first argument we've seen with __torch_function__
* defined, we unconditionally add obj to the overloaded_args vector.
*
* If we've already seen arguments with __torch_function__ defined,
* then we first need to check if obj is the same type as any of the
* entries in overloaded_args. If so, we can ignore obj since we
* already have an entry in overloaded_args with the same
* __torch_function__ implementation.
*
* If it's a different type, we then need to check if it's a subclass
* of one of the types we've already seen. If so, we need to insert an
* entry in overloaded_args for this type with higher precedence than
* the superclass.
*
* See torch._overrides._get_overloaded_args for the equivalent
* function in the Python __torch_function__ implementation.
*
* The precedence-determining algorithm implemented in this function is
* described in NEP-0018:
* https://numpy.org/neps/nep-0018-array-function-protocol.html
*
* 'overloaded_args' is a raw pointer to a vector of pybind11 handles
* that have distinct __torch_function__ implementations, in order of calling
* precedence.
*
* 'obj' is an object to check for a __torch_function__ implementation
*
* If changing this file in a way that can affect the __torch_function__
* overhead, please report the benchmarks in 'benchmarks/overrides_benchmark'.
* See the instructions in the 'README.md' in that directory.
*
*/
static void append_overloaded_arg(
std::vector<PyObject*>* overloaded_args,
PyObject* obj,
bool obj_is_type) {
bool class_not_seen_yet = true;
PyObject* obj_type = obj_is_type ? obj : (PyObject*)Py_TYPE(obj);
for (auto& arg : *overloaded_args) {
if (obj_type == get_type_of_overloaded_arg(arg)) {
// obj is the same type as another parameter we've seen in a prior
// iteration of the loop over parameters so we already have an entry
// with the proper __torch_function__ implementation to call, so skip
// this parameter
class_not_seen_yet = false;
break;
}
}
if (class_not_seen_yet) {
auto arg_index = overloaded_args->size();
for (const auto j : c10::irange(arg_index)) {
if (PyObject_IsSubclass(
obj_type, get_type_of_overloaded_arg((*overloaded_args)[j]))) {
// obj is a subclass of another object we've seen already so its
// __torch_function__ should be called first, therefore we
// insert it into overloaded_args before the superclass
arg_index = j;
break;
}
}
// add object to overloaded_args. If it's a subclass of another class
// we've already seen it will be inserted before the superclass,
// otherwise it will be inserted at the end of the array
overloaded_args->insert(
overloaded_args->begin() + static_cast<long>(arg_index), obj);
}
}
void append_overloaded_tensor(
std::vector<PyObject*>* overloaded_args,
PyObject* obj) {
append_overloaded_arg(overloaded_args, obj, /*obj_is_type*/ false);
}
void append_overloaded_type(
std::vector<PyObject*>* overloaded_args,
PyObject* obj) {
append_overloaded_arg(overloaded_args, obj, /*obj_is_type*/ true);
}
bool is_tensor_and_append_overloaded(
PyObject* obj,
std::vector<PyObject*>* overloaded_args) {
if (THPVariable_CheckExact(obj)) {
// torch.Tensor instances (not subclasses, except for Parameter)
return true;
}
if (check_has_torch_function(obj, /*ignore_mode*/ true)) {
// tensor subclasses and unrelated objects with __torch_function__
append_overloaded_tensor(overloaded_args, obj);
return true;
} else if (THPVariable_Check(obj)) {
// tensor subclasses without __torch_function__
return true;
}
return false;
}
static bool is_scalar_list(
PyObject* obj,
std::vector<PyObject*>* overloaded_args = nullptr) {
auto tuple = six::isTuple(obj);
if (!(tuple || PyList_Check(obj))) {
return false;
}
// NOLINTNEXTLINE(bugprone-branch-clone)
const auto size = tuple ? PyTuple_GET_SIZE(obj) : PyList_GET_SIZE(obj);
bool has_torch_func = false;
for (const auto idx : c10::irange(size)) {
PyObject* iobj =
tuple ? PyTuple_GET_ITEM(obj, idx) : PyList_GET_ITEM(obj, idx);
// Check if this element has torch function
if (overloaded_args &&
check_has_torch_function(iobj, /*ignore_mode*/ true)) {
append_overloaded_arg(overloaded_args, iobj, /*obj_is_type*/ false);
has_torch_func = true;
}
if (!THPUtils_checkScalar(iobj) && !has_torch_func) {
return false;
}
}
return true;
}
bool is_tensor_list_and_append_overloaded(
PyObject* obj,
