Files
pytorch/torchgen/api/functionalization.py
Brian Hirsh 7d710403b0 Reapply "Make functionalization ViewMeta serializable with pickle. (#143712)" (#163769)
### Summary:
NOTE: This is a re-export of https://github.com/pytorch/pytorch/pull/161994 ; the changes between these two PRs is exclusively to the buck/build files

(Summary from #161994 )
Attempted rebase of https://github.com/pytorch/pytorch/pull/143712.

This reverts commit 6c713ccb5e0df227dd5b630057cbccd373cbe7d6.

cc voznesenskym penguinwu EikanWang jgong5 Guobing-Chen XiaobingSuper zhuhaozhe blzheng wenzhe-nrv jiayisunx chenyang78 kadeng chauhang amjames Lucaskabela

imported-using-ghimport

Test Plan: Imported from OSS

Differential Revision: D81524507

Pulled By: Lucaskabela

Pull Request resolved: https://github.com/pytorch/pytorch/pull/163769
Approved by: https://github.com/dolpm

Co-authored-by: Brian Hirsh <hirsheybar@fb.com>
2025-09-25 10:27:37 +00:00

216 lines
7.6 KiB
Python

from __future__ import annotations
from torchgen.api import dispatcher
from torchgen.api.types import (
BaseCppType,
BaseCType,
Binding,
boolT,
ConstRefCType,
CType,
longT,
NamedCType,
tensorT,
)
from torchgen.model import (
Argument,
BaseTy,
BaseType,
FunctionSchema,
NativeFunction,
NativeFunctionsViewGroup,
)
# This file describes the translation of JIT schema to API's used
# when creating `ViewMeta` specializations that are used by the functionalization pass.
# These API's mostly follow the dispatcher API, with one difference:
# - While the forward function just directly calls into the at::_ops API
# (following the dispatcher convention), the logic here for the reverse function
# is responsible for generating both the call-site, and the declarations
# (which are implemented manually in the at::functionalization::impl namespace).
# Define some specific lambda input arguments.
base_binding = Binding(
name="base",
nctype=NamedCType(name="base", type=ConstRefCType(BaseCType(tensorT))),
argument=Argument(
name="base", type=BaseType(BaseTy.Tensor), default=None, annotation=None
),
default=None,
)
has_symbolic_inputs_binding = Binding(
name="has_symbolic_inputs",
nctype=NamedCType(name="has_symbolic_inputs", type=BaseCType(boolT)),
argument=Argument(
name="has_symbolic_inputs",
type=BaseType(BaseTy.bool),
default=None,
annotation=None,
),
default=None,
)
mutated_view_binding = Binding(
name="mutated_view",
nctype=NamedCType(name="mutated_view", type=ConstRefCType(BaseCType(tensorT))),
argument=Argument(
name="base", type=BaseType(BaseTy.Tensor), default=None, annotation=None
),
default=None,
)
out_index_binding = Binding(
name="out_index",
nctype=NamedCType(name="out_index", type=BaseCType(longT)),
argument=Argument(
name="out_index", type=BaseType(BaseTy.int), default=None, annotation=None
),
default=None,
)
reapply_views_binding = Binding(
name="reapply_views",
nctype=NamedCType(name="reapply_views", type=BaseCType(boolT)),
argument=Argument(
name="reapply_views", type=BaseType(BaseTy.bool), default=None, annotation=None
),
default=None,
)
InverseReturnModeT = BaseCppType("at::functionalization", "InverseReturnMode")
inverse_return_mode_binding = Binding(
name="inverse_return_mode",
nctype=NamedCType(name="inverse_return_mode", type=BaseCType(InverseReturnModeT)),
argument=Argument(
name="inverse_return_mode",
# NB: not actually a bool but it doesn't matter because this isn't used
type=BaseType(BaseTy.bool),
default=None,
annotation=None,
),
default=None,
)
# Name of the `ViewMeta` specialization class created.
def classname(func: FunctionSchema, with_namespace: bool = False) -> str:
namespace = "at::functionalization::" if with_namespace else ""
return f"{namespace}{func.name.unambiguous_name()}_ViewMeta"
# Name of the operation called inside the `forward`/`reverse` implementations.
def name(
g: NativeFunctionsViewGroup,
*,
is_reverse: bool,
include_namespace: bool,
reapply_views: bool | None = None,
) -> str:
if reapply_views is None:
