mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
This is the same as https://github.com/pytorch/pytorch/pull/164467 But it needs to be co-deved due to internal insanity. Pull Request resolved: https://github.com/pytorch/pytorch/pull/164736 Approved by: https://github.com/soulitzer
156 lines
5.2 KiB
C++
156 lines
5.2 KiB
C++
#pragma once
|
|
|
|
#include <torch/csrc/python_headers.h>
|
|
|
|
#include <torch/csrc/Exceptions.h>
|
|
#include <torch/csrc/Export.h>
|
|
#include <torch/csrc/autograd/custom_function.h>
|
|
#include <torch/csrc/autograd/function.h>
|
|
#include <torch/csrc/autograd/saved_variable.h>
|
|
#include <torch/csrc/autograd/variable.h>
|
|
#include <torch/csrc/utils/object_ptr.h>
|
|
|
|
#include <c10/core/DeviceGuard.h>
|
|
#include <optional>
|
|
|
|
#include <memory>
|
|
#include <vector>
|
|
|
|
namespace torch::jit {
|
|
struct Graph;
|
|
}
|
|
|
|
namespace torch::autograd {
|
|
|
|
// A Function which is implemented by a Python object (i.e., a THPFunction).
|
|
// Calls to 'apply' are forwarded to the Python method implementation.
|
|
// NOLINTNEXTLINE(cppcoreguidelines-special-member-functions)
|
|
struct PyNode : public Node {
|
|
PyNode(THPObjectPtr obj) : obj(obj.release()) {}
|
|
|
|
PyObject* to_py_args(
|
|
const variable_list& inputs,
|
|
at::OptionalDeviceGuard* device_guard);
|
|
variable_list to_variable_list(
|
|
const PyObject* r,
|
|
const std::vector<bool>& is_variable_input);
|
|
|
|
variable_list apply(variable_list&& inputs) override;
|
|
variable_list apply_with_saved_impl(
|
|
const variable_list& inputs,
|
|
const SwapSavedVariables& saved);
|
|
|
|
void release_variables() override;
|
|
std::string name() const override;
|
|
bool is_traceable() override;
|
|
|
|
bool is_aot_backward() const override;
|
|
|
|
void compiled_args(CompiledNodeArgs& args) const override;
|
|
variable_list apply_with_saved(
|
|
const variable_list& inputs,
|
|
SwapSavedVariables& saved) override;
|
|
|
|
// THPFunction this Function is wrapping. Owning!
|
|
PyObject* obj;
|
|
|
|
// NOLINTNEXTLINE(bugprone-exception-escape)
|
|
~PyNode() override {
|
|
// Can't use THPObjectPtr as a field in this class; destructor won't take
|
|
// out GIL! When I forgot to do this by hand
|
|
// TestAutograd.test_inplace_view_python called me out about it.
|
|
// If python is already dead, leak the wrapped python objects
|
|
if (Py_IsInitialized()) {
|
|
pybind11::gil_scoped_acquire gil;
|
|
Py_DECREF(obj);
|
|
}
|
|
}
|
|
};
|
|
|
|
/**
|
|
* Cast an object into a tuple, if it is not a tuple already. Returns true
|
|
* if the original object was not a tuple.
|
|
*/
|
|
inline bool ensure_tuple(THPObjectPtr& obj) {
|
|
if (PyTuple_Check(obj.get()))
|
|
return false;
|
|
|
|
PyObject* tuple = PyTuple_New(1);
|
|
if (!tuple)
|
|
throw python_error();
|
|
PyTuple_SET_ITEM(tuple, 0, obj.release());
|
|
obj = tuple;
|
|
return true;
|
|
}
|
|
|
|
} // namespace torch::autograd
|
|
|
|
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
|
|
struct THPFunction {
|
|
PyObject_HEAD
|
|
|
|
PyObject* needs_input_grad;
|
|
|
|
// Python tuple of tensors whose variables we should save. Set
|
|
// by Python with 'save_for_backward'. If nullptr, no tensors were
|
|
// saved.
|
|
PyObject* to_save;
|
|
// Python tuple of tensors which are not differentiable. Set by
|
|
// Python with 'mark_non_differentiable'. If nullptr, no tensors were
|
|
// non-differentiable.
|
|
PyObject* non_differentiable;
|
|
// Python tuple of tensors which had inplace updates in the forward()
|
|
// pass. Set by Python with 'mark_dirty'. If nullptr, no tensors were
|
|
// modified inplace.
|
|
PyObject* dirty_tensors;
|
|
|
|
// boolean indicating whether to materialize undefined output grad tensors
|
|
// into tensors full of zeros. Set by Python with 'set_materialize_grads'.
|
|
// Default is true.
|
|
bool materialize_grads;
|
|
|
|
// boolean indicating whether the function is a "pure view", meaning that
|
|
// replaying the view is enough to get a correct backward.
|
|
bool pure_view;
|
|
|
|
// boolean indicating whether to materialize output grad tensors
|
|
// corresponding to non-differentiable outputs. Normally, someone would
|
|
// already get this behavior by switching off materialize_grads,
|
|
// but there are certain use cases where that is not feasible:
|
|
// https://github.com/pytorch/pytorch/pull/98659#pullrequestreview-1376822560
|
|
bool materialize_non_diff_grads;
|
|
|
|
PyObject* compiled_autograd_backward_state;
|
|
std::vector<c10::SymInt> compiled_autograd_symints;
|
|
|
|
std::vector<torch::autograd::VariableInfo> output_info;
|
|
std::vector<torch::autograd::VariableInfo> input_info;
|
|
std::vector<torch::autograd::SavedVariable> saved_variables;
|
|
// For each input, true if the input is a THPVariable
|
|
std::vector<bool> is_variable_input;
|
|
char has_freed_buffers;
|
|
|
|
PyObject* saved_for_forward;
|
|
// The actual PyNode (in the autograd graph) that this data was
|
|
// saved for. This field may be NULL (because a user can construct
|
|
// a THPFunction directly from Python), but when this field is non-NULL,
|
|
// it is guaranteed that cdata.lock()->obj == this
|
|
//
|
|
// In most ordinary use, this field should always be non-NULL; e.g.,
|
|
// when we allocate a THPFunction because we are running Node.apply,
|
|
// after constructing a THPFunction, we immediately allocate a PyNode
|
|
// for it. We can't enforce this directly in the constructor of
|
|
// THPFunction though, because there's no way to keep it live long enough
|
|
// to save an owning reference to PyNode into the grad_fn of a Variable.
|
|
std::weak_ptr<torch::autograd::PyNode> cdata;
|
|
};
|
|
|
|
bool THPFunction_initModule(PyObject* module);
|
|
TORCH_PYTHON_API extern PyTypeObject THPFunctionType;
|
|
TORCH_PYTHON_API extern PyObject* THPFunctionClass;
|
|
TORCH_PYTHON_API extern PyObject* THPGradientEdgeClass;
|
|
|
|
inline bool THPFunction_Check(PyObject* obj) {
|
|
return PyObject_IsInstance(obj, (PyObject*)&THPFunctionType);
|
|
}
|