std::vector<PyObject*>* overloaded_args,
size_t argnum,
bool throw_error) {
auto tuple = six::isTuple(obj);
if (!(tuple || PyList_Check(obj))) {
return false;
}
// NOLINTNEXTLINE(bugprone-branch-clone)
const auto size = tuple ? PyTuple_GET_SIZE(obj) : PyList_GET_SIZE(obj);
for (long idx = 0; idx < size; idx++) {
PyObject* iobj =
tuple ? PyTuple_GET_ITEM(obj, idx) : PyList_GET_ITEM(obj, idx);
if (!is_tensor_and_append_overloaded(iobj, overloaded_args)) {
if (throw_error) {
TORCH_CHECK_TYPE(
false,
"expected Tensor as element ",
idx,
" in argument ",
argnum,
", but got ",
Py_TYPE(iobj)->tp_name);
}
return false;
}
}
return true;
}
static bool is_float_or_symfloat(PyObject* obj) {
if (torch::is_symfloat(py::handle(obj))) {
return true;
}
if (THPUtils_checkDouble(obj)) {
return true;
}
return false;
}
static bool is_float_or_complex_list(
PyObject* obj,
std::vector<PyObject*>* overloaded_args = nullptr) {
auto tuple = six::isTuple(obj);
if (!(tuple || PyList_Check(obj))) {
return false;
}
// NOLINTNEXTLINE(bugprone-branch-clone)
const auto size = tuple ? PyTuple_GET_SIZE(obj) : PyList_GET_SIZE(obj);
bool has_torch_func = false;
for (long idx = 0; idx < size; idx++) {
PyObject* iobj =
tuple ? PyTuple_GET_ITEM(obj, idx) : PyList_GET_ITEM(obj, idx);
// Check if this element has torch function
if (overloaded_args &&
check_has_torch_function(iobj, /*ignore_mode*/ true)) {
append_overloaded_arg(overloaded_args, iobj, /*obj_is_type*/ false);
has_torch_func = true;
}
// For the first element, do the original type checking
if (idx == 0) {
if (!is_float_or_symfloat(iobj) && !PyComplex_Check(iobj) &&
!has_torch_func) {
return false;
}
}
}
return true;
}
static bool is_int_or_symint(PyObject* obj) {
// Call checkLong first so that actual ints go fast.
if (THPUtils_checkLong(obj)) {
return true;
}
// THPUtils_checkIndex may call __index__ or __int__
// which may have side effects if obj is a symint node
// so we do `is_symint` check first
if (torch::is_symint(py::handle(obj))) {
return true;
}
if (torch::is_dynint(py::handle(obj))) {
return true;
}
// FakeTensor(..., size=()) is qualified for SymInt param,
// but we can't go via __index__ (below) as we would normally
// do for regular tensors, because __index__ first forces a
// conversion into an int, which in general you cannot do
// if you have an unbacked SymInt. So this fastpath ensures
// that we still allow for fake tensors in this case, but
// for regular tensors it's redundant with the test below.
if (THPVariable_Check(obj)) {
auto& var = THPVariable_Unpack(obj);
if (TORCH_GUARD_OR_FALSE(var.sym_numel().sym_eq(1)) &&
at::isIntegralType(var.dtype().toScalarType(), /*include_bool*/ true)) {
return true;
}
}
if (THPUtils_checkIndex(obj)) {
return true;
}
return false;
}
static bool is_int_or_symint_list(
PyObject* obj,
int broadcast_size,
int64_t* failed_idx = nullptr,
std::vector<PyObject*>* overloaded_args = nullptr) {
const bool is_tuple = PyTuple_Check(obj);
if (is_tuple || PyList_Check(obj)) {
const auto size = is_tuple ? PyTuple_GET_SIZE(obj) : PyList_GET_SIZE(obj);
if (size == 0) {
return true;
}
// Check all elements, not just the first one, when looking for torch
// functions
bool has_torch_func = false;
for (Py_ssize_t idx = 0; idx < size; idx++) {
PyObject* item_ptr =
is_tuple ? PyTuple_GET_ITEM(obj, idx) : PyList_GET_ITEM(obj, idx);
// Check if this element has torch function
if (overloaded_args &&
check_has_torch_function(item_ptr, /*ignore_mode*/ true)) {
append_overloaded_arg(overloaded_args, item_ptr, /*obj_is_type*/ false);
has_torch_func = true;
}
// For the first element, do the original type checking
if (idx == 0) {
if (is_int_or_symint(item_ptr)) {
continue;
}
// NOTE: JIT tracer allows arbitrary scalar tensors to act as ints
// in an intlist argument. Even float or complex scalar tensors.
bool r =
(jit::tracer::isTracing() && THPVariable_Check(item_ptr) &&
THPVariable_Unpack(item_ptr).sizes().empty());
if (!r && failed_idx != nullptr) {
*failed_idx = 0;
}
if (!r && !has_torch_func) {
return false;
}
}
}
return true;
}
// if a size is specified (e.g. IntArrayRef[2]) we also allow passing a single
// int
return broadcast_size > 0 && is_int_or_symint(obj);
}
// argnum is needed for raising the TypeError, it's used in the error message.
