mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
ghstack-source-id: e44b3941530be83a630ec93f1478eec741ffca2e Pull-Request-resolved: https://github.com/pytorch/pytorch/pull/162815 Fixes #ISSUE_NUMBER Relanding due to internal weirdness. Separate PR to codev w/o ghstack. Pull Request resolved: https://github.com/pytorch/pytorch/pull/164751 Approved by: https://github.com/albanD
133 lines
3.7 KiB
C++
133 lines
3.7 KiB
C++
#pragma once
|
|
|
|
#include <ATen/ExpandUtils.h>
|
|
#include <ATen/NestedTensorImpl.h>
|
|
#include <ATen/core/Tensor.h>
|
|
#include <c10/core/Device.h>
|
|
#include <c10/core/DeviceType.h>
|
|
#include <c10/core/Stream.h>
|
|
#include <c10/core/SymIntArrayRef.h>
|
|
#include <c10/core/TensorImpl.h>
|
|
#include <c10/core/impl/DeviceGuardImplInterface.h>
|
|
#include <c10/util/DimVector.h>
|
|
#include <c10/util/Exception.h>
|
|
#include <c10/util/SmallVector.h>
|
|
|
|
#ifndef AT_PER_OPERATOR_HEADERS
|
|
#include <ATen/Functions.h>
|
|
#else
|
|
#include <ATen/ops/zeros.h>
|
|
#endif
|
|
|
|
namespace torch::autograd {
|
|
|
|
using SymIntSmallVec = c10::SmallVector<c10::SymInt, c10::kDimVectorStaticSize>;
|
|
using MetadataShape = std::variant<SymIntSmallVec, at::Tensor>;
|
|
|
|
/**
|
|
* Records TensorOptions, shape of the tensor, whether or not the Python
|
|
* dispatch key is set (tensor subclass), and, where applicable, the stream the
|
|
* corresponding operation took place on.
|
|
*
|
|
* If is_valid() is false, then the corresponding input is not used and may be
|
|
* an undefined tensor.
|
|
*/
|
|
struct TORCH_API InputMetadata {
|
|
InputMetadata() = default;
|
|
InputMetadata(
|
|
const at::TensorOptions& options,
|
|
MetadataShape input_shape,
|
|
bool is_tensor_subclass,
|
|
bool is_nested,
|
|
std::optional<at::ScalarType> grad_dtype);
|
|
InputMetadata(const at::Tensor& t);
|
|
|
|
const at::TensorOptions& options() const {
|
|
return options_;
|
|
}
|
|
|
|
caffe2::TypeMeta dtype() const {
|
|
return options_.dtype();
|
|
}
|
|
|
|
at::Device device() const {
|
|
return options_.device();
|
|
}
|
|
|
|
at::Layout layout() const {
|
|
return options_.layout();
|
|
}
|
|
|
|
c10::Stream stream() const {
|
|
return stream_;
|
|
}
|
|
|
|
bool is_tensor_subclass() const {
|
|
return is_tensor_subclass_;
|
|
}
|
|
|
|
at::Tensor zeros_like() const;
|
|
|
|
bool is_same_shape(const at::Tensor& grad) const;
|
|
|
|
bool is_expandable_to_shape(const at::Tensor& grad) const;
|
|
|
|
at::Tensor reduce_grad(at::Tensor& grad) const;
|
|
|
|
at::Tensor maybe_reduce(
|
|
const size_t index,
|
|
at::Tensor grad,
|
|
const std::function<std::string(const std::string&)>& format_error) const;
|
|
|
|
std::stringstream incompatible_shape_error_message(
|
|
const size_t index,
|
|
const at::Tensor& grad) const;
|
|
|
|
bool was_default_constructed() const {
|
|
return was_default_constructed_;
|
|
}
|
|
|
|
bool is_cpp_nested_tensor() const;
|
|
|
|
bool is_nested_tensor() const {
|
|
return is_nested_;
|
|
}
|
|
|
|
c10::SymIntArrayRef shape_as_dim_vector() const;
|
|
|
|
// Danger: not thread safe, caller must protect with lock
|
|
SymIntSmallVec& mutable_shape_as_dim_vector();
|
|
|
|
std::optional<at::ScalarType> grad_dtype() const {
|
|
TORCH_INTERNAL_ASSERT(!was_default_constructed_);
|
|
return grad_dtype_;
|
|
}
|
|
|
|
void set_grad_dtype(const std::optional<at::ScalarType>& grad_dtype) {
|
|
TORCH_INTERNAL_ASSERT(!was_default_constructed_);
|
|
grad_dtype_ = grad_dtype;
|
|
}
|
|
|
|
private:
|
|
at::Tensor shape_as_tensor() const;
|
|
bool is_nestedness_same(const at::Tensor& grad) const;
|
|
bool maybe_expandable_to(const at::Tensor& grad) const;
|
|
|
|
// NB: The engine does not use the dtype from the options, but rather the
|
|
// grad_dtype_ field to validate grad_output dtype.
|
|
// NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members)
|
|
const at::TensorOptions options_;
|
|
MetadataShape shape_;
|
|
c10::Stream stream_ = c10::Stream(c10::Stream::Default::DEFAULT, device());
|
|
bool is_tensor_subclass_ = false;
|
|
bool is_nested_ = false;
|
|
bool was_default_constructed_ = true;
|
|
|
|
// The grad_dtype_ field is the dtype that the engine expects the grad to be.
|
|
// When nullopt, grad_dtype_ is allowed to be any dtype.
|
|
// This field is mutated if THPVariable_set_grad_dtype is called
|
|
// and the AccumulateGrad has already been created.
|
|
std::optional<at::ScalarType> grad_dtype_;
|
|
};
|
|
} // namespace torch::autograd
|