# reapply_views is only important for the fwd lambda,
# since we always plumb the runtime "reapply_views" argument into the reverse function.
assert is_reverse
if is_reverse:
return reverse_name(g.view, include_namespace)
# in the forward case, we just directly call into the at::_ops API (so we always need the namespace)
assert include_namespace
assert g.view_copy is not None
api_name = (
g.view.func.name.unambiguous_name()
if reapply_views
else g.view_copy.func.name.unambiguous_name()
)
return f"at::_ops::{api_name}::call"
def reverse_name(f: NativeFunction, include_namespace: bool) -> str:
# for the reverse: we plumb the "reapply_views" flag into that function and support
# both copy and non-copy variants. (We could avoid doing that, but that would require
# writing out twice as many view inverse functions).
api_name = f.func.name.unambiguous_name()
# in the reverse case, we codegen both the call-sites (which need the full namespace) and the declarations (which don't)
if include_namespace:
return f"at::functionalization::FunctionalInverses::{api_name}_inverse"
else:
return f"{api_name}_inverse"
def returns_type(func: FunctionSchema) -> CType:
# Assertion: all view ops return tensor-like outputs
assert len(func.returns) >= 1
for ret in func.returns:
assert ret.type.is_tensor_like()
# However, the return type of the lambda is always an individual tensor.
# For multi-tensor outputs, each tensor needs to be tracked individually.
return BaseCType(tensorT)
# Checks whether `func` might return more than one value.
def is_multi_output(func: FunctionSchema) -> bool:
return len(func.returns) > 1 or (
len(func.returns) == 1 and func.returns[0].type.is_list_like() is not None
)
# `ViewMeta` specialization constructor parameters.
def base_ctor_arguments(func: FunctionSchema) -> list[Binding]:
# All specializations are parematerized by `has_symbolic_inputs` flag.
arguments = [has_symbolic_inputs_binding]
# If `func` might return more than 1 value, we also parameterize this specialization
# with the output index.
if is_multi_output(func):
arguments.append(out_index_binding)
return arguments
# `ViewMeta` specialized class' constructor arguments.
#
# Values needed specifically by this specialization, that the base class does not need.
# Same as the class' attributes, but non-owning.
def extra_ctor_arguments(func: FunctionSchema) -> list[Binding]:
return attributes(func, owning=False)
# `ViewMeta` specialized class' non-static member data.
#
# Essential data for calling the instance's `forward` and `reverse functions. You can
# think of them as values that should be captured from the functionalization kernel.
def attributes(func: FunctionSchema, owning: bool = True) -> list[Binding]:
args = func.arguments.flat_all
assert args[0].type == BaseType(BaseTy.Tensor)
return [
reapply_views_binding,
inverse_return_mode_binding,
*[dispatcher.argument(a, remove_non_owning_ref_types=owning) for a in args[1:]],
]
def op_arguments(func: FunctionSchema, is_reverse: bool) -> list[Binding]:
args = func.arguments.flat_all
assert args[0].type == BaseType(BaseTy.Tensor)
non_self_args = args[1:]
# The forward lambda calls the at::_ops API, while the reverse lambda calls the view inverse API.
# Both of these follow the dispatcher API.
non_self_bindings = [dispatcher.argument(a) for a in non_self_args]
if not is_reverse:
# the forward lambda swaps out the original tensor argument with the lambd arg "base"
return [base_binding] + non_self_bindings
else:
# the reverse lambda does the same, but with an additional "mutated_view" arg
# additionally, we have a calling convention: for view ops that return multiple tensor outputs
# their corresponding view_inverse function takes in an additional index argument.
if is_multi_output(func):
return [
base_binding,
mutated_view_binding,
inverse_return_mode_binding,
out_index_binding,
] + non_self_bindings
else:
return [
base_binding,
mutated_view_binding,
inverse_return_mode_binding,
] + non_self_bindings