auto FunctionParameter::check(
PyObject* obj,
std::vector<PyObject*>& overloaded_args,
int argnum,
int64_t* failed_idx) -> bool {
if (_check(obj, overloaded_args, argnum, failed_idx)) {
return true;
}
// NB: This will not detect torch function inside elements of a list. So
// you still have to handle that manually
// NB: torch function on Tensor subclasses NOT eligible here, you handled
// that internally
if (check_has_torch_function(obj, /*ignore_mode*/ true) &&
!THPVariable_Check(obj)) {
// unrelated objects with __torch_function__
append_overloaded_arg(&overloaded_args, obj, /*obj_is_type*/ false);
return true;
}
return false;
}
auto FunctionParameter::_check(
PyObject* obj,
std::vector<PyObject*>& overloaded_args,
int argnum,
int64_t* failed_idx) -> bool {
switch (type_) {
case ParameterType::TENSOR: {
if (is_tensor_and_append_overloaded(obj, &overloaded_args)) {
return true;
}
if (allow_numbers_as_tensors) {
return THPUtils_checkScalar(obj);
}
return false;
}
case ParameterType::SCALAR:
if (THPUtils_checkScalar(obj)) {
return true;
}
[[fallthrough]];
case ParameterType::COMPLEX:
if (PyComplex_Check(obj)) {
return true;
}
[[fallthrough]];
case ParameterType::DOUBLE: {
if (is_float_or_symfloat(obj)) {
return true;
}
if (THPVariable_Check(obj)) {
const auto& var = THPVariable_Unpack(obj);
return !var.requires_grad() && var.dim() == 0;
}
if (torch::is_symfloat(py::handle(obj)) ||
torch::is_symint(py::handle(obj)) ||
torch::is_dynint(py::handle(obj))) {
// This will induce a guard
return true;
}
return false;
}
case ParameterType::INT64: {
if (THPUtils_checkLong(obj)) {
return true;
}
if (THPVariable_Check(obj)) {
const auto& var = THPVariable_Unpack(obj);
return at::isIntegralType(var.scalar_type(), /*includeBool=*/false) &&
!var.requires_grad() && var.dim() == 0;
}
if (torch::is_symint(py::handle(obj)) ||
torch::is_dynint(py::handle(obj))) {
// This will induce a guard
return true;
}
return false;
}
case ParameterType::DIMNAME:
return THPUtils_checkDimname(obj);
case ParameterType::DIMNAME_LIST: {
if (THPUtils_checkDimnameList(obj)) {
return true;
}
// if a size is specified (e.g. DimnameList[1]) we also allow passing a
// single Dimname
return size == 1 && THPUtils_checkDimname(obj);
}
case ParameterType::TENSOR_LIST: {
return is_tensor_list_and_append_overloaded(
obj, &overloaded_args, argnum, true /* throw_error */);
}
case ParameterType::FLOAT_LIST:
return is_float_or_complex_list(obj, &overloaded_args);
case ParameterType::GENERATOR:
return THPGenerator_Check(obj);
case ParameterType::BOOL:
return PyBool_Check(obj);
case ParameterType::STORAGE:
return isStorage(obj);
case ParameterType::PYOBJECT:
return true;
case ParameterType::SCALARTYPE:
return THPDtype_Check(obj) || THPPythonScalarType_Check(obj);
case ParameterType::LAYOUT:
return THPLayout_Check(obj);
case ParameterType::MEMORY_FORMAT:
return THPMemoryFormat_Check(obj);
case ParameterType::QSCHEME:
return THPQScheme_Check(obj);
case ParameterType::DEVICE:
// Allow symint to be passed in as device, but we'll specialize and
// guard in this case.
return THPUtils_checkLong(obj) || THPUtils_checkString(obj) ||
THPDevice_Check(obj) || torch::is_symint(py::handle(obj)) ||
torch::is_dynint(py::handle(obj));
case ParameterType::STREAM:
return THPStream_Check(obj);
case ParameterType::STRING:
return THPUtils_checkString(obj);
case ParameterType::SCALAR_LIST:
return is_scalar_list(obj, &overloaded_args);
case ParameterType::SYM_INT:
return is_int_or_symint(obj);
// Allow SymInt where int is expected; we'll guard in this case
case ParameterType::INT_LIST:
case ParameterType::SYM_INT_LIST:
return is_int_or_symint_list(obj, size, failed_idx, &overloaded_args);
case ParameterType::DISPATCH_KEY_SET:
return py::isinstance<c10::DispatchKeySet>(py::handle(obj));
default:
TORCH_CHECK(false, "unknown parameter type");
}
}
// WARNING: these strings are parsed invalid_arguments.cpp
std::string FunctionParameter::type_name() const {
switch (type_) {
case ParameterType::TENSOR:
return "Tensor";
case ParameterType::SCALAR:
return "Number";
case ParameterType::INT64:
// NB: SymInt is intentionally not mentioned here, as conventional user
// use will only know about ints
case ParameterType::SYM_INT:
return "int";
case ParameterType::DOUBLE:
return "float";
case ParameterType::COMPLEX:
return "complex";
case ParameterType::TENSOR_LIST:
return "tuple of Tensors";
case ParameterType::INT_LIST:
return "tuple of ints";
case ParameterType::FLOAT_LIST:
return "tuple of floats";
case ParameterType::GENERATOR:
return "torch.Generator";
case ParameterType::BOOL:
return "bool";
case ParameterType::STORAGE:
return "torch.Storage";
case ParameterType::PYOBJECT:
return "object";
case ParameterType::SCALARTYPE:
return "torch.dtype";
case ParameterType::LAYOUT:
return "torch.layout";
case ParameterType::MEMORY_FORMAT:
return "torch.memory_format";
case ParameterType::QSCHEME:
return "torch.qscheme";
case ParameterType::DEVICE:
return "torch.device";
case ParameterType::STRING:
return "str";
case ParameterType::DIMNAME:
return "name";
case ParameterType::DIMNAME_LIST:
return "tuple of names";
case ParameterType::SCALAR_LIST:
return "tuple of Scalars";
case ParameterType::SYM_INT_LIST:
return "tuple of ints";
case ParameterType::DISPATCH_KEY_SET:
return "DispatchKeySet";
default:
TORCH_CHECK(false, "unknown parameter type");
}
}
static std::optional<int64_t> parse_as_integer(const std::string& s) {
if (s.empty())
return std::nullopt;
char* str_end = nullptr;
long ans = strtol(s.c_str(), &str_end, 0);
// *str_end == 0 if the entire string was parsed as an integer.
return (*str_end == 0) ? std::optional<int64_t>(ans) : std::nullopt;
}
/*
Parse default value of IntArrayRef declared at native_functions.yaml
There are two kinds of default values:
1. IntArrayRef[2] x=1 (where size=2, value={1,1}
2. IntArrayRef x={1,2,3} (where size=3, value={1,2,3}, note that there cannot be
space after comma since native_parse.py uses ', ' to split args)
*/
static std::vector<int64_t> parse_intlist_args(
const std::string& s,
int64_t size) {
size_t n = s.size();
if (s.empty())
return std::vector<int64_t>();
// case 1. s is an int (e.g., s=2)
if (s[0] != '{') {
TORCH_CHECK(size > 0, "Incorrect size of IntArrayRef: ", size);
return std::vector<int64_t>(size, std::stol(s));
}
// case 2. s is a list of dims (e.g., s={1,2})
// since already checked left brace '{' above, here only checks right brace
// '}'
TORCH_CHECK(
s[n - 1] == '}',
"Default value of IntArrayRef is missing right brace '}', found ",
s[n - 1]);
auto args = std::vector<int64_t>();
std::istringstream ss(s.substr(1, s.length() - 2)); // exclude '{' and '}'
std::string tok;
while (std::getline(ss, tok, ',')) {
args.emplace_back(std::stol(tok));
}
return args;
}
// Parse a string literal to remove quotes and escape sequences
static std::string parse_string_literal(std::string_view str) {
TORCH_CHECK(str.length() >= 2, "String defaults must be quoted");
if (str.front() == '"') {
TORCH_CHECK(
str.back() == '"', "Mismatched quotes in string default: ", str);
} else {
TORCH_CHECK(
str.front() == '\'' && str.back() == '\'',
"Invalid quotes in string default: ",
str)
}
std::string parsed;
parsed.reserve(str.size());
for (size_t i = 1; i < str.size() - 1;) {
if (str[i] != '\\') {
parsed.push_back(str[i]);
++i;
continue;
}
// Handle escape sequences
TORCH_CHECK(
i < str.size() - 2, "String ends with escaped final quote: ", str)
char c = str[i + 1];
switch (c) {
case '\\':
case '\'':
case '\"':
break;
case 'a':
c = '\a';
break;
case 'b':
c = '\b';
break;
case 'f':
c = '\f';
break;
case 'n':
c = '\n';
break;
case 'v':
c = '\v';
break;
case 't':
c = '\t';
break;
default:
TORCH_CHECK(
false,
"Unsupported escape sequence in string default: \\",
str[i + 1]);
}
parsed.push_back(c);
i += 2;
}
return parsed;
}
void FunctionParameter::set_default_str(const std::string& str) {
if (str == "None") {
allow_none = true;
}
if (type_ == ParameterType::TENSOR ||
type_ == ParameterType::DISPATCH_KEY_SET) {
TORCH_CHECK(
str == "None", "default value for Tensor must be none, got: " + str);
} else if (type_ == ParameterType::INT64 || type_ == ParameterType::SYM_INT) {
default_int = atol(str.c_str());
} else if (type_ == ParameterType::BOOL) {
default_bool = (str == "True" || str == "true");
} else if (type_ == ParameterType::DOUBLE) {
default_double = atof(str.c_str());
} else if (type_ == ParameterType::COMPLEX) {
default_complex[0] = atof(str.c_str()); // TODO: parse "x + xj"?
default_complex[1] = 0;
} else if (type_ == ParameterType::SCALAR) {
if (str != "None") {
// we sometimes rely on integer-vs-float values, e.g. with arange.
const auto as_integer = parse_as_integer(str);
default_scalar = as_integer.has_value() ? at::Scalar(as_integer.value())
: at::Scalar(atof(str.c_str()));
}
} else if (
type_ == ParameterType::INT_LIST ||
type_ == ParameterType::SYM_INT_LIST) {
if (str != "None") {
default_intlist = parse_intlist_args(str, size);
}
} else if (type_ == ParameterType::FLOAT_LIST) {
TORCH_CHECK(str == "None", "Defaults not supported for float[]");
} else if (type_ == ParameterType::SCALARTYPE) {
if (str == "None") {
default_scalartype = at::ScalarType::Undefined;
} else if (str == "torch.int64") {
default_scalartype = at::ScalarType::Long;
} else {
TORCH_CHECK(false, "invalid default value for ScalarType: " + str);
}
} else if (type_ == ParameterType::LAYOUT) {
if (str == "None") {
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(allow_none);
} else if (str == "torch.strided") {
default_layout = at::Layout::Strided;
} else if (str == "torch.sparse_coo") {
default_layout = at::Layout::Sparse;
} else {
TORCH_CHECK(false, "invalid default value for layout: " + str);
}
} else if (type_ == ParameterType::DEVICE) {
TORCH_CHECK(str == "None", "invalid device: " + str);
} else if (type_ == ParameterType::STREAM) {
TORCH_CHECK(str == "None", "invalid stream: " + str);
} else if (type_ == ParameterType::STRING) {
if (str != "None") {
default_string = parse_string_literal(str);
}
}
// These types weren't handled here before. Adding a default error
// led to a lot of test failures so adding this skip for now.
// We should correctly handle these though because it might be causing
// silent failures.
else if (type_ == ParameterType::TENSOR_LIST) { // NOLINT
// throw std::runtime_error("Invalid Tensor List");
} else if (type_ == ParameterType::GENERATOR) { // NOLINT
// throw std::runtime_error("ParameterType::GENERATOR");
} else if (type_ == ParameterType::PYOBJECT) { // NOLINT
// throw std::runtime_error("ParameterType::PYOBJECT");
} else if (type_ == ParameterType::MEMORY_FORMAT) { // NOLINT
// throw std::runtime_error("ParameterType::MEMORY_FORMAT");
} else if (type_ == ParameterType::DIMNAME) { // NOLINT
// throw std::runtime_error("ParameterType::DIMNAME");
} else if (type_ == ParameterType::DIMNAME_LIST) { // NOLINT
// throw std::runtime_error("ParameterType::DIMNAME_LIST");
} else if (type_ == ParameterType::SCALAR_LIST) { // NOLINT
// throw std::runtime_error("ParameterType::SCALAR_LIST");
} else if (type_ == ParameterType::STORAGE) { // NOLINT
// throw std::runtime_error("ParameterType::STORAGE");
} else if (type_ == ParameterType::QSCHEME) { // NOLINT
// throw std::runtime_error("ParameterType::QSCHEME");
} else {
TORCH_CHECK(false, "unknown parameter type");
}
default_value = str;
}
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
FunctionSignature::FunctionSignature(const std::string& fmt, int index)
: min_args(0),
max_args(0),
max_pos_args(0),
index(index),
hidden(false),
deprecated(false) {
auto open_paren = fmt.find('(');
if (open_paren == std::string::npos) {
TORCH_CHECK(false, "missing opening parenthesis: " + fmt);
}
name = fmt.substr(0, open_paren);
bool allow_numbers_as_tensors = should_allow_numbers_as_tensors(name);
auto last_offset = open_paren + 1;
bool keyword_only = false;
bool done = false;
while (!done) {
auto offset = fmt.find(", ", last_offset);
auto next_offset = offset + 2;
if (offset == std::string::npos) {
offset = fmt.find(')', last_offset);
done = true;
next_offset = offset + 1;
// this 'if' happens for an empty parameter list, i.e. fn().
if (offset == last_offset) {
last_offset = next_offset;
break;
}
}
TORCH_CHECK(
offset != std::string::npos, "missing closing parenthesis: " + fmt);
TORCH_CHECK(offset != last_offset, "malformed signature: " + fmt);
auto param_str = fmt.substr(last_offset, offset - last_offset);
last_offset = next_offset;
if (param_str == "*") {
keyword_only = true;
} else {
params.emplace_back(param_str, keyword_only);
params.back().allow_numbers_as_tensors = allow_numbers_as_tensors;
}
}
if (fmt.substr(last_offset) == "|deprecated") {
hidden = true;
// TODO: raise warning when parsing deprecated signatures
deprecated = true;
} else if (fmt.substr(last_offset) == "|hidden") {
hidden = true;
}
max_args = params.size();
// count the number of non-optional args
for (auto& param : params) {
if (!param.optional) {
min_args++;
}
if (!param.keyword_only) {
max_pos_args++;
}
}
}
std::string FunctionSignature::toString() const {
// optionals, etc.
std::ostringstream ss;
bool keyword_already = false;
ss << "(";
int i = 0;
for (auto& param : params) {
if (i != 0) {
ss << ", ";
}
if (param.keyword_only && !keyword_already) {
ss << "*, ";
keyword_already = true;
}
ss << param.type_name() << " " << param.name;
if (param.optional) {
ss << " = " << param.default_value;
}
i++;
}
ss << ")";
return ss.str();
}
[[noreturn]] static void extra_args(
const FunctionSignature& signature,
Py_ssize_t nargs) {
const auto max_pos_args = signature.max_pos_args;
const auto min_args = signature.min_args;
const long nargs_ = nargs;
if (min_args != max_pos_args) {
TORCH_CHECK_TYPE(
false,
fmt::format(
"{}() takes from {} to {} positional arguments but {} were given",
signature.name,
min_args,
max_pos_args,
nargs_));
}
TORCH_CHECK_TYPE(
false,
fmt::format(
"{}() takes {} positional argument{} but {} {} given",
signature.name,
max_pos_args,
max_pos_args == 1 ? "" : "s",
nargs_,
nargs == 1 ? "was" : "were"));
}
[[noreturn]] static void missing_args(
const FunctionSignature& signature,
int idx) {
int num_missing = 0;
std::stringstream ss;
auto& params = signature.params;
for (auto it = params.begin() + idx; it != params.end(); ++it) {
if (!it->optional) {
if (num_missing > 0) {
ss << ", ";
}
ss << '"' << it->name << '"';
num_missing++;
}
}
TORCH_CHECK_TYPE(
false,
fmt::format(
"{}() missing {} required positional argument{}: {}",
signature.name,
num_missing,
num_missing == 1 ? "s" : "",
ss.str()));
}
static Py_ssize_t find_param(FunctionSignature& signature, PyObject* name) {
Py_ssize_t i = 0;
for (auto& param : signature.params) {
int cmp = PyObject_RichCompareBool(name, param.python_name, Py_EQ);
if (cmp < 0) {
throw python_error();
} else if (cmp) {
return i;
}
i++;
}
return -1;
}
[[noreturn]] static void extra_kwargs(
FunctionSignature& signature,
PyObject* kwargs,
Py_ssize_t num_pos_args) {
PyObject* key = nullptr;
PyObject* value = nullptr;
Py_ssize_t pos = 0;
// Note that this dict traversal is NoGil safe as the kwargs dict is only
// accessible within this thread.
while (PyDict_Next(kwargs, &pos, &key, &value)) {
if (!THPUtils_checkString(key)) {
TORCH_CHECK_TYPE(false, "keywords must be strings");
}
auto param_idx = find_param(signature, key);
if (param_idx < 0) {
TORCH_CHECK_TYPE(
false,
fmt::format(
"{}() got an unexpected keyword argument '{}'",
signature.name,
THPUtils_unpackString(key)));
}
if (param_idx < num_pos_args) {
TORCH_CHECK_TYPE(
false,
fmt::format(
"{}() got multiple values for argument '{}'",
signature.name,
THPUtils_unpackString(key)));
}
}
// this should never be hit
TORCH_CHECK_TYPE(false, "invalid keyword arguments");
}
bool FunctionSignature::parse(
PyObject* self,
PyObject* args,
PyObject* kwargs,
PyObject* dst[], // NOLINT
std::vector<PyObject*>& overloaded_args,
bool raise_exception) {
Py_ssize_t nargs = args ? PyTuple_GET_SIZE(args) : 0;
auto remaining_kwargs = kwargs ? PyDict_Size(kwargs) : 0;
size_t arg_pos = 0;
bool allow_varargs_intlist = false;
// if there is a single positional IntArrayRef argument, i.e. expand(..),
// view(...), allow a var-args style IntArrayRef, so expand(5,3) behaves as
// expand((5,3))
if (max_pos_args == 1 &&
(params[0].type_ == ParameterType::INT_LIST ||
params[0].type_ == ParameterType::SYM_INT_LIST)) {
allow_varargs_intlist = true;
}
if (static_cast<size_t>(nargs) > max_pos_args && !allow_varargs_intlist) {
if (raise_exception) {
// foo() takes takes 2 positional arguments but 3 were given
extra_args(*this, nargs);
}
return false;
}
int i = 0;
if (self != nullptr && check_has_torch_function(self, /*ignore_mode*/ true)) {
append_overloaded_tensor(&overloaded_args, self);
}
for (auto& param : params) {
PyObject* obj = nullptr;
bool is_kwd = false;
if (arg_pos < static_cast<size_t>(nargs)) {
// extra positional args given after single positional IntArrayRef arg
if (param.keyword_only) {
if (raise_exception) {
extra_args(*this, nargs);
}
return false;
}
obj = PyTuple_GET_ITEM(args, arg_pos);
} else if (kwargs) {
// Note that this call is NoGil safe as it works on kwargs which are local
// to the current function call.
obj = PyDict_GetItem(kwargs, param.python_name);
for (PyObject* numpy_name : param.numpy_python_names) {
if (obj) {
break;
}
obj = PyDict_GetItem(kwargs, numpy_name);
}
is_kwd = true;
}
int64_t failed_idx = -1;
bool varargs_eligible = allow_varargs_intlist && arg_pos == 0 && !is_kwd;
if ((!obj && param.optional) || (obj == Py_None && param.allow_none)) {
dst[i++] = nullptr;
} else if (!obj) {
if (raise_exception) {
// foo() missing 1 required positional argument: "b"
missing_args(*this, i);
}
return false;
} else if (param.check(obj, overloaded_args, i, &failed_idx)) {
dst[i++] = obj;
// XXX: the Variable check is necessary because sizes become tensors when
// tracer is enabled. This behavior easily leads to ambiguities, and we
// should avoid having complex signatures that make use of it...
} else if (
varargs_eligible &&
(is_int_or_symint_list(
args, param.size, &failed_idx, &overloaded_args))) {
// take all positional arguments as this parameter
// e.g. permute(1, 2, 3) -> permute((1, 2, 3))
dst[i++] = args;
arg_pos = nargs;
continue;
} else if (raise_exception) {
if (is_kwd) {
// foo(): argument 'other' must be str, not int
TORCH_CHECK_TYPE(
false,
fmt::format(
"{}(): argument '{}' must be {}, not {}",
name,
param.name,
param.type_name(),
Py_TYPE(obj)->tp_name));
} else {
// foo(): argument 'other' (position 2) must be str, not int
if (failed_idx != -1) {
if (!(PyTuple_Check(obj) || PyList_Check(obj))) {
TORCH_INTERNAL_ASSERT(varargs_eligible);
obj = args;
}
TORCH_INTERNAL_ASSERT(failed_idx < PySequence_Size(obj));
TORCH_CHECK_TYPE(
false,
fmt::format(
"{}(): argument '{}' (position {}) must be {}, but found element of type {} at pos {}",
name,
param.name,
arg_pos + 1,
param.type_name(),
Py_TYPE(py::reinterpret_steal<py::object>(
PySequence_GetItem(obj, failed_idx))
.ptr())
->tp_name,
failed_idx));
}
TORCH_CHECK_TYPE(
false,
fmt::format(
"{}(): argument '{}' (position {}) must be {}, not {}",
name,
param.name,
arg_pos + 1,
param.type_name(),
Py_TYPE(obj)->tp_name));
}
} else {
return false;
}
if (!is_kwd) {
arg_pos++;
} else if (obj) {
remaining_kwargs--;
}
}
if (remaining_kwargs > 0) {
if (raise_exception) {
// foo() got an unexpected keyword argument "b"
extra_kwargs(*this, kwargs, nargs);
}
return false;
}
return true;
}
PythonArgParser::PythonArgParser(
const std::vector<std::string>& fmts,
bool traceable)
: max_args(0), traceable(traceable) {
int index = 0;
for (auto& fmt : fmts) {
signatures_.emplace_back(fmt, index);
++index;
}
for (auto& signature : signatures_) {
if (signature.max_args > max_args) {
max_args = signature.max_args;
}
}
if (!signatures_.empty()) {
function_name = signatures_[0].name;
}
// Check deprecated signatures last
std::stable_partition(
signatures_.begin(), signatures_.end(), [](const FunctionSignature& sig) {
return !sig.deprecated;
});
}
void PythonArgParser::check_deprecated(const FunctionSignature& signature) {
if (signature.deprecated) {
auto msg = c10::str(
"This overload of ",
signature.name,
" is deprecated:\n\t",
signature.name,
signature.toString());
auto signatures = get_signatures();
if (!signatures.empty()) {
msg += "\nConsider using one of the following signatures instead:";
for (const auto& sig : signatures) {
msg += "\n\t";
msg += signature.name;
msg += sig;
}
}
TORCH_WARN_ONCE(msg);
}
}
PythonArgs PythonArgParser::raw_parse(
PyObject* self,
PyObject* args,
PyObject* kwargs,
PyObject* parsed_args[]) { // NOLINT
if (signatures_.size() == 1) {
auto& signature = signatures_[0];
std::vector<PyObject*> overloaded_args;
signature.parse(self, args, kwargs, parsed_args, overloaded_args, true);
check_deprecated(signature);
return PythonArgs(
traceable, signature, parsed_args, std::move(overloaded_args));
}
for (auto& signature : signatures_) {
std::vector<PyObject*> overloaded_args;
if (signature.parse(
self, args, kwargs, parsed_args, overloaded_args, false)) {
check_deprecated(signature);
return PythonArgs(
traceable, signature, parsed_args, std::move(overloaded_args));
}
}
print_error(self, args, kwargs, parsed_args);
}
void PythonArgParser::print_error(
PyObject* self,
PyObject* args,
PyObject* kwargs,
PyObject* parsed_args[]) { // NOLINT
size_t num_args =
(args ? PyTuple_GET_SIZE(args) : 0) + (kwargs ? PyDict_Size(kwargs) : 0);
std::vector<unsigned> plausible_idxs;
unsigned i = 0;
for (auto& signature : signatures_) {
if (num_args >= signature.min_args && num_args <= signature.max_args &&
!signature.hidden) {
plausible_idxs.push_back(i);
}
i++;
}
if (plausible_idxs.size() == 1) {
auto& signature = signatures_[plausible_idxs[0]];
std::vector<PyObject*> overloaded_args;
signature.parse(self, args, kwargs, parsed_args, overloaded_args, true);
}
auto options = get_signatures();
auto msg =
torch::format_invalid_args(args, kwargs, function_name + "()", options);
TORCH_CHECK_TYPE(false, msg);
}
std::vector<std::string> PythonArgParser::get_signatures() const {
std::vector<std::string> options;
for (auto& signature : signatures_) {
if (!signature.hidden) {
options.push_back(signature.toString());
}
}
return options;
}
at::Tensor PythonArgs::tensor_slow(int i) {
PyObject* obj = args[i];
if (!obj) {
return at::Tensor();
}
if (THPVariable_Check(obj)) {
return THPVariable_Unpack(obj);
}
bool save_symint = false;
at::Scalar scalar;
if (PyBool_Check(obj)) {
scalar = at::Scalar(THPUtils_unpackBool(obj));
} else if (THPUtils_checkLong(obj)) {
scalar = THPUtils_unpackInteger<at::Scalar>(obj);
} else if (PyComplex_Check(obj)) {
scalar = at::Scalar(THPUtils_unpackComplexDouble(obj));
} else if (THPUtils_checkDouble(obj)) {
scalar = at::Scalar(THPUtils_unpackDouble(obj));
// NB: we DO NOT put symbolic ints/floats into the Scalar itself,
// because although Scalar supports SymInt/SymFloat, the subsequent
// conversion to Tensor does not. Instead, do it out of band.
} else if (
torch::is_symint(py::handle(obj)) || torch::is_dynint(py::handle(obj))) {
save_symint = true;
// This scalar value doesn't matter, it shouldn't ever actually
// get read out. Make it a big and weird looking number to help
// people figure out if there's aproblem.
scalar = at::Scalar(7777777);
} else if (torch::is_symfloat(py::handle(obj))) {
save_symint = true;
scalar = at::Scalar(std::numeric_limits<double>::quiet_NaN());
} else if (torch::is_symbool(py::handle(obj))) {
save_symint = true;
scalar = at::Scalar(true);
} else {
// NB: Are you here because you passed None to a Variable method,
// and you expected an undefined tensor to be returned? Don't add
// a test for Py_None here; instead, you need to mark the argument
// as *allowing none*; you can do this by writing 'Tensor?' instead
// of 'Tensor' in the ATen metadata.
TORCH_CHECK_TYPE(
false,
fmt::format(
"expected Tensor as argument {}, but got {}",
i,
Py_TYPE(obj)->tp_name));
}
at::AutoDispatchBelowADInplaceOrView guard; // TODO: remove
at::tracer::impl::NoTracerDispatchMode tracer_guard;
at::Tensor tensor = scalar_to_tensor(scalar);
tensor.unsafeGetTensorImpl()->set_wrapped_number(true);
if (save_symint) {
auto py_tensor = py::cast(tensor);
if (PyObject_SetAttrString(py_tensor.ptr(), "_wrapped_number", obj) < 0) {
throw python_error();
}
}
return tensor;
}
at::Scalar PythonArgs::scalar_slow(int i) {
if (traceable && jit::tracer::isTracing() && THPVariable_Check(args[i])) {
auto& var = THPVariable_Unpack(args[i]);
jit::tracer::ArgumentStash::stashValue(
signature.params[i].name, idx, var, c10::NumberType::get());
}
return scalar_slow(args[i]);
}
at::Scalar PythonArgs::scalar_slow(PyObject* arg) {
// Zero-dim tensors are converted to Scalars as-is. Note this doesn't
// currently handle most NumPy scalar types except np.float64.
if (THPVariable_Check(arg)) {
return THPVariable_Unpack(arg).item();
}
if (THPUtils_checkLong(arg)) {
int overflow = -1;
long long value = PyLong_AsLongLongAndOverflow(arg, &overflow);
if (value == -1 && PyErr_Occurred()) {
throw python_error();
}
if (overflow != 0) {
// try unsigned
unsigned long long value = PyLong_AsUnsignedLongLong(arg);
if (value == static_cast<unsigned long long>(-1) && PyErr_Occurred()) {
throw python_error();
}
return at::Scalar(static_cast<uint64_t>(value));
} else {
return at::Scalar(static_cast<int64_t>(value));
}
}
if (PyBool_Check(arg)) {
return at::Scalar(THPUtils_unpackBool(arg));
}
if (PyComplex_Check(arg)) {
return at::Scalar(THPUtils_unpackComplexDouble(arg));
}
if (torch::is_symint(arg)) {
return at::Scalar(py::cast<c10::SymInt>(arg));
}
if (torch::is_dynint(arg)) {
return at::Scalar(py::cast<int>(arg));
}
if (torch::is_symfloat(arg)) {
return at::Scalar(py::cast<c10::SymFloat>(arg));
}
if (torch::is_symbool(arg)) {
// Windows build fails with C2440: '<function-style-cast>'
// when at:Scalar(py::cast<c10::SymBool>(arg))
auto sym_bool = py::handle(arg).cast<c10::SymBool>();
return at::Scalar(sym_bool);
}
return at::Scalar(THPUtils_unpackDouble(arg));
}
} // namespace torch